WO2020164459A1 - 触发无线链路失败的方法及设备 - Google Patents

触发无线链路失败的方法及设备 Download PDF

Info

Publication number
WO2020164459A1
WO2020164459A1 PCT/CN2020/074651 CN2020074651W WO2020164459A1 WO 2020164459 A1 WO2020164459 A1 WO 2020164459A1 CN 2020074651 W CN2020074651 W CN 2020074651W WO 2020164459 A1 WO2020164459 A1 WO 2020164459A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
indication information
link
maximum number
iab
Prior art date
Application number
PCT/CN2020/074651
Other languages
English (en)
French (fr)
Inventor
刘菁
戴明增
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20756027.7A priority Critical patent/EP3917199A4/en
Publication of WO2020164459A1 publication Critical patent/WO2020164459A1/zh
Priority to US17/400,845 priority patent/US20210377757A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1809Selective-repeat protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • H04L1/1678Details of the supervisory signal the supervisory signal being transmitted together with control information where the control information is for timing, e.g. time stamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1858Transmission or retransmission of more than one copy of acknowledgement message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method and device for triggering a wireless link failure.
  • wireless access networks have been widely used.
  • the failure of the wireless link is triggered, thereby recovering the wireless link for data retransmission.
  • the terminal device there are multiple data backhaul devices between the terminal device and the wireless access device (for example, the donor base station).
  • the wireless access device In the end-to-end transmission process between the terminal device and the wireless access device, when the terminal device transmits data to the wireless access device, it will be transmitted to the wireless access device through multiple data return devices; the wireless access device transmits to the terminal device When data, it will also be transmitted to the terminal device through multiple data return devices.
  • the embodiments of the present application provide a method and device for triggering a wireless link failure, which can detect the wireless link failure of the intermediate backhaul link in time, so as to perform link recovery in time to ensure normal data transmission.
  • an embodiment of the present application provides a method for triggering a radio link failure, including:
  • the first node obtains first indication information, where the first indication information includes the maximum number of retransmissions from the first node to the second node, that is, the first node retransmits to the second node based on the HARQ mechanism of hybrid automatic repeat request.
  • the first node determines, according to the first indication information, whether a radio link failure occurs in the link between the first node and the second node.
  • the first node is a data return device
  • the second node is a child node or a parent node of the first node.
  • Retransmission between each node is based on the HARQ retransmission mechanism.
  • the HARQ retransmission is realized at the MAC layer and can be fed back hop by hop.
  • the HARQ retransmission can be performed between each node instead of end-to-end retransmission. It can accurately determine the interface with poor link quality, thereby triggering link reconstruction.
  • the first node determining whether a radio link failure occurs in the link between the first node and the second node according to the first indication information includes:
  • the first node determines that the first node and the second node The link between the nodes has a wireless link failure; or
  • the first node determines that the first node and the second node The link between the nodes has a wireless link failure.
  • each node can timely and accurately discover the quality of the wireless link, and determine whether the wireless link fails according to the maximum number of retransmissions and the maximum number of responses, and trigger RRC connection re-establishment or The handover process is triggered to restore the link, ensuring timely data transmission.
  • obtaining the first indication information by the first node includes:
  • the first node receives a radio resource control RRC message from a first network device, where the RRC message includes the maximum number of retransmissions or the maximum number of non-responses; wherein, the first network device is a donor base station.
  • the donor base station By configuring the maximum number of retransmissions or the maximum number of non-responses for each node by the donor base station, the management and control of the entire link by the donor base station is realized, which is convenient for overall deployment, and the implementation method is simple.
  • the second node is the parent node of the first node
  • the RRC message is determined by the first network device according to second indication information, the second indication information includes the maximum number of retransmissions or the maximum number of non-responses, and the second indication information is the second Sent by the node to the first network device.
  • the parent node of the first node configures the maximum number of retransmissions or the maximum number of non-responses to the second node, which reduces the burden on the donor base station, and the second node performs flexible configuration according to actual conditions.
  • acquiring the first indication information by the first node includes:
  • the first node itself determines the maximum number of retransmissions or the maximum number of non-responses.
  • the first node When the first node serves as the parent node, the first node itself can be flexibly configured according to actual conditions, which reduces the burden on the donor base station.
  • the method further includes:
  • the first node sends third indication information to the first terminal device, where the third indication information is used to trigger the first terminal device to perform an automatic retransmission request of the radio link control RLC layer to request ARQ retransmission.
  • the first terminal device is triggered to perform ARQ retransmission at the RLC layer through the third indication information, thereby ensuring that the end-to-end transmission between the first terminal device and the donor base station can proceed normally, and ensuring that no packet is lost .
  • the first node determines that a wireless link occurs on the link between the first node and the second node If it fails, the method further includes:
  • the first node sends fourth indication information to the second network device, where the fourth indication information is used to trigger the second network device to perform an automatic retransmission request ARQ retransmission of the radio link control RLC layer; wherein,
  • the second network device is a donor base station.
  • the fourth indication information triggers the donor base station to perform ARQ retransmission at the RLC layer, thereby ensuring that the end-to-end transmission between the donor base station and the first terminal device can proceed normally.
  • an embodiment of the present application provides a method for triggering radio link failure, including:
  • the first node determines whether the link between the first node and the second node has a radio link failure according to the downlink reference signal sent by the second node; wherein, the second node is the first node's Parent node
  • the first node sends indication information to the terminal device, where the indication information is used to trigger the terminal device to send the RLC layer status report to the network device.
  • the downlink reference signal By using the downlink reference signal to determine whether a radio link failure occurs, it can be determined whether a radio link failure has occurred between each node, so that the RRC connection re-establishment or the handover process can be triggered accurately to restore the link.
  • the indication information is carried in a radio resource control RRC message.
  • the indication information is carried in a medium access control layer control element MAC CE.
  • the first node sending instruction information to the terminal device includes:
  • the first node sends the instruction information to the terminal device through the forwarding of the intermediate node.
  • an embodiment of the present application provides a method for triggering a radio link failure, including:
  • the second node triggers RRC re-establishment when detecting that the wireless link between the second node and the first node has a radio link failure
  • the second node sends first indication information to the third node, where the first indication information is used to indicate the RRC re-establishment result of the second node; the third node may determine whether it is itself based on the RRC re-establishment result of the second node Perform RRC re-establishment to ensure normal transmission of the link;
  • the second node is a child node of the first node, and is a parent node of the third node.
  • the first indication information is used to indicate that the RRC re-establishment of the second node fails or is used to instruct the third node to determine that the radio link fails RLF or to instruct the third node to trigger RRC re-establishment.
  • the second node When the RRC re-establishment fails by the second node, the second node sends the first indication information for indicating the failure of the RRC re-establishment to the third node, so that the third node can trigger the RRC re-establishment, ensuring that the third node can proceed in time
  • the link is rebuilt to ensure that the third node can transmit data normally.
  • the method before the second node sends the first indication information to the third node, the method further includes:
  • the second node sends second indication information to the third node, where the second indication information is used to indicate that a wireless link failure occurs in a wireless link between the second node and the first node.
  • the first indication information is used to indicate the failure or success of the RRC re-establishment of the second node.
  • an embodiment of the present application provides a method for triggering a radio link failure, including:
  • the third node receives the first indication information sent by the second node, where the first indication information is sent by the second node after determining that the wireless link transmission between the second node and the first node fails. Yes, the first indication information is used to indicate the RRC re-establishment result of the second node;
  • the third node determines whether to trigger RRC re-establishment according to the first indication information
  • the second node is a child node of the first node, and is a parent node of the third node.
  • the third node determining whether to trigger RRC re-establishment according to the first indication information includes:
  • the first indication information is used to indicate that the second node RRC re-establishment fails or is used to instruct the third node to determine that the radio link fails RLF or is used to instruct the third node to trigger RRC re-establishment, then it is determined that a radio link failure has occurred Or trigger RRC re-establishment.
  • the method before the third node receives the first indication information sent by the second node, the method further includes:
  • the third node starts a timer after receiving the second indication information sent by the second node, where the second indication information is used to indicate the wireless link between the second node and the first node A wireless link failure occurred on the road.
  • determining whether to trigger RRC re-establishment includes:
  • the third node triggers RRC re-establishment and stops the timer;
  • the third node stops the timer.
  • the third node determines that a radio link failure occurs or triggers RRC re-establishment.
  • the third node starts a timer after receiving the second indication information indicating the occurrence of a radio link failure, and determines whether to trigger the radio link failure or trigger the RRC re-establishment according to the first indication information received in the timer, It is ensured that the third node can rebuild the link in time, and the third node can transmit data normally.
  • an embodiment of the present application provides a data backhaul device.
  • the device is called a first node and includes:
  • the processing module is configured to determine whether the link between the first node and the second node has a wireless link failure according to the downlink reference signal sent by the second node; wherein, the second node is the first node The parent node of the node;
  • the sending module is used to send indication information to the terminal device if the wireless link fails, the indication information is used to trigger the terminal device to send the RLC layer status report to the network device
  • the indication information is carried in a radio resource control RRC message.
  • the indication information is carried in a medium access control layer control element MAC CE.
  • the sending module is specifically configured to send the indication information to the terminal device through forwarding by an intermediate node.
  • an embodiment of the present application provides a data backhaul device.
  • the device is called a first node and includes:
  • the obtaining module is configured to obtain first indication information, where the first indication information includes the maximum number of retransmissions for the first node to perform a hybrid automatic repeat request HARQ to the second node, or the first node receives the The maximum number of HARQ NACKs sent by the second node;
  • the processing module is configured to determine whether the link between the first node and the second node has a radio link failure according to the first indication information.
  • the first node is a data return device
  • the second node is a child node or a parent node of the first node.
  • the processing module is specifically used for:
  • the link between the first node and the second node A wireless link failure occurred on the road.
  • the acquiring module is specifically configured to: receive a radio resource control RRC message from the first network device, the RRC message including the maximum number of retransmissions or the maximum number of non-responses; wherein, The first network device is a donor base station.
  • the second node is the parent node of the first node; the RRC message is determined by the first network device according to the second indication information, and the second indication information includes all The maximum number of retransmissions or the maximum number of non-responses, and the second indication information is sent by the second node to the first network device.
  • the acquisition module is specifically configured to determine the maximum number of retransmissions or the maximum number of non-responses by itself.
  • the device further includes: a sending module
  • the sending module is configured to send third indication information to the first terminal device when it is determined that the link between the first node and the second node has a radio link failure, and the third indication information is used to trigger The first terminal device performs automatic retransmission of the radio link control RLC layer to request ARQ retransmission.
  • the device further includes: a sending module
  • the sending module is configured to send fourth indication information to the second network device when it is determined that the link between the first node and the second node has a radio link failure, where the fourth indication information is used for Trigger the second network device to perform an automatic retransmission request ARQ retransmission of the radio link control RLC layer; wherein, the second network device is a donor base station.
  • an embodiment of the present application provides a data backhaul device.
  • the device is called a second node and includes:
  • a processing module which is used to trigger RRC re-establishment when a radio link failure occurs in the radio link between the second node and the first node;
  • a sending module configured to send first indication information to a third node, where the first indication information is used to indicate an RRC re-establishment result of the second node;
  • the second node is a child node of the first node, and is a parent node of the third node.
  • the first indication information is used to indicate that the RRC re-establishment of the second node fails or is used to instruct the third node to determine that the radio link fails RLF or to instruct the third node to trigger RRC re-establishment.
  • the sending module is further configured to send second indication information to the third node before the second node sends the first indication information to the third node, and the second indication Information is used to indicate that a wireless link failure occurs in the wireless link between the second node and the first node.
  • the first indication information is used to indicate the failure or success of the RRC re-establishment of the second node.
  • an embodiment of the present application provides a data backhaul device, which is called a third node, and includes:
  • the receiving module is configured to receive first indication information sent by the second node, where the first indication information is that the second node determines that the wireless link between the second node and the first node fails to send the wireless link Sent later, the first indication information is used to indicate the RRC re-establishment result of the second node;
  • a processing module configured to determine whether to trigger RRC re-establishment according to the first indication information
  • the second node is a child node of the first node, and is a parent node of the third node.
  • the processing module is specifically used for:
  • the first indication information is used to indicate that the second node RRC re-establishment fails or is used to instruct the third node to determine that the radio link fails RLF or is used to instruct the third node to trigger RRC re-establishment, then it is determined that a radio link failure has occurred Or trigger RRC re-establishment.
  • the receiving module is further configured to: before the third node receives the first indication information sent by the second node, after receiving the second indication information sent by the second node, A timer is started, and the second indication information is used to indicate that a radio link failure occurs in the radio link between the second node and the first node.
  • the processing module is specifically configured to:
  • the first indication information is used to indicate that the RRC re-establishment of the second node fails, trigger the RRC re-establishment and stop the timer; or,
  • the first indication information is used to indicate that the RRC re-establishment of the second node is successful, stop the timer.
  • the processing module is also used to determine that a radio link failure occurs or trigger RRC re-establishment.
  • an embodiment of the present application provides a data return device, including a memory, a processor, and a computer program, the computer program is stored in the memory, and the processor runs the computer program to execute:
  • an embodiment of the present application provides a storage medium, the storage medium includes a computer program, and the computer program is used to implement:
  • the embodiments of the present application provide a computer program product, the computer program product includes computer program code, when the computer program code runs on a computer, the computer executes:
  • an embodiment of the present application provides a chip that includes a processor and may also include a memory, where the memory is used to store a computer program, and the processor is used to execute the computer program in the memory, so that The communication device of the chip executes:
  • the method and device for triggering radio link failure obtain first indication information through a first node, and the first indication information includes the maximum number of retransmissions or the maximum non-response for performing hybrid automatic repeat request HARQ The number of times; the first node determines whether the link between the first node and the second node has a wireless link failure according to the first indication information.
  • each node passes through the MAC-based
  • the HARQ transmission mechanism of the layer can timely and accurately find the quality of the wireless link. If the link quality is poor, it is considered that a wireless link failure has occurred, and the link is restored by triggering the RRC connection re-establishment or triggering the handover process.
  • FIG. 1 shows a schematic diagram of a network architecture to which an embodiment of the present application may be applicable
  • FIG. 2 is an end-to-end user plane protocol stack architecture provided by an embodiment of the application
  • FIG. 3 is a schematic diagram of a scenario where a wireless link fails according to an embodiment of the application
  • FIG. 4 is a flowchart of a method for triggering a radio link failure provided by an embodiment of the application
  • FIG. 5 is a schematic diagram of a scenario where a wireless link fails based on uplink transmission according to an embodiment of the application
  • FIG. 6 is a schematic diagram of a scenario where a wireless link fails based on downlink transmission according to an embodiment of the application
  • FIG. 7 is a flowchart of a method for triggering a radio link failure provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a scenario where a wireless link fails based on downlink transmission according to an embodiment of the application
  • FIG. 9 is a schematic diagram of a scenario for triggering a radio link failure provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of a wireless link failure scenario provided by an embodiment of this application.
  • FIG. 11 is a signaling flowchart for triggering radio link failure according to an embodiment of the application.
  • FIG. 12 is a signaling flowchart for triggering radio link failure according to an embodiment of the application.
  • FIG. 13 is a schematic structural diagram of a data return device provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of a data return device provided by an embodiment of this application.
  • 15 is a schematic structural diagram of a data return device provided by an embodiment of this application.
  • FIG. 16 is a schematic structural diagram of a data return device provided by an embodiment of this application.
  • FIG. 17 is a schematic diagram of the hardware structure of a data return device provided by an embodiment of the application.
  • the embodiments of this application can be applied to wireless communication systems.
  • the wireless communication systems mentioned in the embodiments of this application include, but are not limited to: Narrow Band-Internet of Things (NB-IoT), Global Mobile Communication system (Global System for Mobile Communications, GSM), Enhanced Data rate for GSM Evolution (EDGE), Wideband Code Division Multiple Access (WCDMA), Code Division Multiple Access 2000 system (Code Division Multiple Access, CDMA2000), Time Division-Synchronization Code Division Multiple Access (Time Division-Synchronization Code Division Multiple Access, TD-SCDMA), Long Term Evolution (LTE) and the next generation of 5G new wireless (New Radio, NR) mobile communication system.
  • NB-IoT Narrow Band-Internet of Things
  • GSM Global System for Mobile Communications
  • EDGE Enhanced Data rate for GSM Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access 2000 system
  • Time Division-Synchronization Code Division Multiple Access Time Division-Synchronization Code Division Multiple Access
  • LTE Long
  • Figure 1 shows a schematic diagram of a network architecture to which an embodiment of the present application may be applicable.
  • the multi-hop relay network architecture includes terminal equipment, multiple integrated access and backhaul (IAB) nodes, and IAB host network equipment (donor).
  • IAB integrated access and backhaul
  • Donor IAB host network equipment
  • the network architecture includes an IAB donor node (IAB donor, which can be called an IAB donor base station, or an IAB donor node, or a host IAB node, or a host IAB base station, etc., which is not limited by the present invention), IAB node 1 (IAB node1, IAB n1) and IAB node 2 (IAB node2, IAB n2), terminal equipment.
  • the terminal device is connected to the IAB donor (IAB D) through IAB node1 and IAB node2, and the IAB donor and the core network 5GC are connected through the NG interface.
  • the link between IAB node1 and IAB node2 and the link between IAB node1 and IAB donor provide two-hop data backhaul for terminal devices.
  • the relay network architecture can be applied to the integration of millimeter wave access and backhaul, so that dense urban buildings and isolated islands or mountainous areas where optical fiber laying is difficult can enjoy 5G high-speed low-latency communications with the support of IAB technology.
  • This embodiment does not particularly limit the application scenario of the relay network architecture.
  • the relay network architecture adopts a CU-DU separation architecture
  • the IAB donor includes a centralized unit (Central Unit, CU) and a distributed unit (Distributed Unit, DU).
  • the IAB node includes a DU module and a mobile terminal (Mobile Termination, MT) module.
  • the IAB node DU module provides some gNB functions (for example, the physical layer (PHY), MAC layer, and RLC layer functions of the gNB),
  • the child nodes of the IAB node DU can provide access services.
  • the child nodes of the IAB node DU can be ordinary terminal equipment or other IAB nodes; the IAB node MT module is similar to the terminal equipment, and the IAB node MT module accesses the
  • the previous node of the IAB node such as the parent node (for example, the parent node may be another IAB node, or an IAB donor node), provides data return for the data of the child nodes under the IAB node DU.
  • the air interface for wireless transmission can be divided into two categories, namely the air interface between the IAB node and the terminal device, the air interface between the IAB node and the IAB donor/the air interface between the IAB node and the IAB node.
  • the air interface between the IAB node and the terminal may be referred to as the Uu interface
  • the air interface between the IAB node and the IAB donor may be referred to as the Un interface.
  • the above-mentioned air interface of this patent can also have other names, and this patent is not limited, and they all fall within the scope of our definition.
  • the terminal device may be a wireless terminal.
  • the wireless terminal may be a device that provides voice and/or other business data connectivity to the user, a handheld device with wireless connection function, or other processing devices connected to a wireless modem.
  • a wireless terminal can communicate with one or more core networks via a radio access network (RAN).
