WO2020162110A1 - Fuel injection system - Google Patents

Fuel injection system Download PDF

Info

Publication number
WO2020162110A1
WO2020162110A1 PCT/JP2020/000820 JP2020000820W WO2020162110A1 WO 2020162110 A1 WO2020162110 A1 WO 2020162110A1 JP 2020000820 W JP2020000820 W JP 2020000820W WO 2020162110 A1 WO2020162110 A1 WO 2020162110A1
Authority
WO
WIPO (PCT)
Prior art keywords
injector
fuel
injection system
fuel injection
injectors
Prior art date
Application number
PCT/JP2020/000820
Other languages
French (fr)
Japanese (ja)
Inventor
前川 仁之
友基 藤野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112020000741.3T priority Critical patent/DE112020000741T5/en
Publication of WO2020162110A1 publication Critical patent/WO2020162110A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/023Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/024Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/025Failure diagnosis or prevention; Safety measures; Testing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/026Measuring or estimating parameters related to the fuel supply system
    • F02D19/027Determining the fuel pressure, temperature or volume flow, the fuel tank fill level or a valve position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3005Details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0293Safety devices; Fail-safe measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/046Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into both the combustion chamber and the intake conduit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present disclosure relates to a fuel injection system.
  • Patent Document 1 Conventionally, there is a vehicle fuel injection system described in Patent Document 1 below.
  • compressed natural gas hereinafter, abbreviated as “CNG”
  • CNG compressed natural gas
  • the fuel injection amount and injection are performed based on the average temperature and pressure of the fuel.
  • the fuel injection control of the internal combustion engine is performed by correcting the timing.
  • this fuel injection system switches to homogeneous combustion and corrects the injection amount based on the average temperature and pressure of the fuel. Performs fuel injection control of the internal combustion engine.
  • liquid fuel When liquid fuel is used as the fuel for the internal combustion engine, the liquid fuel can be used for boundary lubrication of the injector.
  • a gas fuel such as a CNG fuel is used as the fuel of the internal combustion engine like the fuel injection system described in Patent Document 1, it becomes difficult to boundary lubricate the injector with the fuel. Therefore, in a fuel injection system that uses gas fuel, wear tends to be promoted in the sliding portion of the injector, leaving room for improvement in durability of the injector.
  • An object of the present disclosure is to provide a fuel injection system capable of improving the durability of an injector that injects gas fuel.
  • a fuel injection system supplies at least two injectors that inject gas fuel to an engine, a fuel tank that stores gas fuel, and supplies gas fuel to each of the injectors from the fuel tank. It has a delivery pipe.
  • the fuel injection system includes a wear amount estimation unit and a determination unit.
  • the wear amount estimation unit estimates the wear amount of each of the plurality of injectors.
  • the determination unit determines which of the plurality of injectors is to be preferentially operated based on the wear amount of each injector estimated by the wear amount estimation unit.
  • a more appropriate injector can be preferentially operated according to the wear amount of the plurality of injectors, so that the durability of the injector that injects the gas fuel can be improved.
  • FIG. 1 is a diagram schematically showing a schematic configuration of the fuel injection system of the first embodiment.
  • FIG. 2 is a block diagram showing an electrical configuration of the fuel injection system of the first embodiment.
  • FIG. 3 is a flowchart showing a procedure of processing executed by the control device of the first embodiment.
  • FIG. 4 is a flowchart showing a procedure of processing executed by the control device of the second embodiment.
  • FIG. 5 is a flowchart showing a procedure of processing executed by the control device of the third embodiment.
  • FIG. 6 is a flowchart showing a procedure of processing executed by the control device of the fourth embodiment.
  • FIG. 7 is a flowchart showing a procedure of processing executed by the control device of the fifth embodiment.
  • FIG. 8 is a flowchart showing a procedure of processing executed by the control device of the sixth embodiment.
  • FIG. 9 is a flowchart showing a procedure of processing executed by the control device of the first modified example of the sixth embodiment.
  • FIG. 10 is a flowchart showing a procedure of processing executed by the control device of the second modified example of the sixth embodiment.
  • FIG. 11 is a flowchart showing a procedure of processing executed by the control device of the third modified example of the sixth embodiment.
  • FIG. 12 is a flowchart showing a procedure of processing executed by the control device of the fourth modified example of the sixth embodiment.
  • FIG. 13 is a flowchart showing a procedure of processing executed by the control device of the seventh embodiment.
  • FIG. 14 is a flowchart showing a procedure of processing executed by the control device of the eighth embodiment.
  • FIG. 15 is a flowchart showing a procedure of processing executed by the control device of the ninth embodiment.
  • the fuel injection system 10 of the first embodiment shown in FIG. 1 is a system for injecting fuel into an internal combustion engine 20 of a vehicle.
  • Gas fuel such as CNG is used as the fuel of the internal combustion engine 20 of the present embodiment.
  • FIG. 1 only one cylinder 21 of the plurality of cylinders provided in the internal combustion engine 20 is shown.
  • the fuel injection system 10 includes a fuel tank 30, a port injection injector 40, and a direct injection injector 50.
  • High-pressure gas fuel is stored in the fuel tank 30.
  • a fuel pipe 31 is connected to the fuel tank 30.
  • the fuel pipe 31 is branched into a first branch pipe 310 and a second branch pipe 311 from an intermediate portion.
  • a first delivery pipe 312 is connected to the tip of the first branch pipe 310.
  • a second delivery pipe 313 is connected to the tip of the second branch pipe 311.
  • the high-pressure gas fuel stored in the fuel tank 30 is supplied to the first delivery pipe 312 and the second delivery pipe 313 through the fuel pipe 31.
  • the first delivery pipe 312 supplies the gas fuel to the port injection injector 40 provided in each cylinder 21 of the internal combustion engine 20.
  • the second delivery pipe 313 supplies gas fuel to the direct injection injector 50 provided in each cylinder 21 of the internal combustion engine 20.
  • the fuel pipe 31 is provided with a fuel cutoff valve 32 and a regulator 33.
  • the first branch pipe 310 is provided with the regulator 34.
  • the fuel cutoff valve 32 can switch supply and cutoff of gas fuel from the fuel tank 30 to the delivery pipes 312 and 313 by opening and closing the fuel cutoff valve 32.
  • the regulator 33 can adjust the pressure of the gas fuel supplied from the fuel tank 30 to the second delivery pipe 313 by changing the opening degree.
  • the regulator 34 can adjust the pressure of the gas fuel supplied from the fuel tank 30 to the first delivery pipe 312 by changing the opening thereof.
  • the port injection injector 40 is provided in the intake passage 22 of the internal combustion engine 20.
  • the port injection injector 40 injects the gas fuel supplied from the first delivery pipe 312 into the intake passage 22.
  • the gas fuel injected from the port injection injector 40 is introduced into the combustion chamber 210 in the cylinder 21 together with the air flowing in the intake passage 22.
  • the direct injection injector 50 is provided in the cylinder 21 of the internal combustion engine 20.
  • the direct injection injector 50 directly injects the gas fuel supplied from the second delivery pipe 313 into the combustion chamber 210 in the cylinder 21.
  • a port injection injector 40 and a direct injection injector 50 are provided in each cylinder 21 of the internal combustion engine 20 in the same arrangement.
  • Air is introduced into the combustion chamber 210 of each cylinder 21 of the internal combustion engine 20 from the intake passage 22 through the intake valve 23. Further, the gas fuel injected from the port injection injector 40 or the direct injection injector 50 is introduced into the combustion chamber 210.
  • combustion of the air-fuel mixture in the combustion chamber 210 causes the piston 211 in each cylinder 21 to reciprocate. As a result, the driving force of the internal combustion engine 20 can be obtained.
  • Exhaust gas generated by burning the air-fuel mixture in the combustion chamber 210 is exhausted to the exhaust passage 25 of the internal combustion engine 20 through the exhaust valve 24.
  • the fuel tank 30 is provided with a pressure sensor 60.
  • the pressure sensor 60 detects the fuel pressure of the fuel tank 30, more specifically, the pressure of the gas fuel stored in the fuel tank 30, and outputs a signal according to the detected fuel pressure of the fuel tank 30.
  • a pressure sensor 61 is provided on the first delivery pipe 312.
  • the pressure sensor 61 detects the pressure of the gas fuel inside the first delivery pipe 312, in other words, the fuel injection pressure of the port injection injector 40, and outputs a signal according to the detected pressure of the gas fuel.
  • a pressure sensor 62 is provided on the second delivery pipe 313.
  • the pressure sensor 62 detects the pressure of the gas fuel inside the second delivery pipe 313, in other words, the fuel injection pressure of the direct injection injector 50, and outputs a signal according to the detected pressure of the gas fuel.
  • the output signals of the pressure sensors 60 to 62 are fetched by the control device 70.
  • the control device 70 is mainly composed of a microcomputer having a CPU and a memory.
  • the control device 70 includes a non-volatile memory 71 for storing various information.
  • the control device 70 can acquire information on the fuel pressure of the fuel tank 30, the fuel injection pressure of the port injection injector 40, and the fuel injection pressure of the direct injection injector 50 based on the output signals of the pressure sensors 60 to 62. It is possible.
  • the control device 70 also captures the output signals of the various in-vehicle sensors 63.
  • the vehicle-mounted sensor 63 includes, for example, a sensor that detects the amount of depression of the accelerator pedal, a crank angle sensor that detects the rotation angle of the crankshaft of the internal combustion engine 20, and a flow rate that detects the amount of intake air that is the flow rate of air flowing through the intake passage 22.
  • a sensor, a temperature sensor for detecting the temperature of the exhaust gas flowing through the exhaust passage 25, a temperature sensor for detecting the temperature of the cooling water of the internal combustion engine 20, and the like are included.
  • the control device 70 controls the fuel injection amount of each cylinder 21 by controlling the port injection injector 40 and the direct injection injector 50 of each cylinder 21 based on various information detected by the sensors 60 to 63.
  • the injection control is executed.
  • the injectors 40 and 50 cannot be boundary lubricated by the fuel, so compared with the case where the liquid fuel is used as the fuel of the internal combustion engine 20.
  • the sliding parts of the injectors 40, 50 are easily worn. When the sliding parts of the injectors 40 and 50 are worn, the fuel injection amount of the injectors 40 and 50 varies, which may prevent proper fuel injection control.
  • the amount of wear of each injector 40, 50 is basically correlated with the number of times of operation of each injector 40, 50. Therefore, in the fuel injection system 10 of the present embodiment, the wear amount of each injector 40, 50 is estimated based on the number of times of operation of each injector 40, 50. In the fuel injection system 10 of the present embodiment, the durability of the entire system is improved by preferentially driving the injector having a small number of operations among the port injection injector 40 and the direct injection injector 50. There is.
  • the control device 70 includes a wear amount estimation unit 72 and a determination unit 73.
  • the wear amount estimation unit 72 counts the cumulative number of times of operation of each injector 40, 50 as an estimated value of the wear amount of each injector 40, 50.
  • the cumulative number of operations is the total number of operations of each injector 40, 50 from the start of driving.
  • the non-volatile memory 71 stores the cumulative operation number NP of the port injection injector 40 and the cumulative operation number ND of the direct injection injector 50.
  • the respective values of the cumulative number of operations NP and ND are set to zero at the start of driving the injectors 40 and 50.
  • the wear amount estimation unit 72 increments the value of the cumulative operation number NP each time the port injection injector 40 is driven.
  • the wear amount estimating unit 72 increments the value of the cumulative operation number ND each time the direct injection injector 50 is driven.
  • the wear amount estimating unit 72 increments the value of the cumulative operation number ND each time the direct injection injector 50 is driven.
  • the determination unit 73 preferentially operates which of the port injection injector 40 and the direct injection injector 50, based on the cumulative number of operations NP, ND of the injectors 40, 50 stored in the nonvolatile memory 71. To judge. Next, with reference to FIG. 3, a procedure of processing executed by the determination unit 73 will be specifically described.
  • the determination unit 73 first reads the maximum operation numbers NPmax and NDmax of the injectors 40 and 50 from the nonvolatile memory 71 as the process of step S10.
  • the maximum number of operations NPmax, NDmax is the maximum value of the number of operations of each injector 40, 50 in which an unacceptable performance change does not occur.
  • the maximum number of operations NPmax and NDmax are set through experiments and the like, and are stored in the non-volatile memory 71 in advance. When the port injection injector 40 and the direct injection injector 50 have different structures, the maximum number of operations NPmax and NDmax may be set to different values. In the present embodiment, the maximum number of operations NPmax and NDmax correspond to the predetermined number of times.
  • the determination unit 73 reads the cumulative operation numbers NP and ND of the injectors 40 and 50 from the nonvolatile memory 71 as the process of step S11 following step S10. Subsequently, the determination unit 73 calculates the operable number of times NPc, NDc of each injector 40, 50 based on the following equations f1, f2 as the processing of step S12.
  • the determination unit 73 determines which of the port injection injector 40 and the direct injection injector 50 is to be preferentially operated based on the operable number of times NPc, NDc of each injector 40, 50. decide. Specifically, when the operable frequency NPc of the port injection injector 40 is larger than the operable frequency NDc of the direct injection injector 50, the determination unit 73 preferentially operates the port injection injector 40.
  • the determination unit 73 preferentially operates the direct injection injectors 50.
  • the determination unit 73 determines whether one of the port injection injector 40 and the direct injection injector 50. Operate.
  • the determination unit 73 After executing the process of step S13, the determination unit 73 ends the series of processes shown in FIG. The determining unit 73 individually executes the process shown in FIG. 3 for each of the plurality of cylinders 21 of the internal combustion engine 20.
  • the actions and effects shown in the following (1) and (2) can be obtained.
  • the wear amount estimation unit 72 estimates the wear amount of each injector 40, 50 based on the cumulative number of operations NP, ND of each injector 40, 50.
  • the determination unit 73 calculates a subtraction value obtained by subtracting the cumulative operation times NP, ND from the maximum operation times NPmax, NDmax for each of the injectors 40, 50 as shown in the above equations f1, f2, and the subtraction value is the highest. Operate the large injector preferentially. With such a configuration, it becomes easy to preferentially operate the injector having a sufficient durability.
  • the determination unit 73 determines which of the port injection injector 40 and the direct injection injector 50 is to be preferentially operated based on the cumulative operation ratios NPr, NDr of the injectors 40, 50 as the process of step S13 subsequent to step S14. decide. Specifically, when the cumulative operation ratio NPr of the port injection injector 40 is smaller than the cumulative operation ratio NDr of the direct injection injector 50, the determination unit 73 preferentially operates the port injection injector 40.
  • the determination unit 73 preferentially operates the direct injection injectors 50.
  • the determination unit 73 determines which one of the port injection injector 40 and the direct injection injector 50. Operate.
  • the action and effect shown in the following (3) can be obtained instead of the action and effect shown in the above (2).
  • the determination unit 73 calculates, for each of the injectors 40 and 50, a division value obtained by dividing the cumulative number of operations NP and ND by the maximum number of operations NPmax and NDmax, as shown in the above equations f3 and f4.
  • the injector with the smallest value is activated first. With such a configuration, it becomes easy to preferentially operate the injector having a sufficient durability.
  • the determination unit 73 of the first embodiment individually executes the determination process of the priority operation injector shown in FIG. 3 for each of the plurality of cylinders 21 of the internal combustion engine 20.
  • the determination unit 73 of the present embodiment executes the determination process shown in FIG. 3 only on a specific cylinder of the plurality of cylinders 21 and determines the determination result different from that of the specific cylinder. By using it in other cylinders as well, the injector to be preferentially operated in other cylinders is determined.
  • the determination unit 73 first gives priority to only a specific cylinder of the plurality of cylinders 21 of the internal combustion engine 20 shown in FIG.
  • the determination process of the operating injector is executed. This determines which of the port injection injector 40 and the direct injection injector 50 is to be preferentially operated in the specific cylinder.
  • the determination unit 73 reflects the injector determination result determined in the process of step S15 on another cylinder other than the specific cylinder.
  • the injector provided at the same position as the injector determined to be preferentially operated in the specific cylinder is preferentially operated with respect to the other cylinders.
  • a fourth embodiment of the fuel injection system 10 will be described.
  • differences from the fuel injection system 10 of the first embodiment will be mainly described.
  • the direct injection injector 50 can inject the gas fuel more than the gas injection from the port injection injector 40, the charging efficiency can be improved.
  • the output and fuel consumption of the internal combustion engine 20 can be improved. Therefore, in a situation where the load on the internal combustion engine 20 is high, it is desirable that the direct injection injector 50 be operated with priority over the port injection injector 40. Therefore, when the load of the internal combustion engine 20 is equal to or greater than the predetermined value, the determination unit 73 of the present embodiment preferentially operates the direct injection injector 50 regardless of the operable counts NPc and NDc. ing.
  • the determination unit 73 first determines whether or not the load Le of the internal combustion engine 20 is equal to or greater than a predetermined value Lth as the process of step S20.
  • the load Le of the internal combustion engine 20 is a numerical representation of the load state of the internal combustion engine 20.
  • the load state of the internal combustion engine 20 has a correlation with, for example, the rotational speed of the internal combustion engine 20 and the intake air amount.
  • the determination unit 73 calculates the load Le of the internal combustion engine 20 from the rotational speed of the internal combustion engine 20 and the intake air amount detected by the in-vehicle sensor 63 using a map or the like.
  • the load Le of the internal combustion engine 20 is set such that the value becomes larger as the internal combustion engine 20 goes to a high load state, and becomes smaller as the internal combustion engine 20 goes to a low load state.
  • the determination unit 73 makes a negative determination in the process of step S20, that is, when the load Le of the internal combustion engine 20 is less than the predetermined value Lth, as the process of step S22, the priority operation injector shown in FIG. Execute the judgment process. Subsequently, the determination unit 73 injects the gas fuel from the priority operation injector determined in the process of step S22 as the process of step S23.
  • the direct injection injector 50 injects the gas fuel. To do. According to the fuel injection system 10 of the present embodiment described above, the action and effect shown in the following (5) can be further obtained.
  • the gas fuel cannot be injected unless the injection pressure thereof is higher than the pressure of the combustion chamber 210. Even if the injection pressure is higher than the pressure of the combustion chamber 210, if the pressure difference between the injection pressure and the pressure of the combustion chamber 210 becomes small due to the decrease of the injection pressure, the injection amount of the direct injection injector 50 will be reduced. There is a possibility that sufficient gas fuel cannot be injected due to the decrease.
  • the injection amount of the direct injection injector 50 is likely to be insufficient, and as a result, the internal combustion engine 20 The performance may deteriorate, and it becomes difficult to use up the gas fuel in the fuel tank 30.
  • the port injection injector 40 should inject sufficient fuel. Is possible. Therefore, when the fuel pressure in the fuel tank 30 becomes equal to or lower than a predetermined value, the determination unit 73 of the present embodiment preferentially actuates the port injection injector 40 regardless of the operable counts NPc and NDc. I am trying.
  • the determination unit 73 first determines whether or not the fuel pressure Pf of the fuel tank 30 detected by the pressure sensor 60 is equal to or lower than the predetermined value Pth as the process of step S24. To judge. When the determination unit 73 makes a negative determination in the process of step S24, that is, when the fuel pressure Pf of the fuel tank 30 exceeds the predetermined value Pth, the priority operation shown in FIG. 3 is performed as the process of step S22. Execute the injector determination process. Subsequently, the determination unit 73 injects the gas fuel from the priority operation injector determined in the process of step S22 as the process of step S23.
  • step S24 makes an affirmative determination in the process of step S24, that is, when the fuel pressure Pf of the fuel tank 30 is equal to or lower than the predetermined value Pth, as the process of step S31, the gas fuel is supplied from the port injection injector 40. To jet. According to the fuel injection system 10 of the present embodiment described above, it is possible to further obtain the action and effect shown in (6) below.
  • the charging efficiency is lower than that when the direct injection injector 50 injects the gas fuel, and thus there is a concern that the output of the internal combustion engine 20 may decrease.
  • it is effective to supplement the output of the internal combustion engine 20, for example, by increasing the gear ratio of the transmission of the vehicle and shifting the operating point of the internal combustion engine 20 to the high rotation side.
  • the determination unit 73 of this embodiment executes the processing shown in FIG. 8 at a predetermined calculation cycle. As shown in FIG. 8, the determining unit 73 first determines whether or not a predetermined time has elapsed from the previous determination time of the priority actuating injector as the process of step S40. If the determination unit 73 makes a positive determination in the process of step S40, that is, if a predetermined time has elapsed from the previous determination time of the priority actuating injector, the determination unit 73 performs the process shown in FIG. The determination process of the operating injector is executed. In addition, the determination unit 73 counts the elapsed time from the determination time point after determining the priority operation injector in the process of step S41.
  • the determination unit 73 makes a negative determination in the process of step S40, that is, when the predetermined time from the previous determination time of the priority actuating injector has not elapsed, the determination unit 73 does not execute the process of step S41. That is, the determination unit 73 does not determine the priority actuating injector. According to the fuel injection system 10 of the present embodiment described above, it is possible to further obtain the action and effect shown in the following (7).
  • a seventh embodiment of the fuel injection system 10 will be described.
  • differences from the fuel injection system 10 of the first embodiment will be mainly described.
  • the fuel injection system 10 of the present embodiment a warning number having a value smaller than the maximum operation number NPmax is provided, and when the cumulative operation number NP of the port injection injector 40 reaches the warning number, the port A warning is issued to prompt replacement of the injection injector 40.
  • the direct injection injector 50 the same applies to the direct injection injector 50.
  • the control device 70 further includes a warning device 80 capable of issuing a warning for prompting replacement of the injectors 40, 50.
  • a warning device 80 for example, a warning light provided on an instrument panel of a vehicle can be used.
  • the control device 70 further includes a warning unit 74 that executes a process of issuing a warning from the warning device 80 that prompts replacement of the injectors 40, 50.
  • the warning unit 74 executes the process shown in FIG. As shown in FIG. 13, the warning unit 74 first reads the warning counts NPth and NDth of the injectors 40 and 50 from the nonvolatile memory 71 as the process of step S50.
  • the warning frequency NPth of the port injection injector 40 is set to a value smaller than the maximum operation frequency NPmax of the port injection injector 40.
  • the warning frequency NDth of the direct injection injector 50 is set to a value smaller than the maximum operation frequency NDmax of the direct injection injector 50.
  • the number of warnings NPth and NDth corresponds to a predetermined number of times.
  • the warning unit 74 reads the cumulative operating numbers NP and ND of the injectors 40 and 50 from the nonvolatile memory 71 as the process of step S51 following step S50. Subsequently, the warning unit 74 determines whether or not the cumulative number of operations NP, ND is equal to or more than the number of warnings NPth, NDth as the process of step S52. If the cumulative operation number NP of the port injection injectors 40 is the warning number NPth or more, or if the cumulative operation number ND of the direct injection injectors 50 is the warning number NDth or more, the warning unit 74 affirms in the process of step S52. to decide.
  • the warning unit 74 issues a warning from the warning device 80 as the process in step S53. Specifically, when the cumulative number of operations NP of the port injection injector 40 is equal to or greater than the number of warnings NPth, the warning unit 74 issues a warning from the warning device 80 to prompt replacement of the port injection injector 40. Further, the warning unit 74 issues a warning from the warning device 80 to prompt replacement of the direct injection injector 50 when the cumulative number of operations ND of the direct injection injector 50 is equal to or more than the number of warnings NDth.
  • the determination unit 73 of this embodiment executes the process shown in FIG. As shown in FIG. 14, the determination unit 73 first reads the maximum operation times NPmax and NDmax of the injectors 40 and 50 from the nonvolatile memory 71 as the process of step S60. Subsequently, the determination unit 73 reads the cumulative operation numbers NP and ND of the injectors 40 and 50 from the nonvolatile memory 71 as the process of step S61.
  • the determination unit 73 determines whether or not the cumulative number of operations NP, ND of the injectors 40, 50 has reached the maximum number of operations NPmax, NDmax as the process of step S62 subsequent to step S61. When the determination unit 73 makes an affirmative determination in the process of step S62, the determination unit 73 determines whether or not there is an injector whose cumulative number of operations has not reached the maximum number of operations as the process of step S63.
  • the determination section 73 makes an affirmative decision in the process of step S63, as the process of step S64, the injector whose cumulative operation number has not reached the maximum operation number is preferentially operated, and as the process of step S65, the accumulation is performed.
  • the injectors that have reached the maximum number of operations are prohibited from operating. For example, when the cumulative number of operations NP of the port injection injector 40 is greater than or equal to the maximum number of operations NPmax and the cumulative number of operations ND of the direct injection injector 50 is less than the maximum number of operations NDmax, the determination unit 73 determines that the direct injection injector is While 50 is preferentially operated, the operation of the port injection injector 40 is prohibited.
  • the determination unit 73 determines the injector to be operated preferentially. To do. According to the fuel injection system 10 of the present embodiment described above, the operation and effect shown in the following (9) can be obtained.
  • each injector 40, 50 of this embodiment is provided with identification information storage units 41, 51.
  • Identification information IDp and IDd are stored in the identification information storage units 41 and 51, respectively.
  • the identification information IDp is information that can identify each individual of the port injection injector 40.
  • the identification information Dd is information that can identify each individual direct injection injector 50.
  • IC chips can be used as the identification information storage units 41 and 51.
  • the identification information IDp and IDd are also stored in the non-volatile memory 71 when the control device 70 obtains them from the injectors 40 and 50.
  • the determination unit 73 of this embodiment executes the processing shown in FIG.
  • the process shown in FIG. 15 is executed for each of the port injection injector 40 and the direct injection injector 50, but in the following, for convenience, the process shown in FIG. 15 is executed for the port injection injector 40.
  • the case will be described as an example.
  • the determination unit 73 first acquires the identification information IDp from the port injection injector 40 as the process of step S70. Further, the determination unit 73 reads the identification information IDp of the port injection injector 40 stored in the nonvolatile memory 71 as the process of step S71.
  • the determination unit 73 determines whether or not the identification information IDp acquired from the port injection injector 40 and the identification information IDp read from the nonvolatile memory 71 match as the processing of step S72.
  • the determination unit 73 determines that the port injection injector 40 has been replaced when the identification information is different.
  • the cumulative number of operations NP of the port injection injector 40 is set to zero to reset the cumulative number of operations NP.
  • the determination unit 73 causes the nonvolatile memory 71 to store the identification information IDp acquired this time from the port injection injector 40 as the process of step S74. Thereby, the identification information IDp of the new port injection injector 40 after replacement is stored in the non-volatile memory 71.
  • each embodiment can also be implemented in the following forms.
  • the internal combustion engine 20 of each embodiment has two injectors, the port injection injector 40 and the direct injection injector 50, but the number of injectors provided in the internal combustion engine 20 is not limited to two, but three or more. May be Further, the internal combustion engine 20 may include a plurality of either one of the port injection injector and the direct injection injector.
  • the amount of change in the lift amount of each injector 40, 50, the amount of change in the injection amount, and the change in responsiveness instead of the cumulative number of operations NP, ND of each injector 40, 50. You may use quantity etc.
  • the internal combustion engine 20 to which the fuel injection system 10 of each embodiment is applied is not limited to the structure in which the injectors 40 and 50 are mounted in each cylinder 21, but may be located upstream of the branch portion of each cylinder 21 in the intake passage 22. It may have a structure in which a common port injection injector is provided in a part.
  • the fuel injection system 10 of each embodiment is applicable not only to the internal combustion engine 20 of the vehicle but also to any engine such as a fuel cell.
  • One or more of the control device 70 and the control method thereof described in the present disclosure are provided by configuring a processor and a memory programmed to execute one or more functions embodied by a computer program. It may be realized by a plurality of dedicated computers.
  • the control device 70 and the control method thereof described in the present disclosure may be realized by a dedicated computer provided by configuring a processor including one or more dedicated hardware logic circuits.
  • the control device 70 and the control method thereof described in the present disclosure are configured by a combination of a processor and a memory programmed to execute one or more functions, and a processor including one or more hardware logic circuits.
  • the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by a computer.
  • the dedicated hardware logic circuit and the hardware logic circuit may be realized by a digital circuit including a plurality of logic circuits or an analog circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

