WO2020164370A9 - 一种高效能污水处理喷射器 - Google Patents
一种高效能污水处理喷射器 Download PDFInfo
- Publication number
- WO2020164370A9 WO2020164370A9 PCT/CN2020/073148 CN2020073148W WO2020164370A9 WO 2020164370 A9 WO2020164370 A9 WO 2020164370A9 CN 2020073148 W CN2020073148 W CN 2020073148W WO 2020164370 A9 WO2020164370 A9 WO 2020164370A9
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cavity
- section
- tailstock
- drainage
- gas
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/74—Treatment of water, waste water, or sewage by oxidation with air
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/50—Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Definitions
- the embodiments of the present application relate to the technical field of sewage treatment equipment, and in particular to a high-efficiency sewage treatment ejector.
- the general aeration and oxygenation in the aerobic section of sewage treatment include microporous aeration, diving aeration, surface aeration and so on. Aerobic biological treatment is the preferred process for the treatment of urban sewage, domestic sewage, and low-concentration industrial organic wastewater.
- mechanical aeration and blast aeration there are two types of aeration methods: mechanical aeration and blast aeration.
- Mechanical aeration means that other mechanical equipment sends air through mechanical devices. In the water, such as rotating brush, inverted umbrella impeller, etc., mechanical aeration operation and maintenance are convenient, but the energy consumption is high.
- the embodiments of the present application aim to overcome the above-mentioned defects in the prior art and propose a high-efficiency sewage treatment ejector.
- a high-efficiency sewage treatment ejector including a tailstock and a nozzle
- the tailstock includes a matching section and a liquid inlet section connected with a water pump; the liquid inlet section is provided with a liquid inlet cavity, and the matching section is provided with a gas-liquid mixing cavity. A throat is provided between the liquid mixing cavity; the matching section is provided with an air inlet communicating with the gas-liquid mixing cavity;
- the nozzle includes a drainage section inserted into the gas-liquid mixing cavity of the tail seat and a jetting section extending outward; the drainage section is provided with a drainage cavity, and the jetting section is provided with a jet cavity; in the drainage cavity and the jet There is a joint between the cavities;
- the side of the ejection cavity facing outward is an ejection port, and the side of the drainage cavity facing the tailstock is a drainage port; the ejection cavity is a variable diameter structure that gradually expands from the joint to the side of the ejection port. ;
- An air-filled cavity is formed between the outer wall of the drainage section of the nozzle and the inner wall of the mating section of the tailstock, and an air gap is formed between the end surface of the drainage section and the throat neck.
- the air inlets are arranged radially along the mating section.
- a connecting plate is provided on the nozzle, and a positioning platform is provided at the end surface of the mating section to cooperate with the boss on the connecting plate.
- a nozzle sealing ring is provided on the outer end surface of the side of the connecting plate facing the tailstock, and a tailstock sealing ring matched with the nozzle sealing ring is provided on the end surface of the mating section of the tailstock.
- the nozzle is fixed on the tailstock by a connecting piece on the connecting plate.
- the connecting piece adopts a full-thread screw.
- the throat neck includes a convex ring inside the tailstock, a first curved transition structure is provided between the convex ring and the side wall of the liquid inlet cavity, and a first arc transition structure is provided between the convex ring and the side wall of the gas-liquid mixing cavity. There is a second curved transition section structure.
- the gas drawn from the air gap is perpendicular to the flow direction of the water body.
- the free end of the liquid inlet section of the tailstock is provided with a connecting thread, and a clamping groove is provided between the connecting thread and the mating section.
- the taper of the jet cavity is 5°.
- This application has a simple structure and reasonable design.
- the pumping pressure of the water pump can be used to drive air into the cavity of the ejector to achieve full gas-liquid mixing and produce bubbles of different sizes.
- the group effectively increases the chance of water contact with oxygen, oxidizes the reducing substances in the sewage, and can kill most of the reducing bacteria and other anaerobic bacteria, so as to effectively treat the sewage and purify the water.
- Figure 1 is a schematic diagram of the three-dimensional structure created by this application.
- Figure 2 is a cross-sectional view created by this application.
- Figure 3 is a schematic diagram of the three-dimensional structure of the tailstock created in this application.
- Figure 4 is a cross-sectional view of the tailstock created in this application.
- Figure 5 is a schematic diagram of the three-dimensional structure of the nozzle in the creation of this application.
- Figure 6 is a cross-sectional view of the nozzle in the creation of this application.