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal For example, they can be portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the wireless access network.
  • the reliability of data transmission can be guaranteed by a two-layer retransmission mechanism, including the automatic repeat request (ARQ) of the link control protocol layer (Radio Link Control, RLC), And the Hybrid Automatic Repeat Request (HARQ) of the Medium Access Control layer (Medium Access Control, MAC).
  • ARQ automatic repeat request
  • RLC Radio Link Control
  • HARQ Hybrid Automatic Repeat Request
  • Medium Access Control Medium Access Control
  • the end-to-end ARQ mechanism is adopted between the terminal device and the IAB donor, that is, the RLC ARQ function equivalent to the terminal device is located on the IAB donor DU, and the RLC layer on the intermediate nodes IAB node1 and IAB node2 does not include
  • the ARQ function only includes the function of segmenting the RLC SDU.
  • a hop-by-hop HARQ mechanism is adopted between the terminal device and the IAB donor, that is: each access link and backhaul link respectively support independent HARQ functions, that is, there is an independent HARQ mechanism between the terminal device and IAB node2, IAB node1 There is an independent HARQ mechanism between IAB node2, and there is an independent HARQ mechanism between IAB node1 and IAB donor.
  • FIG. 2 provides a user plane protocol stack architecture using end-to-end ARQ for an embodiment of the application.
  • protocol layers between the terminal device and the IAB donor including: Service Data Adaptation Protocol (SDAP), Packet Data Convergence Protocol (PDCP) , RLC layer.
  • SDAP Service Data Adaptation Protocol
  • PDCP Packet Data Convergence Protocol
  • RLC layer between the terminal device and the IAB donor only contains the ARQ function.
  • There are equivalent protocol layers between the terminal equipment and IAB node2 including: RLC, MAC, and PHY layers. Among them, the equivalent RLC layer between the terminal device and IAB node2 only contains the segmentation function.
  • IAB node1 and IAB node2 There are equivalent protocol layers between IAB node1 and IAB node2, including RLC, MAC, and PHY layers. Among them, the equivalent RLC layer between IAB node1 and IAB node2 only includes the segmentation function, and does not include the ARQ function.
  • IAB node1 and IAB donor including RLC, MAC, and PHY layers. Among them, the equivalent RLC layer between IAB node1 and IAB donor only contains the segmentation function.
  • the CU is connected to the core network (5GC) through the NG interface, and controls and coordinates multiple cells within the access network to realize the RRC function of the control plane, the PDCP layer function, and the user plane IP, SDAP, PDCP functions; DU realizes radio frequency processing functions and RLC, MAC and other baseband processing functions.
  • 5GC core network
  • FIG. 3 is a schematic diagram of a wireless link failure scenario provided by an embodiment of the application.
  • the uplink data of the terminal device is successfully sent to IAB node2, but because the uplink quality of IAB node2 and IAB node1 is not good
  • IAB node2 cannot send the data of the terminal device to IAB node1, so that the IAB donor cannot receive the data of the terminal device and send the RLC ARQ NACK feedback to the terminal device, thereby triggering the terminal device to retransmit the RLC layer.
  • the terminal device When the RLC layer reaches the maximum number of retransmissions, it is considered that a radio link failure (Radio Link Failure, RLF) has occurred, and RRC re-establishment is triggered.
  • RLF Radio Link Failure
  • the link quality of the Uu interface is very good. It is unnecessary for the terminal equipment to select other IAB nodes to trigger the RRC re-establishment process. It is IAB node2 that really needs to trigger the RRC re-establishment, but because of the end-to-end ARQ, IAB node2 cannot The RLF is triggered according to the maximum number of ARQ retransmissions.
  • each IAB node performs retransmission based on the HARQ retransmission mechanism.
  • the HARQ retransmission is implemented at the MAC layer and can be fed back hop by hop. It can be seen from Figure 2 that it can be performed between various nodes instead of end-to-end retransmission, so that the interface with poor link quality can be accurately determined, thereby triggering the IAB node to rebuild the link.
  • Fig. 4 is a flowchart of a method for triggering a radio link failure provided by an embodiment of the application. As shown in Figure 4, the method includes:
  • the first node obtains first indication information, where the first indication information includes the maximum number of retransmissions for the first node to perform hybrid automatic repeat request HARQ to the second node, or the first node receives the The maximum number of HARQ NACKs sent by the second node.
  • the first node may be the data backhaul device in the foregoing embodiment, that is, the IAB node, and the first node is used to transmit data between the terminal and the network device (backing base station, IAB donor).
  • the first node integrates a wireless access link and a wireless backhaul link, where the access link is the communication link between the terminal device and the first node, and the wireless backhaul link is the first node and other Data return device or communication link between network devices.
  • the second node may be a child node or a parent node of the first node.
  • the parent node refers to the last hop node of the first node, that is, the node that directly receives the uplink data sent by the first node or the node that directly sends downlink data to the first node;
  • the child node refers to the node of the first node.
  • the next hop node is a node that directly receives downlink data sent by the first node or a node that directly sends uplink data to the first node.
  • the first node may obtain the first indication information in a variety of ways, such as obtaining it from the donor base station, or generating it by itself.
  • the first indication information includes the maximum number of retransmissions or the maximum number of non-responses, the maximum number of retransmissions is the maximum number of data retransmissions from the first node to the second node, and the maximum number of non-responses is the first node receiving the second node The maximum number of HARQ NACKs.
  • the first indication information includes the maximum number of retransmissions or the maximum number of non-responses. In another possible manner, the first indication information is used to indicate the maximum number of retransmissions or the maximum number of non-responses, and the indication may be an explicit indication or an implicit indication.
  • the first node determines whether a radio link failure occurs in the link between the first node and the second node according to the first indication information.
  • the first node can determine that the link between the first node and the second node does not have a radio link failure. In a possible implementation, if the number of HARQ retransmissions performed by the first node to the second node is less than the maximum number of retransmissions indicated in the first indication information, the first node considers that there is a relationship between the first node and the second node. No wireless link failure occurred on the link.
  • the first node if the number of times that the first node receives HARQ NACKs sent by the second node is less than the maximum number of non-acknowledgements indicated in the first indication information, the first node considers the difference between the first node and the second node No wireless link failure occurred in the link between.
  • the first node may also determine that the link between the first node and the second node has a radio link failure. In a possible implementation manner, if the number of HARQ retransmissions by the first node to the second node is greater than or equal to the maximum number of retransmissions indicated in the first indication information, the first node considers the first node and the second node A wireless link failure occurred in the link between.
  • the first node if the number of times that the first node receives HARQ NACKs sent by the second node is greater than or equal to the maximum number of non-acknowledgements indicated in the first indication information, the first node considers that the first node and the second node The link between the nodes has a wireless link failure.
  • the first node can trigger the link recovery.
  • the link recovery can be done through Radio Resource Control (RRC).
  • RRC Radio Resource Control
  • the first node triggers the RRC connection re-establishment process and selects a new cell for access.
  • the new cell may be another cell on the second node, or a cell of another IAB node or a cell of an IAB donor.
  • the first node triggers the handover process, and the first node switches to a cell with other IAB nodes or a cell of an IAB donor.
  • the first node obtains first indication information, where the first indication information includes the maximum number of retransmissions or the maximum number of non-responses for performing hybrid automatic repeat request HARQ; first The node judges whether the link between the first node and the second node has a wireless link failure according to the first indication information.
  • each node uses HARQ transmission based on the MAC layer The mechanism can detect the quality of the wireless link in a timely and accurate manner. If the link quality is poor, it is considered that a wireless link failure has occurred, and the link is restored by triggering the RRC connection re-establishment or triggering the handover process.
  • Figure 5 is a schematic diagram of a scenario where a wireless link fails based on uplink transmission provided by an embodiment of the application.
  • the RLF trigger condition for the newly added backhaul link the number of HARQ retransmissions on the uplink backhaul link (uplink, UL) is equal to or greater than the maximum number of UL HARQ retransmissions, or The number of HARQ NACKs to UL is equal to or greater than the maximum number of non-acknowledgments.
  • the first node is the child node of the second node
  • the second node is the parent node of the first node
  • the first node sends uplink data to the second node
  • the first node discovers that UL HARQ retransmission reaches the specified maximum number of retransmissions, or
  • the first node determines that RLF occurs on the link between the first node and the second node.
  • the manner in which the first node obtains the first indication information may include the following possible implementation manners:
  • the donor base station (IAB donor, IAB D) configures the maximum number of retransmissions or the maximum number of non-responses for each node.
  • IAB donor configures the maximum UL HARQ retransmissions or maximum non-response times for the Un1 interface for IAB node2, and IAB donor configures the UL HARQ maximum retransmissions or maximum non-response times for the Un2 interface for IAB node1 frequency.
  • the IAB donor configures the UL HARQ maximum retransmission times or the maximum non-response times of the Un1 interface for IAB node2, which may be allocated by the IAB donor CU, and the information is carried in the RRC message and sent to the IAB node2 MT.
  • the IAB donor configures the UL HARQ maximum retransmission times or the maximum non-response times of the Un2 interface for IAB node1, which can be allocated by the IAB donor CU, and the information is carried in the RRC message and sent to the IAB node1 MT.
  • the first node receives the radio resource control RRC message from the first network device, and the RRC message includes the maximum number of retransmissions or the maximum number of non-responses; where the first network device is the donor base station.
  • the parent node determines the maximum number of UL HARQ retransmissions or the maximum number of non-responses for the child node, and the parent node sends the maximum number of UL HARQ retransmissions or the maximum number of non-responses to the donor base station, and the donor base station Then configure to each node.
  • IAB donor configures the maximum number of UL HARQ retransmissions or the maximum number of non-responses on the Un1 interface for IAB node2, which can be allocated by the decision of IAB node1 DU, and sent to by the F1AP message between IAB node1 DU and IAB donor CU IAB donor CU, IAB donor CU carries this message in an RRC message and sends it to IAB node2 MT.
  • IAB donor configures the maximum number of UL HARQ retransmissions or the maximum number of non-responses on the Un2 interface for IAB node1, which can be allocated by IAB donor DU and sent to IAB donor CU through the F1AP message between IAB donor DU and IAB donor CU.
  • the IAB donor CU carries the message in the RRC message and sends it to the IAB node1 MT.
  • the second node is the parent node of the first node
  • the first indication information carried in the RRC message is determined by the first network device according to the second indication information
  • the second indication information includes the maximum number of retransmissions or the maximum The number of non-responses
  • the second indication information is sent by the second node to the first network device.
  • the second indication information may be sent by the second node to the first network device through an F1AP message.
  • the first indication information and the second indication information may be the same.
  • Another possible implementation manner may also be: the parent node determines the maximum number of retransmissions or the maximum number of non-responses for the child node, and then sends it to the child node through MAC CE or PDCCH DCI.
  • the IAB donor configures the UL HARQ maximum number of retransmissions or the maximum non-acknowledgement number of the Un1 interface for IAB node2, which may be allocated by IAB node1 DU and sent to IAB node2 MT through MAC CE or PDCCH DCI.
  • the IAB donor configures the UL HARQ maximum retransmission times or the maximum non-response times of the Un2 interface for IAB node1, which can be allocated by IAB donor DU and sent to IAB node1 MT through MAC CE or PDCCH DCI.
  • the first node is IAB node2 (IAB n2)
  • the second node is (IAB n1)
  • the second node is the parent node of the first node
  • the first node sends uplink data to the second node as an example Be explained.
  • IAB node2 finds that the number of HARQ retransmissions on the uplink (UL) has reached the maximum number of UL HARQ retransmissions, or IAB node2 finds that the number of HARQ NACKs received from IAB node1 has reached the maximum number of non-acknowledgements, then
  • the MAC layer of IAB node2 sends an indication message to its upper layer (for example, the RRC layer).
  • the indication information is used to indicate that UL HARQ reaches the maximum number of retransmissions, or HARQ NACK reception reaches the maximum number of non-acknowledgements, IAB node2 according to the indication information It is considered that RLF occurs on the Un1 interface and triggers the RRC connection re-establishment process or triggers the handover process.
  • the method for triggering a radio link failure provided in this embodiment enables each node to discover the radio link failure caused by the uplink problem during the uplink transmission, so that the RRC connection re-establishment process or handover process can be accurately performed.
  • the first node After the first node determines that the link between the first node and the second node has a radio link failure, the first node sends third indication information to the first terminal device, and the third indication information is used Triggering the first terminal device to perform ARQ retransmission at the RLC layer.
  • the third indication information may be an explicit indication to the first terminal device, or an implicit indication, so as to trigger the first terminal device to perform ARQ retransmission at the RLC layer.
  • the third indication information may indicate that the first terminal device has a radio link failure, and the first terminal device performs ARQ retransmission at the RLC layer according to the radio link failure.
  • the third indication information may instruct the first terminal to perform ARQ retransmission of the RLC layer.
  • the third indication information may be carried in an RRC message. Specifically, the description is made by assuming that the first node is IAB node2, and the third indication information may be carried in the RRC message between the IAB node2 DU and the terminal device. Alternatively, the third indication information may also be carried in MAC CE or PDCCH DCI.
  • the HARQ mechanism is designed for the MAC layer
  • the ARQ mechanism is designed for the RLC layer.
  • the MAC layer is located at the lower layer of the RLC layer.
  • the MAC layer is closer to the physical layer.
  • the transmission of the MAC layer can better reflect the chain.
  • the quality of the road For the first node, once the MAC layer discovers the maximum number of retransmissions of HARQ retransmission to the network configuration, and the latter finds that the number of HARQ NACKs received reaches the maximum number of non-acknowledgments configured by the network, it is considered that RLF has occurred.
  • the first node sends an indication message to the RRC layer, so that the first node triggers the RRC connection re-establishment process or triggers the handover process to restore the radio link.
  • the first node sends third instruction information to the first terminal device, which is used to instruct the first terminal device to perform ARQ retransmission at the RLC layer.
  • the first terminal device in the uplink transmission process, is triggered to perform the ARQ retransmission at the RLC layer through the third indication information, thereby ensuring that the end-to-end transmission between the first terminal device and the donor base station can proceed normally, and Guarantee no packet loss.
  • FIG. 6 is a schematic diagram of a scenario where a wireless link fails based on downlink transmission provided by an embodiment of the application.
  • the RLF trigger condition of the newly added backhaul link is:
  • the number of HARQ retransmissions on the downlink backhaul link is equal to or greater than the maximum number of DL HARQ retransmissions, or the number of HARQ NACKs received from the DL is equal to or greater than the maximum number of non-acknowledgements.
  • the first node is the parent node of the second node, the second node is the child node of the first node, the first node sends downlink data to the second node, and the first node finds that the DL HARQ retransmission reaches the specified maximum number of retransmissions, or When the HARQ NACK received from the second node reaches the maximum number of non-acknowledgements, the first node determines that RLF occurs on the link between the first node and the second node.
  • the manner in which the first node obtains the first indication information may include the following possible implementation manners:
  • the donor base station (IAB donor, IAB D) configures the maximum number of retransmissions or the maximum number of non-responses for DL HARQ for each node.
  • IAB donor configures the maximum number of DL HARQ retransmissions or the maximum number of non-responses for the Uu interface for IAB node2, and IAB donor configures the maximum number of DL HARQ retransmissions or the maximum non-response for the Un1 interface for IAB node1 frequency.
  • IAB donor configures the maximum number of DL HARQ retransmissions or the maximum number of non-responses on the Uu interface for IAB node2, which can be allocated by the decision of IAB donor CU, and this information is carried in the RRC message and sent to IAB node2 MT, And it is forwarded to IAB node2 DU by IAB node2 MT through the internal interface.
  • the IAB donor CU carries this information in the F1AP message and sends it to the IAB node2 DU.
  • IAB donor configures the maximum number of DL HARQ retransmissions or the maximum number of non-responses on the Un1 interface for IAB node1, which can be allocated by the decision of IAB donor CU, and this information is carried in the RRC message and sent to IAB node1 MT, and IAB node1 The MT forwards it to IAB node1 DU through the internal interface. Or, the IAB donor CU carries this information in the F1AP message and sends it to the IAB node1 DU.
  • the first node receives the radio resource control RRC message from the first network device, and the RRC message includes the maximum number of retransmissions or the maximum number of non-responses; where the first network device is the donor base station.
  • the first node itself determines the maximum number of DL HARQ retransmissions or the maximum number of non-responses.
  • IAB node2 itself determines the maximum number of DL HARQ retransmissions or the maximum number of non-responses. It can be that IAB node2 DU determines the maximum number of DL HARQ retransmissions or the maximum number of non-responses on the Uu interface.
  • the IAB node1 itself determines the maximum number of DL HARQ retransmissions or the maximum number of non-responses, which can be the IAB node1 DU determining the maximum number of DL HARQ retransmissions or the maximum number of non-responses on the Un1 interface.
  • the first node is IAB node1 (IAB n1)
  • the second node is (IAB n2)
  • the second node is a child node of the first node
  • the first node sends downlink data to the second node as an example Be explained.
  • IAB node1 finds that the number of HARQ retransmissions on the downlink (DL) reaches the maximum number of DL HARQ retransmissions, or IAB node1 finds that the number of HARQ NACKs received from IAB node2 reaches the maximum number of non-acknowledgements, then
  • the MAC layer of IAB node1 sends an indication message to its upper layer (for example, the RRC layer).
  • the indication information is used to indicate that DL HARQ reaches the maximum number of retransmissions, or HARQ NACK reception reaches the maximum number of non-acknowledgements, IAB node1 according to the indication information It is considered that RLF occurs on the Un1 interface and triggers the RRC connection re-establishment process or triggers the handover process.
  • the method for triggering a radio link failure provided in this embodiment enables each node to discover the radio link failure caused by the downlink problem during the downlink transmission, so that the RRC connection re-establishment process or handover process can be accurately performed to perform the link. Road restoration.
  • the first node determines that the link between the first node and the second node has a radio link failure, the first node sends fourth indication information to the second network device, and the fourth indication information is used for Trigger the second network device to perform ARQ retransmission at the RLC layer; where the second network device is the donor base station.
  • the fourth indication information may be an explicit indication to the donor base station, or an implicit indication, to trigger the donor base station to perform ARQ retransmission at the RLC layer.
  • the fourth indication information may indicate that a radio link failure has occurred in the donor base station, and the donor base station performs ARQ retransmission at the RLC layer according to the radio link failure.
  • the fourth indication information may instruct the donor base station to perform ARQ retransmission at the RLC layer.
  • the fourth indication information may be carried in the F1AP message, or may be carried in the RRC message.
  • the first node is IAB node1
  • the fourth indication information may be carried in the F1AP message between IAB node1 DU and IAB donor CU.
  • the fourth indication information may be sent by IAB node1 DU to IAB node1 MT, and then IAB node1 MT carries the indication information in an RRC message and sends it to IAB donor CU.
  • transmission through the MAC layer can better reflect the quality of the link.
  • the MAC layer For the first node, once the MAC layer discovers the maximum number of retransmissions of HARQ retransmission to the network configuration, and the latter finds that the number of HARQ NACKs received reaches the maximum number of non-acknowledgments configured by the network, it is considered that RLF has occurred. And send an indication message to the RRC layer, so that the first node triggers the RRC connection re-establishment process or triggers the handover process to restore the radio link. Once the link is restored, the first node sends fourth indication information to the donor base station, which is used to instruct the donor base station device to perform ARQ retransmission at the RLC layer.
  • the fourth indication information is used to trigger the donor base station to perform ARQ retransmission at the RLC layer, thereby ensuring that end-to-end transmission between the donor base station and the first terminal device can proceed normally.
  • Fig. 7 is a flowchart of a method for triggering a radio link failure provided by an embodiment of the application. As shown in Figure 7, the method includes:
  • the first node determines, according to the downlink reference signal sent by the second node, whether a radio link failure occurs in the link between the first node and the second node; wherein, the second node is the first node.
  • the first node sends indication information to the terminal device, where the indication information is used to trigger the terminal device to send the RLC layer status report to the network device.
  • the first node may detect the downlink reference signal to determine whether the link between the first node and the second node has a radio link failure.
  • the timer T310 when the first node performs radio link detection according to the downlink reference signal, when N310 downlink out-of-sync indications (out-of-sync) are continuously received, the timer T310 will be triggered. start up. During the duration of T310, when N311 downlink synchronization indications (in-sync) are continuously received, the T310 timer is stopped to indicate that the link has recovered. If the timer T310 expires, it is considered that the radio link failure is detected and the RRC connection re-establishment process will be triggered.
  • the first node finds that the link between the first node and the second node has a wireless link failure, it sends an indication message to the terminal device to instruct the terminal device to send the status of the RLC layer to the network device, that is, the donor base station report.
  • the status report of the RLC layer is used to feed back the receiving situation of the terminal, to confirm the data currently received correctly by the terminal device and the missing data that needs to be retransmitted, thereby triggering the network device to perform ARQ retransmission at the RLC layer.
  • the indication information may be carried in a radio resource control RRC message.
  • the indication information may also be carried in a medium access control layer control element (MAC Control Element, MAC CE).
  • MAC Control Element MAC Control Element