This fuel injection system includes: at least two injectors (40, 50) that inject gas fuel into an engine (20); a fuel tank that stores the gas fuel; and a delivery pipe that supplies the gas fuel to each of the plurality of injectors from the fuel tank. The fuel injection system comprises: a wear amount estimation unit (72); and a determination unit (73). The wear amount estimation unit estimates the wear amount of each of the plurality of injectors. The determination unit determines which injector from among the plurality of injectors is to be preferentially operated on the basis of the wear amount of each injector estimated by the wear amount estimation unit.

Description

燃料噴射システムFuel injection system 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年2月7日に出願された日本国特許出願2019-020536号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2019-020536 filed on February 7, 2019, and claims the benefit of its priority, and the entire contents of the patent application are Incorporated herein by reference.
 本開示は、燃料噴射システムに関する。 The present disclosure relates to a fuel injection system.
 従来、下記の特許文献1に記載の車両の燃料噴射システムがある。特許文献1に記載の燃料噴射システムでは、内燃機関の燃料として圧縮天然ガス(以下、「CNG」と略記する)が用いられており、CNG燃料がインジェクタにより内燃機関に噴射される。特許文献1に記載の燃料噴射システムは、成層燃焼時に内燃機関の気筒間の燃料温度差が所定の許容範囲内である場合には、燃料の平均温度と圧力とに基づいて燃料噴射量及び噴射時期を補正して内燃機関の燃料噴射制御を行う。また、この燃料噴射システムは、成層燃焼時に気筒間の燃料温度差が所定の許容範囲外である場合には、均質燃焼に切り替え、燃料の平均温度と圧力とに基づいて噴射量を補正して内燃機関の燃料噴射制御を行う。 Conventionally, there is a vehicle fuel injection system described in Patent Document 1 below. In the fuel injection system described in Patent Document 1, compressed natural gas (hereinafter, abbreviated as “CNG”) is used as fuel for the internal combustion engine, and the CNG fuel is injected into the internal combustion engine by the injector. In the fuel injection system described in Patent Document 1, when the fuel temperature difference between the cylinders of the internal combustion engine is within a predetermined allowable range during stratified combustion, the fuel injection amount and injection are performed based on the average temperature and pressure of the fuel. The fuel injection control of the internal combustion engine is performed by correcting the timing. In addition, when the fuel temperature difference between the cylinders is out of a predetermined allowable range during stratified combustion, this fuel injection system switches to homogeneous combustion and corrects the injection amount based on the average temperature and pressure of the fuel. Performs fuel injection control of the internal combustion engine.
特開2005-240581号公報JP, 2005-240581, A
 内燃機関の燃料として液体燃料が用いられている場合、液体燃料によりインジェクタを境界潤滑することができる。しかしながら、特許文献1に記載される燃料噴射システムのように、内燃機関の燃料としてCNG燃料のようなガス燃料が用いられる場合、燃料によりインジェクタを境界潤滑することが困難となる。そのため、ガス燃料が用いられる燃料噴射システムでは、インジェクタの摺動部分において摩耗が促進し易いため、インジェクタの耐久性に関して改善の余地を残すものとなっている。 When liquid fuel is used as the fuel for the internal combustion engine, the liquid fuel can be used for boundary lubrication of the injector. However, when a gas fuel such as a CNG fuel is used as the fuel of the internal combustion engine like the fuel injection system described in Patent Document 1, it becomes difficult to boundary lubricate the injector with the fuel. Therefore, in a fuel injection system that uses gas fuel, wear tends to be promoted in the sliding portion of the injector, leaving room for improvement in durability of the injector.
 本開示の目的は、ガス燃料を噴射するインジェクタの耐久性を向上させることが可能な燃料噴射システムを提供することにある。 An object of the present disclosure is to provide a fuel injection system capable of improving the durability of an injector that injects gas fuel.
 本開示の一態様による燃料噴射システムは、機関にガス燃料を噴射する少なくとも2つの複数のインジェクタと、ガス燃料が貯蔵される燃料タンクと、燃料タンクから複数のインジェクタのそれぞれにガス燃料を供給するデリバリパイプとを有する。燃料噴射システムは、摩耗量推定部と、判定部と、を備える。摩耗量推定部は、複数のインジェクタのそれぞれの摩耗量を推定する。判定部は、摩耗量推定部により推定される各インジェクタの摩耗量に基づいて、複数のインジェクタのうちのいずれのインジェクタを優先的に作動させるかを判定する。 A fuel injection system according to an aspect of the present disclosure supplies at least two injectors that inject gas fuel to an engine, a fuel tank that stores gas fuel, and supplies gas fuel to each of the injectors from the fuel tank. It has a delivery pipe. The fuel injection system includes a wear amount estimation unit and a determination unit. The wear amount estimation unit estimates the wear amount of each of the plurality of injectors. The determination unit determines which of the plurality of injectors is to be preferentially operated based on the wear amount of each injector estimated by the wear amount estimation unit.
 この構成によれば、複数のインジェクタの摩耗量に応じた、より適切なインジェクタを優先的に作動させることができるため、ガス燃料を噴射するインジェクタの耐久性を向上させることができる。 According to this configuration, a more appropriate injector can be preferentially operated according to the wear amount of the plurality of injectors, so that the durability of the injector that injects the gas fuel can be improved.
図1は、第1実施形態の燃料噴射システムの概略構成を模式的に示す図である。FIG. 1 is a diagram schematically showing a schematic configuration of the fuel injection system of the first embodiment. 図2は、第1実施形態の燃料噴射システムの電気的な構成を示すブロック図である。FIG. 2 is a block diagram showing an electrical configuration of the fuel injection system of the first embodiment. 図3は、第1実施形態の制御装置により実行される処理の手順を示すフローチャートである。FIG. 3 is a flowchart showing a procedure of processing executed by the control device of the first embodiment. 図4は、第2実施形態の制御装置により実行される処理の手順を示すフローチャートである。FIG. 4 is a flowchart showing a procedure of processing executed by the control device of the second embodiment. 図5は、第3実施形態の制御装置により実行される処理の手順を示すフローチャートである。FIG. 5 is a flowchart showing a procedure of processing executed by the control device of the third embodiment. 図6は、第4実施形態の制御装置により実行される処理の手順を示すフローチャートである。FIG. 6 is a flowchart showing a procedure of processing executed by the control device of the fourth embodiment. 図7は、第5実施形態の制御装置により実行される処理の手順を示すフローチャートである。FIG. 7 is a flowchart showing a procedure of processing executed by the control device of the fifth embodiment. 図8は、第6実施形態の制御装置により実行される処理の手順を示すフローチャートである。FIG. 8 is a flowchart showing a procedure of processing executed by the control device of the sixth embodiment. 図9は、第6実施形態の第1変形例の制御装置により実行される処理の手順を示すフローチャートである。FIG. 9 is a flowchart showing a procedure of processing executed by the control device of the first modified example of the sixth embodiment. 図10は、第6実施形態の第2変形例の制御装置により実行される処理の手順を示すフローチャートである。FIG. 10 is a flowchart showing a procedure of processing executed by the control device of the second modified example of the sixth embodiment. 図11は、第6実施形態の第3変形例の制御装置により実行される処理の手順を示すフローチャートである。FIG. 11 is a flowchart showing a procedure of processing executed by the control device of the third modified example of the sixth embodiment. 図12は、第6実施形態の第4変形例の制御装置により実行される処理の手順を示すフローチャートである。FIG. 12 is a flowchart showing a procedure of processing executed by the control device of the fourth modified example of the sixth embodiment. 図13は、第7実施形態の制御装置により実行される処理の手順を示すフローチャートである。FIG. 13 is a flowchart showing a procedure of processing executed by the control device of the seventh embodiment. 図14は、第8実施形態の制御装置により実行される処理の手順を示すフローチャートである。FIG. 14 is a flowchart showing a procedure of processing executed by the control device of the eighth embodiment. 図15は、第9実施形態の制御装置により実行される処理の手順を示すフローチャートである。FIG. 15 is a flowchart showing a procedure of processing executed by the control device of the ninth embodiment.
 以下、燃料噴射システムの実施形態について図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 <第1実施形態>
 はじめに、図1に示される第1実施形態の燃料噴射システム10について説明する。図1に示される燃料噴射システム10は、車両の内燃機関20に燃料を噴射するためのシステムである。本実施形態の内燃機関20の燃料には、CNG等のガス燃料が用いられている。なお、図1では、内燃機関20に設けられる複数の気筒のうちの一つの気筒21のみが図示されている。燃料噴射システム10は、燃料タンク30と、ポート噴射インジェクタ40と、直噴インジェクタ50とを備えている。
Hereinafter, an embodiment of a fuel injection system will be described with reference to the drawings. In order to facilitate understanding of the description, the same constituent elements in each drawing are denoted by the same reference numerals as much as possible, and redundant description will be omitted.
<First Embodiment>
First, the fuel injection system 10 of the first embodiment shown in FIG. 1 will be described. The fuel injection system 10 shown in FIG. 1 is a system for injecting fuel into an internal combustion engine 20 of a vehicle. Gas fuel such as CNG is used as the fuel of the internal combustion engine 20 of the present embodiment. In FIG. 1, only one cylinder 21 of the plurality of cylinders provided in the internal combustion engine 20 is shown. The fuel injection system 10 includes a fuel tank 30, a port injection injector 40, and a direct injection injector 50.
 燃料タンク30には、高圧のガス燃料が貯蔵されている。燃料タンク30には、燃料配管31が接続されている。燃料配管31は、途中の部分から第1分岐管310と第2分岐管311とに分岐されている。第1分岐管310の先端部には第1デリバリパイプ312が接続されている。第2分岐管311の先端部には第2デリバリパイプ313が接続されている。第1デリバリパイプ312及び第2デリバリパイプ313には、燃料タンク30に貯蔵されている高圧のガス燃料が燃料配管31を通じて供給されている。第1デリバリパイプ312は、内燃機関20の各気筒21に設けられるポート噴射インジェクタ40にガス燃料を供給する。第2デリバリパイプ313は、内燃機関20の各気筒21に設けられる直噴インジェクタ50にガス燃料を供給する。 High-pressure gas fuel is stored in the fuel tank 30. A fuel pipe 31 is connected to the fuel tank 30. The fuel pipe 31 is branched into a first branch pipe 310 and a second branch pipe 311 from an intermediate portion. A first delivery pipe 312 is connected to the tip of the first branch pipe 310. A second delivery pipe 313 is connected to the tip of the second branch pipe 311. The high-pressure gas fuel stored in the fuel tank 30 is supplied to the first delivery pipe 312 and the second delivery pipe 313 through the fuel pipe 31. The first delivery pipe 312 supplies the gas fuel to the port injection injector 40 provided in each cylinder 21 of the internal combustion engine 20. The second delivery pipe 313 supplies gas fuel to the direct injection injector 50 provided in each cylinder 21 of the internal combustion engine 20.
 燃料配管31には、燃料遮断弁32及びレギュレータ33が設けられている。また、第1分岐管310には、レギュレータ34が設けられている。燃料遮断弁32は、その開閉により、燃料タンク30からデリバリパイプ312,313へのガス燃料の供給及び遮断を切り替え可能である。レギュレータ33は、その開度の変更により、燃料タンク30から第2デリバリパイプ313に供給されるガス燃料の圧力を調整可能である。レギュレータ34は、その開度の変更により、燃料タンク30から第1デリバリパイプ312に供給されるガス燃料の圧力を調整可能である。 The fuel pipe 31 is provided with a fuel cutoff valve 32 and a regulator 33. The first branch pipe 310 is provided with the regulator 34. The fuel cutoff valve 32 can switch supply and cutoff of gas fuel from the fuel tank 30 to the delivery pipes 312 and 313 by opening and closing the fuel cutoff valve 32. The regulator 33 can adjust the pressure of the gas fuel supplied from the fuel tank 30 to the second delivery pipe 313 by changing the opening degree. The regulator 34 can adjust the pressure of the gas fuel supplied from the fuel tank 30 to the first delivery pipe 312 by changing the opening thereof.
 ポート噴射インジェクタ40は、内燃機関20の吸気通路22に設けられている。ポート噴射インジェクタ40は、第1デリバリパイプ312から供給されるガス燃料を吸気通路22に噴射する。ポート噴射インジェクタ40から噴射されたガス燃料は、吸気通路22内を流れる空気とともに気筒21内の燃焼室210に導入される。 The port injection injector 40 is provided in the intake passage 22 of the internal combustion engine 20. The port injection injector 40 injects the gas fuel supplied from the first delivery pipe 312 into the intake passage 22. The gas fuel injected from the port injection injector 40 is introduced into the combustion chamber 210 in the cylinder 21 together with the air flowing in the intake passage 22.
 直噴インジェクタ50は、内燃機関20の気筒21に設けられている。直噴インジェクタ50は、第2デリバリパイプ313から供給されるガス燃料を気筒21内の燃焼室210に直接噴射する。
 なお、内燃機関20の各気筒21には、ポート噴射インジェクタ40及び直噴インジェクタ50が同様の配置でそれぞれ設けられている。
The direct injection injector 50 is provided in the cylinder 21 of the internal combustion engine 20. The direct injection injector 50 directly injects the gas fuel supplied from the second delivery pipe 313 into the combustion chamber 210 in the cylinder 21.
A port injection injector 40 and a direct injection injector 50 are provided in each cylinder 21 of the internal combustion engine 20 in the same arrangement.
 内燃機関20の各気筒21の燃焼室210には、吸気通路22から吸気バルブ23を通じて空気が導入される。また、燃焼室210には、ポート噴射インジェクタ40又は直噴インジェクタ50から噴射されるガス燃料が導入される。内燃機関20では、燃焼室210において空気とガス燃料とが混合した混合気が燃焼することで、各気筒21内のピストン211が往復動する。これにより、内燃機関20の駆動力が得られるようになっている。燃焼室210で混合気が燃焼することで生成される排気は、排気バルブ24を通じて内燃機関20の排気通路25に排出される。 Air is introduced into the combustion chamber 210 of each cylinder 21 of the internal combustion engine 20 from the intake passage 22 through the intake valve 23. Further, the gas fuel injected from the port injection injector 40 or the direct injection injector 50 is introduced into the combustion chamber 210. In the internal combustion engine 20, combustion of the air-fuel mixture in the combustion chamber 210 causes the piston 211 in each cylinder 21 to reciprocate. As a result, the driving force of the internal combustion engine 20 can be obtained. Exhaust gas generated by burning the air-fuel mixture in the combustion chamber 210 is exhausted to the exhaust passage 25 of the internal combustion engine 20 through the exhaust valve 24.
 次に、燃料噴射システム10の電気的な構成について説明する。
 図1に示されるように、燃料タンク30には圧力センサ60が設けられている。圧力センサ60は、燃料タンク30の燃料圧力、より詳しくは燃料タンク30内に貯蔵されているガス燃料の圧力を検出するとともに、検出された燃料タンク30の燃料圧力に応じた信号を出力する。
Next, the electrical configuration of the fuel injection system 10 will be described.