- a high-efficiency sewage treatment ejector as shown in Figures 1 to 6, includes a tailstock 1 and a nozzle 2;
- the tailstock includes a mating section 3 and a liquid inlet section 4 connected with a water pump; the liquid inlet section is provided with a liquid inlet cavity 5 inside the mating section is provided with a gas-liquid mixing cavity 6, and the liquid inlet section A throat 7 is provided between the cavity and the gas-liquid mixing cavity; the matching section is provided with an air inlet 8 communicating with the gas-liquid mixing cavity;
- the nozzle includes a drainage section 9 inserted into the gas-liquid mixing cavity of the tailstock and a spray section 10 extending outward; the drainage section is provided with a drainage cavity 11 inside, and the spray section is provided with a spray cavity 12 inside;
- the side of the ejection cavity facing outward is the ejection port 13, and the side of the drainage cavity facing the tailstock is the drainage port 14; the ejection cavity is a variable that gradually expands from the joint to the side of the ejection port.
- An air-filled cavity 15 is formed between the outer wall of the drainage section of the nozzle and the inner wall of the mating section of the tailstock, and an air gap 16 is formed between the end surface of the drainage section and the throat neck.
- the structure of this flow channel is formed by the assembly of the nozzle and the tailstock. According to different ejector specifications, the cross-sectional size of the flow channel can be Adaptive adjustment and matching.
- the space occupied by the drainage cavity is actually the internal space of the gas-liquid mixing cavity, and the drainage cavity is used as the place and conveying section of the gas-liquid mixing.
- the part of the gas-liquid mixing cavity outside the drainage cavity is actually an inflatable cavity for introducing air from the outside.
- the air inlet is connected to the atmosphere through a gas pipeline.
- the air inlet can be connected to the air pipe through a joint 29.
- the above-mentioned air inlets are arranged radially along the mating section, and are approximately located in the middle of the gas-liquid mixing cavity to ensure stable gas supply.
- the nozzle is provided with a connecting plate 17, and the end surface of the mating section is provided with a positioning platform 19 which is matched with the boss 18 on the connecting plate.
- the nozzle is fixed on the tailstock by the connecting piece 22 on the connecting plate.
- the above-mentioned connecting piece adopts a full-threaded screw, which can reliably fix the nozzle on the tailstock.
- Both the nozzle and the tailstock can be made of PPS plastic. Therefore, a nozzle sealing ring 20 can be provided on the outer end surface of the side of the connecting plate facing the tailstock. The end surface of the mating section of the tailstock is provided with a nozzle sealing ring Matching tailstock sealing ring 21.
- the inner diameter of the liquid inlet 28 of the liquid inlet cavity is approximately the same as the inner diameter of the jet cavity, or the inner diameter of the liquid inlet is slightly smaller than the inner diameter of the jet orifice by about 1-2mm to ensure a relatively high High fluid pressure.
- the above-mentioned throat neck includes a convex ring 23 inside the tailstock.
- a first curved transition structure 24 is provided between the convex ring and the side wall of the liquid inlet cavity, and a first curved transition structure 24 is provided between the convex ring and the side wall of the gas-liquid mixing cavity.
- the second arc transition section structure 25 Generally, the arc of the first arcuate transition structure is 50°, and the arc of the second arcuate transition structure is 70°. The transition from a smaller arc to the throat shrinks rapidly, increasing the fluid pressure.
- the inner diameter of the drainage port (that is, the diameter of the drainage cavity on the side close to the convex ring) is greater than the inner diameter of the convex ring by 0.2-0.5mm.
- Such a structural design can make the water flow in the normal direction of water flow. The pressure "sucks" the air in the inflation cavity into the drainage cavity.
- the gas drawn by the above air gap is perpendicular to the flow direction of the water body.
- the pressure when the water body flows introduces the air in the inflatable cavity into the drainage section through the air gap. It cuts vertically into the water body through the second curved transition section, and instantly has a higher pressure, which makes the gas-liquid mixing very fully and achieves the effect of atomization.
- the water pumped by the water pump After the water pumped by the water pump enters the liquid inlet cavity, it reaches the neck of the throat (the diameter of the inner cavity decreases instantaneously), generating a higher-pressure water flow, and instantly "suctions" the gas in the inflatable cavity into the drainage cavity through the air gap .
- gas is sucked into the drainage cavity by the water pressure from the larger space of the inflatable cavity.
- a larger gas pressure is generated instantaneously, which can produce a larger gas pressure with the water body. Impact mixing force.
- the gas is guided by the second curved transition structure between the gas-filled cavity and the air gap. The resistance is small, the gas flows smoothly, and there is no loss of gas pressure, which ensures that the gas reaches a higher pressure when it enters the air gap.
- the water pressure generated by the liquid injection drives the gas into the inflatable cavity, and instantaneously generates a relatively large air pressure to inject into the water body, which can produce a variety of bubbles of different sizes, and the degree of mixing of bubbles of different sizes High, it plays an excellent role in water purification.