  • the first node may directly send the instruction information to the terminal. If the first node is not the parent node of the terminal device, the first node sends the instruction information to the terminal device through the forwarding of the intermediate node.
  • the intermediate node may be one or multiple, and if there are multiple, Then the intermediate node forwards the instruction information in turn until the instruction information is forwarded to the terminal.
  • the first node is IAB node2. If IAB node2 finds that RLF occurs on the Un1 interface, IAB node2 can send indication information to the terminal device through an RRC message or MAC CE or PDCCH DCI to trigger the terminal device to perform RLC status report feedback, so that IAB donor can feedback based on the RLC status report of the terminal device To trigger RLC retransmission.
  • IAB node2 MT first informs IAB node2 DU, and IAB node2 DU carries the indication information in the RRC message or MAC CE or PDCCH DCI and sends it to the terminal device.
  • the first node is IAB node1. If IAB node1 finds that RLF occurs on the Un2 interface, IAB node1 can send indication information to IAB node2 through an RRC message or MAC CE, and IAB node2 forwards the indication information to the terminal device, triggering the terminal device to feedback the RLC status report so that The IAB donor triggers RLC retransmission based on the RLC status report feedback of the terminal device.
  • IAB node1 MT first notify IAB node1 DU, IAB node1 DU carries the indication information in RRC message or MAC CE or PDCCH DCI and sends it to IAB node2 MT, and then IAB node2 MT notifies IAB node2 DU, the IAB node2 DU carries the indication information in the RRC message or MAC CE or PDCCH DCI and sends it to the terminal device.
  • a downlink reference signal is used to determine whether a radio link failure has occurred, and it can be determined whether a radio link failure has occurred between each node, so that the RRC connection re-establishment or the handover process can be accurately triggered to restore the link.
  • the IAB node serves as the node for data return, and the RLC layer on the IAB node only has a segmentation function.
  • IAB node has its own Operation Administration and Maintenance (OAM) data that needs to be transmitted.
  • OAM Operation Administration and Maintenance
  • IAB node MT and IAB donor also have IAB node MT end-to-end ARQ.
  • FIG. 9 is a schematic diagram of a scenario for triggering a radio link failure provided by an embodiment of the application.
  • the Un2 interface will be the first to discover whether a wireless link failure occurs relative to the Un1 interface.
  • IAB node1 triggers RLC retransmission to the maximum number of retransmissions based on the ARQ NACK fed back by the IAB donor
  • IAB node1 determines that the Un2 interface has a radio link failure, and sends an indication message to IAB node2 to notify the IAB node2 Un2 interface chain A wireless link failure occurred on the road.
  • IAB node1 finds that RLF occurs on the Un2 interface, IAB node1 will trigger the RRC connection re-establishment to restore the Un2 interface link. Once the Un2 interface link of IAB node1 is restored, IAB node1 sends an indication message to IAB node2 to notify IAB node2 that the Un2 interface link is back to normal.
  • IAB node2 triggers RLC retransmission according to the end-to-end ARQ and reaches the maximum number of retransmissions, it determines whether RLF occurs on the Un1 interface based on the instruction information sent by IAB node1.
  • IAB node2 may send a request to IAB node1 to request IAB node1 to report whether RLF occurs on the Un2 interface link. Or, after IAB node1 discovers that RLF occurs on the Un2 interface, it actively sends an indication message to IAB node2 to indicate that the Un2 interface link has a radio link failure, or IAB node1 finds that the Un2 interface link is restored through the RRC connection re-establishment process , Actively send an indication message to IAB node2 to indicate that its link is normal. IAB node2 needs to determine whether RLF occurs on the Un1 interface according to the instruction information of IAB node1. For example, if the link of the Un2 interface is normal, IAB node2 determines that RLF has occurred on the Un1 interface.
  • the IAB donor judges whether RLF occurs on the Un1 interface according to the number of ARQ NACKs fed back to IAB node2 and IAB node1 respectively. For example, the link of the Un2 interface is normal, and the number of ARQ NACKs fed back by the IAB donor to the IAB node1 is less than the preset number. If the Un1 interface link is RLF, the number of ARQ NACKs that the IAB donor feedbacks to IAB node2 is more than the preset number, it is considered that RLF has occurred on the Un1 interface.
  • the IAB donor can notify the IAB node2 that RLF occurs on its Un1 interface through the RRC message or the F1AP message, and trigger the IAB node2 to perform the RRC connection re-establishment or handover process to restore the link.
  • each node can discover the RLF caused by the link problem in time, and trigger the RRC connection re-establishment or handover process to restore the link.
  • FIG. 10 is a schematic diagram of a wireless link failure scenario provided by an embodiment of the application.
  • the multi-hop relay network architecture provides a multi-hop scenario.
  • the network architecture includes terminal devices, multiple IAB nodes, and IAB donor.
  • three-hop data is taken as an example for description.
  • IAB node2 When IAB node2 (IAB n2) detects a radio link failure between IAB node1 (IAB n1) and IAB node2, IAB node2 will perform RRC re-establishment. If IAB node2 fails the RRC re-establishment within the preset time, IAB Node3 will perform RRC re-establishment to ensure that the wireless link of IAB node3 is normal.
  • IAB node2 there are many ways for IAB node2 to detect whether a wireless link failure occurs between IAB node1 and IAB node2.
  • two nodes can detect whether a radio link failure occurs according to whether the data transmission reaches the maximum number of retransmissions configured by the RLC layer.
  • a downlink reference signal can be used to detect whether a radio link failure occurs. For other possible embodiments, this embodiment will not be repeated here.
  • IAB node3 performs RRC re-establishment with reference to the embodiments shown in FIG. 10, FIG. 11, and FIG.
  • the second node is the child node of the first node (IAB node1) and the parent node of the third node (IAB node3) as an example.
  • the second node is the parent node of the first node and the child node of the third node, its implementation is similar, and will not be repeated here in this embodiment.
  • FIG. 11 is a signaling flowchart for triggering a radio link failure according to an embodiment of the application. As shown in Figure 11, the method includes:
  • a wireless link failure occurs in the wireless link between the first node and the second node
  • the second node sends first indication information to the third node, where the first indication information is used to indicate that the RRC re-establishment of the second node fails or is used to instruct the third node to determine that the radio link fails RLF or is used to indicate the third node.
  • the node triggers RRC re-establishment;
  • the third node determines to trigger RRC re-establishment.
  • the second node When the second node detects that the radio link between the second node and the first node has a radio link failure, it triggers RRC re-establishment.
  • the second node sends first indication information to the third node, where the first indication information is used to indicate that the RRC re-establishment of the second node fails.
  • the third node triggers the RRC re-establishment process.
  • the first indication information may be sent through the adaptation layer or the MAC layer. Among them, there is an adaptation layer above the RLC layer between the second node and the third node, which can be sent through the control PDU of the adaptation layer, and the MAC layer can be sent through the MAC CE.
  • the first indication information may display or implicitly indicate that the RRC re-establishment of the second node fails.
  • the first indication information may be indication information indicating that the third node triggers RRC re-establishment, that is, it implicitly indicates that the second node RRC re-establishment fails.
  • the second node will not send the first indication information to the third node, that is, for the third node, the third node always considers that the radio link is normal.
  • the second node when the RRC re-establishment fails, the second node sends the first indication information for indicating the RRC re-establishment failure to the third node, so that the third node can trigger the RRC re-establishment, ensuring that the third node The node can rebuild the link in time, ensuring that the third node can transmit data normally.
  • Fig. 12 is a signaling flowchart for triggering a radio link failure provided by an embodiment of the application. As shown in Figure 12, the method includes:
  • the second node sends second indication information to the third node, where the second indication information is used to indicate that a radio link failure occurs in a radio link between the second node and the first node;
  • the third node starts a timer
  • the second node when the second node detects that the radio link fails, the second node triggers RRC re-establishment.
  • the second node sends second indication information to the third node to indicate that a wireless link failure occurs in the wireless link between the second node and the first node.
  • the sequence of the second node triggering the RRC re-establishment and sending the second indication information to the third node is not limited.
  • the second node can trigger the RRC re-establishment first, and in the process of performing the RRC re-establishment, the second node is sent to the third node. 2. Instruction information. Or, the second node first sends the second indication information to the third node, and then the second node triggers the RRC re-establishment.
  • the third node When the third node receives the second indication information, it starts a timer.
  • the timing of the timer may be configured by the host node or configured by other nodes, which is not limited in this embodiment.
  • the third node triggers the RRC re-establishment and stops the timer.
  • the third node turns off the timer.
  • the third node determines that a radio link failure has occurred or determines to trigger RRC re-establishment. Where the timer expires, that is, the first indication information is not received within a period of time before the timer expires.
  • step S1204 is optional, and the third node may not start the timer. That is: in S1203, the second node sends second indication information to the third node, where the second indication information is used to indicate that a wireless link occurs on the wireless link between the second node and the first node failure. The third node does not start the timer after receiving the second indication information. In S1205, the third node receives the first indication information sent by the second node, and determines whether to trigger RRC re-establishment according to the first indication information.
  • the sending mode of the first indication information and the second indication information in this embodiment is similar to the sending mode of the first indication information in the embodiment shown in FIG. 11, and may be a displayed indication or an implicit indication. This embodiment will not be repeated here.
  • the third node starts a timer after receiving the second indication information indicating that the radio link failure occurs, and determines whether to trigger the radio link failure or trigger according to the first indication information received in the timer
  • the RRC re-establishment ensures that the third node can rebuild the link in time, and ensures that the third node can transmit data normally.
  • FIG. 13 is a schematic structural diagram of a data return device provided by an embodiment of this application.
  • the data return device 130 is called the first node. As shown in FIG. 13, the data return device 130 includes:
  • the obtaining module 1301 is configured to obtain first indication information, where the first indication information includes the maximum number of retransmissions for the first node to perform hybrid automatic repeat request HARQ to the second node, or the first node receives The maximum number of HARQ NACKs sent by the second node;
  • the processing module 1302 is configured to determine whether a radio link failure occurs in the link between the first node and the second node according to the first indication information.
  • the first node is a data return device
  • the second node is a child node or a parent node of the first node.
  • processing module 1302 is specifically configured to:
  • the link between the first node and the second node A wireless link failure occurred on the road.
  • the acquiring module 1301 is specifically configured to: receive a radio resource control RRC message from the first network device, where the RRC message includes the maximum number of retransmissions or the maximum number of non-responses; wherein ,
  • the first network device is a donor base station.
  • the second node is the parent node of the first node; the RRC message is determined by the first network device according to the second indication information, and the second indication information includes all The maximum number of retransmissions or the maximum number of non-responses, and the second indication information is sent by the second node to the first network device.
  • the acquiring module 1301 is specifically configured to determine the maximum number of retransmissions or the maximum number of non-responses by itself.
  • the device further includes: a sending module 1303;
  • the sending module 1303 is configured to send third indication information to the first terminal device when it is determined that the link between the first node and the second node has a radio link failure, where the third indication information is used for The first terminal device is triggered to perform an automatic retransmission request ARQ retransmission of the radio link control RLC layer.
  • the device further includes: a sending module 1303;
  • the sending module 1303 is configured to send fourth indication information to the second network device when it is determined that the link between the first node and the second node has a radio link failure, where the fourth indication information is used Triggering the second network device to perform an automatic retransmission request ARQ retransmission of the radio link control RLC layer; wherein the second network device is a donor base station.
  • the data backhaul device provided by the embodiment of the present application is used to execute the method executed by the first node in the embodiment described in FIG. 3 to FIG. 6, and its implementation principles and technical effects are similar, and details are not described in this embodiment.
  • FIG. 14 is a schematic structural diagram of a data return device provided by an embodiment of this application.
  • the data return device 140 is called the first node. As shown in FIG. 14, the data return device 140 includes:
  • the processing module 1401 is configured to determine whether the link between the first node and the second node has a radio link failure according to the downlink reference signal sent by the second node; wherein, the second node is the first node The parent node of a node;
  • the sending module 1402 is configured to send indication information to the terminal device if a wireless link failure occurs, where the indication information is used to trigger the terminal device to send the RLC layer status report to the network device.
  • the indication information is carried in a radio resource control RRC message.
  • the indication information is carried in a medium access control layer control element MAC CE.
  • the sending module 1402 is specifically configured to send the instruction information to the terminal device through forwarding by an intermediate node.
  • the data return device provided in the embodiment of the present application is used to execute the method executed by the first node in the embodiment described in FIG. 7 to FIG. 9 above.
  • the implementation principle and technical effect are similar, and the details are not described herein again in this embodiment.
  • FIG. 15 is a schematic structural diagram of a data return device provided by an embodiment of this application.
  • the data return device 150 is called the second node. As shown in FIG. 15, the data return device 150 includes:
  • the processing module 1501 is configured to trigger RRC re-establishment when a radio link failure occurs in the radio link between the second node and the first node;
  • the sending module 1502 is configured to send first indication information to the third node, where the first indication information is used to indicate the RRC re-establishment result of the second node;
  • the second node is a child node of the first node, and is a parent node of the third node.
  • the first indication information is used to indicate that the RRC re-establishment of the second node fails or is used to instruct the third node to determine that the radio link fails RLF or to instruct the third node to trigger RRC re-establishment.
  • the sending module 1502 is further configured to send second indication information to the third node before the second node sends the first indication information to the third node.
  • the indication information is used to indicate that a wireless link failure occurs in the wireless link between the second node and the first node.
  • the first indication information is used to indicate the failure or success of the RRC re-establishment of the second node.
  • the data return device provided by the embodiment of the present application is used to execute the method executed by the second node in the embodiment described in FIG. 10 to FIG. 12, and its implementation principles and technical effects are similar, and the details are not described in this embodiment.
  • FIG. 16 is a schematic structural diagram of a data return device provided by an embodiment of this application.
  • the data return device 160 is called the third node. As shown in FIG. 16, the data return device 160 includes:
  • the receiving module 1601 is configured to receive first indication information sent by a second node, where the first indication information is that the second node sends a wireless link when determining a wireless link between the second node and the first node Sent after failure, the first indication information is used to indicate the RRC re-establishment result of the second node;
  • the processing module 1602 is configured to determine whether to trigger RRC re-establishment according to the first indication information
  • the second node is a child node of the first node, and is a parent node of the third node.
  • processing module 1602 is specifically configured to:
  • the first indication information is used to indicate that the second node RRC re-establishment fails or is used to instruct the third node to determine that the radio link fails RLF or is used to instruct the third node to trigger RRC re-establishment, then it is determined that a radio link failure has occurred Or trigger RRC re-establishment.
  • the receiving module 1601 is further configured to: before the third node receives the first indication information sent by the second node, after receiving the second indication information sent by the second node , Start a timer, and the second indication information is used to indicate that a radio link failure occurs in the radio link between the second node and the first node.
  • the processing module 1602 is specifically configured to:
  • the first indication information is used to indicate that the RRC re-establishment of the second node fails, trigger the RRC re-establishment and stop the timer; or,
  • the first indication information is used to indicate that the RRC re-establishment of the second node is successful, stop the timer.
  • the processing module 1602 is further configured to determine that a radio link failure occurs or trigger RRC re-establishment.
  • the data return device provided in the embodiment of the present application is used to execute the method executed by the third node in the embodiment described in FIG. 10 to FIG. 12, and its implementation principles and technical effects are similar, and details are not described herein again in this embodiment.
  • processing module of this embodiment can be integrated in the processor for implementation, the sending module can be integrated in the transmitter, and the receiving module can be integrated in the transmitter.
  • FIG. 17 is a schematic diagram of the hardware structure of a data return device provided by an embodiment of the application.
  • the data return device 170 provided in this embodiment includes: a processor 1701 and a memory 1702; wherein
  • the memory 1702 is used to store computer programs
  • the processor 1701 is configured to execute a computer program stored in the memory to implement each step executed by the data return device in the foregoing embodiment. For example, perform the method performed by the first node in the embodiment described in FIGS. 3 to 6, or perform the method performed by the first node in the embodiment described in FIGS. 7 to 9, or perform the method described in FIGS. 10 to 12
  • the method executed by the second node in the embodiment, or the method executed by the third node in the embodiment described in FIG. 10 to FIG. 12 is executed. For details, refer to the related description in the foregoing method embodiment.
  • the memory 1702 may be independent or integrated with the processor 1701.
  • the data return device 170 may further include: a bus 1703 for connecting the memory 1702 and the processor 1701.
  • the data return device 170 shown in FIG. 17 may further include a transmitter 1704 and a receiver 1705.
  • the transmitter 1704 can send various indication information
  • the receiver 1705 can receive various indication information.
  • the data return device provided in this embodiment can be used to execute the method executed by each node in the foregoing embodiment, and its implementation principles and technical effects are similar, and will not be repeated here in this embodiment.
  • An embodiment of the present application further provides a storage medium, the storage medium includes a computer program, and the computer program is used to implement: execute the method executed by the first node in the embodiments described in FIG. 3 to FIG. 6, or execute FIG. To the method executed by the first node in the embodiment shown in FIG. 9, or execute the method executed by the second node in the embodiment shown in FIG. 10 to FIG. 12, or execute the third node in the embodiment shown in FIG. 10 to FIG. The method executed by the node.
  • the embodiments of the present application provide a computer program product.
  • the computer program product includes computer program code.
  • the computer executes the first node in the embodiments shown in FIGS. 3 to 6.
  • the method executed is either the method executed by the first node in the embodiment shown in FIGS. 7-9, or the method executed by the second node in the embodiment shown in FIGS. 10-12, or the method executed by the second node in the embodiment shown in FIGS. 10-12 12.
  • the embodiment of the present application provides a chip that includes a processor and may also include a memory, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the The communication device of the chip executes the method executed by the first node in the embodiment shown in FIGS. 3 to 6, or executes the method executed by the first node in the embodiment shown in FIGS. 7 to 9, or executes the method executed by the first node in the embodiment shown in FIGS. 10 to 12
  • the method executed by the second node in the described embodiment, or the method executed by the third node in the embodiment described in FIG. 10 to FIG. 12 is executed.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the modules is only a logical function division, and there may be other divisions in actual implementation, for example, multiple modules can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or modules, and may be in electrical, mechanical or other forms.
  • modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional modules in the various embodiments of the present application may be integrated into one processing unit, or each module may exist alone physically, or two or more modules may be integrated into one unit.
  • the units formed by the above-mentioned modules can be realized in the form of hardware, or in the form of hardware plus software functional units.
  • the above-mentioned integrated modules implemented in the form of software function modules may be stored in a computer readable storage medium.
  • the above-mentioned software function module is stored in a storage medium and includes several instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor (English: processor) to execute the various embodiments of the present application Part of the method.
  • processor may be a central processing unit (English: Central Processing Unit, abbreviated: CPU), or other general-purpose processors, digital signal processors (English: Digital Signal Processor, abbreviated: DSP), and application-specific integrated circuits (English: Application Specific Integrated Circuit, referred to as ASIC) etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the application can be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory may include a high-speed RAM memory, and may also include a non-volatile storage NVM, such as at least one disk storage, and may also be a U disk, a mobile hard disk, a read-only memory, a magnetic disk, or an optical disk.
  • NVM non-volatile storage
  • the bus can be an Industry Standard Architecture (ISA) bus, Peripheral Component (PCI) bus, or Extended Industry Standard Architecture (EISA) bus, etc.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus, etc.
  • the buses in the drawings of this application are not limited to only one bus or one type of bus.
  • the above-mentioned storage medium can be realized by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Except for programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disks or optical disks.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable except for programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory flash memory
  • flash memory magnetic disks or optical disks.
  • optical disks any available medium that can be accessed by a general-purpose or special-purpose computer.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in Application Specific Integrated Circuits (ASIC for short).
  • ASIC Application Specific Integrated Circuits
  • the processor and the storage medium may also exist in the device as discrete components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种触发无线链路失败的方法及设备,该方法包括:第一节点获取第一指示信息,所述第一指示信息包括所述第一节点向第二节点进行混合自动重传请求HARQ的最大重传次数,或者,所述第一节点接收所述第二节点发送的HARQ NACK的最大非应答次数;所述第一节点根据所述第一指示信息,判断所述第一节点与所述第二节点之间的链路是否发生无线链路失败。本申请实施例能够及时发现中间回传链路发生无线链路失败,从而及时进行链路回复,保证数据正常传输。

