WO2020164447A1 - 3d打印设备及3d打印方法 - Google Patents

3d打印设备及3d打印方法 Download PDF

Info

Publication number
WO2020164447A1
WO2020164447A1 PCT/CN2020/074574 CN2020074574W WO2020164447A1 WO 2020164447 A1 WO2020164447 A1 WO 2020164447A1 CN 2020074574 W CN2020074574 W CN 2020074574W WO 2020164447 A1 WO2020164447 A1 WO 2020164447A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
forming module
powder
platform
printing device
Prior art date
Application number
PCT/CN2020/074574
Other languages
English (en)
French (fr)
Inventor
周志军
刘轶
彭凡
杨保
马睿
何捷军
蒙南华
赵龙
Original Assignee
共享智能装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 共享智能装备有限公司 filed Critical 共享智能装备有限公司
Publication of WO2020164447A1 publication Critical patent/WO2020164447A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • B22F12/222Driving means for motion along a direction orthogonal to the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/80Plants, production lines or modules
    • B22F12/82Combination of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/84Parallel processing within single device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • This application relates to the field of 3D printing technology, and in particular to a 3D printing device and a 3D printing method.
  • 3D Printing is a kind of rapid prototyping technology. It is a technology that builds objects based on digital model files and uses bondable materials such as powdered metal or plastic to print layer by layer.
  • the printing process is as follows: firstly spread a layer of powder evenly on the platform; then, the print head of the printing device sprays a liquid material in a specific area to make the powder at the sprayed part bond Together; subsequently, the platform is lowered a certain layer thickness distance, and the above steps are repeated until the powder spreading and printing work of all layers is completed.
  • this kind of 3D printing equipment realizes the basic model printing function, because its powder spreading and printing are carried out in steps, there is a long waiting time between each step, which makes the single-layer powder spreading printing cycle longer , Which greatly reduces the printing efficiency of the device.
  • the first purpose of this application is to provide a 3D printing device to solve the technical problem of low printing efficiency of the existing 3D printing device.
  • the 3D printing equipment includes a frame, a driving mechanism, a forming module arranged on the frame, a conveyor line arranged around the forming module, and a plurality of construction platforms arranged on the conveyor line, wherein:
  • the molding module is located above the building platform, the building platform includes a carrier board configured to hold printed products, and the driving mechanism includes a vertical driving assembly that can drive the molding module and At least one of the carrier boards performs a lifting movement.
  • the forming module includes at least one printing device and/or at least one powder spreading device, and along the conveying direction of the conveying line, the printing device is located in front of the powder spreading device.
  • the number of the molding module is at least one.
  • the running direction of the conveying line is clockwise or counterclockwise.
  • construction platform is a flat platform
  • the construction platform is a box-type platform with an upper opening.
  • the vertical drive assembly is connected between the forming module and the frame, and the vertical drive assembly is configured to drive the forming module to perform a lifting movement.
  • the driving mechanism further includes a horizontal driving assembly connected between the molding module and the frame;
  • the forming module is connected to the vertical drive assembly through the horizontal drive assembly, and the vertical drive assembly is connected to the frame;
  • the forming module is connected to the horizontal drive assembly through the vertical drive assembly, and the horizontal drive assembly is connected to the frame.
  • each of the powder spreading devices and each of the printing devices in the forming module are alternately arranged;
  • the number of the powder spreading devices in the forming module is 2-6 times the number of the printing devices, and the printing device is located in front of all the powder spreading devices along the conveying direction of the conveying line.
  • the conveying line is operated in a high-speed movement mode, or the conveying line is operated in a low-speed movement mode, or the conveying line is operated in a combination of high speed and low speed, or the conveying line uses intermittent movement Way to run;
  • the moving speed of the high-speed moving mode is 600 mm/s or more, and the moving speed of the low-speed moving mode is 350 mm/s or less.
  • a positioning device which is arranged adjacent to the molding module and configured to limit the position of the construction platform during the molding process.
  • it also includes a feed channel configured to transport the build platform to be printed to the conveying line and a discharge channel configured to transport out the printed build platform, the feed channel and the The discharging channels are all connected to the conveying line, wherein at least one of the feeding channel and the discharging channel are both provided.
  • a feeding device configured to provide printing powder and a liquid device configured to provide printing liquid.
  • the feeding device and/or the liquid device are both arranged in the frame, or the The feeding device and/or the liquid material device are arranged independently of the frame.
  • a cleaning device configured to clean the printing device.
  • the number of the forming modules is multiple, and the multiple forming modules are arranged at a predetermined distance along the conveying direction of the conveying line. When the conveying line reaches a certain position, each of the forming modules They are all opposed to one of the construction platforms.
  • the forming module is located above the building platform, the building platform includes a carrier board configured to carry printed products, and the driving mechanism includes a vertical drive assembly.
  • the vertical drive assembly can drive at least one of the forming module and the carrier to move up and down; the conveying line is arranged around the forming module, and a plurality of building platforms are arranged on the conveying line and feed forward along the conveying line.
  • the forming module includes a powder spreading device and a printing device, and along the conveying direction of the conveying line, the printing device is located in front of the powder spreading device.
  • the number of forming modules is at least one, and the running direction of the conveying line can be clockwise or counterclockwise.
  • the basic working process of the 3D printing equipment is: when printing is required on each building platform, first, the conveyor line is run to drive each building platform to continuously move forward. When the building platform runs to the powder spreading device of the forming module When the powder spreading device is used to lay the first layer of powder on the construction platform; with the continuous operation of the conveyor line, when the building platform with the first layer of powder runs to the printing device, the printing device works, The build platform is printed. So far, the 3D printing operation of the first layer of powder on the build platform is completed. After the printing is completed, the build platform continues to be transported forward.
  • the forming module is fed upward for a layer thickness distance or the carrier board is lowered After a layer thickness distance, the powder spreading device lays the second layer of powder on the building platform. At the same time, the printing device continues to print the building platform on which the second layer of powder is laid. Repeat the above workflow until all layers are printed.
  • the 3D printing equipment realizes the simultaneous printing and powder spreading operations, so that during the forward conveyance of the building platform, the printing operation and powder spreading operation can be performed at different positions of the building platform at the same time, which greatly improves In the prior art, the printing cycle is prolonged due to the mutual waiting between steps, thereby greatly improving the printing efficiency of the 3D printing device.
  • the second purpose of the present application is to provide a 3D printing method to solve the technical problem of low printing efficiency of existing 3D printing equipment.
  • the 3D printing method provided in this application uses the above-mentioned 3D printing equipment to perform 3D printing, including the following steps:
  • the powder spreading device is raised to the corresponding height according to the number of layers or height parameters of the construction platform to be transported to the forming module, and spreads powder on the carrier plate of the building platform transported to the forming module;
  • the printing device is raised and lowered to the corresponding height according to the number of layers or height parameters of the construction platform to be transported to the molding module, and prints the completed construction platform that is transported to the molding module via the conveyor line;
  • step S7 the conveying line runs in the opposite direction to that in step S1, and the same building platform is spread and printed multiple times by the same molding module.
  • the 3D printing method uses the above-mentioned 3D printing device to perform 3D printing.
  • This 3D printing method realizes simultaneous printing and powder spreading actions, which effectively improves printing efficiency.
  • the third purpose of this application is to provide a 3D printing method to solve the technical problem of low printing efficiency of existing 3D printing equipment.
  • the 3D printing method provided in this application uses the above-mentioned 3D printing equipment to perform 3D printing, including the following steps:
  • the powder spreading device is raised to the corresponding height according to the number of layers or height parameters of the construction platform to be transported to the forming module, and then moves horizontally to spread the powder to the building platform delivered to the forming module;
  • the printing device is raised and lowered to the corresponding height according to the number of layers or height parameters of the building platform to be transported to the forming module, and then moved horizontally to align the powdered building platform that is transported to the forming module via the conveyor line Print
  • S50 Continuously circulate and spread powder and print until a certain building platform has completed all scheduled printing products, and the 3D printing device is transported out of the discharge channel, and a building platform to be printed is input from the feed channel at the same time.
  • S60 Continue to circulate powder spreading and printing to achieve continuous powder spreading and printing.
  • step S20 and step S30 can be repeated multiple times to continuously spread powder and print multiple layers on a building platform, and then implement step S40 to step S60.
  • the 3D printing method uses the above-mentioned 3D printing device to perform 3D printing.
  • This 3D printing method realizes simultaneous printing and powder spreading actions, which effectively improves printing efficiency.
  • the fourth purpose of the present application is to provide a 3D printing method to solve the technical problem of low printing efficiency of existing 3D printing equipment.
  • the 3D printing method provided in this application uses the above-mentioned 3D printing equipment to perform 3D printing, including the following steps:
  • the printing device prints the powder-spreading construction platform that is conveyed to the forming module via the conveyor line;
  • S500 Continuously circulate and spread powder and print until a certain building platform has completed all scheduled printing products, and the 3D printing device is transported from the discharge channel, and a building platform to be printed is input from the feed channel;
  • step S700 the conveying line runs in the opposite direction to that in step S100, and the same building platform is spread and printed multiple times by the same molding module.
  • step S800 is added to continue printing, and step S800 is:
  • the powder spreading device is raised and lowered to the corresponding height according to the number of layers and height parameters of the construction platform that is about to be transported to the forming module, and then moves horizontally to spread powder on the building platform that is transported to the forming module; at the same time, the printing device
  • the layer number or height parameter of the building platform at the forming module is raised and lowered to the corresponding height, and then moved horizontally to print the building platform that has been spread through the conveyor line to the forming module;
  • Steps S500 and S600 are implemented.