- the general bubbles (especially the larger bubbles) will rise to the water surface quickly after being generated in the water, that is, the existence time is short, and the ejector can generate bubbles as small as micrometers, which are generated in the water. It will take tens of seconds or even minutes to finally rupture and disappear.
- Research data shows that the rising speed of a bubble with a diameter of 1mm in water is 6mm/min, while a bubble with a diameter of 10um rises in the water at a speed of 46mm/min. It can be seen that the micro-bubbles rise very slowly in the water, so they can stay in the water for a long time, and the oxygen carried by the air is fully in contact with the water body, and the purification effect is good.
- micro-bubbles is negatively charged. Compared with ordinary bubbles, the negative charge is relatively high. Generally, the surface charge of bubbles below 30um is about -40mv. This is also the reason why micro-bubbles can gather together for a long time without breaking. one of the reasons. Utilizing the negatively charged properties of micron bubbles, it can adsorb positively charged substances in water, which has a good effect on the adsorption and separation of suspended solids in water.
- micro-bubbles After the micro-bubbles are generated in the water, they will shrink or expand continuously due to their own pressurization, and their diameter will always change. According to the latest research, bubbles of 20um-40um will shrink to about 8um at a rate of 1.3um/s, and then the shrinkage speed will suddenly increase sharply, and may further split into nano-sized bubbles or completely dissolve in water.
- the free end of the liquid inlet section of the above-mentioned tailstock is provided with a connecting thread 26, and a clamping groove 27 is provided between the connecting thread and the mating section.
- the ejector can be installed on the pipeline through the connecting thread, and a water pump is provided at one end of the pipeline. Of course, it can also be directly connected to the water pump through the connecting pipe.
- the jet cavity is a variable diameter structure that gradually expands from the connecting part to the side of the jet port.
- the taper of the jet cavity is 5°.
- This structure design can spray the gas-liquid mixture from the drainage cavity It spreads out instantly and is discharged out of the nozzle. In the process of its discharge, the gas-liquid mixture slows down and the pressure increases, forming a powerful jet stream that agitates and oxygenates the sewage.
- the water and the oxygen in the air are fully mixed and contacted to oxidize the reducing substances in the wastewater, kill most of the reducing bacteria and other anaerobic bacteria, and achieve the purpose of sewage treatment.
- the ratio of the cross-sectional area of the inner cavity of the liquid inlet to the cross-sectional area of the inner cavity of the throat neck is 1.6-2.7, and the ratio of the diameter of the air inlet to the inner diameter of the throat neck is 0.5-1.
- the drainage cavity is from the drainage section.
- the diameter-reducing structure with the free end gradually shrinking toward the connecting portion can gradually increase the pressure of the gas-liquid mixture, which is actually a process of "power accumulation" in the drainage cavity.
- the working principle of this high-efficiency sewage treatment ejector is based on the improvement of the structural parts based on the Venturi effect.
- the principle of the so-called Venturi effect is that when the wind blows through the barrier, the air pressure near the port above the leeward surface of the barrier is relatively low , Which produces adsorption and causes air flow.
- the principle of the venturi tube is actually very simple. It is to change the gas flow from coarse to fine to speed up the gas flow rate, so that the gas forms a "vacuum" area on the back side of the venturi outlet, and this vacuum area will produce a certain adsorption effect.
- the ejector provided by the invention combines a nozzle and a tailstock, introduces fresh air from the air inlet of the tailstock, and stores it temporarily in the air-filled cavity formed between the tailstock and the nozzle, and is sucked in by a very narrow air gap To the inner cavity of the nozzle, the effect of rapid mixing with the fluid is achieved, the gas-liquid mixing uniformity is good, and the bubbles generated are as small as micrometers.
- the ratio of the cross-sectional area of the inflation cavity to the cross-sectional area of the air gap is 5-5.8, and the ratio of the cross-sectional area of the liquid inlet cavity to the cross-sectional area of the air gap is 21-27.
- Example 1 if the inner diameter of the injection port is 15mm, the air gap size is 0.61; the inner diameter of the liquid inlet is 13, the inner diameter of the throat neck is 5mm, and the diameter of the air inlet is 5mm;
- Example 2 if the inner diameter of the injection port is 28mm, the air gap size is 0.77; the inner diameter of the liquid inlet is 20, the inner diameter of the throat neck is 10mm, and the diameter of the air inlet is 8mm;
- Example 3 if the inner diameter of the injection port is 77mm, the size of the air gap is 2.6; the inner diameter of the liquid inlet is 76, the inner diameter of the throat neck is 40mm, and the diameter of the air inlet is 27mm.
- a connecting portion 13 may be provided between the drainage cavity and the injection cavity; generally, the connecting portion may be an equal-diameter section, the inner diameter of which is the same as the smallest diameter of the injection cavity, and the connecting portion and the inner wall of the injection cavity, And smooth transition with the inner wall of the drainage cavity to reduce resistance and avoid pressure loss, the length is only 0.5-2mm. It can play the role of transitional connection, so that the pressure accumulated in the gas-liquid mixing volume is released instantaneously in the injection cavity, forming a larger water pressure.