As shown in FIG. 1, the fuel tank 30 is provided with a pressure sensor 60. The pressure sensor 60 detects the fuel pressure of the fuel tank 30, more specifically, the pressure of the gas fuel stored in the fuel tank 30, and outputs a signal according to the detected fuel pressure of the fuel tank 30.
 第1デリバリパイプ312には圧力センサ61が設けられている。圧力センサ61は、第1デリバリパイプ312の内部のガス燃料の圧力、換言すればポート噴射インジェクタ40の燃料噴射圧を検出するとともに、検出されたガス燃料の圧力に応じた信号を出力する。 A pressure sensor 61 is provided on the first delivery pipe 312. The pressure sensor 61 detects the pressure of the gas fuel inside the first delivery pipe 312, in other words, the fuel injection pressure of the port injection injector 40, and outputs a signal according to the detected pressure of the gas fuel.
 第2デリバリパイプ313には圧力センサ62が設けられている。圧力センサ62は、第2デリバリパイプ313の内部のガス燃料の圧力、換言すれば直噴インジェクタ50の燃料噴射圧を検出するとともに、検出されたガス燃料の圧力に応じた信号を出力する。
 図2に示されるように、各圧力センサ60~62の出力信号は制御装置70に取り込まれている。制御装置70は、CPUやメモリ等を有するマイクロコンピュータを中心に構成されている。制御装置70は、各種情報を記憶するための不揮発性メモリ71を備えている。制御装置70は、各圧力センサ60~62の出力信号に基づいて、燃料タンク30の燃料圧力、ポート噴射インジェクタ40の燃料噴射圧、及び直噴インジェクタ50の燃料噴射圧の情報を取得することが可能である。
A pressure sensor 62 is provided on the second delivery pipe 313. The pressure sensor 62 detects the pressure of the gas fuel inside the second delivery pipe 313, in other words, the fuel injection pressure of the direct injection injector 50, and outputs a signal according to the detected pressure of the gas fuel.
As shown in FIG. 2, the output signals of the pressure sensors 60 to 62 are fetched by the control device 70. The control device 70 is mainly composed of a microcomputer having a CPU and a memory. The control device 70 includes a non-volatile memory 71 for storing various information. The control device 70 can acquire information on the fuel pressure of the fuel tank 30, the fuel injection pressure of the port injection injector 40, and the fuel injection pressure of the direct injection injector 50 based on the output signals of the pressure sensors 60 to 62. It is possible.
 また、制御装置70には、各種車載センサ63の出力信号が取り込まれている。車載センサ63には、例えばアクセルペダルの踏み込み量を検出するセンサ、内燃機関20のクランク軸の回転角度を検出するクランク角センサ、吸気通路22を流れる空気の流量である吸入空気量を検出する流量センサ、排気通路25を流れる排気の温度を検出する温度センサ、内燃機関20の冷却水の温度を検出する温度センサ等が含まれている。 The control device 70 also captures the output signals of the various in-vehicle sensors 63. The vehicle-mounted sensor 63 includes, for example, a sensor that detects the amount of depression of the accelerator pedal, a crank angle sensor that detects the rotation angle of the crankshaft of the internal combustion engine 20, and a flow rate that detects the amount of intake air that is the flow rate of air flowing through the intake passage 22. A sensor, a temperature sensor for detecting the temperature of the exhaust gas flowing through the exhaust passage 25, a temperature sensor for detecting the temperature of the cooling water of the internal combustion engine 20, and the like are included.
 制御装置70は、各センサ60~63により検出される各種情報に基づいて、各気筒21のポート噴射インジェクタ40及び直噴インジェクタ50を制御することにより、各気筒21の燃料噴射量を制御する燃料噴射制御を実行する。
 ところで、内燃機関20の燃料としてガス燃料が用いられている場合、燃料により各インジェクタ40,50を境界潤滑することができないため、内燃機関20の燃料として液体燃料が用いられている場合と比較すると、各インジェクタ40,50の摺動部が摩耗し易い。各インジェクタ40,50の摺動部が摩耗すると、各インジェクタ40,50の燃料噴射量にばらつきが生じるため、燃料噴射制御を適切に実行できない可能性がある。
The control device 70 controls the fuel injection amount of each cylinder 21 by controlling the port injection injector 40 and the direct injection injector 50 of each cylinder 21 based on various information detected by the sensors 60 to 63. The injection control is executed.
By the way, when a gas fuel is used as the fuel of the internal combustion engine 20, the injectors 40 and 50 cannot be boundary lubricated by the fuel, so compared with the case where the liquid fuel is used as the fuel of the internal combustion engine 20. The sliding parts of the injectors 40, 50 are easily worn. When the sliding parts of the injectors 40 and 50 are worn, the fuel injection amount of the injectors 40 and 50 varies, which may prevent proper fuel injection control.
 一方、各インジェクタ40,50の摩耗量は、基本的には、各インジェクタ40,50の作動回数と相関関係がある。そこで、本実施形態の燃料噴射システム10では、各インジェクタ40,50の作動回数に基づいて各インジェクタ40,50の摩耗量を推定するようにしている。そして、本実施形態の燃料噴射システム10では、ポート噴射インジェクタ40及び直噴インジェクタ50のうち、作動回数の少ないインジェクタを優先的に駆動させることにより、システム全体としての耐久性を向上させるようにしている。 On the other hand, the amount of wear of each injector 40, 50 is basically correlated with the number of times of operation of each injector 40, 50. Therefore, in the fuel injection system 10 of the present embodiment, the wear amount of each injector 40, 50 is estimated based on the number of times of operation of each injector 40, 50. In the fuel injection system 10 of the present embodiment, the durability of the entire system is improved by preferentially driving the injector having a small number of operations among the port injection injector 40 and the direct injection injector 50. There is.
 具体的には、図2に示されるように、制御装置70は、摩耗量推定部72と、判定部73とを備えている。
 摩耗量推定部72は、各インジェクタ40,50の摩耗量の推定値として、各インジェクタ40,50の累積作動回数をカウントしている。累積作動回数は、各インジェクタ40,50の駆動開始時からの作動回数の総計である。具体的には、不揮発性メモリ71には、ポート噴射インジェクタ40の累積作動回数NPと、直噴インジェクタ50の累積作動回数NDとが記憶されている。累積作動回数NP,NDのそれぞれの値は、各インジェクタ40,50の駆動開始時に零に設定されている。摩耗量推定部72は、ポート噴射インジェクタ40が駆動する都度、累積作動回数NPの値をインクリメントする。また、摩耗量推定部72は、直噴インジェクタ50が駆動する都度、累積作動回数NDの値をインクリメントする。累積作動回数NP,NDが不揮発性メモリ71に記憶されることにより、車両の停止後にバッテリから制御装置70の電力供給が遮断された場合であっても、累積作動回数NP,NDの情報を保持することが可能となっている。
Specifically, as shown in FIG. 2, the control device 70 includes a wear amount estimation unit 72 and a determination unit 73.
The wear amount estimation unit 72 counts the cumulative number of times of operation of each injector 40, 50 as an estimated value of the wear amount of each injector 40, 50. The cumulative number of operations is the total number of operations of each injector 40, 50 from the start of driving. Specifically, the non-volatile memory 71 stores the cumulative operation number NP of the port injection injector 40 and the cumulative operation number ND of the direct injection injector 50. The respective values of the cumulative number of operations NP and ND are set to zero at the start of driving the injectors 40 and 50. The wear amount estimation unit 72 increments the value of the cumulative operation number NP each time the port injection injector 40 is driven. In addition, the wear amount estimating unit 72 increments the value of the cumulative operation number ND each time the direct injection injector 50 is driven. By storing the cumulative number of operations NP, ND in the non-volatile memory 71, the information of the cumulative number of operations NP, ND is retained even when the power supply of the control device 70 is cut off from the battery after the vehicle is stopped. It is possible to do.
 判定部73は、不揮発性メモリ71に記憶されている各インジェクタ40,50の累積作動回数NP,NDに基づいて、ポート噴射インジェクタ40及び直噴インジェクタ50のいずれのインジェクタを優先的に作動させるかを判定する。
 次に、図3を参照して、判定部73により実行される処理の手順について具体的に説明する。
The determination unit 73 preferentially operates which of the port injection injector 40 and the direct injection injector 50, based on the cumulative number of operations NP, ND of the injectors 40, 50 stored in the nonvolatile memory 71. To judge.
Next, with reference to FIG. 3, a procedure of processing executed by the determination unit 73 will be specifically described.
 図3に示されるように、判定部73は、まず、ステップS10の処理として、各インジェクタ40,50の最大作動回数NPmax,NDmaxを不揮発性メモリ71から読み込む。最大作動回数NPmax,NDmaxは、許容できない性能変化が発生しない各インジェクタ40,50の作動回数の最大値である。最大作動回数NPmax,NDmaxは、実験等を通じて設定されており、不揮発性メモリ71に予め記憶されている。なお、ポート噴射インジェクタ40及び直噴インジェクタ50が異なる構造を有している場合、最大作動回数NPmax,NDmaxは互いに異なる値に設定される可能性がある。本実施形態では、最大作動回数NPmax,NDmaxが所定回数に相当する。 As shown in FIG. 3, the determination unit 73 first reads the maximum operation numbers NPmax and NDmax of the injectors 40 and 50 from the nonvolatile memory 71 as the process of step S10. The maximum number of operations NPmax, NDmax is the maximum value of the number of operations of each injector 40, 50 in which an unacceptable performance change does not occur. The maximum number of operations NPmax and NDmax are set through experiments and the like, and are stored in the non-volatile memory 71 in advance. When the port injection injector 40 and the direct injection injector 50 have different structures, the maximum number of operations NPmax and NDmax may be set to different values. In the present embodiment, the maximum number of operations NPmax and NDmax correspond to the predetermined number of times.
 判定部73は、ステップS10に続くステップS11の処理として、各インジェクタ40,50の累積作動回数NP,NDを不揮発性メモリ71から読み込む。続いて、判定部73は、ステップS12の処理として、以下の式f1,f2に基づいて各インジェクタ40,50の作動可能回数NPc,NDcを算出する。 The determination unit 73 reads the cumulative operation numbers NP and ND of the injectors 40 and 50 from the nonvolatile memory 71 as the process of step S11 following step S10. Subsequently, the determination unit 73 calculates the operable number of times NPc, NDc of each injector 40, 50 based on the following equations f1, f2 as the processing of step S12.
 NPc=NPmax-NP (f1)
 NDc=NDmax-ND (f2)
 判定部73は、ステップS12に続くステップS13の処理として、各インジェクタ40,50の作動可能回数NPc,NDcに基づいて、ポート噴射インジェクタ40及び直噴インジェクタ50のいずれを優先的に作動させるかを決定する。具体的には、判定部73は、ポート噴射インジェクタ40の作動可能回数NPcが直噴インジェクタ50の作動可能回数NDcよりも大きい場合には、ポート噴射インジェクタ40を優先的に作動させる。また、判定部73は、直噴インジェクタ50の作動可能回数NDcがポート噴射インジェクタ40の作動可能回数NPcよりも大きい場合には、直噴インジェクタ50を優先的に作動させる。なお、判定部73は、ポート噴射インジェクタ40の作動可能回数NPcと直噴インジェクタ50の作動可能回数NDcとが同一の値である場合には、ポート噴射インジェクタ40及び直噴インジェクタ50のいずれか一方を作動させる。
NPc=NPmax-NP (f1)
NDc=NDmax-ND (f2)
As the process of step S13 subsequent to step S12, the determination unit 73 determines which of the port injection injector 40 and the direct injection injector 50 is to be preferentially operated based on the operable number of times NPc, NDc of each injector 40, 50. decide. Specifically, when the operable frequency NPc of the port injection injector 40 is larger than the operable frequency NDc of the direct injection injector 50, the determination unit 73 preferentially operates the port injection injector 40. Further, when the operable number NDc of the direct injection injectors 50 is larger than the operable number NPc of the port injection injectors 40, the determination unit 73 preferentially operates the direct injection injectors 50. When the operable number of times NPc of the port injection injector 40 and the operable number of times NDc of the direct injection injector 50 have the same value, the determination unit 73 determines whether one of the port injection injector 40 and the direct injection injector 50. Operate.
 判定部73は、ステップS13の処理を実行した後、図3に示される一連の処理を終了する。
 なお、判定部73は、図3に示される処理を内燃機関20の複数の気筒21のそれぞれに対して個別に実行する。
After executing the process of step S13, the determination unit 73 ends the series of processes shown in FIG.
The determining unit 73 individually executes the process shown in FIG. 3 for each of the plurality of cylinders 21 of the internal combustion engine 20.
 以上説明した本実施形態の燃料噴射システム10によれば、以下の(1)及び(2)に示される作用及び効果を得ることができる。
 (1)ポート噴射インジェクタ40及び直噴インジェクタ50のそれぞれの摩耗量に応じた、より適切なインジェクタを優先的に作動させることができるため、ガス燃料を噴射するインジェクタ40,50の耐久性を向上させることができる。
According to the fuel injection system 10 of the present embodiment described above, the actions and effects shown in the following (1) and (2) can be obtained.
(1) Since more appropriate injectors corresponding to the wear amounts of the port injection injector 40 and the direct injection injector 50 can be preferentially operated, the durability of the injectors 40, 50 for injecting gas fuel is improved. Can be made.
 (2)摩耗量推定部72は、各インジェクタ40,50の累積作動回数NP,NDに基づいて各インジェクタ40,50の摩耗量を推定する。判定部73は、上記の式f1,f2に示されるように、最大作動回数NPmax,NDmaxから累積作動回数NP,NDを減算した減算値をインジェクタ40,50のそれぞれについて演算し、減算値が最も大きいインジェクタを優先的に作動させる。このような構成によれば、耐久性に余裕のあるインジェクタを優先的に作動させ易くなる。 (2) The wear amount estimation unit 72 estimates the wear amount of each injector 40, 50 based on the cumulative number of operations NP, ND of each injector 40, 50. The determination unit 73 calculates a subtraction value obtained by subtracting the cumulative operation times NP, ND from the maximum operation times NPmax, NDmax for each of the injectors 40, 50 as shown in the above equations f1, f2, and the subtraction value is the highest. Operate the large injector preferentially. With such a configuration, it becomes easy to preferentially operate the injector having a sufficient durability.
 <第2実施形態>
 次に、燃料噴射システム10の第2実施形態について説明する。以下、第1実施形態の燃料噴射システム10との相違点を中心に説明する。
 図4に示されるように、本実施形態の判定部73は、ステップS11の処理に続くステップS14の処理として、以下の式f3,f4に基づいて各インジェクタ40,50の累積作動割合NPr,NDrを算出する。
<Second Embodiment>
Next, a second embodiment of the fuel injection system 10 will be described. Hereinafter, differences from the fuel injection system 10 of the first embodiment will be mainly described.
As shown in FIG. 4, the determination unit 73 of the present embodiment, as the process of step S14 subsequent to the process of step S11, based on the following equations f3 and f4, the cumulative operation ratios NPr and NDr of the injectors 40 and 50. To calculate.
 NPr=NP/NPmax (f3)
 NDr=ND/NDmax (f4)
 判定部73は、ステップS14に続くステップS13の処理として、各インジェクタ40,50の累積作動割合NPr,NDrに基づいて、ポート噴射インジェクタ40及び直噴インジェクタ50のいずれを優先的に作動させるかを決定する。具体的には、判定部73は、ポート噴射インジェクタ40の累積作動割合NPrが直噴インジェクタ50の累積作動割合NDrよりも小さい場合には、ポート噴射インジェクタ40を優先的に作動させる。また、判定部73は、直噴インジェクタ50の累積作動割合NDrがポート噴射インジェクタ40の累積作動割合NPrよりも小さい場合には、直噴インジェクタ50を優先的に作動させる。なお、判定部73は、ポート噴射インジェクタ40の累積作動割合NPrと直噴インジェクタ50の累積作動割合NDrとが同一の値である場合には、ポート噴射インジェクタ40及び直噴インジェクタ50のいずれか一方を作動させる。