  • step S700 and step S800 are repeated multiple times to continuously spread powder and print multiple layers on a building platform, and then continue to repeat step S100 and step S800, and then implement step S500 and step S600.
  • the 3D printing method uses the above-mentioned 3D printing device to perform 3D printing.
  • This 3D printing method realizes simultaneous printing and powder spreading actions, which effectively improves printing efficiency.
  • the fifth purpose of this application is to provide a 3D printing method to solve the technical problem of low printing efficiency of existing 3D printing equipment.
  • the 3D printing method provided in this application uses the above-mentioned 3D printing equipment to perform 3D printing, including the following steps:
  • S4000 Start the cycle, repeat steps S1000-S3000, spread powder and print on the next build platform conveyed to the forming module;
  • S5000 Continuously circulate and spread powder and print until a certain building platform completes all scheduled printing products, and transports the 3D printing device from the discharge channel, and at the same time inputs a building platform to be printed from the feed channel;
  • S6000 Continue to circulate powder spreading and printing to achieve continuous powder spreading and printing.
  • step S2000 and step S3000 are repeated multiple times to continuously spread powder and print multiple layers on a building platform, and then implement step S4000-step S6000.
  • step S7000 is added to continue printing, and step S7000 is:
  • the powder spreading device is raised and lowered to the corresponding height according to the number of layers or height parameters of the construction platform to be transported to the forming module, and then moves horizontally to spread the powder to the building platform transported to the forming module; at the same time, the printing device
  • the layer number or height parameter of the building platform at the forming module is raised and lowered to the corresponding height, and then moved horizontally to print the building platform that has been spread through the conveyor line to the forming module;
  • Steps S5000 and S6000 are implemented.
  • step S7000 is repeated multiple times to continuously spread powder and print multiple layers on a building platform, and then continue to repeat steps S1000 and S7000, and then implement steps S5000 and S6000.
  • the cleaning device cleans the powder spreading device and the printing device at intervals of powder spreading or printing.
  • the 3D printing method uses the above-mentioned 3D printing device to perform 3D printing.
  • This 3D printing method realizes simultaneous printing and powder spreading actions, which effectively improves printing efficiency.
  • FIG. 1 is a schematic structural diagram of a 3D printing device provided in Embodiment 1 of the application;
  • FIG. 2 is a schematic structural diagram of a rack in a 3D printing device provided by an embodiment of the application;
  • FIG. 3 is a schematic structural diagram of a feeding device in a 3D printing device provided by an embodiment of the application;
  • FIG. 4 is a schematic structural diagram of a liquid material device in a 3D printing device provided by an embodiment of the application;
  • FIG. 5 is a schematic structural diagram of the molding module in the 3D printing device provided by an embodiment of the application installed in a driving mechanism, where the driving mechanism includes a vertical driving component and a horizontal driving component;
  • FIG. 6 is a schematic structural diagram of the molding module in the 3D printing device provided by an embodiment of the application installed in another driving mechanism, wherein the driving mechanism includes a vertical driving assembly;
  • FIG. 7 is a schematic structural diagram of the molding module in the 3D printing device according to an embodiment of the application installed in another driving mechanism, wherein the driving mechanism includes a horizontal driving assembly;
  • FIG. 8 is a schematic structural diagram of a molding module in a 3D printing device provided by an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of another molding module in the 3D printing device provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of yet another molding module in the 3D printing device provided by an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of another molding module in the 3D printing device provided by an embodiment of the application.
  • FIG. 12 is a schematic structural diagram of a 3D printing device provided in Embodiment 2 of this application.
  • FIG. 13 is a schematic structural diagram of a 3D printing device provided in Embodiment 3 of this application.
  • FIG. 14 is a schematic structural diagram of a 3D printing device provided in Embodiment 4 of the application.
  • FIG. 15 is a schematic structural diagram of a 3D printing device provided in Embodiment 5 of the application.
  • FIG. 16 is a schematic structural diagram of a 3D printing device provided in Embodiment 6 of this application.
  • 810-Vertical drive assembly 820-Horizontal drive assembly
  • connection and “installation” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral Ground connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection and “installation” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral Ground connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • this embodiment provides a 3D printing device, including a frame 100, a driving mechanism 800, a forming module arranged on the frame 100, a conveying line 600 arranged around the forming module, and a conveying line 600 arranged on the conveying line 600.
  • the forming module is located above the building platform 400
  • the driving mechanism 800 includes a vertical drive assembly 810 configured to drive the forming module up and down
  • the forming module is installed on the frame 100 through the vertical drive assembly 810.
  • the forming module includes a powder spreading device 300 and a printing device 200.
  • the printing device 200 is located in front of the powder spreading device 300.
  • the basic working process of the 3D printing equipment is: when printing is required on each building platform 400, firstly, the conveyor line 600 is operated to drive the building platform 400 to continue to move forward.
  • the building platform 400 runs to the forming module
  • the powder spreading device 300 lays the first layer of powder on the construction platform 400; with the continuous operation of the conveyor line 600, the construction platform 400 with the first layer of powder runs to the printing device At 200, the printing device 200 works to print on the construction platform 400. So far, the 3D printing operation on the first layer of powder on the construction platform 400 is completed. After the printing is completed, the building platform 400 continues to be transported forward.
  • the forming module is fed upward for a layer thickness distance Or the carrier board is lowered by a layer thickness distance, and then the powder spreading device 300 lays the second layer of powder on the construction platform 400.
  • the printing device 200 continues to lay the second layer of powder on the construction platform 400 To print. Repeat the above workflow until all layers are printed.
  • the 3D printing device realizes the simultaneous printing and powder spreading operations, so that during the forward conveyance of the building platform 400, the printing operation and powder spreading operation can be performed at different positions of the building platform 400 at the same time.
  • the situation in the prior art that the printing cycle is prolonged due to the mutual waiting between steps is improved, thereby greatly improving the printing efficiency of the 3D printing device.
  • the frame 100 includes a plurality of uprights 120 and a working platform 110 supported by the plurality of uprights 120, wherein the forming module is installed in the vertical drive assembly 810 A column 120.
  • the frame 100 is welded or assembled by steel.
  • the vertical driving assembly 810 can drive the molding module through a rack and pinion driven by a motor, a timing belt mechanism, or a lead screw.
  • each construction platform 400 may be equal to the effective molding length of the molding module. Such a setting ensures reliable molding on each construction platform 400. Moreover, the length of each construction platform 400 may be equal. This arrangement avoids the situation that the construction platform 400 is not turning smoothly on the conveyor line 600 to a certain extent, and ensures the reliability of the conveyor line 600 driving the construction platform 400 forward.
  • ribs or guide rails may be provided on the conveying line 600. This arrangement ensures the accurate positioning of the construction platform 400 along the conveying direction perpendicular to the conveying line 600, reduces the relative movement of the two caused by the construction platform 400 slipping, thereby improving printing accuracy.
  • the construction platform 400 may be connected to the conveying line 600 through a lock structure, or a non-slip material may be provided at the part where the construction platform 400 contacts the conveying line 600. This arrangement further prevents the construction platform 400 from slipping relative to the conveying line 600, thereby ensuring conveying accuracy.
  • the construction platform 400 may be made of metal, non-metal or composite materials. Such an arrangement ensures the structural strength of the construction platform 400 and, to a certain extent, avoids the reduction in printing accuracy caused by the deformation of the construction platform 400.
  • the construction platform 400 may be a rectangular parallelepiped structure.
  • the conveying line 600 not only refers to the conveying line of the consignable construction platform 400 such as chain conveying line, belt conveying line and roller conveyor line in the conventional sense, but also refers to the conveying line of the construction platform 400 in tangible form. Conveyor line formed under the control of the connecting device or invisible drive.
  • the powder spreading device 300 and the printing device 200 can be placed side by side.
  • the forming module may include two powder spreading devices 300. Specifically, along the conveying direction of the conveying line 600, the printing device 200 is located between the two powder spreading devices 300 .
  • Such a setting enables the 3D printing device to print bidirectionally.
  • the conveying line 600 runs in the direction opposite to the running direction in FIG. 1, at this time, one powder spreading device 300 does not work, and the other powder spreading device 310 works , To realize the printing of the 3D model on the construction platform 400.
  • the forming module configured to realize bidirectional printing can be the arrangement form including two powder spreading devices shown in FIG. 9, but it is not limited to this, and other arrangement forms can also be adopted. The details are shown in Figure 10.
  • Such a forming module includes two printing devices 200 and a powder spreading device 300. Specifically, the powder spreading device 300 is located between the two printing devices 200 along the conveying direction of the conveying line 600.
  • the powder spreading device 300 and the printing device 200 can also adopt other quantitative layout forms. Please refer to FIG. 11 for details.
  • the forming module includes three powder spreading devices 300 and three printing devices. The device 200, each powder spreading device 300 and each printing device 200 are alternately arranged.
  • the forming module may be a form that includes both the printing device 200 and the powder spreading device 300 in FIGS. 7 to 10, or it may be a form that only includes the printing device 200 or the powder spreading device 300 in FIG.
  • the number of forming modules is six, among which, three forming modules only include the printing device 200, three forming modules only include the powder spreading device 300, and only the forming modules of the printing device 200 It is arranged alternately with the forming module that only includes the powder spreading device 300.
  • the 3D printing device may further include a feeding device 700 configured to provide printing powder, wherein the feeding device 700 is disposed on the frame 100.
  • the feeding device 700 is turned on to convey the mixed powder to the powder spreading device 300 to ensure the smooth progress of the subsequent powder spreading process. This setting realizes the automatic replenishment of powder, saves the tedious steps of manual feeding, and reduces the labor intensity of workers.
  • the feeding device 700 includes a mixing mechanism 730, a storage hopper 720 arranged on the mixing mechanism 730, a powder conveying mechanism 710 configured to suck powder into the storage hopper 720, and a set
  • the vibrating blanking mechanism 740 on the storage hopper 720 wherein the number of the storage hoppers 720 can be multiple, and the multiple storage hoppers 720 are all connected with the mixing mechanism 730, and the powder conveying mechanism 710 corresponds to the storage hopper 720 one-to-one Set up.