- This application has a simple structure and reasonable design.
- the pumping pressure of the water pump can be used to drive air into the cavity of the ejector to achieve full gas-liquid mixing and produce bubbles of different sizes.
- the group effectively increases the chance of water contact with oxygen, oxidizes the reducing substances in the sewage, and can kill most of the reducing bacteria and other anaerobic bacteria, so as to effectively treat the sewage and purify the water.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
Abstract
一种高效能污水处理喷射器,包括尾座(1)和喷嘴(2);尾座(1)包括配合段(3)、以及与水泵连接的进液段(4);进液段(4)内部设有进液腔体(5),配合段(3)内部设有气液混合腔体(6),在进液腔体(5)与气液混合腔体(6)之间设有喉颈(7);配合段(3)处设有与气液混合腔体(6)连通的进气口(8);喷嘴(2)包括插入尾座(1)的气液混合腔体(6)内的引流段(9)、以及向外侧延伸的喷射段(10);引流段(9)内部设有引流腔体(11),喷射段(10)内部设有喷射腔体(12);在引流腔体(11)与喷射腔体(12)之间设有衔接部;通过喷嘴(2)与尾座(1)上结构的匹配设置,实现气液充分混合。
Description
本申请要求于2019年2月14日提交中国专利局、申请号为201910114064.7申请名称高效能污水处理喷射器的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请实施例涉及污水处理设备技术领域,尤其是涉及一种高效能污水处理喷射器。
一般的污水处理好氧段曝气充氧有微孔曝气、潜水曝气、表曝机等等。好氧生物处理是城市污水、生活污水、低浓度工业有机废水处理的首选工艺,目前曝气方式分机械曝气和鼓风曝气两种,机械曝气是其他机械设备通过机械装置将空气送入水中,如转刷,倒伞形叶轮等,机械曝气操作维修方便,但能耗均较高。现有的曝气设备所形成的气泡过大,气泡在水中停留的时间较短,造成增氧效率低,且无法建固定到水中的各个层结构,不适合大面积、深水域。亟需设计一种通用性好、节能环保、污水处理效果好,且安全高效的净水设施。
申请内容
为此,本申请实施例旨在克服上述现有技术中存在的缺陷,提出一种高效能污水处理喷射器。
为了实现上述目的,本申请创造的技术方案是这样实现的:
一种高效能污水处理喷射器,包括尾座和喷嘴;
所述尾座包括配合段、以及与水泵连接的进液段;所述进液段内部设有进液腔体,所述配合段内部设有气液混合腔体,在进液腔体与气液混合腔体之间设有喉颈;所述配合段设有与气液混合腔体连通的进气口;
所述喷嘴包括插入尾座气液混合腔体内的引流段、以及向外侧延伸的喷射段;所述引流段内部设有引流腔体,喷射段内部设有喷射腔体;在引流腔体与喷射腔体之间设有衔接部;
所述喷射腔体朝外的一侧为喷射口,引流腔体朝向尾座的一侧为引流口;所述喷射腔体为从衔接部起向外喷射口一侧逐渐扩口的变径结构;
所述喷嘴的引流段外壁与尾座的配合段内壁之间形成充气腔,引流段的端面与喉颈之间形成过气间隙。
进一步,所述进气口沿配合段径向布置。
进一步,所述喷嘴上设有连接盘,所述配合段的端面处设有与连接盘上凸台配合的定位台。
进一步,所述连接盘朝向尾座的一侧的外端面上设有喷嘴密封环,所述尾座的配合段端面上设有与喷嘴密封环匹配的尾座密封环。
进一步,所述喷嘴通过连接盘上的连接件固定在尾座上。
进一步,所述连接件采用全螺纹螺钉。
进一步,所述喉颈包括尾座内部的凸环,该凸环与进液腔体的侧壁之间设有第一弧面过渡结构,凸环与气液混合腔体的侧壁之间设有第二弧面过渡段结构。
进一步,所述过气间隙引出的气体垂直水体经过的流动方向。
进一步,所述尾座的进液段的自由端设有连接螺纹,且在连接螺纹与配合段之间设有卡槽。
进一步,所述喷射腔体锥度为5°。
相对于现有技术,本申请创造具有以下优势:
本申请创造结构简单,设计合理,通过喷嘴与尾座上结构的匹配设置,利用水泵的泵水压力,即可带动空气进入喷射器的腔体内,实现气液充分混合,生产大小不一的气泡群,有效的增加水体与氧气的接触机 会,氧化污废水中的还原性物质,能杀灭大部分还原菌和其它一些厌氧菌,达到有效处理污水,净化水体的作用。
为了更清楚地说明本申请的实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引伸获得其它的实施附图。
