WO2020161769A1 - レーザダイオード駆動回路及び通信装置 - Google Patents

レーザダイオード駆動回路及び通信装置 Download PDF

Info

Publication number
WO2020161769A1
WO2020161769A1 PCT/JP2019/003856 JP2019003856W WO2020161769A1 WO 2020161769 A1 WO2020161769 A1 WO 2020161769A1 JP 2019003856 W JP2019003856 W JP 2019003856W WO 2020161769 A1 WO2020161769 A1 WO 2020161769A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
laser diode
inductor
signal line
capacitor
Prior art date
Application number
PCT/JP2019/003856
Other languages
English (en)
French (fr)
Inventor
遼太 小林
佐々木 雄一
千春 宮崎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201980090571.XA priority Critical patent/CN113348638A/zh
Priority to PCT/JP2019/003856 priority patent/WO2020161769A1/ja
Priority to EP19914402.3A priority patent/EP3905550A4/en
Priority to JP2020567272A priority patent/JP6861920B2/ja
Publication of WO2020161769A1 publication Critical patent/WO2020161769A1/ja
Priority to US17/369,539 priority patent/US20210336413A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0427Electrical excitation ; Circuits therefor for applying modulation to the laser
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06226Modulation at ultra-high frequencies

Definitions

  • the present invention relates to a laser diode drive circuit including a laser diode and a communication device.
  • Patent Document 1 discloses an optical transmitter including a semiconductor laser drive circuit that supplies a high-frequency modulated current based on a data signal between an anode terminal and a cathode terminal of a semiconductor laser via a differential line. Has been done.
  • the semiconductor laser described in Patent Document 1 outputs modulated laser light based on the modulation current output from the semiconductor laser drive circuit.
  • the semiconductor laser of the optical transmitter disclosed in Patent Document 1 cannot output the modulated laser light unless it is supplied with electric power. Therefore, in the semiconductor laser, the anode terminal is connected to the positive side terminal of the DC power source via the first power source wiring, and the cathode terminal is connected to the negative side terminal of the DC power source via the second power source wiring.
  • first parasitic capacitance a parasitic capacitance between the first power supply wiring and the differential line. Is formed
  • second parasitic capacitance is formed between the second power supply wiring and the differential line.
  • the differential power is supplied from the first and second power supply wirings via the portion forming the first parasitic capacitance or the portion forming the second parasitic capacitance.
  • Noise is induced in the track.
  • the potential difference between the anode terminal and the cathode terminal of the semiconductor laser fluctuates due to the noise induced in the differential line.
  • the potential difference between the anode terminal and the cathode terminal fluctuates due to noise, the correspondence relationship between the modulation current and the modulated laser light is broken, and the laser diode may erroneously emit or erroneously extinguish. was there.
  • the present invention has been made to solve the above problems. Even if noise is induced from a power supply wiring to a differential line via a portion that forms a parasitic capacitance, erroneous light emission of a laser diode and An object of the present invention is to obtain a laser diode drive circuit and a communication device capable of preventing each of false erroneous extinction.
  • a laser diode drive circuit includes a laser diode, a first signal line whose one end is connected to an anode terminal of the laser diode, and a second signal line whose one end is connected to a cathode terminal of the laser diode.
  • a differential line having each of them, a first power supply wire having one end connected to the positive side terminal of the DC power supply and the other end connected to the anode terminal, and one end connected to the negative side terminal of the DC power supply
  • a second power supply line having the other end connected to the cathode terminal, a first capacitor inserted in the first signal line, and a second capacitor inserted in the second signal line.
  • at least one capacitor of the first capacitor and the second capacitor is a variable capacitor.
  • the laser diode drive circuit is configured such that at least one of the first capacitor and the second capacitor is a variable capacitor. Therefore, in the laser diode drive circuit according to the present invention, even if noise is induced from the first and second power supply wirings to the differential lines via the portion forming the parasitic capacitance, erroneous light emission of the laser diode and Each of the false extinction can be prevented.
  • FIG. 1 is a configuration diagram showing a communication device including a laser diode drive circuit 2 according to a first embodiment.
  • FIG. 3 is a configuration diagram showing a laser diode drive circuit 2 according to the first embodiment.
  • 5 is an explanatory diagram showing paths of noise currents I 1 to I 4 flowing through the differential line 12.
  • FIG. 3 is a pattern diagram showing a pattern of a first layer 50a of a substrate 50 on which the laser diode drive circuit 2 shown in FIG. 2 is mounted. It is a pattern diagram which shows the pattern of the 2nd layer 50b of the board
  • FIG. 6 is a layout diagram showing a layout relationship between the DC power supply 13 provided outside the substrate 50 and portions of the first power supply wiring 14 a and the second power supply wiring 14 b which are provided outside the substrate 50. ..
  • FIG. 6 is a sectional view taken along line A 1 -A 2 of the laser diode drive circuit 2 shown in FIGS. 4 and 5.
  • FIG. 3 is a configuration diagram showing another laser diode drive circuit 2 according to the first embodiment.
  • FIG. 3 is a configuration diagram showing another laser diode drive circuit 2 according to the first embodiment.
  • FIG. 3 is a configuration diagram showing another laser diode drive circuit 2 according to the first embodiment.
  • FIG. 3 is a configuration diagram showing another laser diode drive circuit 2 according to the first embodiment.
  • FIG. 6 is a configuration diagram showing a laser diode drive circuit 2 according to a second embodiment.
  • FIG. 7 is a configuration diagram showing another laser diode drive circuit 2 according to the second embodiment.
  • FIG. 7 is a configuration diagram showing another laser diode drive circuit 2 according to the second embodiment.
  • FIG. 7 is a configuration diagram showing another laser diode drive circuit 2 according to the second embodiment.
  • FIG. 1 is a configuration diagram showing a communication device including a laser diode drive circuit 2 according to the first embodiment.
  • FIG. 2 is a configuration diagram showing the laser diode drive circuit 2 according to the first embodiment. 1 and 2, the communication device includes a transmitter 1 and a laser diode drive circuit 2.
  • the transmitter 1 outputs a differential high frequency signal based on the data signal to the laser diode drive circuit 2 via the differential input/output terminal 3.
  • the communication device shown in FIG. 1 includes a transmitter 1. However, this is merely an example, and the communication device illustrated in FIG. 1 may include a receiver instead of the transmitter 1. However, when the communication device shown in FIG. 1 includes a receiver instead of the transmitter 1, the laser diode drive circuit 2 outputs light as an electric signal instead of a laser diode 11 (see FIG. 2) described later.
  • the laser diode drive circuit 2 is connected to the transmitter 1 via the differential input/output terminal 3.
  • the laser diode drive circuit 2 includes a laser diode 11 that emits light based on the differential high-frequency signal output from the transmitter 1.
  • the differential input/output terminal 3 has a first input/output terminal 3a and a second input/output terminal 3b.
  • the differential input/output terminal 3 is provided outside the laser diode drive circuit 2.
  • the laser diode 11 has an anode terminal 11a and a cathode terminal 11b.
  • the anode terminal 11a is connected to the first input/output terminal 3a via the first signal line 12a.
  • the cathode terminal 11b is connected to the second input/output terminal 3b via the second signal line 12b.
  • the laser diode 11 emits light based on the differential high frequency signal output from the transmitter 1.
  • the differential line 12 has a first signal line 12a and a second signal line 12b.
  • One end of the first signal line 12a is connected to the anode terminal 11a of the laser diode 11, and the other end is connected to the first input/output terminal 3a.
  • the first signal line 12 a is a line that transmits a positive high-frequency signal of the differential high-frequency signal output from the transmitter 1 to the anode terminal 11 a of the laser diode 11.
  • One end of the second signal line 12b is connected to the cathode terminal 11b of the laser diode 11, and the other end is connected to the second input/output terminal 3b.
  • the second signal line 12b is a line for transmitting a negative high-frequency signal of the differential high-frequency signal output from the transmitter 1 to the cathode terminal 11b of the laser diode 11.
  • the DC power supply 13 is a power supply for supplying DC power to the laser diode 11.
  • the DC power supply 13 has a plus side terminal 13a and a minus side terminal 13b.
  • One end of the first power supply wiring 14a is connected to the plus side terminal 13a of the DC power supply 13, and the other end is connected to the anode terminal 11a of the laser diode 11.
  • One end of the second power supply wiring 14b is connected to the negative side terminal 13b of the DC power supply 13, and the other end is connected to the cathode terminal 11b of the laser diode 11.
  • the DC power supply 13 is provided outside the laser diode drive circuit 2. However, this is merely an example, and the DC power supply 13 may be provided inside the laser diode drive circuit 2.
  • the bias tee 15a includes a first capacitor 16a and a first inductor 17a, and is connected to the anode terminal 11a of the laser diode 11.
  • the bias tee 15a combines the positive-side high-frequency signal transmitted by the first signal line 12a with the positive-side DC power supply current output from the positive-side terminal 13a of the DC power supply 13, and combines the power-supply currents into the high-frequency signal. Is output to the anode terminal 11a of the laser diode 11.
  • the first capacitor 16a is inserted in the first signal line 12a and has a capacitance C 1 .
  • the first capacitor 16a is a variable capacitor that can change the electrostatic capacitance C 1 .
  • the first inductor 17a is inserted in the first power supply wiring 14a and has an inductance L 1 .
  • a first inductor 17a is inserted in the first power supply wiring 14a in order to prevent the positive high-frequency signal transmitted by the first signal line 12a from flowing toward the positive side terminal 13a of the DC power supply 13. ing.
  • a resistor may be inserted in the first power supply wiring 14a instead of the first inductor 17a.
  • the bias tee 15b includes a second capacitor 16b and a second inductor 17b, and is connected to the cathode terminal 11b of the laser diode 11.
  • the bias tee 15b synthesizes the negative side high frequency signal transmitted through the second signal line 12b with the negative side DC power source current flowing to the negative side terminal 13b of the DC power source 13, and the high frequency signal after the power source currents are synthesized by the laser.
  • the second capacitor 16b is inserted in the second signal line 12b and has a capacitance C 2 .
  • the second capacitor 16b is a fixed capacitor whose electrostatic capacitance C 2 cannot be changed.
  • the second inductor 17b is inserted in the second power supply wiring 14b and has an inductance L 2 .
  • the second inductor 17b is inserted in the second power supply wiring 14b in order to prevent the negative high-frequency signal transmitted by the second signal line 12b from flowing toward the negative side terminal 13b of the DC power supply 13. ing. If the signal transmitted through the second signal line 12b is a low-frequency signal, for example, a resistor may be inserted in the second power supply wiring 14b instead of the second inductor 17b.
  • the first parasitic capacitance 21 is a parasitic capacitance C 14a-12a formed between the first power supply wiring 14a and the first signal line 12a.
  • a region where the first parasitic capacitance 21 is formed between the first power supply wiring 14a and the first signal line 12a is referred to as a "portion forming the first parasitic capacitance 21".
  • the second parasitic capacitance 22 is a parasitic capacitance C 14a-12b formed between the first power supply wiring 14a and the second signal line 12b.
  • a region where the second parasitic capacitance 22 is formed between the first power supply wiring 14a and the second signal line 12b is referred to as a "portion forming the second parasitic capacitance 22".
  • the third parasitic capacitance 23 is a parasitic capacitance C 14b-12a formed between the second power supply wiring 14b and the first signal line 12a.
  • a region where the third parasitic capacitance 23 is formed between the second power supply wiring 14b and the first signal line 12a is referred to as a "portion forming the third parasitic capacitance 23".
  • the fourth parasitic capacitance 24 is a parasitic capacitance C 14b-12b formed between the second power supply wiring 14b and the second signal line 12b.
  • a region where the fourth parasitic capacitance 24 is formed between the second power supply wiring 14b and the second signal line 12b is referred to as a "portion forming the fourth parasitic capacitance 24".
