WO2020161774A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2020161774A1
WO2020161774A1 PCT/JP2019/003886 JP2019003886W WO2020161774A1 WO 2020161774 A1 WO2020161774 A1 WO 2020161774A1 JP 2019003886 W JP2019003886 W JP 2019003886W WO 2020161774 A1 WO2020161774 A1 WO 2020161774A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
analysis
metal film
display device
sub
Prior art date
Application number
PCT/JP2019/003886
Other languages
English (en)
French (fr)
Inventor
金子 俊博
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US17/418,052 priority Critical patent/US20220093703A1/en
Priority to PCT/JP2019/003886 priority patent/WO2020161774A1/ja
Publication of WO2020161774A1 publication Critical patent/WO2020161774A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/88Dummy elements, i.e. elements having non-functional features
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/70Testing, e.g. accelerated lifetime tests
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom

Definitions

  • the present invention relates to a display device.
  • an inspection element including an analysis layer is provided in a frame region arranged around a display area in which the display element is provided, and light emission formed in the analysis layer of the inspection element.
  • a configuration is disclosed in which deterioration of a light emitting layer formed in a functional layer (analysis layer) of a display element is inspected by making the layer emit light and confirming a light emitting state from the outside.
  • an analysis layer including a plurality of organic layers including a light emitting layer is inspected for deterioration of the analysis layer by using, for example, secondary ion mass spectrometry. Has been.
  • a display device includes a display element provided in a display area, an analysis element provided in a frame area arranged around the display area, the display element and the analysis element.
  • a display device including a sealing layer for sealing, wherein the display element includes a TFT layer including a resin film, and a light emitting element layer including a first electrode, a functional layer, and a second electrode.
  • the analysis element is formed so as to cover a first metal film formed on the resin film, an analysis layer formed on the first metal film, and at least part of an edge of the analysis layer. In addition, it has a second metal film electrically connected to the first metal film, and a ground wiring electrically connected to the second metal film via the first metal film.
  • an appropriate deterioration inspection can be easily performed even when the display element is made small.
  • FIG. 3A is a plan view schematically showing the display device according to the embodiment
  • FIG. 3B is an enlarged view of a portion A shown in FIG.
  • FIG. 2 is a cross-sectional view of the display element formed in the display area of the display device, taken along the cross section BB shown in FIG.
  • FIG. 3 is an enlarged cross-sectional view of an EL layer shown in FIG. 2.
  • FIG. 2 is a cross-sectional view of a frame region of the display device along a cross section CC shown in FIG.
  • (A) is a cross-sectional view of the analysis element formed in the frame region of the display device
  • (b) is a cross-sectional view of the analysis element during failure analysis.
  • FIG. 1 is a plan view schematically showing the display device according to the embodiment
  • FIG. 3B is an enlarged view of a portion A shown in FIG.
  • FIG. 2 is a cross-sectional view of the display element formed in the display area of the display device, taken along the cross section
  • FIG. 6 is an enlarged cross-sectional view of the analytical EL layer shown in FIG. 5. It is an enlarged view of the A section after peeling a sealing layer from the state shown in FIG.1(b). It is sectional drawing which shows typically the actual form of the EL layer for analysis provided in the said element for analysis. It is an enlarged view which shows the modification of the A section after peeling a sealing layer from the state of FIG.1(b). It is a schematic diagram which shows the structure of the TOF-SIMS analyzer which analyzes the said element for analysis. (A)-(c) is a schematic diagram which shows the procedure of the analysis of the said TOF-SIMS analyzer.
  • (A) is sectional drawing of the analysis element which concerns on a comparative example
  • (b) is sectional drawing of the said analysis element at the time of failure analysis.
  • (A) is a graph showing an analysis result of a TOF-SIMS analysis apparatus for an analysis element according to an embodiment
  • (b) is a graph showing an analysis result of a TOF-SIMS analysis apparatus for an analysis element according to a comparative example. is there.
  • (A) is a graph showing another analysis result by the TOF-SIMS analysis apparatus of the analysis element according to the embodiment
  • (b) is another analysis result by the TOF-SIMS analysis apparatus of the analysis element according to the comparative example. It is a graph which shows.
  • (A) is a graph showing still another analysis result by the TOF-SIMS analyzer of the analysis element according to the embodiment, and (b) is still another graph by the TOF-SIMS analysis apparatus of the analysis element according to the comparative example. It is a graph which shows an analysis result. It is a figure which shows the chemical formula of the substance which comprises the said element for analysis.
  • “same layer” means that they are formed in the same process (film forming step), and “lower layer” means that they are formed in a process prior to the layer to be compared.
  • the term “upper layer” means that the layer is formed in a later process than the layer to be compared.
  • FIG. 1A is a plan view schematically showing the display device 1 according to the embodiment
  • FIG. 1B is an enlarged view of a portion A shown in FIG.
  • FIG. 2 is a cross-sectional view of the display element D formed in the display region R1 of the display device 1 along the cross section BB shown in FIG.
  • the display device 1 uses a small panel of a mobile device such as a smartphone, and has a display region R1 in which a plurality of display pixels D (corresponding to the “display element” in the claims) are formed in a matrix, and a display region R1. And a frame region R2 which is arranged around the pixel and in which an analysis pixel T (corresponding to the "analysis element” in claims) is formed.
  • the analysis pixel T is installed on the same side as the terminal part installed in a part of the frame region R2.
  • Each display pixel D includes a red sub-pixel DR for displaying red, a green sub-pixel DG for displaying green, and a blue sub-pixel DB for displaying blue.
  • the analysis pixel T includes an analysis sub pixel TR corresponding to the sub pixel DR, an analysis sub pixel TG corresponding to the sub pixel DG, and an analysis sub pixel TB corresponding to the sub pixel DB.
  • the analysis sub-pixel TR When viewed from the direction perpendicular to the display region R1, the analysis sub-pixel TR is configured to be larger than the sub-pixel DR, the analysis sub-pixel TG is configured to be larger than the sub-pixel DG, and the analysis sub-pixel TB is defined to be the sub-pixel DB. Configured to be larger than.
  • the analysis sub-pixels TR, TG, and TB are formed in a square shape having a side dimension d of 50 ⁇ m or more when viewed in the vertical direction.
  • the sub-pixel DR and the analysis sub-pixel TR have the same structure although their sizes in plan view are different from each other.
  • the sub-pixel DG and the analysis sub-pixel TG also have the same structure although their sizes in plan view are different from each other.
  • the sub-pixel DB and the analysis sub-pixel TB also have the same structure although their sizes in plan view are different from each other.
  • the base material 12 may be a glass substrate or a flexible substrate including a resin film such as polyimide.
  • a flexible substrate can also be configured by two layers of resin films and an inorganic insulating film sandwiched between them.
  • a film such as PET may be attached to the lower surface of the base material 12.
  • a flexible substrate may be used as the base material 12 to form the flexible display device 1.
  • the barrier layer 3 is a layer that prevents foreign matters such as water and oxygen from entering the TFT layer 4 and the light emitting element layer 5, and is, for example, a silicon oxide film, a silicon nitride film, or an oxynitride film formed by a CVD method. It can be composed of a silicon film or a laminated film of these.
  • the TFT (thin film transistor) layer 4 includes a first metal layer (including the gate electrode GE) above the barrier layer 3 and an inorganic insulating film 16 (gate insulation above the first metal layer).
  • Film a semiconductor layer (including the semiconductor film 15) below the inorganic insulating film 16, an inorganic insulating film 18 above the semiconductor layer, and a second metal layer (capacitance electrode) above the inorganic insulating film 18.
  • CE an inorganic insulating film 20 above the second metal layer, a third metal layer (including the source wiring SH) above the inorganic insulating film 20, and a flatness above the third metal layer.
  • a chemical film 21 (resin film).
  • the semiconductor layer is composed of, for example, amorphous silicon, LTPS (low temperature polysilicon), an oxide semiconductor, and the thin film transistor TR is composed so as to include the gate electrode GE and the semiconductor film 15.
  • the thin film transistor TR in the figure has a bottom gate structure, it may have a top gate structure.
  • the display pixel D is provided with the light emitting element Xr and its control circuit for each sub-pixel SP (DG, DR, DB), and the TFT layer 4 is provided with this control circuit and wirings connected thereto.
  • the control circuit includes a drive transistor that controls the current of the light emitting element Xr, a writing transistor that is electrically connected to the scanning signal line, and a light emission control transistor that is electrically connected to the light emission control line.
  • the first metal layer, the second metal layer, and the third metal layer are composed of, for example, a single-layer film or a multi-layer film of a metal containing at least one of aluminum, tungsten, molybdenum, tantalum, chromium, titanium, and copper. To be done.
  • the inorganic insulating films 16, 18, and 20 can be formed of, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, or a laminated film thereof formed by a CVD method.
  • the flattening film 21 can be made of a coatable organic material such as polyimide or acrylic resin.
  • the light-emitting element layer 5 has a first electrode (anode) 22 above the planarization film 21, an insulating edge cover film 23 (edge cover) that covers the edge of the first electrode 22, and an edge cover film 23.
  • An EL (electroluminescence) layer 24 (functional layer) that is an upper layer, a second electrode (cathode) 25 that is an upper layer than the EL layer 24, and a Cap layer 27 that is an upper layer than the second electrode 25 are included.