本说明书所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本申请可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本申请所能产生的功效及所能达成的目的下,均应仍落在本申请所揭示的技术内容得能涵盖的范围内。
图1为本申请创造的立体结构示意图;
图2为本申请创造的剖视图;
图3为本申请创造中尾座的立体结构示意图;
图4为本申请创造中尾座的剖视图;
图5为本申请创造中喷嘴的立体结构示意图;
图6为本申请创造中喷嘴的剖视图。
附图标记说明:1-尾座;2-喷嘴;3-配合段;4-进液段;5-进液腔体;6-气液混合腔体;7-喉颈;8-进气口;9-引流段;10-喷射段;11-引流腔体;12-喷射腔体;13-喷射口;14-引流口;15-充气腔;16-过气间隙;17-连接盘;18-凸台;19-定位台;20-喷嘴密封环;21-尾座密封环;22-连接件;23-凸环;24-第一弧面过渡结构;25-第二弧面过渡段结构;26-连接螺纹;27-卡槽;28-进液口;29-接头。
以下由特定的具体实施例说明本申请的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本申请的其他优点及功效,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
一种高效能污水处理喷射器,如图1至6所示,包括尾座1和喷嘴2;
所述尾座包括配合段3、以及与水泵连接的进液段4;所述进液段内部设有进液腔体5,所述配合段内部设有气液混合腔体6,在进液腔体与气液混合腔体之间设有喉颈7;配合段上设有与气液混合腔体连通的进气口8;
所述喷嘴包括插入尾座气液混合腔体内的引流段9、以及向外侧延伸的喷射段10;所述引流段内部设有引流腔体11,喷射段内部设有喷射腔体12;
所述喷射腔体朝外的一侧为喷射口13,引流腔体朝向尾座的一侧为引流口14;所述喷射腔体为从衔接部起向外喷射口一侧逐渐扩口的变径结构;
所述喷嘴的引流段外壁与尾座的配合段内壁之间形成充气腔15,引流段的端面与喉颈之间形成过气间隙16。经进气口—充气腔—过气间隙,相当于形成了气体的流道,这个流道的结构是喷嘴与尾座拼装配合形成的,根据不同的喷射器规格,流道的横截面大小可以适应性的调整匹配。
需要说明的是,实际上,引流段插入配合段内部后,引流腔体所占据的空间实际就是气液混合腔体内部空间,而引流腔体即作为气液混合后的发生地和输送段,引流腔体外侧的气液混合腔体部分实际就为充气腔,用于从外界导入空气。通常,通过气体管路将进气口与大气导通。进气口处可以通过接头29与气管连接。
上述进气口沿配合段径向布置,其大致处于气液混合腔体中部位置,保证气体供应稳定。
上述喷嘴上设有连接盘17,所述配合段的端面处设有与连接盘上凸 台18配合的定位台19。喷嘴通过连接盘上的连接件22固定在尾座上。通常,上述连接件采用全螺纹螺钉,可以可靠的将喷嘴固定在尾座上。
喷嘴和尾座均可以采用PPS塑料制作,因此,可以在上述连接盘朝向尾座的一侧的外端面上设有喷嘴密封环20,所述尾座的配合段端面上设有与喷嘴密封环匹配的尾座密封环21。当喷嘴与尾座连接固定后,二者的密封环相互挤压,形成良好的密封,而无需额外安装设置密封圈,减少了加工和装配难度,同时,稳定性也得到提高。
需要指出的是,进液腔体的进液口28处内径与喷射腔体的喷射口处内径大致相同,或是进液口处内径稍小于喷射口内径1-2mm左右,以保证能形成较大的流体压力。
上述喉颈包括尾座内部的凸环23,该凸环与进液腔体的侧壁之间设有第一弧面过渡结构24,凸环与气液混合腔体的侧壁之间设有第二弧面过渡段结构25。通常,第一弧面过渡结构的弧度为50°,第二弧面过渡结构的弧度为70°。从较小弧度的过渡面向喉颈急速收缩,增大液体压力。在一个可选的实施例中,引流口处内径(即引流腔体靠近凸环一侧的直径)大于凸环内径0.2-0.5mm,这样的结构设计,能在水体正常流动方向上,使得水体压力将充气腔内空气“吸”入引流腔体内。
上述过气间隙引出的气体垂直水体经过的流动方向,水体流动时的压力将充气腔内的空气经过气间隙引入至引流段内,在空气与水体混合过程中,由于气体从较宽的充气腔经过第二弧面过渡段垂直切入水体内,瞬间具有较高的压力,使得气液混合非常充分,达到雾化的效果。
并且,随着气体“切”入水体内路径长短(进入水体内深度)的不同,所形成的气泡大小也存在明显的区别,越是深入水体中心(气液混合腔体中心)部分所损失的压力越大,与水体相切所产生的气泡大小也不同。一般情况下,气体与水体初接触时,相互间作用力(冲击)较大,所产生的气泡越小,最小甚至达纳米级的气泡。越是深入气液混合腔中心区域,气体初使压力越小,与喷水压力作用后,所形成的气泡越大。
