WO2020164241A1 - 一种粗煤泥重力分选设备与方法 - Google Patents
一种粗煤泥重力分选设备与方法 Download PDFInfo
- Publication number
- WO2020164241A1 WO2020164241A1 PCT/CN2019/106919 CN2019106919W WO2020164241A1 WO 2020164241 A1 WO2020164241 A1 WO 2020164241A1 CN 2019106919 W CN2019106919 W CN 2019106919W WO 2020164241 A1 WO2020164241 A1 WO 2020164241A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spiral
- groove
- slime
- chute
- density
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03B—SEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
- B03B5/00—Washing granular, powdered or lumpy materials; Wet separating
- B03B5/62—Washing granular, powdered or lumpy materials; Wet separating by hydraulic classifiers, e.g. of launder, tank, spiral or helical chute concentrator type
- B03B5/626—Helical separators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03B—SEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
- B03B5/00—Washing granular, powdered or lumpy materials; Wet separating
- B03B5/48—Washing granular, powdered or lumpy materials; Wet separating by mechanical classifiers
- B03B5/52—Spiral classifiers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03B—SEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
- B03B5/00—Washing granular, powdered or lumpy materials; Wet separating
- B03B5/62—Washing granular, powdered or lumpy materials; Wet separating by hydraulic classifiers, e.g. of launder, tank, spiral or helical chute concentrator type
Definitions
- the invention relates to a coarse slime gravity separation equipment and method, in particular to the coarse slime gravity separation equipment and method used in the technical field of coal separation.
- the particle size of coarse slime is between the lower limit of heavy-medium separation and the upper limit of flotation (2-0.3mm). It is difficult to increase the coarse slime by heavy-medium separation and flotation. Precision sorting. Therefore, coarse coal slime is generally separated separately, and its separation process also has a decisive linking effect in the entire coal separation process.
- the quality of its separation effect is directly related to the efficiency of the heavy-medium separation and slime water treatment. .
- the large-scale application of large-diameter heavy-medium cyclones and fine-grained coal processing equipment improves product quality and separation effects, while also reducing the separation of coarse slime near the boundary between gravity separation and slime water treatment to a certain extent. Choose the effect.
- the problem of coarse slime separation has become the main bottleneck affecting the increase in clean coal yields of most domestic coal preparation plants.
- the slime gravity separation equipment of the present invention includes a spiral generator, above which is provided with a spiral separation device;
- the spiral generator includes a base and a vibration exciter arranged in the base;
- the spiral sorting device includes a cylindrical spiral outer bracket, an end cover is arranged on the top of the outer bracket of the sorter, a material modification port is arranged on one side of the top end cover of the outer bracket of the sorter, and the bottom of the outer bracket of the sorter is connected with the base.
- the outer bracket of the separator is provided with a spiral central shaft in the axial direction. The top of the spiral central shaft is movably connected with the end cap, and the bottom end is connected with the vibration exciter.
- the spiral outer bracket is provided on the spiral central shaft. There is a spiral bottom bracket.
- the spiral bottom bracket is provided with a spiral groove surface groove from top to bottom.
- the bottom end of the spiral groove surface groove is provided with a discharge port, and the discharge port is equipped with a product interceptor.
- the vibration direction of the exciter is perpendicular to the central axis support of the spiral chute.
- the spiral groove can be disassembled.
- the depth of the spiral groove gradually deepens from the inside to the outside in the radial direction.
- the high-density particles move along the groove from the outside to the inside under the action of the rotating water flow at the bottom.
- inclusions The low-density particles in the bottom layer are flushed out by the upper water flow, so that the vertical velocity of the water flow strengthens the separation and stratification of the material, so that the light particles strayed into the bottom of the spiral groove and the heavy particles strayed into the edge of the spiral groove are restored. Layering and zoning.
- a method for gravity separation of slime the steps are:
- the spiral central axis drives the spiral central axis bracket to generate an exciting moment around the vertical spiral central axis. On the one hand, it enhances the radial centrifugal force of the material and accelerates the lateral movement speed of the upper water flow in the spiral chute.