Description

触发无线链路失败的方法及设备
本申请要求于2019年2月14日提交中国专利局、申请号为2019101149482、申请名称为“触发无线链路失败的方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种触发无线链路失败的方法及设备。
背景技术
随着通信技术的快速发展,无线接入网络得到广泛的应用。在实际应用过程中,通常需要在无线接入设备与终端设备之间建立无线链路,用于传输业务。然而,在传输数据过程中,由于环境等因素影响无线链路的传输,触发无线链路失败,从而对无线链路进行恢复以进行数据重传。
现有技术中,在终端设备和无线接入设备(例如宿主基站)之间还存在多个数据回传设备。在终端设备与无线接入设备的端到端传输过程中,终端设备向无线接入设备传输数据时,会经过多个数据回传设备传输至无线接入设备;无线接入设备向终端设备传输数据时,同样会经过多个数据回传设备传输至终端设备。
然而,由于终端设备和无线接入设备之间存在多个数据回传设备,当采用端到端ARQ时,如果中间回传链路发生无线链路失败时,可能无法被发现并及时进行链路的恢复,导致数据无法传输。
发明内容
本申请实施例提供一种触发无线链路失败的方法及设备,能够及时发现中间回传链路发生无线链路失败,从而及时进行链路回复,保证数据正常传输。
第一方面,本申请实施例提供一种触发无线链路失败的方法,包括:
第一节点获取第一指示信息,所述第一指示信息包括所述第一节点向第二节点重传的最大重传次数,即第一节点基于混合自动重传请求HARQ机制向第二节点重传数据的最大重传次数,或者,所述第一节点接收所述第二节点发送的HARQ NACK的最大非应答次数;
所述第一节点根据所述第一指示信息,判断所述第一节点与所述第二节点之间的链路是否发生无线链路失败。
在一种可能的设计中,所述第一节点为数据回传设备,所述第二节点为所述第一节点的子节点或父节点。各个节点之间基于HARQ重传机制进行重传,该HARQ重传是在MAC层实现的,可以逐跳反馈,该HARQ重传可以在各个节点之间进行,而不是端到端的重传,从而能够准确确定链路质量不好的接口,从而触发链路的重建。
在一种可能的设计中,所述第一节点根据所述第一指示信息,判断所述第一节点与所述第二节点之间的链路是否发生无线链路失败,包括:
若所述第一节点向所述第二节点进行HARQ重传的次数大于或等于第一指示信息中指示的最大重传次数,则所述第一节点确定所述第一节点与所述第二节点之间的链路发生无线链路失败;或者
若所述第一节点接收所述第二节点发送的HARQ NACK的次数大于或等于第一指示信息中指示的最大非应答次数,则所述第一节点确定所述第一节点与所述第二节点之间的链路发生无线链路失败。
各个节点之间通过基于MAC层的HARQ传输机制能够及时准确的发现无线链路的质量情况,根据最大重传次数和最大应答次数来确定是否发生无线链路失败,并通过触发RRC连接重建立或者触发切换过程来恢复链路,保证了数据的及时传输。
在一种可能的设计中,所述第一节点获取第一指示信息,包括:
所述第一节点从第一网络设备接收无线资源控制RRC消息,所述RRC消息中包括所述最大重传次数或所述最大非应答次数;其中,所述第一网络设备为宿主基站。
通过宿主基站为每个节点配置最大重传次数或最大非应答次数,实现了宿主基站对整个链路的管理和控制,便于进行整体调配,实现方式简单。
在一种可能的设计中,若所述第二节点为第一节点的父节点;
所述RRC消息是所述第一网络设备根据第二指示信息确定的,所述第二指示信息中包括所述最大重传次数或最大非应答次数,所述第二指示信息为所述第二节点发送给所述第一网络设备的。
通过第一节点的父节点向第二节点配置该最大重传次数或最大非应答次数,减轻了宿主基站的负担,由第二节点根据实际情况进行灵活配置。
在一种可能的设计中,若所述第二节点为所述第一节点的子节点,所述第一节点获取第一指示信息,包括:
所述第一节点自身确定所述最大重传次数或所述最大非应答次数。
当第一节点作为父节点时,该第一节点自身可以根据实际情况进行灵活配置,减轻了宿主基站的负担。
在一种可能的设计中,若所述第二节点为所述第一节点的父节点,所述第一节点确定所述第一节点与所述第二节点之间的链路发生无线链路失败,所述方法还包括:
所述第一节点向第一终端设备发送第三指示信息,所述第三指示信息用于触发所述第一终端设备执行无线链路控制RLC层的自动重传请求ARQ重传。
在上行传输过程中,通过第三指示信息触发第一终端设备执行RLC层的ARQ重传,从而保证了第一终端设备与宿主基站之间的端到端传输可以正常进行,并且保证不丢包。
在一种可能的设计中,若所述第二节点为所述第一节点的子节点,所述第一节点确定所述第一节点与所述第二节点之间的链路发生无线链路失败,所述方法还包括:
所述第一节点向第二网络设备发送第四指示信息,所述第四指示信息用于触发所述第二网络设备执行无线链路控制RLC层的自动重传请求ARQ重传;其中,所述第二网络设备为宿主基站。
在下行传输过程中,通过第四指示信息触发宿主基站执行RLC层的ARQ重传,从而保证了宿主基站与第一终端设备之间的端到端传输可以正常进行。
第二方面,本申请实施例提供一种触发无线链路失败的方法,包括:
第一节点根据第二节点发送的下行参考信号,判断所述第一节点与所述第二节点之间的链路是否无线链路失败;其中,所述第二节点为所述第一节点的父节点;
若发生无线链路失败,则所述第一节点向终端设备发送指示信息,所述指示信息用于触发所述终端设备向网络设备发送RLC层的状态报告。
通过下行参考信号来确定是否发生无线链路失败,可以确定每个节点之间是否发生了无线链路失败,从而能够准确的触发RRC连接重建立或者触发切换过程来恢复链路。
在一种可能的设计中,所述指示信息被携带在无线资源控制RRC消息中。
在一种可能的设计中,所述指示信息被携带在介质访问控制层控制元素MAC CE中。
在一种可能的设计中,若所述第一节点非所述终端设备的父节点,则所述第一节点向终端设备发送指示信息,包括:
所述第一节点通过中间节点的转发将所述指示信息发送给所述终端设备。
第三方面,本申请实施例提供一种触发无线链路失败的方法,包括:
第二节点在检测到第二节点与第一节点之间的无线链路发生无线链路失败时,触发RRC重建立;
所述第二节点向第三节点发送第一指示信息,所述第一指示信息用于指示第二节点的RRC重建立结果;第三节点可以根据第二节点的RRC重建立结果来确定自身是否进行RRC重建立,以保证链路能够正常传输;
其中,所述第二节点为所述第一节点的子节点,且为所述第三节点的父节点。
在一种可能的设计中,所述第一指示信息用于指示第二节点RRC重建立失败或用于指示第三节点判断无线链路失败RLF或用于指示第三节点触发RRC重建。
通过第二节点在RRC重建立失败时,第二节点向第三节点发送用于指示RRC重建立失败的第一指示信息,使得第三节点能够触发RRC重建立,保证了第三节点能够及时进行链路重建,保证了第三节点能够正常传输数据。
在一种可能的设计中,所述第二节点向第三节点发送第一指示信息之前,所述方法还包括:
所述第二节点向所述第三节点发送第二指示信息,所述第二指示信息用于指示所述第二节点与所述第一节点之间的无线链路发生无线链路失败。
在一种可能的设计中,所述第一指示信息用于指示第二节点RRC重建立失败或成功。
第四方面,本申请实施例提供一种触发无线链路失败的方法,包括:
第三节点接收第二节点发送的第一指示信息,所述第一指示信息是所述第二节点在确定所述第二节点与第一节点之间的无线链路发送无线链路失败后发送的,所述第一指示信息用于指示第二节点的RRC重建立结果;
所述第三节点根据所述第一指示信息,判断是否触发RRC重建立;
其中,所述第二节点为所述第一节点的子节点,且为所述第三节点的父节点。
在一种可能的设计中,所述第三节点根据所述第一指示信息,判断是否触发RRC重建立,包括:
若所述第一指示信息用于指示所述第二节点RRC重建立失败或用于指示第三节点判断无线链路失败RLF或用于指示第三节点触发RRC重建,则判断发生无线链路失败或触发RRC重建立。
在一种可能的设计中,所述第三节点接收第二节点发送的第一指示信息之前,还包括:
所述第三节点在接收到所述第二节点发送的第二指示信息后,启动定时器,所述第二指示信息用于指示所述第二节点与所述第一节点之间的无线链路发生无线链路失败。
在一种可能的设计中,若所述定时器超时前接收到所述第一指示信息,则判断是否触发RRC重建立,包括:
若所述第一指示信息用于指示第二节点RRC重建立失败,则所述第三节点触发RRC重建立,并停止所述定时器;或者,
若所述第一指示信息用于指示第二节点RRC重建立成功,则所述第三节点停止所述定时器。
在一种可能的设计中,若所述定时器超时,则所述第三节点判断发生无线链路失败或触发RRC重建立。
通过第三节点在接收到用于指示发生无线链路失败的第二指示信息后启动定时器,根据定时器内收到的第一指示信息来确定是否触发无线链路失败或触发RRC重建立,保证了第三节点能够及时进行链路重建,保证了第三节点能够正常传输数据。
第五方面,本申请实施例提供一种数据回传设备,所述设备称为第一节点,包括:
处理模块,用于根据第二节点发送的下行参考信号,判断所述第一节点与所述第二节点之间的链路是否无线链路失败;其中,所述第二节点为所述第一节点的父节点;
发送模块,用于若发生无线链路失败时,向终端设备发送指示信息,所述指示信息用于触发所述终端设备向网络设备发送RLC层的状态报告
在一种可能的设计中,所述指示信息被携带在无线资源控制RRC消息中。
在一种可能的设计中,所述指示信息被携带在介质访问控制层控制元素MAC CE中。
在一种可能的设计中,若所述第一节点非所述终端设备的父节点,则所述发送模块具体用于:通过中间节点的转发将所述指示信息发送给所述终端设备。
第六方面,本申请实施例提供一种数据回传设备,所述设备称为第一节点,包括:
获取模块,用于获取第一指示信息,所述第一指示信息包括所述第一节点向第二节点进行混合自动重传请求HARQ的最大重传次数,或者,所述第一节点接收所述第二节点发送的HARQ NACK的最大非应答次数;
处理模块,用于根据所述第一指示信息,判断所述第一节点与所述第二节点之间的链路是否发生无线链路失败。
在一种可能的设计中,所述第一节点为数据回传设备,所述第二节点为所述第一 节点的子节点或父节点。
在一种可能的设计中,所述处理模块具体用于:
若所述第一节点向所述第二节点进行HARQ重传的次数大于或等于第一指示信息中指示的最大重传次数,则确定所述第一节点与所述第二节点之间的链路发生无线链路失败;或者
若所述第一节点接收所述第二节点发送的HARQ NACK的次数大于或等于第一指示信息中指示的最大非应答次数,则确定所述第一节点与所述第二节点之间的链路发生无线链路失败。
在一种可能的设计中,所述获取模块具体用于:从第一网络设备接收无线资源控制RRC消息,所述RRC消息中包括所述最大重传次数或所述最大非应答次数;其中,所述第一网络设备为宿主基站。
在一种可能的设计中,若所述第二节点为第一节点的父节点;所述RRC消息是所述第一网络设备根据第二指示信息确定的,所述第二指示信息中包括所述最大重传次数或最大非应答次数,所述第二指示信息为所述第二节点发送给所述第一网络设备的。
在一种可能的设计中,若所述第二节点为所述第一节点的子节点,所述获取模块具体用于:自身确定所述最大重传次数或所述最大非应答次数。
在一种可能的设计中,若所述第二节点为所述第一节点的父节点,所述设备还包括:发送模块;
所述发送模块用于在确定所述第一节点与所述第二节点之间的链路发生无线链路失败时向第一终端设备发送第三指示信息,所述第三指示信息用于触发所述第一终端设备执行无线链路控制RLC层的自动重传请求ARQ重传。
在一种可能的设计中,若所述第二节点为所述第一节点的子节点,所述设备还包括:发送模块;
所述发送模块用于在确定所述第一节点与所述第二节点之间的链路发生无线链路失败时,向第二网络设备发送第四指示信息,所述第四指示信息用于触发所述第二网络设备执行无线链路控制RLC层的自动重传请求ARQ重传;其中,所述第二网络设备为宿主基站。
第七方面,本申请实施例提供一种数据回传设备,所述设备称为第二节点,包括:
处理模块,用于在检测到第二节点与第一节点之间的无线链路发生无线链路失败时,触发RRC重建立;
发送模块,用于向第三节点发送第一指示信息,所述第一指示信息用于指示第二节点的RRC重建立结果;
其中,所述第二节点为所述第一节点的子节点,且为所述第三节点的父节点。
在一种可能的设计中,所述第一指示信息用于指示第二节点RRC重建立失败或用于指示第三节点判断无线链路失败RLF或用于指示第三节点触发RRC重建。
在一种可能的设计中,所述发送模块还用于,在所述第二节点向第三节点发送第一指示信息之前,向所述第三节点发送第二指示信息,所述第二指示信息用于指示所述第二节点与所述第一节点之间的无线链路发生无线链路失败。
在一种可能的设计中,所述第一指示信息用于指示第二节点RRC重建立失败或成 功。
第八方面,本申请实施例提供一种数据回传设备,所述设备称为第三节点,包括:
接收模块,用于接收第二节点发送的第一指示信息,所述第一指示信息是所述第二节点在确定所述第二节点与第一节点之间的无线链路发送无线链路失败后发送的,所述第一指示信息用于指示第二节点的RRC重建立结果;
处理模块,用于根据所述第一指示信息,判断是否触发RRC重建立;
其中,所述第二节点为所述第一节点的子节点,且为所述第三节点的父节点。
在一种可能的设计中,所述处理模块具体用于:
若所述第一指示信息用于指示所述第二节点RRC重建立失败或用于指示第三节点判断无线链路失败RLF或用于指示第三节点触发RRC重建,则判断发生无线链路失败或触发RRC重建立。
在一种可能的设计中,所述接收模块还用于:在所述第三节点接收第二节点发送的第一指示信息之前,在接收到所述第二节点发送的第二指示信息后,启动定时器,所述第二指示信息用于指示所述第二节点与所述第一节点之间的无线链路发生无线链路失败。
在一种可能的设计中,若所述定时器超时前接收到所述第一指示信息,所述处理模块具体用于:
若所述第一指示信息用于指示第二节点RRC重建立失败,则触发RRC重建立,并停止所述定时器;或者,
若所述第一指示信息用于指示第二节点RRC重建立成功,则停止所述定时器。
在一种可能的设计中,若所述定时器超时,则所述处理模块还用于判断发生无线链路失败或触发RRC重建立。
第八方面,本申请实施例提供一种数据回传设备,包括:存储器、处理器以及计算机程序,所述计算机程序存储在所述存储器中,所述处理器运行所述计算机程序执行:
如上第一方面或第一方面各种可能的设计所述的方法;或者
如上第二方面或第二方面各种可能的设计所述的方法;或者
如上第三方面或第三方面各种可能的设计所述的方法;或者
如上第四方面或第四方面各种可能的设计所述的方法。
第九方面,本申请实施例提供一种存储介质,所述存储介质包括计算机程序,所述计算机程序用于实现:
如上第一方面或第一方面各种可能的设计所述的方法;或者
如上第二方面或第二方面各种可能的设计所述的方法;或者
如上第三方面或第三方面各种可能的设计所述的方法;或者
如上第四方面或第四方面各种可能的设计所述的方法。
第七方面,本申请实施例提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行:
如上第一方面或第一方面各种可能的设计所述的方法;或者
如上第二方面或第二方面各种可能的设计所述的方法;或者
如上第三方面或第三方面各种可能的设计所述的方法;或者
如上第四方面或第四方面各种可能的设计所述的方法。
第八方面,本申请实施例提供一种芯片,包括处理器,还可以包括存储器,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中的所述计算机程序,使得安装有所述芯片的通信设备执行:
如上第一方面或第一方面各种可能的设计所述的方法;或者
如上第二方面或第二方面各种可能的设计所述的方法;或者
如上第三方面或第三方面各种可能的设计所述的方法;或者
如上第四方面或第四方面各种可能的设计所述的方法。