  • the powder conveying mechanism 710 Before feeding the powder spreading device 300, turn on the powder conveying mechanism 710 to suck the powder into the storage hopper 720. Under the vibration of the vibrating blanking mechanism 740, the powder in the storage hopper 720 evenly falls into the mixing Mixing is carried out in the material mechanism 730, and further falls into the powder spreading device 300 through the material mixing mechanism 730.
  • the materials to be mixed can be solid and liquid, solid and solid, and liquid and liquid, and can be a mixture of the same material with different particle sizes, such as sand, gypsum, metal powder and nylon of different meshes, or the above Mixing of different materials.
  • the feeding device 700 can also be installed independently of the frame 100, for example, the feeding device 700 is installed on the ground.
  • the 3D printing device may further include a liquid material device 900 configured to provide printing liquid material, wherein the liquid material device 900 is also disposed in the frame 100.
  • a liquid material device 900 configured to provide printing liquid material, wherein the liquid material device 900 is also disposed in the frame 100.
  • Such a setting can provide the whole machine with liquid materials such as curing agent, adhesive and cleaning agent needed for printing.
  • the liquid material device 900 includes a plurality of liquid material tanks 910, a plurality of liquid material pumps 920 configured to pump the liquid material in each liquid material tank 910, and a plurality of liquid material pumps 920 configured to filter the liquid material.
  • Filter unit 930 configured to filter the liquid material.
  • the liquid material device 900 can also be installed independently of the frame 100, for example, the liquid material device 900 is installed on the ground.
  • the feeding device 700 and the liquid material device 900 in FIG. 1 may be installed on the frame 100 at the same time, and the feeding device 700 and the liquid material device 900 may be installed on the ground independently of the frame 100 at the same time in FIG.
  • the arrangement form can also adopt the feeding device 700 installed in the frame 100 and the liquid material device 900 is installed independently of the frame 100, or the feeding device is installed independently of the frame 100 and the liquid material device 900 is installed in These two arrangements of the rack 100.
  • the 3D printing device may further include a cleaning device 010, where the cleaning device 010 is disposed in the rack 100.
  • the printing device 200 or the powder spreading device 300 will move to the cleaning device 010, and the cleaning device 010 will perform maintenance operations such as cleaning.
  • Such an arrangement ensures the working reliability of the printing device 200 and the powder spreading device 300, and to a certain extent avoids the shutdown caused by the clogging of the print head.
  • the cleaning device 010 can be in the form of being installed in the rack 100, but it is not limited to this, and other arrangements can also be used, such as: the cleaning device 010 is installed in one of the structures For the platform 400, alternatively, the cleaning device 010 is installed between two adjacent building platforms 400, or the cleaning device 010 is installed independently of the rack 100.
  • the 3D printing device may also include a feeding channel 610 configured to transport the build platform 400 to be printed to the conveyor line 600 and a feed channel 610 configured to transport the printed build platform 400 out The discharging channel 620, wherein the feeding channel 610 and the discharging channel 620 are both connected to the conveying line 600.
  • the building platform 400 to be printed can be placed in the feeding channel 610, and the feeding channel 610 is used to transport them one by one to the conveying line 600, and the printed model is loaded with the actual construction
  • the platform 400 can be sent out through the discharge channel 620.
  • the failed build platform 400 may also be sent out through the discharge channel 620 for centralized processing.
  • the conveying line 600 may be in the form shown in the figure including only one feeding channel 610 and one discharging channel 620, but it is not limited to this, and other arrangements may also be adopted.
  • the feeding channel 610 and the discharging channel 620 are both set to multiple to realize the input and output of the construction platform in multiple orientations.
  • a plurality of construction platforms 400 enter the conveying line 600 from the feed channel 610 at equal intervals one by one (or enter the conveying line 600 one after another and positioned at equal intervals.
  • the conveyor line 600 drives the multiple construction platforms 400 to move at a uniform speed; when a certain construction platform 400 reaches the position corresponding to the forming module, the powder spreading device 300 performs the first step on the construction platform 400 During the laying of layer powder, with the continuous operation of the conveying line 600, each construction platform 400 moves below the printing device 200, and the printing device 200 prints the construction platform 400 according to the printing image information of the current layer, and at the same time, the construction platform 400 Spray a circle of a specific width of the frame on the periphery or according to the set size to prevent the peripheral powder layer from moving. After the building platform 400 has completely passed through a molding module, the printing of a layer of powder on it is completed.
  • the building platform 400 continues to be transported forward; when the building platform 400 printed with the first layer of powder continues to be transported to the powder spreading device 300, the forming module is driven upwards by the vertical drive assembly 810 Given a layer thickness distance, the powder spreading device 300 lays the second layer of powder on the building platform 400, and at the same time, the printing device 200 continues to print the building platform 400 on which the second layer of powder is laid. Repeat the above workflow until all layers are printed. Finally, each building platform 400 that has completed printing is sent out through the discharge channel 620.
  • the conveyor line 600 runs continuously, the forming module only moves in the height direction, and the construction platform 400 is a flat platform.
  • this embodiment provides another 3D printing device.
  • the driving mechanism 800 also includes The horizontal drive assembly 820, referring to FIG. 7, the forming module is connected to the vertical drive assembly 810 through the horizontal drive assembly 820.
  • the 3D printing equipment further includes a positioning device 410, wherein the positioning device 410 is disposed adjacent to the molding module and configured to limit the position of the building platform 400 during the molding process.
  • the working process of the 3D printing device is: a plurality of construction platforms 400 from the feed channel 610 into the conveying line 600 at regular intervals (or into the conveying line 600 in turn and then positioned at equal intervals), when the printing job starts
  • the positioning device 410 acts to limit the position of the construction platform 400 to realize that the current construction platform 400 is at a height And the precise positioning in the horizontal direction; then, the horizontal moving component works
  • the powder spreading device 300 first lays the powder layer on the front side of the building platform 400, when the driving mechanism 800 drives the printing device 200 to move to the printing area, the printing device 200 Spray the binder according to the instructions, and at the same time, spray a circle of a certain width frame on the periphery of the building platform 400 or according to the set size to prevent the movement of the outer powder layer until the current building platform 400 completes the powder spreading and printing work of the current layer .
  • the positioning device releases the current building platform 400, and the conveyor line 600 continues to drive the building platform 400 forward.
  • the driving mechanism 800 drives the forming module to return to the initial position in the direction opposite to the above-mentioned spreading and printing until the next building platform 400
  • the forming module repeats the print job of the current build platform 400; when all build platforms 400 complete the first layer of powder spreading and printing, the vertical drive assembly 810 drives the forming module to rise a layer thickness distance, repeat the above steps, one by one The powder spreading and printing of each building platform 400 is completed, until all the building platforms 400 complete the printing work, and they are sequentially conveyed to the external cleaning station through the discharge channel 620, and the printing work is completed.
  • the conveying line 600 moves forward intermittently, and the forming module moves in both vertical and horizontal directions.
  • the building module completes the powder spreading and printing work of the current layer, it returns to the initial position, and the building platform 400 is a flat platform .
  • this embodiment provides yet another 3D printing device.
  • the difference between the 3D printing device and the 3D printing device in the second embodiment above is only that, in the 3D printing device, the number of forming modules is Multiple molding modules are arranged at intervals along the conveying direction of the conveying line 600. When the conveying line 600 reaches a certain position, each molding module is opposite to a building platform 400.
  • the working process of the 3D printing device is similar to the 3D printing device in the second embodiment above.
  • the only difference is that the 3D printing device can print multiple construction platforms 400 at the same time. Under the same space occupation, Printing efficiency has doubled.
  • this embodiment provides a 3D printing device, which is different from the 3D printing device in the third embodiment above only in that the construction platform 400 is a box platform with an upper opening. .
  • the construction platform 400 includes a surrounding edge surrounding the carrier board 420, and the surrounding edge is connected to the carrier board 420.
  • Such an arrangement realizes effective blocking of the powder on the carrier board 420, eliminates the cumbersome steps that require the printing device 200 to print the outer frame, and saves printing powder and liquid materials.
  • this embodiment provides a 3D printing device.
  • the difference between the 3D printing device and the 3D printing device in the first embodiment above is only that, in the forming module, the number of powder spreading devices 300 is Two, the number of printing devices 200 is one, and the movement of the printing device 200 can span two building platforms 400, and the printing device 200 is located in front of all the powder spreading devices 300 along the conveying direction of the conveying line 600.
  • the working process of the 3D printing equipment is as follows: when the building platform 400 is forwarded to the bottom of the two powder spreading devices 300 and corresponds to the position of each powder spreading device 300, the two powder spreading devices 300 construct two The platform 400 lays powder materials at the same time; when the powder material laying on the two building platforms 400 is completed, the conveyor line 600 quickly moves two stations forward, and the printing device 200 prints the two building platforms 400. At the same time, the powder spreading device 300 performs printing operations on the subsequent two building platforms 400.
  • the ratio of the powder spreading device 300 to the printing device 200 can also adopt other forms, which can be based on the powder spreading speed of the powder spreading device 300 and the printing device. 200 printing speed for specific selection, no more examples.
  • this embodiment provides another 3D printing device.
  • the 3D printing device is different from the 3D printing device in the second embodiment above only in that the molding module uses the one shown in FIG. 9 or FIG. form.
  • the moving speed of the conveying line 600 is higher than 600 mm/s as high-speed movement, and when the moving speed of the conveying line 600 is lower than 350 mm/s, it is defined as low-speed movement.
  • the present disclosure also provides a 3D printing method.
  • the 3D printing method uses the 3D printing device in the above embodiments to perform 3D printing, and includes the following steps:
  • the conveying line 600 circulates, and the powder spreading device spreads powder one by one on the building platform 400 conveyed to the forming module, and at the same time, the printing device prints the completed powder spreading building platform 400 conveyed to the forming module via the conveying line 600.
  • the 3D printing method uses the above-mentioned 3D printing device to perform 3D printing.
  • This 3D printing method realizes simultaneous printing and powder spreading actions, which effectively improves printing efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