  • the edge cover film 23 is formed, for example, by applying an organic material such as polyimide or acrylic resin and then patterning it by photolithography.
  • a plurality of light emitting elements Xr are formed in the light emitting element layer 5, and each light emitting element Xr includes an island-shaped first electrode 22, an EL layer 24 (including a light emitting layer), and a second electrode 25.
  • the second electrode 25 is a solid common electrode shared by the plurality of light emitting elements Xr.
  • Each light emitting element Xr may be, for example, an OLED (organic light emitting diode) including an organic layer as a light emitting layer or a QLED (quantum dot light emitting diode) including a quantum dot layer as a light emitting layer.
  • OLED organic light emitting diode
  • QLED quantum dot light emitting diode
  • FIG. 3 is an enlarged cross-sectional view of the EL layer 24 shown in FIG.
  • the EL layer 24 is configured by stacking, for example, a hole injection layer 28, a hole transport layer 29, a light emitting layer 30, an electron transport layer 31, and an electron injection layer 32 in this order from the lower layer side.
  • the light emitting layer 30 is formed in an island shape in the opening (for each sub pixel) of the edge cover film 23.
  • the other layers are formed in an island shape or a solid shape (common layer). It is also possible to adopt a configuration in which one or more layers out of the hole injection layer 28, the hole transport layer 29, the electron transport layer 31, and the electron injection layer 32 are not formed.
  • the EL layer 24 may include a hole transport layer 29, a light emitting layer 30, and an electron transport layer 31, and the electron transport layer 31 may be a common layer common to a plurality of light emitting elements.
  • FMM fine metal mask
  • the FMM is a sheet having a large number of openings, and an organic material that has passed through one opening forms an island-shaped organic layer (corresponding to one subpixel).
  • the quantum dot layer (light emitting layer) of the QLED is, for example, an island-shaped quantum dot layer (corresponding to one sub-pixel) by applying a solution in which a quantum dot diffuses in a solvent and patterning it using a photolithography method. ) Can be formed.
  • the first electrode 22 is made of, for example, a stack of ITO (Indium Tin Oxide) and Ag (silver) or an alloy containing Ag, and has light reflectivity.
  • the second electrode 25 is made of a thin film of magnesium-silver alloy or the like and has light transmittance.
  • the light emitting device Xr is an OLED
  • holes and electrons are recombined in the light emitting layer due to the driving current between the first electrode 22 and the second electrode 25, and the excitons generated thereby transition to light in the ground state. Is released. Since the second electrode 25 has a high light-transmitting property and the first electrode 22 has a light-reflecting property, the light emitted from the EL layer 24 goes upward and becomes a top emission.
  • the light emitting element Xr is a QLED
  • holes and electrons are recombined in the light emitting layer due to the driving current between the first electrode 22 and the second electrode 25, and excitons generated by this recombination result in conduction band levels of the quantum dots.
  • Light (fluorescence) is emitted during the transition from the (conduction band) to the valence band.
  • the light emitting element layer 5 may be formed with a light emitting element (inorganic light emitting diode or the like) other than the above-mentioned OLED and QLED.
  • the sealing layer 6 is a translucent barrier layer including, for example, an inorganic insulating film and an organic insulating film, and prevents foreign substances such as water and oxygen from penetrating into the light emitting element layer 5.
  • the functional film 39 has at least one of an optical compensation function, a touch sensor function, a protection function, and the like.
  • FIG. 4 is a cross-sectional view of the frame region R2 of the display device 1 along the cross section CC shown in FIG.
  • the same components as those described above are designated by the same reference numerals, and the detailed description of these components will not be repeated.
  • a trench 21t is formed in the flattening film 21.
  • the trench 21t is formed in a substantially U shape in the frame region R2 as shown in FIG. 1A in a plan view.
  • the second electrode 25 and the metal film 22A made of the same material in the same layer as the first electrode 22 of the light emitting element layer 5 shown in FIG. 2 are connected.
  • the positions of the analysis sub-pixels TR, TG, and TB in the frame region R2 may be on the display region R1 side of the trench 21t or on the side opposite to the display region R1, but as shown in FIG. 1B, the display region R1 side. Is preferred.
  • FIG. 5A is a cross-sectional view of the analysis sub-pixels TR (TG, TB) included in the analysis element T formed in the frame region R2 of the display device 1, and FIG. 5B is the above-described analysis at the time of failure analysis.
  • FIG. 3 is a cross-sectional view of a sub-pixel TR (TG, TB) for use.
  • the same components as those described in FIG. 2 are designated by the same reference numerals, and detailed description thereof will not be repeated.
  • the analysis sub-pixel TR includes a first metal film 22T formed on the flattening film 21, an analysis EL layer 24T (analysis layer, analysis light-emitting layer) formed on the first metal film 22T, and an analysis. It includes a second metal film 25T formed on the first metal film 22T so as to cover the EL layer 24T for use, and a Cap film 27T formed between the second metal film 25T and the sealing layer 6.
  • the first metal film 22T and the second metal film 25T are formed to have the same size so as to sandwich the analysis EL layers 24T of the analysis sub-pixels TR, TG, and TB.
  • the ground wiring GW is configured by using the first metal film 22T, and is extended to the outside of the sealing layer 6 beyond the end side 6E of the sealing layer 6.
  • FIG. 1B shows an example in which the first metal film 22T is provided commonly to the analysis sub-pixels TR, TG, and TB, but the present invention is not limited to this, and for example, for analysis
  • the first metal film 22T may be provided for each of the sub-pixels TR, TG, TB.
  • three ground wirings GW are provided corresponding to the analysis sub-pixels TR, TG, and TB.
  • the first metal layer 22T and the second metal layer 25T have the same shape, but the present invention is not limited to this. Alternatively, the first metal layer 22T and the second metal layer 25T having different shapes may be used.
  • FIG. 6 is an enlarged cross-sectional view of the analysis EL layer 24T shown in FIG. Similar to the EL layer 24, the analytical EL layer 24T includes, for example, an analytical hole injection layer 28T, an analytical hole transport layer 29T, an analytical light emitting layer 30T, an analytical electron transport layer 31T in this order from the lower layer side. It is configured by stacking the analysis electron injection layer 32T.
  • the ground wiring GW electrically connected to the second metal film 25T via the first metal film 22T is formed as shown in FIG. 1(b).
  • the ground wiring GW preferably intersects the sealing layer 6 and extends to the outside of the sealing layer 6.
  • the analysis EL layer 24T is formed in the same layer as the EL layer 24 of the sub-pixel DR, made of the same material, and larger than the EL layer 24 in plan view.
  • the analysis EL layer 24T includes an analysis light emitting layer 30T corresponding to the light emitting layer 30 of the EL layer 24.
  • the first metal film 22T is formed in the same layer as the first electrode 22 of the sub-pixel DR and is made of the same material.
  • the first metal film 22T is preferably made of ITO, and has, for example, a three-layer laminated structure of ITO/silver/ITO and ITO/AL/ITO. ITO may be IZO.
  • the second metal film 25T is formed in the same layer as the second electrode 25 and is made of the same material.
  • the second metal film 25T is preferably made of silver.
  • the ground wiring GW is formed in the same layer as the first metal film 22T and is made of the same material.
  • the edge cover film 23 is not provided so as to expose at least a part of the first metal film 22T.
  • the sealing layer 6 includes the Cap film 27T and a second side surface and a part of the side surface of the analytical EL layer 24T. It is physically peeled off from the EL layer for analysis 24T together with the metal film 25T.
  • FIG. 7 is an enlarged view of part A after peeling the sealing layer 6 from the state shown in FIG. After peeling off the sealing layer 6, the second metal film 25T is left so as to surround the analysis EL layers 24T of the analysis sub-pixels TR, TG, and TB.
  • the ground wiring GW is configured by using the first metal film 22T, and is extended to the outside of the sealing layer 6 beyond the end side 6E of the sealing layer 6.
  • the second metal film 25T is formed so as to cover the entire surface of the analysis EL layer 24T, but the present invention is not limited to this.
  • the second metal film 25T may be formed so as to cover at least the peripheral edge of the analysis EL layer 24T.
  • FIG. 8 is a sectional view schematically showing the actual shape of the analytical EL layer 24T. Since the analysis EL layer 24T is made of an organic film, the side surface of the analysis EL layer 24T is actually gently inclined as shown in FIG. The second metal film 25T is formed so as to cover the peripheral edge of the analysis EL layer 24T. When the sealing layer 6 and the like are peeled off from the analysis EL layer 24T, the peripheral edge of the analysis EL layer 24T is preferably sandwiched by the second metal film 25T and the first metal film 22T.
  • FIG. 9 is an enlarged view showing a modified example of the portion A after the sealing layer 6 is peeled off from the state of FIG. 1(b).
  • the second metal film 25T may be formed so as to cover at least part of the edge of the analysis EL layer 24T.
  • the second metal film 25T is formed using the second electrode 25 (cathode), and has four edges of the analysis EL layer 24T of each of the analysis sub-pixels TR, TG, and TB. Is formed so as to cover one side thereof.
  • the ground wiring GW is configured by using the first metal film 22T, and is extended to the outside of the sealing layer 6 beyond the end side 6E of the sealing layer 6.
  • FIG. 10 is a schematic diagram showing the configuration of the TOF-SIMS analyzer 41 that analyzes the EL layer 24T for analysis.
  • 11A to 11C are schematic diagrams showing the procedure of analysis by the TOF-SIMS analyzer 41.
  • TOF-SIMS irradiates a solid sample with an ion beam (primary ion), and mass-separates the ions (secondary ions) emitted from the surface using the time difference of flight (the time of flight is proportional to the square root of weight).
  • the time of flight is proportional to the square root of weight.