  • the second power supply wiring 14b and the second signal line 12b are separated by an insulator.
  • a parasitic capacitance is generated between the signal line and the power supply line separated by the insulator.
  • a capacitor as the first parasitic capacitance 21 a capacitor as the second parasitic capacitance 22
  • a capacitor as the third parasitic capacitance 23 a capacitor as the fourth parasitic capacitance 24.
  • it is not actually arranged, but is described to explain the parasitic capacitance.
  • the transmitter 1 outputs a positive high-frequency signal to the first input/output terminal 3a and a negative high-frequency signal to the second input/output terminal 3b among the differential high-frequency signals based on the data signal.
  • the positive high-frequency signal output from the transmitter 1 to the first input/output terminal 3a is transmitted by the first signal line 12a and reaches the bias tee 15a.
  • the negative high-frequency signal output from the transmitter 1 to the second input/output terminal 3b is transmitted by the second signal line 12b and reaches the bias tee 15b.
  • the bias tee 15a synthesizes the positive side high frequency signal transmitted through the first signal line 12a with the positive side DC power source current output from the positive side terminal 13a of the DC power source 13.
  • the bias tee 15a outputs the high frequency signal of the positive pole after the power source current synthesis to the anode terminal 11a of the laser diode 11.
  • the bias tee 15b synthesizes a negative-side high-frequency signal transmitted by the second signal line 12b with a negative-side DC power supply current flowing to the negative-side terminal 13b of the DC power supply 13.
  • the bias tee 15b outputs the negative electrode high frequency signal after the power source current synthesis to the cathode terminal 11b of the laser diode 11.
  • the bias tee 15a outputs a high frequency positive signal after combining the power supply currents to the anode terminal 11a
  • the bias tee 15b outputs a high frequency negative signal after combining the power currents to the cathode terminal 11b, so that the potential of the anode terminal 11a is increased. Becomes higher than the potential of the cathode terminal 11b.
  • the laser diode 11 emits light if the potential difference between the anode terminal 11 a and the cathode terminal 11 b is higher than the barrier voltage of the laser diode 11.
  • the laser diode 11 does not emit light when the potential difference between the anode terminal 11a and the cathode terminal 11b is less than or equal to the barrier voltage of the laser diode 11.
  • the first signal line 12a, the second signal line 12b, the first power supply wiring 14a, and the second power supply wiring 14b are wired. Therefore, the first parasitic capacitance 21 is formed between the first power supply wiring 14a and the first signal line 12a, and the second parasitic capacitance 21 is formed between the first power supply wiring 14a and the second signal line 12b.
  • Parasitic capacitance 22 is formed. Further, a third parasitic capacitance 23 is formed between the second power supply wiring 14b and the first signal line 12a, and a fourth parasitic capacitance 23 is formed between the second power supply wiring 14b and the second signal line 12b.
  • Parasitic capacitance 24 is formed.
  • FIG. 3 is an explanatory diagram showing the paths of the noise currents I 1 to I 4 flowing through the differential line 12.
  • the noise current I 1 is generated by being induced from the first power supply wiring 14a to the first signal line 12a via the portion forming the first parasitic capacitance 21.
  • the path of the noise current I 1 is as follows. First power supply wiring 14a ⁇ portion forming first parasitic capacitance 21 ⁇ first signal line 12a ⁇ anode terminal 11a of laser diode 11
  • the noise current I 2 is generated by being induced from the first power supply wiring 14 a to the second signal line 12 b via the portion forming the second parasitic capacitance 22.
  • the path of the noise current I 2 is as follows.
  • the noise current I 3 is generated by being guided to the first signal line 12a from the second power supply wiring 14b via the portion forming the third parasitic capacitance 23.
  • the path of the noise current I 3 is as follows.
  • the noise current I 4 is generated by being induced from the second power supply wiring 14b to the second signal line 12b via the portion forming the fourth parasitic capacitance 24.
  • the path of the noise current I 4 is as follows.
  • the capacitance C 1 of the first capacitor 16a when the capacitance C 2 of the second capacitor 16b are the same, the first parasitic capacitance 21 and the fourth parasitic capacitance 24 are different It is assumed that the second parasitic capacitance 22 and the third parasitic capacitance 23 are different from each other.
  • the capacitance C 1 of the first capacitor 16a when the capacitance C 2 of the second capacitor 16b are the same, unlike the first parasitic capacitance 21 and the fourth parasitic capacitance 24 is It is assumed that the second parasitic capacitance 22 and the third parasitic capacitance 23 are different from each other.
  • the noise currents I 1 and I 3 flow through the first signal line 12a and reach the anode terminal 11a
  • the noise currents I 2 and I 4 flow through the second signal line 12b and the cathode terminal 11b.
  • the potential difference between the anode terminal 11a and the cathode terminal 11b may fluctuate.
  • the laser diode 11 may erroneously emit light or erroneously extinguish.
  • the combined capacitance of the electrostatic capacitance C 1 of the first capacitor 16a and the first parasitic capacitance 21 is GC 1,14a-12a (see the following equation (1))
  • the electrostatic capacitance of the second capacitor 16b is It is assumed that the combined capacitance of the capacitance C 2 and the fourth parasitic capacitance 24 is GC 2,14b-12b (see the following equation (2)).
  • the combined capacitance of the electrostatic capacitance C 1 of the first capacitor 16a and the third parasitic capacitance 23 is GC 1,14b-12a (see the following equation (3)), and the electrostatic capacitance of the second capacitor 16b. It is assumed that the combined capacitance of C 2 and the second parasitic capacitance 22 is GC 2,14a-12b (see the following equation (4)).
  • the noise current I 1 And the noise current I 3 may be different from the sum of the noise current I 2 and the noise current I 4 .
  • the noise current I There may be a difference between the sum of 1 and the noise current I 3 and the sum of the noise current I 2 and the noise current I 4 .
  • the potential difference between the anode terminal 11 a and the cathode terminal 11 b becomes. It may fluctuate.
  • the noise current I The sum of 1 and the noise current I 3 is equal to the sum of the noise current I 2 and the noise current I 4 .
  • the anode terminal 11a and the cathode terminal 11a The potential difference with 11b does not change. If the potential difference between the anode terminal 11a and the cathode terminal 11b does not change, erroneous light emission and erroneous extinction of the laser diode 11 do not occur.
  • the combined capacitances GC 1,14a-12a and the combined capacitances GC 2,14b-12b are equal, and the combined capacitances GC 1,14b-12a and the combined capacitances GC 2,14a-
  • the electrostatic capacitance C 1 of the first capacitor 16a which is a variable capacitor, is adjusted so that 12b becomes equal.
  • FIG. 4 is a pattern diagram showing a pattern of the first layer 50a of the substrate 50 on which the laser diode drive circuit 2 shown in FIG. 2 is mounted.
  • FIG. 5 is a pattern diagram showing a pattern of the second layer 50b of the substrate 50 on which the laser diode drive circuit 2 shown in FIG. 2 is mounted.
  • FIG. 6 shows the positional relationship between the DC power supply 13 provided outside the substrate 50 and the portions of the first power supply wiring 14a and the second power supply wiring 14b that are provided outside the substrate 50.
  • FIG. FIG. 7 is a sectional view taken along line A 1 -A 2 of the laser diode drive circuit 2 shown in FIGS. 4 and 5.
  • the first capacitor 16a, the second capacitor 16b, the first inductor 17a, and the second inductor 17b are mounted on the first layer 50a of the substrate 50.
  • the first signal line 12a, the second signal line 12b, a part of the first power supply wiring 14a, and a part of the second power supply wiring 14b are wired on the first layer 50a of the substrate 50. .. Further, a part of the laser diode 11 is mounted on the first layer 50a of the substrate 50.
  • the first power supply wiring 14a wired in the first layer 50a of the substrate 50 is connected to one end of the via 51a, and the other end of the via 51a is a conductor wired in the second layer 50b of the substrate 50. 52a.
  • the second power supply wiring 14b wired in the first layer 50a of the substrate 50 is connected to one end of the via 51b, and the other end of the via 51b is a conductor wired in the second layer 50b of the substrate 50. It is connected to 52b.
  • the first power supply wirings 14a-1 and 14a-2 are portions of the first power supply wiring 14a that are wired outside the substrate 50.
  • One end of the first power supply wiring 14a-1 is connected to the plus-side terminal 13a of the DC power supply 13, and the other end is connected to one end of the first power supply wiring 14a-2.
  • the first power supply wiring 14a-2 has one end connected to the other end of the first power supply wiring 14a-1 and the other end connected to the conductor 52a.
  • the second power supply wirings 14b-1, 14b-2, 14b-3 are portions of the second power supply wiring 14b that are wired outside the substrate 50.
  • the second power supply wiring 14b-1 has one end connected to the negative side terminal 13b of the DC power supply 13 and the other end connected to one end of the second power supply wiring 14b-2.
  • the second power supply wiring 14b-2 has one end connected to the other end of the second power supply wiring 14b-1 and the other end connected to one end of the second power supply wiring 14b-3.
  • the second power supply wiring 14b-3 has one end connected to the other end of the second power supply wiring 14b-2 and the other end connected to the conductor 52b.
  • the first power supply wiring 14a-2 is arranged in parallel with each of the first signal line 12a and the second signal line 12b, and the first power supply wiring 14a-2 is Each of the first signal line 12a and the second signal line 12b is electrically coupled. Since the distance between the first power supply wiring 14a-2 and the first signal line 12a is shorter than the distance between the first power supply wiring 14a-2 and the second signal line 12b, the first The coupling amount between the power supply wiring 14a-2 and the first signal line 12a is larger than the coupling amount between the first power supply wiring 14a-2 and the second signal line 12b.
  • the second power supply wiring 14b-1 is arranged in parallel to each of the first signal line 12a and the second signal line 12b, and the second power supply wiring 14b-1 is Each of the first signal line 12a and the second signal line 12b is electrically coupled. Since the distance between the second power supply wiring 14b-1 and the first signal line 12a is shorter than the distance between the second power supply wiring 14b-1 and the second signal line 12b, the second The coupling amount between the power supply wiring 14b-1 and the first signal line 12a is larger than the coupling amount between the second power supply wiring 14b-1 and the second signal line 12b.
  • the second power supply wiring 14b-3 is arranged in parallel with each of the first signal line 12a and the second signal line 12b, and the second power supply wiring 14b-3 is Each of the first signal line 12a and the second signal line 12b is electrically coupled. Since the distance between the second power supply wiring 14b-3 and the first signal line 12a is longer than the distance between the second power supply wiring 14b-3 and the second signal line 12b, the second The coupling amount between the power supply wiring 14b-3 and the first signal line 12a is smaller than the coupling amount between the second power supply wiring 14b-3 and the second signal line 12b.
  • the second power supply wiring 14b-3 has a longer distance between each of the first signal line 12a and the second signal line 12b than the second power supply wiring 14b-1,
  • the amount of coupling between the power source wiring 14b-3 and the first signal line 12a is smaller than the amount of coupling between the second power source wiring 14b-1 and the first signal line 12a.
  • the coupling amount between the second power supply wiring 14b-3 and the second signal line 12b is smaller than the coupling amount between the second power supply wiring 14b-1 and the second signal line 12b. ..
  • the line length of the second power supply wiring 14b-1 and the line length of the second power supply wiring 14b-3 are ignored.
  • the amount of coupling between the power supply wiring obtained by adding the second power supply wiring 14b-1 and the second power supply wiring 14b-3 and the first signal line 12a is equal to the second power supply wiring 14b-1.
  • the second power supply wiring 14b-3 are added together, and the amount of coupling between the power supply wiring and the second signal line 12b becomes larger.
  • the average distance between the power supply wiring obtained by adding the second power supply wiring 14b-1 and the second power supply wiring 14b-3 and the second signal line 12b is the first power supply wiring.
  • An example of an arrangement shorter than the distance between 14a-2 and the first signal line 12a is shown.
  • the amount of coupling between the power supply wiring obtained by adding the second power supply wiring 14b-1 and the second power supply wiring 14b-3 and the second signal line 12b is the first. It becomes larger than the coupling amount between the power supply wiring 14a-2 and the first signal line 12a.
  • the first parasitic capacitance 21 formed between the first power supply wiring 14a and the first signal line 12a, the second power supply wiring 14b, and the second signal line 12a is different from the fourth parasitic capacitance 24 formed between 12b and 12b.
  • the capacitance C 1 of the capacitor 16a the second long capacitance C 2 and the same capacitor 16b, the combined capacitance GC 1 and 14a-12a and combined capacitance GC 2, 14b-12b And the combined capacity GC 1,14b-12a and the combined capacity GC 2,14a-12b are different.
  • the combined capacitances GC 1,14a-12a and the combined capacitances GC 2,14b-12b are equal, and the combined capacitances GC 1,14b-12a and the combined capacitances GC 2,14a-
  • the electrostatic capacitance C 1 of the first capacitor 16a which is a variable capacitor, is adjusted so that 12b becomes equal.
  • the capacitance C 1 of the first capacitor 16a is adjusted, so that even if noise currents I 1 to I 4 are generated, the anode terminal 11a and the cathode terminal 11b are connected. The potential difference between the two does not fluctuate.
  • the first capacitor 16a is a variable capacitor and the second capacitor 16b is a fixed capacitor.
  • the first capacitor 16a may be a fixed capacitor and the second capacitor 16b may be a variable capacitor, for example, as shown in FIG.
  • FIG. 8 is a configuration diagram showing another laser diode drive circuit 2 according to the first embodiment. Even if the electrostatic capacitance C 2 of the second capacitor 16b which is a variable capacitor is adjusted, the combined capacitances GC 1,14a-12a and the combined capacitances GC 2,14b-12b are equal and the combined capacitances GC 1,14b it can be equal to the -12a and combined capacitance GC 2,14a-12b. Therefore, even if the capacitance C 2 of the second capacitor 16b is adjusted, it is possible to prevent erroneous light emission and erroneous extinction of the laser diode 11 as in the laser diode drive circuit 2 shown in FIG.
  • both the first capacitor 16a and the second capacitor 16b may be variable capacitors.
  • FIG. 9 is a configuration diagram showing another laser diode drive circuit 2 according to the first embodiment. It is adjusted each electrostatic capacitance C 2 of the first capacitance C 1 and the second capacitor 16b of the capacitor 16a, a combined capacitance GC 1 and 14a-12a and combined capacitance GC 2, 14b-12b It is possible to make the combined capacitances GC 1,14b-12a equal to the combined capacitances GC 2,14a-12b . Therefore, even if each of the electrostatic capacitance C 2 of the capacitance C 1 and the second capacitor 16b of the first capacitor 16a is adjusted, similarly to the laser diode driving circuit 2 shown in FIG. 2, the laser diode 11 It is possible to prevent erroneous light emission and erroneous quenching.
  • each of the capacitance C 2 of the capacitance C 1 and the second capacitor 16b of the first capacitor 16a is adjusted, than when only the capacitance C 1 of the first capacitor 16a is adjusted
  • the range of adjusting the synthetic capacity is widened. Specifically, the difference between the combined capacitance GC 1 and 14a-12a and combined capacitance GC 2, 14b-12b, or, between the combined capacitance GC 1 and 14b-12a and combined capacitance GC 2,14a-12b If the difference is large, the adjustment of only the capacitance C 1 of the first capacitor 16a makes the combined capacitances GC 1,14a-12a equal to the combined capacitances GC 2,14b-12b , and the combined capacitance GC 1, In some cases, 14b-12a cannot be equal to the combined capacity GC 2, 14a-12b .
  • the combined capacitance GC 1 and 14a-12a and combined capacitance equal to the GC 2, 14b-12b, and sometimes can be made equal to the combined capacitance GC 1 and 14b-12a and combined capacitance GC 2,14a-12b.
  • the laser diode drive circuit 2 is configured such that at least one of the first capacitor 16a and the second capacitor 16b is a variable capacitor. Therefore, in the laser diode drive circuit 2, even if noise is induced in the differential line 12 from the first power supply wiring 14a and the second power supply wiring 14b via the portion forming the parasitic capacitance, the laser diode 11 It is possible to prevent erroneous light emission and erroneous quenching of light.
  • FIG. 10 is a configuration diagram showing another laser diode drive circuit 2 according to the first embodiment.
  • FIG. 11 is a pattern diagram showing a pattern of the first layer 50a of the substrate 50 on which the laser diode drive circuit 2 shown in FIG. 10 is mounted. 10 and 11, the same symbols as those in FIGS. 2 and 4 indicate the same or corresponding portions.
  • the resistor 61 has one end connected to the first signal line 12a and the other end connected to the second signal line 12b.
  • the protection circuit 62 has one end connected to the first signal line 12a and the other end connected to the second signal line 12b.
  • the protection circuit 62 is realized by, for example, a Zener diode 62a and a Zener diode 62b.
  • the Zener diode 62a has an anode terminal connected to the first signal line 12a and a cathode terminal connected to the cathode terminal of the Zener diode 62b.
  • the Zener diode 62b has an anode terminal connected to the second signal line 12b and a cathode terminal connected to the cathode terminal of the Zener diode 62a.
  • the resistor 61 is used for matching the impedance of the first signal line 12a and the impedance of the second signal line 12b.
  • the protection circuit 62 is used to prevent an excessive noise current I 1 flowing through the first signal line 12a from entering the second signal line 12b, and the protection circuit 62 connects the first signal line 12a. It is used to prevent the excessive noise current I 3 flowing from entering the second signal line 12b. Further, the protection circuit 62 is used to prevent an excessive noise current I 2 flowing through the second signal line 12b from entering the first signal line 12a, and the protection circuit 62 is used for the second signal line 12a. It is used to prevent an excessive noise current I 4 flowing through 12b from entering the first signal line 12a.
  • the laser diode drive circuit 2 shown in FIG. 10 can prevent erroneous light emission and erroneous extinction of the laser diode, like the laser diode drive circuit 2 shown in FIG.
  • the laser diode drive circuit 2 shown in FIG. 10 includes the resistor 61, so that the impedance of the first signal line 12a and the impedance of the second signal line 12b can be matched.
  • the laser diode drive circuit 2 shown in FIG. 10 includes the protection circuit 62 to prevent excessive noise currents I 1 and I 3 flowing through the first signal line 12a from entering the second signal line 12b. , The excessive noise currents I 2 and I 4 flowing through the second signal line 12b can be prevented from entering the first signal line 12a.
  • Embodiment 2 In the laser diode drive circuit 2 of the first embodiment, the first inductor 17a is inserted in the first power supply wiring 14a. In the second embodiment, the laser diode drive circuit 2 in which the first inductor 17a and the first variable inductor 71a are inserted in the first power supply wiring 14a will be described.
  • FIG. 12 is a configuration diagram showing the laser diode drive circuit 2 according to the second embodiment.
  • the first variable inductor 71a is inserted in the first power supply wiring 14a.
  • First variable inductor 71a has an inductance L 3, as the winding error of the respective coils in the first inductor 17a and the second inductor 17b is compensated, it can be adjusted inductance L 3 It is something.
  • the position between the core and the winding is adjusted and the magnetic permeability is adjusted, so that the inductance L 3 changes.
  • one end of the first variable inductor 71a is connected to the plus side terminal 13a of the DC power supply 13, and the other end of the first variable inductor 71a is connected to one end of the first inductor 17a. It is connected.
  • this is merely an example, and one end of the first variable inductor 71a is connected to the other end of the first inductor 17a, and the other end of the first variable inductor 71a is connected to the anode terminal 11a of the laser diode 11. May be.
  • the coil forming the first inductor 17a may have a winding error as a manufacturing error.
  • the coil forming the second inductor 17b may also have a winding error as a manufacturing error. Therefore, the inductance L 1 of the first inductor 17a may be different from the designed inductance, and the inductance L 2 of the second inductor 17b may be different from the designed inductance.
  • the laser diode 11 may not emit light as the differential high frequency signal based on the data signal output from the transmitter 1.
  • the coils of the first inductor 17a and the second inductor 17b have winding errors. Shall have.
  • the inductance L 1 of the first inductor 17a is smaller than the inductance L 2 of the second inductor 17b (L 1 ⁇ L 2 ).
  • the difference (L 2 ⁇ (L 1 +L 3 )) between the total sum (L 1 +L 3 ) of the inductance L 1 and the inductance L 3 and the inductance L 2 is ⁇ L 1
  • the inductance L 3 of the first variable inductor 71a is adjusted so as to be equal to 2 .
  • the winding error of each coil in the first inductor 17a and the second inductor 17b is compensated.
  • the second embodiment described above includes the first variable inductor 71a inserted in the first power supply wiring 14a, and the first variable inductor 71a includes the first variable inductor 71a and the first inductor 17a.
  • the laser diode drive circuit 2 is configured so as to be adjustable so that the coil winding error is compensated. Therefore, the laser diode drive circuit 2 can prevent erroneous light emission and erroneous extinction of the laser diode even if the respective coils of the first inductor 17a and the second inductor 17b have winding errors. ..
  • the first variable inductor 71a is inserted in the first power supply wiring 14a.
  • the laser diode drive circuit 2 in which the second variable inductor 71b is inserted in the second power supply wiring 14b may be used.
  • FIG. 13 is a configuration diagram showing another laser diode drive circuit 2 according to the second embodiment.
  • the second variable inductor 71b is inserted in the second power supply wiring 14b.
  • Second variable inductor 71b has an inductance L 4, as the winding error of the respective coils in the first inductor 17a and the second inductor 17b is compensated, it can be adjusted inductance L 4 It is something.
  • the position between the core and the winding is adjusted, and the magnetic permeability is adjusted, whereby the inductance L 4 changes.
  • one end of the second variable inductor 71b is connected to the negative side terminal 13b of the DC power supply 13, and the other end of the second variable inductor 71b is connected to one end of the second inductor 17b. It is connected.
  • the coils of the first inductor 17a and the second inductor 17b have winding errors. Shall have. Since each coil has a winding error, the inductance L 1 of the first inductor 17a is larger than the inductance L 2 of the second inductor 17b (L 1 >L 2 ).
  • the inductance L 4 of the second variable inductor 71b (L 2 + L 4) is equal to the inductance L 1, the second variable inductor
  • the inductance L 4 of 71b is adjusted.
  • the difference (L 1 ⁇ (L 2 +L 4 )) between the total sum (L 2 +L 4 ) of the inductance L 2 and the inductance L 4 and the inductance L 1 is ⁇ L 1
  • the inductance L 4 of the second variable inductor 71b is adjusted so as to be equal to 2 .
  • the winding error of each coil in the first inductor 17a and the second inductor 17b is compensated.
  • the first variable inductor 71a is inserted in the first power supply wiring 14a.
  • the first variable inductor 71a is inserted into the first power supply wiring 14a, and the second variable inductor 71b is connected to the second power supply wiring 14b. It may be the laser diode drive circuit 2 inserted in.
  • FIG. 14 is a configuration diagram showing another laser diode drive circuit 2 according to the second embodiment. Since the laser diode drive circuit 2 includes the first variable inductor 71a and the second variable inductor 71b, it is possible to compensate a larger winding error than the laser diode drive circuit 2 shown in FIG.
  • the first variable inductor 71a is inserted in the first power supply wiring 14a.
  • the laser diode drive circuit 2 using a variable inductor may be used as the first inductor 17a.
  • the first inductor 17a and the second inductor 17b are arranged so that winding errors of the respective coils are compensated.
  • the inductance L 1 of 17a is adjusted. Therefore, as in the case where the first variable inductor 71a is inserted in the first power supply wiring 14a, the winding error of each coil can be compensated.
  • FIG. 15 is a configuration diagram showing another laser diode drive circuit 2 according to the second embodiment. In the laser diode drive circuit 2 shown in FIG. 15, both the first inductor 17a and the second inductor 17b are variable inductors.
  • the first capacitor 16a is a variable capacitor and the second capacitor 16b is a fixed capacitor.
  • the first capacitor 16a may be a fixed capacitor and the second capacitor 16b may be a variable capacitor.
  • both the first capacitor 16a and the second capacitor 16b may be variable capacitors.
  • the invention of the present application is capable of freely combining the respective embodiments, modifying any constituent element of each embodiment, or omitting any constituent element in each embodiment. ..
  • the present invention is suitable for a laser diode drive circuit and a communication device equipped with a laser diode.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

レーザダイオード駆動回路(2)が、レーザダイオード(11)と、一端がレーザダイオード(11)のアノード端子(11a)と接続されている第1の信号線路(12a)及び一端がレーザダイオード(11)のカソード端子(11b)と接続されている第2の信号線路(12b)のそれぞれを有している差動線路(12)と、一端が直流電源(13)のプラス側端子(13a)と接続され、他端がアノード端子(11a)と接続されている第1の電源配線(14a)と、一端が直流電源(13)のマイナス側端子(13b)と接続され、他端がカソード端子(11b)と接続されている第2の電源配線(14b)と、第1の信号線路(12a)に挿入されている第1のコンデンサ(16a)と、第2の信号線路(12b)に挿入されている第2のコンデンサ(16b)とを備えている。レーザダイオード駆動回路(2)は、第1のコンデンサ(16a)及び第2のコンデンサ(16b)のうち、少なくとも1つのコンデンサが、可変コンデンサである。

Description

レーザダイオード駆動回路及び通信装置
 この発明は、レーザダイオードを備えるレーザダイオード駆動回路及び通信装置に関するものである。
 以下の特許文献1には、データ信号に基づく高周波の変調電流を、差動線路を介して、半導体レーザのアノード端子とカソード端子との間に供給する半導体レーザ駆動回路を備える光送信機が開示されている。
 特許文献1に記載された半導体レーザは、半導体レーザ駆動回路から出力された変調電流に基づいて変調レーザ光を出力する。
特開2005-252783号公報
 特許文献1に開示されている光送信機の半導体レーザは、電力の供給を受けなければ、変調レーザ光を出力することができない。したがって、半導体レーザは、アノード端子が、第1の電源配線を介して、直流電源のプラス側端子と接続され、カソード端子が、第2の電源配線を介して、直流電源のマイナス側端子と接続されている必要がある。
 光送信機が、第1及び第2の電源配線と差動線路とを有している場合、第1の電源配線と差動線路との間には寄生容量(以下、「第1の寄生容量」と称する)が形成され、第2の電源配線と差動線路との間には寄生容量(以下、「第2の寄生容量」と称する)が形成される。
 第1及び第2の寄生容量が形成されると、第1及び第2の電源配線から、第1の寄生容量を形成する部分又は第2の寄生容量を形成する部分を経由して、差動線路にノイズが誘導される。このとき、第1の寄生容量と第2の寄生容量とが異なる場合、差動線路に誘導されたノイズによって、半導体レーザのアノード端子とカソード端子との間の電位差が変動する。ノイズによって、アノード端子とカソード端子との間の電位差が変動すると、変調電流と変調レーザ光との間の対応関係が崩れて、レーザダイオードが、誤発光又は誤消光してしまうことがあるという課題があった。
 この発明は上記のような課題を解決するためになされたもので、電源配線から、寄生容量を形成する部分を経由して、ノイズが差動線路に誘導されても、レーザダイオードの誤発光及び誤消光のそれぞれを防ぐことができるレーザダイオード駆動回路及び通信装置を得ることを目的とする。
 この発明に係るレーザダイオード駆動回路は、レーザダイオードと、一端がレーザダイオードのアノード端子と接続されている第1の信号線路及び一端がレーザダイオードのカソード端子と接続されている第2の信号線路のそれぞれを有している差動線路と、一端が直流電源のプラス側端子と接続され、他端がアノード端子と接続されている第1の電源配線と、一端が直流電源のマイナス側端子と接続され、他端がカソード端子と接続されている第2の電源配線と、第1の信号線路に挿入されている第1のコンデンサと、第2の信号線路に挿入されている第2のコンデンサとを備え、第1のコンデンサ及び第2のコンデンサのうち、少なくとも1つのコンデンサが、可変コンデンサであるものである。
 この発明によれば、第1のコンデンサ及び第2のコンデンサのうち、少なくとも1つのコンデンサが、可変コンデンサであるように、レーザダイオード駆動回路を構成した。したがって、この発明に係るレーザダイオード駆動回路は、第1及び第2の電源配線から、寄生容量を形成する部分を経由して、ノイズが差動線路に誘導されても、レーザダイオードの誤発光及び誤消光のそれぞれを防ぐことができる。
実施の形態1に係るレーザダイオード駆動回路2を含む通信装置を示す構成図である。 実施の形態1に係るレーザダイオード駆動回路2を示す構成図である。 差動線路12を流れるノイズ電流I~Iの経路を示す説明図である。 図2に示すレーザダイオード駆動回路2が実装されている基板50の1層目50aのパターンを示すパターン図である。 図2に示すレーザダイオード駆動回路2が実装されている基板50の2層目50bのパターンを示すパターン図である。 基板50の外部に設けられている直流電源13と、第1の電源配線14a及び第2の電源配線14bのうち、基板50の外部に配線されている部分との配置関係を示す配置図である。 図4及び図5に示すレーザダイオード駆動回路2のA-A断面図である。 実施の形態1に係る他のレーザダイオード駆動回路2を示す構成図である。 実施の形態1に係る他のレーザダイオード駆動回路2を示す構成図である。 実施の形態1に係る他のレーザダイオード駆動回路2を示す構成図である。 図10に示すレーザダイオード駆動回路2が実装されている基板50の1層目50aのパターンを示すパターン図である。 実施の形態2に係るレーザダイオード駆動回路2を示す構成図である。 実施の形態2に係る他のレーザダイオード駆動回路2を示す構成図である。 実施の形態2に係る他のレーザダイオード駆動回路2を示す構成図である。 実施の形態2に係る他のレーザダイオード駆動回路2を示す構成図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係るレーザダイオード駆動回路2を含む通信装置を示す構成図である。
 図2は、実施の形態1に係るレーザダイオード駆動回路2を示す構成図である。
 図1及び図2において、通信装置は、送信機1及びレーザダイオード駆動回路2を備えている。
 送信機1は、データ信号に基づく差動の高周波信号を、差動入出力端子3を介して、レーザダイオード駆動回路2に出力する。
 図1に示す通信装置は、送信機1を備えている。しかし、これは一例に過ぎず、図1に示す通信装置は、送信機1の代わりに、受信機を備えていてもよい。ただし、図1に示す通信装置が、送信機1の代わりに、受信機を備えている場合、レーザダイオード駆動回路2は、後述するレーザダイオード11(図2参照)の代わりに、光を電気信号に変換する受光素子を備える。
 レーザダイオード駆動回路2は、差動入出力端子3を介して、送信機1と接続されている。
 レーザダイオード駆動回路2は、送信機1から出力された差動の高周波信号に基づいて発光するレーザダイオード11を備えている。
 差動入出力端子3は、第1の入出力端子3aと、第2の入出力端子3bとを有している。
 図1に示す通信装置では、差動入出力端子3がレーザダイオード駆動回路2の外部に設けられている。しかし、これは一例に過ぎず、差動入出力端子3がレーザダイオード駆動回路2の内部に設けられていてもよい。
 レーザダイオード11は、アノード端子11a及びカソード端子11bを有している。
 アノード端子11aは、第1の信号線路12aを介して第1の入出力端子3aと接続されている。カソード端子11bは、第2の信号線路12bを介して第2の入出力端子3bと接続されている。
 レーザダイオード11は、送信機1から出力された差動の高周波信号に基づいて発光する。
 差動線路12は、第1の信号線路12a及び第2の信号線路12bを有している。
 第1の信号線路12aは、一端がレーザダイオード11のアノード端子11aと接続され、他端が第1の入出力端子3aと接続されている。
 第1の信号線路12aは、送信機1から出力された差動の高周波信号のうち、正極の高周波信号をレーザダイオード11のアノード端子11aまで伝送させる線路である。
 第2の信号線路12bは、一端がレーザダイオード11のカソード端子11bと接続され、他端が第2の入出力端子3bと接続されている。
 第2の信号線路12bは、送信機1から出力された差動の高周波信号のうち、負極の高周波信号をレーザダイオード11のカソード端子11bまで伝送させる線路である。
 直流電源13は、直流電力をレーザダイオード11に供給するための電源である。直流電源13は、プラス側端子13a及びマイナス側端子13bを有している。
 第1の電源配線14aは、一端が直流電源13のプラス側端子13aと接続され、他端がレーザダイオード11のアノード端子11aと接続されている。
 第2の電源配線14bは、一端が直流電源13のマイナス側端子13bと接続され、他端がレーザダイオード11のカソード端子11bと接続されている。
 図2に示すレーザダイオード駆動回路2では、直流電源13がレーザダイオード駆動回路2の外部に設けられている。しかし、これは一例に過ぎず、直流電源13がレーザダイオード駆動回路2の内部に設けられていてもよい。
 バイアスティ15aは、第1のコンデンサ16a及び第1のインダクタ17aを備えており、レーザダイオード11のアノード端子11aと接続されている。
 バイアスティ15aは、第1の信号線路12aにより伝送された正極の高周波信号に、直流電源13のプラス側端子13aから出力されたプラス側の直流電源電流を合成し、電源電流合成後の高周波信号をレーザダイオード11のアノード端子11aに出力する。
 第1のコンデンサ16aは、第1の信号線路12aに挿入されており、静電容量Cを有している。
 第1のコンデンサ16aは、静電容量Cを変えることができる可変コンデンサである。
 第1のインダクタ17aは、第1の電源配線14aに挿入されており、インダクタンスLを有している。
 第1の信号線路12aにより伝送された正極の高周波信号が、直流電源13のプラス側端子13aの方に流れないようにするために、第1のインダクタ17aが第1の電源配線14aに挿入されている。例えば、第1の信号線路12aにより伝送された信号が低周波の信号であれば、第1のインダクタ17aの代わりに、例えば抵抗が第1の電源配線14aに挿入されていてもよい。
 バイアスティ15bは、第2のコンデンサ16b及び第2のインダクタ17bを備えており、レーザダイオード11のカソード端子11bと接続されている。
 バイアスティ15bは、第2の信号線路12bにより伝送された負極の高周波信号に、直流電源13のマイナス側端子13bへ流れるマイナス側の直流電源電流を合成し、電源電流合成後の高周波信号をレーザダイオード11のカソード端子11bに出力する。
 第2のコンデンサ16bは、第2の信号線路12bに挿入されており、静電容量Cを有している。
 第2のコンデンサ16bは、静電容量Cの変更ができない固定コンデンサである。
 第2のインダクタ17bは、第2の電源配線14bに挿入されており、インダクタンスLを有している。
 第2の信号線路12bにより伝送された負極の高周波信号が、直流電源13のマイナス側端子13bの方に流れないようにするために、第2のインダクタ17bが第2の電源配線14bに挿入されている。第2の信号線路12bにより伝送される信号が低周波の信号であれば、第2のインダクタ17bの代わりに、例えば抵抗が第2の電源配線14bに挿入されていてもよい。
 第1の寄生容量21は、第1の電源配線14aと第1の信号線路12aとの間に形成される寄生容量C14a-12aである。以下、第1の電源配線14aと第1の信号線路12aとの間において、第1の寄生容量21が形成される領域を「第1の寄生容量21を形成する部分」と称する。
 第2の寄生容量22は、第1の電源配線14aと第2の信号線路12bとの間に形成される寄生容量C14a-12bである。以下、第1の電源配線14aと第2の信号線路12bとの間において、第2の寄生容量22が形成される領域を「第2の寄生容量22を形成する部分」と称する。
 第3の寄生容量23は、第2の電源配線14bと第1の信号線路12aとの間に形成される寄生容量C14b-12aである。以下、第2の電源配線14bと第1の信号線路12aとの間において、第3の寄生容量23が形成される領域を「第3の寄生容量23を形成する部分」と称する。
 第4の寄生容量24は、第2の電源配線14bと第2の信号線路12bとの間に形成される寄生容量C14b-12bである。以下、第2の電源配線14bと第2の信号線路12bとの間において、第4の寄生容量24が形成される領域を「第4の寄生容量24を形成する部分」と称する。
 なお、第1の電源配線14aと第1の信号線路12aとの間、第1の電源配線14aと第2の信号線路12bとの間、第2の電源配線14bと第1の信号線路12aとの間、及び第2の電源配線14bと第2の信号線路12bとの間は、それぞれ絶縁体で分離されている。絶縁体で分離された信号線路と電源配線との間には、寄生容量が生じる。
 図2に示すレーザダイオード駆動回路2では、第1の寄生容量21としてのコンデンサ、第2の寄生容量22としてのコンデンサ、第3の寄生容量23としてのコンデンサ及び第4の寄生容量24としてのコンデンサが、実際に配置されている訳ではなく、寄生容量の説明のために記述している。
 次に、図2に示すレーザダイオード駆動回路2の動作について説明する。
 送信機1は、データ信号に基づく差動の高周波信号のうち、正極の高周波信号を第1の入出力端子3aに出力し、負極の高周波信号を第2の入出力端子3bに出力する。
 送信機1から第1の入出力端子3aに出力された正極の高周波信号は、第1の信号線路12aにより伝送されて、バイアスティ15aに到達する。
 また、送信機1から第2の入出力端子3bに出力された負極の高周波信号は、第2の信号線路12bにより伝送されて、バイアスティ15bに到達する。
 バイアスティ15aは、第1の信号線路12aにより伝送された正極の高周波信号に、直流電源13のプラス側端子13aから出力されたプラス側の直流電源電流を合成する。
 バイアスティ15aは、電源電流合成後の正極の高周波信号をレーザダイオード11のアノード端子11aに出力する。
 バイアスティ15bは、第2の信号線路12bにより伝送された負極の高周波信号に、直流電源13のマイナス側端子13bへ流れるマイナス側の直流電源電流を合成する。
 バイアスティ15bは、電源電流合成後の負極の高周波信号をレーザダイオード11のカソード端子11bに出力する。
 バイアスティ15aから電源電流合成後の正極の高周波信号がアノード端子11aに出力され、バイアスティ15bから電源電流合成後の負極の高周波信号がカソード端子11bに出力されることで、アノード端子11aの電位は、カソード端子11bの電位よりも高くなる。
 レーザダイオード11は、アノード端子11aとカソード端子11bとの電位差が、レーザダイオード11の障壁電圧よりも高ければ発光する。
 レーザダイオード11は、アノード端子11aとカソード端子11bとの電位差が、レーザダイオード11の障壁電圧以下である場合、発光しない。
 図2に示すレーザダイオード駆動回路2には、第1の信号線路12a、第2の信号線路12b、第1の電源配線14a及び第2の電源配線14bのそれぞれが配線されている。
 したがって、第1の電源配線14aと第1の信号線路12aとの間には第1の寄生容量21が形成され、第1の電源配線14aと第2の信号線路12bとの間には第2の寄生容量22が形成される。
 また、第2の電源配線14bと第1の信号線路12aとの間には第3の寄生容量23が形成され、第2の電源配線14bと第2の信号線路12bとの間には第4の寄生容量24が形成される。
 第1の寄生容量21、第2の寄生容量22、第3の寄生容量23及び第4の寄生容量24のそれぞれが形成されることで、図3に示すように、ノイズ電流I~Iが差動線路12を流れる。
 図3は、差動線路12を流れるノイズ電流I~Iの経路を示す説明図である。
 ノイズ電流Iは、第1の電源配線14aから、第1の寄生容量21を形成する部分を経由して、第1の信号線路12aに誘導されることで発生する。ノイズ電流Iの経路は、以下の通りである。
 第1の電源配線14a→第1の寄生容量21を形成する部分→第1の信号線路12a→レーザダイオード11のアノード端子11a
 ノイズ電流Iは、第1の電源配線14aから、第2の寄生容量22を形成する部分を経由して、第2の信号線路12bに誘導されることで発生する。ノイズ電流Iの経路は、以下の通りである。
 第1の電源配線14a→第2の寄生容量22を形成する部分→第2の信号線路12b→レーザダイオード11のカソード端子11b
 ノイズ電流Iは、第2の電源配線14bから、第3の寄生容量23を形成する部分を経由して、第1の信号線路12aに誘導されることで発生する。ノイズ電流Iの経路は、以下の通りである。
 第2の電源配線14b→第3の寄生容量23を形成する部分→第1の信号線路12a→レーザダイオード11のアノード端子11a
 ノイズ電流Iは、第2の電源配線14bから、第4の寄生容量24を形成する部分を経由して、第2の信号線路12bに誘導されることで発生する。ノイズ電流Iの経路は、以下の通りである。
 第2の電源配線14b→第4の寄生容量24を形成する部分→第2の信号線路12b→レーザダイオード11のカソード端子11b
 例えば、第1のコンデンサ16aの静電容量Cと、第2のコンデンサ16bの静電容量Cとが同じである場合において、第1の寄生容量21と第4の寄生容量24とが異なる場合、又は、第2の寄生容量22と第3の寄生容量23とが異なる場合を想定する。
 あるいは、第1のコンデンサ16aの静電容量Cと、第2のコンデンサ16bの静電容量Cとが同じである場合において、第1の寄生容量21と第4の寄生容量24とが異なり、かつ、第2の寄生容量22と第3の寄生容量23とが異なる場合を想定する。
 これらの想定の場合、ノイズ電流I,Iが第1の信号線路12aを流れてアノード端子11aに到達し、ノイズ電流I,Iが第2の信号線路12bを流れてカソード端子11bに到達すると、アノード端子11aとカソード端子11bとの間の電位差が変動することがある。
 ノイズ電流I~Iの発生に伴って、アノード端子11aとカソード端子11bとの間の電位差が変動した場合、レーザダイオード11が、誤発光又は誤消光することがある。
 ここで、第1のコンデンサ16aの静電容量Cと第1の寄生容量21との合成容量がGC1,14a-12a(以下の式(1)参照)、第2のコンデンサ16bの静電容量Cと第4の寄生容量24との合成容量がGC2,14b-12b(以下の式(2)参照)であるとする。
 また、第1のコンデンサ16aの静電容量Cと第3の寄生容量23との合成容量がGC1,14b-12a(以下の式(3)参照)、第2のコンデンサ16bの静電容量Cと第2の寄生容量22との合成容量がGC2,14a-12b(以下の式(4)参照)であるとする。

Figure JPOXMLDOC01-appb-I000001
 合成容量GC1,14a-12aと合成容量GC2,14b-12bとが異なる場合、又は、合成容量GC1,14b-12aと合成容量GC2,14a-12bとが異なる場合、ノイズ電流Iとノイズ電流Iとの和と、ノイズ電流Iとノイズ電流Iとの和との間に差異が生じることがある。
 また、合成容量GC1,14a-12aと合成容量GC2,14b-12bとが異なり、かつ、合成容量GC1,14b-12aと合成容量GC2,14a-12bとが異なる場合、ノイズ電流Iとノイズ電流Iとの和と、ノイズ電流Iとノイズ電流Iとの和との間に差異が生じることがある。
 ノイズ電流Iとノイズ電流Iとの和と、ノイズ電流Iとノイズ電流Iとの和との間に差異が生じていれば、アノード端子11aとカソード端子11bとの間の電位差が変動することがある。
 一方、合成容量GC1,14a-12aと合成容量GC2,14b-12bとが等しく、かつ、合成容量GC1,14b-12aと合成容量GC2,14a-12bとが等しければ、ノイズ電流Iとノイズ電流Iとの和と、ノイズ電流Iとノイズ電流Iとの和とが等しい。ノイズ電流Iとノイズ電流Iとの和と、ノイズ電流Iとノイズ電流Iとの和とが等しければ、ノイズ電流I~Iが発生しても、アノード端子11aとカソード端子11bとの間の電位差が変動しない。アノード端子11aとカソード端子11bとの間の電位差が変動しなければ、レーザダイオード11の誤発光及び誤消光のそれぞれが発生しない。
 図2に示すレーザダイオード駆動回路2は、合成容量GC1,14a-12aと合成容量GC2,14b-12bとが等しく、かつ、合成容量GC1,14b-12aと合成容量GC2,14a-12bとが等しくなるように、可変コンデンサである第1のコンデンサ16aの静電容量Cが調整される。
 以下、図2に示すレーザダイオード駆動回路2が2層構造の基板50に実装された場合の構成について説明する。
 図4は、図2に示すレーザダイオード駆動回路2が実装されている基板50の1層目50aのパターンを示すパターン図である。
 図5は、図2に示すレーザダイオード駆動回路2が実装されている基板50の2層目50bのパターンを示すパターン図である。
 図6は、基板50の外部に設けられている直流電源13と、第1の電源配線14a及び第2の電源配線14bのうち、基板50の外部に配線されている部分との配置関係を示す配置図である。
 図7は、図4及び図5に示すレーザダイオード駆動回路2のA-A断面図である。
 図4から図7において、基板50の1層目50aには、第1のコンデンサ16a、第2のコンデンサ16b、第1のインダクタ17a及び第2のインダクタ17bが実装されている。
 また、基板50の1層目50aには、第1の信号線路12a、第2の信号線路12b、第1の電源配線14aの一部及び第2の電源配線14bの一部が配線されている。
 さらに、基板50の1層目50aには、レーザダイオード11の一部が実装されている。
 基板50の1層目50aに配線されている第1の電源配線14aは、ビア51aの一端と接続されており、ビア51aの他端は、基板50の2層目50bに配線されている導体52aと接続されている。
 基板50の1層目50aに配線されている第2の電源配線14bは、ビア51bの一端と接続されており、ビア51bの他端は、基板50の2層目50bに配線されている導体52bと接続されている。
 第1の電源配線14a-1,14a-2は、第1の電源配線14aのうち、基板50の外部に配線されている部分である。
 第1の電源配線14a-1は、一端が直流電源13のプラス側端子13aと接続され、他端が第1の電源配線14a-2の一端と接続されている。
 第1の電源配線14a-2は、一端が第1の電源配線14a-1の他端と接続され、他端が導体52aと接続されている。
 第2の電源配線14b-1,14b-2,14b-3は、第2の電源配線14bのうち、基板50の外部に配線されている部分である。
 第2の電源配線14b-1は、一端が直流電源13のマイナス側端子13bと接続され、他端が第2の電源配線14b-2の一端と接続されている。
 第2の電源配線14b-2は、一端が第2の電源配線14b-1の他端と接続され、他端が第2の電源配線14b-3の一端と接続されている。
 第2の電源配線14b-3は、一端が第2の電源配線14b-2の他端と接続され、他端が導体52bと接続されている。
 図6の配置例では、第1の電源配線14a-2が、第1の信号線路12a及び第2の信号線路12bのそれぞれと平行に配置されており、第1の電源配線14a-2は、第1の信号線路12a及び第2の信号線路12bのそれぞれと電気的に結合する。
 第1の電源配線14a-2と第1の信号線路12aとの間の距離が、第1の電源配線14a-2と第2の信号線路12bとの間の距離よりも短いため、第1の電源配線14a-2と第1の信号線路12aとの間の結合量は、第1の電源配線14a-2と第2の信号線路12bとの間の結合量よりも大きくなる。
 図6の配置例では、第2の電源配線14b-1が、第1の信号線路12a及び第2の信号線路12bのそれぞれと平行に配置されており、第2の電源配線14b-1は、第1の信号線路12a及び第2の信号線路12bのそれぞれと電気的に結合する。
 第2の電源配線14b-1と第1の信号線路12aとの間の距離が、第2の電源配線14b-1と第2の信号線路12bとの間の距離よりも短いため、第2の電源配線14b-1と第1の信号線路12aとの間の結合量は、第2の電源配線14b-1と第2の信号線路12bとの間の結合量よりも大きくなる。
 図6の配置例では、第2の電源配線14b-3が、第1の信号線路12a及び第2の信号線路12bのそれぞれと平行に配置されており、第2の電源配線14b-3は、第1の信号線路12a及び第2の信号線路12bのそれぞれと電気的に結合する。
 第2の電源配線14b-3と第1の信号線路12aとの間の距離が、第2の電源配線14b-3と第2の信号線路12bとの間の距離よりも長いため、第2の電源配線14b-3と第1の信号線路12aとの間の結合量は、第2の電源配線14b-3と第2の信号線路12bとの間の結合量よりも小さくなる。
 ただし、第2の電源配線14b-3は、第2の電源配線14b-1と比べて、第1の信号線路12a及び第2の信号線路12bのそれぞれとの間の距離が長いため、第2の電源配線14b-3と第1の信号線路12aとの間の結合量は、第2の電源配線14b-1と第1の信号線路12aとの間の結合量よりも小さくなる。また、第2の電源配線14b-3と第2の信号線路12bとの間の結合量は、第2の電源配線14b-1と第2の信号線路12bとの間の結合量よりも小さくなる。ここでは、説明の簡単化のため、第2の電源配線14b-1の線路長と、第2の電源配線14b-3の線路長とを無視している。
 よって、第2の電源配線14b-1と第2の電源配線14b-3とを足し合わせた電源配線と、第1の信号線路12aとの間の結合量は、第2の電源配線14b-1と第2の電源配線14b-3とを足し合わせた電源配線と、第2の信号線路12bとの間の結合量よりも大きくなる。
 図6では、第2の電源配線14b-1と第2の電源配線14b-3とを足し合わせた電源配線と、第2の信号線路12bとの間の平均の距離は、第1の電源配線14a-2と第1の信号線路12aとの間の距離よりも短い配置例を示している。
 図6の配置例では、第2の電源配線14b-1と第2の電源配線14b-3とを足し合わせた電源配線と、第2の信号線路12bとの間の結合量は、第1の電源配線14a-2と第1の信号線路12aとの間の結合量よりも大きくなる。
 以上より、図6の配置例では、第1の電源配線14aと第1の信号線路12aとの間に形成される第1の寄生容量21と、第2の電源配線14bと第2の信号線路12bとの間に形成される第4の寄生容量24とは異なっている。
 また、第2の電源配線14bと第1の信号線路12aとの間に形成される第3の寄生容量23と、第1の電源配線14aと第2の信号線路12bとの間に形成される第2の寄生容量22とは異なっている。
 よって、第1のコンデンサ16aの静電容量Cと、第2のコンデンサ16bの静電容量Cとが同じであれば、合成容量GC1,14a-12aと合成容量GC2,14b-12bとが異なり、かつ、合成容量GC1,14b-12aと合成容量GC2,14a-12bとが異なる。
 図2に示すレーザダイオード駆動回路2では、合成容量GC1,14a-12aと合成容量GC2,14b-12bとが等しく、かつ、合成容量GC1,14b-12aと合成容量GC2,14a-12bとが等しくなるように、可変コンデンサである第1のコンデンサ16aの静電容量Cが調整される。
 図2に示すレーザダイオード駆動回路2は、第1のコンデンサ16aの静電容量Cが調整されることで、ノイズ電流I~Iが発生しても、アノード端子11aとカソード端子11bとの間の電位差が変動しなくなる。
 図2に示すレーザダイオード駆動回路2では、第1のコンデンサ16aが可変コンデンサであり、第2のコンデンサ16bが固定コンデンサである。しかし、これは一例に過ぎず、例えば、図8に示すように、第1のコンデンサ16aが固定コンデンサであり、第2のコンデンサ16bが可変コンデンサであってもよい。
 図8は、実施の形態1に係る他のレーザダイオード駆動回路2を示す構成図である。
 可変コンデンサである第2のコンデンサ16bの静電容量Cを調整しても、合成容量GC1,14a-12aと合成容量GC2,14b-12bとを等しく、かつ、合成容量GC1,14b-12aと合成容量GC2,14a-12bとを等しくすることができる。
 したがって、第2のコンデンサ16bの静電容量Cが調整されても、図2に示すレーザダイオード駆動回路2と同様に、レーザダイオード11の誤発光及び誤消光のそれぞれを防ぐことができる。
 また、図9に示すように、第1のコンデンサ16a及び第2のコンデンサ16bの双方が、可変コンデンサであってもよい。
 図9は、実施の形態1に係る他のレーザダイオード駆動回路2を示す構成図である。
 第1のコンデンサ16aの静電容量C及び第2のコンデンサ16bの静電容量Cのそれぞれを調整しても、合成容量GC1,14a-12aと合成容量GC2,14b-12bとを等しく、かつ、合成容量GC1,14b-12aと合成容量GC2,14a-12bとを等しくすることができる。
 したがって、第1のコンデンサ16aの静電容量C及び第2のコンデンサ16bの静電容量Cのそれぞれが調整されても、図2に示すレーザダイオード駆動回路2と同様に、レーザダイオード11の誤発光及び誤消光のそれぞれを防ぐことができる。
 第1のコンデンサ16aの静電容量C及び第2のコンデンサ16bの静電容量Cのそれぞれが調整される場合、第1のコンデンサ16aの静電容量Cのみが調整される場合よりも、合成容量の調整範囲が広くなる。
 具体的には、合成容量GC1,14a-12aと合成容量GC2,14b-12bとの間の差異、又は、合成容量GC1,14b-12aと合成容量GC2,14a-12bとの間の差異が大きい場合、第1のコンデンサ16aの静電容量Cのみの調整では、合成容量GC1,14a-12aと合成容量GC2,14b-12bとを等しく、かつ、合成容量GC1,14b-12aと合成容量GC2,14a-12bとを等しくできないことがある。
 しかし、差異が大きい場合でも、第1のコンデンサ16aの静電容量C及び第2のコンデンサ16bの静電容量Cのそれぞれを調整することで、合成容量GC1,14a-12aと合成容量GC2,14b-12bとを等しく、かつ、合成容量GC1,14b-12aと合成容量GC2,14a-12bとを等しくすることができることがある。
 以上の実施の形態1は、第1のコンデンサ16a及び第2のコンデンサ16bのうち、少なくとも1つのコンデンサが、可変コンデンサであるように、レーザダイオード駆動回路2を構成した。したがって、レーザダイオード駆動回路2は、第1の電源配線14a及び第2の電源配線14bから、寄生容量を形成する部分を経由して、ノイズが差動線路12に誘導されても、レーザダイオード11の誤発光及び誤消光のそれぞれを防ぐことができる。
 図10は、実施の形態1に係る他のレーザダイオード駆動回路2を示す構成図である。
 図11は、図10に示すレーザダイオード駆動回路2が実装されている基板50の1層目50aのパターンを示すパターン図である。
 図10及び図11において、図2及び図4と同一符号は同一又は相当部分を示している。
 抵抗61は、一端が第1の信号線路12aと接続され、他端が第2の信号線路12bと接続されている。
 保護回路62は、一端が第1の信号線路12aと接続され、他端が第2の信号線路12bと接続されている。
 保護回路62は、例えば、ツェナーダイオード62a及びツェナーダイオード62bによって実現される。
 ツェナーダイオード62aは、アノード端子が第1の信号線路12aと接続され、カソード端子がツェナーダイオード62bのカソード端子と接続されている。
 ツェナーダイオード62bは、アノード端子が第2の信号線路12bと接続され、カソード端子がツェナーダイオード62aのカソード端子と接続されている。
 抵抗61は、第1の信号線路12aのインピーダンスと、第2の信号線路12bのインピーダンスとの整合に用いられる。
 保護回路62は、第1の信号線路12aを流れる過大のノイズ電流Iが、第2の信号線路12bに侵入するのを防ぐのに用いられ、保護回路62は、第1の信号線路12aを流れる過大のノイズ電流Iが、第2の信号線路12bに侵入するのを防ぐのに用いられる。
 また、保護回路62は、第2の信号線路12bを流れる過大のノイズ電流Iが、第1の信号線路12aに侵入するのを防ぐのに用いられ、保護回路62は、第2の信号線路12bを流れる過大のノイズ電流Iが、第1の信号線路12aに侵入するのを防ぐのに用いられる。
 図10に示すレーザダイオード駆動回路2は、図2に示すレーザダイオード駆動回路2と同様に、レーザダイオードの誤発光及び誤消光のそれぞれを防ぐことができる。また、図10に示すレーザダイオード駆動回路2は、抵抗61を備えることで、第1の信号線路12aのインピーダンスと、第2の信号線路12bのインピーダンスとの整合を図ることができる。
 図10に示すレーザダイオード駆動回路2は、保護回路62を備えることで、第1の信号線路12aを流れる過大のノイズ電流I,Iが、第2の信号線路12bに侵入するのを防ぎ、第2の信号線路12bを流れる過大のノイズ電流I,Iが、第1の信号線路12aに侵入するのを防ぐことができる。
実施の形態2.
 実施の形態1のレーザダイオード駆動回路2では、第1のインダクタ17aが第1の電源配線14aに挿入されている。
 実施の形態2では、第1のインダクタ17a及び第1の可変インダクタ71aが、第1の電源配線14aに挿入されているレーザダイオード駆動回路2について説明する。
 図12は、実施の形態2に係るレーザダイオード駆動回路2を示す構成図である。図12において、図2と同一符号は同一又は相当部分を示すので説明を省略する。
 第1の可変インダクタ71aは、第1の電源配線14aに挿入されている。
 第1の可変インダクタ71aは、インダクタンスLを有しており、第1のインダクタ17a及び第2のインダクタ17bにおけるそれぞれのコイルの巻線誤差が補償されるように、インダクタンスLの調整が可能なものである。
 第1の可変インダクタ71aは、例えば、コアと巻線の間の位置が調整されて、透磁率が調整されることで、インダクタンスLが変化する。
 図12に示すレーザダイオード駆動回路2では、第1の可変インダクタ71aの一端が直流電源13のプラス側端子13aと接続され、第1の可変インダクタ71aの他端が第1のインダクタ17aの一端と接続されている。しかし、これは一例に過ぎず、第1の可変インダクタ71aの一端が第1のインダクタ17aの他端と接続され、第1の可変インダクタ71aの他端がレーザダイオード11のアノード端子11aと接続されていてもよい。
 次に、図12に示すレーザダイオード駆動回路2の動作について説明する。
 第1のインダクタ17aを構成しているコイルは、製造誤差として、巻線誤差を有することがある。
 第2のインダクタ17bを構成しているコイルについても、製造誤差として、巻線誤差を有することがある。
 したがって、第1のインダクタ17aのインダクタンスLが設計上のインダクタンスと異なり、第2のインダクタ17bのインダクタンスLが設計上のインダクタンスと異なることがある。
 インダクタンスL,Lが設計上のインダクタンスと異なる場合、レーザダイオード11は、送信機1から出力されたデータ信号に基づく差動の高周波信号通りに、発光しないことがある。
 例えば、第1のインダクタ17aの設計上のインダクタンスと第2のインダクタ17bの設計上のインダクタンスとが同じである場合において、第1のインダクタ17a及び第2のインダクタ17bにおけるそれぞれのコイルが巻線誤差を有するものとする。
 そして、それぞれのコイルが巻線誤差を有することで、第1のインダクタ17aのインダクタンスLが、第2のインダクタ17bのインダクタンスLよりも小さものとする(L<L)。
 図12に示すレーザダイオード駆動回路2では、インダクタンスLと第1の可変インダクタ71aのインダクタンスLとの総和(L+L)が、インダクタンスLと等しくなるように、第1の可変インダクタ71aのインダクタンスLが調整される。
 第1の可変インダクタ71aのインダクタンスLが調整されることで、第1のインダクタ17a及び第2のインダクタ17bにおけるそれぞれのコイルの巻線誤差が補償される。
 例えば、第1のインダクタ17aの設計上のインダクタンスが第2のインダクタ17bの設計上のインダクタンスよりも、ΔL1,2だけ小さい場合において、第1のインダクタ17a及び第2のインダクタ17bにおけるそれぞれのコイルが巻線誤差を有するものとする。
 そして、それぞれのコイルが巻線誤差を有することで、インダクタンスLが、インダクタンスLよりも小さく、インダクタンスLとインダクタンスLとの差分(L-L)がΔL1,2よりも大きいものとする(L-L>ΔL1,2)。
 図12に示すレーザダイオード駆動回路2では、インダクタンスLとインダクタンスLとの総和(L+L)と、インダクタンスLとの差分(L-(L+L))がΔL1,2と等しくなるように、第1の可変インダクタ71aのインダクタンスLが調整される。
 第1の可変インダクタ71aのインダクタンスLが調整されることで、第1のインダクタ17a及び第2のインダクタ17bにおけるそれぞれのコイルの巻線誤差が補償される。
 以上の実施の形態2は、第1の電源配線14aに挿入されている第1の可変インダクタ71aを備え、第1の可変インダクタ71aが、第1のインダクタ17a及び第2のインダクタ17bにおけるそれぞれのコイルの巻線誤差が補償されるように、調整可能なものであるように、レーザダイオード駆動回路2を構成した。したがって、レーザダイオード駆動回路2は、第1のインダクタ17a及び第2のインダクタ17bにおけるそれぞれのコイルが巻線誤差を有していても、レーザダイオードの誤発光及び誤消光のそれぞれを防ぐことができる。
 図12に示すレーザダイオード駆動回路2では、第1の可変インダクタ71aが第1の電源配線14aに挿入されている。しかし、これは一例に過ぎず、例えば、図13に示すように、第2の可変インダクタ71bが第2の電源配線14bに挿入されているレーザダイオード駆動回路2であってもよい。
 図13は、実施の形態2に係る他のレーザダイオード駆動回路2を示す構成図である。
 第2の可変インダクタ71bは、第2の電源配線14bに挿入されている。
 第2の可変インダクタ71bは、インダクタンスLを有しており、第1のインダクタ17a及び第2のインダクタ17bにおけるそれぞれのコイルの巻線誤差が補償されるように、インダクタンスLの調整が可能なものである。
 第2の可変インダクタ71bは、例えば、コアと巻線の間の位置が調整されて、透磁率が調整されることで、インダクタンスLが変化する。
 図13に示すレーザダイオード駆動回路2では、第2の可変インダクタ71bの一端が直流電源13のマイナス側端子13bと接続され、第2の可変インダクタ71bの他端が第2のインダクタ17bの一端と接続されている。しかし、これは一例に過ぎず、第2の可変インダクタ71bの一端が第2のインダクタ17bの他端と接続され、第2の可変インダクタ71bの他端がレーザダイオード11のカソード端子11bと接続されていてもよい。
 例えば、第1のインダクタ17aの設計上のインダクタンスと第2のインダクタ17bの設計上のインダクタンスとが同じである場合において、第1のインダクタ17a及び第2のインダクタ17bにおけるそれぞれのコイルが巻線誤差を有するものとする。
 そして、それぞれのコイルが巻線誤差を有することで、第1のインダクタ17aのインダクタンスLが、第2のインダクタ17bのインダクタンスLよりも大きいものとする(L>L)。
 図13に示すレーザダイオード駆動回路2では、インダクタンスLと第2の可変インダクタ71bのインダクタンスLとの総和(L+L)が、インダクタンスLと等しくなるように、第2の可変インダクタ71bのインダクタンスLが調整される。
 第2の可変インダクタ71bのインダクタンスLが調整されることで、第1のインダクタ17a及び第2のインダクタ17bにおけるそれぞれのコイルの巻線誤差が補償される。
 例えば、第1のインダクタ17aの設計上のインダクタンスが第2のインダクタ17bの設計上のインダクタンスよりも、ΔL1,2だけ大きい場合において、第1のインダクタ17a及び第2のインダクタ17bにおけるそれぞれのコイルが巻線誤差を有するものとする。
 そして、それぞれのコイルが巻線誤差を有することで、インダクタンスLが、インダクタンスLよりも大きく、インダクタンスLとインダクタンスLとの差分(L-L)がΔL1,2よりも大きいものとする(L-L>ΔL1,2)。
 図13に示すレーザダイオード駆動回路2では、インダクタンスLとインダクタンスLとの総和(L+L)と、インダクタンスLとの差分(L-(L+L))がΔL1,2と等しくなるように、第2の可変インダクタ71bのインダクタンスLが調整される。
 第2の可変インダクタ71bのインダクタンスLが調整されることで、第1のインダクタ17a及び第2のインダクタ17bにおけるそれぞれのコイルの巻線誤差が補償される。
 図12に示すレーザダイオード駆動回路2では、第1の可変インダクタ71aが第1の電源配線14aに挿入されている。しかし、これは一例に過ぎず、例えば、図14に示すように、第1の可変インダクタ71aが第1の電源配線14aに挿入され、かつ、第2の可変インダクタ71bが第2の電源配線14bに挿入されているレーザダイオード駆動回路2であってもよい。
 図14は、実施の形態2に係る他のレーザダイオード駆動回路2を示す構成図である。
 レーザダイオード駆動回路2が、第1の可変インダクタ71a及び第2の可変インダクタ71bを備えることで、図12に示すレーザダイオード駆動回路2よりも、大きな巻線誤差を補償することができる。
 図12に示すレーザダイオード駆動回路2では、第1の可変インダクタ71aが第1の電源配線14aに挿入されている。
 第1の可変インダクタ71aを第1の電源配線14aに挿入する代わりに、第1のインダクタ17aとして、可変インダクタを用いるレーザダイオード駆動回路2であってもよい。
 レーザダイオード駆動回路2が、第1のインダクタ17aとして、可変インダクタを用いる場合、第1のインダクタ17a及び第2のインダクタ17bにおけるそれぞれのコイルの巻線誤差が補償されるように、第1のインダクタ17aのインダクタンスLが調整される。したがって、第1の可変インダクタ71aが第1の電源配線14aに挿入されている場合と同様に、それぞれのコイルの巻線誤差を補償することができる。
 また、第1の可変インダクタ71aを第1の電源配線14aに挿入する代わりに、第2のインダクタ17bとして、可変インダクタを用いるレーザダイオード駆動回路2であってもよい。また、第1の可変インダクタ71aを第1の電源配線14aに挿入する代わりに、第1のインダクタ17aとして、可変インダクタを用い、かつ、第2のインダクタ17bとして、可変インダクタを用いるレーザダイオード駆動回路2であってもよい。
 図15は、実施の形態2に係る他のレーザダイオード駆動回路2を示す構成図である。
 図15に示すレーザダイオード駆動回路2では、第1のインダクタ17a及び第2のインダクタ17bの双方が、可変インダクタである。
 図12から図15に示すレーザダイオード駆動回路2では、第1のコンデンサ16aが可変コンデンサであって、第2のコンデンサ16bが固定コンデンサである。しかし、これは一例に過ぎず、第1のコンデンサ16aが固定コンデンサであって、第2のコンデンサ16bが可変コンデンサであってもよい。
 また、第1のコンデンサ16a及び第2のコンデンサ16bの双方が、可変コンデンサであってもよい。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明は、レーザダイオードを備えるレーザダイオード駆動回路及び通信装置に適している。
 1 送信機、2 レーザダイオード駆動回路、3 差動入出力端子、3a 第1の入出力端子、3b 第2の入出力端子、11 レーザダイオード、11a アノード端子、11b カソード端子、12 差動線路、12a 第1の信号線路、12b 第2の信号線路、13 直流電源、13a プラス側端子、13b マイナス側端子、14a,14a-1,14a-2 第1の電源配線、14b,14b-1,14b-2,14b-3 第2の電源配線、15a,15b バイアスティ、16a 第1のコンデンサ、16b 第2のコンデンサ、17a 第1のインダクタ、17b 第2のインダクタ、21 第1の寄生容量、22 第2の寄生容量、23 第3の寄生容量、24 第4の寄生容量、50 基板、50a 1層目、50b 2層目、51a ビア、51b ビア、52a 導体、52b 導体、61 抵抗、62 保護回路、62a,62b ツェナーダイオード、71a 第1の可変インダクタ、71b 第2の可変インダクタ。