本申请实施例提供的触发无线链路失败的方法及设备,该方法通过第一节点获取第一指示信息,该第一指示信息包括进行混合自动重传请求HARQ的最大重传次数或者最大非应答次数;第一节点根据第一指示信息,判断第一节点与第二节点之间的链路是否发生无线链路失败,在采用端到端ARQ机制的传输场景下,各个节点之间通过基于MAC层的HARQ传输机制能够及时准确的发现无线链路的质量情况,如果链路质量很差,则认为发生了无线链路失败,并通过触发RRC连接重建立或者触发切换过程来恢复链路。
附图说明
图1示出了本申请实施例可能适用的一种网络架构示意图;
图2为本申请实施例提供的端到端的用户面协议栈架构;
图3为本申请一实施例提供的无线链路失败的场景示意图;
图4为本申请一实施例提供的触发无线链路失败的方法流程图;
图5为本申请一实施例提供的基于上行传输的无线链路失败的场景示意图;
图6为本申请一实施例提供的基于下行传输的无线链路失败的场景示意图;
图7为本申请一实施例提供的触发无线链路失败的方法流程图;
图8为本申请一实施例提供的基于下行传输的无线链路失败的场景示意图;
图9为本申请一实施例提供的触发无线链路失败的场景示意图;
图10为本申请一实施例提供的无线链路失败的场景示意图;
图11为本申请一实施例提供的触发无线链路失败的信令流程图;
图12为本申请一实施例提供的触发无线链路失败的信令流程图;
图13为本申请一实施例提供的数据回传设备的结构示意图;
图14为本申请一实施例提供的数据回传设备的结构示意图;
图15为本申请一实施例提供的数据回传设备的结构示意图;
图16为本申请一实施例提供的数据回传设备的结构示意图;
图17为本申请一实施例提供的数据回传设备的硬件结构示意图。
具体实施方式
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例 的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例可以应用于无线通信系统,需要说明的是,本申请实施例提及的无线通信系统包括但不限于:窄带物联网系统(Narrow Band-Internet of Things,NB-IoT)、全球移动通信系统(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA),长期演进系统(Long Term Evolution,LTE)以及下一代5G的新无线(New Radio,NR)移动通信系统。
下面结合图1对本申请实施例的可能的网络架构进行介绍。图1示出了本申请实施例可能适用的一种网络架构示意图。如图1所示,该多跳中继网络架构包括终端设备,多个接入回传一体化(Integrated Access and Backhaul,IAB)节点,以及IAB宿主网络设备(donor)。其中,在本实施例中,为了便于说明,以两跳数据回传链路为例进行说明。如图1所述,该网络架构包括IAB宿主节点(IAB donor,可以称为IAB宿主基站,或IAB宿主节点,或宿主IAB节点,或宿主IAB基站等,本发明并不限制),IAB节点1(IAB node1,IAB n1)以及IAB节点2(IAB node2,IAB n2),终端设备。该终端设备通过IAB node1和IAB node2接入到IAB donor(IAB D),该IAB donor和核心网5GC通过NG接口相连。其中,IAB node1和IAB node2之间的链路,以及IAB node1和IAB donor之间的链路为终端设备提供两跳数据回传。
例如,该中继网络架构可以应用于毫米波的接入回传一体化,使得城市楼宇密集区以及光纤铺设困难的孤岛或山区可在IAB技术的支持下享有5G高速低延时通信。本实施例对该中继网络架构的的应用场景不做特别限制。
在一种可能的实现方式中,中继网络架构采用CU-DU分离架构,则IAB donor包括集中式单元(Central Unit,CU)和分布式单元(Distributed Unit,DU)。IAB node包括DU模块和移动终端(Mobile Termination,MT)模块,其中,IAB node DU模块提供部分gNB的功能(例如:gNB的物理层(Physical Layer,PHY)、MAC层、RLC层的功能),可供该IAB node DU的子节点提供接入服务,该IAB node DU的子节点可以是普通的终端设备或者其他IAB node;IAB node MT模块类似于终端设备,通过该IAB node MT模块接入该IAB node的上一节点,比如父节点(例如:该父节点可以是其他IAB node,或者IAB donor节点),为该IAB node DU下的子节点的数据提供数据回传。其中,由于IAB node的引入,无线传输的空口可以分为两类,分别是IAB node与终端设备之间的空口,IAB node与IAB donor之间的空口/IAB node与IAB node之间的空口。示例性的,IAB node与终端之间的空口可以称为Uu接口,IAB node与IAB donor之间的空口可以称为Un接口。本专利上述空口还可以有其他称呼,本专利并不限制,都属于我们定义的范围内。
该终端设备可以是无线终端,无线终端可以是指向用户提供语音和/或其他业务数 据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
传统的LTE或者NR系统中,数据传输的可靠性可以通过两层的重传机制来保证,包括链路控制协议层(Radio Link Control,RLC)的自动重传请求(Automatic Repeat Request,ARQ),以及介质访问控制层(Medium Access Control,MAC)的混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)。在本实施例中,终端设备与IAB donor之间采用端到端的ARQ机制,即:与终端设备对等的RLC ARQ功能位于IAB donor DU上,中间节点IAB node1和IAB node2上的RLC层不包含ARQ功能,只包含对RLC SDU进行分段的功能。终端设备与IAB donor之间采用逐跳的HARQ机制,即:各接入链路和回传链路分别支持独立的HARQ功能,即:终端设备与IAB node2之间有独立的HARQ机制,IAB node1和IAB node2之间有独立的HARQ机制,IAB node1和IAB donor之间有独立的HARQ机制。
采用端到端ARQ的用户面协议栈架构可如图2所示。图2为本申请实施例提供采用端到端ARQ的用户面协议栈架构。如图2所示,终端设备和IAB donor之间存在对等的协议层,包括:服务数据适配协议层(Service Data Adaptation Protocol,SDAP)、分组数据汇聚协议层(Packet Data Convergence Protocol,PDCP)、RLC层。其中,终端设备和IAB donor之间对等的RLC层中只包含ARQ功能。终端设备与IAB node2之间存在对等的协议层,包括:RLC、MAC、PHY层。其中,终端设备和IAB node2之间对等的RLC层中只包含分段功能。IAB node1和IAB node2之间存在对等的协议层,包括:RLC、MAC、PHY层。其中,IAB node1和IAB node2之间对等的RLC层中只包含分段功能,不包含ARQ功能。IAB node1和IAB donor之间存在对等的协议层,包括:RLC、MAC、PHY层。其中,IAB node1和IAB donor之间对等的RLC层中只包含分段功能。
针对该图2所示的协议栈,该CU通过NG接口与核心网(5GC)相连接,在接入网内部控制和协调多个小区,实现控制面的RRC功能、PDCP层功能,以及用户面的IP、SDAP、PDCP功能;DU实现射频处理功能和RLC、MAC等基带处理功能。
由图2可知,终端设备的RLC ARQ功能建立在终端设备和IAB donor的DU上,中间的IAB node上的RLC层只具有分段功能。因此,中间的IAB节点无法发现回传链路发生无线链路失败,也无法及时进行链路恢复,导致数据无法传输,下面结合图3进行示例性说明。
图3为本申请一实施例提供的无线链路失败的场景示意图,如图3所示,终端设备的上行数据被成功发送到IAB node2,但因为IAB node2和IAB node1的上行链路质量不好,导致IAB node2无法将终端设备的数据发送到IAB node1,使得IAB donor也无法接收终端设备的数据并向终端设备进行RLC ARQ的NACK反馈,从而触发终端设备进行RLC层的重传,一旦终端设备RLC层达到最大重传次数则认为发生无线链路失败(Radio Link Failure,RLF),触发RRC重建立。但实际上Uu接口链路质量 很好,终端设备选择其他IAB节点触发RRC重建立过程是不必要的,真正需要触发RRC重建立的应该是IAB node2,可是因为端到端的ARQ,导致IAB node2无法根据ARQ的最大重传次数来触发RLF。
本申请实施例各个IAB node之间基于HARQ重传机制进行重传,该HARQ重传是在MAC层实现的,可以逐跳反馈。由图2可知,可以在各个节点之间进行,而不是端到端的重传,从而能够准确确定链路质量不好的接口,从而触发IAB节点进行链路的重建。
图4为本申请一实施例提供的触发无线链路失败的方法流程图。如图4所示,该方法包括:
S401、第一节点获取第一指示信息,所述第一指示信息包括所述第一节点向第二节点进行混合自动重传请求HARQ的最大重传次数,或者,所述第一节点接收所述第二节点发送的HARQ NACK的最大非应答次数。
该第一节点可以为上述实施例中的数据回传设备,即IAB node,该第一节点用于传输终端与网络设备(宿主基站,IAB donor)之间的数据。该第一节点集成了无线接入链路和无线回传链路,其中,接入链路为终端设备与该第一节点之间的通信链路,无线回程链路为该第一节点与其它数据回传设备或者网络设备之间的通信链路。
第二节点可以为第一节点的子节点或父节点。其中,父节点是指该第一节点的上一跳节点,即直接接收该第一节点发送上行数据的节点或者直接向该第一节点发送下行数据的节点;子节点是指该第一节点的下一跳节点,即:直接接收该第一节点发送下行数据的节点或者直接向该第一节点发送上行数据的节点。
第一节点可以通过多种方式获取第一指示信息,例如从宿主基站获取,自身生成等。该第一指示信息包括最大重传次数或最大非应答次数,该最大重传次数为第一节点向第二节点重传数据的最大次数,该最大非应答次数为第一节点接收第二节点发送的HARQ NACK的最大次数。
在一种可能的方式中,该第一指示信息包括最大重传次数或最大非应答次数。在另一种可能的方式中,该第一指示信息用于指示最大重传次数或最大非应答次数,该指示可以为显式指示也可以为隐式指示。
S402、所述第一节点根据所述第一指示信息,判断所述第一节点与所述第二节点之间的链路是否发生无线链路失败。
第一节点根据该第一指示信息,可以确定第一节点与第二节点之间的链路没有发生无线链路失败。在一种可能的实现方式中,若第一节点向第二节点进行HARQ重传的次数小于第一指示信息中指示的最大重传次数,则第一节点认为第一节点与第二节点之间的链路没有发生无线链路失败。在另一种可能的实现方式中,若第一节点接收第二节点发送的HARQ NACK的次数小于第一指示信息中指示的最大非应答次数,则第一节点认为第一节点与第二节点之间的链路没有发生无线链路失败。
第一节点根据该第一指示信息,也可以确定第一节点与第二节点之间的链路发生无线链路失败。在一种可能的实现方式中,若第一节点向第二节点进行HARQ重传的次数大于或等于第一指示信息中指示的最大重传次数,则第一节点认为第一节点与第二节点之间的链路发生无线链路失败。在另一种可能的实现方式中,若第一节点接收 第二节点发送的HARQ NACK的次数大于或等于第一指示信息中指示的最大非应答次数,则第一节点认为第一节点与第二节点之间的链路发生无线链路失败。
当第一节点确定该第一节点与第二节点之间的链路发生无线链路失败时,第一节点可以触发进行链路的恢复,链路恢复可以通过无线资源控制(Radio Resource Control,RRC)连接重建立过程或者切换过程来实现。例如,该第一节点触发RRC连接重建立过程,选择新的小区进行接入,该新的小区可以是第二节点上的其他小区,也可以是其他IAB节点的小区或者IAB donor的小区。或者,第一节点触发切换过程,第一节点切换至与其它IAB节点的小区或者IAB donor的小区。
本申请实施例提供的触发无线链路失败的方法,通过第一节点获取第一指示信息,该第一指示信息包括进行混合自动重传请求HARQ的最大重传次数或者最大非应答次数;第一节点根据第一指示信息,判断第一节点与第二节点之间的链路是否发生无线链路失败,在采用端到端ARQ机制的传输场景下,各个节点之间通过基于MAC层的HARQ传输机制能够及时准确的发现无线链路的质量情况,如果链路质量很差,则认为发生了无线链路失败,并通过触发RRC连接重建立或者触发切换过程来恢复链路。
在上述实施例的基础上,下面结合图5对上行传输进行详细说明,结合图6对下行传输的过程进行详细说明。
上行传输实施例
图5为本申请实施例提供的基于上行传输的无线链路失败的场景示意图。在图5所示的实施例中,新增回传链路的RLF触发条件:上行回传链路(uplink,UL)进行HARQ的重传次数等于或大于UL HARQ最大重传次数,或者,收到UL的HARQ NACK次数等于或大于最大非应答次数。
第一节点为第二节点的子节点,第二节点为第一节点的父节点,第一节点向第二节点发送上行数据,第一节点发现UL HARQ重传达到指定的最大重传次数,或者,从第二节点接收的HARQ NACK达到最大非应答个数时,则第一节点确定第一节点与第二节点之间的链路发生RLF。
在上行传输过程中,第一节点获取第一指示信息的方式可以包括如下可能的实现方式:
一种可能的实现方式为:宿主基站(IAB donor,IAB D)为每个节点配置最大重传次数或最大非应答次数。
请参照图5和图2所示,IAB donor为IAB node2配置Un1接口的UL HARQ最大重传次数或者最大非应答次数,IAB donor为IAB node1配置Un2接口的UL HARQ最大重传次数或者最大非应答次数。
示例性地,IAB donor为IAB node2配置Un1接口的UL HARQ最大重传次数或者最大非应答次数,可以是由IAB donor CU决定分配的,并将该信息携带在RRC消息中发送给IAB node2 MT。
IAB donor为IAB node1配置Un2接口的UL HARQ最大重传次数或者最大非应答次数,可以是由IAB donor CU决定分配的,并将该信息携带在RRC消息中发送给IAB node1 MT。
综上可知,第一节点从第一网络设备接收无线资源控制RRC消息,RRC消息中 包括最大重传次数或最大非应答次数;其中,第一网络设备为宿主基站。
另一种可能的实现方式为:父节点为子节点确定UL HARQ最大重传次数或最大非应答次数,父节点将该UL HARQ最大重传次数或最大非应答次数发送给宿主基站,由宿主基站再配置给各个节点。
示例性地,IAB donor为IAB node2配置Un1接口的UL HARQ最大重传次数或者最大非应答次数,可以是IAB node1 DU决定分配的,并通过IAB node1 DU和IAB donor CU之间的F1AP消息发送给IAB donor CU,由IAB donor CU将该消息携带在RRC消息中发送给IAB node2 MT。
IAB donor为IAB node1配置Un2接口的UL HARQ最大重传次数或者最大非应答次数,可以是IAB donor DU决定分配的,并通过IAB donor DU和IAB donor CU之间的F1AP消息发送给IAB donor CU,由IAB donor CU将该消息携带在RRC消息中发送给IAB node1 MT。
综上可知,第二节点为第一节点的父节点,该RRC消息中携带的第一指示信息是第一网络设备根据第二指示信息确定的,第二指示信息中包括最大重传次数或最大非应答次数,第二指示信息为第二节点发送给第一网络设备的。该第二指示信息可以是第二节点通过F1AP消息发送到第一网络设备的。其中,第一指示信息和第二指示信息可以相同。