  • the TOF-SIMS analyzer 41 includes a sputter gun (GCIB) 42 for digging the surface of the analysis EL layer 24T, and a primary ion gun 43 for irradiating the surface of the analysis EL layer 24T with pulsed primary ions. And a detector 44 that captures secondary ions 45 that have jumped out from the surface of the EL layer 24T for analysis by irradiation with primary ions.
  • GCIB sputter gun
  • TOF-SIMS analyzer ion-TOF, TOF-SIMS V, Primary ion species: Bi 3 ++ , Primary acceleration voltage: 30 kV, Etching ions: Ar-GCIB (gas cluster ion beam), Etching ion acceleration voltage: 2 kV, Ar cluster size: about 1500,
  • the TOF-SIMS analyzer 41 configured as described above analyzes the analysis EL layer 24T as follows.
  • the surface of the analysis EL layer 24T is dug by irradiation with the sputter gun 42.
  • the primary ion gun 43 irradiates the surface of the analysis EL layer 24T with pulsed primary ions to sputter the surface of the analysis EL layer 24T in an extremely small amount.
  • the detector 44 captures the secondary ions 45 that have jumped out from the surface of the analysis EL layer 24T due to the irradiation of the primary ions.
  • the place where the analysis EL layer 24T is formed is preferably flat. Such flatness can prevent the surface of the analysis EL layer 24T from tilting. As a result, when the analysis EL layer 24T is analyzed by the TOF-SIMS analyzer 41, it is possible to prevent the sputter gun 42 from digging different layers on the surface of the analysis EL layer 24T, which facilitates appropriate analysis. It can be carried out.
  • FIG. 12A is a sectional view of the analysis sub-pixel 9TR (9TG, 9TB) according to the comparative example
  • FIG. 12B is a sectional view of the analysis sub-pixel 9TR (9TG, 9TB) during failure analysis.
  • Components that are the same as or similar to those described above with reference to FIG. 5 are designated by the same or similar reference numerals, and detailed description thereof will not be repeated.
  • the analysis sub-pixel 9TR is formed on the first metal film 92T formed on the flattening film 21, the analysis EL layer 94T formed on the first metal film 92T, and the analysis EL layer 94T. It includes a second metal film 95T and a Cap film 97T formed between the second metal film 95T and the sealing layer 96.
  • the sealing layer 96 is the Cap film 97T as shown in FIG. 12(b). Then, it is physically peeled off along with the second metal film 95T along the side surface of the EL layer for analysis 24T.
  • the charges accumulated on the surface of the analysis EL layer 24T by the irradiation of the sputter gun 42 and the irradiation of the primary ion gun 43 are the second metal film 25T, the first metal film 22T, and the ground wiring. Escaped through the GW. Therefore, it is possible to avoid a situation in which electric charges are accumulated on the surface of the analysis EL layer 24T during measurement. Therefore, when the display element is made small and the analysis element (analysis layer) is also made small, electric charge is accumulated in a shorter time, and it is difficult to perform an appropriate deterioration test. As a result, even when the display element is made small, an appropriate deterioration inspection can be easily performed.
  • FIG. 13A is a graph showing an analysis result of the analysis EL layer 24T according to the embodiment by the TOF-SIMS analysis device 41
  • FIG. 13B is a TOF-SIMS analysis device of the analysis EL layer 94T according to the comparative example. It is a graph which shows the analysis result by 41.
  • the irradiation on the analysis EL layer 94T by the irradiation of the sputter gun 42 and the irradiation of the primary ion gun 43 is accumulated. Due to the influence of the generated electric charges, the profile of the intensity signal related to the mass separation is disturbed after about 100 seconds from the sputtering time, and the correct profile cannot be obtained.
  • the surface of the analysis EL layer 24T is irradiated by the irradiation of the sputter gun 42 and the irradiation of the primary ion gun 43. Since the electric charge accumulated in is released through the second metal film 25T, the first metal film 22T, and the ground wiring, the profile of the intensity signal related to the mass separation is not disturbed, and the above inconvenience is solved.
  • FIG. 14A is a graph showing another analysis result of the analysis EL layer 24T according to the embodiment by the TOF-SIMS analyzer 41
  • FIG. 14B is a TOF-SIMS of the analysis EL layer 94T according to the comparative example.
  • 9 is a graph showing another analysis result by the analysis device 41.
  • the irradiation is performed by the sputter gun 42 and the primary ion gun 43 to accumulate on the surface of the analysis EL layer 94T. Due to the influence of the electric charge, the profile of the intensity signal related to the mass separation is disturbed after about 100 seconds from the sputtering time, and a correct profile cannot be obtained.
  • the analysis EL layer 24T is irradiated by the irradiation of the sputter gun 42 and the primary ion gun 43. Since the electric charge accumulated on the surface of the is released through the second metal film 25T, the first metal film 22T, and the ground wiring, the profile of the intensity signal related to the mass separation is not disturbed, and the above inconvenience is solved.
  • FIG. 15A is a graph showing still another analysis result of the analysis EL layer 24T according to the embodiment by the TOF-SIMS analyzer 41
  • FIG. 15B is a graph showing the TOF-of the analysis EL layer 94T according to the comparative example. It is a graph which shows the further another analysis result by SIMS analyzer 41.
  • FIG. 16 is a diagram showing an estimated chemical formula of the ETL material of the analytical EL layer 24T.
  • an appropriate intensity signal is measured as such in the first period t1.
  • the intensity related to the mass separation from the time represented by the period t2 when the sputtering time of 100 seconds has passed due to the influence of the electric charge accumulated on the surface of the analysis EL layer 94T by the irradiation of the sputter gun 42 and the irradiation of the primary ion gun 43.
  • the signal profile is disturbed, and the inconvenience arises in that the intensity signal is not output at all from the time represented by the period t3 when the sputtering time of 280 seconds has elapsed.
  • the analysis EL layer 24T is irradiated by the irradiation of the sputter gun 42 and the irradiation of the primary ion gun 43.
  • the charge accumulated on the surface of 24T is released through the second metal film 25T, the first metal film 22T, and the ground wiring GW, so that the profile of the intensity signal related to the mass separation is not disturbed, and the above inconvenience is solved. To do.
  • the intensity signal S3 corresponds to In (ITO; anode) of the analysis EL layer 24T.
  • the TOF-SIMS analysis device 41 analyzes the analysis sub-pixel TR
  • the present invention is not limited to this.
  • the present invention can also be applied to analysis methods in which charges are gradually accumulated in an analyte, for example, AES (Auger electron spectroscopy, Auger electron spectroscopy) analysis and analysis by ion irradiation.
  • AES Alger electron spectroscopy, Auger electron spectroscopy
  • a display device is a display device provided in a display region, an analysis device provided in a frame region arranged around the display region, and a seal for sealing the display device and the analysis device.
  • a display device having a stop layer wherein the display element has a TFT layer including a resin film, and a light emitting element layer including a first electrode, a functional layer, and a second electrode, An element is formed so as to cover a first metal film formed on the resin film, an analysis layer formed on the first metal film, and at least part of an edge of the analysis layer, and It has a second metal film electrically connected to the first metal film and a ground wiring electrically connected to the second metal film via the first metal film.
  • the analysis layer is formed in the same layer as the functional layer and is made of the same material.
  • the functional layer includes a light emitting layer
  • the analysis layer includes an analysis light emitting layer corresponding to the light emitting layer
  • the display element has a plurality of sub-pixels each including a plurality of light-emitting layers having different emission colors in the functional layer, and the analysis element corresponds to each of the plurality of sub-pixels, A plurality of analysis sub-pixels each including a plurality of analysis light emitting layers corresponding to the plurality of light emitting layers are provided.
  • the analysis layer is configured to be larger than the functional layer in plan view.
  • the first metal film is formed in the same layer as the first electrode and is made of the same material.
  • the first metal film contains ITO.
  • the second metal film is formed in the same layer as the second electrode and is made of the same material.
  • the second metal film contains silver.
  • the light emitting element layer further includes an edge cover that covers an edge of the first electrode, the edge cover having an opening that exposes the first electrode, and the analysis element includes the first metal.
  • the edge cover is not provided so as to expose at least a part of the film.
  • the ground wiring is formed in the same layer as the first metal film and is made of the same material.
  • the ground wiring intersects the sealing layer and extends outside the sealing layer.
  • the second metal film is formed so as to cover the entire surface of the analysis layer.
  • the display element has a plurality of sub-pixels each including a plurality of light-emitting layers having different emission colors in the functional layer, and the analysis element corresponds to each of the plurality of sub-pixels, A plurality of analysis sub-pixels respectively including a plurality of analysis light-emission layers corresponding to the plurality of light-emission layers, wherein the second metal film includes the analysis light-emission layer of each of the plurality of analysis sub-pixels; Is formed so as to cover one of the four edges.
  • the second metal film is formed in the same layer as the second electrode and is made of the same material.
  • the second metal film contains silver.
  • Display Device 4 TFT Layer 5 Light Emitting Element Layer 6 Sealing Layer 21 Flattening Film (Resin Film) 21t Trench 22 First electrode 22T First metal film 23 Edge cover film (edge cover) 24 EL layer (functional layer, light emitting layer) 24T EL layer for analysis (analysis layer, emission layer for analysis) 25 Second electrode 25T Second metal film 27T Cap film 28 Hole injection layer 28T Analysis hole injection layer 29 Hole transport layer 29T Analysis hole transport layer 30 Light emitting layer 30T Analysis light emitting layer 31 Electron transport layer 31T Analysis Electron transport layer 32 electron injection layer 32T analysis electron injection layer R1 display region R2 frame region D display pixel (display element) DR sub pixel DG sub pixel DB sub pixel T analysis pixel (analysis element) TR analysis sub-pixel TG analysis sub-pixel TB analysis sub-pixel GW ground wiring