Claims (8)

  1.  レーザダイオードと、
     一端が前記レーザダイオードのアノード端子と接続されている第1の信号線路及び一端が前記レーザダイオードのカソード端子と接続されている第2の信号線路のそれぞれを有している差動線路と、
     一端が直流電源のプラス側端子と接続され、他端が前記アノード端子と接続されている第1の電源配線と、
     一端が前記直流電源のマイナス側端子と接続され、他端が前記カソード端子と接続されている第2の電源配線と、
     前記第1の信号線路に挿入されている第1のコンデンサと、
     前記第2の信号線路に挿入されている第2のコンデンサとを備え、
     前記第1のコンデンサ及び前記第2のコンデンサのうち、少なくとも1つのコンデンサが、可変コンデンサであることを特徴とするレーザダイオード駆動回路。
  2.  前記第1の電源配線と前記第1の信号線路との間に形成される寄生容量が第1の寄生容量、前記第1の電源配線と前記第2の信号線路との間に形成される寄生容量が第2の寄生容量、前記第2の電源配線と前記第1の信号線路との間に形成される寄生容量が第3の寄生容量、前記第2の電源配線と前記第2の信号線路との間に形成される寄生容量が第4の寄生容量であり、
     前記可変コンデンサは、前記第1のコンデンサの静電容量と前記第1の寄生容量との合成容量と、前記第2のコンデンサの静電容量と前記第4の寄生容量との合成容量とが等しく、かつ、前記第1のコンデンサの静電容量と前記第3の寄生容量との合成容量と、前記第2のコンデンサの静電容量と前記第2の寄生容量との合成容量とが等しくなるように、調整可能なものであることを特徴とする請求項1記載のレーザダイオード駆動回路。
  3.  前記第1の電源配線に挿入されている第1のインダクタと、
     前記第2の電源配線に挿入されている第2のインダクタとを備えたことを特徴とする請求項1記載のレーザダイオード駆動回路。
  4.  前記第1の電源配線に挿入されている第1の可変インダクタを備え、
     前記第1の可変インダクタは、前記第1のインダクタ及び前記第2のインダクタにおけるそれぞれのコイルの巻線誤差が補償されるように、調整可能なものであることを特徴とする請求項3記載のレーザダイオード駆動回路。
  5.  前記第2の電源配線に挿入されている第2の可変インダクタを備え、
     前記第2の可変インダクタは、前記第1のインダクタ及び前記第2のインダクタにおけるそれぞれのコイルの巻線誤差が補償されるように、調整可能なものであることを特徴とする請求項3記載のレーザダイオード駆動回路。
  6.  前記第1の電源配線に挿入されている第1の可変インダクタと、
     前記第2の電源配線に挿入されている第2の可変インダクタとを備え、
     前記第1の可変インダクタのインダクタンス及び前記第2の可変インダクタのインダクタンスのそれぞれは、前記第1のインダクタ及び前記第2のインダクタにおけるそれぞれのコイルの巻線誤差が補償されるように、調整可能なものであることを特徴とする請求項3記載のレーザダイオード駆動回路。
  7.  前記第1のインダクタ及び前記第2のインダクタのうち、少なくとも1つのインダクタが、可変インダクタであり、
     前記可変インダクタは、前記第1のインダクタ及び前記第2のインダクタにおけるそれぞれのコイルの巻線誤差が補償されるように、調整可能なものであることを特徴とする請求項3記載のレーザダイオード駆動回路。
  8.  レーザダイオード駆動回路を備える通信装置であり、
     前記レーザダイオード駆動回路は、
     レーザダイオードと、
     一端が前記レーザダイオードのアノード端子と接続されている第1の信号線路及び一端が前記レーザダイオードのカソード端子と接続されている第2の信号線路のそれぞれを有している差動線路と、
     一端が直流電源のプラス側端子と接続され、他端が前記アノード端子と接続されている第1の電源配線と、
     一端が前記直流電源のマイナス側端子と接続され、他端が前記カソード端子と接続されている第2の電源配線と、
     前記第1の信号線路に挿入されている第1のコンデンサと、
     前記第2の信号線路に挿入されている第2のコンデンサとを備え、
     前記第1のコンデンサ及び前記第2のコンデンサのうち、少なくとも1つのコンデンサが、可変コンデンサであることを特徴とする通信装置。
PCT/JP2019/003856 2019-02-04 2019-02-04 レーザダイオード駆動回路及び通信装置 WO2020161769A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980090571.XA CN113348638A (zh) 2019-02-04 2019-02-04 激光二极管驱动电路及通信装置
PCT/JP2019/003856 WO2020161769A1 (ja) 2019-02-04 2019-02-04 レーザダイオード駆動回路及び通信装置
EP19914402.3A EP3905550A4 (en) 2019-02-04 2019-02-04 LASER DIODE DRIVER CIRCUIT AND COMMUNICATION DEVICE
JP2020567272A JP6861920B2 (ja) 2019-02-04 2019-02-04 レーザダイオード駆動回路及び通信装置
US17/369,539 US20210336413A1 (en) 2019-02-04 2021-07-07 Laser diode drive circuit and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/003856 WO2020161769A1 (ja) 2019-02-04 2019-02-04 レーザダイオード駆動回路及び通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/369,539 Continuation US20210336413A1 (en) 2019-02-04 2021-07-07 Laser diode drive circuit and communication device

Publications (1)

Publication Number Publication Date
WO2020161769A1 true WO2020161769A1 (ja) 2020-08-13

Family

ID=71947525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003856 WO2020161769A1 (ja) 2019-02-04 2019-02-04 レーザダイオード駆動回路及び通信装置

Country Status (5)

Country Link
US (1) US20210336413A1 (ja)
EP (1) EP3905550A4 (ja)
JP (1) JP6861920B2 (ja)
CN (1) CN113348638A (ja)
WO (1) WO2020161769A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01281782A (ja) * 1988-05-07 1989-11-13 Hamamatsu Photonics Kk 光源駆動装置
JP2005252783A (ja) 2004-03-05 2005-09-15 Mitsubishi Electric Corp 光送信機
JP2006261461A (ja) * 2005-03-17 2006-09-28 Ricoh Co Ltd 発光素子アレイ、発光素子基板、面発光レーザ、光走査装置および画像形成装置
JP2008311524A (ja) * 2007-06-15 2008-12-25 Sumitomo Electric Ind Ltd 半導体レーザ駆動回路
WO2015107729A1 (ja) * 2014-01-17 2015-07-23 住友電気工業株式会社 駆動回路および宅側装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5982793A (en) * 1996-05-20 1999-11-09 Matsushita Electric Industrial Co., Ltd. Semiconductor laser module with internal matching circuit
EP1289081A1 (en) * 2001-09-03 2003-03-05 Agilent Technologies, Inc. (a Delaware corporation) Laser driver circuit and method of driving a laser therewith
US7049759B2 (en) * 2001-12-06 2006-05-23 Linear Technology Corporation Circuitry and methods for improving the performance of a light emitting element
JP2011142173A (ja) * 2010-01-06 2011-07-21 Sumitomo Electric Ind Ltd 制御回路及びレーザダイオード駆動回路
US9054485B1 (en) * 2014-09-17 2015-06-09 Hong Kong Applied Science & Technology Research Institute Company, Ltd. Asymmetric edge compensation of both anode and cathode terminals of a vertical-cavity surface-emitting laser (VCSEL) diode
JP2017028043A (ja) * 2015-07-21 2017-02-02 住友電気工業株式会社 レーザ駆動回路
TWI750216B (zh) * 2016-08-30 2021-12-21 美商Macom技術方案控股公司 具分散式架構之驅動器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01281782A (ja) * 1988-05-07 1989-11-13 Hamamatsu Photonics Kk 光源駆動装置
JP2005252783A (ja) 2004-03-05 2005-09-15 Mitsubishi Electric Corp 光送信機
JP2006261461A (ja) * 2005-03-17 2006-09-28 Ricoh Co Ltd 発光素子アレイ、発光素子基板、面発光レーザ、光走査装置および画像形成装置
JP2008311524A (ja) * 2007-06-15 2008-12-25 Sumitomo Electric Ind Ltd 半導体レーザ駆動回路
WO2015107729A1 (ja) * 2014-01-17 2015-07-23 住友電気工業株式会社 駆動回路および宅側装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3905550A4

Also Published As

Publication number Publication date
JPWO2020161769A1 (ja) 2021-04-01
JP6861920B2 (ja) 2021-04-21
CN113348638A (zh) 2021-09-03
US20210336413A1 (en) 2021-10-28
EP3905550A1 (en) 2021-11-03
EP3905550A4 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
US10187117B2 (en) Receiving circuit and signal receiving method
US20080315925A1 (en) Isolator circuit including a voltage regulator
WO2010095368A1 (ja) 受信回路及び信号受信方法
US12101137B2 (en) Magnetic coupling device and communication system
KR102071480B1 (ko) 전류 보상 장치
KR102505193B1 (ko) 전류 보상 장치
US20020117318A1 (en) Method and apparatus for reducing radiant noise energy
WO2020161769A1 (ja) レーザダイオード駆動回路及び通信装置
KR102500177B1 (ko) 전류 보상 장치
US20200075225A1 (en) Magnetic coupler and communication system
KR102694597B1 (ko) 전류 보상 장치
KR102663720B1 (ko) 전류 보상 장치
KR102611393B1 (ko) 전류 보상 장치
KR102607200B1 (ko) Vscc 능동 emi 필터
KR102242048B1 (ko) 전류 보상 장치
KR102258198B1 (ko) 전류 보상 장치
KR20240062223A (ko) 능동형 누설 전류 보상 장치
KR20230168997A (ko) Vscc 능동 emi 필터
JP2008312012A (ja) ループアンテナ
JP2010103944A (ja) 伝送回路
JP2011243858A (ja) 半導体発光素子駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914402

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020567272

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019914402

Country of ref document: EP

Effective date: 20210730