- the low-density part of the coarse slime floats on the upper water flow and is quickly thrown to the outer edge of the chute, and the high-density part of the coarse slime sinks into the lower water flow to realize the rapid stratification of the material particles; on the other hand, the excitation around the spiral axis
- the torque also increases the inward friction of the spiral chute facing the bottom of the material, reduces the rotation speed of the coarse slime and the underlying water flow, and strengthens the speed difference of the coarse slime of different densities at the bottom of the spiral chute.
- a high-density zone, a medium-density zone and a low-density zone are sequentially formed on the spiral section of the spiral chute from the inside to the outside to realize the lateral zoning of light and heavy particles;
- the chute surface of the spiral chute is provided with a spiral groove surface groove along the upper spiral line.
- the groove depth of the spiral groove surface groove gradually deepens from the inside to the outside in the radial direction.
- the product interceptor at the bottom discharge end of the spiral separator divides the slime belt on the cross section of the spiral chute into three parts: clean coal, medium coal, and tail coal, and discharge them through their respective discharge ports.
- the vibration exciter of the spiral central axis bracket generates the excitation torque around the vertical axis.
- the excitation torque around the vertical axis enhances the radial centrifugal force of the material.
- it enhances the radial centrifugal force of the material and accelerates the vibration in the spiral chute.
- the lateral movement speed of the upper water flow makes the low-density part of the coarse slime float on the upper water flow and is quickly thrown to the outer edge of the chute; the high-density part of the coarse slime sinks into the lower water flow to achieve rapid stratification of the material particles.
- the exciting moment around the vertical axis also increases the inward friction of the chute facing the bottom layer of the material, reduces the rotation speed and centrifugal force of the coarse slime and the lower water flow, and strengthens the coarse slime of different densities in the chute.
- the speed difference of the bottom movement further enhances the efficiency and accuracy of the material stratification in the chute, and realizes the lateral separation of light and heavy particles;
- the spiral chute surface is provided with grooves along the upper spiral line, and the depth of the groove gradually increases from the inside to the outside in the radial direction.
- the vertical velocity of the water generated thereby strengthens the separation and stratification of the material.
- the spiral groove can be disassembled, and the radial height of the spiral groove can be of different types. Different types of grooves can be selected according to the properties of different coal samples. For coarse slime materials with small density differences and difficult to sort, spiral grooves with large radial height changes are selected to strengthen the layering effect of the slime according to density and improve the sorting efficiency; for coarse slime materials with large density differences and easy sorting The slime material selects spiral grooves with small radial height changes to increase the slime processing capacity and ensure the recovery rate.
- Figure 1 is a schematic diagram of the structure of the gravity separation device of the present invention.
- Fig. 2 is a plan view of the groove of the present invention.
- Figure 3 is a schematic cross-sectional view of the groove of the present invention.
- the slime gravity separation equipment is characterized in that it includes a spiral generating device, and a spiral separating device is arranged above the spiral generating device;
- the spiral generating device includes a base 8 and a base 8 Vibration exciter 6;
- the spiral sorting device includes a cylindrical spiral outer bracket 3, the top of the sorter outer bracket 3 is provided with an end cover, and the top end of the sorter outer bracket 3 is provided with a material modification port 1.
- a plurality of rubber spring tubes 7 are arranged at the connection between the bottom of the outer bracket 3 of the separator and the base 8.
- the outer bracket 3 of the separator is provided with a spiral central axis in the axial direction.
- the top of the spiral central axis is movably connected with the end cover, and the bottom end is connected with the excitation
- the vibration direction of the vibration exciter 6 is perpendicular to the central axis support of the spiral chute.
- the spiral external support 3 is provided with a spiral central axis support 4 on the spiral central axis, and the spiral central axis support 4 is set from top to bottom.
- the spiral groove 5 can be disassembled.
- the depth of the spiral groove 5 gradually deepens from the inside to the outside in the radial direction.
- the high-density particles move along the groove from the outside to the inside under the action of the bottom rotating water flow.
- the low-density particles in the bottom layer are washed out by the upper water flow, so that the vertical velocity of the water flow strengthens the separation and stratification of the material, and the light that enters the bottom of the spiral groove 5 Particles and heavy particles strayed into the edge of the spiral groove 5 are re-layered and zoned.
