WO2020162475A1 - Curable resin composition - Google Patents

Curable resin composition Download PDF

Info

Publication number
WO2020162475A1
WO2020162475A1 PCT/JP2020/004231 JP2020004231W WO2020162475A1 WO 2020162475 A1 WO2020162475 A1 WO 2020162475A1 JP 2020004231 W JP2020004231 W JP 2020004231W WO 2020162475 A1 WO2020162475 A1 WO 2020162475A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
acrylate
curable resin
resin composition
allyloxymethyl
Prior art date
Application number
PCT/JP2020/004231
Other languages
French (fr)
Japanese (ja)
Inventor
恭平 和田
卓之 平谷
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020007357A external-priority patent/JP7443069B2/en
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2020162475A1 publication Critical patent/WO2020162475A1/en
Priority to US17/392,985 priority Critical patent/US20210363377A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers

Definitions

  • the present invention relates to a curable resin composition, a cured product, and a method for producing a cured product.
  • optical three-dimensional modeling method for obtaining a three-dimensional model by curing a liquid curable resin layer by layer with energy active light such as ultraviolet rays and stacking the layers has been studied.
  • Optical three-dimensional objects can now be used not only for prototypes for rapid shape confirmation (rapid prototyping), but also for mold production (rapid tooling) and service parts (production of actual products, rapid manufacturing). Is coming.
  • the demand for material properties (impact resistance, heat resistance, flexural modulus, etc.) for three-dimensional molded objects has become more advanced, and in recent years, physical properties equivalent to engineering plastics have been required. There is.
  • Patent Document 1 discloses a curable resin composition containing a specific radical-polymerizable compound and a polyfunctional radical-polymerizable compound in order to achieve both high impact resistance and heat resistance.
  • Patent Document 2 discloses a curable resin composition comprising a radically polymerizable compound and rubber particles.
  • An object of the present invention is to provide a curable resin composition capable of obtaining a cured product having excellent heat resistance, impact resistance and flexural modulus.
  • composition according to the present embodiment, Component (A): monofunctional 2-(allyloxymethyl)acrylic acid or its ester, Component (B): a polyfunctional radically polymerizable compound having an isocyanurate ring, Component (C): radically polymerizable compound, Component (D): rubber particles, Component (E): radical polymerization initiator, Containing
  • component (A) is represented by the following general formula (1),
  • R is a hydrogen atom or a hydrocarbon group.
  • the hydrocarbon group may have an ether bond, and the hydrocarbon group may have a substituent.
  • the component (B) is represented by the following general formula (2),
  • the component (C) is a radically polymerizable compound different from the components (A) and (B), When the total of the component (A), the component (B) and the component (C) is 100 parts by mass, the component (B) is 20 parts by mass or more and 80 parts by mass or less, and the component (C ) Is 0 parts by mass or more and 40 parts by mass or less.
  • R is a hydrogen atom or a hydrocarbon group.
  • the hydrocarbon group may have an ether bond, and the hydrocarbon group may have a substituent.
  • Examples of the substituent of the hydrocarbon group represented by R include a halogen atom, a cyano group, a trimethylsilyl group and the like.
  • the hydrocarbon group may have a straight chain structure, a branched chain structure, or a cyclic structure.
  • hydrocarbon group examples include a chain saturated hydrocarbon group, a chain unsaturated hydrocarbon group having 2 or more carbon atoms, an alicyclic hydrocarbon group having 3 or more carbon atoms, and an aromatic hydrocarbon group having 6 or more carbon atoms.
  • a chain saturated hydrocarbon group having 1 to 20 carbon atoms a chain unsaturated hydrocarbon group having 2 to 20 carbon atoms, an alicyclic hydrocarbon group having 3 to 20 carbon atoms, and 6 or more carbon atoms
  • the chain saturated hydrocarbon group is not particularly limited as long as it is a linear or branched hydrocarbon group.
  • the chain saturated hydrocarbon group may have an aromatic group as
  • the chain unsaturated hydrocarbon group is not particularly limited as long as it is a straight chain or branched hydrocarbon group containing at least one non-aromatic carbon-carbon unsaturated bond.
  • the alicyclic hydrocarbon group is not particularly limited as long as it is a hydrocarbon group containing a saturated cyclic structure having three or more membered rings or an unsaturated cyclic structure that is not aromatic.
  • Preferred examples include groups such as cyclopentyl, cyclopentylmethyl, cyclohexyl, cyclohexylmethyl, 4-methylcyclohexyl, 4-t-butylcyclohexyl, tricyclodecanyl, isobornyl, adamantyl, dicyclopentanyl and dicyclopentenyl. ..
  • the aromatic hydrocarbon group is not particularly limited as long as it is a hydrocarbon group containing a 6-membered or more aromatic ring structure, and examples thereof include phenyl, methylphenyl, dimethylphenyl, trimethylphenyl, 4-t- Suitable examples include groups such as butylphenyl, diphenylmethyl, diphenylethyl, triphenylmethyl, cinnamyl, naphthyl, anthranyl and the like.
  • the hydrocarbon group containing an ether bond is a chain saturated hydrocarbon group, a chain unsaturated hydrocarbon group, an alicyclic hydrocarbon group, or an oxygen atom in at least one carbon-carbon bond constituting an aromatic hydrocarbon group. There is no particular limitation as long as it has a structure in which is inserted.
  • chain ether groups such as methoxyethyl, methoxyethoxyethyl, methoxyethoxyethoxyethyl, 3-methoxybutyl, ethoxyethyl, ethoxyethoxyethyl: cyclopentoxyethyl, cyclohexyloxyethyl, cyclopentoxyethoxyethyl, cyclohexyloxy.
  • Group having both alicyclic hydrocarbon group such as ethoxyethyl and dicyclopentenyloxyethyl and a chain ether group group having both aromatic hydrocarbon group and chain ether group such as phenoxyethyl, phenoxyethoxyethyl: glycidyl, ⁇ -Methylglycidyl, ⁇ -ethylglycidyl, 3,4-epoxycyclohexylmethyl, 2-oxetanemethyl, 3-methyl-3-oxetanemethyl, 3-ethyl-3-oxanemethyl, tetrahydrofuranyl, tetrahydrofurfuryl, tetrahydropyranyl, Preferred examples include cyclic ether groups such as dioxazolanyl and dioxanyl.
  • Examples of the component (A) include 2(allyloxymethyl)acrylic acid, 2-(allyloxymethyl)methyl acrylate, 2-(allyloxymethyl)ethyl acrylate, and 2-(allyloxymethyl)acrylic acid n.
  • -Propyl i-propyl 2-(allyloxymethyl)acrylate, n-butyl 2-(allyloxymethyl)acrylate, n-pentyl 2-(allyloxymethyl)acrylate, 2-(allyloxymethyl)acrylic Acid s-Pentyl, 2-(allyloxymethyl)acrylic acid t-pentyl, 2-(allyloxymethyl)acrylic acid neopentyl, 2-(allyloxymethyl)acrylic acid n-hexyl,2-(allyloxymethyl)acrylic acid Acid s-hexyl, 2-(allyloxymethyl)acrylic acid n-heptyl, 2-(allyloxymethyl)acrylic acid n-octyl, 2-(allyloxymethyl)acrylic
  • a commercially available product can be used as the component (A), and examples thereof include AOMA (manufactured by Nippon Shokubai Co., Ltd.).
  • the component (A) has a structure in which the carbon-carbon double bond at the ⁇ -position of the carbonyl group in the ester structure is sterically crowded as compared with the methacrylic acid ester, but is radical polymerized at least as good as the acrylic acid ester. Have activity.
  • the component (A) is a main chain skeleton having a 5-membered ring ether structure in which a carbon-carbon double bond at the ⁇ -position and a terminal double bond are polymerized while cyclizing, and methylene groups are arranged on both sides as a repeating unit. To form. Further, the polymer obtained from the polymerizable composition containing the component (A) has a characteristic of being excellent in tough mechanical properties due to the unique main chain skeleton generated by the polymerization.
  • the content of the component (A) is preferably 20 parts by mass or more and 80 parts by mass or less, more preferably 20 parts by mass or more based on 100 parts by mass of the total of the components (A), (B) and (C). It is 75 parts by mass or less, more preferably 20 parts by mass or more and 70 parts by mass or less. If the component (A) is 20 parts by mass or more, the impact resistance of the cured product will be sufficient, and if it is 80 parts by mass or less, the heat resistance of the cured product will be sufficient.
  • Component (B) polyfunctional radically polymerizable compound having isocyanurate ring>
  • the polyfunctional radically polymerizable compound having an isocyanurate ring, which is the component (B), is represented by the following general formula (2).
  • two or more of X 1 , X 2 , and X 3 are each independently a radically polymerizable group.
  • X 1 , X 2 , and X 3 are each independently a radically polymerizable group.
  • the radically polymerizable group include an allyl group, a (meth)acryloyl group, a (meth)acryloyloxyalkyl group, and the like.
  • (meth)acryloyl (group) means acryloyl (group) or methacryloyl (group).
  • X 1 , X 2 , and X 3 are radically polymerizable groups
  • the remaining one is a condensable group such as a hydroxy group, an amino group, a carboxyl group, a sulfonyl group, or an aromatic group such as a phenyl group.
  • a condensable group such as a hydroxy group, an amino group, a carboxyl group, a sulfonyl group, or an aromatic group such as a phenyl group. Groups, and the like.
  • triallyl isocyanurate, diallyl isocyanurate, ethoxylated isocyanuric acid triacrylate, ethoxylated isocyanuric acid diacrylate, ⁇ -caprolactone modified tris-(2-acryloxyethyl) isocyanurate, ⁇ -caprolactone modified Bis-(2-acryloxyethyl) isocyanurate can be preferably used.
  • a commercial item can be used as a component (B).
  • A-9300 (Shin Nakamura Chemical Co., Ltd.), A-9200 (Shin Nakamura Chemical Co., Ltd.), A-9300-1CL (Shin Nakamura Chemical Co., Ltd.), FA-731A (Hitachi Chemical Co., Ltd.) Company manufactured), TAIC (TM) (manufactured by Mitsubishi Chemical Co., Ltd.), TMAIC (TM) (manufactured by Mitsubishi Chemical Co., Ltd.) and the like.
  • the content of the component (B) in the curable resin composition is 20 parts by weight with respect to 100 parts by weight of the total of the components (A), (B) and (C). Parts or more and 80 parts by mass or less, preferably 25 parts by mass or more and 80 parts by mass or less, more preferably 30 parts by mass or more and 80 parts by mass or less.
  • the amount of the component (B) is less than 20 parts by mass, the crosslinked density of the cured product is insufficient, and thus the cured product may not have sufficient heat resistance.
  • the effects of the present invention may be impaired, which is not preferable.
  • the amount of the component (B) exceeds 80 parts by mass, the cross-linking density of the cured product becomes excessive and the plastic deformation of the rubber particles (component (D)) is hindered, so that the effect of improving the impact resistance of the cured product is difficult to obtain. There is a tendency that the effects of the present invention may be impaired, which is not preferable.
  • Component (C) radically polymerizable compound>
  • a radical polymerizable compound (component (C)) different from the component (A) and the component (B) can be added to the curable resin composition according to the present embodiment.
  • the component (C) include, but are not limited to, commonly used monofunctional and polyfunctional radically polymerizable compounds, (meth)acrylates, compounds having polyrotaxane, and the like.
  • the component (C) can be appropriately added according to the desired properties of the cured product.
  • (meth)acrylate means acrylate or methacrylate.
  • (Meth)acrylate is a radically polymerizable compound having at least one (meth)acryloyl group, and is polymerized by radicals generated by a radical polymerization initiator (component (E)) described later.
  • the component (C) may be composed of one kind or plural kinds.
  • the number of (meth)acryloyl groups contained in (meth)acrylate is not particularly limited.
  • the (meth)acrylate include monofunctional (meth)acrylates having one (meth)acryloyl group in the molecule, bifunctional (meth)acrylates having two (meth)acryloyl groups in the molecule, and Include, but are not limited to, a trifunctional (meth)acrylate having three (meth)acryloyl groups, and a tetrafunctional or more (meth)acrylate having four or more (meth)acryloyl groups in the molecule. is not.
  • urethane (meth)acrylate having a urethane structure in the molecular structure polyester (meth)acrylate having a polyester structure in the molecular structure, or the like may be used.
  • the (meth)acrylate examples include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, i-propyl (meth)acrylate, and n-(meth)acrylate.
  • urethane (meth)acrylate examples include polycarbonate-based urethane (meth)acrylate, polyester-based urethane (meth)acrylate, polyether-based urethane (meth)acrylate, and caprolactone-based urethane (meth)acrylate. , But not limited to these.
  • These urethane (meth)acrylates can be obtained by reacting an isocyanate compound obtained by reacting a polyol with a diisocyanate, and a (meth)acrylate monomer having a hydroxyl group.
  • specific examples of the polyol include polycarbonate diol, polyester polyol, polyether polyol, and polycaprolactone polyol.
  • the polyester (meth)acrylate is obtained, for example, by condensing a polycarboxylic acid and a polyol to obtain a polyester oligomer having a hydroxyl group at the terminal, and then esterifying the hydroxyl group at the terminal with acrylic acid.
  • a cyclic molecule having a (meth)acryloyl group a linear molecule penetrating the plurality of cyclic molecules in a skewered shape, and elimination of the plurality of cyclic molecules arranged at both ends of the linear upper molecule
  • a blocking group that prevents the polyrotaxane can be included.
  • Examples of commercially available polyrotaxanes that can be used as the polyrotaxane having a (meth)acryloyl group according to the present embodiment include SeRM SM3405P, SeRM SA3405P, SeRM SM3400C, SeRM SA3400C, SeRM SA2400C (all of which are Advanced Soft Materials). (Manufactured by KK).
  • the addition amount of the component (C) is 0 parts by mass or more and 40 parts by mass or less, preferably 0 parts by mass or more and 30 parts by mass, based on 100 parts by mass of the total of the components (A), (B) and (C). Below the section. When the amount of the component (C) is 40 parts by mass or more, the structure derived from the component (A) cannot exhibit sufficient impact resistance (toughness) in the cured product.
  • the curable resin composition according to the present embodiment can improve the impact resistance of the cured product by adding rubber particles (component (D)).
  • the component (D) is not particularly limited, but for example, butadiene rubber particles, styrene/butadiene rubber copolymer particles, acrylonitrile/butadiene copolymer rubber particles and the like can be used. Further, saturated rubber particles obtained by hydrogenating or partially hydrogenating these diene rubbers, crosslinked butadiene rubber particles, isoprene rubber particles, chloroprene rubber particles, natural rubber particles, silicone rubber particles, ethylene/propylene/diene monomer terpolymer rubber particles.
  • the curable resin composition is selected from butadiene rubber particles, crosslinked butadiene rubber particles, styrene/butadiene copolymer rubber particles, acrylic rubber particles and silicone/acrylic composite rubber particles from the viewpoint of improving the impact resistance of the cured product. It is preferable to include at least one kind of particles that are
  • the addition amount of the rubber particles in the curable resin composition is preferably 0.1 parts by mass or more and 50 parts by mass or less based on 100 parts by mass of the total of the components (A), (B) and (C). , And more preferably 5 parts by mass or more and 40 parts by mass or less.
  • the content of the rubber particles (D) is within the above range, the cured product can have both good heat resistance and good impact resistance (toughness).
  • the component (D) is preferably a rubber particle having a multilayer structure (core-shell structure) having the above-mentioned rubber particles as a core portion and at least one shell layer covering the core portion.
  • the glass transition temperature of the polymer constituting the core portion is not particularly limited, but is preferably lower than 0°C, more preferably lower than -20°C, and further preferably -40°C or lower. By setting the glass transition temperature of the polymer forming the core portion to 0° C. or lower, the impact resistance of the cured product tends to be favorably improved.
  • the glass transition temperature of the polymer constituting the core portion means a calculated value calculated by the following Fox equation (see Bull. Am. Phys. Soc., 1(3)123 (1956)).
  • Wi Mass fraction of monomer i with respect to the total amount of monomers constituting the polymer constituting the core portion
  • Tgi Glass transition temperature of homopolymer of monomer i (unit: K)
  • glass transition temperature (Tgi) of the homopolymer the value described in various documents can be adopted, and for example, the value described in “POLYMER HANDBOOK 3rd edition” (published by John Wiley & Sons, Inc.) can be adopted. ..
  • the value of the glass transition temperature of the homopolymer obtained by polymerizing a monomer by a usual method and measured by the DSC method can be adopted.
  • the polymer forming the shell layer is preferably different from the polymer forming the core portion.
  • the monofunctional monomer component of the polymer constituting the shell layer include (meth)acrylic acid esters such as methyl (meth)acrylate, ethyl (meth)acrylate, and butyl (meth)acrylate, maleimide, styrene, 2-( Allyloxymethyl)acrylic acid ester and the like can be used, but not limited thereto.
  • Use of divinylbenzene, allyl (meth)acrylate, ethylene glycol di(meth)acrylate, diallyl maleate, triallyl cyanurate, diallyl phthalate, butylene glycol diacrylate, etc. as the polyfunctional monomer component of the polymer constituting the shell layer. You can
  • the glass transition temperature of the polymer forming the shell layer is not particularly limited, but is preferably 0° C. or higher, more preferably 15° C. or higher, and further preferably 30° C. or higher.
  • the glass transition temperature of the shell layer is a calculated value calculated by the Fox equation.
  • Rubber particles having a core-shell structure are obtained by coating the core part with a shell layer.
  • the method of coating the core portion with the shell layer include a method of coating the core portion with the shell layer and a method of graft-polymerizing the shell layer on the surface of the core portion, but preferably the shell is coated on the surface of the core portion. It is a method of graft-polymerizing a layer.
  • the average particle size of component (D) is not particularly limited, but is preferably 10 nm to 1000 nm, more preferably 20 nm to 900 nm, and further preferably 30 nm to 800 nm.
  • the average particle size of the component (D) is 10 nm or more, the effect of improving the impact resistance of the cured product can be easily obtained. If the average particle size is 1000 nm or less, the heat resistance of the cured product will be sufficient.
  • the curable resin composition according to the present embodiment is obtained by adding a radical polymerization initiator (component (E)) such as a photoradical polymerization initiator to irradiate the composition with active energy rays to obtain a cured product.
  • a radical polymerization initiator such as a photoradical polymerization initiator
  • Photo-radical polymerization initiators are mainly classified into intramolecular cleavage type and hydrogen abstraction type.
  • intramolecular cleavage type radical polymerization initiator by absorbing light of a specific wavelength, the bond at a specific site is cleaved, and a radical is generated at the cleaved site, which becomes a polymerization initiator and becomes radically polymerizable. Polymerization of the compound begins.
  • hydrogen abstraction type it absorbs light of a specific wavelength to be in an excited state, and the excited species cause a hydrogen abstraction reaction from the surrounding hydrogen donor to generate a radical, which becomes a polymerization initiator and becomes a radical. Polymerization of the polymerizable compound begins.
  • an alkylphenone type photoradical polymerization initiator As the intramolecular cleavage type photoradical polymerization initiator, an alkylphenone type photoradical polymerization initiator, an acylphosphine oxide type photoradical polymerization initiator, and an oxime ester type photoradical polymerization initiator are known. These are types in which a bond adjacent to a carbonyl group is cleaved to generate a radical species.
  • the alkylphenone-based photoradical polymerization initiator include a benzylmethylketal-based photoradical polymerization initiator, an ⁇ -hydroxyalkylphenone-based photoradical polymerization initiator, and an aminoalkylphenone-based photoradical polymerization initiator.
  • Specific compounds include, for example, benzylmethyl ketal-based photoradical polymerization initiators such as 2,2′-dimethoxy-1,2-diphenylethan-1-one (Irgacure (R)651, manufactured by BASF).
  • benzylmethyl ketal-based photoradical polymerization initiators such as 2,2′-dimethoxy-1,2-diphenylethan-1-one (Irgacure (R)651, manufactured by BASF).
  • ⁇ -hydroxyalkylphenone-based photoradical polymerization initiator 2-hydroxy-2-methyl-1-phenylpropan-1-one (Darocur (R) 1173, manufactured by BASF), 1-hydroxycyclohexylphenyl ketone (Irgacure (R) 184, manufactured by BASF), 1-[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propan-1-one (Irgacure (R) 2959, BASF) 2-hydroxy-1- ⁇
  • acylphosphine oxide-based photoradical polymerization initiator examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide (Lucillin(R)TPO, manufactured by BASF), bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide. (Irgacure (R) 819, manufactured by BASF Corporation) and the like, but not limited thereto.
  • oxime ester-based photoradical polymerization initiator include (2E)-2-(benzoyloxyimino)-1-[4-(phenylthio)phenyl]octane-1-one (Irgacure (R) OXE-01, manufactured by BASF Corporation. ) And the like, but not limited thereto.
  • hydrogen abstraction type radical polymerization initiators include anthraquinone derivatives such as 2-ethyl-9,10-anthraquinone and 2-t-butyl-9,10-anthraquinone, and thioxanthone derivatives such as isopropylthioxanthone and 2,4-diethylthioxanthone. Examples include, but are not limited to:
  • the photo radical polymerization initiator may be used in combination of two or more kinds, or may be used alone.
  • the addition amount of the photoradical polymerization initiator is preferably 0.1 parts by mass or more and 15 parts by mass or less, and more preferably 100 parts by mass of the total of the components (A), (B) and (C). It is 0.1 part by mass or more and 10 parts by mass or less.
  • the addition amount of the radical photopolymerization initiator is 0.1 part by mass or more, the curable resin composition is sufficiently polymerized and the cured product has sufficient heat resistance.
  • the amount of the photo-radical polymerization initiator added is 15 parts by mass or less, the molecular weight becomes large and the impact resistance of the cured product becomes sufficient.
  • a thermal radical polymerization initiator may be contained in order to promote the polymerization reaction in the heat treatment after shaping.
  • the thermal radical polymerization initiator is not particularly limited as long as it generates a radical by heating, and conventionally known compounds can be used.
  • azo compounds, peroxides and persulfates are preferable. It can be mentioned as a thing.
  • Azo compounds include 2,2'-azobisisobutyronitrile, 2,2'-azobis(methylisobutyrate), 2,2'-azobis-2,4-dimethylvaleronitrile, 1,1'- Examples thereof include azobis(1-acetoxy-1-phenylethane).
  • peroxides examples include benzoyl peroxide, di-t-butylbenzoyl peroxide, t-butylperoxypivalate and di(4-t-butylcyclohexyl)peroxydicarbonate.
  • persulfates include persulfates such as ammonium persulfate, sodium persulfate and potassium persulfate.
  • the addition amount of the thermal radical polymerization initiator is preferably 0.1 parts by mass or more and 15 parts by mass or less, more preferably 100 parts by mass of the component (A), the component (B) and the component (C). It is 0.1 part by mass or more and 10 parts by mass or less. When the amount of the thermal radical polymerization initiator is 15 parts by mass or less, the molecular weight is extended and sufficient physical properties can be obtained.
  • the curable resin composition according to the present embodiment may contain various additives as other optional components as long as the objects and effects of the present invention are not impaired.
  • additives include epoxy resin, polyamide, polyamideimide, polyurethane, polybutadiene, polychloroprene, polyether, polyester, styrene-butadiene block copolymer, petroleum resin, xylene resin, ketone resin, cellulose resin, fluorine-based oligomer, Silicone-based oligomers, polysulfide-based oligomers; polymerization inhibitors such as phenothiazine and 2,6-di-t-butyl-4-methylphenol; polymerization initiation aids; leveling agents; wettability improvers; surfactants; plasticizers; Examples thereof include ultraviolet absorbers, silane coupling agents, inorganic fillers, pigments, dyes and the like.
  • the curable resin composition according to the present embodiment can be suitably used in a method for producing a cured product by an optical three-dimensional modeling method (stereolithography method).
  • an optical three-dimensional modeling method stereolithography method
  • a method for producing a cured product using the curable resin composition according to this embodiment will be described.
  • the cured product includes a step of selectively irradiating the curable resin composition of the present embodiment layer by layer with an active energy ray such as light to perform curing such as photocuring, and repeating this to obtain a cured product. Is a method of manufacturing.
  • the curable resin composition is selectively irradiated with active energy rays based on the slice data of the cured product to be prepared.
  • the active energy ray with which the curable resin composition is irradiated is not particularly limited as long as it is an active energy ray capable of curing the curable resin composition according to the present embodiment.
  • Specific examples of the active energy rays include electromagnetic waves such as ultraviolet rays, visible rays, infrared rays, X-rays, gamma rays and laser rays, and particle rays such as alpha rays, beta rays and electron rays.
  • ultraviolet rays are most preferable from the viewpoint of the absorption wavelength of the radical polymerization initiator (component (E)) used and the cost of introducing equipment.
  • the exposure of the active energy ray is not particularly limited, preferably not 0.001J / cm 2 or more 10J / cm 2 or less. When it is less than 0.001 J/cm 2 , the curable resin composition may not be sufficiently cured, and when it exceeds 10 J/cm 2 , the irradiation time becomes long and the productivity is lowered.
  • the method of irradiating the curable resin composition with active energy rays is not particularly limited.
  • the following method can be adopted.
  • a first method there is a method in which a point-shaped light such as a laser beam is used and the curable resin composition is two-dimensionally scanned with the light. At this time, the two-dimensional scanning may be performed by a point drawing method or a line drawing method.
  • a second method is a surface exposure method in which a projector or the like is used to irradiate the shape of the cross-section data with light.
  • the active energy rays may be irradiated in a planar manner through a planar drawing mask formed by arranging a plurality of minute optical shutters such as a liquid crystal shutter or a digital micromirror shutter.
  • the surface of the obtained cured product may be washed with a cleaning agent such as an organic solvent. Moreover, you may perform the post cure which hardens the unreacted residual component which remained on the surface or inside of a hardened
  • Rubber particles produced by the following method An acetone dispersion of rubber particles having a core-shell structure was produced. First, 370 parts by mass of latex (Nipol (R) LX111A2 manufactured by Nippon Zeon Co., Ltd., 200 parts by mass of polybutadiene rubber particles) and 630 parts by mass of deionized water were charged into a 2 L glass container, and the mixture was purged with nitrogen at 60° C. It was stirred for 60 minutes.
  • latex Nipol (R) LX111A2 manufactured by Nippon Zeon Co., Ltd., 200 parts by mass of polybutadiene rubber particles
  • deionized water 630 parts by mass of deionized water were charged into a 2 L glass container, and the mixture was purged with nitrogen at 60° C. It was stirred for 60 minutes.
  • a slurry liquid consisting of an aqueous layer containing a part of floating aggregates and an organic solvent was obtained.
  • the obtained slurry liquid was packed in a 250 mL centrifuge tube, centrifuged at a rotation speed of 12000 rpm and a temperature of 10° C. for 30 minutes, and then the supernatant was removed.
  • curable resin composition ⁇ Production of curable resin composition> Component (A), component (B) and component (E) or component (A), component (B), component (C) and component (E) are blended in the blending ratio shown in Table 1 and uniformly mixed. Mixed.
  • a curable resin composition was obtained by mixing an acetone dispersion liquid of the component (D) in this formulation and removing acetone which is a volatile component by using a rotary evaporator.
  • a cured product was prepared by the following method using the prepared curable resin composition. First, a mold having a length of 80 mm, a width of 10 mm and a thickness of 4 mm was sandwiched between two pieces of quartz glass, and a curable resin was poured therein. The curable resin composition that had been cast was irradiated with 5 mW/cm 2 of ultraviolet light from both sides of the mold for 360 seconds using an ultraviolet irradiation device (EXECURE 3000 manufactured by HOYA CANDEO OPTRONICS Co., Ltd.) to obtain a cured product ( 3600 mJ/cm 2 as total energy). Further, the obtained cured product was placed in a heating oven at 50° C. for 1 hour, and then placed in a heating oven at 100° C. for 2 hours to perform heat treatment to obtain a cured product.
  • EXECURE 3000 manufactured by HOYA CANDEO OPTRONICS Co., Ltd.
  • a notch forming machine manufactured by Toyo Seiki Seisakusho Co., Ltd., product name "Notching Tool A-4" is used to form a notch with a depth of 2 mm and a 45° in the central portion. I put it in. Then, using an impact tester (trade name “IMPACT TESTER IT” manufactured by Toyo Seiki Seisaku-sho, Ltd.), the test piece is broken with energy of 2 J from the back surface of the notch.
  • the energy required for breaking was calculated from the angle at which the hammer swung up to 150° swung up after breaking the test piece, and this Charpy impact strength was used as an index of impact resistance.
  • the impact resistance was evaluated according to the following criteria. A (very good): Charpy impact strength is 6 kJ/m 2 or more. B (good): Charpy impact strength is 5 kJ/m 2 or more and less than 6 kJ/m 2 . C (defective): Charpy impact strength is less than 5 kJ/m 2 .
  • the obtained test piece was subjected to a heat resistance test in accordance with JIS K 7191-2 using a deflection temperature tester under load (manufactured by Toyo Seiki Seisakusho, trade name "No. 533 HDT tester 3M-2"). ..
  • the bending stress was 1.80 MPa and the temperature was raised from 25° C. to 2° C. per minute.
  • the temperature at which the amount of deflection of the test piece reached 0.34 mm was taken as the deflection temperature under load and used as an index of heat resistance.
  • the heat resistance was evaluated according to the following criteria.
  • a curable resin composition was produced in the same manner as in Example except that the following components were used in the compounding ratio shown in Table 1 in place of the component (A) or the component (B), and evaluated in the same manner as in the example.
  • A-2 Methyl methacrylate (Tokyo Chemical Industry Co., Ltd., MMA)
  • A-3 2-hydroxyethyl methacrylate (Kyoeisha Chemical Co., Ltd., light ester HO-250(N))
  • B-2 Pentaerythritol tetraacrylate (Kyoeisha Chemical Co., Ltd., light acrylate PE-4A)
  • B-3 Trimethylolpropane trimethacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • B-4 Bisphenol A dimethacrylate (manufactured by Sigma-Aldrich)
  • Example 1 using A-1 as the component (A) with Comparative Examples 1 and 2 using A-2 or A-3 instead of A-1 the curing of Example 1 It was found that the product is a curable composition that gives a cured product having high impact resistance (fracture toughness).
  • Examples 1 to 3 using B-1 as the component (B) with Comparative Examples 3 to 5 using B-2, B-3 or B-4 in place of B-1 comparison was made. It was found that the cured products of Examples 1 to 3 are curable compositions that give high impact resistance (fracture toughness).