本申请提供一种3D打印设备及3D打印方法,涉及3D打印技术领域,为解决现有3D打印设备打印效率低的问题而设计。该3D打印设备包括机架、驱动机构、设置于机架的成型模块、环绕成型模块设置的输送线和设置于输送线上的多个构建平台,其中,成型模块位于构建平台的上方,构建平台包括配置成盛载打印产品的载板,驱动机构包括竖直驱动组件,竖直驱动组件可驱动成型模块和载板中的至少一者进行升降运动;成型模块包括至少一个打印装置和/或至少一个铺粉装置,沿输送线的输送方向,打印装置位于铺粉装置的前方。该3D打印方法利用上述3D打印设备进行3D打印。本申请提供的3D打印设备及3D打印方法实现了打印和铺粉两个动作的同时进行,大大提高了打印效率。

Description

3D打印设备及3D打印方法
相关申请的交叉引用
本申请要求于2019年02月12日提交中国专利局的申请号为CN201910111810.7、名称为“3D打印设备及3D打印方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及3D打印技术领域,尤其涉及一种3D打印设备及3D打印方法。
背景技术
3D打印(3D Printing)是快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。
在相关技术提供的3D打印设备中,其打印过程为:先在平台上均匀地铺设一层粉末;然后,打印装置的打印头在特定区域内喷射一种液料,使得喷射部位的粉末粘结在一起;随后,平台下降一定的层厚距离,并重复上述步骤,直至完成所有层的铺粉打印工作。这种3D打印设备虽然实现了基本的模型打印功能,但是,由于其铺粉和打印是分步骤依次进行的,各步骤之间存在较长的等待时间,从而使得单层铺粉打印周期较长,大大降低了设备的打印效率。
发明内容
本申请的第一个目的在于提供一种3D打印设备,以解决现有3D打印设备打印效率低的技术问题。
本申请提供的3D打印设备,包括机架、驱动机构、设置于所述机架的成型模块、环绕所述成型模块设置的输送线和设置于所述输送线上的多个构建平台,其中,所述成型模块位于所述构建平台的上方,所述构建平台包括配置成盛载打印产品的载板,所述驱动机构包括竖直驱动组件,所述竖直驱动组件可驱动所述成型模块和所述载板中的至少一者进行升降运动。
所述成型模块包括至少一个打印装置和/或至少一个铺粉装置,沿所述输送线的输送方向,所述打印装置位于所述铺粉装置的前方。
所述成型模块的数量至少为一个。
所述输送线的运行方向为顺时针方向或逆时针方向。
进一步地,所述构建平台为平板式平台;
或者,所述构建平台为具有上部敞口的盒式平台。
进一步地,所述竖直驱动组件连接在所述成型模块与所述机架之间,所述竖直驱动组件配置成驱动所述成型模块进行升降运动。
进一步地,所述驱动机构还包括连接在所述成型模块与所述机架之间的水平驱动组件;
其中,所述成型模块通过所述水平驱动组件连接于所述竖直驱动组件,所述竖直驱动组件连接于所述机架;
或者,所述成型模块通过所述竖直驱动组件连接于所述水平驱动组件,所述水平驱动组件连接于所述机架。
进一步地,所述成型模块中的各所述铺粉装置与各所述打印装置交替设置;
或者,所述成型模块中的所述铺粉装置的数量是所述打印装置数量的2-6倍,沿所述输送线的输送方向,所述打印装置位于所有所述铺粉装置的前方。
进一步地,所述输送线采用高速移动方式运行,或者,所述输送线采用低速移动方式运行,或者,所述输送线采用高速与低速相结合的方式运行,或者,所述输送线采用间歇移动方式运行;
其中,所述高速移动方式的移动速度为600mm/s以上,所述低速移动方式的移动速度为350mm/s以下。
进一步地,还包括定位装置,所述定位装置邻近所述成型模块设置,配置成对成型过程中的构建平台进行限位。
进一步地,还包括配置成将待打印的所述构建平台输送至所述输送线的进料通道和配置成将完成打印的所述构建平台输送出的出料通道,所述进料通道和所述出料通道均与所述输送线相连,其中,所述进料通道和所述出料通道均至少设置有一条。
进一步地,还包括配置成提供打印粉料的供料装置和配置成提供打印液料的液料装置,所述供料装置和/或所述液料装置均设置于机架,或者,所述供料装置和/或所述液料装置独立于所述机架设置。
进一步地,还包括配置成对打印装置进行清洗的清洗装置。
进一步地,所述成型模块的数量为多个,多个所述成型模块沿所述输送线的输送方向间隔设定距离布置,当所述输送线到达某一位置时,每个所述成型模块均与一个所述构建平台相对。
本申请3D打印设备带来的有益效果是:
通过设置机架、驱动机构、成型模块、输送线和多个构建平台,其中,成型模块位于构建平台的上方,构建平台包括配置成承载打印产品的载板,驱动机构包括竖直驱动组件,该竖直驱动组件可驱动成型模块和载板中的至少一者进行升降运动;输送线环绕成型模块设置,多个构建平台设置于输送线,随输送线向前进给。成型模块包括铺粉装置和打印装置,并且,沿输送线的输送方向,打印装置位于铺粉装置的前方。成型模块的数量至少为一个,输送线的运行方向可以是顺时针方向,也可以是逆时针方向。
该3D打印设备的基本工作过程为:当需要在各构建平台上进行打印时,首先,使输送线运行,以带动各构建平台不断向前进给,当构建平台运行至成型模块的铺粉装置处时,由铺粉装置对该构建平台进行第一层粉料的铺设;随着输送线的不断运行,铺设有第一层粉料的构建平台运行至打印装置处时,打印装置工作,对该构建平台进行打印,至此,完成对构建平台上第一层粉料的3D打印操作。打印完成后的构建平台继续向前输送,当上述打印完成的构建平台继续被输送至铺粉装置处时,在竖直驱动组件的驱动下,成型模块向上进给一个层厚距离或者载板下降一个层厚距离,然后,由铺粉装置对该构建平台进行第二层粉料的铺设,与此同时,打印装置继续对铺设有第二层粉料的构建平台进行打印。重复上述工作流程,直至完成所有层的打印。
该3D打印设备实现了打印和铺粉两个动作的同时进行,使得在构建平台向前输送的过程中,打印操作和铺粉操作能够在构建平台的不同位置处同时进行,很好地改善了现有技术中存在的因各步骤之间相互等待而导致的打印周期延长的情形,从而大大提高了3D打印设备的打印效率。
本申请的第二个目的在于提供一种3D打印方法,以解决现有3D打印设备打印效率低的技术问题。
本申请提供的3D打印方法,利用上述3D打印设备进行3D打印,包括如下步骤:
S1:输送线低速匀速运行;
S2:铺粉装置根据即将输送至成型模块处的构建平台所处的层数或高度参数升降至对 应高度,在输送至成型模块处的构建平台的载板上进行铺粉;
S3:同时,打印装置根据即将输送至成型模块处的构建平台所处的层数或高度参数升降至对应高度,对经输送线输送至成型模块处的已完成铺粉的构建平台进行打印;
S4:输送线连续循环,且重复步骤S1-S3,铺粉装置和打印装置升降至对应高度,对下一个输送至成型模块处的构建平台进行铺粉和打印;
S5:连续循环并铺粉和打印,直至某一构建平台完成全部预定的打印产品,并从出料通道输送出所述3D打印设备,同时从进料通道输入一个待打印的构建平台;
S6:继续循环铺粉和打印,以实现连续不间断的铺粉和打印。
进一步地,在完成步骤S3之后,增加步骤S7:使输送线沿与步骤S1中相反的方向运行,通过同一成型模块对同一构建平台进行多次铺粉和打印。
该3D打印方法利用上述3D打印设备进行3D打印,这种3D打印方法实现了打印和铺粉两个动作的同时进行,有效地提高了打印效率。
本申请的第三个目的在于提供一种3D打印方法,以解决现有3D打印设备打印效率低的技术问题。
本申请提供的3D打印方法,利用上述3D打印设备进行3D打印,包括如下步骤:
S10:输送线高速移动至接近定位位置,变为低速移动,当输送线低速移动至与定位装置相接合时,到达预定打印位置;
S20:铺粉装置根据即将输送至成型模块处的构建平台所处的层数或高度参数升降至对应高度,再水平移动以对输送至成型模块处的构建平台进行铺粉;
S30:同时,打印装置根据即将输送至成型模块处的构建平台所处的层数或高度参数升降至对应高度,再水平移动以对经输送线输送至成型模块处的已完成铺粉的构建平台进行打印;
S40:输送线连续循环,且重复步骤S10-S30,铺粉装置和打印装置升降至对应高度,对下一个输送至成型模块处的构建平台进行铺粉和打印;
S50:连续循环并铺粉和打印,直至某一构建平台完成全部预定的打印产品,并从出料通道输送出所述3D打印设备,同时从进料通道输入一个待打印的构建平台。
S60:继续循环铺粉和打印,以实现连续不间断的铺粉和打印。
进一步地,在实施步骤S40之前,可以多次重复步骤S20和步骤S30,对一个构建平台连续铺粉和打印多层,然后再实施步骤S40-步骤S60。
该3D打印方法利用上述3D打印设备进行3D打印,这种3D打印方法实现了打印和铺粉两个动作的同时进行,有效地提高了打印效率。
本申请的第四个目的在于提供一种3D打印方法,以解决现有3D打印设备打印效率低的技术问题。
本申请提供的3D打印方法,利用上述3D打印设备进行3D打印,包括如下步骤:
S100:输送线低速匀速循环运行;
S200:构建平台的载板在完全通过一个成型模块后,在到达下一个成型模块前降低一个层高,铺粉装置对输送至成型模块处的构建平台进行铺粉;
S300:同时,打印装置对经输送线输送至成型模块处的已完成铺粉的构建平台进行打印;
S400:连续循环,重复步骤S100-S300,构建平台的载板降低一个层高,对下一个输送至成型模块处的构建平台进行铺粉和打印;
S500:连续循环并铺粉和打印,直至某一构建平台完成全部预定的打印产品,并从出 料通道输送出所述3D打印设备,同时从进料通道输入一个待打印的构建平台;
S600:继续循环铺粉和打印,以实现连续不间断的铺粉和打印。
进一步地,在完成步骤S300之后,增加步骤S700:使输送线沿与步骤S100中相反的方向运行,通过同一成型模块对同一构建平台进行多次铺粉和打印。
进一步地,当重复步骤S400至构建平台下降至最低位置后,增加步骤S800继续打印,步骤S800为:
铺粉装置根据即将输送至成型模块处的构建平台所处的层数和高度参数升降至对应高度,再水平移动对输送至成型模块处的构建平台进行铺粉;同时,打印装置根据即将输送至成型模块处的构建平台所处的层数或高度参数升降至对应高度,再水平移动对经输送线输送至成型模块处的已完成铺粉的构建平台进行打印;
继续重复步骤S100和S700;
实施步骤S500和S600。