- a method for gravity separation of slime the steps are:
- the spiral central axis drives the spiral central axis bracket 4 to generate an exciting moment around the vertical spiral central axis. On the one hand, it enhances the radial centrifugal force of the material and accelerates the lateral movement of the upper water flow in the spiral chute.
- the low-density part of the coarse slime floats on the upper water flow and is quickly thrown to the outer edge of the chute 2, and the high-density part of the coarse slime sinks into the lower water flow to achieve rapid stratification of the material particles; on the other hand, it is around the spiral axis
- the exciting moment also increases the inward friction of the spiral chute 2 facing the bottom of the material, reduces the rotation speed of the coarse slime and the lower water flow, and strengthens the coarse slime of different densities at the bottom of the spiral chute 2.
- the spiral cross section of the spiral chute 2 finally forms a high-density zone, a medium-density zone and a low-density zone from the inside to the outside according to the density difference, realizing the lateral zoning of light and heavy particles;
- the spiral groove surface of the spiral chute 2 is provided with a spiral groove surface groove 5 along the upper spiral line.
- the groove depth of the spiral groove surface groove 5 gradually deepens from the inside to the outside in the radial direction.
Landscapes
- Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
- Treatment Of Sludge (AREA)
Abstract
Description
Claims (4)
- 一种煤泥重力分选设备,其特征在于:它包括螺旋发生装置,螺旋发生装置上方设有螺旋分选装置;所述的螺旋发生装置包括底座(8)和设置在底座(8)中的激振器(6);所述螺旋分选装置包括柱状螺旋外部支架(3),分选器外部支架(3)顶部设有端盖,分选器外部支架(3)顶部端盖一侧设有改料口(1),分选器外部支架(3)底部与底座(8)连接处设有多个橡胶弹簧管(7),分选器外部支架(3)的圆心轴向设有螺旋中轴,螺旋中轴顶端与端盖活动连接、底端与激振器(6)相连接,螺旋外部支架(3)内在螺旋中轴上设有螺旋中轴支架(4),螺旋中轴支架(4)自上而下设有螺旋槽面凹槽(5),螺旋槽面凹槽(5)的底端设有排料口(9),排料口(9)中设有产品截取器。
- 根据权利要求1所述的煤泥重力分选设备,其特征在于:所述的激振器(6)振动方向垂直于螺旋溜槽的中轴支架。
- 根据权利要求1所述的煤泥重力分选设备,其特征在于:所述螺旋凹槽(5)可以拆卸,螺旋凹槽(5)槽内深度沿径向由内向外逐渐加深,高密度颗粒在底层回转水流作用下,从外向内沿槽运动,随着凹槽(5)深度的减小,夹杂在底层的低密度颗粒被上层水流冲出,从而使水流垂直分速强化了物料的析离分层,使误入螺旋凹槽(5)槽底的轻颗粒及误入螺旋凹槽(5)槽边缘的重颗粒重新分层、分带。
- 一种使用权利要求1所述煤泥重力分选设备的分选方法,其特征在于步骤为:通过给料口(1)向螺旋外部支架(3)中的螺旋中轴支架(4)给入煤泥和水作为物料,在重力作用下煤泥水物料沿切线方向落入螺旋溜槽(2),并依次通过螺旋溜槽(2)上的螺旋槽面凹槽(5)进行分选;在激振器(6)的作用下螺旋中轴带动螺旋中轴支架(4)产生围绕垂直方向螺旋中轴的激振力矩,一方面增强了物料的径向离心力,加快了螺旋溜槽中的上层水流的横向运动速度,粗煤泥中低密度部分浮于上层水流,被快速甩向溜槽外缘(2),粗煤泥中高密度部分沉入下层水流,实现物料粒群的快速分层;另一方面围绕螺旋中轴的激振力矩也增大了螺旋溜槽(2)的溜槽面对物料底层向内的摩擦力,降低了粗煤泥与下层水流的的回转速度,强化了不同密度的粗煤泥在螺旋溜槽(2)溜槽底部运动的速度差异,最终根据密度差异在螺旋溜槽(2)的螺旋截面上由内向外依次形成高密度区、中密度区与低密度区,实现轻重颗粒的横向分带;在螺旋溜槽(2)的溜槽面设有沿上螺旋线的螺旋槽面凹槽(5),螺旋槽面凹槽(5)的槽内深度沿径向由内向外逐渐加深,当物料在激振器(6)和重力作用向下通过螺旋槽面凹槽(5)时,误入螺旋槽面凹槽(5)槽底的轻颗粒及误入槽边缘的重颗粒在下层水流回转运动中会重新分层、分带,从而强化密度分选的效果;物料分层、分带稳定后,不同密度的粗煤泥颗粒按各自的回转半径沿螺旋溜槽(2)运动,高密度颗粒与低密度颗粒由内向外沿螺旋溜槽(2)的截面均匀排列,形成连续的煤泥带,最终被设在螺旋分选机底部排料端的产品截取器将螺旋溜槽截面上的煤泥带横向分割成精煤、中煤、尾煤三部分,并通过各自的排料口(9)排出。