Abstract

This curable resin composition is characterized by containing: monofunctional 2-(aryloxymethyl)acrylic acid or an ester thereof as component (A); a polyfunctional radical-polymerizable compound having an isocyanurate ring as component (B); a radical-polymerizable compound as component (C); rubber particles as component (D); and an initiator of radical polymerization as component (E), wherein component (C) is a radical-polymerizable compound different from component (A) and component (B), the contained amounts of component (B) and component (C) are 20-80 parts by mass and 0-40 parts by mass, respectively, when the total amount of component (A), component (B), and component (C) is defined as 100 parts by mass.

Description

硬化性樹脂組成物Curable resin composition
 本発明は、硬化性樹脂組成物、硬化物及び硬化物の製造方法に関する。 The present invention relates to a curable resin composition, a cured product, and a method for producing a cured product.
 液状の硬化性樹脂を紫外線などのエネルギー活性な光によって層毎に硬化させ、それを積層していくことにより、立体造形物を得る光学的立体造形法が鋭意研究されている。光学的立体造形物は形状確認のための試作(ラピッドプロトタイピング)のみならず、型の作製(ラピッドツーリング)、及びサービス部品(実製品の作製、ラピッドマニュファクチャリング)へ展開されるようになってきている。
 これに伴い、立体造形物に対する材料特性(耐衝撃性や耐熱性、曲げ弾性率など)への要求は一層高度なものとなってきており、昨今ではエンジニアリングプラスチックと同等の物性が求められてきている。
 硬化性樹脂による立体造形物はある程度の耐熱性と耐衝撃性、特に高い耐衝撃性を持つことが求められるようになった。高い耐衝撃性と、耐熱性の両立のために特許文献1では特定のラジカル重合性化合物と、多官能ラジカル重合性化合物を含有する硬化性樹脂組成物が開示されている。また、特許文献2では、ラジカル重合性化合物とゴム粒子による硬化性樹脂組成物が開示されている。
An optical three-dimensional modeling method for obtaining a three-dimensional model by curing a liquid curable resin layer by layer with energy active light such as ultraviolet rays and stacking the layers has been studied. Optical three-dimensional objects can now be used not only for prototypes for rapid shape confirmation (rapid prototyping), but also for mold production (rapid tooling) and service parts (production of actual products, rapid manufacturing). Is coming.
Along with this, the demand for material properties (impact resistance, heat resistance, flexural modulus, etc.) for three-dimensional molded objects has become more advanced, and in recent years, physical properties equivalent to engineering plastics have been required. There is.
A three-dimensional molded object made of a curable resin is required to have a certain degree of heat resistance and impact resistance, especially high impact resistance. Patent Document 1 discloses a curable resin composition containing a specific radical-polymerizable compound and a polyfunctional radical-polymerizable compound in order to achieve both high impact resistance and heat resistance. Further, Patent Document 2 discloses a curable resin composition comprising a radically polymerizable compound and rubber particles.
特開2014-040585号公報JP, 2014-040585, A 特開2015-110772号公報JP, 2015-110772, A
 しかしながら、特許文献1及び特許文献2で開示される硬化性樹脂組成物から、高い耐熱性を示す硬化物は得られているものの、十分な耐衝撃性を示す硬化物を得ることはできていない。
 本発明は、耐熱性、耐衝撃性、及び曲げ弾性率に優れた硬化物を得ることのできる、硬化性樹脂組成物を提供することを目的とする。
However, from the curable resin compositions disclosed in Patent Document 1 and Patent Document 2, although a cured product exhibiting high heat resistance has been obtained, a cured product exhibiting sufficient impact resistance cannot be obtained. ..
An object of the present invention is to provide a curable resin composition capable of obtaining a cured product having excellent heat resistance, impact resistance and flexural modulus.
 本実施形態に係る硬化性樹脂組成物は、
 成分(A):単官能2-(アリルオキシメチル)アクリル酸またはそのエステル、
 成分(B):イソシアヌレート環を有する多官能ラジカル重合性化合物、
 成分(C):ラジカル重合性化合物、
 成分(D):ゴム粒子、
 成分(E):ラジカル重合開始剤、
を含有し、
 前記成分(A)は、下記一般式(1)で示され、
The curable resin composition according to the present embodiment,
Component (A): monofunctional 2-(allyloxymethyl)acrylic acid or its ester,
Component (B): a polyfunctional radically polymerizable compound having an isocyanurate ring,
Component (C): radically polymerizable compound,
Component (D): rubber particles,
Component (E): radical polymerization initiator,
Containing
The component (A) is represented by the following general formula (1),
Figure JPOXMLDOC01-appb-C000003
[一般式(1)中、Rは水素原子または炭化水素基である。前記炭化水素基はエーテル結合を有していてもよく、前記炭化水素基は置換基を有していてもよい。]
 前記成分(B)は、下記一般式(2)で示され、
Figure JPOXMLDOC01-appb-C000003
[In general formula (1), R is a hydrogen atom or a hydrocarbon group. The hydrocarbon group may have an ether bond, and the hydrocarbon group may have a substituent. ]
The component (B) is represented by the following general formula (2),
Figure JPOXMLDOC01-appb-C000004
[一般式(2)中、X、X、Xのうち2つ以上がそれぞれ独立にラジカル重合性基を有する。]
 前記成分(C)は、前記成分(A)及び前記成分(B)とは異なるラジカル重合性化合物であり、
 前記成分(A)と前記成分(B)と前記成分(C)の合計が100質量部であるとき、前記成分(B)が20質量部以上80質量部以下であり、且つ、前記成分(C)が0質量部以上40質量部以下であることを特徴とする。
Figure JPOXMLDOC01-appb-C000004
[In the general formula (2), two or more of X 1 , X 2 , and X 3 each independently have a radically polymerizable group. ]
The component (C) is a radically polymerizable compound different from the components (A) and (B),
When the total of the component (A), the component (B) and the component (C) is 100 parts by mass, the component (B) is 20 parts by mass or more and 80 parts by mass or less, and the component (C ) Is 0 parts by mass or more and 40 parts by mass or less.
 本発明によれば、耐熱性、耐衝撃性、及び曲げ弾性率に優れた硬化物を形成可能であり、立体造形に好適な硬化性樹脂組成物を提供することができる。 According to the present invention, it is possible to form a cured product having excellent heat resistance, impact resistance and flexural modulus, and it is possible to provide a curable resin composition suitable for three-dimensional modeling.
 以下、本発明の実施形態について説明する。なお、以下に説明する実施形態は、あくまでも本発明の実施形態の一つであり、本発明はこれらの実施形態に限定されるものではない。 An embodiment of the present invention will be described below. The embodiment described below is just one of the embodiments of the present invention, and the present invention is not limited to these embodiments.
 本実施形態に係る硬化性樹脂組成物が含有する成分(A)乃至(E)について、詳細を以下に説明する。
<成分(A):単官能2-(アリルオキシメチル)アクリル酸またはそのエステル(A)>
 成分(A)である単官能2-(アリルオキシメチル)アクリル酸またはそのエステルは下記一般式(1)で示される。
The components (A) to (E) contained in the curable resin composition according to this embodiment will be described in detail below.
<Component (A): monofunctional 2-(allyloxymethyl)acrylic acid or its ester (A)>
The monofunctional 2-(allyloxymethyl)acrylic acid or its ester which is the component (A) is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(1)中、Rは水素原子または炭化水素基である。前記炭化水素基はエーテル結合を有していてもよく、前記炭化水素基は置換基を有していてもよい。 In the general formula (1), R is a hydrogen atom or a hydrocarbon group. The hydrocarbon group may have an ether bond, and the hydrocarbon group may have a substituent.
 Rで示される炭化水素基の置換基としては、例えば、ハロゲン原子、シアノ基、トリメチルシリル基等が挙げられる。また、炭化水素基は直鎖状であってもよく、分岐鎖状であってもよく、また、環状構造を有していても良い。 Examples of the substituent of the hydrocarbon group represented by R include a halogen atom, a cyano group, a trimethylsilyl group and the like. The hydrocarbon group may have a straight chain structure, a branched chain structure, or a cyclic structure.
 炭化水素基としては、例えば鎖状飽和炭化水素基、炭素数2以上の鎖状不飽和炭化水素基、炭素数3以上の脂環式炭化水素基、炭素数6以上の芳香族炭化水素基等が挙げられる。好ましくは、炭素数1以上20以下の鎖状飽和炭化水素基、炭素数2以上20以下の鎖状不飽和炭化水素基、炭素数3以上20以下の脂環式炭化水素基、炭素数6以上20以下の芳香族炭化水素基であり、好ましくは炭素数1以上20以下の鎖状飽和炭化水素基、より好ましくは炭素数1以上10以下の飽和炭化水素である。 Examples of the hydrocarbon group include a chain saturated hydrocarbon group, a chain unsaturated hydrocarbon group having 2 or more carbon atoms, an alicyclic hydrocarbon group having 3 or more carbon atoms, and an aromatic hydrocarbon group having 6 or more carbon atoms. Are listed. Preferably, a chain saturated hydrocarbon group having 1 to 20 carbon atoms, a chain unsaturated hydrocarbon group having 2 to 20 carbon atoms, an alicyclic hydrocarbon group having 3 to 20 carbon atoms, and 6 or more carbon atoms It is an aromatic hydrocarbon group having 20 or less, preferably a chain saturated hydrocarbon group having 1 to 20 carbon atoms, and more preferably a saturated hydrocarbon having 1 to 10 carbon atoms.
 鎖状飽和炭化水素基としては、直鎖状、或いは分岐状の炭化水素基であればよく、特に限定されない。例えば、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、n-ペンチル、s-ペンチル、t-ペンチル、ネオペンチル、n-ヘキシル、s-ヘキシル、n-ヘプチル、n-オクチル、s-オクチル、t-オクチル、2-エチルヘキシル、カプリル、ノニル、デシル、ウンデシル、ラウリル、トリデシル、ミリスチル、ペンタデシル、セチル、ヘプタデシル、ステアリル、ノナデシル、エイコシル、セリル、メリシル等の基が好適なものとして挙げられる。また、鎖状飽和炭化水素基は、置換基として芳香族基を有していてもよく、例えば、ベンジル基、フェネチル基等の基が好適なものとして挙げられる。 The chain saturated hydrocarbon group is not particularly limited as long as it is a linear or branched hydrocarbon group. For example, methyl, ethyl, n-propyl, i-propyl, n-butyl, n-pentyl, s-pentyl, t-pentyl, neopentyl, n-hexyl, s-hexyl, n-heptyl, n-octyl, s- Preferred examples include groups such as octyl, t-octyl, 2-ethylhexyl, capryl, nonyl, decyl, undecyl, lauryl, tridecyl, myristyl, pentadecyl, cetyl, heptadecyl, stearyl, nonadecyl, eicosyl, ceryl and melysyl. Further, the chain saturated hydrocarbon group may have an aromatic group as a substituent, and preferable examples thereof include groups such as a benzyl group and a phenethyl group.
 鎖状不飽和炭化水素基としては、芳香族性でない炭素-炭素不飽和結合を少なくとも1つ含む直鎖状、或いは分岐状の炭化水素基であればよく、特に限定されない。例えば、クロチル、1,1-ジメチル-2-プロペニル、2-メチル-ブテニル、3-メチル-2-ブテニル、3-メチル-3-ブテニル、2-メチル-3-ブテニル、オレイル、リノール、リノレン、等の基が好適なものとして挙げられる。 The chain unsaturated hydrocarbon group is not particularly limited as long as it is a straight chain or branched hydrocarbon group containing at least one non-aromatic carbon-carbon unsaturated bond. For example, crotyl, 1,1-dimethyl-2-propenyl, 2-methyl-butenyl, 3-methyl-2-butenyl, 3-methyl-3-butenyl, 2-methyl-3-butenyl, oleyl, linole, linolene, Groups such as are preferred.
 脂環式炭化水素基としては、3員環以上の飽和環状構造、あるいは芳香族性でない不飽和環状構造を含む炭化水素基であればよく、特に限定されない。例えばシクロペンチル、シクロペンチルメチル、シクロヘキシル、シクロヘキシルメチル、4-メチルシクロヘキシル、4-t-ブチルシクロヘキシル、トリシクロデカニル、イソボルニル、アダマンチル、ジシクロペンタニル、ジシクロペンテニル等の基が好適なものとして挙げられる。 The alicyclic hydrocarbon group is not particularly limited as long as it is a hydrocarbon group containing a saturated cyclic structure having three or more membered rings or an unsaturated cyclic structure that is not aromatic. Preferred examples include groups such as cyclopentyl, cyclopentylmethyl, cyclohexyl, cyclohexylmethyl, 4-methylcyclohexyl, 4-t-butylcyclohexyl, tricyclodecanyl, isobornyl, adamantyl, dicyclopentanyl and dicyclopentenyl. ..
 芳香族炭化水素基としては、6員環以上の芳香族性の環状構造を含む炭化水素基であればよく、特に限定されないが、例えばフェニル、メチルフェニル、ジメチルフェニル、トリメチルフェニル、4-t-ブチルフェニル、ジフェニルメチル、ジフェニルエチル、トリフェニルメチル、シンナミル、ナフチル、アントラニル等の基が好適なものとして挙げられる。 The aromatic hydrocarbon group is not particularly limited as long as it is a hydrocarbon group containing a 6-membered or more aromatic ring structure, and examples thereof include phenyl, methylphenyl, dimethylphenyl, trimethylphenyl, 4-t- Suitable examples include groups such as butylphenyl, diphenylmethyl, diphenylethyl, triphenylmethyl, cinnamyl, naphthyl, anthranyl and the like.
 エーテル結合を含む炭化水素基としては、鎖状飽和炭化水素基、鎖状不飽和炭化水素基、脂環式炭化水素基、芳香族炭化水素基を構成する少なくとも1つの炭素-炭素結合に酸素原子が挿入した構造のものであればよく、特に限定されない。例えば、メトキシエチル、メトキシエトキシエチル、メトキシエトシキエトキシエチル、3-メトキシブチル、エトキシエチル、エトキシエトキシエチル等の鎖状エーテル基:シクロペントキシエチル、シクロヘキシルオキシエチル、シクロペントキシエトキシエチル、シクロヘキシルオキシエトキシエチル、ジシクロペンテニルオキシエチル等の脂環式炭化水素基と鎖状エーテル基を併せ持つ基:フェノキシエチル、フェノキシエトキシエチル等の芳香族炭化水素基と鎖状エーテル基を併せ持つ基:グリシジル、β-メチルグリシジル、β-エチルグリシジル、3,4-エポキシシクロヘキシルメチル、2-オキセタンメチル、3-メチル-3-オキセタンメチル、3-エチル-3-オキタンメチル、テトラヒドロフラニル、テトラヒドロフルフリル、テトラヒドロピラニル、ジオキサゾラニル、ジオキサニル等の環状エーテル基が好適なものとして挙げられる。 The hydrocarbon group containing an ether bond is a chain saturated hydrocarbon group, a chain unsaturated hydrocarbon group, an alicyclic hydrocarbon group, or an oxygen atom in at least one carbon-carbon bond constituting an aromatic hydrocarbon group. There is no particular limitation as long as it has a structure in which is inserted. For example, chain ether groups such as methoxyethyl, methoxyethoxyethyl, methoxyethoxyethoxyethyl, 3-methoxybutyl, ethoxyethyl, ethoxyethoxyethyl: cyclopentoxyethyl, cyclohexyloxyethyl, cyclopentoxyethoxyethyl, cyclohexyloxy. Group having both alicyclic hydrocarbon group such as ethoxyethyl and dicyclopentenyloxyethyl and a chain ether group: group having both aromatic hydrocarbon group and chain ether group such as phenoxyethyl, phenoxyethoxyethyl: glycidyl, β -Methylglycidyl, β-ethylglycidyl, 3,4-epoxycyclohexylmethyl, 2-oxetanemethyl, 3-methyl-3-oxetanemethyl, 3-ethyl-3-oxanemethyl, tetrahydrofuranyl, tetrahydrofurfuryl, tetrahydropyranyl, Preferred examples include cyclic ether groups such as dioxazolanyl and dioxanyl.