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

額縁領域(R2)に設けられる分析用サブ画素(TR)が、平坦化膜(21)上に形成される第1金属膜(22T)と、第1金属膜(22T)上に形成される分析用EL層(24T)と、分析用EL層(24T)の少なくとも周囲の縁を覆うように形成されるとともに、第1金属膜(22T)に電気的に接続された第2金属膜(25T)と、第1金属膜(22T)を介して第2金属膜(25T)と電気的に接続される接地配線(GW)とを有する。

Description

表示装置
 本発明は、表示装置に関する。
 特許文献1には、表示用素子が設けられる表示領域の周囲に配置された額縁領域に分析層を含む検査用素子(分析用素子)を設け、この検査用素子の分析層に形成された発光層を発光させて外部から発光状態を確認することにより表示用素子の機能層(分析層)に形成された発光層の劣化を検査する構成が開示されている。
日本国公開特許公報「特開2018-98070号(2018年6月21日公開)」
 ところで、上記のような表示装置では、発光層を含んだ複数の有機層からなる分析層に対し、例えば、二次イオン質量分析法を用いて、当該分析層の劣化の検査を行うことが知られている。
 ところが、従来の表示装置では、上記のようなイオン照射を伴う二次イオン質量分析法を適用した場合、分析層に電荷が漸次蓄積されて、蓄積された電荷によって劣化検査を適切に行えないことがあった。特に、モバイル用途等の表示用素子(表示用画素)が小さい表示装置では、分析用素子(分析層)も小さくなることから、電荷がより短時間で分析層に蓄積されて、適切な劣化検査が行い難かった。
 上記の課題に鑑み、本発明は、表示用素子を小さくした場合でも、適切な劣化検査を容易に行うことができる表示装置を提供することを目的とする。
 本発明の一態様に係る表示装置は、表示領域に設けられる表示用素子と、前記表示領域の周囲に配置された額縁領域に設けられる分析用素子と、前記表示用素子及び前記分析用素子を封止する封止層とを備えた表示装置であって、前記表示用素子が、樹脂膜を含むTFT層と、第1電極、機能層、及び第2電極を含む発光素子層とを有し、前記分析用素子が、前記樹脂膜上に形成される第1金属膜と、前記第1金属膜上に形成される分析層と、前記分析層の少なくとも一部の縁を覆うように形成されるとともに、前記第1金属膜に電気的に接続された第2金属膜と、前記第1金属膜を介して前記第2金属膜と電気的に接続される接地配線とを有する。
 本発明の一態様によれば、表示用素子を小さくした場合でも、適切な劣化検査を容易に行うことができる。
(a)は実施形態に係る表示装置を模式的に示す平面図であり、(b)は(a)に示されるA部の拡大図である。 上記表示装置の表示領域に形成された表示用素子の図1(a)に示される断面BBに沿った断面図である。 図2に示されるEL層の拡大断面図である。 図1(a)に示される断面CCに沿った表示装置の額縁領域の断面図である。 (a)は上記表示装置の額縁領域に形成された分析用素子の断面図であり、(b)は不良解析時の上記分析用素子の断面図である。 図5に示される分析用EL層の拡大断面図である。 図1(b)に示す状態から封止層を剥離した後のA部の拡大図である。 上記分析用素子に設けられた分析用EL層の実際の形態を模式的に示す断面図である。 図1(b)の状態から封止層を剥離した後のA部の変形例を示す拡大図である。 上記分析用素子を分析するTOF-SIMS分析装置の構成を示す模式図である。 (a)~(c)は上記TOF-SIMS分析装置の分析の手順を示す模式図である。 (a)は比較例に係る分析用素子の断面図であり、(b)は不良解析時の上記分析用素子の断面図である。 (a)は実施形態に係る分析用素子のTOF-SIMS分析装置による分析結果を示すグラフであり、(b)は比較例に係る分析用素子のTOF-SIMS分析装置による分析結果を示すグラフである。 (a)は実施形態に係る分析用素子のTOF-SIMS分析装置による他の分析結果を示すグラフであり、(b)は比較例に係る分析用素子のTOF-SIMS分析装置による他の分析結果を示すグラフである。 (a)は実施形態に係る分析用素子のTOF-SIMS分析装置によるさらに他の分析結果を示すグラフであり、(b)は比較例に係る分析用素子のTOF-SIMS分析装置によるさらに他の分析結果を示すグラフである。 上記分析用素子を構成する物質の化学式を示す図である。
 以下においては、「同層」とは同一のプロセス(成膜工程)にて形成されていることを意味し、「下層」とは、比較対象の層よりも先のプロセスで形成されていることを意味し、「上層」とは比較対象の層よりも後のプロセスで形成されていることを意味する。
 図1(a)は実施形態に係る表示装置1を模式的に示す平面図であり、(b)は(a)に示されるA部の拡大図である。図2は、表示装置1の表示領域R1に形成された表示用素子Dの図1(a)に示される断面BBに沿った断面図である。
 表示装置1は、スマートフォン等のモバイル機器の小型パネルが使用され、複数の表示用画素D(請求項の「表示用素子」に対応)がマトリックス状に形成される表示領域R1と、表示領域R1の周囲に配置されて分析用画素T(請求項の「分析用素子」に対応)が形成される額縁領域R2とを備える。分析用画素Tは、額縁領域R2の一部に設置される端子部と同じ側に設置される。
 各表示用画素Dは、赤色の表示を行う赤色のサブ画素DRと、緑色の表示を行う緑色のサブ画素DGと、青色の表示を行う青色のサブ画素DBとを含む。分析用画素Tは、サブ画素DRに対応する分析用サブ画素TRと、サブ画素DGに対応する分析用サブ画素TGと、サブ画素DBに対応する分析用サブ画素TBとを含む。
 表示領域R1に垂直な方向から見て、分析用サブ画素TRはサブ画素DRよりも大きく構成され、分析用サブ画素TGはサブ画素DGよりも大きく構成され、分析用サブ画素TBはサブ画素DBよりも大きく構成される。分析用サブ画素TR・TG・TBは、上記垂直な方向から見て一辺の寸法dが50μm以上の正方形状に形成される。
 サブ画素DR及び分析用サブ画素TRは、平面視での大きさが互いに異なるが同一の構造を有する。サブ画素DG及び分析用サブ画素TGも、平面視での大きさが互いに異なるが同一の構造を有する。そして、サブ画素DB及び分析用サブ画素TBも、平面視での大きさが互いに異なるが同一の構造を有する。
 基材12は、ガラス基板でもよいし、ポリイミド等の樹脂膜を含む可撓性基板でもよい。2層の樹脂膜およびこれらに挟まれた無機絶縁膜によって可撓性基板を構成することもできる。基材12の下面にPET等のフィルムを貼ってもよい。基材12に可撓性基板を用い、可撓性を有する(フレキシブルな)表示装置1を形成することもできる。
 バリア層3は、水、酸素等の異物がTFT層4および発光素子層5に侵入することを防ぐ層であり、例えば、CVD法により形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。
 図2に示すように、TFT(薄膜トランジスタ)層4は、バリア層3よりも上層の第1金属層(ゲート電極GEを含む)と、第1金属層よりも上層の無機絶縁膜16(ゲート絶縁膜)と、無機絶縁膜16よりも下層の半導体層(半導体膜15を含む)と、半導体層よりも上層の無機絶縁膜18と、無機絶縁膜18よりも上層の第2金属層(容量電極CEを含む)と、第2金属層よりも上層の無機絶縁膜20と、無機絶縁膜20よりも上層の第3金属層(ソース配線SHを含む)と、第3金属層よりも上層の平坦化膜21(樹脂膜)とを含む。
 半導体層は、例えば、アモルファスシリコン、LTPS(低温ポリシリコン)、酸化物半導体で構成され、ゲート電極GEおよび半導体膜15を含むように、薄膜トランジスタTRが構成される。図中の薄膜トランジスタTRはボトムゲート構造であるが、トップゲート構造でもよい。