NPr=NP/NPmax (f3)
NDr=ND/NDmax (f4)
The determination unit 73 determines which of the port injection injector 40 and the direct injection injector 50 is to be preferentially operated based on the cumulative operation ratios NPr, NDr of the injectors 40, 50 as the process of step S13 subsequent to step S14. decide. Specifically, when the cumulative operation ratio NPr of the port injection injector 40 is smaller than the cumulative operation ratio NDr of the direct injection injector 50, the determination unit 73 preferentially operates the port injection injector 40. When the cumulative operation ratio NDr of the direct injection injectors 50 is smaller than the cumulative operation ratio NPr of the port injection injectors 40, the determination unit 73 preferentially operates the direct injection injectors 50. When the cumulative operation ratio NPr of the port injection injector 40 and the cumulative operation ratio NDr of the direct injection injector 50 have the same value, the determination unit 73 determines which one of the port injection injector 40 and the direct injection injector 50. Operate.
 以上説明した本実施形態の燃料噴射システム10によれば、上記の(2)に示される作用及び効果に代えて、以下の(3)に示される作用及び効果を得ることができる。
 (3)判定部73は、上記の式f3,f4に示されるように、累積作動回数NP,NDを最大作動回数NPmax,NDmaxにより除算した除算値をインジェクタ40,50のそれぞれについて演算し、除算値が最も小さいインジェクタを優先的に作動させる。このような構成によれば、耐久性に余裕のあるインジェクタを優先的に作動させ易くなる。
According to the fuel injection system 10 of the present embodiment described above, the action and effect shown in the following (3) can be obtained instead of the action and effect shown in the above (2).
(3) The determination unit 73 calculates, for each of the injectors 40 and 50, a division value obtained by dividing the cumulative number of operations NP and ND by the maximum number of operations NPmax and NDmax, as shown in the above equations f3 and f4. The injector with the smallest value is activated first. With such a configuration, it becomes easy to preferentially operate the injector having a sufficient durability.
 <第3実施形態>
 次に、燃料噴射システム10の第3実施形態について説明する。以下、第1実施形態の燃料噴射システム10との相違点を中心に説明する。
 第1実施形態の判定部73は、図3に示される優先作動インジェクタの判定処理を内燃機関20の複数の気筒21のそれぞれに対して個別に実行するものであった。これに対し、本実施形態の判定部73は、図3に示される判定処理を複数の気筒21のうちの特定の気筒のみに対して実行するとともに、その判定結果を特定の気筒とは別の他の気筒にも用いることで、他の気筒において優先的に作動させるインジェクタを決定する。
<Third Embodiment>
Next, a third embodiment of the fuel injection system 10 will be described. Hereinafter, differences from the fuel injection system 10 of the first embodiment will be mainly described.
The determination unit 73 of the first embodiment individually executes the determination process of the priority operation injector shown in FIG. 3 for each of the plurality of cylinders 21 of the internal combustion engine 20. On the other hand, the determination unit 73 of the present embodiment executes the determination process shown in FIG. 3 only on a specific cylinder of the plurality of cylinders 21 and determines the determination result different from that of the specific cylinder. By using it in other cylinders as well, the injector to be preferentially operated in other cylinders is determined.
 具体的には、図5に示されるように、判定部73は、まず、ステップS15の処理として、内燃機関20の複数の気筒21のうちの特定の気筒のみに対して図3に示される優先作動インジェクタの判定処理を実行する。これにより、特定の気筒において、ポート噴射インジェクタ40及び直噴インジェクタ50のいずれを優先的に作動させるかが決定される。 Specifically, as shown in FIG. 5, as the processing of step S15, the determination unit 73 first gives priority to only a specific cylinder of the plurality of cylinders 21 of the internal combustion engine 20 shown in FIG. The determination process of the operating injector is executed. This determines which of the port injection injector 40 and the direct injection injector 50 is to be preferentially operated in the specific cylinder.
 次に、判定部73は、ステップS16の処理として、ステップS15の処理で決定されたインジェクタの判定結果を、特定の気筒とは別の他の気筒にも反映させる。これにより、他の気筒に対しては、特定の気筒において優先的に作動させると判定されたインジェクタと同一の位置に設けられるインジェクタが優先的に作動することになる。 Next, as a process of step S16, the determination unit 73 reflects the injector determination result determined in the process of step S15 on another cylinder other than the specific cylinder. As a result, the injector provided at the same position as the injector determined to be preferentially operated in the specific cylinder is preferentially operated with respect to the other cylinders.
 以上説明した本実施形態の燃料噴射システム10によれば、以下の(4)に示される作用及び効果を更に得ることができる。
 (4)優先的に作動させるインジェクタを判定する処理が複数の気筒21のうちの特定の気筒のみに対して行われるため、判定処理を簡素化することができる。また、複数の気筒21のそれぞれで同一のインジェクタが優先的に作動するようになるため、複数の気筒21間のインジェクタ40,50の寿命のばらつきを抑制することができる。
According to the fuel injection system 10 of the present embodiment described above, it is possible to further obtain the action and effect shown in (4) below.
(4) Since the process of determining the injector to be preferentially operated is performed only for a specific cylinder of the plurality of cylinders 21, the determination process can be simplified. Further, since the same injector is preferentially operated in each of the plurality of cylinders 21, it is possible to suppress variations in the lives of the injectors 40 and 50 among the plurality of cylinders 21.
 <第4実施形態>
 次に、燃料噴射システム10の第4実施形態について説明する。以下、第1実施形態の燃料噴射システム10との相違点を中心に説明する。
 図1に示されるような構造を有する内燃機関20では、ポート噴射インジェクタ40からガス燃料を噴射するよりも、直噴インジェクタ50からガス燃料を噴射した方が、充填効率を高めることができるため、内燃機関20の出力及び燃費を向上させることができる。そのため、内燃機関20の負荷が高い状況では、ポート噴射インジェクタ40よりも直噴インジェクタ50を優先的に作動させた方が望ましい。そこで、本実施形態の判定部73は、内燃機関20の負荷が所定値以上である場合には、作動可能回数NPc,NDcの大小に関わらず、直噴インジェクタ50を優先的に作動させるようにしている。
<Fourth Embodiment>
Next, a fourth embodiment of the fuel injection system 10 will be described. Hereinafter, differences from the fuel injection system 10 of the first embodiment will be mainly described.
In the internal combustion engine 20 having the structure as shown in FIG. 1, since the direct injection injector 50 can inject the gas fuel more than the gas injection from the port injection injector 40, the charging efficiency can be improved. The output and fuel consumption of the internal combustion engine 20 can be improved. Therefore, in a situation where the load on the internal combustion engine 20 is high, it is desirable that the direct injection injector 50 be operated with priority over the port injection injector 40. Therefore, when the load of the internal combustion engine 20 is equal to or greater than the predetermined value, the determination unit 73 of the present embodiment preferentially operates the direct injection injector 50 regardless of the operable counts NPc and NDc. ing.
 具体的には、判定部73は、図6に示されるように、まず、ステップS20の処理として、内燃機関20の負荷Leが所定値Lth以上であるか否かを判定する。内燃機関20の負荷Leは、内燃機関20の負荷状態を数値化したものである。内燃機関20の負荷状態は、例えば内燃機関20の回転速度や吸入空気量と相関関係がある。判定部73は、車載センサ63を通じて検出される内燃機関20の回転速度や吸入空気量からマップ等を用いて内燃機関20の負荷Leを演算する。内燃機関20の負荷Leは、内燃機関20が高負荷状態に向かうほど値が大きくなり、内燃機関20が低負荷状態に向かうほど値が小さくなるように設定されている。 Specifically, as shown in FIG. 6, the determination unit 73 first determines whether or not the load Le of the internal combustion engine 20 is equal to or greater than a predetermined value Lth as the process of step S20. The load Le of the internal combustion engine 20 is a numerical representation of the load state of the internal combustion engine 20. The load state of the internal combustion engine 20 has a correlation with, for example, the rotational speed of the internal combustion engine 20 and the intake air amount. The determination unit 73 calculates the load Le of the internal combustion engine 20 from the rotational speed of the internal combustion engine 20 and the intake air amount detected by the in-vehicle sensor 63 using a map or the like. The load Le of the internal combustion engine 20 is set such that the value becomes larger as the internal combustion engine 20 goes to a high load state, and becomes smaller as the internal combustion engine 20 goes to a low load state.
 判定部73は、ステップS20の処理で否定判断した場合には、すなわち内燃機関20の負荷Leが所定値Lth未満である場合には、ステップS22の処理として、図3に示される優先作動インジェクタの判定処理を実行する。続いて、判定部73は、ステップS23の処理として、ステップS22の処理で決定された優先作動インジェクタからガス燃料を噴射する。 When the determination unit 73 makes a negative determination in the process of step S20, that is, when the load Le of the internal combustion engine 20 is less than the predetermined value Lth, as the process of step S22, the priority operation injector shown in FIG. Execute the judgment process. Subsequently, the determination unit 73 injects the gas fuel from the priority operation injector determined in the process of step S22 as the process of step S23.
 判定部73は、ステップS20の処理で肯定判断した場合には、すなわち内燃機関20の負荷Leが所定値Lth以上である場合には、ステップS21の処理として、直噴インジェクタ50からガス燃料を噴射する。
 以上説明した本実施形態の燃料噴射システム10によれば、以下の(5)に示される作用及び効果を更に得ることができる。
When the determination section 73 makes an affirmative determination in the process of step S20, that is, when the load Le of the internal combustion engine 20 is equal to or greater than the predetermined value Lth, as the process of step S21, the direct injection injector 50 injects the gas fuel. To do.
According to the fuel injection system 10 of the present embodiment described above, the action and effect shown in the following (5) can be further obtained.
 (5)作動可能回数NPc,NDcに基づけばポート噴射インジェクタ40を優先的に作動させるべき状況であっても、内燃機関20の負荷Leが所定値Lth以上である場合には、作動可能回数NPc,NDcの大小に関わらず、直噴インジェクタ50からガス燃料が噴射される。このような構成によれば、内燃機関20の負荷が高い状況では、直噴インジェクタ50からガス燃料が噴射されることにより充填効率を高めることができるため、内燃機関20の燃費及び出力を向上させることができる。 (5) Even in a situation where the port injection injector 40 should be preferentially operated based on the operable times NPc and NDc, when the load Le of the internal combustion engine 20 is equal to or greater than the predetermined value Lth, the operable times NPc , NDc, the direct injection injector 50 injects the gaseous fuel regardless of the magnitude of the NDc. According to such a configuration, in a situation where the load of the internal combustion engine 20 is high, it is possible to improve the filling efficiency by injecting the gas fuel from the direct injection injector 50, and thus improve the fuel efficiency and output of the internal combustion engine 20. be able to.
 <第5実施形態>
 次に、燃料噴射システム10の第5実施形態について説明する。以下、第1実施形態の燃料噴射システム10との相違点を中心に説明する。
 直噴インジェクタ50では、その噴射圧が燃焼室210の圧力よりも高くなければ、ガス燃料を噴射することができない。また、仮に噴射圧が燃焼室210の圧力よりも高い場合であっても、噴射圧の低下により、噴射圧と燃焼室210の圧力との差圧が小さくなると、直噴インジェクタ50の噴射量が減少するため、十分なガス燃料を噴射できない可能性がある。そのため、燃料タンク30内のガス燃料の残量が減少することにより燃料タンク30の燃料圧力が低下してくると、直噴インジェクタ50の噴射量不足が発生し易くなり、結果として内燃機関20の性能が低下するおそれがあるとともに、燃料タンク30内のガス燃料を使い切ることが困難となる。
<Fifth Embodiment>
Next, a fifth embodiment of the fuel injection system 10 will be described. Hereinafter, differences from the fuel injection system 10 of the first embodiment will be mainly described.
In the direct injection injector 50, the gas fuel cannot be injected unless the injection pressure thereof is higher than the pressure of the combustion chamber 210. Even if the injection pressure is higher than the pressure of the combustion chamber 210, if the pressure difference between the injection pressure and the pressure of the combustion chamber 210 becomes small due to the decrease of the injection pressure, the injection amount of the direct injection injector 50 will be reduced. There is a possibility that sufficient gas fuel cannot be injected due to the decrease. Therefore, when the fuel pressure in the fuel tank 30 decreases due to a decrease in the amount of gas fuel in the fuel tank 30, the injection amount of the direct injection injector 50 is likely to be insufficient, and as a result, the internal combustion engine 20 The performance may deteriorate, and it becomes difficult to use up the gas fuel in the fuel tank 30.
 一方、直噴インジェクタ50から燃焼室210への燃料噴射が困難になる程度に燃料タンク30の燃料圧力が低下した場合であっても、ポート噴射インジェクタ40であれば、十分に燃料を噴射することが可能である。そこで、本実施形態の判定部73は、燃料タンク30の燃料圧力が所定値以下になった場合には、作動可能回数NPc,NDcの大小に関わらず、ポート噴射インジェクタ40を優先的に作動させるようにしている。 On the other hand, even if the fuel pressure in the fuel tank 30 is lowered to such an extent that it becomes difficult to inject fuel from the direct injection injector 50 into the combustion chamber 210, the port injection injector 40 should inject sufficient fuel. Is possible. Therefore, when the fuel pressure in the fuel tank 30 becomes equal to or lower than a predetermined value, the determination unit 73 of the present embodiment preferentially actuates the port injection injector 40 regardless of the operable counts NPc and NDc. I am trying.
 具体的には、図7に示されるように、判定部73は、まず、ステップS24の処理として、圧力センサ60により検出される燃料タンク30の燃料圧力Pfが所定値Pth以下であるか否かを判断する。判定部73は、ステップS24の処理で否定判断した場合には、すなわち燃料タンク30の燃料圧力Pfが所定値Pthを超えている場合には、ステップS22の処理として、図3に示される優先作動インジェクタの判定処理を実行する。続いて、判定部73は、ステップS23の処理として、ステップS22の処理で決定された優先作動インジェクタからガス燃料を噴射する。 Specifically, as shown in FIG. 7, the determination unit 73 first determines whether or not the fuel pressure Pf of the fuel tank 30 detected by the pressure sensor 60 is equal to or lower than the predetermined value Pth as the process of step S24. To judge. When the determination unit 73 makes a negative determination in the process of step S24, that is, when the fuel pressure Pf of the fuel tank 30 exceeds the predetermined value Pth, the priority operation shown in FIG. 3 is performed as the process of step S22. Execute the injector determination process. Subsequently, the determination unit 73 injects the gas fuel from the priority operation injector determined in the process of step S22 as the process of step S23.