进一步地,多次重复步骤S700和步骤S800,对一个构建平台连续铺粉和打印多层,然后再继续重复步骤S100和步骤S800,然后再实施步骤S500和步骤S600。
该3D打印方法利用上述3D打印设备进行3D打印,这种3D打印方法实现了打印和铺粉两个动作的同时进行,有效地提高了打印效率。
本申请的第五个目的在于提供一种3D打印方法,以解决现有3D打印设备打印效率低的技术问题。
本申请提供的3D打印方法,利用上述3D打印设备进行3D打印,包括如下步骤:
S1000:输送线高速移动至接近定位位置,变为低速移动,当输送线低速移动至与定位装置相接合时,到达预定打印位置;
S2000:构建平台的载板在完全通过一个成型模块后,在到达下一个成型模块前降低一个层高,铺粉装置水平移动对输送至成型模块处的构建平台进行铺粉;
S3000:同时,打印装置水平移动对经输送线输送至成型模块处的已完成铺粉的构建平台进行打印;
S4000:启动循环,重复步骤S1000-S3000,对下一个输送至成型模块处的构建平台进行铺粉和打印;
S5000:连续循环并铺粉和打印,直至某一构建平台完成全部预定的打印产品,并从出料通道输送出所述3D打印设备,同时从进料通道输入一个待打印的构建平台;
S6000:继续循环铺粉和打印,以实现连续不间断的铺粉和打印。
进一步地,在实施步骤S4000之前,多次重复步骤S2000和步骤S3000,对一个构建平台连续铺粉和打印多层,然后再实施步骤S4000-步骤S6000。
进一步地,当重复步骤S4000至构建平台下降到最低位置后,增加步骤S7000继续打印,步骤S7000为:
铺粉装置根据即将输送至成型模块处的构建平台所处的层数或高度参数升降至对应高度,再水平移动对输送至成型模块处的构建平台进行铺粉;同时,打印装置根据即将输送至成型模块处的构建平台所处的层数或高度参数升降至对应高度,再水平移动对经输送线输送至成型模块处的已完成铺粉的构建平台进行打印;
继续重复步骤S1000和步骤S7000;
实施步骤S5000和步骤S6000。
进一步地,多次重复步骤S7000,对一个构建平台连续铺粉和打印多层,然后再继续重复步骤S1000和S7000,然后再实施步骤S5000和步骤S6000。
进一步地,根据运行指令,在铺粉或打印的间隔,清洗装置对铺粉装置和打印装置进行清洁。
本申请3D打印方法带来的有益效果是:
该3D打印方法利用上述3D打印设备进行3D打印,这种3D打印方法实现了打印和铺粉两个动作的同时进行,有效地提高了打印效率。
附图说明
图1为本申请实施例一提供的3D打印设备的结构示意图;
图2为本申请实施例提供的3D打印设备中的机架的结构示意图;
图3为本申请实施例提供的3D打印设备中的供料装置的结构示意图;
图4为本申请实施例提供的3D打印设备中的液料装置的结构示意图;
图5为本申请实施例提供的3D打印设备中的成型模块安装于驱动机构的结构示意图,其中,驱动机构包括竖直驱动组件和水平驱动组件;
图6为本申请实施例提供的3D打印设备中的成型模块安装于另一种驱动机构的结构示意图,其中,驱动机构包括竖直驱动组件;
图7为本申请实施例提供的3D打印设备中的成型模块安装于再一种驱动机构的结构示意图,其中,驱动机构包括水平驱动组件;
图8为本申请实施例提供的3D打印设备中的成型模块的结构示意图;
图9为本申请实施例提供的3D打印设备中的另一种成型模块的结构示意图;
图10为本申请实施例提供的3D打印设备中的再一种成型模块的结构示意图;
图11为本申请实施例提供的3D打印设备中的又一种成型模块的结构示意图;
图12为本申请实施例二提供的3D打印设备的结构示意图;
图13为本申请实施例三提供的3D打印设备的结构示意图;
图14为本申请实施例四提供的3D打印设备的结构示意图;
图15为本申请实施例五提供的3D打印设备的结构示意图;
图16为本申请实施例六提供的3D打印设备的结构示意图。
附图标记:
100-机架;200-打印装置;300-铺粉装置;400-构建平台;600-输送线;700-供料装置;800-驱动机构;900-液料装置;010-清洗装置;
110-工作平台;120-立柱;
410-定位装置;420-载板;
610-进料通道;620-出料通道;
710-粉料输送机构;720-储料斗;730-混料机构;740-振动落料机构;
810-竖直驱动组件;820-水平驱动组件;
910-液料箱;920-液料泵;930-过滤单元。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的技术方案进行清楚、完整的描述。显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“上”、“下”、“水平”和“竖直”等指示的方位或位置关系均为基于附图所示的方位或位置关系,仅仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操 作,因此不能理解为对本申请的限制。此外,术语“第一”和“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“连接”和“安装”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
实施例一
如图1所示,本实施例提供了一种3D打印设备,包括机架100、驱动机构800、设置于机架100的成型模块、环绕成型模块设置的输送线600和设置于输送线600上的多个构建平台400,其中,成型模块位于构建平台400的上方,驱动机构800包括配置成驱动成型模块升降的竖直驱动组件810,且成型模块通过竖直驱动组件810安装于机架100。具体地,成型模块包括铺粉装置300和打印装置200,沿输送线600的输送方向,打印装置200位于铺粉装置300的前方。
该3D打印设备的基本工作过程为:当需要在各构建平台400上进行打印时,首先,使输送线600运行,以带动各构建平台400不断向前进给,当构建平台400运行至成型模块的铺粉装置300处时,由铺粉装置300对该构建平台400进行第一层粉料的铺设;随着输送线600的不断运行,铺设有第一层粉料的构建平台400运行至打印装置200处时,打印装置200工作,对该构建平台400进行打印,至此,完成对构建平台400上第一层粉料的3D打印操作。打印完成后的构建平台400继续向前输送,当上述打印完成的构建平台400继续被输送至铺粉装置300处时,在竖直驱动组件810的驱动下,成型模块向上进给一个层厚距离或者载板下降一个层厚距离,然后,由铺粉装置300对该构建平台400进行第二层粉料的铺设,与此同时,打印装置200继续对铺设有第二层粉料的构建平台400进行打印。重复上述工作流程,直至完成所有层的打印。
该3D打印设备实现了打印和铺粉两个动作的同时进行,使得在构建平台400向前输送的过程中,打印操作和铺粉操作能够在构建平台400的不同位置处同时进行,很好地改善了现有技术中存在的因各步骤之间相互等待而导致的打印周期延长的情形,从而大大提高了3D打印设备的打印效率。
请继续参照图1,并结合图2,本实施例中,机架100包括多根立柱120和由多根立柱120支撑的工作平台110,其中,成型模块通过竖直驱动组件810安装于其中的一根立柱120。
优选地,机架100通过钢材焊接或组装而成。
本实施例中,如图1、图5和图6所示,竖直驱动组件810对成型模块的驱动可以通过电机带动的齿轮齿条、同步带机构或丝杠等方式实现。
需要说明的是,本实施例中,各构建平台400的宽度可以与成型模块的有效成型长度相等。这样的设置,保证了各构建平台400上的可靠成型。并且,各构建平台400的长度可以相等。这样的设置,在一定程度上避免了构建平台400在输送线600上转弯不畅的情形,保证了输送线600带动构建平台400向前进给的可靠性。
还需要说明的是,本实施例中,输送线600上可以设置挡边或导向轨道。这样的设置,保证了构建平台400沿垂直于输送线600输送方向的准确定位,降低了因构建平台400打滑而导致的二者相对移动的情形,从而提高了打印精度。
本实施例中,构建平台400可以通过锁扣结构连接于输送线600,也可在构建平台400与输送线600相接触的部位设置防滑材料。这样的设置,进一步阻止了构建平台400相对 输送线600的打滑,从而保证了输送精度。
具体地,本实施例中,构建平台400可以采用金属、非金属或复合材料制成。这样的设置,保证了构建平台400的结构强度,在一定程度上避免了因构建平台400变形而导致的打印精度降低。其中,构建平台400可以为长方体结构。
需要说明的是,本实施例中,输送线600不仅指常规意义的例如链条输送线、皮带输送线和辊道式输送线等可托运构建平台400的输送线,还指由构建平台400在有形的连接装置或无形的驱动控制下形成的输送线。
请继续参照图1,并结合图6和图8,本实施例中,铺粉装置300与打印装置200可以并排放置。
请继续参照图1,并结合图9,本实施例中,成型模块可以包括两个铺粉装置300,具体地,沿输送线600的输送方向,打印装置200位于两个铺粉装置300之间。
这样的设置,使得该3D打印设备能够双向打印,当输送线600沿着与图1中运行方向相反的方向运行时,此时,一个铺粉装置300不工作,而另一个铺粉装置310工作,实现对构建平台400上3D模型的打印。
需要说明的是,本实施例中,配置成实现双向打印的成型模块可以是图9中示出的包括两个铺粉装置的设置形式,但不仅仅局限于此,还可以采用其他设置形式,具体如图10所示。这种成型模块包括两个打印装置200和一个铺粉装置300,具体地,沿输送线600的输送方向,铺粉装置300位于两个打印装置200之间。
当输送线600沿着与图1中运行方向相反的方向运行时,此时,一个打印装置200不工作,而另一个打印装置210工作,实现对构建平台400上3D模型的打印。
此外,需要说明的是,本实施例中,铺粉装置300和打印装置200还可以采用其他数量布局形式,具体请参照图11,此时,成型模块包括三个铺粉装置300和三个打印装置200,各铺粉装置300与各打印装置200交替设置。
需要说明的是,本实施例中,成型模块可以是图7至图10中同时包括打印装置200和铺粉装置300的形式,也可以是图11中仅包括打印装置200或铺粉装置300的形式,在图11示出的情形下,成型模块的数量为六个,其中,三个成型模块仅包括打印装置200,三个成型模块仅包括铺粉装置300,仅包括打印装置200的成型模块与仅包括铺粉装置300的成型模块交替设置。