 表示用画素Dには、サブ画素SP(DG、DR、DB)ごとに発光素子Xrおよびその制御回路が設けられ、TFT層4には、この制御回路およびこれに接続する配線が形成される。制御回路には、発光素子Xrの電流を制御する駆動トランジスタ、走査信号線と電気的に接続する書き込みトランジスタ、発光制御線に電気的に接続する発光制御トランジスタ等が含まれる。
 第1金属層、第2金属層、および第3金属層は、例えば、アルミニウム、タングステン、モリブデン、タンタル、クロム、チタン、および銅の少なくとも1つを含む金属の単層膜あるいは複層膜によって構成される。
 無機絶縁膜16・18・20は、例えば、CVD法によって形成された、酸化シリコン(SiOx)膜あるいは窒化シリコン(SiNx)膜またはこれらの積層膜によって構成することができる。平坦化膜21は、例えば、ポリイミド、アクリル樹脂等の塗布可能な有機材料によって構成することができる。
 発光素子層5は、平坦化膜21よりも上層の第1電極(陽極)22と、第1電極22のエッジを覆う絶縁性のエッジカバー膜23(エッジカバー)と、エッジカバー膜23よりも上層のEL(エレクトロルミネッセンス)層24(機能層)と、EL層24よりも上層の第2電極(陰極)25と、第2電極25よりも上層のCap層27とを含む。エッジカバー膜23は、例えば、ポリイミド、アクリル樹脂等の有機材料を塗布した後にフォトリソグラフィによってパターニングすることで形成される。
 発光素子層5には、複数の発光素子Xrが形成され、各発光素子Xrが、島状の第1電極22、EL層24(発光層を含む)、および第2電極25を含む。第2電極25は、複数の発光素子Xrで共通する、ベタ状の共通電極である。
 各発光素子Xrは、例えば、発光層として有機層を含むOLED(有機発光ダイオード)であってもよいし、発光層として量子ドット層を含むQLED(量子ドット発光ダイオード)であってもよい。
 図3は図2に示されるEL層24の拡大断面図である。EL層24は、例えば、下層側から順に、正孔注入層28、正孔輸送層29、発光層30、電子輸送層31、電子注入層32を積層することで構成される。発光層30は、エッジカバー膜23の開口(サブ画素ごと)に、島状に形成される。他の層は、島状あるいはベタ状(共通層)に形成する。なお、正孔注入層28、正孔輸送層29、電子輸送層31、電子注入層32のうち1以上の層を形成しない構成とすることもできる。例えば、EL層24を、正孔輸送層29、発光層30および電子輸送層31で構成し、電子輸送層31を複数の発光素子に共通する共通層としてもよい。
 OLEDの有機層(発光層)を蒸着形成する場合は、FMM(ファインメタルマスク)を用いる。FMMは多数の開口を有するシートであり、1つの開口を通過した有機物質によって島状の有機層(1つのサブ画素に対応)が形成される。
 QLEDの量子ドット層(発光層)は、例えば、溶媒中に量子ドットが拡散する溶液を塗布し、フォトリソグラフィ法を用いてパターニングすることで、島状の量子ドット層(1つのサブ画素に対応)を形成することができる。
 第1電極22(陽極)は、例えばITO(Indium Tin Oxide)とAg(銀)あるいはAgを含む合金との積層によって構成され、光反射性を有する。第2電極25(陰極)は、マグネシウム銀合金等の薄膜で構成され、光透過性を有する。
 発光素子XrがOLEDである場合、第1電極22および第2電極25間の駆動電流によって正孔と電子が発光層内で再結合し、これによって生じたエキシトンが基底状態に遷移する過程で光が放出される。第2電極25が高い透光性を有し、第1電極22が光反射性であるため、EL層24から放出された光は上方に向かい、トップエミッションとなる。
 発光素子XrがQLEDである場合、第1電極22および第2電極25間の駆動電流によって正孔と電子が発光層内で再結合し、これによって生じたエキシトンが、量子ドットの伝導帯準位(conduction band)から価電子帯準位(valence band)に遷移する過程で光(蛍光)が放出される。
 発光素子層5には、前記のOLED、QLED以外の発光素子(無機発光ダイオード等)を形成してもよい。
 封止層6は、例えば、無機絶縁膜および有機絶縁膜を含んで構成される、透光性のバリア層であり、水、酸素等の異物の発光素子層5への浸透を防ぐ。
 機能フィルム39は、光学補償機能、タッチセンサ機能、保護機能等の少なくとも1つを有する。
 図4は、図1(a)に示される断面CCに沿った表示装置1の額縁領域R2の断面図である。前述した構成要素と同様の構成要素には同様の参照符号を付し、これらの構成要素の詳細な説明は繰り返さない。
 平坦化膜21にトレンチ21tが形成される。このトレンチ21tは、平面視で図1(a)に示されるように、額縁領域R2に略コ字状に形成される。トレンチ21tでは、第2電極25と、図2に示される発光素子層5の第1電極22と同層で同一材料の金属膜22Aとが接続される。
 分析用サブ画素TR・TG・TBの額縁領域R2における位置は、トレンチ21tの表示領域R1側でもよいし表示領域R1と反対側でもよいが、図1(b)に示すように表示領域R1側であることが好ましい。
 図5(a)は表示装置1の額縁領域R2に形成された分析用素子Tに含まれる分析用サブ画素TR(TG、TB)の断面図であり、(b)は不良解析時の上記分析用サブ画素TR(TG、TB)の断面図である。図2で前述した構成要素と同様の構成要素には同様の参照符号を付し、その詳細な説明は繰り返さない。
 分析用サブ画素TR・TG・TBは同様の断面構造を有するので、これらを代表して分析用サブ画素TRの断面構造を説明する。分析用サブ画素TRは、平坦化膜21上に形成される第1金属膜22Tと、第1金属膜22T上に形成される分析用EL層24T(分析層、分析用発光層)と、分析用EL層24Tを覆うように第1金属膜22T上に形成された第2金属膜25Tと、第2金属膜25Tと封止層6との間に形成されたCap膜27Tとを含む。
 第1金属膜22T及び第2金属膜25Tは、図1(b)に示すように、分析用サブ画素TR・TG・TBのそれぞれの分析用EL層24Tを挟むように互いに同じ大きさに形成されている。また、接地配線GWは、第1金属膜22Tを用いて構成され、封止層6の端辺6Eを超えて封止層6の外側に引き出されている。
 第1金属膜22Tは、分析用サブ画素TR・TG・TBに共通して設ける例を図1(b)で示しているが、本発明はこれに限定されるものではなく、例えば、分析用サブ画素TR・TG・TB毎に第1金属膜22Tを設けていてもよい。このような場合には、3つの接地配線GWがそれぞれ分析用サブ画素TR・TG・TBに応じて設けられる。
 また、上記の説明では、図1(b)に示したように、第1金属層22Tと第2金属層25Tとを同じ形状にした場合を示したが、本発明はこれに限定されるものではなく、互いに異なる形状の第1金属層22Tと第2金属層25Tとを用いることもできる。
 図6は図5に示される分析用EL層24Tの拡大断面図である。分析用EL層24Tは、EL層24と同様に、例えば、下層側から順に、分析用正孔注入層28T、分析用正孔輸送層29T、分析用発光層30T、分析用電子輸送層31T、分析用電子注入層32Tを積層することで構成される。
 そして、第1金属膜22Tを介して第2金属膜25Tと電気的に接続される接地配線GWが図1(b)に示されるように形成される。接地配線GWは、封止層6と交差して封止層6の外側に延伸されることが好ましい。ELVSSの幹配線を、接地配線GWとして第1金属膜22Tに接続し、アースに落とすと、後述するスパッタガン42の照射、1次イオンガン43の照射により分析用EL層24Tの表面に蓄積されてくる電荷をアースに逃がすことができる。