另一种可能的实现方式还可以是:父节点为子节点确定最大重传次数或最大非应答次数,然后通过MAC CE或者PDCCH DCI发送给子节点。
示例性的,IAB donor为IAB node2配置Un1接口的UL HARQ最大重传次数或者最大非应答次数,可以是IAB node1 DU决定分配的,并通过MAC CE或者PDCCH DCI发送给IAB node2 MT。
IAB donor为IAB node1配置Un2接口的UL HARQ最大重传次数或者最大非应答次数,可以是IAB donor DU决定分配的,并通过MAC CE或者PDCCH DCI发送给IAB node1 MT。
在本实施例中,以第一节点为IAB node2(IAB n2),第二节点为(IAB n1),第二节点为第一节点的父节点,第一节点向第二节点发送上行数据为例进行说明。
在一个示例中,IAB node2发现上行链路(uplink,UL)的HARQ重传次数达到UL HARQ最大重传次数,或者IAB node2发现从IAB node1接收到的HARQ NACK个数达到最大非应答次数,则IAB node2的MAC层给其上层(例如:RRC层)发送一个指示信息,该指示信息用于指示UL HARQ达到最大重传次数,或者HARQ NACK的接收达到最大非应答次数,IAB node2根据该指示信息认为Un1接口发生RLF,并触发RRC连接重建立过程或者触发切换过程。
本实施例提供的触发无线链路失败的方法,使得上行传输过程中,各节点能够发现上行链路问题导致的无线链路失败,从而能够准确的进行RRC连接重建立过程或切换过程。
在上述实施例的基础上,第一节点确定第一节点与第二节点之间的链路发生无线链路失败之后,第一节点向第一终端设备发送第三指示信息,第三指示信息用于触发第一终端设备执行RLC层的ARQ重传。
在一种可能的实现方式中,该第三指示信息可以对第一终端设备进行显式指示,也可以进行隐式指示,以触发第一终端设备执行RLC层的ARQ重传。
例如,对于隐式指示而言,该第三指示信息可以指示第一终端设备发生了无线链路失败,第一终端设备根据该无线链路失败,执行RLC层的ARQ重传。
例如,对于显式指示而言,该第三指示信息可以指示第一终端执行RLC层的ARQ重传。
在一种可能的实现方式中,该第三指示信息可以携带在RRC消息中。具体地,以第一节点为IAB node2进行说明,该第三指示信息可以携带在IAB node2 DU和终端设备之间的RRC消息中。或者,第三指示信息还可以携带在MAC CE或者PDCCH DCI中。
本领域技术人员可以理解,HARQ机制是针对MAC层设计的,ARQ机制是针对RLC层设计的,MAC层位于RLC层的下层,MAC层更靠近物理层,通过MAC层的传输情况更能体现链路的质量情况。而对于第一节点而言,一旦MAC层发现HARQ重传达到网络配置的最大重传次数,后者发现收到的HARQ NACK个数达到网络配置的最大非应答个数时,则认为发生RLF,并给RRC层发送一个指示信息,以便第一节点触发RRC连接重建立过程或者触发切换过程来进行无线链路的恢复。一旦链路恢复,则第一节点向第一终端设备发送给第三指示信息,用于指示所述第一终端设备执行RLC层的ARQ重传。
本申请实施例在上行传输过程中,通过第三指示信息触发第一终端设备执行RLC层的ARQ重传,从而保证了第一终端设备与宿主基站之间的端到端传输可以正常进行,并且保证不丢包。
下行传输实施例
图6为本申请实施例提供的基于下行传输的无线链路失败的场景示意图。在图6所示的实施例中,新增回传链路的RLF触发条件:
下行回传链路(Downlink,DL)进行HARQ的重传次数等于或大于DL HARQ最大重传次数,或者,收到DL的HARQ NACK次数等于或大于最大非应答次数。
第一节点为第二节点的父节点,第二节点为第一节点的子节点,第一节点向第二节点发送下行数据,第一节点发现DL HARQ重传达到指定的最大重传次数,或者,从第二节点接收的HARQ NACK达到最大非应答个数时,则第一节点确定第一节点与第二节点之间的链路发生RLF。
在下行传输过程中,第一节点获取第一指示信息的方式可以包括如下可能的实现方式:
一种可能的实现方式为:宿主基站(IAB donor,IAB D)为每个节点配置进行DL HARQ的最大重传次数或最大非应答次数。
请参照图6和图2所示,IAB donor为IAB node2配置Uu接口的DL HARQ最大重传次数或者最大非应答次数,IAB donor为IAB node1配置Un1接口的DL HARQ最大重传次数或者最大非应答次数。
示例性地,IAB donor为IAB node2配置Uu接口的DL HARQ最大重传次数或者 最大非应答次数,可以是由IAB donor CU决定分配的,并将该信息携带在RRC消息中发送给IAB node2 MT,并由IAB node2 MT通过内部接口转发给IAB node2 DU。或者,IAB donor CU将该信息携带在F1AP消息中发送给IAB node2 DU。
IAB donor为IAB node1配置Un1接口的DL HARQ最大重传次数或者最大非应答次数,可以是由IAB donor CU决定分配的,并将该信息携带在RRC消息中发送给IAB node1 MT,并由IAB node1 MT通过内部接口转发给IAB node1 DU。或者,IAB donor CU将该信息携带在F1AP消息中发送给IAB node1 DU。
综上可知,第一节点从第一网络设备接收无线资源控制RRC消息,RRC消息中包括最大重传次数或最大非应答次数;其中,第一网络设备为宿主基站。
另一种可能的实现方式为:第一节点自身确定DL HARQ最大重传次数或最大非应答次数。
请继续参照图6和图2,IAB node2自身确定DL HARQ最大重传次数或者最大非应答次数,可以是IAB node2 DU决定Uu接口的DL HARQ最大重传次数或者最大非应答次数。IAB node1自身确定DL HARQ最大重传次数或者最大非应答次数,可以是IAB node1 DU决定Un1接口的DL HARQ最大重传次数或者最大非应答次数。
在本实施例中,以第一节点为IAB node1(IAB n1),第二节点为(IAB n2),第二节点为第一节点的子节点,第一节点向第二节点发送下行数据为例进行说明。
在一个示例中,IAB node1发现下行链路(Downlink,DL)的HARQ重传次数达到DL HARQ最大重传次数,或者IAB node1发现从IAB node2接收到的HARQ NACK个数达到最大非应答次数,则IAB node1的MAC层给其上层(例如:RRC层)发送一个指示信息,该指示信息用于指示DL HARQ达到最大重传次数,或者HARQ NACK的接收达到最大非应答次数,IAB node1根据该指示信息认为Un1接口发生RLF,并触发RRC连接重建立过程或者触发切换过程。
本实施例提供的触发无线链路失败的方法,使得下行传输过程中,各节点能够发现下行链路问题导致的无线链路失败,从而能够准确的进行RRC连接重建立过程或切换过程来进行链路的恢复。
在上述实施例的基础上,第一节点确定第一节点与第二节点之间的链路发生无线链路失败,第一节点向第二网络设备发送第四指示信息,第四指示信息用于触发第二网络设备执行RLC层的ARQ重传;其中,第二网络设备为宿主基站。
在一种可能的实现方式中,该第四指示信息可以对宿主基站进行显式指示,也可以进行隐式指示,以触发宿主基站执行RLC层的ARQ重传。
例如,对于隐式指示而言,该第四指示信息可以指示宿主基站发生了无线链路失败,宿主基站根据该无线链路失败,执行RLC层的ARQ重传。
例如,对于显式指示而言,该第四指示信息可以指示宿主基站执行RLC层的ARQ重传。
在一种可能的实现方式中,该第四指示信息可以携带在F1AP消息中,也可以携带在RRC消息中。具体地,以第一节点为IAB node1进行说明,该第四指示信息可以携带在IAB node1 DU和IAB donor CU之间的F1AP消息中。或者,该第四指示信息可以由IAB node1 DU发送给IAB node1 MT,然后IAB node1 MT将该指示信息携带 在RRC消息中发送给IAB donor CU。
由上可知,通过MAC层的传输更能体现链路的质量情况。而对于第一节点而言,一旦MAC层发现HARQ重传达到网络配置的最大重传次数,后者发现收到的HARQ NACK个数达到网络配置的最大非应答个数时,则认为发生RLF,并给RRC层发送一个指示信息,以便第一节点触发RRC连接重建立过程或者触发切换过程来进行无线链路的恢复。一旦链路恢复,则第一节点向宿主基站发送给第四指示信息,用于指示所述宿主基站设备执行RLC层的ARQ重传。
本申请实施例在下行传输过程中,通过第四指示信息触发宿主基站执行RLC层的ARQ重传,从而保证了宿主基站与第一终端设备之间的端到端传输可以正常进行。
在本实施例中,不仅可以通过增加触发条件来确定各个节点是否发生无线链路失败,还可以基于下行参考信号来确定各个节点是否发生无线链路失败,下面进行详细说明。
图7为本申请一实施例提供的触发无线链路失败的方法流程图。如图7所示,该方法包括:
S701、第一节点根据第二节点发送的下行参考信号,判断所述第一节点与所述第二节点之间的链路是否发生无线链路失败;其中,所述第二节点为所述第一节点的父节点;
S702、若发生无线链路失败,则所述第一节点向终端设备发送指示信息,所述指示信息用于触发所述终端设备向网络设备发送RLC层的状态报告。
在本实施例中,第一节点可以对下行参考信号进行检测,来判断第一节与第二节点之间的链路是否发生无线链路失败。
在一种可能的实现方式中,当第一节点根据下行参考信号进行无线链路检测时,当连续接收到N310个下行失步指示(out-of-sync)时,则会触发定时器T310的启动。在T310持续过程中,连续又收到N311个下行同步指示(in-sync)时,则停止T310定时器,指示链路已恢复。如果定时器T310超时,则认为检测到无线链路失败,将触发RRC连接重建过程。
当第一节点发现第一节点与第二节点之间的链路发生无线链路失败时,则向终端设备发送一个指示信息,用于指示终端设备向网络设备,即宿主基站发送RLC层的状态报告。该RLC层的状态报告用于反馈终端的接收情况,用以确认终端设备当前正确接收的数据以及丢失的需要重传的数据,从而触发网络设备执行RLC层的ARQ重传。
其中,该指示信息可以被携带在无线资源控制RRC消息中。该指示信息还可以被携带在介质访问控制层控制元素(MAC Control Element,MAC CE)中。
若该第一节点为终端的父节点时,第一节点可以直接向终端发送指示信息。若所述第一节点非所述终端设备的父节点,则第一节点通过中间节点的转发将指示信息发送给终端设备,该中间节点可以为一个,也可以为多个,若为多个,则中间节点依次转发该指示信息,直至将该指示信息转发给终端。
下面结合图8对第一节点向终端设备发送指示信息的过程进行详细说明。
在一种可能的实现方式中,第一节点为IAB node2。若IAB node2发现Un1接口 发生RLF,则IAB node2可以通过RRC消息或者MAC CE或者PDCCH DCI给终端设备发送指示信息,触发终端设备进行RLC状态报告的反馈,以便IAB donor基于终端设备的RLC状态报告反馈来触发RLC重传。
请同时结合图2所示,IAB node2 MT先通知IAB node2 DU,由IAB node2 DU将该指示信息携带在RRC消息或者MAC CE或者PDCCH DCI中发送给终端设备。
在另一种可能的实现方式中,第一节点为IAB node1。若IAB node1发现Un2接口发生RLF,则IAB node1可以通过RRC消息或者MAC CE给IAB node2发送指示信息,并由IAB node2将该指示信息转发给终端设备,触发终端设备进行RLC状态报告的反馈,以便IAB donor基于终端设备的RLC状态报告反馈来触发RLC重传。
请同时结合图2所示,IAB node1 MT先通知IAB node1 DU,由IAB node1 DU将该指示信息携带在RRC消息或者MAC CE或者PDCCH DCI中发送给IAB node2 MT,然后,IAB node2 MT通知IAB node2 DU,由IAB node2 DU将该指示信息携带在RRC消息或者MAC CE或者PDCCH DCI中发送给终端设备。
本申请实施例通过下行参考信号来确定是否发生无线链路失败,可以确定每个节点之间是否发生了无线链路失败,从而能够准确的触发RRC连接重建立或者触发切换过程来恢复链路。
在本实施例中,IAB node作为数据回传的节点,则IAB node节点上的RLC层只有分段功能。而IAB node作为一个节点有自己的操作管理维护(Operation Administration and Maintenance,OAM)数据需要传输,此时IAB node MT与IAB donor也存在IAB node MT的端到端ARQ。图9为本申请一实施例提供的触发无线链路失败的场景示意图。如图9所示,IAB node1(IAB n1)与IAB donor(IAB D)之间存在对等的RLC层,该RLC层具有ARQ功能,IAB node2(IAB n2)与IAB donor(IAB D)之间也存在对等的RLC层,该RLC层具有ARQ功能。
以图9所示为例,在一种可能的实现方式中,相对于Un1接口而言,Un2接口会最先发现是否发生无线链路失败。该IAB node1基于IAB donor反馈的ARQ NACK触发RLC重传达到最大重传次数时,则IAB node1确定Un2接口发生无线链路失败,并给IAB node2发送一个指示信息,用于通知IAB node2 Un2接口链路发生无线链路失败。
如果IAB node1发现Un2接口发生RLF,则IAB node1将触发RRC连接重建立来恢复Un2接口链路。一旦IAB node1的Un2接口链路恢复,则IAB node1给IAB node2发送一个指示信息,用于通知IAB node2 Un2接口链路恢复正常。
一旦IAB node2根据端到端ARQ触发RLC重传并达到最大重传次数时,结合IAB node1发送的指示信息来判决Un1接口是否发生RLF。
示例性的,当IAB node2根据IAB donor反馈的ARQ NACK触发RLC重传达到最大重传次数时,IAB node2可以向IAB node1发送一个请求,请求IAB node1反馈Un2接口链路是否发生RLF的情况。或者,IAB node1发现Un2接口发生RLF后主动向IAB node2发送一个指示信息,用于指示Un2接口链路发生无线链路失败,或者,IAB node1发现Un2接口链路通过RRC连接重建立流程来恢复后,主动向IAB node2 发送一个指示信息,用于指示其链路正常。IAB node2需要根据IAB node1的指示信息来判决Un1接口是否发生RLF。例如,若该Un2接口链路正常,则IAB node2确定Un1接口发生了RLF。
在另一种可能的实现方式中,由IAB donor分别根据向IAB node2和IAB node1反馈的ARQ NACK个数,来判决Un1接口是否发生RLF。例如:Un2接口链路正常,IAB donor向IAB node1反馈的ARQ NACK个数少于预设个数。Un1接口链路RLF,则IAB donor向IAB node2反馈的ARQ NACK个数多于预设个数,则认为Un1接口发生RLF。然后IAB donor可以通过RRC消息或者F1AP消息通知IAB node2其Un1接口发生RLF,触发IAB node2进行RRC连接重建立或者切换过程来恢复链路。
本申请实施例在端到端ARQ场景下,各节点能够及时发现链路问题导致的RLF,并触发RRC连接重建立或者切换过程来恢复链路。
图10为本申请一实施例提供的无线链路失败的场景示意图,如图10所示,该多跳中继网络架构给出了多跳场景,该网络架构包括终端设备、多个IAB node以及IAB donor。在本实施例中,以三跳数据为例进行说明。
当IAB node2(IAB n2)检测到IAB node1(IAB n1)和IAB node2之间发生无线链路失败时,IAB node2会进行RRC重建立,若IAB node2在预设时间内RRC重建立失败,则IAB node3会进行RRC重建立,从而保证IAB node3的无线链路正常。