 成分(A)としては、例えば、2(アリルオキシメチル)アクリル酸、2-(アリルオキシメチル)アクリル酸メチル、2-(アリルオキシメチル)アクリル酸エチル、2-(アリルオキシメチル)アクリル酸n-プロピル、2-(アリルオキシメチル)アクリル酸i-プロピル、2-(アリルオキシメチル)アクリル酸n-ブチル、2-(アリルオキシメチル)アクリル酸n-ペンチル、2-(アリルオキシメチル)アクリル酸s-ペンチル、2-(アリルオキシメチル)アクリル酸t-ペンチル、2-(アリルオキシメチル)アクリル酸ネオペンチル、2-(アリルオキシメチル)アクリル酸n-ヘキシル、2-(アリルオキシメチル)アクリル酸s-ヘキシル、2-(アリルオキシメチル)アクリル酸n-ヘプチル、2-(アリルオキシメチル)アクリル酸n-オクチル、2-(アリルオキシメチル)アクリル酸s-オクチル、2-(アリルオキシメチル)アクリル酸t-オクチル、2-(アリルオキシメチル)アクリル酸2-エチルヘキシル、2-(アリルオキシメチル)アクリル酸カプリル、2-(アリルオキシメチル)アクリル酸ノニル、2-(アリルオキシメチル)アクリル酸デシル、2-(アリルオキシメチル)アクリル酸ウンデシル、2-(アリルオキシメチル)アクリル酸ラウリル、2-(アリルオキシメチル)アクリル酸トリデシル、2-(アリルオキシメチル)アクリル酸ミリスチル、2-(アリルオキシメチル)アクリル酸ペンタデシル、2-(アリルオキシメチル)アクリル酸セチル、2-(アリルオキシメチル)アクリル酸ヘプタデシル、2-(アリルオキシメチル)アクリル酸ステアリル、2-(アリルオキシメチル)アクリル酸ノナデシル、2-(アリルオキシメチル)アクリル酸エイコシル、2-(アリルオキシメチル)アクリル酸セリル、2-(アリルオキシメチル)アクリル酸メリシル、2-(アリルオキシメチル)アクリル酸クロチル、2-(アリルオキシメチル)アクリル酸1,1-ジメチル-2-プロペニル、2-(アリルオキシメチル)アクリル酸2-メチルブテニル、2-(アリルオキシメチル)アクリル酸3-メチル-2-ブテニル、2-(アリルオキシメチル)アクリル酸3-メチル-3-ブテニル、2-(アリルオキシメチル)アクリル酸2-メチル-3-ブテニル、2-(アリルオキシメチル)アクリル酸オレイル、2-(アリルオキシメチル)アクリル酸リノール、2-(アリルオキシメチル)アクリル酸リノレン、2-(アリルオキシメチル)アクリル酸シクロペンチル、2-(アリルオキシメチル)アクリル酸シクロペンチルメチル、2-(アリルオキシメチル)アクリル酸シクロヘキシル、2-(アリルオキシメチル)アクリル酸シクロヘキシルメチル、2-(アリルオキシメチル)アクリル酸4-メチルシクロヘキシル、2-(アリルオキシメチル)アクリル酸4-t-ブチルシクロヘキシル、2-(アリルオキシメチル)アクリル酸トリシクロデカニル、2-(アリルオキシメチル)アクリル酸イソボルニル、2-(アリルオキシメチル)アクリル酸アダマンチル、2-(アリルオキシメチル)アクリル酸ジシクロペンタニル、2-(アリルオキシメチル)アクリル酸ジシクロペンテニル、2-(アリルオキシメチル)アクリル酸フェニル、2-(アリルオキシメチル)アクリル酸メチルフェニル、2-(アリルオキシメチル)アクリル酸ジメチルフェニル、2-(アリルオキシメチル)アクリル酸トリメチルフェニル、2-(アリルオキシメチル)アクリル酸4-t-ブチルフェニル、2-(アリルオキシメチル)アクリル酸ベンジル、2-(アリルオキシメチル)アクリル酸ジフェニルメチル、2-(アリルオキシメチル)アクリル酸ジフェニルエチル、2-(アリルオキシメチル)アクリル酸トリフェニルメチル、2-(アリルオキシメチル)アクリル酸シンナミル、2-(アリルオキシメチル)アクリル酸ナフチル、2-(アリルオキシメチル)アクリル酸アントラニル、2-(アリルオキシメチル)アクリル酸メトキシエチル、2-(アリルオキシメチル)アクリル酸メトキシエトキシエチル、2-(アリルオキシメチル)アクリル酸メトキシエトシキエトキシエチル、2-(アリルオキシメチル)アクリル酸3-メトキシブチル、2-(アリルオキシメチル)アクリル酸エトキシエチル、2-(アリルオキシメチル)アクリル酸エトキシエトキシエチル、2-(アリルオキシメチル)アクリル酸シクロペントキシエチル、2-(アリルオキシメチル)アクリル酸シクロヘキシルオキシエチル、2-(アリルオキシメチル)アクリル酸シクロペントキシエトキシエチル、2-(アリルオキシメチル)アクリル酸シクロヘキシルオキシエトキシエチル、2-(アリルオキシメチル)アクリル酸ジシクロペンテニルオキシエチル、2-(アリルオキシメチル)アクリル酸フェノキシエチル、2-(アリルオキシメチル)アクリル酸フェノキシエトキシエチル、2-(アリルオキシメチル)アクリル酸グリシジル、2-(アリルオキシメチル)アクリル酸β-メチルグリシジル、2-(アリルオキシメチル)アクリル酸β-エチルグリシジル、2-(アリルオキシメチル)アクリル酸3,4-エポキシシクロヘキシルメチル、2-(アリルオキシメチル)アクリル酸2-オキセタンメチル、2-(アリルオキシメチル)アクリル酸3-メチル-3-オキセタンメチル、2-(アリルオキシメチル)アクリル酸3-エチル-3-オキセタンメチル、2-(アリルオキシメチル)アクリル酸テトラヒドロフラニル、2-(アリルオキシメチル)アクリル酸テトラヒドロフルフリル、2-(アリルオキシメチル)アクリル酸テトラヒドロピラニル、ジオキサゾラニル、2-(アリルオキシメチル)アクリル酸ジオキサニル等を挙げることができる。 Examples of the component (A) include 2(allyloxymethyl)acrylic acid, 2-(allyloxymethyl)methyl acrylate, 2-(allyloxymethyl)ethyl acrylate, and 2-(allyloxymethyl)acrylic acid n. -Propyl, i-propyl 2-(allyloxymethyl)acrylate, n-butyl 2-(allyloxymethyl)acrylate, n-pentyl 2-(allyloxymethyl)acrylate, 2-(allyloxymethyl)acrylic Acid s-Pentyl, 2-(allyloxymethyl)acrylic acid t-pentyl, 2-(allyloxymethyl)acrylic acid neopentyl, 2-(allyloxymethyl)acrylic acid n-hexyl,2-(allyloxymethyl)acrylic acid Acid s-hexyl, 2-(allyloxymethyl)acrylic acid n-heptyl, 2-(allyloxymethyl)acrylic acid n-octyl, 2-(allyloxymethyl)acrylic acid s-octyl, 2-(allyloxymethyl) ) T-octyl acrylate, 2-ethylhexyl 2-(allyloxymethyl)acrylate, capryl 2-(allyloxymethyl)acrylate, nonyl 2-(allyloxymethyl)acrylate, 2-(allyloxymethyl)acryl Decyl acid, undecyl 2-(allyloxymethyl)acrylate, lauryl 2-(allyloxymethyl)acrylate, tridecyl 2-(allyloxymethyl)acrylate, myristyl 2-(allyloxymethyl)acrylate, 2-( Allyloxymethyl) pentadecyl acrylate, 2-(allyloxymethyl) cetyl acrylate, heptadecyl 2-(allyloxymethyl) acrylate, stearyl 2-(allyloxymethyl) acrylate, 2-(allyloxymethyl) acrylate Nonadecyl, eicosyl 2-(allyloxymethyl)acrylate, ceryl 2-(allyloxymethyl)acrylate, melicyl 2-(allyloxymethyl)acrylate, crotyl 2-(allyloxymethyl)acrylate, 2-(allyl (Oxymethyl)acrylic acid 1,1-dimethyl-2-propenyl, 2-(allyloxymethyl)acrylic acid 2-methylbutenyl, 2-(allyloxymethyl)acrylic acid 3-methyl-2-butenyl, 2-(allyloxy) Methyl)acrylic acid 3-methyl-3-butenyl, 2-(allyloxymethyl)acrylic acid 2-methyl-3-butenyl, 2-(allyloxymethyl)acrylic acid oleyl, 2-(allyloxymethyl)acrylic acid Linole, linolene 2-(allyloxymethyl)acrylate, cyclopentyl 2-(allyloxymethyl)acrylate, cyclopentylmethyl 2-(allyloxymethyl)acrylate, cyclohexyl 2-(allyloxymethyl)acrylate, 2-( Cyclohexylmethyl allyloxymethyl)acrylate, 4-methylcyclohexyl 2-(allyloxymethyl)acrylate, 4-t-butylcyclohexyl 2-(allyloxymethyl)acrylate, tricyclo-2-(allyloxymethyl)acrylate Decanyl, isobornyl 2-(allyloxymethyl) acrylate, adamantyl 2-(allyloxymethyl) acrylate, dicyclopentanyl 2-(allyloxymethyl) acrylate, dicyclo 2-(allyloxymethyl) acrylate Pentenyl, phenyl 2-(allyloxymethyl)acrylate, methylphenyl 2-(allyloxymethyl)acrylate, dimethylphenyl 2-(allyloxymethyl)acrylate, trimethylphenyl 2-(allyloxymethyl)acrylate, 2 4-(t-butylphenyl)-(allyloxymethyl)acrylate, benzyl 2-(allyloxymethyl)acrylate, diphenylmethyl 2-(allyloxymethyl)acrylate, diphenylethyl 2-(allyloxymethyl)acrylate, Triphenylmethyl 2-(allyloxymethyl)acrylate, cinnamyl 2-(allyloxymethyl)acrylate, naphthyl 2-(allyloxymethyl)acrylate, anthranyl 2-(allyloxymethyl)acrylate, 2-(allyl Oxymethyl) methoxyethyl acrylate, 2-(allyloxymethyl) methoxyethoxyethyl acrylate, 2-(allyloxymethyl) methoxyethoxyethoxyethyl acrylate, 2-(allyloxymethyl) 3-methoxybutyl acrylate, Ethoxyethyl 2-(allyloxymethyl)acrylate, ethoxyethoxyethyl 2-(allyloxymethyl)acrylate, cyclopentoxyethyl 2-(allyloxymethyl)acrylate, cyclohexyloxy 2-(allyloxymethyl)acrylate Ethyl, cyclopentoxyethoxyethyl 2-(allyloxymethyl)acrylate, cyclohexyloxyethoxyethyl 2-(allyloxymethyl)acrylate, dicyclopentenyloxyethyl 2-(allyloxymethyl)acrylate, 2-(allyl Oxymethyl) Phenoxyethyl acrylate, phenoxyethoxyethyl 2-(allyloxymethyl)acrylate, glycidyl 2-(allyloxymethyl)acrylate, β-methylglycidyl 2-(allyloxymethyl)acrylate, 2-(allyloxymethyl) Β-ethylglycidyl acrylate, 3,4-epoxycyclohexylmethyl 2-(allyloxymethyl)acrylate, 2-oxetanemethyl 2-(allyloxymethyl)acrylate, 3-methyl 2-(allyloxymethyl)acrylate -3-Oxetanemethyl, 3-ethyl-3-oxetanemethyl 2-(allyloxymethyl)acrylate, tetrahydrofuranyl 2-(allyloxymethyl)acrylate, tetrahydrofurfuryl 2-(allyloxymethyl)acrylate, 2 Examples thereof include tetrahydropyranyl-(allyloxymethyl)acrylate, dioxazolanyl, and dioxanyl 2-(allyloxymethyl)acrylate.
 成分(A)としては、市販品を用いることができ、例えば、AOMA(株式会社日本触媒製)などが挙げられる。 A commercially available product can be used as the component (A), and examples thereof include AOMA (manufactured by Nippon Shokubai Co., Ltd.).
 成分(A)は、エステル構造中のカルボニル基のα位の炭素-炭素二重結合がメタクリル酸エステルよりも立体的に込み合った構造を有するにもかかわらず、アクリル酸エステルと同等以上のラジカル重合活性を有する。成分(A)は、α位の炭素-炭素二重結合と末端の二重結合とが、環化しながら重合し、両隣にメチレン基を配した5員環エーテル構造を繰り返し単位として有する主鎖骨格を形成する。また、成分(A)を含有する重合性組成物から得られる重合体は、重合によって生じる特異な主鎖骨格により、強靭な機械的性質に優れる特徴を有する。 The component (A) has a structure in which the carbon-carbon double bond at the α-position of the carbonyl group in the ester structure is sterically crowded as compared with the methacrylic acid ester, but is radical polymerized at least as good as the acrylic acid ester. Have activity. The component (A) is a main chain skeleton having a 5-membered ring ether structure in which a carbon-carbon double bond at the α-position and a terminal double bond are polymerized while cyclizing, and methylene groups are arranged on both sides as a repeating unit. To form. Further, the polymer obtained from the polymerizable composition containing the component (A) has a characteristic of being excellent in tough mechanical properties due to the unique main chain skeleton generated by the polymerization.
 成分(A)の含有量は、成分(A)と成分(B)と成分(C)の合計100質量部に対して、好ましくは20質量部以上80質量部以下、より好ましくは20質量部以上75質量部以下、さらに好ましくは20質量部以上70質量部以下である。成分(A)が20質量部以上であれば、硬化物の耐衝撃性が十分となり、80質量部以下であれば、硬化物の耐熱性が十分となる。 The content of the component (A) is preferably 20 parts by mass or more and 80 parts by mass or less, more preferably 20 parts by mass or more based on 100 parts by mass of the total of the components (A), (B) and (C). It is 75 parts by mass or less, more preferably 20 parts by mass or more and 70 parts by mass or less. If the component (A) is 20 parts by mass or more, the impact resistance of the cured product will be sufficient, and if it is 80 parts by mass or less, the heat resistance of the cured product will be sufficient.
<成分(B):イソシアヌレート環を有する多官能ラジカル重合性化合物>
 成分(B)であるイソシアヌレート環を有する多官能ラジカル重合性化合物は下記一般式(2)で示される。
<Component (B): polyfunctional radically polymerizable compound having isocyanurate ring>
The polyfunctional radically polymerizable compound having an isocyanurate ring, which is the component (B), is represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(2)中、X、X、Xのうち2つ以上が、それぞれ独立にラジカル重合性基である。好ましくは、X、X、Xが、それぞれ独立にラジカル重合性基である。ラジカル重合性基としては、例えば、アリル基、(メタ)アクリロイル基、(メタ)アクリロイルオキシアルキル基等が挙げられる。ここで、本明細書において「(メタ)アクリロイル(基)」とはアクリロイル(基)またはメタクリロイル(基)を意味する。X、X、Xのうち2つがラジカル重合性基である場合、残りの一つとしては、ヒドロキシ基、アミノ基、カルボキシル基、スルホニル基等の縮合性基、フェニル基等の芳香族基、等が挙げられる。 In general formula (2), two or more of X 1 , X 2 , and X 3 are each independently a radically polymerizable group. Preferably, X 1 , X 2 , and X 3 are each independently a radically polymerizable group. Examples of the radically polymerizable group include an allyl group, a (meth)acryloyl group, a (meth)acryloyloxyalkyl group, and the like. Here, in this specification, “(meth)acryloyl (group)” means acryloyl (group) or methacryloyl (group). When two of X 1 , X 2 , and X 3 are radically polymerizable groups, the remaining one is a condensable group such as a hydroxy group, an amino group, a carboxyl group, a sulfonyl group, or an aromatic group such as a phenyl group. Groups, and the like.
 成分(B)としては、トリアリルイソシアヌレート、ジアリルイソシアヌレート、エトキシ化イソシアヌル酸トリアクリレート、エトキシ化イソシアヌル酸ジアクリレート、ε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート、ε-カプロラクトン変性ビス-(2-アクリロキシエチル)イソシアヌレートを好適に用いることができる。成分(B)としては市販品を用いることができる。例えば、A-9300(新中村化学工業株式会社製)、A-9200(新中村化学工業株式会社製)、A-9300-1CL(新中村化学工業株式会社製)、FA-731A(日立化成株式会社製)、TAIC(TM)(三菱ケミカル株式会社製)、TMAIC(TM)(三菱ケミカル株式会社製)などが挙げられる。 As the component (B), triallyl isocyanurate, diallyl isocyanurate, ethoxylated isocyanuric acid triacrylate, ethoxylated isocyanuric acid diacrylate, ε-caprolactone modified tris-(2-acryloxyethyl) isocyanurate, ε-caprolactone modified Bis-(2-acryloxyethyl) isocyanurate can be preferably used. A commercial item can be used as a component (B). For example, A-9300 (Shin Nakamura Chemical Co., Ltd.), A-9200 (Shin Nakamura Chemical Co., Ltd.), A-9300-1CL (Shin Nakamura Chemical Co., Ltd.), FA-731A (Hitachi Chemical Co., Ltd.) Company manufactured), TAIC (TM) (manufactured by Mitsubishi Chemical Co., Ltd.), TMAIC (TM) (manufactured by Mitsubishi Chemical Co., Ltd.) and the like.
 本発明の効果発現のために、硬化性樹脂組成物中の成分(B)の含有量は、成分(A)と成分(B)と成分(C)の合計100質量部に対して、20質量部以上80質量部以下であり、好ましくは25質量部以上80質量部以下、より好ましくは30質量部以上80質量部以下である。成分(B)が20質量部未満である場合、硬化物の架橋密度が不足するため、硬化物は十分な耐熱性が得られない可能性がある。さらに、硬化性樹脂組成物から硬化物に変化するプロセスにおいて架橋密度が低いと十分な硬化速度が得られず、立体造形に適応できない可能性がある。そのため、成分(B)が20質量部未満であることは、本発明の効果が損なわれる恐れがあるため好ましくない。一方、成分(B)が80質量部を超える場合、硬化物の架橋密度が過多となりゴム粒子(成分(D))の塑性変形を妨げるため、硬化物の耐衝撃性の向上効果が得られ難い傾向があり、本発明の効果が損なわれる恐れがあるため好ましくない。 In order to exhibit the effect of the present invention, the content of the component (B) in the curable resin composition is 20 parts by weight with respect to 100 parts by weight of the total of the components (A), (B) and (C). Parts or more and 80 parts by mass or less, preferably 25 parts by mass or more and 80 parts by mass or less, more preferably 30 parts by mass or more and 80 parts by mass or less. When the amount of the component (B) is less than 20 parts by mass, the crosslinked density of the cured product is insufficient, and thus the cured product may not have sufficient heat resistance. Furthermore, in the process of changing from a curable resin composition to a cured product, if the crosslinking density is low, a sufficient curing rate cannot be obtained, and there is a possibility that it cannot be applied to three-dimensional modeling. Therefore, if the amount of the component (B) is less than 20 parts by mass, the effects of the present invention may be impaired, which is not preferable. On the other hand, when the amount of the component (B) exceeds 80 parts by mass, the cross-linking density of the cured product becomes excessive and the plastic deformation of the rubber particles (component (D)) is hindered, so that the effect of improving the impact resistance of the cured product is difficult to obtain. There is a tendency that the effects of the present invention may be impaired, which is not preferable.
<成分(C):ラジカル重合性化合物>
 本実施形態に係る硬化性樹脂組成物には、成分(A)及び成分(B)とは異なるラジカル重合性化合物(成分(C))を添加することができる。成分(C)としては、例えば、一般的に用いられる単官能及び多官能ラジカル重合性化合物、(メタ)アクリレート、ポリロタキサンを有する化合物等が挙げられるが、これらに限定されるものではない。成分(C)は、所望する硬化物の特性に合わせて適宜添加することができる。ここで、本明細書において「(メタ)アクリレート」とはアクリレートまたはメタクリレートを意味する。
<Component (C): radically polymerizable compound>
A radical polymerizable compound (component (C)) different from the component (A) and the component (B) can be added to the curable resin composition according to the present embodiment. Examples of the component (C) include, but are not limited to, commonly used monofunctional and polyfunctional radically polymerizable compounds, (meth)acrylates, compounds having polyrotaxane, and the like. The component (C) can be appropriately added according to the desired properties of the cured product. Here, in this specification, “(meth)acrylate” means acrylate or methacrylate.
 (メタ)アクリレートは、(メタ)アクリロイル基を少なくとも1つ有するラジカル重合性化合物であり、後述するラジカル重合開始剤(成分(E))により発生されたラジカルによって重合反応する。成分(C)は、一種類で構成されていてもよく、複数種類で構成されていてもよい。 (Meth)acrylate is a radically polymerizable compound having at least one (meth)acryloyl group, and is polymerized by radicals generated by a radical polymerization initiator (component (E)) described later. The component (C) may be composed of one kind or plural kinds.
 (メタ)アクリレートが有する(メタ)アクリロイル基の数は特に限定されない。(メタ)アクリルレートとしては、例えば、分子中に(メタ)アクリロイル基を1つ有する単官能(メタ)アクリレート、分子中に(メタ)アクリロイル基を2つ有する2官能(メタ)アクリレート、分子中に(メタ)アクリロイル基を3つ有する3官能(メタ)アクリレート、分子中に(メタ)アクリロイル基を4つ以上有する4官能以上の(メタ)アクリレートなどが挙げられるが、これらに限定されるものではない。また、(メタ)アクリレートは、分子構造中にウレタン構造を有するウレタン(メタ)アクリレートや、分子構造中にポリエステル構造を有するポリエステル(メタ)アクリレートなどを用いてもよい。 The number of (meth)acryloyl groups contained in (meth)acrylate is not particularly limited. Examples of the (meth)acrylate include monofunctional (meth)acrylates having one (meth)acryloyl group in the molecule, bifunctional (meth)acrylates having two (meth)acryloyl groups in the molecule, and Include, but are not limited to, a trifunctional (meth)acrylate having three (meth)acryloyl groups, and a tetrafunctional or more (meth)acrylate having four or more (meth)acryloyl groups in the molecule. is not. As the (meth)acrylate, urethane (meth)acrylate having a urethane structure in the molecular structure, polyester (meth)acrylate having a polyester structure in the molecular structure, or the like may be used.