水泵所泵入的水体进入进液腔体后,抵达喉颈处(内腔直径瞬间减 小),产生压力较高的水流,将充气腔中的气体经过气间隙瞬间“吸”入引流腔体内。需要说明的是,正是基于气体从充气腔较大的空间被水体压力吸入引流腔体内,在经过较小的过气间隙过程中,瞬间产生较大的气体压力,能够与水体产生较大的冲击混合作用力。气体从充气腔进入过气间隙之间受到第二弧面过渡结构的导向,阻力小,气体流动顺畅,不会对气体压力造成损失,保证了气体在进入过气间隙时达到较大的压力。
因此,本申请创造提供的喷射器,由液体喷射产生的水压带动气体进入充气腔,并瞬间产生较大的气压射入水体,能够产生大小不同的多种气泡,且大小不同的气泡混合程度高,对水体净化起到极佳的作用。
需要说明的是,一般的气泡(尤指较大的气泡)在水中产生后,会很快上升到水面,即,存在时间短,而本喷射器可产生小至微米级的气泡,在水中产生到最终破裂消失会有几十秒钟甚至几分钟。有研究数据表明,直径为1mm的气泡在水中的上升速度为6mm/min,而直径为10um的气泡在水中上升的速度为46mm/min。可见,微米气泡在水中的上升速度非常缓慢,所以可以在水中停留较长时间,将空气携带的氧气充分与水体接触,净化效果好。
另外,微米气泡表面带负电荷,相对于普通气泡,其所带负电荷比较高,一般30um以下的气泡表面电荷在-40mv左右,这也是微米气泡能大量聚集在一起时间较长而不破裂的原因之一。利用微米气泡的带负电性,可以吸附水中带正电的物质,对去除水中悬浮物污染物的吸附和分离起到很好的效果。
微米气泡在水中产生后,因自身增压,会不断的收缩或膨胀,其直径是一直变化的。根据最新研究表明,20um-40um的气泡会以1.3um/s的速度收缩到8um左右,然后收缩速度会突然急剧增加,伺候可能进一步分裂成纳米级气泡或完全溶解于水中。
上述尾座的进液段的自由端设有连接螺纹26,且在连接螺纹与配合段之间设有卡槽27。通过连接螺纹可以将本喷射器安装在管道上,在管 道的一端设有水泵,当然,也可以是通过连接管,直接与水泵连接。
喷射腔体为从衔接部起向外喷射口一侧逐渐扩口的变径结构,通常,上述喷射腔体锥度为5°,这样的结构设计,能将引流腔体喷射过来的气液混合体瞬间扩散开,排出喷嘴外,在其排出的过程中,气液混合体速度减慢、压力增强,形成强力的喷射流,对污水形成搅拌充氧。水和被带入的空气中的氧气充分混合接触,氧化废水中的还原性物质,杀灭大部分还原菌和其它一些厌氧菌进而达到处理污水的目的。
通常,进液口内腔横截面面积与喉颈处内腔横截面积之比为1.6-2.7,进气口直径与喉颈段内径之比为0.5-1,所述引流腔体为从引流段自由端向衔接部逐渐缩口的变径结构,能够逐渐增大气液混合体的压力,在引流腔体内实际为“蓄力”的过程。
本高效能污水处理喷射器工作原理是基于文丘里效应对结构件进行的改进,所谓的文丘里效应的原理是当风吹过阻挡物时,在阻挡物的背风面上方端口附近气压相对较低,从而产生吸附作用并导致空气的流动。文氏管的原理其实很简单,它就是把气流由粗变细,以加快气体流速,使气体在文氏管出口的后侧形成一个“真空”区,这个真空区会产生一定的吸附作用。
本申请创造提供的喷射器将喷嘴和尾座组合设置,由尾座的进气口引入新鲜空气,并在尾座与喷嘴间形成的充气腔内短暂储存,由极为窄小的过气间隙吸入至喷嘴内腔,达到快速与流体混合的效果,气液混合均匀性好,所产生的气泡小至微米级。
优选的,充气腔横截面积与过气间隙横截面积之比为5-5.8,进液腔体横截面积与过气间隙横街面积之比为21-27。
实施例1,喷射口内径为15mm,则过气间隙大小为0.61;进液口内径为13,喉颈处内径为5mm,进气口直径5mm;
实施例2,喷射口内径为28mm,则过气间隙大小为0.77;进液口内径为20,喉颈处内径为10mm,进气口直径8mm;
实施例3,喷射口内径为77mm,则过气间隙大小为2.6;进液口内径 为76,喉颈处内径为40mm,进气口直径27mm。
另外,可以在引流腔体与喷射腔体之间设有衔接部13;通常,衔接部可以为等径段,其内径与喷射腔体最小直径处相同,并且,衔接部与喷射腔体内壁、以及与引流腔体内壁均圆滑过渡,减少阻力,避免压力损失,长度0.5-2mm即可。可以起到过渡连接作用,使气液混合体积蓄的压力在喷射腔体内瞬间释放,形成较大的水压。
本申请创造结构简单,设计合理,通过喷嘴与尾座上结构的匹配设置,利用水泵的泵水压力,即可带动空气进入喷射器的腔体内,实现气液充分混合,生产大小不一的气泡群,有效的增加水体与氧气的接触机会,氧化污废水中的还原性物质,能杀灭大部分还原菌和其它一些厌氧菌,达到有效处理污水,净化水体的作用。
虽然,上文中已经用一般性说明及具体实施例对本申请作了详尽的描述,但在本申请基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本申请精神的基础上所做的这些修改或改进,均属于本申请要求保护的范围。
Claims (10)