其中,IAB node2检测IAB node1和IAB node2之间是否发生无线链路失败的方式有多种。在一种可能的实现方式中,两个节点之间可以根据数据传输是否达到RLC层配置的最大重传次数来检测是否发生无线链路失败。在另一种可能的实现方式中,可以通过下行参考信号来检测是否发生无线链路失败。对于其它可能的实施例,本实施例此处不再赘述。
下面结合图10、图11和图12所示实施例对IAB node3是否进行RRC重建立进行详细说明。其中,在图10所示实施例中,以第二节点(IAB node2)为第一节点(IAB node1)的子节点,且为第三节点(IAB node3)的父节点为例进行说明,当第二节点为第一节点的父节点,且为第三节点的子节点时,其实现方式类似,本实施例此处不再赘述。
图11为本申请一实施例提供的触发无线链路失败的信令流程图。如图11所示,该方法包括:
S1101、第一节点与第二节点之间的无线链路发生无线链路失败;
S1102、第二节点在检测到第二节点与第一节点之间的无线链路发生无线链路失败时,触发RRC重建立;
S1103、第二节点向第三节点发送第一指示信息,第一指示信息用于指示第二节点RRC重建立失败或用于指示第三节点判断无线链路失败RLF或用于指示所述第三节点触发RRC重建立;
S1104、第三节点确定触发RRC重建立。
当第二节点检测到第二节点与第一节点之间的无线链路发生无线链路失败时,触发RRC重建立。
若第二节点RRC重建立失败,则第二节点向第三节点发送第一指示信息,该第一 指示信息用于指示第二节点RRC重建立失败。当第三节点获知第二节点RRC重建立失败时,则第三节点触发RRC重建立过程。该第一指示信息可以通过适配层或MAC层进行发送。其中,第二节点与第三节点之间的RLC层之上还存在一个适配层,可通过适配层的control PDU进行发送,MAC层可通过MAC CE进行发送。
示例性的,第一指示信息可以显示的或者隐式的指示第二节点RRC重建立失败。本实施例不限定。例如:第一指示信息可以为指示第三节点触发RRC重建立的指示信息,即隐式的指示第二节点RRC重建立失败。
若第二节点RRC重建立成功,则第二节点不会向第三节点发送第一指示信息,即对于第三节点而言,第三节点始终认为无线链路正常。
本申请实施例通过第二节点在RRC重建立失败时,第二节点向第三节点发送用于指示RRC重建立失败的第一指示信息,使得第三节点能够触发RRC重建立,保证了第三节点能够及时进行链路重建,保证了第三节点能够正常传输数据。
图12为本申请一实施例提供的触发无线链路失败的信令流程图。如图12所示,该方法包括:
S1201、第一节点与第二节点之间的无线链路发生无线链路失败;
S1202、第二节点在检测到第二节点与第一节点之间的无线链路发生无线链路失败时,触发RRC重建立;
S1203、第二节点向所述第三节点发送第二指示信息,所述第二指示信息用于指示所述第二节点与所述第一节点之间的无线链路发生无线链路失败;
S1204、第三节点启动定时器;
S1205、若第三节点在所述定时器超时前接收到第二节点发送的第一指示信息,则根据所述第一指示信息,判断是否触发RRC重建立;
S1206、若所述定时器超时,则判断发生无线链路失败或确定触发RRC重建立。
在本实施例中,在第二节点检测到无线链路发生失败时,第二节点触发RRC重建立。第二节点向第三节点发送第二指示信息,用以指示第二节点与第一节点之间的无线链路发生无线链路失败。其中,第二节点触发RRC重建立和向第三节点发送第二指示信息的先后顺序不限定,第二节点可以先触发RRC重建立,在进行RRC重建立的过程中,向第三节点发送第二指示信息。或者,第二节点先向第三节点发送第二指示信息,然后第二节点再触发RRC重建立。
当第三节点接收到该第二指示信息时,启动定时器,该定时器的定时时间可以为宿主节点配置的,也可以是其他节点配置的,本实施例并不限制。
若在定时器超时前接收到第二节点发送的第一指示信息,该第一指示信息用于指示RRC重建立失败,则第三节点触发RRC重建立,并停止定时器。
若在定时器超时前接收到第二节点发送的第一指示信息,该第一指示信息用于指示RRC重建立成功,则第三节点关闭定时器。
若定时器超时,则第三节点判断发生无线链路失败或确定触发RRC重建立。其中,定时器超时也即在定时器超时之前的一段时间内都没收到第一指示信息。
作为另一种可能的实现方式,步骤S1204是可选的,第三节点可以不启动定时器。即:S1203中,第二节点向所述第三节点发送第二指示信息,所述第二指示信息用于 指示所述第二节点与所述第一节点之间的无线链路发生无线链路失败。第三节点收到第二指示信息后不启动定时器。S1205中,第三节点接收第二节点发送的第一指示信息,根据所述第一指示信息,判断是否触发RRC重建立。
其中,本实施例中第一指示信息与第二指示信息的发送方式与图11所示实施例中的第一指示信息的发送方式类似,可以是显示的指示,也可以是隐式的指示,本实施例此处不再赘述。
本申请实施例通过第三节点在接收到用于指示发生无线链路失败的第二指示信息后启动定时器,根据定时器内收到的第一指示信息来确定是否触发无线链路失败或触发RRC重建立,保证了第三节点能够及时进行链路重建,保证了第三节点能够正常传输数据。
图13为本申请一实施例提供的数据回传设备的结构示意图。该数据回传设备130称为第一节点,如图13所示,该数据回传设备130包括:
获取模块1301,用于获取第一指示信息,所述第一指示信息包括所述第一节点向第二节点进行混合自动重传请求HARQ的最大重传次数,或者,所述第一节点接收所述第二节点发送的HARQ NACK的最大非应答次数;
处理模块1302,用于根据所述第一指示信息,判断所述第一节点与所述第二节点之间的链路是否发生无线链路失败。
在一种可能的设计中,所述第一节点为数据回传设备,所述第二节点为所述第一节点的子节点或父节点。
在一种可能的设计中,所述处理模块1302具体用于:
若所述第一节点向所述第二节点进行HARQ重传的次数大于或等于第一指示信息中指示的最大重传次数,则确定所述第一节点与所述第二节点之间的链路发生无线链路失败;或者
若所述第一节点接收所述第二节点发送的HARQ NACK的次数大于或等于第一指示信息中指示的最大非应答次数,则确定所述第一节点与所述第二节点之间的链路发生无线链路失败。
在一种可能的设计中,所述获取模块1301具体用于:从第一网络设备接收无线资源控制RRC消息,所述RRC消息中包括所述最大重传次数或所述最大非应答次数;其中,所述第一网络设备为宿主基站。
在一种可能的设计中,若所述第二节点为第一节点的父节点;所述RRC消息是所述第一网络设备根据第二指示信息确定的,所述第二指示信息中包括所述最大重传次数或最大非应答次数,所述第二指示信息为所述第二节点发送给所述第一网络设备的。
在一种可能的设计中,若所述第二节点为所述第一节点的子节点,所述获取模块1301具体用于:自身确定所述最大重传次数或所述最大非应答次数。
在一种可能的设计中,若所述第二节点为所述第一节点的父节点,所述设备还包括:发送模块1303;
所述发送模块1303用于在确定所述第一节点与所述第二节点之间的链路发生无线链路失败时向第一终端设备发送第三指示信息,所述第三指示信息用于触发所述第一终端设备执行无线链路控制RLC层的自动重传请求ARQ重传。
在一种可能的设计中,若所述第二节点为所述第一节点的子节点,所述设备还包括:发送模块1303;
所述发送模块1303用于在确定所述第一节点与所述第二节点之间的链路发生无线链路失败时,向第二网络设备发送第四指示信息,所述第四指示信息用于触发所述第二网络设备执行无线链路控制RLC层的自动重传请求ARQ重传;其中,所述第二网络设备为宿主基站。
本申请实施例提供的数据回传设备,用于执行上述图3至图6所述实施例中第一节点所执行的方法,其实现原理和技术效果类似,本实施例此处不再赘述。
图14为本申请一实施例提供的数据回传设备的结构示意图。该数据回传设备140称为第一节点,如图14所示,该数据回传设备140包括:
处理模块1401,用于根据第二节点发送的下行参考信号,判断所述第一节点与所述第二节点之间的链路是否无线链路失败;其中,所述第二节点为所述第一节点的父节点;
发送模块1402,用于若发生无线链路失败时,向终端设备发送指示信息,所述指示信息用于触发所述终端设备向网络设备发送RLC层的状态报告。
在一种可能的设计中,所述指示信息被携带在无线资源控制RRC消息中。
在一种可能的设计中,所述指示信息被携带在介质访问控制层控制元素MAC CE中。
在一种可能的设计中,若所述第一节点非所述终端设备的父节点,则所述发送模块1402具体用于:通过中间节点的转发将所述指示信息发送给所述终端设备。
本申请实施例提供的数据回传设备,用于执行上述图7至图9所述实施例中第一节点所执行的方法,其实现原理和技术效果类似,本实施例此处不再赘述。
图15为本申请一实施例提供的数据回传设备的结构示意图。该数据回传设备150称为第二节点,如图15所示,该数据回传设备150包括:
处理模块1501,用于在检测到第二节点与第一节点之间的无线链路发生无线链路失败时,触发RRC重建立;
发送模块1502,用于向第三节点发送第一指示信息,所述第一指示信息用于指示第二节点的RRC重建立结果;
其中,所述第二节点为所述第一节点的子节点,且为所述第三节点的父节点。
在一种可能的设计中,所述第一指示信息用于指示第二节点RRC重建立失败或用于指示第三节点判断无线链路失败RLF或用于指示第三节点触发RRC重建。
在一种可能的设计中,所述发送模块1502还用于,在所述第二节点向第三节点发送第一指示信息之前,向所述第三节点发送第二指示信息,所述第二指示信息用于指示所述第二节点与所述第一节点之间的无线链路发生无线链路失败。
在一种可能的设计中,所述第一指示信息用于指示第二节点RRC重建立失败或成功。
本申请实施例提供的数据回传设备,用于执行上述图10至图12所述实施例中第二节点所执行的方法,其实现原理和技术效果类似,本实施例此处不再赘述。
图16为本申请一实施例提供的数据回传设备的结构示意图。该数据回传设备160 称为第三节点。如图16所示,该数据回传设备160包括:
接收模块1601,用于接收第二节点发送的第一指示信息,所述第一指示信息是所述第二节点在确定所述第二节点与第一节点之间的无线链路发送无线链路失败后发送的,所述第一指示信息用于指示第二节点的RRC重建立结果;
处理模块1602,用于根据所述第一指示信息,判断是否触发RRC重建立;
其中,所述第二节点为所述第一节点的子节点,且为所述第三节点的父节点。
在一种可能的设计中,所述处理模块1602具体用于:
若所述第一指示信息用于指示所述第二节点RRC重建立失败或用于指示第三节点判断无线链路失败RLF或用于指示第三节点触发RRC重建,则判断发生无线链路失败或触发RRC重建立。
在一种可能的设计中,所述接收模块1601还用于:在所述第三节点接收第二节点发送的第一指示信息之前,在接收到所述第二节点发送的第二指示信息后,启动定时器,所述第二指示信息用于指示所述第二节点与所述第一节点之间的无线链路发生无线链路失败。
在一种可能的设计中,若所述定时器超时前接收到所述第一指示信息,所述处理模块1602具体用于:
若所述第一指示信息用于指示第二节点RRC重建立失败,则触发RRC重建立,并停止所述定时器;或者,
若所述第一指示信息用于指示第二节点RRC重建立成功,则停止所述定时器。
在一种可能的设计中,若所述定时器超时,则所述处理模块1602还用于判断发生无线链路失败或触发RRC重建立。
本申请实施例提供的数据回传设备,用于执行上述图10至图12所述实施例中第三节点所执行的方法,其实现原理和技术效果类似,本实施例此处不再赘述。
在进行硬件实现时,本实施例的处理模块可以集成在处理器中实现,发送模块可以集成在发送器中实现,接收模块可以集成在发送器中实现。
图17为本申请一实施例提供的数据回传设备的硬件结构示意图。如图17所示,本实施例提供的数据回传设备170包括:处理器1701以及存储器1702;其中
存储器1702,用于存储计算机程序;
处理器1701,用于执行存储器存储的计算机程序,以实现上述实施例中数据回传设备所执行的各个步骤。例如,执行图3至图6所述实施例中第一节点所执行的方法,或者执行图7至图9所述实施例中第一节点所执行的方法,或者执行图10至图12所述实施例中第二节点所执行的方法,或者执行图10至图12所述实施例中第三节点所执行的方法。具体可以参见前述方法实施例中的相关描述。
在一种可能的实现方式中,存储器1702既可以是独立的,也可以跟处理器1701集成在一起。
当所述存储器1702是独立于处理器1701之外的器件时,所述数据回传设备170还可以包括:总线1703,用于连接所述存储器1702和处理器1701。
图17所示的数据回传设备170还可以进一步包括发送器1704和接收器1705。发送器1704可以发送各种指示信息,接收器1705可以接收各种指示信息。
本实施例提供的数据回传设备,可用于执行上述实施例中各节点所执行的方法,其实现原理和技术效果类似,本实施例此处不再赘述。
本申请实施例还提供一种存储介质,所述存储介质包括计算机程序,所述计算机程序用于实现:执行图3至图6所述实施例中第一节点所执行的方法,或者执行图7至图9所述实施例中第一节点所执行的方法,或者执行图10至图12所述实施例中第二节点所执行的方法,或者执行图10至图12所述实施例中第三节点所执行的方法。
本申请实施例提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行图3至图6所述实施例中第一节点所执行的方法,或者执行图7至图9所述实施例中第一节点所执行的方法,或者执行图10至图12所述实施例中第二节点所执行的方法,或者执行图10至图12所述实施例中第三节点所执行的方法。
本申请实施例提供一种芯片,包括处理器,还可以包括存储器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得安装有所述芯片的通信设备执行图3至图6所述实施例中第一节点所执行的方法,或者执行图7至图9所述实施例中第一节点所执行的方法,或者执行图10至图12所述实施例中第二节点所执行的方法,或者执行图10至图12所述实施例中第三节点所执行的方法。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理单元中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个单元中。上述模块成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能模块的形式实现的集成的模块,可以存储在一个计算机可读取存储介质中。上述软件功能模块存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(英文:processor)执行本申请各个实施例所述方法的部分步骤。
应理解,上述处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合申请所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中 的硬件及软件模块组合执行完成。
存储器可能包含高速RAM存储器,也可能还包括非易失性存储NVM,例如至少一个磁盘存储器,还可以为U盘、移动硬盘、只读存储器、磁盘或光盘等。
总线可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,本申请附图中的总线并不限定仅有一根总线或一种类型的总线。
上述存储介质可以是由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。存储介质可以是通用或专用计算机能够存取的任何可用介质。
一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于专用集成电路(Application Specific Integrated Circuits,简称:ASIC)中。当然,处理器和存储介质也可以作为分立组件存在于设备中。