 判定部73は、ステップS24の処理で肯定判断した場合には、すなわち燃料タンク30の燃料圧力Pfが所定値Pth以下である場合には、ステップS31の処理として、ポート噴射インジェクタ40からガス燃料を噴射する。
 以上説明した本実施形態の燃料噴射システム10によれば、以下の(6)に示される作用及び効果を更に得ることができる。
When the determination section 73 makes an affirmative determination in the process of step S24, that is, when the fuel pressure Pf of the fuel tank 30 is equal to or lower than the predetermined value Pth, as the process of step S31, the gas fuel is supplied from the port injection injector 40. To jet.
According to the fuel injection system 10 of the present embodiment described above, it is possible to further obtain the action and effect shown in (6) below.
 (6)作動可能回数NPc,NDcに基づけば直噴インジェクタ50を優先的に作動させるべき状況であっても、燃料タンク30の燃料圧力Pfが所定値Pth以下である場合には、作動可能回数NPc,NDcの大小に関わらず、ポート噴射インジェクタ40からガス燃料が噴射される。このような構成によれば、燃料タンク30の燃料圧力Pfが低い状況では、ポート噴射インジェクタ40からガス燃料が噴射されることにより、より確実に燃料タンク30内のガス燃料を使い切ることが可能となる。結果的に、車両の航続距離を延ばすことが可能となる。なお、ポート噴射インジェクタ40からガス燃料を噴射する場合、直噴インジェクタ50からガス燃料を噴射する場合と比較すると、充填効率が下がるため、内燃機関20の出力が低下する懸念がある。これを解消するためには、例えば車両のトランスミッションのギア比を上げて内燃機関20の作動点を高回転側にずらすことにより、内燃機関20の出力を補うことが有効である。 (6) Even when the direct injection injector 50 is to be preferentially operated based on the operable number of times NPc and NDc, when the fuel pressure Pf of the fuel tank 30 is equal to or less than the predetermined value Pth, the operable number of times Gas fuel is injected from the port injection injector 40 regardless of the magnitude of NPc and NDc. With such a configuration, when the fuel pressure Pf in the fuel tank 30 is low, the gas fuel is injected from the port injection injector 40, so that the gas fuel in the fuel tank 30 can be used up more reliably. Become. As a result, it is possible to extend the cruising range of the vehicle. Note that, when the gas fuel is injected from the port injection injector 40, the charging efficiency is lower than that when the direct injection injector 50 injects the gas fuel, and thus there is a concern that the output of the internal combustion engine 20 may decrease. In order to eliminate this, it is effective to supplement the output of the internal combustion engine 20, for example, by increasing the gear ratio of the transmission of the vehicle and shifting the operating point of the internal combustion engine 20 to the high rotation side.
 <第6実施形態>
 次に、燃料噴射システム10の第6実施形態について説明する。以下、第1実施形態の燃料噴射システム10との相違点を中心に説明する。
 図3に示される優先作動インジェクタの判定処理を常時行った場合、内燃機関20の燃焼サイクル毎に、燃料を噴射するインジェクタが切り替わる可能性があり、燃焼サイクル毎の燃料噴射量にばらつき生じる可能性がある。したがって、優先作動インジェクタの判定処理を頻繁に行うことは望ましくなく、ある程度の時間間隔で優先作動インジェクタの判定処理を実行することが望ましい。そこで、本実施形態の燃料噴射システム10では、図3に示される優先作動インジェクタの判定処理が所定の時間間隔で行われる。
<Sixth Embodiment>
Next, a sixth embodiment of the fuel injection system 10 will be described. Hereinafter, differences from the fuel injection system 10 of the first embodiment will be mainly described.
When the priority operation injector determination process shown in FIG. 3 is constantly performed, the injector that injects fuel may switch for each combustion cycle of the internal combustion engine 20, and the fuel injection amount may vary for each combustion cycle. There is. Therefore, it is not desirable to perform the determination process of the preferential operation injector frequently, and it is desirable to perform the determination process of the priority operation injector at a certain time interval. Therefore, in the fuel injection system 10 of the present embodiment, the priority operation injector determination process shown in FIG. 3 is performed at predetermined time intervals.
 具体的には、本実施形態の判定部73は、図8に示される処理を所定の演算周期で実行する。図8に示されるように、判定部73は、まず、ステップS40の処理として、優先作動インジェクタの前回の判定時期から所定時間が経過しているか否かを判断する。
 判定部73は、ステップS40の処理で肯定判断した場合には、すなわち優先作動インジェクタの前回の判定時期から所定時間が経過している場合には、ステップS41の処理として、図3に示される優先作動インジェクタの判定処理を実行する。また、判定部73は、ステップS41の処理で優先作動インジェクタの判定を行った後、その判定時点からの経過時間をカウントする。
Specifically, the determination unit 73 of this embodiment executes the processing shown in FIG. 8 at a predetermined calculation cycle. As shown in FIG. 8, the determining unit 73 first determines whether or not a predetermined time has elapsed from the previous determination time of the priority actuating injector as the process of step S40.
If the determination unit 73 makes a positive determination in the process of step S40, that is, if a predetermined time has elapsed from the previous determination time of the priority actuating injector, the determination unit 73 performs the process shown in FIG. The determination process of the operating injector is executed. In addition, the determination unit 73 counts the elapsed time from the determination time point after determining the priority operation injector in the process of step S41.
 判定部73は、ステップS40の処理で否定判断した場合には、すなわち優先作動インジェクタの前回の判定時期からの所定時間が経過していない場合には、ステップS41の処理を実行しない。すなわち、判定部73は、優先作動インジェクタの判定を行わない。
 以上説明した本実施形態の燃料噴射システム10によれば、以下の(7)に示される作用及び効果を更に得ることができる。
When the determination unit 73 makes a negative determination in the process of step S40, that is, when the predetermined time from the previous determination time of the priority actuating injector has not elapsed, the determination unit 73 does not execute the process of step S41. That is, the determination unit 73 does not determine the priority actuating injector.
According to the fuel injection system 10 of the present embodiment described above, it is possible to further obtain the action and effect shown in the following (7).
 (7)優先作動インジェクタの判定が所定時間毎に行われるようになるため、インジェクタの頻繁な切り替わりを回避することが可能となる。これにより、燃料サイクル毎の燃料噴射量のばらつきを抑制することができるため、ドライバビリティ等への悪影響を抑制することができる。 (7) Since the priority operation injector is determined every predetermined time, it is possible to avoid frequent injector switching. As a result, it is possible to suppress variations in the fuel injection amount for each fuel cycle, and thus it is possible to suppress adverse effects on drivability and the like.
 (第1変形例)
 次に、第6実施形態の燃料噴射システム10の第1変形例について説明する。
 図9に示されるように、本変形例の燃料噴射システム10では、ステップS40の処理として、内燃機関20が始動したか否かを判定する処理が行われる。このような構成であっても、優先作動インジェクタの判定が所定時間毎に行われるようになるため、上記の(7)に示される作用及び効果と同一又は類似の作用及び効果を得ることができる。
(First modification)
Next, a first modified example of the fuel injection system 10 of the sixth embodiment will be described.
As shown in FIG. 9, in the fuel injection system 10 of the present modification, a process of determining whether or not the internal combustion engine 20 has started is performed as the process of step S40. Even with such a configuration, the priority operation injector is determined every predetermined time, and therefore the same or similar action and effect as the action and effect shown in the above (7) can be obtained. ..
 (第2変形例)
 次に、第6実施形態の燃料噴射システム10の第2変形例について説明する。
 図10に示されるように、本変形例の燃料噴射システム10では、ステップS40の処理として、内燃機関20が停止したか否かを判定する処理が行われる。このような構成であっても、優先作動インジェクタの判定が所定時間毎に行われるようになるため、上記の(7)に示される作用及び効果と同一又は類似の作用及び効果を得ることができる。
(Second modified example)
Next, a second modification of the fuel injection system 10 of the sixth embodiment will be described.
As shown in FIG. 10, in the fuel injection system 10 of the present modification, a process of determining whether the internal combustion engine 20 has stopped is performed as the process of step S40. Even with such a configuration, the priority operation injector is determined every predetermined time, and therefore the same or similar action and effect as the action and effect shown in the above (7) can be obtained. ..
 (第3変形例)
 次に、第6実施形態の燃料噴射システム10の第3変形例について説明する。
 図11に示されるように、本変形例の燃料噴射システム10では、ステップS40の処理として、車両が停止したか否かを判定する処理が行われる。このような構成であっても、優先作動インジェクタの判定が所定時間毎に行われるようになるため、上記の(7)に示される作用及び効果と同一又は類似の作用及び効果を得ることができる。
(Third modification)
Next, a third modification of the fuel injection system 10 according to the sixth embodiment will be described.
As shown in FIG. 11, in the fuel injection system 10 of the present modification, a process of determining whether or not the vehicle has stopped is performed as the process of step S40. Even with such a configuration, the priority operation injector is determined every predetermined time, and therefore the same or similar action and effect as the action and effect shown in the above (7) can be obtained. ..
 (第4変形例)
 次に、第6実施形態の燃料噴射システム10の第4変形例について説明する。
 図12に示されるように、本変形例の燃料噴射システム10では、ステップS40の処理として、内燃機関20のフューエルカット制御が行われているか否かを判定する処理が行われる。このような構成であっても、優先作動インジェクタの判定が所定時間毎に行われるようになるため、上記の(7)に示される作用及び効果と同一又は類似の作用及び効果を得ることができる。
(Fourth modification)
Next, a fourth modification of the fuel injection system 10 according to the sixth embodiment will be described.
As shown in FIG. 12, in the fuel injection system 10 of the present modified example, a process of determining whether or not the fuel cut control of the internal combustion engine 20 is being performed is performed as the process of step S40. Even with such a configuration, the priority operation injector is determined every predetermined time, and therefore the same or similar action and effect as the action and effect shown in the above (7) can be obtained. ..
 <第7実施形態>
 次に、燃料噴射システム10の第7実施形態について説明する。以下、第1実施形態の燃料噴射システム10との相違点を中心に説明する。
 ポート噴射インジェクタ40の特性変化を抑制するためには、ポート噴射インジェクタ40の累積作動回数NPが最大作動回数NPmaxよりも少ない状況でポート噴射インジェクタ40を交換することが望ましい。そこで、本実施形態の燃料噴射システム10では、最大作動回数NPmaxよりも小さい値を有する警告回数を設けた上で、ポート噴射インジェクタ40の累積作動回数NPが警告回数に達した場合には、ポート噴射インジェクタ40の交換を促す警告を発するようにしている。直噴インジェクタ50についても同様である。
<Seventh Embodiment>
Next, a seventh embodiment of the fuel injection system 10 will be described. Hereinafter, differences from the fuel injection system 10 of the first embodiment will be mainly described.
In order to suppress the characteristic change of the port injection injector 40, it is desirable to replace the port injection injector 40 when the cumulative operation number NP of the port injection injector 40 is smaller than the maximum operation number NPmax. Therefore, in the fuel injection system 10 of the present embodiment, a warning number having a value smaller than the maximum operation number NPmax is provided, and when the cumulative operation number NP of the port injection injector 40 reaches the warning number, the port A warning is issued to prompt replacement of the injection injector 40. The same applies to the direct injection injector 50.
 具体的には、図2に破線で示されるように、制御装置70は、各インジェクタ40,50の交換を促すための警告を発することが可能な警告装置80を更に備えている。警告装置80としては、例えば車両のインストルメントパネルに設けられる警告灯を用いることができる。 Specifically, as shown by the broken line in FIG. 2, the control device 70 further includes a warning device 80 capable of issuing a warning for prompting replacement of the injectors 40, 50. As the warning device 80, for example, a warning light provided on an instrument panel of a vehicle can be used.
 制御装置70は、各インジェクタ40,50の交換を促す警告を警告装置80から発する処理を実行する警告部74を更に備えている。具体的には、警告部74は、図13に示される処理を実行する。
 図13に示されるように、警告部74は、まず、ステップS50の処理として、各インジェクタ40,50の警告回数NPth,NDthを不揮発性メモリ71から読み込む。ポート噴射インジェクタ40の警告回数NPthは、ポート噴射インジェクタ40の最大作動回数NPmaxよりも小さい値に設定されている。また、直噴インジェクタ50の警告回数NDthは、直噴インジェクタ50の最大作動回数NDmaxよりも小さい値に設定されている。本実施形態では、警告回数NPth,NDthが所定回数に相当する。
The control device 70 further includes a warning unit 74 that executes a process of issuing a warning from the warning device 80 that prompts replacement of the injectors 40, 50. Specifically, the warning unit 74 executes the process shown in FIG.
As shown in FIG. 13, the warning unit 74 first reads the warning counts NPth and NDth of the injectors 40 and 50 from the nonvolatile memory 71 as the process of step S50. The warning frequency NPth of the port injection injector 40 is set to a value smaller than the maximum operation frequency NPmax of the port injection injector 40. Further, the warning frequency NDth of the direct injection injector 50 is set to a value smaller than the maximum operation frequency NDmax of the direct injection injector 50. In the present embodiment, the number of warnings NPth and NDth corresponds to a predetermined number of times.
 警告部74は、ステップS50に続くステップS51の処理として、各インジェクタ40,50の累積作動回数NP,NDを不揮発性メモリ71から読み込む。続いて、警告部74は、ステップS52の処理として、累積作動回数NP,NDが警告回数NPth,NDth以上であるか否かを判定する。警告部74は、ポート噴射インジェクタ40の累積作動回数NPが警告回数NPth以上である場合、あるいは直噴インジェクタ50の累積作動回数NDが警告回数NDth以上である場合には、ステップS52の処理で肯定判断する。 The warning unit 74 reads the cumulative operating numbers NP and ND of the injectors 40 and 50 from the nonvolatile memory 71 as the process of step S51 following step S50. Subsequently, the warning unit 74 determines whether or not the cumulative number of operations NP, ND is equal to or more than the number of warnings NPth, NDth as the process of step S52. If the cumulative operation number NP of the port injection injectors 40 is the warning number NPth or more, or if the cumulative operation number ND of the direct injection injectors 50 is the warning number NDth or more, the warning unit 74 affirms in the process of step S52. to decide.