- 一种高效能污水处理喷射器,其特征在于:包括尾座和喷嘴;所述尾座包括配合段、以及与水泵连接的进液段;所述进液段内部设有进液腔体,所述配合段内部设有气液混合腔体,在进液腔体与气液混合腔体之间设有喉颈;所述配合段设有与气液混合腔体连通的进气口;所述喷嘴包括插入尾座气液混合腔体内的引流段、以及向外侧延伸的喷射段;所述引流段内部设有引流腔体,喷射段内部设有喷射腔体;在引流腔体与喷射腔体之间设有衔接部;所述喷射腔体朝外的一侧为喷射口,引流腔体朝向尾座的一侧为引流口;所述喷射腔体为从衔接部起向外喷射口一侧逐渐扩口的变径结构;所述喷嘴的引流段外壁与尾座的配合段内壁之间形成充气腔,引流段的端面与喉颈之间形成过气间隙。
- 根据权利要求1所述的一种高效能污水处理喷射器,其特征在于:所述进气口沿配合段径向布置。
- 根据权利要求1所述的一种高效能污水处理喷射器,其特征在于:所述喷嘴上设有连接盘,所述配合段的端面处设有与连接盘上凸台配合的定位台。
- 根据权利要求3所述的一种高效能污水处理喷射器,其特征在于:所述连接盘朝向尾座的一侧的外端面上设有喷嘴密封环,所述尾座的配合段端面上设有与喷嘴密封环匹配的尾座密封环。
- 根据权利要求3所述的一种高效能污水处理喷射器,其特征在于:所述喷嘴通过连接盘上的连接件固定在尾座上。
- 根据权利要求5所述的一种高效能污水处理喷射器,其特征在于:所述连接件采用全螺纹螺钉。
- 根据权利要求1所述的一种高效能污水处理喷射器,其特征在于:所述喉颈包括尾座内部的凸环,该凸环与进液腔体的侧壁之间设有第一弧面过渡结构,凸环与气液混合腔体的侧壁之间设有第二弧面过渡段结构。
- 根据权利要求1所述的一种高效能污水处理喷射器,其特征在于:所述过气间隙引出的气体垂直水体经过的流动方向。
- 根据权利要求1所述的一种高效能污水处理喷射器,其特征在于:所述尾座的进液段的自由端设有连接螺纹,且在连接螺纹与配合段之间设有卡槽。
- 根据权利要求1-9任一项所述的一种高效能污水处理喷射器,其特征在于:所述喷射腔体锥度为5°。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910114064.7A CN109650523B (zh) | 2019-02-14 | 2019-02-14 | 一种高效能污水处理喷射器 |
CN201910114064.7 | 2019-02-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2020164370A1 WO2020164370A1 (zh) | 2020-08-20 |
WO2020164370A9 true WO2020164370A9 (zh) | 2021-04-08 |
Family
ID=66122227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/073148 WO2020164370A1 (zh) | 2019-02-14 | 2020-01-20 | 一种高效能污水处理喷射器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109650523B (zh) |
WO (1) | WO2020164370A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109650523B (zh) * | 2019-02-14 | 2024-02-13 | 环亚(天津)环保科技有限公司 | 一种高效能污水处理喷射器 |
CN110496716B (zh) * | 2019-09-18 | 2024-06-04 | 宁波太中实业有限公司 | 涡流式脱硫除尘喷头 |
CN113926411A (zh) * | 2021-10-27 | 2022-01-14 | 格林美(江苏)钴业股份有限公司 | 一种带预混功能的气液反应装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3443728B2 (ja) * | 1998-02-09 | 2003-09-08 | 孝 山本 | 汚水の浄化処理装置 |
CN101905201B (zh) * | 2010-07-09 | 2013-01-23 | 中冶京诚工程技术有限公司 | 无气阻的新型气雾喷嘴及气雾形成方法 |
CN103601285A (zh) * | 2013-10-15 | 2014-02-26 | 江苏兴海环保科技有限公司 | 一种射流曝气器 |
KR101483412B1 (ko) * | 2014-07-23 | 2015-01-21 | 주식회사 디스텍 | 마이크로 버블 노즐 |
KR20170104351A (ko) * | 2016-03-07 | 2017-09-15 | 김홍노 | 미세기포 발생장치 |
CN108159910A (zh) * | 2016-12-08 | 2018-06-15 | 镇江苏佰鑫工程机械有限公司 | 一种混合喷射器 |
CN206924634U (zh) * | 2017-03-27 | 2018-01-26 | 广州奇美纯水设备科技有限公司 | 一种喷射式混合器 |