Claims (36)

  1. 一种触发无线链路失败的方法,其特征在于,包括:
    第一节点获取第一指示信息,所述第一指示信息包括所述第一节点向第二节点进行混合自动重传请求HARQ的最大重传次数,或者,所述第一节点接收所述第二节点发送的HARQ NACK的最大非应答次数;
    所述第一节点根据所述第一指示信息,判断所述第一节点与所述第二节点之间的链路是否发生无线链路失败。
  2. 根据权利要求1所述的方法,其特征在于,所述第一节点为数据回传设备,所述第二节点为所述第一节点的子节点或父节点。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一节点根据所述第一指示信息,判断所述第一节点与所述第二节点之间的链路是否发生无线链路失败,包括:
    若所述第一节点向所述第二节点进行HARQ重传的次数大于或等于第一指示信息中指示的最大重传次数,则所述第一节点确定所述第一节点与所述第二节点之间的链路发生无线链路失败;或者
    若所述第一节点接收所述第二节点发送的HARQ NACK的次数大于或等于第一指示信息中指示的最大非应答次数,则所述第一节点确定所述第一节点与所述第二节点之间的链路发生无线链路失败。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述第一节点获取第一指示信息,包括:
    所述第一节点从第一网络设备接收无线资源控制RRC消息,所述RRC消息中包括所述最大重传次数或所述最大非应答次数;其中,所述第一网络设备为宿主基站。
  5. 根据权利要求4所述的方法,其特征在于,若所述第二节点为第一节点的父节点;
    所述RRC消息是所述第一网络设备根据第二指示信息确定的,所述第二指示信息中包括所述最大重传次数或最大非应答次数,所述第二指示信息为所述第二节点发送给所述第一网络设备的。
  6. 根据权利要求1至3任一项所述的方法,其特征在于,若所述第二节点为所述第一节点的子节点,所述第一节点获取第一指示信息,包括:
    所述第一节点自身确定所述最大重传次数或所述最大非应答次数。
  7. 根据权利要求1至3任一项所述的方法,其特征在于,若所述第二节点为所述第一节点的父节点,所述第一节点确定所述第一节点与所述第二节点之间的链路发生无线链路失败,所述方法还包括:
    所述第一节点向第一终端设备发送第三指示信息,所述第三指示信息用于触发所述第一终端设备执行无线链路控制RLC层的自动重传请求ARQ重传。
  8. 根据权利要求1至3任一项所述的方法,其特征在于,若所述第二节点为所述第一节点的子节点,所述第一节点确定所述第一节点与所述第二节点之间的链路发生无线链路失败,所述方法还包括:
    所述第一节点向第二网络设备发送第四指示信息,所述第四指示信息用于触发所 述第二网络设备执行无线链路控制RLC层的自动重传请求ARQ重传;其中,所述第二网络设备为宿主基站。
  9. 一种触发无线链路失败的方法,其特征在于,包括:
    第二节点在检测到第二节点与第一节点之间的无线链路发生无线链路失败时,触发链路恢复;
    所述第二节点向第三节点发送第一指示信息,所述第一指示信息用于指示第二节点的链路恢复的结果;
    其中,所述第二节点为所述第一节点的子节点,且为所述第三节点的父节点。
  10. 根据权利要求9所述的方法,其特征在于,所述第二节点向第三节点发送第一指示信息之前,所述方法还包括:
    所述第二节点执行链路恢复失败。
  11. 根据权利要求10所述的方法,其特征在于,所述第一指示信息用于指示第二节点链路恢复失败或用于指示第三节点无线链路失败RLF或用于指示第三节点触发链路恢复。
  12. 根据权利要求9或10所述的方法,其特征在于,所述第二节点向第三节点发送第一指示信息之前,所述方法还包括:
    所述第二节点向所述第三节点发送第二指示信息,所述第二指示信息用于指示所述第二节点与所述第一节点之间的无线链路发生无线链路失败。
  13. 根据权利要求12所述的方法,其特征在于,所述第一指示信息用于指示第二节点链路恢复失败或成功。
  14. 根据权利要求9至13任一项所述的方法,其特征在于,所述第二节点向第三节点发送第一指示信息,包括:
    所述第二节点通过适配层或MAC层向第三节点发送第一指示信息。
  15. 根据权利要求12所述的方法,其特征在于,所述第二节点向所述第三节点发送第二指示信息,包括:
    所述第二节点通过适配层或MAC层向第三节点发送第二指示信息。
  16. 一种触发无线链路失败的方法,其特征在于,包括:
    第三节点接收第二节点发送的第一指示信息,所述第一指示信息是所述第二节点在确定所述第二节点与第一节点之间的无线链路发送无线链路失败后发送的,所述第一指示信息用于指示第二节点的链路恢复的结果;
    所述第三节点根据所述第一指示信息,获取所述第二节点的链路恢复的结果;
    其中,所述第二节点为所述第一节点的子节点,且为所述第三节点的父节点。
  17. 根据权利要求16所述的方法,其特征在于,所述第三节点接收第二节点发送的第一指示信息之前,所述方法还包括:
    所述第二节点执行链路恢复失败。
  18. 根据权利要求17所述的方法,其特征在于,所述第一指示信息用于指示所述第二节点链路恢复失败或用于指示第三节点无线链路失败RLF或用于指示第三节点触发链路恢复。
  19. 根据权利要求16或17所述的方法,其特征在于,所述第三节点接收第二节 点发送的第一指示信息之前,还包括:
    所述第三节点在接收到所述第二节点发送的第二指示信息后,启动定时器,所述第二指示信息用于指示所述第二节点与所述第一节点之间的无线链路发生无线链路失败。
  20. 根据权利要求19所述的方法,其特征在于,若所述定时器超时前接收到所述第一指示信息,则获取所述第二节点的链路恢复的结果之后,还包括:
    若所述第一指示信息用于指示第二节点链路恢复失败,则所述第三节点触发链路恢复,并停止所述定时器;或者,
    若所述第一指示信息用于指示第二节点链路恢复成功,则所述第三节点停止所述定时器。
  21. 根据权利要求19所述的方法,其特征在于,若所述定时器超时,则所述第三节点判断发生无线链路失败或触发链路恢复。
  22. 根据权利要求16至21任一项所述的方法,其特征在于,所述第三节点接收第二节点发送的第一指示信息,包括:
    所述第三节点接收所述第二节点通过适配层或MAC层发送的第一指示信息。
  23. 根据权利要求19所述的方法,其特征在于,所述第三节点接收所述第二节点发送的第二指示信息,包括:
    所述第三节点接收所述第二节点通过适配层或MAC层发送的第二指示信息。
  24. 一种数据回传设备,所述设备称为第一节点,其特征在于,包括:
    获取模块,用于获取第一指示信息,所述第一指示信息包括所述第一节点向第二节点进行混合自动重传请求HARQ的最大重传次数,或者,所述第一节点接收所述第二节点发送的HARQ NACK的最大非应答次数;
    处理模块,用于根据所述第一指示信息,判断所述第一节点与所述第二节点之间的链路是否发生无线链路失败。
  25. 根据权利要求24所述的设备,其特征在于,所述第一节点为数据回传设备,所述第二节点为所述第一节点的子节点或父节点。
  26. 根据权利要求24或25所述的设备,其特征在于,所述处理模块具体用于:
    若所述第一节点向所述第二节点进行HARQ重传的次数大于或等于第一指示信息中指示的最大重传次数,则确定所述第一节点与所述第二节点之间的链路发生无线链路失败;或者
    若所述第一节点接收所述第二节点发送的HARQ NACK的次数大于或等于第一指示信息中指示的最大非应答次数,则确定所述第一节点与所述第二节点之间的链路发生无线链路失败。
  27. 根据权利要求24至26任一项所述的设备,其特征在于,所述获取模块具体用于:从第一网络设备接收无线资源控制RRC消息,所述RRC消息中包括所述最大重传次数或所述最大非应答次数;其中,所述第一网络设备为宿主基站。
  28. 根据权利要求27所述的设备,其特征在于,若所述第二节点为第一节点的父节点;所述RRC消息是所述第一网络设备根据第二指示信息确定的,所述第二指示信息中包括所述最大重传次数或最大非应答次数,所述第二指示信息为所述第二节点发 送给所述第一网络设备的。
  29. 根据权利要求24至26任一项所述的设备,其特征在于,若所述第二节点为所述第一节点的子节点,所述获取模块具体用于:自身确定所述最大重传次数或所述最大非应答次数。
  30. 根据权利要求24至26任一项所述的设备,其特征在于,若所述第二节点为所述第一节点的父节点,所述设备还包括:发送模块;
    所述发送模块用于在确定所述第一节点与所述第二节点之间的链路发生无线链路失败时向第一终端设备发送第三指示信息,所述第三指示信息用于触发所述第一终端设备执行无线链路控制RLC层的自动重传请求ARQ重传。
  31. 根据权利要求24至26任一项所述的设备,其特征在于,若所述第二节点为所述第一节点的子节点,所述设备还包括:发送模块;
    所述发送模块用于在确定所述第一节点与所述第二节点之间的链路发生无线链路失败时,向第二网络设备发送第四指示信息,所述第四指示信息用于触发所述第二网络设备执行无线链路控制RLC层的自动重传请求ARQ重传;其中,所述第二网络设备为宿主基站。
  32. 一种数据回传设备,其特征在于,包括:存储器、处理器以及计算机程序,所述计算机程序存储在所述存储器中,所述处理器运行所述计算机程序执行如权利要求1至8任一项所述的方法,或者执行如权利要求9至15任一项所述的方法,或者执行如权利要求16至23任一项所述的方法。
  33. 一种存储介质,其特征在于,所述存储介质包括计算机程序,所述计算机程序用于实现如权利要求1至8任一项所述的方法,或者实现如权利要求9至15任一项所述的方法,或者实现如权利要求16至23任一项所述的方法。
  34. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求1至8任一项所述的方法,或者实现如权利要求9至15任一项所述的方法,或者实现如权利要求16至23任一项所述的方法。
  35. 一种芯片,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中的所述计算机程序,使得安装有所述芯片的通信设备执行如权利要求1至8任一项所述的方法,或者实现如权利要求9至15任一项所述的方法,或者实现如权利要求16至23任一项所述的方法。
  36. 一种数据回传系统,其特征在于,所述数据回传系统包括终端设备、数据回传设备以及宿主网络设备,所述数据回传设备用于执行如权利要求1至8任一项所述的方法,或者实现如权利要求9至15任一项所述的方法,或者实现如权利要求16至23任一项所述的方法。
PCT/CN2020/074651 2019-02-14 2020-02-10 触发无线链路失败的方法及设备 WO2020164459A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20756027.7A EP3917199A4 (en) 2019-02-14 2020-02-10 METHOD AND DEVICE FOR TRIGGERING A RADIO LINK FAILURE
US17/400,845 US20210377757A1 (en) 2019-02-14 2021-08-12 Triggering Method For Radio Link Failure And Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910114948.2A CN111565408B (zh) 2019-02-14 2019-02-14 触发无线链路失败的方法及设备
CN201910114948.2 2019-02-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/400,845 Continuation US20210377757A1 (en) 2019-02-14 2021-08-12 Triggering Method For Radio Link Failure And Device

Publications (1)

Publication Number Publication Date
WO2020164459A1 true WO2020164459A1 (zh) 2020-08-20

Family

ID=72044550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074651 WO2020164459A1 (zh) 2019-02-14 2020-02-10 触发无线链路失败的方法及设备

Country Status (4)

Country Link
US (1) US20210377757A1 (zh)
EP (1) EP3917199A4 (zh)
CN (2) CN113645010B (zh)
WO (1) WO2020164459A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11963024B2 (en) * 2019-02-15 2024-04-16 Lg Electronics Inc. Method and apparatus for backhaul status reporting in wireless communication system
US11856450B2 (en) * 2020-02-27 2023-12-26 Qualcomm Incorporated Range extension for radio link control status reporting
WO2022056730A1 (en) * 2020-09-16 2022-03-24 Nec Corporation Methods for communications, network devices and computer readable media
CN114765774B (zh) * 2021-01-15 2024-04-30 大唐移动通信设备有限公司 通信方法及设备
US11722912B2 (en) * 2021-01-25 2023-08-08 Qualcomm Incorporated Radio link failure handling in an integrated access backhaul network
CN114867076A (zh) * 2021-02-03 2022-08-05 大唐移动通信设备有限公司 信息获取方法、处理方法、节点、网络侧设备及装置
WO2023010299A1 (zh) * 2021-08-03 2023-02-09 富士通株式会社 触发生成回传链路无线链路失败通知的方法及装置
WO2023193228A1 (en) * 2022-04-08 2023-10-12 Nokia Shanghai Bell Co., Ltd. Devices, methods, apparatuses, and computer readable media for medium access control-control element transmission
CN116015565A (zh) * 2022-12-07 2023-04-25 哲库科技(北京)有限公司 数据重传方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223658A (zh) * 2010-04-19 2011-10-19 中兴通讯股份有限公司 一种处理无线链路失败的方法和中继节点
CN104735817A (zh) * 2010-04-05 2015-06-24 高通股份有限公司 便于实现中继启动和无线链路失败(rlf)处理的方法和装置
CN108924853A (zh) * 2017-03-23 2018-11-30 中兴通讯股份有限公司 无线链路监测方法和用户设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102882589A (zh) * 2006-05-05 2013-01-16 北京新岸线移动通信技术有限公司 长期演进上行链路和下行链路中的无线电链路故障检测方法及其装置
CN101483927B (zh) * 2008-01-08 2011-05-04 华为技术有限公司 检测无线链路失败的方法及设备
CN102056190A (zh) * 2009-11-10 2011-05-11 中国移动通信集团公司 对载波聚合系统中无线链路失败的处理方法、系统及装置
US8855056B2 (en) * 2010-03-11 2014-10-07 Lg Electronics Inc. Method for processing degradation of radio link quality in a wireless communication system supporting relays
CN102448184B (zh) * 2010-10-11 2015-09-09 华为技术有限公司 无线链路失败指示的处理方法和装置
US20180213426A1 (en) * 2015-08-21 2018-07-26 Samsung Electronics Co., Ltd. Method for reporting latency of packet transmission in communication network
CN108781373B (zh) * 2016-08-12 2022-04-08 联发科技(新加坡)私人有限公司 无线链路失败检测的处理方法以及用户设备
US20180279319A1 (en) * 2017-03-23 2018-09-27 Nokia Technologies Oy Dynamic provisioning of quality of service for end-to-end quality of service control in device-to-device communication
EP3831117A4 (en) * 2018-08-03 2022-03-02 Lenovo (Beijing) Limited METHOD AND DEVICE FOR HANDLING RADIO LINK FAILURES
WO2020061569A1 (en) * 2018-09-21 2020-03-26 Perk-Up, Inc. D/B/A Kari-Out Co. Leak-resistant paper clamshell containers
US20210400560A1 (en) * 2019-01-15 2021-12-23 Lenovo (Beijing) Limited Method and apparatus for reporting link assistant information and transmitting data

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104735817A (zh) * 2010-04-05 2015-06-24 高通股份有限公司 便于实现中继启动和无线链路失败(rlf)处理的方法和装置
CN102223658A (zh) * 2010-04-19 2011-10-19 中兴通讯股份有限公司 一种处理无线链路失败的方法和中继节点
CN108924853A (zh) * 2017-03-23 2018-11-30 中兴通讯股份有限公司 无线链路监测方法和用户设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LENOVO; MOTOROLA MOBILITY: "Radio link failure in backhaul link", 3GPP DRAFT; R2-1814501, 12 October 2018 (2018-10-12), Chengdu, China, pages 1 - 3, XP051523928 *
LG ELECTRONICS INC: "Consideration on backhaul link enhancement for IAB", 3GPP DRAFT; R2-1818231, 16 November 2018 (2018-11-16), Spokane, USA, pages 1 - 2, XP051482104 *
See also references of EP3917199A4

Also Published As

Publication number Publication date
EP3917199A1 (en) 2021-12-01
US20210377757A1 (en) 2021-12-02
CN111565408A (zh) 2020-08-21
CN113645010A (zh) 2021-11-12
CN111565408B (zh) 2022-04-22
CN113645010B (zh) 2022-07-29
EP3917199A4 (en) 2022-04-13

Similar Documents

Publication Publication Date Title
WO2020164459A1 (zh) 触发无线链路失败的方法及设备
CN101385375B (zh) 用于为切换而配置链路层实体的技术
US10939357B2 (en) Integrated access and backhaul adaptation layer status report
KR101455015B1 (ko) 무선 디바이스에서 다수의 무선 액세스 베어러들의 재구성을 제어하기 위한 방법
WO2019101211A1 (zh) 一种通信方法、通信节点和系统
KR100765121B1 (ko) 송신버퍼의 프로토콜 데이터 유닛 폴링 방법
JP4016032B2 (ja) 無線移動通信システムにおける受信ウインドウ移動方法
US8346274B2 (en) Method to control multiple radio access bearers in a wireless device
US9036596B2 (en) Transmitting data in a mobile communication system
CN111148163B (zh) 通信方法及装置
US10966123B2 (en) Method and apparatus for preventing loss of data packets
US20210159968A1 (en) Relay apparatus
US8724587B2 (en) Method, apparatus, and system for sending a data packet
US20120178438A1 (en) Control of measurement messaging in a mobile device
WO2019242755A1 (zh) 数据传输方法、网络设备以及终端设备
KR20170053326A (ko) 통신 시스템에서 데이터 송수신 방법 및 장치
JP2017508364A (ja) セカンダリ基地局及びマスター基地局によって実行される通信方法、並びに対応する基地局
WO2018171711A1 (zh) 重传处理方法和设备
WO2018130059A1 (zh) 数据包传输方法及装置
US20230022611A1 (en) Communication control method
WO2018006871A1 (zh) 一种进行数据重传的方法和设备
TW202226879A (zh) 降低多分支傳輸中封包延遲的方法和裝置
WO2021146865A1 (zh) 通信方法、装置、设备及存储介质
WO2018120619A1 (zh) 数据调度传输方法、调度实体、传输装置、基站及终端
WO2020198961A1 (zh) 链路失败的恢复方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20756027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020756027

Country of ref document: EP

Effective date: 20210825