 警告部74は、ステップS52の処理で肯定判断した場合には、ステップS53の処理として、警告装置80から警告を発する。具体的には、警告部74は、ポート噴射インジェクタ40の累積作動回数NPが警告回数NPth以上である場合には、ポート噴射インジェクタ40の交換を促す警告を警告装置80から発する。また、警告部74は、直噴インジェクタ50の累積作動回数NDが警告回数NDth以上である場合には、直噴インジェクタ50の交換を促す警告を警告装置80から発する。 If the determination in step S52 is affirmative, the warning unit 74 issues a warning from the warning device 80 as the process in step S53. Specifically, when the cumulative number of operations NP of the port injection injector 40 is equal to or greater than the number of warnings NPth, the warning unit 74 issues a warning from the warning device 80 to prompt replacement of the port injection injector 40. Further, the warning unit 74 issues a warning from the warning device 80 to prompt replacement of the direct injection injector 50 when the cumulative number of operations ND of the direct injection injector 50 is equal to or more than the number of warnings NDth.
 以上説明した本実施形態の燃料噴射システム10によれば、以下の(8)に示される作用及び効果を更に得ることができる。
 (8)各インジェクタ40,50の累積作動回数NP,NDが最大作動回数NPmax,NDmaxに達する前に各インジェクタ40,50の交換を促すことができるため、性能悪化の可能性のあるインジェクタの使用を回避できる。よって、信頼性を確保することが可能となる。
According to the fuel injection system 10 of the present embodiment described above, the action and effect shown in the following (8) can be further obtained.
(8) Since it is possible to prompt replacement of each injector 40, 50 before the cumulative number of operations NP, ND of each injector 40, 50 reaches the maximum number of operations NPmax, NDmax, use of an injector that may deteriorate performance Can be avoided. Therefore, it becomes possible to secure reliability.
 <第8実施形態>
 次に、燃料噴射システム10の第8実施形態について説明する。以下、第7実施形態の燃料噴射システム10との相違点を中心に説明する。
 本実施形態の判定部73は、図14に示される処理を実行する。図14に示されるように、判定部73は、まず、ステップS60の処理として、各インジェクタ40,50の最大作動回数NPmax,NDmaxを不揮発性メモリ71から読み込む。続いて、判定部73は、ステップS61の処理として、各インジェクタ40,50の累積作動回数NP,NDを不揮発性メモリ71から読み込む。
<Eighth Embodiment>
Next, an eighth embodiment of the fuel injection system 10 will be described. Hereinafter, differences from the fuel injection system 10 of the seventh embodiment will be mainly described.
The determination unit 73 of this embodiment executes the process shown in FIG. As shown in FIG. 14, the determination unit 73 first reads the maximum operation times NPmax and NDmax of the injectors 40 and 50 from the nonvolatile memory 71 as the process of step S60. Subsequently, the determination unit 73 reads the cumulative operation numbers NP and ND of the injectors 40 and 50 from the nonvolatile memory 71 as the process of step S61.
 判定部73は、ステップS61に続くステップS62の処理として、各インジェクタ40,50の累積作動回数NP,NDが最大作動回数NPmax,NDmaxに達したか否かを判断する。判定部73は、ステップS62の処理で肯定判断した場合には、ステップS63の処理として、累積作動回数が最大作動回数に達していないインジェクタが存在するか否かを判断する。 The determination unit 73 determines whether or not the cumulative number of operations NP, ND of the injectors 40, 50 has reached the maximum number of operations NPmax, NDmax as the process of step S62 subsequent to step S61. When the determination unit 73 makes an affirmative determination in the process of step S62, the determination unit 73 determines whether or not there is an injector whose cumulative number of operations has not reached the maximum number of operations as the process of step S63.
 判定部73は、ステップS63の処理で肯定判断した場合には、ステップS64の処理として、累積作動回数が最大作動回数に達していないインジェクタを優先的に作動させるとともに、ステップS65の処理として、累積作動回数が最大作動回数に達しているインジェクタの作動を禁止する。例えばポート噴射インジェクタ40の累積作動回数NPが最大作動回数NPmax以上であって、且つ直噴インジェクタ50の累積作動回数NDが最大作動回数NDmax未満である場合には、判定部73は、直噴インジェクタ50を優先的に作動させる一方、ポート噴射インジェクタ40の作動を禁止する。 When the determination section 73 makes an affirmative decision in the process of step S63, as the process of step S64, the injector whose cumulative operation number has not reached the maximum operation number is preferentially operated, and as the process of step S65, the accumulation is performed. The injectors that have reached the maximum number of operations are prohibited from operating. For example, when the cumulative number of operations NP of the port injection injector 40 is greater than or equal to the maximum number of operations NPmax and the cumulative number of operations ND of the direct injection injector 50 is less than the maximum number of operations NDmax, the determination unit 73 determines that the direct injection injector is While 50 is preferentially operated, the operation of the port injection injector 40 is prohibited.
 一方、判定部73は、ステップS63の処理で否定判断した場合には、ステップS66の処理として、図3に示される優先作動インジェクタの判定処理を実行することにより、優先的に作動させるインジェクタを決定する。
 以上説明した本実施形態の燃料噴射システム10によれば、以下の(9)に示される作用及び効果を得ることができる。
On the other hand, if the determination unit 73 makes a negative determination in the process of step S63, the determination unit 73 executes the determination process of the priority operation injector shown in FIG. 3 as the process of step S66 to determine the injector to be operated preferentially. To do.
According to the fuel injection system 10 of the present embodiment described above, the operation and effect shown in the following (9) can be obtained.
 (9)累積作動回数が最大作動回数に達したインジェクタは使用され難くなるため、信頼性を更に向上させることができる。
 <第9実施形態>
 次に、燃料噴射システム10の第9実施形態について説明する。以下、第1実施形態の燃料噴射システム10との相違点を中心に説明する。
(9) Since it is difficult to use the injector whose cumulative number of operations has reached the maximum number of operations, it is possible to further improve reliability.
<Ninth Embodiment>
Next, a ninth embodiment of the fuel injection system 10 will be described. Hereinafter, differences from the fuel injection system 10 of the first embodiment will be mainly described.
 図2に破線で示されるように、本実施形態の各インジェクタ40,50には、識別情報記憶部41,51が設けられている。識別情報記憶部41,51には、識別情報IDp,IDdがそれぞれ記憶されている。識別情報IDpは、ポート噴射インジェクタ40の各個体を識別することが可能な情報である。識別情報Ddは、直噴インジェクタ50の各個体を識別することが可能な情報である。識別情報記憶部41,51としては、例えばICチップを用いることができる。また、識別情報IDp,IDdは、制御装置70が各インジェクタ40,50から取得することにより、不揮発性メモリ71にも記憶されている。 As shown by the broken line in FIG. 2, each injector 40, 50 of this embodiment is provided with identification information storage units 41, 51. Identification information IDp and IDd are stored in the identification information storage units 41 and 51, respectively. The identification information IDp is information that can identify each individual of the port injection injector 40. The identification information Dd is information that can identify each individual direct injection injector 50. For example, IC chips can be used as the identification information storage units 41 and 51. The identification information IDp and IDd are also stored in the non-volatile memory 71 when the control device 70 obtains them from the injectors 40 and 50.
 本実施形態の判定部73は、図15に示される処理を実行する。なお、図15に示される処理は、ポート噴射インジェクタ40及び直噴インジェクタ50のそれぞれに対して実行されるが、以下では、便宜上、図15に示される処理がポート噴射インジェクタ40に対して行われる場合を例に挙げて説明する。 The determination unit 73 of this embodiment executes the processing shown in FIG. The process shown in FIG. 15 is executed for each of the port injection injector 40 and the direct injection injector 50, but in the following, for convenience, the process shown in FIG. 15 is executed for the port injection injector 40. The case will be described as an example.
 図15に示されるように、判定部73は、まず、ステップS70の処理として、識別情報IDpをポート噴射インジェクタ40から取得する。また、判定部73は、ステップS71の処理として、不揮発性メモリ71に記憶されているポート噴射インジェクタ40の識別情報IDpを読み込む。 As shown in FIG. 15, the determination unit 73 first acquires the identification information IDp from the port injection injector 40 as the process of step S70. Further, the determination unit 73 reads the identification information IDp of the port injection injector 40 stored in the nonvolatile memory 71 as the process of step S71.
 判定部73は、ステップS72の処理として、ポート噴射インジェクタ40から取得した識別情報IDpと、不揮発性メモリ71から読み込んだ識別情報IDpとが一致しているか否かを判定する。判定部73は、それらの識別情報が異なっている場合には、ポート噴射インジェクタ40が交換されたと判定する。この場合、判定部73、ステップS73の処理として、ポート噴射インジェクタ40の累積作動回数NPを零に設定することで、累積作動回数NPをリセットする。また、判定部73は、ステップS74の処理として、ポート噴射インジェクタ40から今回取得した識別情報IDpを不揮発性メモリ71に記憶させる。これにより、交換後の新たなポート噴射インジェクタ40の識別情報IDpが不揮発性メモリ71に記憶されることになる。 The determination unit 73 determines whether or not the identification information IDp acquired from the port injection injector 40 and the identification information IDp read from the nonvolatile memory 71 match as the processing of step S72. The determination unit 73 determines that the port injection injector 40 has been replaced when the identification information is different. In this case, as the processing of the determination unit 73 and step S73, the cumulative number of operations NP of the port injection injector 40 is set to zero to reset the cumulative number of operations NP. Further, the determination unit 73 causes the nonvolatile memory 71 to store the identification information IDp acquired this time from the port injection injector 40 as the process of step S74. Thereby, the identification information IDp of the new port injection injector 40 after replacement is stored in the non-volatile memory 71.
 以上説明した本実施形態の燃料噴射システム10によれば、以下の(10)に示される作用及び効果を更に得ることができる。
 (10)各インジェクタ40,50が交換された際、累積作動回数NP,NDが自動的にリセットされるため、累積作動回数NP,NDを適切にカウントすることができる。
According to the fuel injection system 10 of the present embodiment described above, the action and effect shown in the following (10) can be further obtained.
(10) When the injectors 40, 50 are replaced, the cumulative number of operations NP, ND is automatically reset, so that the cumulative number of operations NP, ND can be appropriately counted.
 <他の実施形態>
 なお、各実施形態は、以下の形態にて実施することもできる。
 ・各実施形態の内燃機関20は、ポート噴射インジェクタ40及び直噴インジェクタ50の2つのインジェクタを有するものであったが、内燃機関20に設けられるインジェクタの数は2つに限らず、3つ以上であってもよい。また、内燃機関20は、ポート噴射インジェクタ及び直噴インジェクタのいずれか一方のみを複数備えるものであってもよい。
<Other Embodiments>
In addition, each embodiment can also be implemented in the following forms.
-The internal combustion engine 20 of each embodiment has two injectors, the port injection injector 40 and the direct injection injector 50, but the number of injectors provided in the internal combustion engine 20 is not limited to two, but three or more. May be Further, the internal combustion engine 20 may include a plurality of either one of the port injection injector and the direct injection injector.
 ・各実施形態の燃料噴射システム10では、各インジェクタ40,50の累積作動回数NP,NDに代えて、各インジェクタ40,50のリフト量の変化量や、噴射量の変化量、応答性の変化量等を用いてもよい。
 ・各実施形態の燃料噴射システム10が適用される内燃機関20は、各気筒21にインジェクタ40,50が搭載される構造に限らず、吸気通路22における各気筒21の分岐部分よりも上流側の部分に共通のポート噴射インジェクタが設けられる構造を有するものであってもよい。
In the fuel injection system 10 of each embodiment, the amount of change in the lift amount of each injector 40, 50, the amount of change in the injection amount, and the change in responsiveness instead of the cumulative number of operations NP, ND of each injector 40, 50. You may use quantity etc.
The internal combustion engine 20 to which the fuel injection system 10 of each embodiment is applied is not limited to the structure in which the injectors 40 and 50 are mounted in each cylinder 21, but may be located upstream of the branch portion of each cylinder 21 in the intake passage 22. It may have a structure in which a common port injection injector is provided in a part.
 ・各実施形態の燃料噴射システム10は、車両の内燃機関20に限らず、燃料電池等の任意の機関に適用可能である。
 ・本開示に記載の制御装置70及びその制御方法は、コンピュータプログラムにより具体化された1つ又は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された1つ又は複数の専用コンピュータにより、実現されてもよい。本開示に記載の制御装置70及びその制御方法は、1つ又は複数の専用ハードウェア論理回路を含むプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。本開示に記載の制御装置70及びその制御方法は、1つ又は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと1つ又は複数のハードウェア論理回路を含むプロセッサとの組み合わせにより構成された1つ又は複数の専用コンピュータにより、実現されてもよい。コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。専用ハードウェア論理回路及びハードウェア論理回路は、複数の論理回路を含むデジタル回路、又はアナログ回路により実現されてもよい。
The fuel injection system 10 of each embodiment is applicable not only to the internal combustion engine 20 of the vehicle but also to any engine such as a fuel cell.
One or more of the control device 70 and the control method thereof described in the present disclosure are provided by configuring a processor and a memory programmed to execute one or more functions embodied by a computer program. It may be realized by a plurality of dedicated computers. The control device 70 and the control method thereof described in the present disclosure may be realized by a dedicated computer provided by configuring a processor including one or more dedicated hardware logic circuits. The control device 70 and the control method thereof described in the present disclosure are configured by a combination of a processor and a memory programmed to execute one or more functions, and a processor including one or more hardware logic circuits. It may also be realized by one or more dedicated computers. The computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by a computer. The dedicated hardware logic circuit and the hardware logic circuit may be realized by a digital circuit including a plurality of logic circuits or an analog circuit.
 ・本開示は上記の具体例に限定されるものではない。上記の具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素、及びその配置、条件、形状等は、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 -The present disclosure is not limited to the above specific examples. A person skilled in the art appropriately modified the above-described specific examples is also included in the scope of the present disclosure as long as the features of the present disclosure are provided. Each element included in each of the above-described specific examples, and the arrangement, conditions, shape, and the like thereof are not limited to those illustrated, and can be appropriately changed. The respective elements included in the above-described specific examples can be appropriately combined as long as there is no technical contradiction.