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020140910A RU2753569C1 (ru) | 2019-02-12 | 2019-09-20 | Устройство и способ гравитационной сепарации крупнокускового угольного шлама |
GB2100773.7A GB2595545B (en) | 2019-02-12 | 2019-09-20 | Gravity separation apparatus and method for coarse coal slime |
CA3105291A CA3105291C (en) | 2019-02-12 | 2019-09-20 | Gravity separation apparatus and method for coarse coal slime |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910113274.4 | 2019-02-12 | ||
CN201910113274.4A CN109746112B (zh) | 2019-02-12 | 2019-02-12 | 一种粗煤泥重力分选设备与方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020164241A1 true WO2020164241A1 (zh) | 2020-08-20 |
Family
ID=66406608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/106919 WO2020164241A1 (zh) | 2019-02-12 | 2019-09-20 | 一种粗煤泥重力分选设备与方法 |
Country Status (5)
Country | Link |
---|---|
CN (1) | CN109746112B (zh) |
CA (1) | CA3105291C (zh) |
GB (1) | GB2595545B (zh) |
RU (1) | RU2753569C1 (zh) |
WO (1) | WO2020164241A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113289774A (zh) * | 2021-05-17 | 2021-08-24 | 陕西陕煤铜川矿业有限公司 | 粗煤泥回收精煤系统及方法 |
CN113458126A (zh) * | 2021-07-30 | 2021-10-01 | 李晓慧 | 一种煤化渣固废再生利用设备 |
CN114716126A (zh) * | 2022-03-29 | 2022-07-08 | 黄道驰 | 一种制沙尾泥环保净化综合利用及矿物质回收工艺 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109746112B (zh) * | 2019-02-12 | 2020-09-04 | 中国矿业大学 | 一种粗煤泥重力分选设备与方法 |
CN111495572A (zh) * | 2020-04-14 | 2020-08-07 | 武汉科技大学 | 一种振动螺旋溜槽装置 |
CN112844810B (zh) * | 2021-01-05 | 2022-05-17 | 周庆佳 | 一种回收精煤的装置及其方法 |
CN113751186B (zh) * | 2021-05-25 | 2023-04-07 | 中国地质科学院郑州矿产综合利用研究所 | 一种气化粗渣回收精碳粉—玻璃微珠的工艺方法 |
CN113751184B (zh) * | 2021-05-25 | 2023-03-28 | 中国地质科学院郑州矿产综合利用研究所 | 一种从气化黑水细渣中回收玻璃微珠及碳精粉的方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1500752A (zh) * | 2002-11-13 | 2004-06-02 | 新汶矿业集团有限责任公司华丰煤矿 | 洗煤厂煤泥水回收精煤的方法与设备 |
CN203061272U (zh) * | 2012-08-09 | 2013-07-17 | 北京华德创业环保设备有限公司 | 一种耐磨的螺旋分选机 |
KR20140133109A (ko) * | 2013-05-09 | 2014-11-19 | 코오롱글로텍주식회사 | 충진재 리사이클용 선별 시스템 및 방법 |
CN204523209U (zh) * | 2014-12-30 | 2015-08-05 | 中国矿业大学 | 一种螺旋升流式液固流化床分选设备 |
CN105057085A (zh) * | 2015-07-16 | 2015-11-18 | 中国矿业大学 | 一种旋流扫选干扰床粗煤泥分选方法 |
CN106669961A (zh) * | 2016-06-20 | 2017-05-17 | 中国矿业大学 | 一种中煤回收精煤工艺 |