请继续参照图1,本实施例中,该3D打印设备还可以包括配置成提供打印粉料的供料装置700,其中,供料装置700设置于机架100。
该3D打印设备工作过程中,当铺粉装置300中的粉料不足时,供料装置700开启,将混合好的粉料输送至铺粉装置300中,以保证后续铺粉过程的顺利进行。这样的设置,实现了粉料的自动补充,省去了需要人工上料的繁琐步骤,降低了工人的劳动强度。
具体地,如图3所示,供料装置700包括混料机构730、设置在混料机构730上的储料斗720、配置成将粉料吸入至储料斗720中的粉料输送机构710和设置于储料斗720上的振动落料机构740,其中,储料斗720的数量可以为多个,多个储料斗720均与混料机构730连通,粉料输送机构710与储料斗720一一对应地设置。在对铺粉装置300进行供料前,开启粉料输送机构710,将粉料吸入至储料斗720中,在振动落料机构740的振动下,储料斗720中的粉料均匀地落入混料机构730中进行混合,并进一步通过混料机构730落入铺粉装置300中。
具体地,被混合的材料可以是固体与液体、固体与固体以及液体与液体,可以是同种材料不同粒度的混合,如不同目数的砂子、石膏、金属粉末和尼龙等,也可以是上述不同 材料的混合。
如图15所示,供料装置700还可独立于机架100设置,如:将供料装置700设置于地面。
请继续参照图1,本实施例中,该3D打印设备还可以包括配置成提供打印液料的液料装置900,其中,液料装置900也设置于机架100。这样的设置,能够为整机提供打印所需的固化剂、粘接剂和清洗剂等液料。
具体地,如图4所示,液料装置900包括多个液料箱910、配置成分别泵送各液料箱910中液料的多个液料泵920以及配置成对液料进行过滤的过滤单元930。
请继续参照图15,类似地,液料装置900也可独立于机架100设置,如:将液料装置900设置于地面。
可以理解的是,可以是图1中将供料装置700和液料装置900同时设置于机架100以及图15中将供料装置700和液料装置900同时独立于机架100而设置于地面的布置形式,还可以采用将供料装置700设置于机架100而将液料装置900独立于机架100设置,或者,将供料装置独立于机架100设置而将液料装置900设置于机架100的这两种布置方式。
如图16所示,本实施例中,该3D打印设备还可以包括清洗装置010,其中,清洗装置010设置于机架100。经过一段时间的打印后,打印装置200或铺粉装置300将移动至清洗装置010处,由清洗装置010对其进行清洗等维护操作。这样的设置,保证了打印装置200和铺粉装置300的工作可靠性,在一定程度上避免了因打印头堵塞而导致的停机情形。
需要说明的是,本实施例中,清洗装置010可以是上述设置于机架100的形式,但不仅仅局限于此,还可以采用其他设置形式,如:将清洗装置010设置于其中某一构建平台400,或者,将清洗装置010设置在相邻两构建平台400之间,或者,将清洗装置010独立于机架100设置。
请继续参照图1,本实施例中,该3D打印设备还可以包括配置成将待打印的构建平台400输送至输送线600的进料通道610和配置成将完成打印的构建平台400输送出的出料通道620,其中,进料通道610和出料通道620均与输送线600相连。
该3D打印设备工作之前,可以将待进行打印的构建平台400放置于进料通道610,利用进料通道610将其逐一地输送至输送线600上,而打印完成的载有打印模型实物的构建平台400则可以通过出料通道620被送出。并且,在打印过程中,出现故障的构建平台400也可以通过出料通道620被送出,以进行集中处理。
需要说明的是,本实施例中,输送线600可以是图中示出的仅包括一个进料通道610和一个出料通道620的形式,但不仅仅局限于此,还可以采用其他设置形式,如:将进料通道610和出料通道620均设置为多条,以实现多个方位下构建平台的输入和输出。
本实施例提供的3D打印设备,其具体工作过程为:如图1所示,多个构建平台400由进料通道610依次等间距地进入输送线600(或依次进入输送线600后等间距定位),当打印作业开始时,输送线600带动多个构建平台400匀速移动;当某个构建平台400到达与成型模块相对应的位置处时,由铺粉装置300对该构建平台400进行第一层粉料的铺设,随着输送线600的不断运行,各构建平台400运动至打印装置200下方,打印装置200按照当前层的打印图像信息对该构建平台400进行打印,同时在构建平台400的外围或按设定尺寸喷射一圈特定宽度的边框,以阻止外围粉料层移动。当构建平台400完全经过一个成型模块后,完成对其上一层粉料的打印。
打印完成后的构建平台400继续向前输送;当上述打印有第一层粉料的构建平台400 继续被输送至铺粉装置300处时,在竖直驱动组件810的驱动下,成型模块向上进给一个层厚距离,然后,由铺粉装置300对该构建平台400进行第二层粉料的铺设,与此同时,打印装置200继续对铺设有第二层粉料的构建平台400进行打印。重复上述工作流程,直至完成所有层的打印。最后,完成打印的各构建平台400经出料通道620被送出。
该3D打印设备中,输送线600持续运行,成型模块仅在高度方向上移动,构建平台400为平板式平台。
实施例二
如图12所示,本实施例提供了另一种3D打印设备,该3D打印设备与上述实施例一中的3D打印设备的不同之处仅在于,该3D打印设备中,驱动机构800还包括水平驱动组件820,参照图7,成型模块通过水平驱动组件820连接于竖直驱动组件810上。并且,该3D打印设备还包括定位装置410,其中,定位装置410邻近成型模块设置,配置成对成型过程中的构建平台400进行限位。
请继续参照图12,该3D打印设备的工作过程为:多个构建平台400由进料通道610依次等间距地进入输送线600(或依次进入输送线600后等间距定位),当打印作业开始时,输送线600带动多个构建平台400向前运动;当某一个构建平台400到达成型模块位置处时,定位装置410动作,对该构建平台400进行限位,以实现当前构建平台400在高度和水平方向的精确定位;然后,水平移动组件工作,铺粉装置300先对构建平台400的前侧进行粉料层的铺设,当驱动机构800带动打印装置200运动至打印区域时,打印装置200按指令喷射粘结剂,同时,构建平台400的外围或按照设定尺寸喷射一圈特定宽度的边框,以阻止外围粉料层的移动,直至当前构建平台400完成当前层的铺粉与打印工作。
然后,定位装置释放当前构建平台400,输送线600继续带动构建平台400向前进给,同时,驱动机构800带动成型模块沿与上述铺粉打印相反的方向返回至初始位置,直至下一构建平台400到达时,成型模块重复开始当前构建平台400的打印作业;当所有构建平台400完成第一层铺粉与打印作业时,竖直驱动组件810带动成型模块上升一个层厚距离,重复上述步骤,逐次完成对每一构建平台400的铺粉与打印,直至所有构建平台400完成打印工作,依次通过出料通道620输送至外部清理工位,打印工作结束。
该打印设备中,输送线600为间歇向前运动,成型模块在竖直和水平方向均运动,当构建模块完成当前层的铺粉与打印工作时,返回初始位置,构建平台400为平板式平台。
实施例三
如图13所示,本实施例提供了再一种3D打印设备,该3D打印设备与上述实施例二中的3D打印设备的不同之处仅在于,该3D打印设备中,成型模块的数量为多个,多个成型模块沿输送线600的输送方向间隔布置,当输送线600到达某一位置时,每个成型模块均与一个构建平台400相对。
该3D打印设备的工作过程与上述实施例二中的3D打印设备相似,其不同之处仅在于,该3D打印设备能够同时实现对多个构建平台400的打印工作,在相同的空间占用下,打印效率成倍增加。
实施例四
如图14所示,本实施例提供了一种3D打印设备,该3D打印设备与上述实施例三中的3D打印设备的不同之处仅在于,构建平台400为具有上部敞口的盒式平台。
具体地,构建平台400包括围设在载板420周围的包围边,包围边连接在载板420上。这样的设置,实现了对载板420上粉料的有效阻挡,省去了需要打印装置200打印外围边框的繁琐步骤,节约了打印粉料及液料。
实施例五
如图15所示,本实施例提供了一种3D打印设备,该3D打印设备与上述实施例一中的3D打印设备的不同之处仅在于,在成型模块中,铺粉装置300的数量为两个,打印装置200的数量为一个,且该打印装置200的移动动作可以横跨两个构建平台400,并且,沿输送线600的输送方向,打印装置200位于所有铺粉装置300的前方。
该3D打印设备的工作过程为:当构建平台400向前输送至两个铺粉装置300的下方并与各铺粉装置300的位置一一对应时,由两个铺粉装置300对两个构建平台400同时铺设粉料;当完成对该两个构建平台400的粉料铺设时,输送线600快速向前移动两个工位,由打印装置200对这两个构建平台400进行打印,与此同时,铺粉装置300对后续两个构建平台400进行打印操作。
本实施例仅用于对这种3D打印设备的形式进行举例说明,当然,铺粉装置300和打印装置200的数量比还可以采用其他形式,可以根据铺粉装置300的铺粉速度与打印装置200的打印速度进行具体选择,不再举例说明。
实施例六
如图16所示,本实施例提供了还一种3D打印设备,该3D打印设备与上述实施例二中的3D打印设备的不同之处仅在于,成型模块采用图9或图10示出的形式。
该3D打印设备在工作过程中,能够实现双向连续打印,省去了需要成型模块复位的繁琐步骤,进一步提高了工作效率。需要说明的是,上述各实施例中,定义输送线600的移动速度在600mm/s以上时为高速移动,定义输送线600的移动速度在350mm/s以下时为低速移动。
本公开还提供了一种3D打印方法,该3D打印方法利用上述各实施例中的3D打印设备进行3D打印,包括如下步骤:
输送线600循环运行,铺粉装置对输送至成型模块处的构建平台400逐一进行铺粉,同时,打印装置对经输送线600输送至成型模块处的已完成铺粉的构建平台400进行打印。
该3D打印方法利用上述3D打印设备进行3D打印,这种3D打印方法实现了打印和铺粉两个动作的同时进行,有效地提高了打印效率。
具体地,各种打印方法已在上述对3D打印设备的结构进行描述时,进行了详细阐述,故不再赘述。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (24)

  1. 一种3D打印设备,其特征在于,包括机架(100)、驱动机构(800)、设置于所述机架(100)的成型模块、环绕所述成型模块设置的输送线(600)和设置于所述输送线(600)上的多个构建平台(400),其中,所述成型模块位于所述构建平台(400)的上方,所述构建平台(400)包括配置成盛载打印产品的载板(420),所述驱动机构(800)包括竖直驱动组件(810),所述竖直驱动组件(810)能驱动所述成型模块和所述载板(420)中的至少一者进行升降运动;
    所述成型模块包括至少一个打印装置(200)和/或至少一个铺粉装置(300),沿所述输送线(600)的输送方向,所述打印装置(200)位于所述铺粉装置(300)的前方;
    所述成型模块的数量至少为一个;
    所述输送线(600)的运行方向为顺时针方向或逆时针方向。
  2. 根据权利要求1所述的3D打印设备,其特征在于,所述构建平台(400)为平板式平台;
    或者,所述构建平台(400)为具有上部敞口的盒式平台。
  3. 根据权利要求1所述的3D打印设备,其特征在于,所述竖直驱动组件(810)连接在所述成型模块与所述机架(100)之间,所述竖直驱动组件(810)配置成驱动所述成型模块进行升降运动。
  4. 根据权利要求3所述的3D打印设备,其特征在于,所述驱动机构(800)还包括连接在所述成型模块与所述机架(100)之间的水平驱动组件(820);
    其中,所述成型模块通过所述水平驱动组件(820)连接于所述竖直驱动组件(810),所述竖直驱动组件(810)连接于所述机架(100);
    或者,所述成型模块通过所述竖直驱动组件(810)连接于所述水平驱动组件(820),所述水平驱动组件(820)连接于所述机架(100)。
  5. 根据权利要求1所述的3D打印设备,其特征在于,所述成型模块中的各所述铺粉装置(300)与各所述打印装置(200)交替设置;
    或者,所述成型模块中的所述铺粉装置(300)的数量是所述打印装置(200)数量的2-6倍,沿所述输送线(600)的输送方向,所述打印装置(200)位于所有所述铺粉装置(300)的前方。
  6. 根据权利要求1所述的3D打印设备,其特征在于,所述输送线(600)采用高速移动方式运行,或者,所述输送线(600)采用低速移动方式运行,或者,所述输送线(600)采用高速与低速相结合的方式运行,或者,所述输送线(600)采用间歇移动方式运行;
    其中,所述高速移动方式的移动速度为600mm/s以上,所述低速移动方式的移动速度为350mm/s以下。
  7. 根据权利要求3-6任一项所述的3D打印设备,其特征在于,还包括定位装置(410),所述定位装置(410)邻近所述成型模块设置,配置成对成型过程中的构建平台(400)进行限位。
  8. 根据权利要求1-6任一项所述的3D打印设备,其特征在于,还包括配置成将待打印的所述构建平台(400)输送至所述输送线(600)的进料通道(610)和配置成将完成打印的所述构建平台(400)输送出的出料通道(620),所述进料通道(610) 和所述出料通道(620)均与所述输送线(600)相连,其中,所述进料通道(610)和所述出料通道(620)均至少设置有一条。
  9. 根据权利要求1-6任一项所述的3D打印设备,其特征在于,还包括配置成提供打印粉料的供料装置(700)和配置成提供打印液料的液料装置(900),所述供料装置(700)和/或所述液料装置(900)均设置于机架(100),或者,所述供料装置(700)和/或所述液料装置(900)独立于所述机架(100)设置。
  10. 根据权利要求1-6任一项所述的3D打印设备,其特征在于,还包括配置成对打印装置进行清洗的清洗装置(010)。
  11. 根据权利要求1-6任一项所述的3D打印设备,其特征在于,所述成型模块的数量为多个,多个所述成型模块沿所述输送线(600)的输送方向间隔设定距离布置,当所述输送线(600)到达某一位置时,每个所述成型模块均与一个所述构建平台(400)相对。
  12. 一种3D打印方法,其特征在于,利用权利要求1-11任一项所述的3D打印设备进行3D打印,包括如下步骤:
    S1:输送线(600)低速匀速运行;
    S2:铺粉装置(300)根据即将输送至成型模块处的构建平台(400)所处的层数或高度参数升降至对应高度,在输送至成型模块处的构建平台(400)的载板上进行铺粉;
    S3:同时,打印装置(200)根据即将输送至成型模块处的构建平台(400)所处的层数或高度参数升降至对应高度,对经输送线(600)输送至成型模块处的已完成铺粉的构建平台(400)进行打印;
    S4:输送线(600)连续循环,且重复步骤S1-S3,铺粉装置(300)和打印装置(200)升降至对应高度,对下一个输送至成型模块处的构建平台(400)进行铺粉和打印;
    S5:连续循环并铺粉和打印,直至某一构建平台(400)完成全部预定的打印产品,并从出料通道(620)输送出所述3D打印设备,同时从进料通道(610)输入一个待打印的构建平台(400);
    S6:继续循环铺粉和打印,以实现连续不间断的铺粉和打印。
  13. 根据权利要求12所述的3D打印方法,其特征在于,在完成步骤S3之后,增加步骤S7:使输送线(600)沿与步骤S1中相反的方向运行,通过同一成型模块对同一构建平台(400)进行多次铺粉和打印。
  14. 一种3D打印方法,其特征在于,利用权利要求1-11任一项所述的3D打印设备进行3D打印,包括如下步骤:
    S10:输送线(600)高速移动至接近定位位置(410),变为低速移动,当输送线(600)低速移动至与定位装置(410)相接合时,到达预定打印位置;
    S20:铺粉装置(300)根据即将输送至成型模块处的构建平台(400)所处的层数或高度参数升降至对应高度,再水平移动以对输送至成型模块处的构建平台(400)进行铺粉;
    S30:同时,打印装置(200)根据即将输送至成型模块处的构建平台(400)所处的层数或高度参数升降至对应高度,再水平移动以对经输送线(600)输送至成型模块处的已完成铺粉的构建平台(400)进行打印;
    S40:输送线(600)连续循环,且重复步骤S10-S30,铺粉装置(300)和打印装置(200)升降至对应高度,对下一个输送至成型模块处的构建平台(400)进行铺粉 和打印;
    S50:连续循环并铺粉和打印,直至某一构建平台(400)完成全部预定的打印产品,并从出料通道(620)输送出所述3D打印设备,同时从进料通道(610)输入一个待打印的构建平台(400);
    S60:继续循环铺粉和打印,以实现连续不间断的铺粉和打印。
  15. 根据权利要求14所述的3D打印方法,其特征在于,在实施步骤S40之前,可以多次重复步骤S20和步骤S30,对一个构建平台(400)连续铺粉和打印多层,然后再实施步骤S40-步骤S60。
  16. 一种3D打印方法,其特征在于,利用权利要求1-11任一项所述的3D打印设备进行3D打印,包括如下步骤:
    S100:输送线(600)低速匀速循环运行;
    S200:构建平台(400)的载板在完全通过一个成型模块后,在到达下一个成型模块前降低一个层高,铺粉装置(300)对输送至成型模块处的构建平台(400)进行铺粉;
    S300:同时,打印装置(200)对经输送线(600)输送至成型模块处的已完成铺粉的构建平台(400)进行打印;
    S400:连续循环,重复步骤S100-S300,构建平台(400)的载板降低一个层高,对下一个输送至成型模块处的构建平台(400)进行铺粉和打印;
    S500:连续循环并铺粉和打印,直至某一构建平台完成全部预定的打印产品,并从出料通道(620)输送出所述3D打印设备,同时从进料通道(610)输入一个待打印的构建平台(400);
    S600:继续循环铺粉和打印,以实现连续不间断的铺粉和打印。
  17. 根据权利要求16所述的3D打印方法,其特征在于,在完成步骤S300之后,增加步骤S700:使输送线(600)沿与步骤S100中相反的方向运行,通过同一成型模块对同一构建平台(400)进行多次铺粉和打印。
  18. 根据权利要求17所述的3D打印方法,其特征在于,当重复步骤S400至构建平台(400)下降至最低位置后,增加步骤S800继续打印,步骤S800为:
    铺粉装置(300)根据即将输送至成型模块处的构建平台(400)所处的层数和高度参数升降至对应高度,再水平移动对输送至成型模块处的构建平台(400)进行铺粉;同时,打印装置(200)根据即将输送至成型模块处的构建平台(400)所处的层数或高度参数升降至对应高度,再水平移动对经输送线(600)输送至成型模块处的已完成铺粉的构建平台(400)进行打印;
    继续重复步骤S100和S700;
    实施步骤S500和S600。
  19. 根据权利要求18所述的3D打印方法,其特征在于,多次重复步骤S700和步骤S800,对一个构建平台(400)连续铺粉和打印多层,然后再继续重复步骤S100和步骤S800,然后再实施步骤S500和步骤S600。
  20. 一种3D打印方法,其特征在于,利用权利要求1-11任一项所述的3D打印设备进行3D打印,包括如下步骤:
    S1000:输送线(600)高速移动至接近定位位置(410),变为低速移动,当输送线(600)低速移动至与定位装置(410)相接合时,到达预定打印位置;
    S2000:构建平台(400)的载板(420)在完全通过一个成型模块后,在到达下一 个成型模块前降低一个层高,铺粉装置(300)水平移动对输送至成型模块处的构建平台(400)进行铺粉;
    S3000:同时,打印装置(200)水平移动对经输送线(600)输送至成型模块处的已完成铺粉的构建平台(400)进行打印;
    S4000:启动循环,重复步骤S1000-S3000,对下一个输送至成型模块处的构建平台(400)进行铺粉和打印;
    S5000:连续循环并铺粉和打印,直至某一构建平台完成全部预定的打印产品,并从出料通道(620)输送出所述3D打印设备,同时从进料通道(610)输入一个待打印的构建平台(400);
    S6000:继续循环铺粉和打印,以实现连续不间断的铺粉和打印。
  21. 根据权利要求20所述的3D打印方法,其特征在于,在实施步骤S4000之前,多次重复步骤S2000和步骤S3000,对一个构建平台(400)连续铺粉和打印多层,然后再实施步骤S4000-步骤S6000。
  22. 根据权利要求21所述的3D打印方法,其特征在于,当重复步骤S4000至构建平台(400)下降到最低位置后,增加步骤S7000继续打印,步骤S7000为:
    铺粉装置(300)根据即将输送至成型模块处的构建平台(400)所处的层数或高度参数升降至对应高度,再水平移动对输送至成型模块处的构建平台(400)进行铺粉;同时,打印装置(200)根据即将输送至成型模块处的构建平台(400)所处的层数或高度参数升降至对应高度,再水平移动对经输送线(600)输送至成型模块处的已完成铺粉的构建平台(400)进行打印;
    继续重复步骤S1000和步骤S7000;
    实施步骤S5000和步骤S6000。
  23. 根据权利要求22所述的3D打印方法,其特征在于,多次重复步骤S7000,对一个构建平台(400)连续铺粉和打印多层,然后再继续重复步骤S1000和S7000,然后再实施步骤S5000和步骤S6000。
  24. 根据权利要求12-23任一项所述的3D打印方法,其特征在于,根据运行指令,在铺粉或打印的间隔,清洗装置(010)对铺粉装置(300)和打印装置(200)进行清洁。
PCT/CN2020/074574 2019-02-12 2020-02-10 3d打印设备及3d打印方法 WO2020164447A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910111810.7A CN111546629A (zh) 2019-02-12 2019-02-12 3d打印设备及3d打印方法
CN201910111810.7 2019-02-12