 分析用EL層24Tは、サブ画素DRのEL層24と同一の層に形成され、同一の材料により構成され、且つ、EL層24よりも平面視で大きく構成されている。分析用EL層24Tは、EL層24の発光層30に対応する分析用発光層30Tを含む。第1金属膜22Tは、サブ画素DRの第1電極22と同一の層に形成され、同一の材料により構成される。第1金属膜22Tは、ITOにより構成されることが好ましく、例えば、ITO/銀/ITO、ITO/AL/ITOの3層の積層構造である。ITOはIZOでもよい。第2金属膜25Tは、第2電極25と同一の層に形成され、同一の材料により構成される。第2金属膜25Tは、銀により構成されることが好ましい。接地配線GWは、第1金属膜22Tと同一の層に形成され、同一の材料により構成される。
 分析用サブ画素TRでは、第1金属膜22Tの少なくとも一部を露出するように、エッジカバー膜23が設けられていない。
 分析用サブ画素TR(TG、TB)の分析用EL層24Tの分析用発光層30Tの水分や酸素による劣化、成膜量をTOF-SIMS(Time-of-Flight Secondary Ion Mass Spectrometry、飛行時間型二次イオン質量分析法)により検査するときは、図5(b)に示すように、封止層6が、Cap膜27Tと、分析用EL層24Tの側面の一部と表面との第2金属膜25Tと共に、分析用EL層24Tから物理的に剥ぎ取られる。
 図7は、図1(b)に示す状態から封止層6を剥離した後のA部の拡大図である。封止層6を剥離した後、分析用サブ画素TR・TG・TBのそれぞれの分析用EL層24Tを囲むように第2金属膜25Tが残されている。また、接地配線GWは、第1金属膜22Tを用いて構成され、封止層6の端辺6Eを超えて封止層6の外側に引き出されている。
 図5(a)に示す例では、第2金属膜25Tが分析用EL層24Tの全面を覆うように形成されているが、本発明はこれに限定されない。第2金属膜25Tは、分析用EL層24Tの少なくとも周囲の縁を覆うように形成されていればよい。
 図8は、分析用EL層24Tの実際の形状を模式的に示す断面図である。分析用EL層24Tは有機膜によって構成されているため、分析用EL層24Tの側面は実際には図8に示すようになだらかに傾斜している。そして、第2金属膜25Tは、分析用EL層24Tの周囲の縁を覆うように形成されている。封止層6等を分析用EL層24Tから剥がしたときに、第2金属膜25Tと第1金属膜22Tとにより分析用EL層24Tの周囲の縁がサンドイッチ状態になることが好ましい。
 図9は、図1(b)の状態から封止層6を剥離した後のA部の変形例を示す拡大図である。第2金属膜25Tは、分析用EL層24Tの少なくとも一部の縁を覆うように形成されていればよい。例えば、第2金属膜25Tは、図9に示すように、第2電極25(陰極)を用いて形成され、分析用サブ画素TR・TG・TBのそれぞれの分析用EL層24Tの四辺の縁のうちの一辺を覆うように形成される。また、接地配線GWは、第1金属膜22Tを用いて構成され、封止層6の端辺6Eを超えて封止層6の外側に引き出されている。
 図10は分析用EL層24Tを分析するTOF-SIMS分析装置41の構成を示す模式図である。図11(a)~(c)はTOF-SIMS分析装置41の分析の手順を示す模式図である。TOF-SIMSは、固体試料にイオンビーム(一次イオン)を照射し、表面から放出されるイオン(二次イオン)をその飛行時間差(飛行時間は重さの平方根に比例)を利用して質量分離することにより、試料表面から1nm以下の深さに存在する元素あるいは分子種に関する情報が高い検出感度で得られる分析法である。
 TOF-SIMS分析装置41は、分析用EL層24Tの表面を掘るためのスパッタガン(GCIB)42と、パルス状の1次イオンを分析用EL層24Tの表面に照射する1次イオンガン43と、1次イオンの照射により分析用EL層24Tの表面から飛び出した2次イオン45を取り込む検出器44とを備える。
 このTOF-SIMS分析装置41の仕様は以下のとおりである。
 TOF-SIMS分析装置:ion-TOF社、TOF-SIMS V、
 1次イオン種:Bi ++
 1次加速電圧:30kV、
 エッチングイオン:Ar-GCIB(ガスクラスターイオンビーム)、
 エッチングイオン加速電圧:2kV、
 Arクラスターサイズ:約1500、
 このように構成されたTOF-SIMS分析装置41により、分析用EL層24Tは以下のようにして分析される。
 まず、図5(a)(b)に示すように、Cap膜27Tと、分析用EL層24Tの側面の一部と表面との第2金属膜25Tと共に、封止層6を分析用EL層24Tから物理的に剥ぎ取る。そして、封止層6等が剥ぎ取られた分析用EL層24Tが図10に示すようにTOF-SIMS分析装置41にセットされる。
 次に、図11(a)に示すように、スパッタガン42の照射により分析用EL層24Tの表面を掘る。その後、図11(b)に示すように、1次イオンガン43がパルス状の1次イオンを分析用EL層24Tの表面に照射して、分析用EL層24Tの表面を極微量スパッタする。そして、図11(c)に示すように、1次イオンの照射により分析用EL層24Tの表面から飛び出した2次イオン45を検出器44が取り込む。
 次に、図11(a)~(c)に示されるプロセスを繰り返し、質量に係るスペクトル分析に基づいて分析用EL層24Tの深さ方向の数nmの各層の組成プロファイルを得る。
 分析用EL層24Tが形成される場所は好ましくは平坦とされている。このように平坦とすることにより、分析用EL層24Tの表面が傾くのを防止することができる。この結果、TOF-SIMS分析装置41で分析用EL層24Tを分析する時に、スパッタガン42が分析用EL層24Tの表面で異なる層を掘ることを防止することができ、適切な分析を容易に行うことができる。
 図12(a)は比較例に係る分析用サブ画素9TR(9TG、9TB)の断面図であり、(b)は不良解析時の分析用サブ画素9TR(9TG、9TB)の断面図である。図5で前述した構成要素と同一又は類似の構成要素には同一又は類似の参照符号を付し、その詳細な説明は繰り返さない。
 分析用サブ画素9TRは、平坦化膜21上に形成される第1金属膜92Tと、第1金属膜92T上に形成される分析用EL層94Tと、分析用EL層94T上に形成された第2金属膜95Tと、第2金属膜95Tと封止層96との間に形成されたCap膜97Tとを含む。
 分析用サブ画素9TR(9TG、9TB)の分析用EL層94Tの発光層の劣化をTOF-SIMSにより検査するときは、封止層96が、図12(b)に示すように、Cap膜97Tと、第2金属膜95Tと共に、分析用EL層24Tの側面に沿って物理的に剥ぎ取られる。
 この比較例に係る構成では、スパッタガン42の照射、1次イオンガン43の照射により分析用EL層94Tの表面に電荷が蓄積されてくる。この分析用EL層94Tの表面に蓄積される電荷量は、スパッタ時間の経過に伴って増大する。このため、スパッタ時間の経過に伴って質量分離に係る強度信号のプロファイルが乱れて最終的に強度信号が出力されなくなるという問題が生じる。
 本実施形態によれば、スパッタガン42の照射、1次イオンガン43の照射により分析用EL層24Tの表面に蓄積されてくる電荷は、第2金属膜25T、第1金属膜22T、及び接地配線GWを通って逃がされる。このため、測定しているうちに分析用EL層24Tの表面に電荷が蓄積されてくる状況を回避することができる。従って、表示用素子を小さくし、分析用素子(分析層)も小さくなる場合に電荷がより短時間で蓄積されて、適切な劣化検査が行い難いという問題が解消する。この結果、表示用素子を小さくした場合でも、適切な劣化検査を容易に行うことができる。