 (メタ)アクリレートの具体的な例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸i-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n-ヘプチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸3-メトキシブチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸(3-エチルオキセタンー3-イル)メタン等の単官能(メタ)アクリレート;1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、ビスフェノールA(ポリ)エトキシジ(メタ)アクリレート、ビスフェノールA(ポリ)プロポキシジ(メタ)アクリレート、ビスフェノールF(ポリ)エトキシジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート等の2官能(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、トリメチロールオクタントリ(メタ)アクリレート、トリメチロールプロパンポリエトキシトリ(メタ)アクリレート、トリメチロールプロパン(ポリ)プロポキシトリ(メタ)アクリレート、トリメチロールプロパン(ポリ)エトキシ(ポリ)プロポキシトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の3官能(メタ)アクリレート;ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールポリエトキシテトラ(メタ)アクリレート、ペンタエリスリトールポリエトキシテトラ(メタ)アクリレート、ペンタエリスリトール(ポリ)プロポキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトルテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の4官能以上の(メタ)アクリレート;などが挙げられるが、これらに限定されない。 Specific examples of the (meth)acrylate include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, i-propyl (meth)acrylate, and n-(meth)acrylate. -Butyl, i-butyl (meth)acrylate, tert-butyl (meth)acrylate, n-pentyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, (meth)acrylic Acid n-heptyl, n-octyl (meth)acrylate, isooctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate , Isodecyl (meth)acrylate, dodecyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, tridecyl (meth)acrylate, tridecyl (meth)acrylate, cyclohexyl (meth)acrylate, Isobornyl (meth)acrylate, dicyclopentanyl (meth)acrylate, adamantyl (meth)acrylate, phenyl (meth)acrylate, toluyl (meth)acrylate, benzyl (meth)acrylate, (meth)acrylic acid 2-methoxyethyl, 3-methoxybutyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, stearyl (meth)acrylate, glycidyl (meth)acrylate, ( Monofunctional (meth)acrylates such as (meth)acrylic acid (3-ethyloxetane-3-yl)methane; 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1, 9-nonanediol di(meth)acrylate, tricyclodecane dimethanol (meth)acrylate, bisphenol A(poly)ethoxydi(meth)acrylate, bisphenol A(poly)propoxydi(meth)acrylate, bisphenol F(poly)ethoxydi(meth) ) Acrylate, bifunctional (meth)acrylate such as ethylene glycol di(meth)acrylate; trimethylolpropane tri(meth)acrylate, trimethyloloctanetri(meth)acrylate, trimethylolpropane polyethoxytri(meth)acrylate, trimethylol Propane(poly)propoxytri(meth)acrylate, trimethylolpropane(poly)ethoxy(poly)propoxytri(meth)ac Trilate, pentaerythritol tri(meth)acrylate and other trifunctional (meth)acrylates; ditrimethylolpropane tetra(meth)acrylate, pentaerythritol polyethoxytetra(meth)acrylate, pentaerythritol polyethoxytetra(meth)acrylate, pentaerythritol( Poly)propoxy tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, etc. (Meth)acrylate; and the like, but are not limited thereto.
 ウレタン(メタ)アクリレートの具体的な例としては、ポリカーボネート系ウレタン(メタ)アクリレート、ポリエステル系ウレタン(メタ)アクリレート、ポリエーテル系ウレタン(メタ)アクリレート、カプロラクトン系ウレタン(メタ)アクリレート等が挙げられるが、これらに限定されない。これらのウレタン(メタ)アクリレートは、ポリオールとジイソシアネートとを反応させて得られるイソシアネート化合物と、水酸基を有する(メタ)アクリレートモノマーと、を反応させて得ることができる。ここで、ポリオールの具体例としては、ポリカーボネートジオール、ポリエステルポリオール、ポリエーテルポリオール、ポリカプロラクトンポリオールなどが挙げられる。 Specific examples of the urethane (meth)acrylate include polycarbonate-based urethane (meth)acrylate, polyester-based urethane (meth)acrylate, polyether-based urethane (meth)acrylate, and caprolactone-based urethane (meth)acrylate. , But not limited to these. These urethane (meth)acrylates can be obtained by reacting an isocyanate compound obtained by reacting a polyol with a diisocyanate, and a (meth)acrylate monomer having a hydroxyl group. Here, specific examples of the polyol include polycarbonate diol, polyester polyol, polyether polyol, and polycaprolactone polyol.
 ポリエステル(メタ)アクリレートは、例えば、ポリカルボン酸とポリオールの縮合によって末端に水酸基を有するポリエステルオリゴマーを得、次いで、末端の水酸基をアクリル酸でエステル化することにより得られる。 The polyester (meth)acrylate is obtained, for example, by condensing a polycarboxylic acid and a polyol to obtain a polyester oligomer having a hydroxyl group at the terminal, and then esterifying the hydroxyl group at the terminal with acrylic acid.
 また、(メタ)アクリロイル基を有する環状分子と、該複数の環状分子を串刺し状に貫通する直鎖状分子と、該直鎖上分子の両末端に配置され前記複数の環状分子の脱離を防止する封鎖基と、を有するポリロタキサンを含有することができる。本実施形態に係る(メタ)アクリロイル基を有するポリロタキサンとして使用可能なポリロタキサンの市販品としては、例えば、SeRM SM3405P、SeRM SA3405P、SeRM SM3400C、SeRM SA3400C、SeRM SA2400C(以上、いずれもアドバンスト・ソフトマテリアルズ(株)製)が挙げられる。 Further, a cyclic molecule having a (meth)acryloyl group, a linear molecule penetrating the plurality of cyclic molecules in a skewered shape, and elimination of the plurality of cyclic molecules arranged at both ends of the linear upper molecule A blocking group that prevents the polyrotaxane can be included. Examples of commercially available polyrotaxanes that can be used as the polyrotaxane having a (meth)acryloyl group according to the present embodiment include SeRM SM3405P, SeRM SA3405P, SeRM SM3400C, SeRM SA3400C, SeRM SA2400C (all of which are Advanced Soft Materials). (Manufactured by KK).
 成分(C)の添加量は、成分(A)と成分(B)と成分(C)の合計100質量部に対して0質量部以上40質量部以下であり、好ましくは0質量部以上30質量部以下である。成分(C)が40質量部以上である場合には、硬化物中で成分(A)由来の構造が十分な耐衝撃性(靭性)を発揮することができない。 The addition amount of the component (C) is 0 parts by mass or more and 40 parts by mass or less, preferably 0 parts by mass or more and 30 parts by mass, based on 100 parts by mass of the total of the components (A), (B) and (C). Below the section. When the amount of the component (C) is 40 parts by mass or more, the structure derived from the component (A) cannot exhibit sufficient impact resistance (toughness) in the cured product.
<成分(D):ゴム粒子>
 本実施形態に係る硬化性樹脂組成物は、ゴム粒子(成分(D))を添加することで、硬化物の耐衝撃性を向上させることができる。成分(D)は特に限定されるものではないが、一例としてブタジエンゴム粒子、スチレン・ブタジエンゴム共重合粒子、アクリロニトリル・ブタジエン共重合ゴム粒子等を用いることができる。また、これらのジエンゴムを水素添加または部分水素添加した飽和ゴム粒子、架橋ブタジエンゴム粒子、イソプレンゴム粒子、クロロプレンゴム粒子、天然ゴム粒子、シリコンゴム粒子、エチレン/プロピレン/ジエンモノマー三元共重合ゴム粒子、アクリルゴム粒子、アクリル/シリコーン複合ゴム粒子などが挙げられる。なお、これらのゴム粒子は、単独でも、2種以上を組み合せて用いてもよい。中でも、硬化性樹脂組成物は、硬化物の耐衝撃性を向上させる観点から、ブタジエンゴム粒子、架橋ブタジエンゴム粒子、スチレン/ブタジエン共重合ゴム粒子、アクリルゴム粒子及びシリコーン/アクリル複合ゴム粒子から選択される少なくとも1種の粒子を含むことが好ましい。
 硬化性樹脂組成物中のゴム粒子の添加量としては、成分(A)と成分(B)と成分(C)の合計100質量部に対して、好ましくは0.1質量部以上50質量部以下、より好ましくは5質量部以上40質量部以下である。ゴム粒子(D)の含有量が上記の範囲内であれば、硬化物は良好な耐熱性と耐衝撃性(靱性)を両立することができる。
<Component (D): rubber particles>
The curable resin composition according to the present embodiment can improve the impact resistance of the cured product by adding rubber particles (component (D)). The component (D) is not particularly limited, but for example, butadiene rubber particles, styrene/butadiene rubber copolymer particles, acrylonitrile/butadiene copolymer rubber particles and the like can be used. Further, saturated rubber particles obtained by hydrogenating or partially hydrogenating these diene rubbers, crosslinked butadiene rubber particles, isoprene rubber particles, chloroprene rubber particles, natural rubber particles, silicone rubber particles, ethylene/propylene/diene monomer terpolymer rubber particles. , Acrylic rubber particles, acrylic/silicone composite rubber particles, and the like. These rubber particles may be used alone or in combination of two or more kinds. Among them, the curable resin composition is selected from butadiene rubber particles, crosslinked butadiene rubber particles, styrene/butadiene copolymer rubber particles, acrylic rubber particles and silicone/acrylic composite rubber particles from the viewpoint of improving the impact resistance of the cured product. It is preferable to include at least one kind of particles that are
The addition amount of the rubber particles in the curable resin composition is preferably 0.1 parts by mass or more and 50 parts by mass or less based on 100 parts by mass of the total of the components (A), (B) and (C). , And more preferably 5 parts by mass or more and 40 parts by mass or less. When the content of the rubber particles (D) is within the above range, the cured product can have both good heat resistance and good impact resistance (toughness).
 成分(D)としては、上記ゴム粒子をコア部分として有し、コア部分を被覆する少なくとも一層のシェル層とから成る多層構造(コアシェル構造)を有するゴム粒子が好ましい。 The component (D) is preferably a rubber particle having a multilayer structure (core-shell structure) having the above-mentioned rubber particles as a core portion and at least one shell layer covering the core portion.
 コア部分を構成するポリマーのガラス転移温度は特に限定されないが、0℃未満が好ましく、より好ましくは-20℃未満、さらに好ましくは-40℃以下である。コア部分を構成するポリマーのガラス転移温度を0℃以下とすることで硬化物の耐衝撃性が良好に向上する傾向にある。 The glass transition temperature of the polymer constituting the core portion is not particularly limited, but is preferably lower than 0°C, more preferably lower than -20°C, and further preferably -40°C or lower. By setting the glass transition temperature of the polymer forming the core portion to 0° C. or lower, the impact resistance of the cured product tends to be favorably improved.
 なお、コア部分を構成するポリマーのガラス転移温度は、下記Foxの式により算出される計算値を意味する(Bull.Am.Phys.Soc.,1(3)123(1956)参照)。下記Foxの式は、コア部分を構成するポリマーが単量体i(単量体1、単量体2、・・・・、及び単量体n)の共重合体である場合の式を示す。
 1/Tg=W1/Tg1+W2/Tg2+・・・・+Wn/Tgn
 Tg:コア部分を構成するポリマーのガラス転移温度(単位:K)
 Wi:コア部分を構成するポリマーを構成する単量体全量に対する単量体iの質量分率
 Tgi:単量体iの単独重合体のガラス転移温度(単位:K)
The glass transition temperature of the polymer constituting the core portion means a calculated value calculated by the following Fox equation (see Bull. Am. Phys. Soc., 1(3)123 (1956)). The following Fox formula shows the formula in the case where the polymer constituting the core portion is a copolymer of monomer i (monomer 1, monomer 2,..., And monomer n). ..
1/Tg=W1/Tg1+W2/Tg2+... +Wn/Tgn
Tg: Glass transition temperature of polymer constituting core part (unit: K)
Wi: Mass fraction of monomer i with respect to the total amount of monomers constituting the polymer constituting the core portion Tgi: Glass transition temperature of homopolymer of monomer i (unit: K)
 単独重合体のガラス転移温度(Tgi)は、各種文献に記載の値を採用することができ、例えば、「POLYMER HANDBOOK 第3版」(John Wiley &Sons,Inc.発行)に記載の値を採用できる。なお、文献に記載のないものについては、単量体を常法により重合して得られる単独重合体の、DSC法により測定されるガラス転移温度の値を採用することができる。 As the glass transition temperature (Tgi) of the homopolymer, the value described in various documents can be adopted, and for example, the value described in “POLYMER HANDBOOK 3rd edition” (published by John Wiley & Sons, Inc.) can be adopted. .. For those not described in the literature, the value of the glass transition temperature of the homopolymer obtained by polymerizing a monomer by a usual method and measured by the DSC method can be adopted.
 シェル層を構成するポリマーは、コア部分を構成するポリマーとは異種のポリマーであることが好ましい。シェル層を構成するポリマーの単官能モノマー成分としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸エステル、マレイミド、スチレン、2-(アリルオキシメチル)アクリル酸エステル等を用いることができるが、これらに限定されるものではない。シェル層を構成するポリマーの多官能モノマー成分として、ジビニルベンゼン、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジアリルマレエート、トリアリルシアヌレート、ジアリルフタレート、ブチレングリコールジアクリレート等を用いることができる。 The polymer forming the shell layer is preferably different from the polymer forming the core portion. Examples of the monofunctional monomer component of the polymer constituting the shell layer include (meth)acrylic acid esters such as methyl (meth)acrylate, ethyl (meth)acrylate, and butyl (meth)acrylate, maleimide, styrene, 2-( Allyloxymethyl)acrylic acid ester and the like can be used, but not limited thereto. Use of divinylbenzene, allyl (meth)acrylate, ethylene glycol di(meth)acrylate, diallyl maleate, triallyl cyanurate, diallyl phthalate, butylene glycol diacrylate, etc. as the polyfunctional monomer component of the polymer constituting the shell layer. You can
 シェル層を構成するポリマーのガラス転移温度は特に限定されないが、0℃以上が好ましく、より好ましくは15℃以上であり、さらに好ましくは30℃以上である。シェル層のガラス転移温度が0℃以上の場合、組成物の粘度の上昇が起こらず、また組成物中で良好に分散する傾向にある。なお、シェル層のガラス転移温度は上記Foxの式により算出される計算値である。 The glass transition temperature of the polymer forming the shell layer is not particularly limited, but is preferably 0° C. or higher, more preferably 15° C. or higher, and further preferably 30° C. or higher. When the glass transition temperature of the shell layer is 0° C. or higher, the viscosity of the composition does not increase, and the composition tends to be well dispersed in the composition. The glass transition temperature of the shell layer is a calculated value calculated by the Fox equation.
 コアシェル構造を有するゴム粒子は、コア部分をシェル層で被覆することで得られる。コア部分をシェル層で被覆する方法としては、一例として、コア部分にシェル層を塗布する方法、コア部分の表面にシェル層をグラフト重合させる方法が挙げられるが、好ましくはコア部分の表面にシェル層をグラフト重合させる方法である。 Rubber particles having a core-shell structure are obtained by coating the core part with a shell layer. Examples of the method of coating the core portion with the shell layer include a method of coating the core portion with the shell layer and a method of graft-polymerizing the shell layer on the surface of the core portion, but preferably the shell is coated on the surface of the core portion. It is a method of graft-polymerizing a layer.
 成分(D)の平均粒径は特に限定されないが、10nm~1000nmが好ましく、より好ましくは20nm~900nmであり、さらに好ましくは30nm~800nmである。成分(D)の平均粒径が10nm以上であれば、硬化物の耐衝撃性を改善する効果が得られやすい。また、平均粒径が1000nm以下であれば硬化物の耐熱性が十分となる。 The average particle size of component (D) is not particularly limited, but is preferably 10 nm to 1000 nm, more preferably 20 nm to 900 nm, and further preferably 30 nm to 800 nm. When the average particle size of the component (D) is 10 nm or more, the effect of improving the impact resistance of the cured product can be easily obtained. If the average particle size is 1000 nm or less, the heat resistance of the cured product will be sufficient.