Publications (1)

Publication Number Publication Date
WO2020164447A1 true WO2020164447A1 (zh) 2020-08-20

Family

ID=71998002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074574 WO2020164447A1 (zh) 2019-02-12 2020-02-10 3d打印设备及3d打印方法

Country Status (2)

Country Link
CN (1) CN111546629A (zh)
WO (1) WO2020164447A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113119468A (zh) * 2021-04-27 2021-07-16 江苏三帝康复科技有限公司 一种同时具有水平梯度和垂直梯度功能的3d打印机
CN114393823A (zh) * 2022-01-20 2022-04-26 中国科学院空间应用工程与技术中心 一种多材料3d打印设备及方法
CN115041708A (zh) * 2022-05-26 2022-09-13 西安太瀚航天技术有限公司 一种打印机取件仓
CN115503231A (zh) * 2022-08-30 2022-12-23 共享智能装备有限公司 一种刮板清理装置及3d打印设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112222357A (zh) * 2020-09-28 2021-01-15 武汉阿尔法激光有限公司 一种高速3d打印结构及打印方法
CN113245565B (zh) * 2021-06-11 2021-10-12 季华实验室 一种用于大型金属3d打印设备的构建仓系统
CN117245909B (zh) * 2023-09-28 2024-07-26 广东峰华卓立科技股份有限公司 一种模块化3d打印方法及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104028711A (zh) * 2014-05-28 2014-09-10 宁夏共享模具有限公司 一种3d打印生产线
CN104640686A (zh) * 2012-09-05 2015-05-20 阿普雷奇亚制药公司 三维打印系统和设备组件
CN105196549A (zh) * 2015-10-28 2015-12-30 华中科技大学 一种并行多工位式3d打印机
JP2016210060A (ja) * 2015-05-07 2016-12-15 ローランドディー.ジー.株式会社 三次元造形装置
CN207629132U (zh) * 2017-11-29 2018-07-20 宁夏共享模具有限公司 一种新型3dp打印机
CN209580491U (zh) * 2019-02-12 2019-11-05 共享智能铸造产业创新中心有限公司 3d打印设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104640686A (zh) * 2012-09-05 2015-05-20 阿普雷奇亚制药公司 三维打印系统和设备组件
CN104028711A (zh) * 2014-05-28 2014-09-10 宁夏共享模具有限公司 一种3d打印生产线
JP2016210060A (ja) * 2015-05-07 2016-12-15 ローランドディー.ジー.株式会社 三次元造形装置
CN105196549A (zh) * 2015-10-28 2015-12-30 华中科技大学 一种并行多工位式3d打印机
CN207629132U (zh) * 2017-11-29 2018-07-20 宁夏共享模具有限公司 一种新型3dp打印机
CN209580491U (zh) * 2019-02-12 2019-11-05 共享智能铸造产业创新中心有限公司 3d打印设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113119468A (zh) * 2021-04-27 2021-07-16 江苏三帝康复科技有限公司 一种同时具有水平梯度和垂直梯度功能的3d打印机
CN114393823A (zh) * 2022-01-20 2022-04-26 中国科学院空间应用工程与技术中心 一种多材料3d打印设备及方法
CN114393823B (zh) * 2022-01-20 2024-04-09 中国科学院空间应用工程与技术中心 一种多材料3d打印设备及方法
CN115041708A (zh) * 2022-05-26 2022-09-13 西安太瀚航天技术有限公司 一种打印机取件仓
CN115503231A (zh) * 2022-08-30 2022-12-23 共享智能装备有限公司 一种刮板清理装置及3d打印设备

Also Published As

Publication number Publication date
CN111546629A (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
WO2020164447A1 (zh) 3d打印设备及3d打印方法
CN108480562B (zh) 一种3dp打印设备、该设备的生产线及其循环打印方法
US20220152920A1 (en) 3D Printing Apparatus and 3D Printing Method
KR20220050981A (ko) 다층 부품을 적층 제조하기 위한 3d 프린터, 프린팅 방법 및 부품
CN108385858A (zh) 一种墙板生产设备
CN209580491U (zh) 3d打印设备
CN103619594B (zh) 网版印刷装置
WO2022111450A1 (zh) 制砖系统、生产控制方法、装置、系统、生产设备及介质
US20210187854A1 (en) 3D Printing Apparatus, Production Line Using the Apparatus, and Cyclical Printing Method Thereof
JPH05278854A (ja) 製品選別移載方法及び装置
CN209775803U (zh) 一种多基板对位印刷机
TW201538334A (zh) 製造方法及製造裝置
KR940004753B1 (ko) 복합블록 제조 시스템
CN209904252U (zh) 交互式双工作台喷墨机
TW201313589A (zh) 傳送整合裝置及其傳送方法
CN110700590A (zh) 一种泡沫装饰条灌浆设备
KR102012924B1 (ko) 데크플레이트에 스페이서를 결합하는 볼팅장치
RU2787950C1 (ru) Аппарат для 3d-печати и способ 3d-печати
CN111422413A (zh) 一种砌块定量稳定输送方法及装置
CN219447460U (zh) 一种自加热包中间输送装置
CN111546461A (zh) 3d打印设备及3d打印方法
CN116252376B (zh) 一种装配式建筑pc预制构件的成型装置与方法
JP2013140906A (ja) 基板作業システムにおける生産実績表示装置
TWI685411B (zh) 反應型pu皮革製程設備及反應型pu皮革的製造方法
US20220332046A1 (en) 3d printer for the additive manufacture of a component, and printing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20755716

Country of ref document: EP

Kind code of ref document: A1