 図13(a)は実施形態に係る分析用EL層24TのTOF-SIMS分析装置41による分析結果を示すグラフであり、(b)は比較例に係る分析用EL層94TのTOF-SIMS分析装置41による分析結果を示すグラフである。
 比較例に係る分析用EL層94Tの分析結果では、図13(b)のB部に示されるように、スパッタガン42の照射、1次イオンガン43の照射により分析用EL層94Tの表面に蓄積されてくる電荷の影響で、スパッタ時間100秒を経過した頃から質量分離に係る強度信号のプロファイルが乱れて正しいプロファイルが得られないという不都合が生じる。
 これに対して、実施形態に係る分析用EL層24Tの分析結果では、図13(a)に示されるように、スパッタガン42の照射、1次イオンガン43の照射により分析用EL層24Tの表面に蓄積されてくる電荷は、第2金属膜25T、第1金属膜22T、及び接地配線を通って逃がされるので、質量分離に係る強度信号のプロファイルは乱れず、上記不都合が解消する。
 図14(a)は実施形態に係る分析用EL層24TのTOF-SIMS分析装置41による他の分析結果を示すグラフであり、(b)は比較例に係る分析用EL層94TのTOF-SIMS分析装置41による他の分析結果を示すグラフである。
 分析用EL層94Tの他の分析結果では、図14(b)のC部に示されるように、スパッタガン42の照射、1次イオンガン43の照射により分析用EL層94Tの表面に蓄積されてくる電荷の影響で、スパッタ時間100秒を経過した頃から質量分離に係る強度信号のプロファイルが乱れて正しいプロファイルが得られないという不都合が生じる。
 これに対して、実施形態に係る分析用EL層24Tの他の分析結果では、図14(a)に示されるように、スパッタガン42の照射、1次イオンガン43の照射により分析用EL層24Tの表面に蓄積されてくる電荷は、第2金属膜25T、第1金属膜22T、及び接地配線を通って逃がされるので、質量分離に係る強度信号のプロファイルは乱れず、上記不都合が解消する。
 図15(a)は実施形態に係る分析用EL層24TのTOF-SIMS分析装置41によるさらに他の分析結果を示すグラフであり、(b)は比較例に係る分析用EL層94TのTOF-SIMS分析装置41によるさらに他の分析結果を示すグラフである。図16は、分析用EL層24TのETL材料の推定化学式を示す図である。
 分析用EL層94Tのさらに他の分析結果では、図15(b)に示されるように、最初のうちの期間t1では適切な強度信号がそれなりに測定されている。スパッタガン42の照射、1次イオンガン43の照射により分析用EL層94Tの表面に蓄積されてくる電荷の影響で、スパッタ時間100秒を経過した期間t2により表される頃から質量分離に係る強度信号のプロファイルが乱れ、スパッタ時間280秒を経過した期間t3により表される頃から強度信号が全く出力されなくなるという不都合が生じる。
 これに対して、実施形態に係る分析用EL層24Tのさらに他の分析結果では、図15(a)に示されるように、スパッタガン42の照射、1次イオンガン43の照射により分析用EL層24Tの表面に蓄積されてくる電荷は、第2金属膜25T、第1金属膜22T、及び接地配線GWを通って逃がされるので、質量分離に係る強度信号のプロファイルは乱れず、上記不都合が解消する。
 図15(a)に示される強度信号S1は、分析用EL層24Tの分析用電子輸送層(ETL)31Tの材料(Liキノラート錯体、m/z=593)に対応する。強度信号S2は、分析用EL層24Tの分析用正孔輸送層(HTL)29Tの材料(m/z=675、推定化学式:C5257N)に対応する。強度信号S3は、分析用EL層24TのIn(ITO;陽極)に対応する。
 本実施形態ではTOF-SIMS分析装置41により分析用サブ画素TRを分析する例を示したが、本発明はこれに限定されない。本発明は、電荷が被分析物に漸次蓄積される分析法、例えば、AES(Auger electron spectroscopy、オージェ電子分光法)分析、イオン照射による分析に対しても適用することができる。
 〔まとめ〕
 態様1の表示デバイスは、表示領域に設けられる表示用素子と、前記表示領域の周囲に配置された額縁領域に設けられる分析用素子と、前記表示用素子及び前記分析用素子を封止する封止層とを備えた表示装置であって、前記表示用素子が、樹脂膜を含むTFT層と、第1電極、機能層、及び第2電極を含む発光素子層とを有し、前記分析用素子が、前記樹脂膜上に形成される第1金属膜と、前記第1金属膜上に形成される分析層と、前記分析層の少なくとも一部の縁を覆うように形成されるとともに、前記第1金属膜に電気的に接続された第2金属膜と、前記第1金属膜を介して前記第2金属膜と電気的に接続される接地配線とを有する。
 態様2では、前記分析層は、前記機能層と同一の層に形成され、同一の材料により構成される。
 態様3では、前記機能層が発光層を含み、前記分析層が前記発光層に対応する分析用発光層を含む。
 態様4では、前記表示用素子が、発光色が異なる複数の発光層をそれぞれ前記機能層に含む複数のサブ画素を有し、前記分析用素子が、前記複数のサブ画素にそれぞれ対応して、前記複数の発光層にそれぞれ対応する複数の分析用発光層をそれぞれ含む複数の分析用サブ画素を有する。
 態様5では、前記分析層は、平面視で前記機能層よりも大きく構成されている。
 態様6では、前記第1金属膜は、前記第1電極と同一の層に形成され、同一の材料により構成される。
 態様7では、前記第1金属膜は、ITOを含む。
 態様8では、前記第2金属膜は、前記第2電極と同一の層に形成され、同一の材料により構成される。
 態様9では、前記第2金属膜は、銀を含む。
 態様10では、前記発光素子層は、前記第1電極のエッジを覆うエッジカバーであって、前記第1電極を露出する開口を有するエッジカバーをさらに含み、前記分析用素子では、前記第1金属膜の少なくとも一部を露出するように、前記エッジカバーが設けられていない。
 態様11では、前記接地配線は、前記第1金属膜と同一の層に形成され、同一の材料により構成される。
 態様12では、前記接地配線は、前記封止層と交差して前記封止層の外側に延伸される。
 態様13では、前記第2金属膜が前記分析層の全面を覆うように形成される。
 態様14では、前記表示用素子が、発光色が異なる複数の発光層をそれぞれ前記機能層に含む複数のサブ画素を有し、前記分析用素子が、前記複数のサブ画素にそれぞれ対応して、前記複数の発光層にそれぞれ対応する複数の分析用発光層をそれぞれ含む複数の分析用サブ画素を有し、前記第2金属膜は、前記複数の分析用サブ画素のそれぞれの前記分析用発光層の四辺の縁のうちの一辺を覆うように形成される。
 態様15では、前記第2金属膜は、前記第2電極と同一の層に形成され、同一の材料により構成される。
 態様16では、前記第2金属膜は、銀を含む。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 1 表示装置
 4 TFT層
 5 発光素子層
 6 封止層
21 平坦化膜(樹脂膜)
21t トレンチ
22 第1電極
22T 第1金属膜
23 エッジカバー膜(エッジカバー)
24 EL層(機能層、発光層)
24T 分析用EL層(分析層、分析用発光層)
25 第2電極
25T 第2金属膜
27T Cap膜
28 正孔注入層
28T 分析用正孔注入層
29 正孔輸送層
29T 分析用正孔輸送層
30 発光層
30T 分析用発光層
31 電子輸送層
31T 分析用電子輸送層
32 電子注入層
32T 分析用電子注入層
R1 表示領域
R2 額縁領域
 D 表示用画素(表示用素子)
DR サブ画素
DG サブ画素
DB サブ画素
 T 分析用画素(分析用素子)
TR 分析用サブ画素
TG 分析用サブ画素
TB 分析用サブ画素
GW 接地配線