CN106830382B (zh) * | 2017-03-31 | 2022-12-23 | 浙江华庆元生物科技有限公司 | 一种超微纳米气泡射流增氧器 |
CN207371376U (zh) * | 2017-10-11 | 2018-05-18 | 大连格宾环境技术有限公司 | 微纳米射流曝气机 |
CN208040787U (zh) * | 2018-03-29 | 2018-11-02 | 中国神华能源股份有限公司 | 喷射器 |
CN209602225U (zh) * | 2019-02-14 | 2019-11-08 | 环亚(天津)环保科技有限公司 | 一种高效能污水处理喷射器喷嘴 |
CN209602189U (zh) * | 2019-02-14 | 2019-11-08 | 环亚(天津)环保科技有限公司 | 一种高效能污水处理喷射器 |
CN209890324U (zh) * | 2019-02-14 | 2020-01-03 | 环亚(天津)环保科技有限公司 | 一种高效能污水处理喷射器尾座 |
CN109650523B (zh) * | 2019-02-14 | 2024-02-13 | 环亚(天津)环保科技有限公司 | 一种高效能污水处理喷射器 |
-
2019
- 2019-02-14 CN CN201910114064.7A patent/CN109650523B/zh active Active
-
2020
- 2020-01-20 WO PCT/CN2020/073148 patent/WO2020164370A1/zh active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CN109650523A (zh) | 2019-04-19 |
CN109650523B (zh) | 2024-02-13 |
WO2020164370A1 (zh) | 2020-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020164370A9 (zh) | 一种高效能污水处理喷射器 | |
CN204324933U (zh) | 大流量水质气浮净化处理用微细气泡发生器 | |
CN103041723B (zh) | 微细气泡发生装置 | |
JP4636420B2 (ja) | 微細気泡発生装置 | |
CN109304108B (zh) | 微纳米气泡发生装置、方法及在染料废水处理上的应用 | |
KR101483412B1 (ko) | 마이크로 버블 노즐 | |
US20210138410A1 (en) | Microbubble generation device and microbubble generation method, and shower apparatus and oil-water separation apparatus having said microbubble generation device | |
KR20150003473U (ko) | 기체를 액체에 용해시키는 생성 장치 및 유체 노즐 | |
CN202968244U (zh) | 射流曝气器 | |
CN207031093U (zh) | 一种射流曝气机 | |
CN201050511Y (zh) | 湿法脱硫强制氧化中应用的射流泵 | |
CN109157993B (zh) | 一种微纳气泡产生器及产生方法 | |
CN103342420B (zh) | 一种高效节能射流曝气器 | |
CN208586118U (zh) | 一种尾端加强吸气射流曝气装置 | |
CN206636848U (zh) | 一种抗震喷射泵 | |
CN110316812B (zh) | 一种基于气动旋流强制掺混技术的高效曝气器及应用 | |
CN202400897U (zh) | 一种侧向进风自旋转空气切割曝气器 | |
CN109502777B (zh) | 一种高效射流曝气器 | |
CN209602189U (zh) | 一种高效能污水处理喷射器 | |
CN110217903A (zh) | 一种自吸气式微纳米气泡发生装置 | |
CN203440164U (zh) | 一种高效节能射流曝气器 | |
CN209890324U (zh) | 一种高效能污水处理喷射器尾座 | |
CN212799797U (zh) | 微纳米射流曝气喷嘴 | |
CN108328756A (zh) | 一种空气导流水处理装置、系统及方法 | |
CN209872534U (zh) | 一种超氧纳米微气泡曝气装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20755485 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20755485 Country of ref document: EP Kind code of ref document: A1 |