<成分(E):ラジカル重合開始剤>
 本実施形態に係る硬化性樹脂組成物は、光ラジカル重合開始剤等のラジカル重合開始剤(成分(E))を添加することで、組成物に活性エネルギー線を照射して硬化物を得ることができる。
<Component (E): radical polymerization initiator>
The curable resin composition according to the present embodiment is obtained by adding a radical polymerization initiator (component (E)) such as a photoradical polymerization initiator to irradiate the composition with active energy rays to obtain a cured product. You can
 光ラジカル重合開始剤は、主に分子内開裂型と水素引抜き型に分類される。分子内開裂型のラジカル重合開始剤では、特定波長の光を吸収することで、特定の部位の結合が切断され、その切断された部位にラジカルが発生し、それが重合開始剤となりラジカル重合性化合物の重合が始まる。一方、水素引き抜き型の場合は、特定波長の光を吸収し励起状態になり、その励起種が周囲にある水素供与体から水素引き抜き反応を起こし、ラジカルが発生し、それが重合開始剤となりラジカル重合性化合物の重合が始まる。 Photo-radical polymerization initiators are mainly classified into intramolecular cleavage type and hydrogen abstraction type. In the intramolecular cleavage type radical polymerization initiator, by absorbing light of a specific wavelength, the bond at a specific site is cleaved, and a radical is generated at the cleaved site, which becomes a polymerization initiator and becomes radically polymerizable. Polymerization of the compound begins. On the other hand, in the case of the hydrogen abstraction type, it absorbs light of a specific wavelength to be in an excited state, and the excited species cause a hydrogen abstraction reaction from the surrounding hydrogen donor to generate a radical, which becomes a polymerization initiator and becomes a radical. Polymerization of the polymerizable compound begins.
 分子内開裂型光ラジカル重合開始剤としては、アルキルフェノン系光ラジカル重合開始剤、アシルホスフィンオキサイド系光ラジカル重合開始剤、オキシムエステル系光ラジカル重合開始剤が知られている。これらはカルボニル基に隣接した結合がα開裂して、ラジカル種を生成するタイプのものである。アルキルフェノン系光ラジカル重合開始剤としては、ベンジルメチルケタール系光ラジカル重合開始剤、α-ヒドロキシアルキルフェノン系光ラジカル重合開始剤、アミノアルキルフェノン系光ラジカル重合開始剤等がある。具体的な化合物としては、例えば、ベンジルメチルケタール系光ラジカル重合開始剤としては、2,2’-ジメトキシ-1,2-ジフェニルエタン-1-オン(イルガキュア(R)651、BASF社製)等があり、α-ヒドロキシアルキルフェノン系光ラジカル重合開始剤としては2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(ダロキュア(R)1173、BASF社製)、1-ヒドロキシシクロヘキシルフェニルケトン(イルガキュア(R)184、BASF社製)、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(イルガキュア(R)2959、BASF社製)、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル]フェニル}-2-メチルプロパン-1-オン(イルガキュア(R)127、BASF社製)等があり、アミノアルキルフェノン系光ラジカル重合開始剤としては、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(イルガキュア(R)907、BASF社製)、2-ベンジルメチル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタノン(イルガキュア(R)369、BASF社製)等があるが、これに限定されることはない。アシルホスフィンオキサイド系光ラジカル重合開始剤としては、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド(ルシリン(R)TPO、BASF社製)、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(イルガキュア(R)819、BASF社製)等があるが、これに限定されることはない。オキシムエステル系光ラジカル重合開始剤としては、(2E)-2-(ベンゾイルオキシイミノ)-1-[4-(フェニルチオ)フェニル]オクタン-1-オン(イルガキュア(R)OXE-01、BASF社製)等が挙げられるが、これに限定されることはない。 As the intramolecular cleavage type photoradical polymerization initiator, an alkylphenone type photoradical polymerization initiator, an acylphosphine oxide type photoradical polymerization initiator, and an oxime ester type photoradical polymerization initiator are known. These are types in which a bond adjacent to a carbonyl group is cleaved to generate a radical species. Examples of the alkylphenone-based photoradical polymerization initiator include a benzylmethylketal-based photoradical polymerization initiator, an α-hydroxyalkylphenone-based photoradical polymerization initiator, and an aminoalkylphenone-based photoradical polymerization initiator. Specific compounds include, for example, benzylmethyl ketal-based photoradical polymerization initiators such as 2,2′-dimethoxy-1,2-diphenylethan-1-one (Irgacure (R)651, manufactured by BASF). As the α-hydroxyalkylphenone-based photoradical polymerization initiator, 2-hydroxy-2-methyl-1-phenylpropan-1-one (Darocur (R) 1173, manufactured by BASF), 1-hydroxycyclohexylphenyl ketone (Irgacure (R) 184, manufactured by BASF), 1-[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propan-1-one (Irgacure (R) 2959, BASF) 2-hydroxy-1-{4-[4-(2-hydroxy-2-methylpropionyl)benzyl]phenyl}-2-methylpropan-1-one (Irgacure (R) 127, BASF) Examples of aminoalkylphenone-based photoradical polymerization initiators include 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one (Irgacure (R) 907, manufactured by BASF), 2 -Benzylmethyl-2-dimethylamino-1-(4-morpholinophenyl)-1-butanone (Irgacure (R)369, manufactured by BASF) and the like, but not limited thereto. Examples of the acylphosphine oxide-based photoradical polymerization initiator include 2,4,6-trimethylbenzoyldiphenylphosphine oxide (Lucillin(R)TPO, manufactured by BASF), bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide. (Irgacure (R) 819, manufactured by BASF Corporation) and the like, but not limited thereto. Examples of the oxime ester-based photoradical polymerization initiator include (2E)-2-(benzoyloxyimino)-1-[4-(phenylthio)phenyl]octane-1-one (Irgacure (R) OXE-01, manufactured by BASF Corporation. ) And the like, but not limited thereto.
 水素引き抜き型ラジカル重合開始剤としては、2-エチル-9,10-アントラキノン、2-t-ブチル-9,10-アントラキノン等のアントラキノン誘導体、イソプロピルチオキサントン、2,4-ジエチルチオキサントン等のチオキサントン誘導体が挙げられるが、これに限定されることはない。 Examples of hydrogen abstraction type radical polymerization initiators include anthraquinone derivatives such as 2-ethyl-9,10-anthraquinone and 2-t-butyl-9,10-anthraquinone, and thioxanthone derivatives such as isopropylthioxanthone and 2,4-diethylthioxanthone. Examples include, but are not limited to:
 光ラジカル重合開始剤は、2種類以上を併用してもよいが、単独で用いてもよい。 The photo radical polymerization initiator may be used in combination of two or more kinds, or may be used alone.
 光ラジカル重合開始剤の添加量としては、成分(A)と成分(B)と成分(C)の合計100質量部に対して、好ましくは0.1質量部以上15質量部以下、より好ましくは0.1質量部以上10質量部以下である。光ラジカル重合開始剤の添加量が0.1質量部以上であれば、硬化性樹脂組成物の重合が十分となり、硬化物の耐熱性が十分となる。光ラジカル重合開始剤の添加量が15質量部以下であれば、分子量が大きくなり、硬化物の耐衝撃性が十分となる。 The addition amount of the photoradical polymerization initiator is preferably 0.1 parts by mass or more and 15 parts by mass or less, and more preferably 100 parts by mass of the total of the components (A), (B) and (C). It is 0.1 part by mass or more and 10 parts by mass or less. When the addition amount of the radical photopolymerization initiator is 0.1 part by mass or more, the curable resin composition is sufficiently polymerized and the cured product has sufficient heat resistance. When the amount of the photo-radical polymerization initiator added is 15 parts by mass or less, the molecular weight becomes large and the impact resistance of the cured product becomes sufficient.
 また、造形後の熱処理で重合反応を進めるために、熱ラジカル重合開始剤を含有していてもよい。熱ラジカル重合開始剤としては、加熱によりラジカルを発生するものであれば特に制限されず従来既知の化合物を用いることが可能であり、例えば、アゾ系化合物、過酸化物及び過硫酸塩等を好ましいものとして挙げることができる。アゾ系化合物としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(メチルイソブチレ-ト)、2,2’-アゾビス-2,4-ジメチルバレロニトリル、1,1’-アゾビス(1-アセトキシ-1-フェニルエタン)等が挙げられる。過酸化物としては、ベンゾイルパーオキサイド、ジ-t-ブチルベンゾイルパーオキサイド、t-ブチルパーオキシピバレート及びジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート等が挙げられる。過硫酸塩としては、過硫酸アンモニウム、過硫酸ナトリウム及び過硫酸カリウム等の過硫酸塩等が挙げられる。 Also, a thermal radical polymerization initiator may be contained in order to promote the polymerization reaction in the heat treatment after shaping. The thermal radical polymerization initiator is not particularly limited as long as it generates a radical by heating, and conventionally known compounds can be used. For example, azo compounds, peroxides and persulfates are preferable. It can be mentioned as a thing. Azo compounds include 2,2'-azobisisobutyronitrile, 2,2'-azobis(methylisobutyrate), 2,2'-azobis-2,4-dimethylvaleronitrile, 1,1'- Examples thereof include azobis(1-acetoxy-1-phenylethane). Examples of peroxides include benzoyl peroxide, di-t-butylbenzoyl peroxide, t-butylperoxypivalate and di(4-t-butylcyclohexyl)peroxydicarbonate. Examples of persulfates include persulfates such as ammonium persulfate, sodium persulfate and potassium persulfate.
 熱ラジカル重合開始剤の添加量としては、成分(A)と成分(B)と成分(C)の合計100質量部に対して、好ましくは0.1質量部以上15質量部以下、より好ましくは0.1質量部以上10質量部以下である。熱ラジカル重合開始剤量が15質量部以下であれば、分子量が伸び、十分な物性が得られる。 The addition amount of the thermal radical polymerization initiator is preferably 0.1 parts by mass or more and 15 parts by mass or less, more preferably 100 parts by mass of the component (A), the component (B) and the component (C). It is 0.1 part by mass or more and 10 parts by mass or less. When the amount of the thermal radical polymerization initiator is 15 parts by mass or less, the molecular weight is extended and sufficient physical properties can be obtained.
<添加剤>
 本実施形態に係る硬化性樹脂組成物には、本発明の目的、効果を損なわない範囲において、その他の任意の成分として各種の添加剤が含有されていてもよい。かかる添加剤としては、エポキシ樹脂、ポリアミド、ポリアミドイミド、ポリウレタン、ポリブタジエン、ポリクロロプレン、ポリエーテル、ポリエステル、スチレン-ブタジエンブロック共重合体、石油樹脂、キシレン樹脂、ケトン樹脂、セルロース樹脂、フッ素系オリゴマー、シリコーン系オリゴマー、ポリスルフィド系オリゴマー;フェノチアジン、2,6-ジ-t-ブチル-4-メチルフェノール等の重合禁止剤;重合開始助剤;レベリング剤;濡れ性改良剤;界面活性剤;可塑剤;紫外線吸収剤;シランカップリング剤;無機充填剤;顔料;染料などを挙げることができる。
<Additive>
The curable resin composition according to the present embodiment may contain various additives as other optional components as long as the objects and effects of the present invention are not impaired. Such additives include epoxy resin, polyamide, polyamideimide, polyurethane, polybutadiene, polychloroprene, polyether, polyester, styrene-butadiene block copolymer, petroleum resin, xylene resin, ketone resin, cellulose resin, fluorine-based oligomer, Silicone-based oligomers, polysulfide-based oligomers; polymerization inhibitors such as phenothiazine and 2,6-di-t-butyl-4-methylphenol; polymerization initiation aids; leveling agents; wettability improvers; surfactants; plasticizers; Examples thereof include ultraviolet absorbers, silane coupling agents, inorganic fillers, pigments, dyes and the like.
<立体物の造形方法>
 本実施形態に係る硬化性樹脂組成物は、光学的立体造形法(光造形法)による硬化物の製造方法に好適に用いることができる。以下、本実施形態に係る硬化性樹脂組成物を用いた硬化物の製造方法について説明する。
<How to create a three-dimensional object>
The curable resin composition according to the present embodiment can be suitably used in a method for producing a cured product by an optical three-dimensional modeling method (stereolithography method). Hereinafter, a method for producing a cured product using the curable resin composition according to this embodiment will be described.
 光造形法としては、従来公知の方法を用いることができる。即ち、硬化物本実施形態の硬化性樹脂組成物を一層ずつ層毎に選択的に光等の活性エネルギー線を照射して光硬化等の硬化をさせる工程を含み、これを繰り返すことによって硬化物を製造する方法である。 A conventionally known method can be used as the stereolithography method. That is, the cured product includes a step of selectively irradiating the curable resin composition of the present embodiment layer by layer with an active energy ray such as light to perform curing such as photocuring, and repeating this to obtain a cured product. Is a method of manufacturing.
 硬化性樹脂組成物を一層ずつ層毎に硬化させる工程においては、作成したい硬化物のスライスデータに基づいて硬化性樹脂組成物に活性エネルギー線を選択的に照射する。硬化性樹脂組成物に照射する活性エネルギー線としては、本実施形態に係る硬化性樹脂組成物を硬化させることができる活性エネルギー線であれば特に制限はない。活性エネルギー線の具体例としては、紫外線、可視光線、赤外線、X線、ガンマー線、レーザー光線等の電磁波、アルファー線、ベータ線、電子線等の粒子線等が挙げられる。これらのうち、使用するラジカル重合開始剤(成分(E))の吸収波長や設備導入のコストの点から、紫外線が最も好ましい。活性エネルギー線の露光量としては、特に限定されないが、好ましくは0.001J/cm以上10J/cm以下である。0.001J/cm未満であると、硬化性樹脂組成物が十分に硬化しない恐れがあり、10J/cmを超えると照射時間が長くなり生産性が落ちる。 In the step of curing the curable resin composition layer by layer, the curable resin composition is selectively irradiated with active energy rays based on the slice data of the cured product to be prepared. The active energy ray with which the curable resin composition is irradiated is not particularly limited as long as it is an active energy ray capable of curing the curable resin composition according to the present embodiment. Specific examples of the active energy rays include electromagnetic waves such as ultraviolet rays, visible rays, infrared rays, X-rays, gamma rays and laser rays, and particle rays such as alpha rays, beta rays and electron rays. Of these, ultraviolet rays are most preferable from the viewpoint of the absorption wavelength of the radical polymerization initiator (component (E)) used and the cost of introducing equipment. The exposure of the active energy ray is not particularly limited, preferably not 0.001J / cm 2 or more 10J / cm 2 or less. When it is less than 0.001 J/cm 2 , the curable resin composition may not be sufficiently cured, and when it exceeds 10 J/cm 2 , the irradiation time becomes long and the productivity is lowered.
 硬化性樹脂組成物に対して活性エネルギー線を照射する方法は特に限定されず、例えば活性エネルギー線として光を照射する場合には、以下の方法を採用することができる。第1の方法としては、レーザー光のように点状に集光した光を使用して、この光を硬化性樹脂組成物に対して二次元的に走査する方法が挙げられる。このとき、二次元的な走査は点描方式でもよいし、線描方式でもよい。第2の方法としては、プロジェクターなどを用いて断面データの形状に光を照射する面露光方式が挙げられる。この場合、液晶シャッターまたはデジタルマイクロミラーシャッターなどのような微小光シャッターを複数配列して形成した面状描画マスクを通して、活性エネルギー線を面状に照射してもよい。 The method of irradiating the curable resin composition with active energy rays is not particularly limited. For example, when irradiating light as active energy rays, the following method can be adopted. As a first method, there is a method in which a point-shaped light such as a laser beam is used and the curable resin composition is two-dimensionally scanned with the light. At this time, the two-dimensional scanning may be performed by a point drawing method or a line drawing method. A second method is a surface exposure method in which a projector or the like is used to irradiate the shape of the cross-section data with light. In this case, the active energy rays may be irradiated in a planar manner through a planar drawing mask formed by arranging a plurality of minute optical shutters such as a liquid crystal shutter or a digital micromirror shutter.