Claims (19)

  1.  機関(20)にガス燃料を噴射する少なくとも2つの複数のインジェクタ(40,50)と、ガス燃料が貯蔵される燃料タンク(30)と、前記燃料タンクから複数の前記インジェクタのそれぞれにガス燃料を供給するデリバリパイプ(312,313)とを有する燃料噴射システムであって、
     複数の前記インジェクタのそれぞれの摩耗量を推定する摩耗量推定部(72)と、
     前記摩耗量推定部により推定される各インジェクタの摩耗量に基づいて、複数の前記インジェクタのうちのいずれのインジェクタを優先的に作動させるかを判定する判定部(73)と、を備える
     燃料噴射システム。
    At least two injectors (40, 50) for injecting gas fuel into the engine (20), a fuel tank (30) for storing gas fuel, and gas fuel from the fuel tank to the injectors, respectively. A fuel injection system having a delivery pipe (312, 313) for supplying,
    A wear amount estimating unit (72) for estimating the wear amount of each of the plurality of injectors,
    A fuel injection system, comprising: a determination unit (73) that determines which one of the injectors is to be preferentially operated based on the wear amount of each injector estimated by the wear amount estimation unit. ..
  2.  前記機関は、内燃機関(20)である
     請求項1に記載の燃料噴射システム。
    The fuel injection system according to claim 1, wherein the engine is an internal combustion engine (20).
  3.  前記内燃機関の各気筒(21)には、少なくとも2つの複数の前記インジェクタが設けられている
     請求項2に記載の燃料噴射システム。
    The fuel injection system according to claim 2, wherein at least two plural injectors are provided in each cylinder (21) of the internal combustion engine.
  4.  前記摩耗量推定部は、前記インジェクタの累積作動回数に基づいて前記インジェクタの摩耗量を推定する
     請求項1~3のいずれか一項に記載の燃料噴射システム。
    The fuel injection system according to any one of claims 1 to 3, wherein the wear amount estimation unit estimates the wear amount of the injector based on the cumulative number of times of operation of the injector.
  5.  前記判定部は、所定回数から前記累積作動回数を減算した減算値を複数の前記インジェクタのそれぞれについて演算し、前記減算値が最も大きいインジェクタを優先的に作動させる
     請求項4に記載の燃料噴射システム。
    The fuel injection system according to claim 4, wherein the determination unit calculates a subtraction value obtained by subtracting the cumulative number of operations from a predetermined number of times for each of the plurality of injectors, and preferentially operates the injector with the largest subtraction value. ..
  6.  前記判定部は、前記累積作動回数を所定回数で除算した除算値を複数の前記インジェクタのそれぞれについて演算し、前記除算値が最も小さいインジェクタを優先的に作動させる
     請求項4に記載の燃料噴射システム。
    The fuel injection system according to claim 4, wherein the determination unit calculates a divided value obtained by dividing the cumulative number of times of operation by a predetermined number of times for each of the plurality of injectors, and preferentially operates the injector having the smallest divided value. ..
  7.  前記機関の各気筒には、複数の前記インジェクタが同様の配置で設けられており、
     前記判定部は、
     複数の前記気筒のうちの特定の気筒に設けられる複数の前記インジェクタに対して、優先的に作動させるインジェクタを判定する処理を行うとともに、
     前記特定の気筒とは別の他の気筒に対しては、前記特定の気筒において優先的に作動させると判定されたインジェクタと同一の位置に設けられるインジェクタを優先的に作動させる
     請求項1~6のいずれか一項に記載の燃料噴射システム。
    In each cylinder of the engine, a plurality of the injectors are provided in a similar arrangement,
    The determination unit,
    With respect to the plurality of injectors provided in a specific cylinder among the plurality of cylinders, while performing a process of determining an injector to be preferentially operated,
    7. An injector provided at the same position as an injector determined to be preferentially operated in the specific cylinder is preferentially operated with respect to another cylinder different from the specific cylinder. The fuel injection system according to claim 1.
  8.  複数の前記インジェクタのうちの少なくとも一つは、前記機関の気筒にガス燃料を直接噴射する直噴インジェクタ(50)である
     請求項1~7のいずれか一項に記載の燃料噴射システム。
    The fuel injection system according to any one of claims 1 to 7, wherein at least one of the plurality of injectors is a direct injection injector (50) that directly injects gas fuel into a cylinder of the engine.
  9.  前記判定部は、前記機関の負荷が所定値以上である場合には、前記摩耗量によらず、前記直噴インジェクタを作動させる
     請求項8に記載の燃料噴射システム。
    The fuel injection system according to claim 8, wherein the determination unit operates the direct injection injector regardless of the wear amount when the load of the engine is a predetermined value or more.
  10.  複数の前記インジェクタのうちの少なくとも一つは、前記機関の吸気通路にガス燃料を噴射するポート噴射インジェクタ(40)である
     請求項1~6のいずれか一項に記載の燃料噴射システム。
    The fuel injection system according to any one of claims 1 to 6, wherein at least one of the plurality of injectors is a port injection injector (40) that injects gas fuel into an intake passage of the engine.
  11.  前記燃料タンクの内部の燃料圧力を検出する圧力センサ(60)を更に備え、
     前記判定部は、前記燃料タンクの内部の圧力が所定値以下である場合、前記摩耗量によらず、前記ポート噴射インジェクタを作動させる
     請求項10に記載の燃料噴射システム。
    Further comprising a pressure sensor (60) for detecting a fuel pressure inside the fuel tank,
    The fuel injection system according to claim 10, wherein the determination unit operates the port injection injector regardless of the amount of wear when the pressure inside the fuel tank is equal to or lower than a predetermined value.
  12.  前記判定部は、優先的に作動させるインジェクタを判定する処理を所定の時間間隔で実行する
     請求項1~11のいずれか一項に記載の燃料噴射システム。
    The fuel injection system according to any one of claims 1 to 11, wherein the determination unit executes a process of determining an injector to be preferentially operated at predetermined time intervals.
  13.  前記判定部は、優先的に作動させるインジェクタを判定する処理を前記機関の始動時、又は前記機関の停止後に実行する
     請求項1~11のいずれか一項に記載の燃料噴射システム。
    The fuel injection system according to any one of claims 1 to 11, wherein the determination unit executes a process of determining an injector to be preferentially operated when the engine is started or after the engine is stopped.
  14.  前記判定部は、優先的に作動させるインジェクタを判定する処理を車両の停止時に実行する
     請求項1~11のいずれか一項に記載の燃料噴射システム。
    The fuel injection system according to any one of claims 1 to 11, wherein the determination unit executes a process of determining an injector to be preferentially operated when the vehicle is stopped.
  15.  前記判定部は、優先的に作動させるインジェクタを判定する処理を前記機関のフューエルカット制御時に実行する
     請求項1~11のいずれか一項に記載の燃料噴射システム。
    The fuel injection system according to any one of claims 1 to 11, wherein the determination unit executes a process of determining an injector to be preferentially operated during fuel cut control of the engine.
  16.  複数の前記インジェクタのうちのいずれか一つのインジェクタの累積作動回数が所定回数以上であることに基づいて警告を発する警告部(74)を更に備える
     請求項1~15のいずれか一項に記載の燃料噴射システム。
    The warning unit (74) for issuing a warning based on a cumulative number of times of operation of any one of the plurality of injectors is a predetermined number or more, further comprising: a warning unit (74). Fuel injection system.
  17.  前記判定部は、前記機関の複数の気筒のうちの特定の気筒に設けられる複数の前記インジェクタのうちの少なくとも一つのインジェクタの累積作動回数が所定回数に達し、且つ前記特定の気筒に設けられる複数の前記インジェクタの中に累積作動回数が前記所定回数に達していないインジェクタが存在する場合には、累積作動回数が前記所定回数に達していないインジェクタを優先的に作動させるとともに、累積作動回数が前記所定回数に達したインジェクタの作動を禁止する
     請求項1~16のいずれか一項に記載の燃料噴射システム。
    The determination unit is configured such that at least one of the plurality of injectors provided in a specific cylinder of the plurality of cylinders of the engine has a cumulative number of operations of a predetermined number of times, and a plurality of injectors provided in the specific cylinder. In the case where there is an injector whose cumulative number of operations has not reached the predetermined number of times among the injectors, the injector whose cumulative number of operations has not reached the predetermined number of times is preferentially operated, and the cumulative number of operations is The fuel injection system according to any one of claims 1 to 16, wherein the operation of the injector that has reached a predetermined number of times is prohibited.
  18.  前記判定部は、前記インジェクタに設けられる識別情報に基づいて、前記機関に設けられるインジェクタが交換されたか否かを判定する
     請求項1~17のいずれか一項に記載の燃料噴射システム。
    The fuel injection system according to any one of claims 1 to 17, wherein the determination unit determines whether or not the injector provided in the engine has been replaced, based on identification information provided in the injector.
  19.  前記判定部は、前記機関に設けられるインジェクタが交換されたと判定された場合、対応するインジェクタの累積作動回数をリセットする
     請求項18に記載の燃料噴射システム。
    The fuel injection system according to claim 18, wherein, when it is determined that the injector provided in the engine has been replaced, the determination unit resets the cumulative number of times of operation of the corresponding injector.
PCT/JP2020/000820 2019-02-07 2020-01-14 Fuel injection system WO2020162110A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112020000741.3T DE112020000741T5 (en) 2019-02-07 2020-01-14 Fuel injection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-020536 2019-02-07
JP2019020536A JP7132146B2 (en) 2019-02-07 2019-02-07 fuel injection system