CN206980968U (zh) * | 2017-06-01 | 2018-02-09 | 李�瑞 | 反逆流选矿装置 |
CN107983527A (zh) * | 2018-01-14 | 2018-05-04 | 福建康鑫矿山设备制造有限公司 | 一种交变刻槽离心旋转螺旋选矿机 |
CN208213407U (zh) * | 2018-04-04 | 2018-12-11 | 中国矿业大学 | 一种具有稳定流化环境的粗煤泥分选装置 |
CN109746112A (zh) * | 2019-02-12 | 2019-05-14 | 中国矿业大学 | 一种粗煤泥重力分选设备与方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU2706A1 (ru) * | 1924-04-30 | 1924-09-15 | И.И. Крутулевский | Электрический генератор |
US4159242A (en) * | 1977-08-08 | 1979-06-26 | Leon Walker | Coal washing apparatus |
CN1003568B (zh) * | 1987-11-17 | 1989-03-15 | 新疆有色金属研究所 | 高频振动螺旋溜槽选矿机 |
RU63254U1 (ru) * | 2007-01-29 | 2007-05-27 | Бабин Владимир Александрович | Винтовой сепаратор |
CN101417259B (zh) * | 2008-11-26 | 2011-05-11 | 中国矿业大学 | 一种选煤螺旋分选机 |
CN203379983U (zh) * | 2013-08-07 | 2014-01-08 | 江西省威尔国际矿业装备有限公司 | 一种新型刻槽螺旋溜槽 |
CN103510984B (zh) * | 2013-10-23 | 2015-05-20 | 中国矿业大学 | 固体充填采煤充采质量比设计方法 |
CN103902780B (zh) * | 2014-04-08 | 2017-01-04 | 中国矿业大学 | 固体充填采煤地表变形预计方法 |
CN105798052B (zh) * | 2016-04-18 | 2018-01-12 | 中国矿业大学 | 加速煤矸石充填复垦沉降稳定的湿润处理方法 |
CN105903549A (zh) * | 2016-06-03 | 2016-08-31 | 中国矿业大学(北京) | 一种新型高频振动分叉螺旋溜槽 |
CN106198232A (zh) * | 2016-07-19 | 2016-12-07 | 中国矿业大学 | 一种基于实测的充填材料力学特性曲线修正方法 |
CN206082811U (zh) * | 2016-08-29 | 2017-04-12 | 福州大学 | 一种选矿机的螺旋槽结构 |
CN207430503U (zh) * | 2017-10-30 | 2018-06-01 | 江西石城县永盛选矿设备制造有限公司 | 一种微细粒级选矿螺旋溜槽 |
CN108970798A (zh) * | 2018-07-23 | 2018-12-11 | 江西石城县南方有色选矿设备制造有限公司 | 一种新型螺旋溜槽 |
CN109117585B (zh) * | 2018-09-06 | 2022-10-28 | 中国矿业大学 | 一种固体充填材料内部应力确定方法 |
-
2019
- 2019-02-12 CN CN201910113274.4A patent/CN109746112B/zh active Active
- 2019-09-20 WO PCT/CN2019/106919 patent/WO2020164241A1/zh active Application Filing
- 2019-09-20 GB GB2100773.7A patent/GB2595545B/en active Active
- 2019-09-20 CA CA3105291A patent/CA3105291C/en active Active
- 2019-09-20 RU RU2020140910A patent/RU2753569C1/ru active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1500752A (zh) * | 2002-11-13 | 2004-06-02 | 新汶矿业集团有限责任公司华丰煤矿 | 洗煤厂煤泥水回收精煤的方法与设备 |
CN203061272U (zh) * | 2012-08-09 | 2013-07-17 | 北京华德创业环保设备有限公司 | 一种耐磨的螺旋分选机 |
KR20140133109A (ko) * | 2013-05-09 | 2014-11-19 | 코오롱글로텍주식회사 | 충진재 리사이클용 선별 시스템 및 방법 |
CN204523209U (zh) * | 2014-12-30 | 2015-08-05 | 中国矿业大学 | 一种螺旋升流式液固流化床分选设备 |
CN105057085A (zh) * | 2015-07-16 | 2015-11-18 | 中国矿业大学 | 一种旋流扫选干扰床粗煤泥分选方法 |
CN106669961A (zh) * | 2016-06-20 | 2017-05-17 | 中国矿业大学 | 一种中煤回收精煤工艺 |
CN206980968U (zh) * | 2017-06-01 | 2018-02-09 | 李�瑞 | 反逆流选矿装置 |
CN107983527A (zh) * | 2018-01-14 | 2018-05-04 | 福建康鑫矿山设备制造有限公司 | 一种交变刻槽离心旋转螺旋选矿机 |
CN208213407U (zh) * | 2018-04-04 | 2018-12-11 | 中国矿业大学 | 一种具有稳定流化环境的粗煤泥分选装置 |
CN109746112A (zh) * | 2019-02-12 | 2019-05-14 | 中国矿业大学 | 一种粗煤泥重力分选设备与方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113289774A (zh) * | 2021-05-17 | 2021-08-24 | 陕西陕煤铜川矿业有限公司 | 粗煤泥回收精煤系统及方法 |
CN113289774B (zh) * | 2021-05-17 | 2023-04-11 | 陕西陕煤铜川矿业有限公司 | 粗煤泥回收精煤系统及方法 |
CN113458126A (zh) * | 2021-07-30 | 2021-10-01 | 李晓慧 | 一种煤化渣固废再生利用设备 |
CN114716126A (zh) * | 2022-03-29 | 2022-07-08 | 黄道驰 | 一种制沙尾泥环保净化综合利用及矿物质回收工艺 |
CN114716126B (zh) * | 2022-03-29 | 2023-09-29 | 黄道驰 | 一种制沙尾泥环保净化综合利用及矿物质回收工艺 |
Also Published As
Publication number | Publication date |
---|---|
CN109746112B (zh) | 2020-09-04 |
CN109746112A (zh) | 2019-05-14 |
CA3105291C (en) | 2023-06-27 |
GB2595545A (en) | 2021-12-01 |
RU2753569C1 (ru) | 2021-08-17 |
CA3105291A1 (en) | 2020-08-20 |
GB202100773D0 (en) | 2021-03-03 |
GB2595545B (en) | 2022-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020164241A1 (zh) | 一种粗煤泥重力分选设备与方法 | |
US2819795A (en) | Process for the separation according to specific gravity of solids of different specific gravity and particle size | |
US20140305875A1 (en) | Apparatus and method for drilling fluid density separator using magnets | |
CN205731673U (zh) | 一种多产品旋流器 | |
CN110201790A (zh) | 一种宽粒级煤泥的分选回收系统及分选回收工艺 | |
CN111617891A (zh) | 一种多场复合细粒分级设备 | |
CN101890393A (zh) | 旋流连续离心分选机 | |
RU2592306C2 (ru) | Способ и устройство для сепарации частиц | |
CN102091669B (zh) | 同时利用重力、离心力和振动力的选矿设备和选矿方法 | |
CN109794353B (zh) | 一种用于磁铁矿分选分级的三产品径向磁场磁力旋流器 | |
CA1211090A (en) | Centrifugal separator and method of operating same | |
CN212418290U (zh) | 一种改进型复合力选矿设备 | |
US2817441A (en) | Process for separating mixture of solid particles into fractions by means of a hydrocyclone | |
CN101590451B (zh) | 煤泥旋流重选柱 | |
CN201755523U (zh) | 旋流连续离心分选机 | |
CN102626671B (zh) | 磁场选矿方法及其选矿设备 | |
CN111495572A (zh) | 一种振动螺旋溜槽装置 | |
CN111068895A (zh) | 一种复合力选矿设备 | |
CN108311295A (zh) | 一种复合力场梯级强化离心选矿机 | |
US8807346B2 (en) | Centrifugal jig | |
CN212370397U (zh) | 一种复合式分级沉降装置 | |
CN211964553U (zh) | 一种复合力选矿设备 | |
CN104923379B (zh) | 一种适用于粗煤泥高精度分选的重力分选方法及分选装置 | |
CN208944358U (zh) | 细粒金属矿分级与粗选一体化装置 | |
CN111632751A (zh) | 一种改进型复合力选矿设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19915542 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3105291 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 202100773 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20190920 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19915542 Country of ref document: EP Kind code of ref document: A1 |