 上記方法によって硬化物を得た後に、得られた硬化物の表面を有機溶剤などの洗浄剤によって洗浄してもよい。また、得られた硬化物に対して光照射や熱処理を施すことで、硬化物の表面や内部に残存した未反応の残存成分を硬化させるポストキュアーを行ってもよい。 After the cured product is obtained by the above method, the surface of the obtained cured product may be washed with a cleaning agent such as an organic solvent. Moreover, you may perform the post cure which hardens the unreacted residual component which remained on the surface or inside of a hardened|cured material by performing light irradiation or heat processing with respect to the obtained hardened|cured material.
 以下、各実施例及び比較例により本発明を詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
≪実施例1乃至3≫
 実施例で用いた成分は以下の通りである。
[成分(A)]
A-1:2-(アリルオキシメチル)アクリル酸メチル(株式会社日本触媒製、AOMA)
[成分(B)]
B-1:エトキシ化イソシアヌル酸トリアクリレート(新中村化学工業株式会社製、A-9300)
[成分(C)]
ウレタンアクリレート(日本化薬株式会社製、KAYARAD UX-6101)
<<Examples 1 to 3>>
The components used in the examples are as follows.
[Component (A)]
A-1: 2-(allyloxymethyl)methyl acrylate (AOMA, manufactured by Nippon Shokubai Co., Ltd.)
[Component (B)]
B-1: Ethoxylated isocyanuric acid triacrylate (Shin Nakamura Chemical Co., Ltd., A-9300)
[Component (C)]
Urethane acrylate (Nippon Kayaku Co., Ltd., KAYARAD UX-6101)
[成分(D)]
 以下の方法で製造したゴム粒子
 コアシェル構造を有するゴム粒子のアセトン分散液を製造した。まず、2Lガラス容器にラテックス(日本ゼオン株式会社製、Nipol(R)LX111A2)370質量部(ポリブタジエンゴム粒子200質量部相当)及び脱イオン水630質量部を仕込み、窒素置換を行いながら60℃で60分攪拌した。EDTA0.0096質量部、硫酸鉄0.0024質量部、ナトリウムホルムアルデヒドスルホキシレート0.48質量部を加えた後、グラフトモノマー(メチルメタクリレート(MMA)35.28質量部、3-メチル-3-オキセタニル-メチルメタクリレート(OXMA)35.28質量部)、及びクメンヒドロパーオキサイド(CHP)0.119質量部の混合物を2時間かけて連続的に滴下し、グラフト重合を行った。滴下終了後、さらに2時間攪拌して反応を終了させ、コアシェル構造を有するゴム粒子を製造した。2Lの混浴槽に1000質量部のアセトンを導入し、得られたゴム粒子を攪拌しながら投入した。投入終了後、浮遊性の凝集体及び有機溶媒を一部含む水層から成るスラリー液を得た。得られたスラリー液を250mL遠沈管に詰め、回転数12000rpm、温度10℃にて30分間遠心した後、上澄み液を除去した。沈降したゴム粒子にアセトンを加えて再分散させ、再度回転数12000rpm、温度10℃にて30分間遠心した後、上澄み液を除去することにより、ゴム粒子のアセトン分散液を得た。ゴム粒子がアセトン分散液中で分散性を保っていることから、MMA及びOXMAがゴム粒子の表面でグラフト重合していることが確認できた。得られたゴム粒子のアセトン分散液について、動的光散乱装置(マルバーン社製、ゼータサイザーナノZS)を用いて測定した、粒度分布曲線(粒子径-散乱強度)の極大値から求めたゴム粒子の平均粒径は0.32μmであった。
[成分(E)]
ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(イルガキュア(R)819、BASF社製)
[Component (D)]
Rubber particles produced by the following method An acetone dispersion of rubber particles having a core-shell structure was produced. First, 370 parts by mass of latex (Nipol (R) LX111A2 manufactured by Nippon Zeon Co., Ltd., 200 parts by mass of polybutadiene rubber particles) and 630 parts by mass of deionized water were charged into a 2 L glass container, and the mixture was purged with nitrogen at 60° C. It was stirred for 60 minutes. After adding 0.0096 parts by mass of EDTA, 0.0024 parts by mass of iron sulfate, 0.48 parts by mass of sodium formaldehyde sulfoxylate, 35.28 parts by mass of a graft monomer (methyl methacrylate (MMA), 3-methyl-3-oxetanyl). -Methyl methacrylate (OXMA) 35.28 parts by mass) and cumene hydroperoxide (CHP) 0.119 parts by mass were continuously added dropwise over 2 hours to carry out graft polymerization. After the dropping was completed, the reaction was further stirred for 2 hours to complete the reaction, and rubber particles having a core-shell structure were produced. 1000 parts by mass of acetone was introduced into a 2 L mixing bath, and the obtained rubber particles were added while stirring. After the addition was completed, a slurry liquid consisting of an aqueous layer containing a part of floating aggregates and an organic solvent was obtained. The obtained slurry liquid was packed in a 250 mL centrifuge tube, centrifuged at a rotation speed of 12000 rpm and a temperature of 10° C. for 30 minutes, and then the supernatant was removed. Acetone was added to the precipitated rubber particles to redisperse them, and the mixture was centrifuged again at a rotation speed of 12000 rpm for 30 minutes at a temperature of 10° C., and the supernatant was removed to obtain an acetone dispersion of rubber particles. Since the rubber particles maintain the dispersibility in the acetone dispersion liquid, it was confirmed that MMA and OXMA were graft-polymerized on the surface of the rubber particles. Rubber particles obtained from the maximum value of the particle size distribution curve (particle diameter-scattering intensity) of the obtained acetone dispersion of rubber particles, which was measured using a dynamic light scattering device (Zetasizer Nano ZS manufactured by Malvern Instruments Ltd.). Had an average particle size of 0.32 μm.
[Component (E)]
Bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide (Irgacure (R)819, manufactured by BASF)
<硬化性樹脂組成物の製造>
 表1に示す配合比にて成分(A)と成分(B)と成分(E)、または成分(A)と成分(B)と成分(C)と成分(E)とを配合し、均一に混合した。この配合物中に、成分(D)のアセトン分散液を混合し、回転式の蒸発装置を用いて揮発分であるアセトンを除去することによって硬化性樹脂組成物を得た。
<Production of curable resin composition>
Component (A), component (B) and component (E) or component (A), component (B), component (C) and component (E) are blended in the blending ratio shown in Table 1 and uniformly mixed. Mixed. A curable resin composition was obtained by mixing an acetone dispersion liquid of the component (D) in this formulation and removing acetone which is a volatile component by using a rotary evaporator.
<試験片用硬化物の製造>
 調製した硬化性樹脂組成物を用いて、下記の方法で硬化物を作成した。まず、二枚の石英ガラスの間に長さ80mm、幅10mm、厚さ4mmの金型を挟み、ここに硬化性樹脂を流し込んだ。流し込んだ硬化性樹脂組成物に対して、紫外線照射機(HOYA CANDEO OPTRONICS株式会社製EXECURE3000)を用いて5mW/cmの紫外線を金型の両面から360秒間ずつ照射し、硬化物を得た(総エネルギーとして3600mJ/cm)。さらに、得られた硬化物を50℃の加熱オーブン内に入れて1時間、100℃の加熱オーブン内に入れて2時間熱処理を行うことで硬化物を得た。
<Production of cured product for test piece>
A cured product was prepared by the following method using the prepared curable resin composition. First, a mold having a length of 80 mm, a width of 10 mm and a thickness of 4 mm was sandwiched between two pieces of quartz glass, and a curable resin was poured therein. The curable resin composition that had been cast was irradiated with 5 mW/cm 2 of ultraviolet light from both sides of the mold for 360 seconds using an ultraviolet irradiation device (EXECURE 3000 manufactured by HOYA CANDEO OPTRONICS Co., Ltd.) to obtain a cured product ( 3600 mJ/cm 2 as total energy). Further, the obtained cured product was placed in a heating oven at 50° C. for 1 hour, and then placed in a heating oven at 100° C. for 2 hours to perform heat treatment to obtain a cured product.
<耐衝撃性の評価>
 得られた試験片についてJIS K 7111に準じて、切欠き形成機(東洋精機製作所製、商品名「ノッチングツールA-4」)にて中央部に深さ2mm、45°の切欠き(ノッチ)を入れた。その後、衝撃試験機(東洋精機製作所製、商品名「IMPACT TESTER IT」)を用い、試験片の切欠きの背面から2Jのエネルギーで破壊する。150°まで振り上げたハンマーが試験片破壊後に振りあがる角度から破壊に要したエネルギーを算出し、このシャルピー衝撃強さを耐衝撃性の指標とした。また、以下の基準で耐衝撃性を評価した。
A(非常に良好):シャルピー衝撃強さが6kJ/m以上。
B(良好):シャルピー衝撃強さが5kJ/m以上6kJ/m未満。
C(不良):シャルピー衝撃強さが5kJ/m未満。
<Evaluation of impact resistance>
Regarding the obtained test piece, according to JIS K 7111, a notch forming machine (manufactured by Toyo Seiki Seisakusho Co., Ltd., product name "Notching Tool A-4") is used to form a notch with a depth of 2 mm and a 45° in the central portion. I put it in. Then, using an impact tester (trade name “IMPACT TESTER IT” manufactured by Toyo Seiki Seisaku-sho, Ltd.), the test piece is broken with energy of 2 J from the back surface of the notch. The energy required for breaking was calculated from the angle at which the hammer swung up to 150° swung up after breaking the test piece, and this Charpy impact strength was used as an index of impact resistance. The impact resistance was evaluated according to the following criteria.
A (very good): Charpy impact strength is 6 kJ/m 2 or more.
B (good): Charpy impact strength is 5 kJ/m 2 or more and less than 6 kJ/m 2 .
C (defective): Charpy impact strength is less than 5 kJ/m 2 .
<耐熱性の評価>
 得られた試験片についてJIS K 7191-2に準じて、荷重たわみ温度試験機(東洋精機製作所製、商品名「No.533 HDT 試験装置 3M-2」)を用いて耐熱性の試験を行った。曲げ応力1.80MPaで、25℃から毎分2℃昇温した。試験片のたわみ量が0.34mmに達した温度を荷重たわみ温度とし、耐熱性の指標とした。また、以下の基準で耐熱性を評価した。
A(非常に良好):荷重たわみ温度が150℃以上。
B(良好):荷重たわみ温度が80℃以上150℃未満。
C(不良):荷重たわみ温度が80℃未満。
<曲げ弾性率の評価>
 得られた試験片についてJIS K 7171に準じて、引張・圧縮試験機(株式会社エー・アンド・デイ製、商品名「テンシロン万能材料試験機 RTF-1250」)を用いて、曲げ弾性率の測定を行った。2mm・minの条件で、規定歪み区間(0.05~0.25%)の応力勾配より曲げ弾性率を算出した。また、以下の基準で曲げ弾性率を評価した。
A(非常に良好):曲げ弾性率が2.0GPa以上
B(良好):曲げ弾性率が1.6GPa以上2.0GPa未満。
C(不良):曲げ弾性率が1.6GPa未満。
<Evaluation of heat resistance>
The obtained test piece was subjected to a heat resistance test in accordance with JIS K 7191-2 using a deflection temperature tester under load (manufactured by Toyo Seiki Seisakusho, trade name "No. 533 HDT tester 3M-2"). .. The bending stress was 1.80 MPa and the temperature was raised from 25° C. to 2° C. per minute. The temperature at which the amount of deflection of the test piece reached 0.34 mm was taken as the deflection temperature under load and used as an index of heat resistance. The heat resistance was evaluated according to the following criteria.
A (very good): Deflection temperature under load is 150°C or higher.
B (good): The deflection temperature under load is 80°C or higher and lower than 150°C.
C (defective): Deflection temperature under load is less than 80°C.
<Evaluation of flexural modulus>
The flexural modulus of the obtained test piece was measured using a tensile/compression tester (manufactured by A&D Co., Ltd., trade name "Tensilon Universal Material Testing Machine RTF-1250") according to JIS K 7171. I went. The flexural modulus was calculated from the stress gradient in the specified strain section (0.05 to 0.25%) under the condition of 2 mm·min. The flexural modulus was evaluated according to the following criteria.
A (very good): Bending elastic modulus of 2.0 GPa or more B (good): Bending elastic modulus of 1.6 GPa or more and less than 2.0 GPa.
C (poor): Flexural modulus is less than 1.6 GPa.
≪比較例1乃至5≫
 成分(A)または成分(B)に代えて、以下の成分を表1に示す配合比で用いた以外は実施例と同様に硬化性樹脂組成物を製造し、実施例と同様に評価した。
A-2:メタクリル酸メチル(東京化成工業株式会社製、MMA)
A-3:2-ヒドロキシエチルメタクリレート(共栄社化学株式会社製、ライトエステルHO-250(N))
B-2:ペンタエリスリトールテトラアクリレート(共栄社化学株式会社製、ライトアクリレートPE-4A)
B-3:トリメチロールプロパントリメタクリラート(東京化成工業株式会社製)
B-4:ビスフェノールAジメタクリラート(シグマアルドリッチ社製)
<<Comparative Examples 1 to 5>>
A curable resin composition was produced in the same manner as in Example except that the following components were used in the compounding ratio shown in Table 1 in place of the component (A) or the component (B), and evaluated in the same manner as in the example.
A-2: Methyl methacrylate (Tokyo Chemical Industry Co., Ltd., MMA)
A-3: 2-hydroxyethyl methacrylate (Kyoeisha Chemical Co., Ltd., light ester HO-250(N))
B-2: Pentaerythritol tetraacrylate (Kyoeisha Chemical Co., Ltd., light acrylate PE-4A)
B-3: Trimethylolpropane trimethacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
B-4: Bisphenol A dimethacrylate (manufactured by Sigma-Aldrich)
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1より、成分(A)としてA-1を用いた実施例1と、A-1に代えてA-2またはA-3を用いた比較例1及び2を対比すると、実施例1の硬化物は高い耐衝撃性(破壊靭性)を有する硬化物を与える硬化性組成物であることがわかった。また、成分(B)としてB-1を用いた実施例1~3と、B-1に代えてB-2、B-3またはB-4を用いた比較例3乃至5を対比すると、実施例1~3の硬化物は高い耐衝撃性(破壊靭性)を与える硬化性組成物であることがわかった。イソシアヌレート環を有する多官能ラジカル重合性化合物(成分(B))とゴム粒子(成分(D))とを組み合わせた場合に限り、ゴム粒子(成分(D))の高破壊靭性化効果が発現し、予想に反して硬化物が非常に良好な耐衝撃性を発現することが明らかとなった。 From Table 1, comparing Example 1 using A-1 as the component (A) with Comparative Examples 1 and 2 using A-2 or A-3 instead of A-1, the curing of Example 1 It was found that the product is a curable composition that gives a cured product having high impact resistance (fracture toughness). In addition, comparing Examples 1 to 3 using B-1 as the component (B) with Comparative Examples 3 to 5 using B-2, B-3 or B-4 in place of B-1, comparison was made. It was found that the cured products of Examples 1 to 3 are curable compositions that give high impact resistance (fracture toughness). Only when the polyfunctional radically polymerizable compound having an isocyanurate ring (component (B)) and the rubber particles (component (D)) are combined, the high fracture toughening effect of the rubber particles (component (D)) is exhibited. However, it was revealed that, contrary to expectations, the cured product exhibited very good impact resistance.
 以上の結果から、単官能2-(アリルオキシメチル)アクリル酸またはそのエステル(成分(A))と、イソシアヌレート環を有する多官能ラジカル重合性化合物(成分(B))と、ゴム粒子(成分(D))と、ラジカル重合開始剤(成分(E))を含有する組成物である場合に高い耐衝撃性(靭性)と高い耐熱性と、高い曲げ弾性率をバランスよく有する硬化物を得られることが明らかとなり、光学的立体造形に好適に使用できることが明らかとなった。 From the above results, monofunctional 2-(allyloxymethyl)acrylic acid or its ester (component (A)), a polyfunctional radically polymerizable compound having an isocyanurate ring (component (B)), and rubber particles (component) In the case of a composition containing (D)) and a radical polymerization initiator (component (E)), a cured product having a high balance of high impact resistance (toughness), high heat resistance, and high flexural modulus is obtained. It became clear that it can be used suitably for optical three-dimensional modeling.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above embodiments, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, the following claims are attached to open the scope of the present invention.
 本願は、2019年2月8日提出の日本国特許出願特願2019-021783及び2020年1月21日提出の日本国特許出願特願2020-007357を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 This application claims priority based on Japanese Patent Application No. 2019-021783 filed on February 8, 2019 and Japanese Patent Application No. 2020-007357 filed on January 21, 2020, The entire contents of the description are incorporated herein.

Claims (9)

  1.  成分(A):単官能2-(アリルオキシメチル)アクリル酸またはそのエステル、
     成分(B):イソシアヌレート環を有する多官能ラジカル重合性化合物、
     成分(C):ラジカル重合性化合物、
     成分(D):ゴム粒子、
     成分(E):ラジカル重合開始剤、
    を含有し、
     前記成分(A)は、下記一般式(1)で示され、
    Figure JPOXMLDOC01-appb-C000001
    [Rは水素原子または炭化水素基である。前記炭化水素基はエーテル結合を有していてもよく、前記炭化水素基は置換基を有していてもよい。]
     前記成分(B)は、下記一般式(2)で示され、
    Figure JPOXMLDOC01-appb-C000002
    [X、X、Xのうち2つ以上がそれぞれ独立にラジカル重合性基を1つ以上有する。]
     前記成分(C)は、前記成分(A)及び前記成分(B)とは異なるラジカル重合性化合物であり、
     前記成分(A)と前記成分(B)と前記成分(C)の合計が100質量部であるとき、前記成分(B)が20質量部以上80質量部以下であり、且つ、前記成分(C)が0質量部以上40質量部以下であることを特徴とする硬化性樹脂組成物。
    Component (A): monofunctional 2-(allyloxymethyl)acrylic acid or its ester,
    Component (B): a polyfunctional radically polymerizable compound having an isocyanurate ring,
    Component (C): radically polymerizable compound,
    Component (D): rubber particles,
    Component (E): radical polymerization initiator,
    Containing
    The component (A) is represented by the following general formula (1),
    Figure JPOXMLDOC01-appb-C000001
    [R is a hydrogen atom or a hydrocarbon group. The hydrocarbon group may have an ether bond, and the hydrocarbon group may have a substituent. ]
    The component (B) is represented by the following general formula (2),
    Figure JPOXMLDOC01-appb-C000002
    [Two or more of X 1 , X 2 , and X 3 each independently have one or more radically polymerizable groups. ]
    The component (C) is a radically polymerizable compound different from the components (A) and (B),
    When the total of the component (A), the component (B) and the component (C) is 100 parts by mass, the component (B) is 20 parts by mass or more and 80 parts by mass or less, and the component (C ) Is 0 parts by mass or more and 40 parts by mass or less, a curable resin composition.
  2.  前記Rは、炭素数1以上20以下の飽和炭化水素基であることを特徴とする請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein R is a saturated hydrocarbon group having 1 to 20 carbon atoms.
  3.  前記成分(A)は、2-(アリルオキシメチル)アクリル酸メチル、または2-(アリルオキシメチル)アクリル酸エチルであることを特徴とする請求項1または2に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1 or 2, wherein the component (A) is methyl 2-(allyloxymethyl)acrylate or ethyl 2-(allyloxymethyl)acrylate.
  4.  前記成分(D)は、コアシェル構造を有することを特徴とする請求項1乃至3のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 3, wherein the component (D) has a core-shell structure.
  5.  前記コアシェル構造のシェル層は、前記コアシェル構造のコア部分の表面にグラフト重合されていることを特徴とする請求項4に記載の硬化性樹脂組成物。 The curable resin composition according to claim 4, wherein the shell layer having the core-shell structure is graft-polymerized on the surface of the core portion of the core-shell structure.
  6.  前記成分(E)は、光ラジカル重合開始剤であることを特徴とする請求項1乃至5のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 5, wherein the component (E) is a photoradical polymerization initiator.
  7.  請求項1乃至6のいずれか一項に記載の硬化性樹脂組成物を硬化してなることを特徴とする硬化物。 A cured product obtained by curing the curable resin composition according to any one of claims 1 to 6.
  8.  スライスデータに基づいて硬化性樹脂組成物を層毎に光硬化させて硬化物を造形する工程を有する硬化物の製造方法であって、
     前記硬化性樹脂組成物が、請求項1乃至6のいずれか一項に記載の硬化性樹脂組成物であることを特徴とする硬化物の製造方法。
    A method for producing a cured product, which comprises a step of forming a cured product by photocuring a curable resin composition for each layer based on slice data,
    The method for producing a cured product, wherein the curable resin composition is the curable resin composition according to any one of claims 1 to 6.
  9.  さらに、前記硬化物に熱処理を施す工程を有することを特徴とする請求項8に記載の硬化物の製造方法。 The method for producing a cured product according to claim 8, further comprising the step of subjecting the cured product to a heat treatment.
PCT/JP2020/004231 2019-02-08 2020-02-05 Curable resin composition WO2020162475A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/392,985 US20210363377A1 (en) 2019-02-08 2021-08-03 Curable resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019021783 2019-02-08
JP2019-021783 2019-09-29
JP2020007357A JP7443069B2 (en) 2019-02-08 2020-01-21 Curable resin composition
JP2020-007357 2020-04-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/392,985 Continuation US20210363377A1 (en) 2019-02-08 2021-08-03 Curable resin composition

Publications (1)

Publication Number Publication Date
WO2020162475A1 true WO2020162475A1 (en) 2020-08-13

Family

ID=71947099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004231 WO2020162475A1 (en) 2019-02-08 2020-02-05 Curable resin composition

Country Status (1)

Country Link
WO (1) WO2020162475A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002110A (en) * 2004-06-21 2006-01-05 Mitsubishi Rayon Co Ltd Resin composition for optical solid shaping and solid shape
WO2006057218A1 (en) * 2004-11-24 2006-06-01 Kaneka Corporation Curable composition and semiconductor device sealed/coated with such curable composition
JP2009062510A (en) * 2007-03-29 2009-03-26 Jsr Corp Optical stereolithographic-shaping photocurable resin composition and three-dimensional shaped article
JP2015063666A (en) * 2013-08-26 2015-04-09 Jnc株式会社 Ink composition for forming lens
WO2016143559A1 (en) * 2015-03-10 2016-09-15 コニカミノルタ株式会社 Ink composition for three-dimensional modeling, ink set, and method for producing three-dimensional model
WO2018020732A1 (en) * 2016-07-27 2018-02-01 三菱ケミカル株式会社 Resin composition and three-dimensional model using same
JP2018131535A (en) * 2017-02-15 2018-08-23 ゼネラル株式会社 Photocurable inkjet ink
JP2019156932A (en) * 2018-03-09 2019-09-19 マクセルホールディングス株式会社 Model material composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002110A (en) * 2004-06-21 2006-01-05 Mitsubishi Rayon Co Ltd Resin composition for optical solid shaping and solid shape
WO2006057218A1 (en) * 2004-11-24 2006-06-01 Kaneka Corporation Curable composition and semiconductor device sealed/coated with such curable composition
JP2009062510A (en) * 2007-03-29 2009-03-26 Jsr Corp Optical stereolithographic-shaping photocurable resin composition and three-dimensional shaped article
JP2015063666A (en) * 2013-08-26 2015-04-09 Jnc株式会社 Ink composition for forming lens
WO2016143559A1 (en) * 2015-03-10 2016-09-15 コニカミノルタ株式会社 Ink composition for three-dimensional modeling, ink set, and method for producing three-dimensional model
WO2018020732A1 (en) * 2016-07-27 2018-02-01 三菱ケミカル株式会社 Resin composition and three-dimensional model using same
JP2018131535A (en) * 2017-02-15 2018-08-23 ゼネラル株式会社 Photocurable inkjet ink
JP2019156932A (en) * 2018-03-09 2019-09-19 マクセルホールディングス株式会社 Model material composition

Similar Documents

Publication Publication Date Title
WO2020085166A1 (en) Curable resin composition and cured object obtained therefrom
JP6907286B2 (en) Curable resin composition and its cured product
JP7443069B2 (en) Curable resin composition
KR101288280B1 (en) Transparent acrylic resin composition having Multi-layer structure and the manufacturing method thereof
WO2020246489A1 (en) Curable resin composition, cured product thereof, and method for manufacturing three-dimensional article
JP2006002110A (en) Resin composition for optical solid shaping and solid shape
JP6219058B2 (en) Photocurable resin composition
JP4482463B2 (en) Radical curable resin composition
US20220073725A1 (en) Curable resin composition and cured product thereof, and method for producing three-dimensional shaped product
US20220073669A1 (en) Curable resin composition and cured object thereof
US20230287151A1 (en) Photocurable resin composition, cured product thereof, and method for producing three-dimensional object
WO2020162475A1 (en) Curable resin composition
JP3443970B2 (en) Photopolymerizable resin composition
JP2020200450A (en) Curable resin composition, cured product thereof, and method of manufacturing three-dimensional object
JP2019183028A (en) Resin composition for optical molding
JP2022135918A (en) Curable resin composition and method of manufacturing article
WO2020136919A1 (en) Composition for optical three-dimensional shaping, three-dimensionally shaped article, and method for producing same
TW200906869A (en) Active energy ray curable composition and optical material
US20220282013A1 (en) Curable resin composition and method of manufacturing article
JP2022083414A (en) Photocurable resin composition and cured product of the same, and method for manufacturing three-dimensional article
JP2004115573A (en) Unsaturated polyester resin and its resin composition
US11421066B2 (en) Polymer composition for stereolithography
JP2005082691A (en) Curable composition, cured product and article
JP2004123897A (en) Impact resistant molding material composition
CN117279965A (en) Photocurable resin composition, cured product thereof, and method for producing three-dimensional article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20752470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20752470

Country of ref document: EP

Kind code of ref document: A1