Publications (1)

Publication Number Publication Date
WO2020162110A1 true WO2020162110A1 (en) 2020-08-13

Family

ID=71947394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000820 WO2020162110A1 (en) 2019-02-07 2020-01-14 Fuel injection system

Country Status (3)

Country Link
JP (1) JP7132146B2 (en)
DE (1) DE112020000741T5 (en)
WO (1) WO2020162110A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038680A (en) * 2006-08-03 2008-02-21 Toyota Motor Corp Control device of gas fuel internal combustion engine
JP2010101245A (en) * 2008-10-23 2010-05-06 Honda Motor Co Ltd Fuel injection device
JP2013217336A (en) * 2012-04-11 2013-10-24 Mitsubishi Heavy Ind Ltd Dual-fuel diesel engine
JP2018021517A (en) * 2016-08-04 2018-02-08 いすゞ自動車株式会社 Engine system
US20180094594A1 (en) * 2015-02-10 2018-04-05 Westport Power Inc. Reducing unburned hydrocarbon emissions in gaseous fuelled lean-burn engines

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4172403B2 (en) 2004-02-24 2008-10-29 トヨタ自動車株式会社 In-cylinder direct injection CNG engine fuel injection control method
JP2019020536A (en) 2017-07-14 2019-02-07 キヤノン株式会社 Imaging device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038680A (en) * 2006-08-03 2008-02-21 Toyota Motor Corp Control device of gas fuel internal combustion engine
JP2010101245A (en) * 2008-10-23 2010-05-06 Honda Motor Co Ltd Fuel injection device
JP2013217336A (en) * 2012-04-11 2013-10-24 Mitsubishi Heavy Ind Ltd Dual-fuel diesel engine
US20180094594A1 (en) * 2015-02-10 2018-04-05 Westport Power Inc. Reducing unburned hydrocarbon emissions in gaseous fuelled lean-burn engines
JP2018021517A (en) * 2016-08-04 2018-02-08 いすゞ自動車株式会社 Engine system

Also Published As

Publication number Publication date
JP7132146B2 (en) 2022-09-06
DE112020000741T5 (en) 2021-11-04
JP2020128705A (en) 2020-08-27

Similar Documents

Publication Publication Date Title
JP2010019199A (en) Controller for internal combustion engine
CN106605056B (en) Fuel injection control device and fuel injection control method for internal combustion engine
US10054098B2 (en) Ignition timing control device for internal combustion engine
US20180274489A1 (en) Fuel metering for the operation of an internal combustion engine
US20160290248A1 (en) Fuel supply system for internal combustion engine and control method therefor
US9897016B2 (en) Apparatus for controlling the fuel supply of an internal combustion engine
JP4872832B2 (en) Control device for internal combustion engine
JP6365831B2 (en) Fuel injection control device for internal combustion engine
WO2020162110A1 (en) Fuel injection system
US9561802B2 (en) Control apparatus for vehicle
JP2005307889A (en) Control device for ignition timing of internal combustion engine
JP2009191650A (en) Control device of internal combustion engine
JP4637036B2 (en) Control device for internal combustion engine
JP4281225B2 (en) Fuel system abnormality detection device for internal combustion engine
JP5899996B2 (en) Control device for internal combustion engine
JP2010024852A (en) Fuel supply device for internal combustion engine
JP6512843B2 (en) Gas fuel supply system
JP6256400B2 (en) Abnormality judgment device
JP2008101546A (en) Fuel system for internal combustion engine
JP2010038143A (en) Internal combustion engine control device
JP6023470B2 (en) Engine control device
JP2016108943A (en) Engine control device and engine
JP2004204765A (en) Fuel injection control device
US11614045B2 (en) Method of controlling an engine
JP4120624B2 (en) Fuel supply device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20752862

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20752862

Country of ref document: EP

Kind code of ref document: A1