Claims (16)

  1.  表示領域に設けられる表示用素子と、前記表示領域の周囲に配置された額縁領域に設けられる分析用素子と、前記表示用素子及び前記分析用素子を封止する封止層とを備えた表示装置であって、
     前記表示用素子が、樹脂膜を含むTFT層と、
     第1電極、機能層、及び第2電極を含む発光素子層とを有し、
     前記分析用素子が、前記樹脂膜上に形成される第1金属膜と、
     前記第1金属膜上に形成される分析層と、
     前記分析層の少なくとも一部の縁を覆うように形成されるとともに、前記第1金属膜に電気的に接続された第2金属膜と、
     前記第1金属膜を介して前記第2金属膜と電気的に接続される接地配線とを有することを特徴とする表示装置。
  2.  前記分析層は、前記機能層と同一の層に形成され、同一の材料により構成される請求項1に記載の表示装置。
  3.  前記機能層が発光層を含み、
     前記分析層が前記発光層に対応する分析用発光層を含む請求項1又は2に記載の表示装置。
  4.  前記表示用素子が、発光色が異なる複数の発光層をそれぞれ前記機能層に含む複数のサブ画素を有し、
     前記分析用素子が、前記複数のサブ画素にそれぞれ対応して、前記複数の発光層にそれぞれ対応する複数の分析用発光層をそれぞれ含む複数の分析用サブ画素を有する請求項1~3の何れか1項に記載の表示装置。
  5.  前記分析層は、平面視で前記機能層よりも大きく構成されている請求項1~4の何れか1項に記載の表示装置。
  6.  前記第1金属膜は、前記第1電極と同一の層に形成され、同一の材料により構成される請求項1~5の何れか1項に記載の表示装置。
  7.  前記第1金属膜は、ITOを含む請求項6に記載の表示装置。
  8.  前記第2金属膜は、前記第2電極と同一の層に形成され、同一の材料により構成される請求項1~7の何れか1項に記載の表示装置。
  9.  前記第2金属膜は、銀を含む請求項8に記載の表示装置。
  10.  前記発光素子層は、前記第1電極のエッジを覆うエッジカバーであって、前記第1電極を露出する開口を有するエッジカバーをさらに含み、
     前記分析用素子では、前記第1金属膜の少なくとも一部を露出するように、前記エッジカバーが設けられていない請求項1~9の何れか1項に記載の表示装置。
  11.  前記接地配線は、前記第1金属膜と同一の層に形成され、同一の材料により構成される請求項1~10の何れか1項に記載の表示装置。
  12.  前記接地配線は、前記封止層と交差して前記封止層の外側に延伸される請求項1~11の何れか1項に記載の表示装置。
  13.  前記第2金属膜が前記分析層の全面を覆うように形成される請求項1~12の何れか1項に記載の表示装置。
  14.  前記表示用素子が、発光色が異なる複数の発光層をそれぞれ前記機能層に含む複数のサブ画素を有し、
     前記分析用素子が、前記複数のサブ画素にそれぞれ対応して、前記複数の発光層にそれぞれ対応する複数の分析用発光層をそれぞれ含む複数の分析用サブ画素を有し、
     前記第2金属膜は、前記複数の分析用サブ画素のそれぞれの前記分析用発光層の四辺の縁のうちの一辺を覆うように形成される請求項1~3の何れか1項に記載の表示装置。
  15.  前記第2金属膜は、前記第2電極と同一の層に形成され、同一の材料により構成される請求項14に記載の表示装置。
  16.  前記第2金属膜は、銀を含む請求項15に記載の表示装置。
PCT/JP2019/003886 2019-02-04 2019-02-04 表示装置 WO2020161774A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/418,052 US20220093703A1 (en) 2019-02-04 2019-02-04 Display device
PCT/JP2019/003886 WO2020161774A1 (ja) 2019-02-04 2019-02-04 表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/003886 WO2020161774A1 (ja) 2019-02-04 2019-02-04 表示装置

Publications (1)

Publication Number Publication Date
WO2020161774A1 true WO2020161774A1 (ja) 2020-08-13

Family

ID=71948090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003886 WO2020161774A1 (ja) 2019-02-04 2019-02-04 表示装置

Country Status (2)

Country Link
US (1) US20220093703A1 (ja)
WO (1) WO2020161774A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047515A (ja) * 2006-07-19 2008-02-28 Canon Inc 表示装置
JP2010044118A (ja) * 2008-08-08 2010-02-25 Sony Corp 表示装置およびその製造方法
JP2015049972A (ja) * 2013-08-30 2015-03-16 株式会社ジャパンディスプレイ 有機el表示装置
JP2015049948A (ja) * 2013-08-29 2015-03-16 株式会社ジャパンディスプレイ 有機el表示装置
US20180151850A1 (en) * 2016-11-30 2018-05-31 Lg Display Co., Ltd. Organic light-emitting display device and method for manufacturing the same
JP2018098070A (ja) * 2016-12-14 2018-06-21 株式会社Joled 表示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11311611A (ja) * 1998-04-30 1999-11-09 Hitachi Ltd 電子分光分析法
JP6725875B2 (ja) * 2016-06-29 2020-07-22 Dic株式会社 床版防水構造体
WO2019138495A1 (ja) * 2018-01-11 2019-07-18 シャープ株式会社 表示デバイス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047515A (ja) * 2006-07-19 2008-02-28 Canon Inc 表示装置
JP2010044118A (ja) * 2008-08-08 2010-02-25 Sony Corp 表示装置およびその製造方法
JP2015049948A (ja) * 2013-08-29 2015-03-16 株式会社ジャパンディスプレイ 有機el表示装置
JP2015049972A (ja) * 2013-08-30 2015-03-16 株式会社ジャパンディスプレイ 有機el表示装置
US20180151850A1 (en) * 2016-11-30 2018-05-31 Lg Display Co., Ltd. Organic light-emitting display device and method for manufacturing the same
JP2018098070A (ja) * 2016-12-14 2018-06-21 株式会社Joled 表示装置

Also Published As

Publication number Publication date
US20220093703A1 (en) 2022-03-24

Similar Documents

Publication Publication Date Title
CN110224003B (zh) 显示装置
US10229965B2 (en) Method fabricating organic light emitting diode display device
KR102050434B1 (ko) 플렉서블 유기전계 발광소자 및 그 제조방법
JP4289332B2 (ja) El表示装置、el表示装置の製造方法、及び電子機器
KR102045036B1 (ko) 고 개구율 유기발광 다이오드 표시장치 및 그 제조 방법
KR101576834B1 (ko) 유기전계발광소자 및 이의 제조방법
US8698130B2 (en) Organic light emitting display with pixels having different shapes and manufacturing method thereof
US7811147B2 (en) Organic electroluminescent device and fabrication method thereof
KR101575168B1 (ko) 상부발광 방식 유기전계 발광소자 및 이의 제조 방법
KR101525804B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
US20100200846A1 (en) Organic light emitting diode display
KR101679850B1 (ko) 유기발광다이오드 표시장치
KR20150042367A (ko) 유기전계 발광소자 및 이의 제조 방법
KR20140124615A (ko) 유기 발광 표시 장치
JP2001109404A (ja) El表示装置
KR20160031652A (ko) 유기 발광 표시 장치 및 그 제조방법
US20060180890A1 (en) Top emission flat panel display with sensor feedback stabilization
US9741960B2 (en) Manufacturing defects detection of sealing structure of flat panel display device
US12016208B2 (en) Display device and method of manufacturing display device
JP2002231443A (ja) 表示装置
JP2002289357A (ja) 有機エレクトロルミネッセンス表示パネル
KR102053440B1 (ko) 고 개구율 유기발광 다이오드 표시장치 및 그 제조 방법
KR102505167B1 (ko) 유기발광소자
WO2020161774A1 (ja) 表示装置
US20060197445A1 (en) Self-emitting panel and method of manufacturing self-emitting panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP