WO2020159317A1 - Gas processing system and ship including same - Google Patents

Gas processing system and ship including same Download PDF

Info

Publication number
WO2020159317A1
WO2020159317A1 PCT/KR2020/001535 KR2020001535W WO2020159317A1 WO 2020159317 A1 WO2020159317 A1 WO 2020159317A1 KR 2020001535 W KR2020001535 W KR 2020001535W WO 2020159317 A1 WO2020159317 A1 WO 2020159317A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquefied gas
fuel
gas
tank
pressure
Prior art date
Application number
PCT/KR2020/001535
Other languages
French (fr)
Korean (ko)
Inventor
김현석
권혁장
노재욱
노일용
백성훈
서석용
손재욱
안국진
오민석
오석우
유지헌
이근보
이동진
이상봉
이병주
이태우
임지윤
정상욱
한범우
한상호
Original Assignee
현대중공업 주식회사
한국조선해양 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190109688A external-priority patent/KR102242212B1/en
Application filed by 현대중공업 주식회사, 한국조선해양 주식회사 filed Critical 현대중공업 주식회사
Priority to CN202080004018.2A priority Critical patent/CN112437738B/en
Priority to JP2021504194A priority patent/JP7357670B2/en
Publication of WO2020159317A1 publication Critical patent/WO2020159317A1/en
Priority to PH12021550158A priority patent/PH12021550158A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/14Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed pressurised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a gas treatment system and a ship including the same.
  • liquefied petroleum gas that is, LPG (Liquefied petroleum gas) is a liquefied by pressurizing the gas at room temperature as a main component of hydrocarbons having a low boiling point, such as propane and butane.
  • the liquefied petroleum gas is filled into a small, lightweight pressure vessel (cylinder), and is widely used as fuel for household, business, industrial, and automobile applications.
  • Liquefied petroleum gas is extracted in gaseous form at the production site, liquefied and stored through a liquefied petroleum gas treatment facility, and then transported to the land while maintaining the liquid phase by the liquefied petroleum gas carrier, and then supplied to customers in various forms such as gas do.
  • the liquefied petroleum gas carrier for transporting liquefied petroleum gas Since the boiling point of such liquefied petroleum gas is about -50°C, the liquefied petroleum gas carrier for transporting liquefied petroleum gas must maintain a temperature lower than this. Therefore, the storage tank for storing liquefied petroleum gas uses low temperature carbon steel and nickel steel resistant to low temperature, and a reliquefaction facility is also provided on the liquefied petroleum gas carrier.
  • Such a liquefied petroleum gas carrier has generated propulsion by operating an engine using diesel oil in the conventional case.
  • diesel oil generates nitrogen oxides (NOx), sulfur oxides (SOx), and carbon dioxide (CO2), which are harmful components in the process of combustion in a ship-propelled engine, and these harmful components are released into the atmosphere, thereby contaminating the environment. have.
  • NOx nitrogen oxides
  • SOx sulfur oxides
  • CO2 carbon dioxide
  • the present invention was created to solve the problems of the prior art as described above, and an object of the present invention is to provide a gas treatment system capable of generating propulsion using liquefied petroleum gas and a ship including the same.
  • Gas processing system a storage tank for storing liquefied gas; Propulsion engine using liquefied petroleum gas as fuel; A fuel supply line for supplying liquefied gas from the storage tank to the propulsion engine; And a fuel recovery line for recovering excess liquid liquefied gas discharged from the propulsion engine, wherein the fuel supply line is provided with a high pressure pump and a heat exchanger provided upstream of the high pressure pump to change the temperature of the liquefied gas.
  • the heat exchanger has a gas processing system characterized by exchanging liquefied gas supplied from the storage tank to the propulsion engine and liquefied gas recovered from the fuel recovery line.
  • the heat exchanger may be a three-stream structure having a stream through which liquefied gas supplied from the storage tank to the propulsion engine flows, a stream through which liquefied gas recovered from the fuel recovery line flows, and a stream through which heat exchange medium flows. have.
  • the fuel recovery line delivers liquid liquefied gas to the high pressure pump
  • the heat exchanger cools the liquefied gas of the fuel recovery line with liquefied gas and a heat exchange medium supplied to the propulsion engine to the high pressure pump. It can be brought into the liquid phase.
  • the fuel recovery line is provided with a pressure reducing valve for depressurizing the liquid liquefied gas, and the heat exchanger may cool the decompressed liquefied gas to flow into the high pressure pump as a liquid.
  • a mixer that is provided between the heat exchanger and the high pressure pump, and mixes liquefied gas passing through the heat exchanger and liquefied gas supplied from the storage tank and delivers it to the high pressure pump.
  • the gas treatment system according to the present invention and a ship including the same can move beyond the conventional system using only diesel oil, so that liquefied petroleum gas can be used as a propulsive fuel to reduce environmental pollution and increase energy efficiency.
  • FIG. 1 is a conceptual diagram of a gas processing system according to a first embodiment of the present invention.
  • FIG. 2 is a conceptual diagram of a gas processing system according to a second embodiment of the present invention.
  • FIG. 3 is a conceptual diagram of a gas processing system according to a third embodiment of the present invention.
  • FIG. 4 is a conceptual diagram of a gas processing system according to a fourth embodiment of the present invention.
  • FIG. 5 is a conceptual diagram of a gas processing system according to a fifth embodiment of the present invention.
  • FIG. 6 is a conceptual diagram of a gas processing system according to a sixth embodiment of the present invention.
  • FIG. 7 is a conceptual diagram of a gas processing system according to a seventh embodiment of the present invention.
  • FIG. 8 is a conceptual diagram of a gas processing system according to an eighth embodiment of the present invention.
  • FIG. 9 is a conceptual diagram of a gas processing system according to a ninth embodiment of the present invention.
  • FIG. 10 is a conceptual diagram of a gas processing system according to a tenth embodiment of the present invention.
  • FIG. 11 is a conceptual diagram of a gas processing system according to an eleventh embodiment of the present invention.
  • FIG. 12 is a partial side view of a vessel to which a gas treatment system according to a twelfth embodiment of the present invention is applied.
  • FIG. 13 is a partial plan view of a ship to which a gas treatment system according to a twelfth embodiment of the present invention is applied.
  • FIG. 14 is a central sectional view of a vessel to which a gas treatment system according to a thirteenth embodiment of the present invention is applied.
  • 15 is a plan view of a ship to which a gas treatment system according to a 14th embodiment of the present invention is applied.
  • 16 is a conceptual view of a vessel to which a gas processing system according to a fifteenth embodiment of the present invention is applied.
  • 17 is a front sectional view of a vessel to which a gas treatment system according to a fifteenth embodiment of the present invention is applied.
  • the liquefied gas may be LPG in the present specification, but is not limited thereto, and the boiling point is lower than room temperature, forcibly liquefied for storage, and may cover all substances having a calorific value.
  • liquefied gas/evaporation gas is classified based on the state in the tank, and it is noted that the name is not necessarily limited to liquid or gaseous phases.
  • the present invention includes a ship 100 equipped with a gas treatment system 1 described below.
  • the ship 100 is a concept including a gas carrier, a merchant ship carrying cargo or people other than gas, FSRU, FPSO, Bunkering vessel, offshore plant, etc., but it is noted that it may be a liquefied petroleum gas carrier as an example. .
  • PT is a pressure sensor
  • TT is a temperature sensor
  • the measured value by each sensor can be used in various ways without limitation in the operation of the components described below.
  • FIG. 1 is a conceptual diagram of a gas processing system according to a first embodiment of the present invention.
  • the gas processing system 1 includes a fuel storage unit 10, a fuel supply unit 20, a fuel recovery unit 30, and a reliquefaction unit 40. do.
  • the fuel storage unit 10 stores a liquefied gas mainly composed of heavy hydrocarbons.
  • the liquefied gas may be LPG or the like described above, butane, propane, propylene, ethylene, and the like, but is not limited thereto.
  • the fuel storage unit 10 may be a plurality of cargo tanks 11 provided on board the ship 100 when the ship 100 is a gas carrier, and separately when the ship 100 is a ship other than a gas carrier It may be a provided tank or container.
  • the cargo tank 11 is a tank that stores liquefied gas in a low-temperature liquid at atmospheric pressure, and various insulating structures may be added to the wall to prevent vaporization of the liquefied gas.
  • the cargo tank 11 may be a membrane-type tank or a stand-alone tank, and the shape and specifications are not limited.
  • the fuel storage unit 10 has a transfer pump 111 that discharges liquefied gas and delivers it to the fuel supply unit 20.
  • the transfer pump 111 may be provided inside the cargo tank 11 and may be provided in a submerged type submerged in liquefied gas.
  • the transfer pump 111 may be provided only in a part of the plurality of cargo tanks 11.
  • the cargo tank 11 is basically for cargo transportation, and the cargo pump 111a (unloading pump, stripping pump, etc., not shown) for unloading cargo is weak for each cargo tank 11.
  • Two are provided, and at least one of the cargo tanks 11 is used to use liquefied gas stored therein as fuel such as a propulsion engine (E) (ME-LGI) or a power generation engine (DFDE, not shown),
  • E propulsion engine
  • DFDE power generation engine
  • the transfer pump 111 may be added.
  • the liquefied gas stored in the cargo tank 11 no. 4 close to the engine room in which the propulsion engine E is accommodated may be used as fuel for the propulsion engine E, for this purpose 4
  • the transfer pump 111 may be provided only in the cargo tank 11.
  • a plurality of cargo tanks 11 included in the fuel storage unit 10 include a vapor main line (VM) for delivering gaseous liquefied gas and a liquid main line (LM) for delivering liquid liquefied gas (liquid) main) may be provided.
  • VM vapor main line
  • LM liquid main line
  • the gaseous main line VM and the liquid main line LM may be provided to connect at least two or more of the cargo tanks 11 to each other.
  • the main lines (VM, LM) are connected to lines passing through the dome 115 provided in the cargo tank 11, and the lines passing through the dome 115 discharge/recover liquefied gas or evaporation gas. It can be a line. Therefore, the flow direction in the main lines (VM, LM) is not limited to that shown in the drawings, and the direction from the inside of the cargo tank 11 to the outside or the direction from the outside of the cargo tank 11 to the inside is possible. Do.
  • the plurality of cargo tanks 11 may be divided into at least two groups. For example, when four cargo tanks 11 are provided on board, the cargo tanks 11 are divided into two groups.
  • Groups may be classified according to the connection of the main lines (VM, LM), for example, the first group, the second to belong to at least two cargo tanks (11a) connected to each other by the first main line (VM, LM), the second At least two cargo tanks 11b connected to each other by the main lines VM and LM may belong to a second group.
  • the first main line (VM, LM) connecting the cargo tanks (11a) of the first group to each other, the first gaseous main line (VM1) to integrate the gaseous liquefied gas between the plurality of cargo tanks (11a), a plurality of cargo It includes a first liquid main line (LM1) for integrating the liquid liquefied gas between the tank (11a).
  • the liquefied gas stored in the cargo tank 11 may not be used for the propulsion engine E depending on the composition.
  • the liquefied gas is propane or butane
  • propulsion can be obtained by being supplied to the propulsion engine (E) through the fuel supply unit (20) through the transfer pump (111), but when the liquefied gas is propylene, the propulsion engine currently developed With (E), consumption is impossible or undesirable.
  • the four cargo tanks 11 may be divided into two different groups, and the first group and the second group store the same type of liquefied gas, or the first group without the transfer pump 111.
  • the cargo tanks 11a store inadequate liquefied gas as fuel for the propulsion engine E
  • the second group of cargo tanks 11b including the cargo tank 11b provided with the transfer pump 111 is the propulsion engine E
  • liquefied gas suitable for fuel may be stored.
  • the fourth cargo tank 11 is used exclusively for fuel.
  • the fourth cargo tank 11 is connected to the main line (VM, LM) or the fuel supply unit 20 in the group to which it belongs.
  • main lines (VM, LM) communicating the cargo tanks 11 with each other are divided into at least two groups, and the cargo tank 11 for using liquefied gas as fuel belongs to only one group. , There is a burden that the flow through the main lines (VM, LM) allocated to the fuel-only cargo tank 11 should always be guaranteed.
  • a plurality of transfer pumps 111 are installed in the fourth cargo tank 11 dedicated to fuel, and the transfer pumps 111 are provided with a first main line (VM, LM) and a second main. It may be provided to be connected to the lines (VM, LM), respectively.
  • any one of the transfer pump 111 is connected to the main line (VM, LM) (for example, the second liquid main line (LM2)) that is assigned to the group to which the cargo tank 11 dedicated to fuel belongs, while the other One transfer pump 111 may be connected to the main line (VM, LM) (for example, the first liquid main line LM1) assigned to another group to which the cargo tank 11 dedicated to fuel does not belong.
  • VM, LM main line
  • LM1 the first liquid main line
  • the cargo tank 11 used exclusively for fuel is not connected only to the main lines VM and LM allocated to any one group, but is connected to all groups, thereby allowing one cargo tank ( 11) can be used to supply fuel through a plurality of groups. That is, different groups can be provided with a structure that backs up the fuel supply to each other.
  • the cargo loading operation method can also be expanded as follows.
  • the cargo tank 11 having the transfer pump 111 belongs to the same group as below, and it is possible to store the same or different liquefied gas from the cargo tank 11 without the transfer pump 111.
  • P means propylene
  • B means butane.
  • the fuel storage unit 10 of the present embodiment is further provided with a cargo tank 11 that is divided into two groups and a fuel-only cargo tank 11 belonging to any one group, and furthermore, a fuel-only cargo tank 11
  • a cargo tank 11 that is divided into two groups and a fuel-only cargo tank 11 belonging to any one group
  • a fuel-only cargo tank 11 By having a structure that is also connected to the main lines (VM, LM) allocated to other groups, it is possible to ensure that there is no interruption in fuel supply even if a problem occurs in the delivery of liquefied gas by any one group.
  • the fuel supply unit 20 supplies the liquefied gas of the fuel storage unit 10 to the propulsion engine E of the ship 100 in a liquid state, and for this purpose, the fuel supply unit 20 propels from the main lines (VM, LM) It has a fuel supply line (L20) connected to the engine (E).
  • the fuel supply unit 20 supplies LPG or the like to the propulsion engine E in a liquid state.
  • the propulsion engine (E) may be an LPG engine such as ME-LGI developed by MAN, but is not limited thereto and may include all engine products that can consume LPG.
  • the state of the liquid liquefied gas that the fuel supply unit 20 pressurizes and supplies to the propulsion engine E is specifically at a critical pressure (hereinafter, the critical pressure is not a critical pressure inherent to the liquefied gas, but is at room temperature (over 20 degrees Celsius). Note that it may be an expression that means a pressure that does not vaporize at .) It may be a supercooled state that is above and below a critical temperature. That is, in the present specification, the liquid phase may be an expression encompassing supercooling.
  • the fuel supply unit 20 the temperature (for example, 20 to 50 degrees Celsius) and pressure (eg, 20, for example) required of the liquefied gas delivered through the transfer pump 111 provided in the cargo tank 11 in the propulsion engine E It can be supplied to the propulsion engine (E) according to the (60 ⁇ 60bar), of course, at least a portion of the liquefied gas from the upstream of the propulsion engine (E) can be supplied to other demand sources, such as power generation engine, boiler (B).
  • the conditions of the liquefied gas required by the power generation engine or the like may be different from that of the propulsion engine E.
  • the fuel supply unit 20 may additionally adjust the temperature or pressure of the liquefied gas branched to the power generation engine or the like. It goes without saying that any means can be added.
  • the fuel supply unit 20 includes a heat exchanger 22, a high pressure pump 21, and a filter 23 provided on the fuel supply line L20.
  • the heat exchanger 22 changes the temperature of the liquefied gas. Since the heat exchanger 22 may raise or lower the temperature of the liquefied gas, it may be referred to as a fuel conditioner.
  • the heat exchanger 22 can lower the temperature of the liquefied gas, and enters stable operation In this case, the heat exchanger 22 may increase the temperature of the liquefied gas.
  • the heat exchanger 22 may adjust the temperature of the liquefied gas to a boiling point or less of the liquefied gas so that gaseous liquefied gas does not flow into the high pressure pump 21 provided downstream of the heat exchanger 22.
  • the heat exchanger 22 considering that the lubricating oil used in the propulsion engine (E) is mixed into the liquefied gas returned by the fuel recovery unit 30, the lubricating oil from the liquefied gas flowing into the high pressure pump (21)
  • the temperature of the liquefied gas can be adjusted above the temperature that does not freeze.
  • the heat exchanger 22 when the heat exchanger 22 is mixed with the liquefied gas delivered from the fuel storage unit 10 to the high pressure pump 21 and the liquefied gas delivered from the fuel recovery unit 30 to the high pressure pump 21, the liquefied gas
  • the temperature of the liquefied gas is controlled to be below the boiling point and above the freezing point of the lubricant.
  • the heat exchanger 22 may implement heat exchange with liquefied gas using various heat exchange media supplied through the medium supply line L21.
  • the heat exchange medium may be sea water, fresh water, glycol water, exhaust, etc. It is not limited.
  • the temperature of the liquefied gas heated by the heat exchanger 22 may be different from the required temperature of the propulsion engine E.
  • the heat exchanger 22 controls the heating or cooling of the liquefied gas so that the temperature of the liquefied gas flowing into the propulsion engine E is appropriate in consideration of the temperature rise of the liquefied gas during the pressurization process of the high pressure pump 21. Can.
  • the high pressure pump 21 is provided downstream of the heat exchanger 22 in the fuel supply line L20 and pressurizes the liquefied gas whose temperature is controlled by the heat exchanger 22 to a pressure required by the propulsion engine E. .
  • the pressure required by the propulsion engine (E) may be 20 to 50 bar, but may vary depending on the specifications of the propulsion engine (E).
  • the type of the high pressure pump 21 is not particularly limited, and the high pressure pump 21 may be provided in parallel so that a plurality of high pressure pumps 21 can be backed up to each other as shown in the drawings.
  • the high pressure pump 21 in order to suppress the generation of cavitation (cavitation) in the pressurization process, liquefied gas may be introduced into the liquid.
  • the heat exchanger 22 can control the temperature of the liquefied gas as described above.
  • the pressure of the liquefied gas sucked into the high pressure pump 21 may correspond to the pressure of the liquefied gas discharged by the transfer pump 111. In addition, it can also correspond to the pressure of the liquefied gas decompressed by the pressure reducing valve 31 of the fuel recovery unit 30 to be described later.
  • the suction pressure of the high pressure pump 21 is increased (eg, about 20 bar or more, which is a critical pressure of liquefied gas)
  • the load of the high pressure pump 21 is reduced, while the load of the transfer pump 111 is increased.
  • the degree of decompression by the pressure reducing valve 31 in the fuel recovery unit 30 decreases (a state in which the boiling point is relatively high)
  • the recovered liquefied gas can be prevented from being vaporized.
  • the suction pressure of the high pressure pump 21 is lowered (for example, about 5 to 10 bar below the critical pressure of liquefied gas)
  • the load of the high pressure pump 21 is increased while the load of the transfer pump 111 is reduced.
  • the degree of decompression by the pressure reducing valve 31 is increased (the boiling point is low), and the recovered liquid liquefied gas may be vaporized and flow into the high pressure pump 21.
  • this embodiment can lower the suction pressure of the high pressure pump (21).
  • the suction pressure of the high pressure pump 21 (the discharge pressure of the transfer pump 111) may be 1 to 10 bar.
  • the cooler 32 may be added to the fuel recovery unit 30 to solve this problem. This will be described later.
  • the filter 23 is provided downstream of the high pressure pump 21 in the fuel supply line L20 and filters 23 the liquefied gas pressurized by the high pressure pump 21 to be transmitted to the propulsion engine E.
  • the material that the filter 23 rings on the filter 23 may mean various foreign materials that degrade the efficiency of the propulsion engine E, and the type is not limited.
  • the fuel supply unit 20 may provide a fuel supply valve (not shown) between the filter 23 and the propulsion engine E.
  • a fuel supply valve (not shown) between the filter 23 and the propulsion engine E.
  • the fuel supply valve and the pressure reducing valve 31 of the fuel recovery unit 30 to be described later it can be referred to as consisting of a single train can be referred to as FVT (fuel valve train).
  • the fuel recovery unit 30 recovers the excess liquid liquefied gas mixed with the lubricating oil discharged from the propulsion engine E.
  • the propulsion engine (E) (ME-LGI, etc.) in the present invention receives LPG, etc. in liquid form and consumes excess liquid fuel. It has a structure to discharge.
  • the liquefied gas recovered from the propulsion engine (E) is not liquefied gas before entering the propulsion engine (E), but liquefied gas that has passed through the interior of the propulsion engine (E), which corresponds to the required pressure of the propulsion engine (E). While having a temperature/pressure condition (eg, around 45 bar, 50 degrees C or more), lubricating oil used in the propulsion engine E may be mixed inside the liquefied gas.
  • the fuel recovery unit 30 since the surplus liquefied gas recovered by the fuel recovery unit 30 is mixed with lubricating oil, it is preferable that the fuel recovery unit 30 does not deliver the liquefied gas to the cargo tank 11 to prevent cargo contamination. . That is, the fuel recovery unit 30 may transfer the liquid liquefied gas to the high-pressure pump 21 instead of the cargo tank 11 so as to be re-introduced into the propulsion engine E.
  • the fuel recovery unit 30 includes a fuel recovery line L30 extending from the propulsion engine E, and includes a pressure reducing valve 31 and a cooler 32 provided in the fuel recovery line L30.
  • the pressure reducing valve 31 decompresses the liquid liquefied gas.
  • the pressure reducing valve 31 may be a Joule-Thomson valve, and may be provided to constitute a fuel supply train (FVT) together with the fuel supply valve of the fuel supply unit 20 as described above.
  • FVT fuel supply train
  • the pressure reducing valve 31 can reduce the liquefied gas of high pressure (about 30 to 50 bar or so) recovered from the propulsion engine E to match the suction pressure of the high pressure pump 21.
  • a critical pressure for example, 20 bar or more
  • the suction pressure of the high-pressure pump 21 is higher than the intergranular pressure, and the components upstream of the transfer pump 111 and the high-pressure pump 21 must be set to an expensive specification suitable for a critical pressure or higher.
  • the pressure reducing valve 31 can reduce the liquefied gas above the critical pressure to a pressure below the critical pressure (for example, 1 to 10 bar), thereby lowering the suction pressure of the high pressure pump 21, thereby transferring the pump
  • the discharge pressure of (111) is set to be below the critical pressure in response to the pressure drop of the pressure reducing valve (31), so that the transfer pump (111) and the fuel supply line (L20) upstream of the high pressure pump (21) are relatively low pressure It can be installed with low-cost specifications tailored to.
  • the boiling point of the liquefied gas is lowered due to the pressure drop.
  • the liquefied gas recovered from the propulsion engine (E) is heated to the required temperature of the propulsion engine (E) and further heated while passing through the propulsion engine (E). Since it can be in a state (around 60 degrees C), the liquefied gas can be vaporized when decompressed.
  • the recovered liquefied gas may be partially liquefied again while being mixed with the liquefied gas supplied through the fuel supply unit 20, but it is clear that a cavitation problem may occur when the gaseous liquefied gas flows into the high pressure pump 21. Therefore, a cooler 32 is provided downstream of the pressure reducing valve 31 in the fuel recovery line L30 to prevent vaporization of liquefied gas.
  • the cooler 32 cools the decompressed liquefied gas to flow into the high pressure pump 21 as a liquid.
  • the cooler 32 may utilize various refrigerants that are not limited, and may cool the liquefied gas below the boiling point of the decompressed liquefied gas.
  • Cooling by the cooler 32 may be achieved in consideration of mixing with liquefied gas delivered from the fuel storage unit 10 to the high pressure pump 21, so the cooler 32 is somewhat higher than the boiling point of the decompressed liquefied gas. Control of cooling the liquefied gas to a temperature is also possible.
  • the liquid phase (or the state close to the liquid phase) liquefied gas cooled by the cooler 32 is mixed upstream of the high pressure pump 21 in the fuel supply line L20 through the fuel recovery line L30, and the fuel recovery line ( A mixer (not shown) may be provided at a point where L30) is connected to the fuel supply line L20.
  • this embodiment allows the liquefied gas to be recovered to be decompressed below the critical pressure by the pressure reducing valve 31, thereby lowering the specifications of the components provided upstream of the high pressure pump 21, as well as the installation cost, operation, maintenance, and maintenance.
  • the effect of reducing all costs can be achieved.
  • the fuel recovery unit 30, the fuel recovery line (L30) may be provided to have a partially parallel structure, a collection tank 34 (collecting tank) is provided on one side in the parallel fuel recovery line (L30) , Vent mast 36 is connected to the collection tank 34.
  • the fuel recovery line (L30) is branched downstream from the pressure reducing valve (31) and is partially composed in parallel and then joined again to be connected to the fuel supply line (L20), and the collection tank (34) is downstream of the pressure reducing valve (31). Is placed.
  • the collection tank 34 may store a portion of the liquefied gas recovered through the fuel recovery unit 30, wherein the liquefied gas delivered to the collection tank 34 is the flow rate of the liquefied gas supplied from the fuel storage unit 10 And the required flow rate of the propulsion engine (E), the state of the liquefied gas recovered, and the like can be determined in general. For example, if the flow rate of the liquefied gas recovered is large, at least a portion of the liquefied gas may be temporarily stored in the collection tank 34.
  • the collection tank 34 may be provided for purging.
  • the purging gas is injected from the outside to the fuel supply unit 20 and the like, and the purging gas passing through the propulsion engine E is recovered through the fuel recovery line L30 and transferred to the collection tank 34.
  • the purging gas may be discharged to the outside using a vent mast 36 connected to the collection tank 34.
  • the vent mast 36 is connected from the collection tank 34 through a vent line L32, and can vent liquefied gas or the like to an outside in an abnormal driving situation in which a vent is required, such as an operation stop of the propulsion engine E. .
  • the collection tank 34 may receive liquefied gas in abnormal operation and discharge it to the vent mast 36.
  • vent mast 36 may be used as a configuration to implement purging by discharging the purging gas circulated to the collection tank 34 to the outside when purging the fuel supply unit 20 or the like.
  • the reliquefaction unit 40 liquefies the boil-off gas generated in the fuel storage unit 10 and returns it to the fuel storage unit 10.
  • the reliquefaction unit 40 may include a liquefier 41 that cools the evaporation gas to a boiling point or lower using various refrigerants.
  • the liquefier 41 is liquefied by cooling the evaporation gas using nitrogen, a mixed refrigerant (MR), or the like.
  • the re-liquefaction line L40 may be connected to the liquefier 41 from the cargo tank 11 that is the fuel storage unit 10.
  • gaseous vaporized gas discharged through the vapor phase main line (VM) of the cargo tank (11) can flow, and the liquefier (41)
  • the liquefied liquid vaporized gas cooled by the liquefier 41 may flow.
  • a compressor (not shown) that increases the boiling point of the evaporated gas may be disposed on the reliquefaction line L40 between the cargo tank 11 and the liquefier 41.
  • a pressure reducer may be omitted in the reliquefaction line L40 between the liquefier 41 and the cargo tank 11, which is the cargo tank 11 through the reliquefaction line L40. This is because decompression can be naturally performed as the evaporation gas is returned to the cargo tank 11, which is a bulky space.
  • the reliquefaction line (L40) connected from the liquefier (41) to the cargo tank (11) can transmit liquid vaporized gas into the cargo tank (11) through the liquid main line (LM) provided in the cargo tank (11).
  • the liquid vaporized gas may be delivered to the lower side to be injected into the liquefied gas in the cargo tank 11 or sprayed on the vaporized gas generated in the cargo tank 11 to be sprayed from the upper side to reduce the emission amount of the vaporized gas.
  • the manner in which the liquid vaporized gas is returned in the cargo tank 11 is not limited to the above.
  • the fuel supply unit 20 supplies the liquefied gas stored in the fuel storage unit 10 to the propulsion engine E as a liquid
  • the liquid liquefied gas is recovered from the propulsion engine E
  • the liquefied gas By reducing the pressure to below the critical pressure, the specification of the upstream portion of the high pressure pump 21 can be significantly reduced, while stable operation is possible by preventing liquefied gas from entering the high pressure pump 21 in the gas phase.
  • FIG. 2 is a conceptual diagram of a gas processing system according to a second embodiment of the present invention.
  • the fuel recovery unit 30 may include a gas-liquid separation unit 35.
  • the gas-liquid separator 35 is provided downstream of the pressure-reducing valve 31 in the fuel recovery line L30 to separate the decompressed liquefied gas into gas-liquid so that only the liquid is introduced into the high-pressure pump 21.
  • the gas-liquid separator 35 may be provided in a partially expanded form of a part of the fuel recovery line L30 in which liquefied gas is recovered, or in a container form for separating gas and liquid using a density difference. .
  • the pressure reducing valve 31 of the fuel recovery unit 30 decompresses the liquefied gas to a critical pressure or less, the liquefied gas is in a state that can be vaporized according to the temperature.
  • the temperature of the liquefied gas recovered through the propulsion engine (E) is high, the liquefied gas may be vaporized even if the temperature is partially reduced during decompression, which causes cavitation in the high pressure pump (21) through which the liquefied gas flows. It becomes a problem.
  • cooler 32 for cooling the liquefied gas downstream of the pressure reducing valve 31, but this embodiment replaces the gas-liquid separator 35 in the cooler 32 for more stable operation. Or can be used with the cooler 32. When both the cooler 32 and the gas-liquid separator are provided, the cooler 32 may cool the decompressed liquefied gas and transfer it to the gas-liquid separator 35.
  • the gas-liquid separator 35 may separate nitrogen components contained in the liquefied gas to be recovered. Since the nitrogen component is easily vaporized as a substance having a boiling point significantly lower than that of liquefied gas, the gas-liquid separator 35 may separate nitrogen and the like and discharge it to the outside. At this time, the outside may be a source of nitrogen or waiting.
  • the pressure in the gas-liquid separator 35 rises.
  • the gas may naturally condense in the liquid, so the gas-liquid separator 35 can effectively prevent the gas from entering the high-pressure pump 21.
  • the nitrogen component despite the increase in the internal pressure of the gas-liquid separation unit 35, it will not be condensed by the liquid in the gas-liquid separation unit 35. Can be discharged.
  • the discharge of the nitrogen component can be controlled by adjusting the opening degree of the valve according to the internal pressure of the gas-liquid separator 35, the storage level, and the like.
  • the gas-liquid separator 35 provided in the form of an extended pipe on the fuel recovery line L30, only the liquid is returned to the high-pressure pump 21, thereby improving the cavitation of the high-pressure pump 21. Can be suppressed.
  • the gas-liquid separation unit 35 may be used to separate nitrogen components.
  • the degree to which the pressure-reducing valve 31 decompresses the liquefied gas may be greater than or equal to a critical pressure or lower than a critical pressure in the present invention.
  • various means for preventing vaporization may be used. .
  • FIG. 3 is a conceptual diagram of a gas processing system according to a third embodiment of the present invention.
  • the heat exchanger 22 of the fuel supply unit 20 may be configured differently from the previous embodiment.
  • the heat exchanger 22 is the same as in the previous embodiment in that it changes the temperature of the liquefied gas supplied from the fuel storage unit 10 to the propulsion engine E.
  • the heat exchanger 22 of the present embodiment may utilize liquefied gas recovered through the fuel recovery unit 30 for heat exchange.
  • the heat exchanger 22 may exchange heat between the liquefied gas supplied from the fuel storage unit 10 to the propulsion engine E and the liquefied gas recovered from the fuel recovery unit 30. In this case, the heat exchanger 22 cools the liquefied gas of the fuel recovery unit 30 with the liquefied gas supplied to the propulsion engine E, so as to flow into the high pressure pump 21 as a liquid.
  • this embodiment may use (additionally) the heat exchanger 22.
  • the heat exchanger 22 cools the liquefied gas decompressed by the pressure reducing valve 31 of the fuel recovery unit 30 to flow into the high pressure pump 21 as a liquid, thereby causing cavitation in the high pressure pump 21. It is possible to prevent.
  • the heat exchanger 22 may further utilize heat exchange media by further heat-exchanging the recovered liquefied gas with the liquefied gas delivered from the fuel storage unit 10.
  • the heat exchanger 22 includes a stream (connected to the fuel supply line L20) through which liquefied gas supplied from the fuel storage unit 10 to the propulsion engine E flows, and liquefaction recovered from the fuel recovery unit 30 It may be at least three-stream structure having a stream through which the gas flows (connected to the fuel recovery line L30) and a stream through which the heat exchange medium flows.
  • the heat exchanger 22 may be of a fin-tube type or a PCHE type, and is preferably provided of a PCHE type to increase space utilization. This applies to all configurations that implement heat exchange within this specification.
  • a mixer 33 may be provided downstream of the heat exchanger 22 based on the fuel recovery line L30.
  • the mixer 33 is provided between the heat exchanger 22 and the high-pressure pump 21 based on the fuel supply line L20, and is supplied from the liquefied gas passing through the heat exchanger 22 and the fuel storage unit 10 The liquefied gas is mixed and transferred to the high pressure pump 21.
  • the high temperature liquefied gas recovered from the propulsion engine E may be cooled while directly meeting the low temperature liquefied gas delivered from the fuel storage unit 10, but in this case, it is recovered due to rapid cooling. There is a risk that the lubricating oil contained in the liquefied gas freezes.
  • the temperature drop is implemented stepwise so that the recovered liquefied gas is cooled by the low temperature liquefied gas and then mixed with the low temperature liquefied gas, thereby preventing freezing due to rapid cooling of the lubricant.
  • the present embodiment allows the liquefied gas recovered from the propulsion engine E to be cooled while being heat exchanged and mixed by the liquefied gas delivered from the fuel storage unit 10, and then recovered from the propulsion engine E to obtain a high pressure pump.
  • the high pressure pump 21 can be protected by making the liquefied gas re-introduced to (21) into a liquid phase.
  • FIG. 4 is a conceptual diagram of a gas processing system according to a fourth embodiment of the present invention.
  • the heat exchanger 22 of the fuel supply unit 20 is disposed differently from the previous third embodiment.
  • the temperature control of the liquefied gas is made upstream of the high pressure pump 21, whereas in the case of the present embodiment, the temperature control of the liquefied gas is made downstream of the high pressure pump 21 similar to the LNG fuel supply system well known in the art. Can.
  • the heat exchanger 22 of the present embodiment may be provided downstream of the high pressure pump 21 in the fuel supply line L20, as opposed to the third embodiment.
  • the heat exchanger 22 may heat-exchange the high-pressure liquefied gas pressurized by the high-pressure pump 21 and the liquefied gas recovered by the fuel recovery unit 30.
  • the heat exchanger 22 heats the high-pressure liquefied gas pressurized by the high-pressure pump 21 to a critical pressure or higher with the liquefied gas of the fuel recovery unit 30. Therefore, the present embodiment can reduce the load to heat the liquefied gas supplied to the propulsion engine E, similar to the previous embodiment.
  • the heat exchanger 22 is similar to the previous embodiment, the stream flowing liquefied gas supplied from the fuel storage unit 10 to the propulsion engine E, and the stream flowing liquefied gas recovered from the fuel recovery unit 30 And, of course, it can be provided in a structure of three or more streams having a stream through which the heat exchange medium flows.
  • the heat exchanger 22 of this embodiment cools the liquefied gas recovered from the propulsion engine E and depressurized by the pressure reducing valve 31 with high pressure liquefied gas pressurized by the high pressure pump 21, compared to the previous embodiment Since the degree of cooling may be low, freezing of the lubricant can be sufficiently suppressed.
  • the liquefied gas recovered from the propulsion engine (E) and cooled in the heat exchanger (22) is from the fuel storage unit (10) through the mixer (33) provided upstream of the high pressure pump (21) in the fuel recovery line (L30). It can be mixed with the liquefied gas to be transferred, and can be in a state (liquid phase) that does not have any problem in the flow into the high pressure pump 21 while being mixed.
  • the mixer 33 is provided upstream of the high pressure pump 21 and mixes the liquefied gas passing through the heat exchanger 22 and the liquefied gas supplied from the fuel storage unit 10 (mostly) a high pressure pump in a liquid state (21).
  • the liquefied gas recovered using the liquefied gas downstream of the high-pressure pump 21 may be cooled, and the liquefied gas flowing into the high-pressure pump 21 may be cooled. Vapor production can be suppressed.
  • FIG. 5 is a conceptual diagram of a gas processing system according to a fifth embodiment of the present invention.
  • the arrangement of the collection tank 34 provided in the fuel recovery unit 30 may be different from the previous embodiments.
  • the collection tank 34 receives the recovered liquefied gas and temporarily stores it. While the collection tank 34 is provided in the fuel recovery line L30, in the case of the previous embodiment, the portion where the collection tank 34 is provided in the fuel recovery line L30 is provided at least partially in parallel, whereas in the present embodiment A collection tank 34 may be provided at a point where the fuel recovery line L30 is connected to the fuel supply line L20.
  • the collection tank 34 is provided at the confluence point of the fuel recovery line L30 and the fuel supply line L20 to implement the function of the mixer 33. Also, the collection tank 34 is provided upstream of the high pressure pump 21 based on the fuel supply line L20, and only the liquid from the liquefied gas flowing into the collection tank 34 can be delivered to the high pressure pump 21. . That is, the collecting tank 34 can also implement the function of the gas-liquid separator 35.
  • the collection tank 34 may include a heater 341 for heating the liquefied gas stored therein. That is, the collection tank 34 may be provided to implement the function of the heat exchanger 22 in addition to the functions of the mixer 33 or the gas-liquid separator 35 described above.
  • the heater 341 may be an in-tank heater provided in the form of a coil inside the collection tank 34, and may use electricity or heat exchange media introduced through a separate medium supply line L31.
  • the collection tank 34 may heat the temporarily stored liquefied gas and transfer it to the high pressure pump 21.
  • the temperature of the liquefied gas heated by the collection tank 34 may be a temperature below the boiling point.
  • the fuel supply unit 20 is provided downstream of the high pressure pump 21 and may further include a heat exchanger 22 to change the temperature of the liquefied gas, and the heat exchanger 22 utilizes a heat exchange medium, Otherwise, the liquefied gas recovered from the fuel recovery unit 30 may be used. In the latter case, the heat exchanger 22 may be provided with a structure of at least two streams for exchanging the liquefied gas supplied from the fuel storage unit 10 to the propulsion engine E and the liquefied gas recovered from the fuel recovery unit 30. Can.
  • the pressure of the liquefied gas delivered to the high pressure pump 21 may be less than or equal to the critical pressure.
  • the pressure reducing valve 31 can reduce the liquefied gas to below the critical pressure, and the flow pressure upstream of the high pressure pump 21 is Since it may be below the critical pressure, the specifications for the components upstream of the high pressure pump 21 can be lowered. At this time, gas inflow into the high pressure pump 21 is prevented by the collecting tank 34.
  • the pressure of the liquefied gas delivered from the collection tank 34 to the high pressure pump 21 may be greater than or equal to a critical pressure at which no vaporization occurs at room temperature.
  • a critical pressure at which no vaporization occurs at room temperature.
  • specifications of the components upstream of the high pressure pump 21 may be increased, but on the other hand, a configuration such as a cooler 32 may be omitted.
  • a vent mast 36 is connected to the collection tank 34 through a vent line L32.
  • the vent mast 36 vents at least a portion of the liquefied gas recovered to the collection tank 34 to the outside, wherein the vent may be made when the system is in an abnormal state or purging.
  • the vent line L32 may be connected to the vent mast 36 from the capture tank 34, and the vent line L32 vents the purging gas recovered into the collection tank 34 after purging of the fuel supply unit 20 and the like. (36). That is, when purging, the purging gas is collected in the collection tank 34 along the fuel recovery line L30 through the fuel supply unit 20 and the propulsion engine E, and then to the vent mast 36 along the vent line L32. It can be processed by being delivered.
  • the configuration of adjusting the temperature of the liquefied gas in the upstream of the high pressure pump 21 and the configuration of mixing the recovered liquefied gas with the liquefied gas supplied from the fuel storage unit 10 are collected in one collection tank 34 ) To simplify the system and significantly reduce installation/maintenance/repair costs.
  • FIG. 6 is a conceptual diagram of a gas processing system according to a sixth embodiment of the present invention.
  • the gas processing system 1 includes a heat exchanger 22, a high pressure pump 21, and a heater on the fuel supply line L20 of the fuel supply unit 20 (24) is provided in turn.
  • this embodiment will be described in comparison with the third embodiment shown in FIG. 3.
  • the fuel supply unit 20 may further include a heater 24 downstream of the high pressure pump 21. That is, the fuel supply unit 20 includes a high pressure pump 21, a heat exchanger 22 provided upstream of the high pressure pump 21 to change the temperature of the liquefied gas, and a heater 24 provided downstream of the high pressure pump 21 It may include.
  • the heat exchanger 22 is configured to cool the liquefied gas decompressed by the pressure reducing valve 31 of the fuel recovery unit 30 to flow into the high pressure pump 21 as a liquid, from the fuel storage unit 10
  • the liquefied gas supplied to the propulsion engine E and the liquefied gas recovered from the fuel recovery unit 30 may be exchanged.
  • the heat exchanger 22 has at least two streams having a stream through which the liquefied gas supplied from the fuel storage unit 10 to the propulsion engine E flows, and a stream through which the liquefied gas recovered from the fuel recovery unit 30 flows. It can be provided with the above structure.
  • the heater 24 heats the liquefied gas downstream of the high pressure pump 21 and changes it according to the required temperature of the propulsion engine E. That is, in the present embodiment, the temperature control of the liquefied gas is made upstream of the high pressure pump 21, and also the temperature control of the liquefied gas can be made downstream of the high pressure pump 21. Liquefaction according to the required temperature of the propulsion engine E Gas temperature control can be achieved primarily in the heater 24 downstream of the high pressure pump 21.
  • the liquefied gas recovered by the fuel recovery unit 30 is transferred to the heat exchanger 22 and cooled in the heat exchanger 22, and then the heat exchanger 22 and the high pressure pump 21 in the fuel supply line L20 Through the mixer 33 provided therebetween, it may be mixed with liquefied gas supplied from the fuel storage unit 10.
  • the fuel recovery unit 30 further includes a bypass line L34 in addition to the fuel recovery line L30 connected to the mixer 33 via the heat exchanger 22 via the pressure reducing valve 31. can do.
  • the bypass line (L34) allows the recovered liquefied gas to be transferred to the liquefied gas supplied to the propulsion engine (E) by bypassing the heat exchanger (22).
  • the bypass line L34 may be connected to the fuel supply line L20 between the mixer 33 and the high pressure pump 21, or may be directly connected to the mixer 33.
  • a bypass valve (not shown) is provided in the bypass line L34, and the bypass can be controlled according to the operation state of the propulsion engine E.
  • the fuel recovery unit 30 transfers liquefied gas to the heat exchanger 22 along the fuel recovery line L30 during normal operation of the propulsion engine E, and liquefied gas during initial operation of the propulsion engine E Bypass the heat exchanger 22 along the bypass line (L34) can be transferred to the high pressure pump (21).
  • the liquefied gas recovered through the fuel recovery unit 30 differs in flow rate and temperature compared to liquefied gas during normal operation (for example, the flow rate is high or the temperature is high). Even without passing through the heat exchanger 22, there may be no risk of freezing of the lubricant.
  • the temperature of the liquefied gas can be efficiently controlled by allowing the liquefied gas recovered in consideration of the operation state of the propulsion engine E to exchange heat with the liquefied gas supplied from the fuel storage unit 10 or bypass heat exchange.
  • bypass line L34 in the fuel recovery line L30, considering the state of liquefied gas discharged from the propulsion engine E during the initial operation of the propulsion engine E, liquefaction is recovered.
  • operational efficiency can be significantly improved.
  • FIG. 7 is a conceptual diagram of a gas processing system according to a seventh embodiment of the present invention.
  • the temperature change of the liquefied gas in both upstream and downstream of the high pressure pump 21 is similar to that in the previous sixth embodiment. It is possible. However, in the case of the previous embodiment, heat exchange between liquefied gas is utilized at least one side of the high pressure pump 21 upstream or downstream, whereas this embodiment may use heat exchange by the heat exchange medium both upstream and downstream of the high pressure pump 21.
  • the fuel supply unit 20 includes a high pressure pump 21, a heat exchanger 22 provided upstream of the high pressure pump 21 to change the temperature of the liquefied gas, and a heater provided downstream of the high pressure pump 21 (24).
  • the pressure-reducing valve 31 of the fuel recovery unit 30 may reduce the recovered liquefied gas to a critical pressure or lower and deliver it to the high-pressure pump 21.
  • a cooler 32 may be provided downstream of the pressure reducing valve 31 to cool the decompressed liquefied gas and flow into the high pressure pump 21 as a liquid.
  • the transfer pump 111 of the fuel storage unit 10, etc. is a high pressure pump of the fuel supply unit 20 ( It is possible to transfer the liquefied gas to 21) below a critical pressure (eg, 6 to 10 bar).
  • this embodiment can significantly reduce the cost by lowering the design pressure of related components. .
  • the temperature of the liquefied gas is at the pressure of the liquefied gas delivered from the fuel storage unit 10. It can be controlled below the boiling point.
  • the heat exchanger 22 sets the temperature of the liquefied gas to a temperature above the freezing point (about -18 degrees C) of the lubricating oil mixed with the liquefied gas of the fuel recovery unit 30. Can be controlled. That is, the heat exchanger 22 controls the temperature of the liquefied gas to the temperature between the boiling point and the freezing point of the lubricant.
  • the heat exchanger 22 has a high-pressure pump by the fuel recovery unit 30. According to the temperature of the liquefied gas delivered to the (21), by controlling the temperature of the liquefied gas delivered from the fuel storage unit 10, it is possible to make the temperature of the liquefied gas flowing into the high pressure pump 21 below the boiling point. . That is, the liquefied gas delivered from the fuel storage unit 10 may be heated to a temperature lower than the boiling point in the heat exchanger 22 by a temperature interval (considering the heating component due to the mixing of the recovered liquefied gas).
  • the heater 24 provided downstream of the high pressure pump 21 may heat the liquefied gas to a required temperature of the propulsion engine E using a heat exchange medium. At this time, the heater 24 is provided in a structure that directly heats the liquefied gas using steam.
  • the temperature control configuration of the liquefied gas provided in the fuel supply line L20 may use steam directly instead of using a heat exchange medium such as glycol water, thereby allowing the entire fuel supply unit 20 to be used.
  • the flow rate of the cycle for supplying the glycol water can be reduced by about 60%, and all related configurations can be reduced.
  • the pressure of the liquefied gas recovered while controlling the temperature of the liquefied gas in both the upstream and downstream of the high pressure pump 21 can be reduced to reduce costs by reducing the specifications of the transfer pump 111 and the heater ( 24)
  • the supply structure of glycol water can be made compact.
  • FIG. 8 is a conceptual diagram of a gas processing system according to an eighth embodiment of the present invention.
  • the fuel storage unit 10 may further include a fuel tank 12 as compared to the previous embodiments, and a configuration related thereto Can be added/modified.
  • the fuel storage unit 10 includes a plurality of cargo tanks 11 for storing liquefied gas as cargo, and a fuel tank 12 for storing the liquefied gas as fuel to be supplied to the propulsion engine E.
  • the liquefied gas stored in the cargo tank 11 is not directly transmitted to the fuel supply unit 20, but instead can be delivered to the fuel tank 12 and then supplied to the propulsion engine E through the fuel tank 12.
  • a liquefied gas replenishing line L12 may be provided from the cargo tank 11 to the fuel tank 12, and a liquefied gas replenishing line L12 is provided with a pump (not shown) to supply the liquefied gas to the cargo tank ( 11) can be delivered to the fuel tank (12).
  • the liquefied gas replenishment line (L12) is provided in the cargo tank 11, so the liquefied gas can be delivered to the fuel tank 12 through the cargo pump 111a used for unloading the liquefied gas. It may not be.
  • Cargo tank 11 has been described above that can be divided into a plurality of groups. At least two groups of cargo tanks 11 among some groups of cargo tanks 11 are liquefied as fuel for propulsion engine E. Gas (such as propylene) may be loaded.
  • Gas such as propylene
  • the fuel tank 12 receives the liquefied gas from the cargo tank 11 loaded with liquefied gas (propane, butane, etc.) suitable as fuel for the propulsion engine E of the cargo tank 11, and the fuel supply unit 20 Can be delivered to.
  • liquefied gas propane, butane, etc.
  • the fuel tank 12 is a standalone type (SPB type, MOSS type) or a membrane type cargo tank 11 that stores liquefied gas in bulk at atmospheric pressure, or a standalone type (Type C, pressure vessel type) that stores liquefied gas at high pressure. Can.
  • the storage pressure of the fuel tank 12 may be about 5 bar or less, which is equal to or less than the critical pressure of the liquefied gas, and an insulating structure may be provided on at least one side of the inside or outside of the wall to prevent vaporization of the liquefied gas.
  • the fuel tank 12 may be mounted on the upper deck 101 in the ship 100, and is provided to be supported on the upper deck 101 through a saddle.
  • the fuel tank 12 does not interfere with components (main line (VM, LM), manifold, etc.) for loading/unloading the liquefied gas of the cargo tank 11 from the upper deck 101, and the ship 100 It may be arranged in a position that does not cover the visibility (visibility) when sailing.
  • the fuel tank 12 may be provided on the starboard side or starboard side of the bow side in the upper deck 101.
  • the fuel tank 12 which is a stand-alone pressure container, can store liquefied gas below a critical pressure.
  • the liquefied gas stored in the fuel tank 12 is supplied with a fuel by the transfer pump 121 provided in the fuel tank 12. It can be delivered to (20).
  • the transfer pump 121 of the fuel tank 12 may have a configuration similar to the transfer pump 111 of the cargo tank 11 described in the previous embodiment.
  • the fuel tank 12 unlike the cargo tank 11, since the storage amount of liquefied gas is small, a sufficient amount of liquefied gas is guaranteed in the fuel tank 12 in order to match the flow rate required by the propulsion engine E. There is a need. To this end, loading of the liquefied gas may be controlled through the liquefied gas replenishing line L12 from the cargo tank 11 to the fuel tank 12 according to the level of the fuel tank 12.
  • the pumping load of the transfer pump 121 in the fuel tank 12 may increase.
  • the internal pressure of the liquefied gas stored in the fuel tank 12 may be lowered.
  • the internal pressure rise unit 122 may be placed in the fuel tank 12.
  • the internal pressure riser 122 may be a pressure build-up unit (PBU) that receives and heats the liquefied gas stored in the fuel tank 12 and injects it back into the fuel tank 12.
  • PBU pressure build-up unit
  • the fuel tank 12 may ensure the suction flow rate of the high pressure pump 21 of the fuel supply unit 20 by using the internal pressure raising unit 122 for heating the stored liquefied gas.
  • the internal pressure riser 122 may be operated according to the outside temperature of the fuel tank 12, the amount of liquefied gas stored in the fuel tank 12, and/or the internal pressure of the fuel tank 12.
  • the re-liquefaction unit 40 of the present embodiment may be provided to re-liquefy all the vaporized gas of the cargo tank 11 and the fuel tank 12.
  • the cargo tank 11 may be loaded with unsuitable propylene or the like as fuel for the propulsion engine E, and liquefaction is also required for the propylene.
  • the cargo tank 11 and the fuel tank 12 share the liquefier 41 of the reliquefaction unit 40, the propylene of the cargo tank 11 is re-liquefied and then remains in the reliquefaction unit 40.
  • the problem that the quality of the liquefied gas in the fuel tank 12 is changed by being recovered to the fuel tank 12 may occur.
  • the present embodiment allows the liquefier 41 of the reliquefaction unit 40 to liquefy and return both the evaporation gas of the cargo tank 11 and the evaporation gas of the fuel tank 12, but is not suitable as fuel.
  • the boil-off gas of the fuel tank 12 flows into the liquefier 41 from the cargo tank 11 within a predetermined range from the liquefier 41. You can make it join the flow.
  • the boil-off gas of the fuel tank 12 liquefied in the liquefier 41 is branched from the flow from the liquefier 41 to the cargo tank 11 from the liquefier 41 within a predetermined range. It can be delivered to the fuel tank (12).
  • the preset range may be a position within 10% of the flow from the cargo tank 11 or the flow toward the cargo tank 11 based on the liquefier 41.
  • the reliquefaction unit 40 is provided with a reliquefaction line (L40) for returning the evaporated gas discharged from the cargo tank 11 to the cargo tank 11 via the liquefier 41, and the fuel tank 12 )
  • a reliquefaction line (L40) for returning the evaporated gas discharged from the cargo tank 11 to the cargo tank 11 via the liquefier 41, and the fuel tank 12
  • a line L41 may be included, and the point where the fuel reliquefaction line L41 joins the reliquefaction line L40 is close to the liquefier 41 side between the cargo tank 11 and the liquefier 41.
  • It may be a position (a position close to within 10% of the liquefier 41), and the point at which the fuel reliquefaction line L41 branches off from the reliquefaction line L40 is also between the liquefier 41 and the cargo tank 11. It may be a position close to the liquefier 41 side (within 10% of the range of the liquefier 41).
  • this embodiment while allowing the boil-off gas of the cargo tank 11 and the fuel tank 12 to share the liquefier 41, the boil-off gas of the cargo tank 11 which is not suitable as fuel for the propulsion engine E
  • the re-liquefaction of the evaporation gas of the fuel tank 12 is prevented from being passed to the fuel tank 12, it is possible to ensure the operation efficiency of the propulsion engine E.
  • the boil-off gas of the fuel tank 12 flowing along the fuel reliquefaction line (L41) may be introduced into the liquefier 41, but partly branches to the boiler (B) to generate steam in the boiler (B). It can help.
  • the boil-off gas of the fuel tank 12 flows into the liquefier 41 independently of the flow flowing from the cargo tank 11 to the liquefier 41 or from the liquefier 41 to the cargo tank 11 It can be discharged from the liquefier 41 independently of the flow to be transmitted, so that liquefied gases of different compositions may not be mixed. That is, the re-liquefaction of the evaporation gas of the cargo tank 11 and the re-liquefaction of the evaporation gas of the fuel tank 12 may be processed at different times (at this time).
  • the fuel tank 12 is installed to allow the liquefied gas to be transmitted from the fuel tank 12 to the propulsion engine E, while smoothly discharging the liquefied gas from the fuel tank 12, When returning the liquefied gas of (12) to liquefaction, it is possible to prevent the fuel quality from being contaminated.
  • FIG. 9 is a conceptual diagram of a gas processing system according to a ninth embodiment of the present invention.
  • the gas treatment system 1 may include at least two fuel tanks 12, which will be described in detail below.
  • the fuel tank 12 is an independent pressure vessel and may have a high pressure fuel tank 12a that stores liquefied gas above a critical pressure, and a low pressure fuel tank 12b that is an independent pressure vessel and stores liquefied gas below a critical pressure. have.
  • the high pressure fuel tank 12a stores liquefied gas at a pressure of about 18 bar or more, so that the liquefied gas is not vaporized in a temperature range applied to the high pressure fuel tank 12a in the course of operating the system. Therefore, (almost) no boil-off gas is generated in the high-pressure fuel tank 12a, and the high-pressure fuel tank 12a may be referred to as a fully-pressurized type.
  • the low pressure fuel tank 12b stores liquefied gas at a pressure of about 5 bar.
  • the low-pressure fuel tank 12b may generate evaporation gas therein according to conditions such as outside temperature, and may be referred to as a semi-pressurized type.
  • the high pressure fuel tank 12a is provided as a specification capable of withstanding high pressure compared to the low pressure fuel tank 12b.
  • the high-pressure fuel tank 12a may have a larger thickness of the insulation structure provided on the wall than the low-pressure fuel tank 12b.
  • the high pressure fuel tank 12a may be designed to have a size equal to or less than a predetermined size in order to be disposed in an empty space on the upper deck 101 of the ship 100 while confining liquefied gas at 18 bar or more. That is, the high-pressure fuel tank 12a may be provided with a capacity (eg, 1,300 m3) that cannot cover 10,000 NM, which is a voyage range generally considered when designing the ship 100.
  • a capacity eg, 1,300 m3
  • the high-pressure fuel tank (12a) is further considering that the storage pressure is higher, the filling limit (for example, around 80%) lower than the 98% filling limit of the cargo tank 11 is set, for the vessel 100 to operate
  • the low pressure fuel tank 12b may be provided to have a larger volume than the high pressure fuel tank 12a.
  • the low-pressure fuel tank 12b may be provided in a volume (for example, about 2,350 m3) that can cover 10,000 NM.
  • a filling limit may be further secured.
  • the reliquefaction unit 40 of this embodiment is provided to re-liquefy the evaporation gas of the cargo tank 11 and the low pressure fuel tank 12b, and the high pressure fuel tank 12a ) May not be connected.
  • the fuel tank 12 is divided into a high-pressure fuel tank 12a and a low-pressure fuel tank 12b, and the high-pressure fuel tank 12a stores liquefied gas at an unvaporized pressure, and the low-pressure fuel tank.
  • the liquefied gas may be stored at a predetermined pressure or higher, and fuel may be supplied using the transfer pump 121 in the high-pressure fuel tank 12a or the low-pressure fuel tank 12b.
  • the pressure of the liquefied gas delivered to the high pressure pump 21 through the transfer pump 121 becomes greater than or equal to the storage pressure of the high pressure fuel tank 12a, the high pressure pump 21 by the fuel recovery unit 30 in connection with this ), the pressure of the liquefied gas recovered may also be greater than or equal to the critical pressure. Therefore, since the liquefied gas that is decompressed and recovered by the fuel recovery unit 30 is not vaporized, a configuration such as a cooler 32 may be omitted.
  • the present embodiment is provided with two fuel tanks 12 for storing liquefied gas at different pressures, so that the fuel tanks 12 can back up to each other, and also the fuel tank 12 (especially the high-pressure fuel tank ( 12a)) may be utilized as a container for storing liquefied gas during maintenance/repair of the cargo tank 11. This will be described in detail in other embodiments below.
  • FIG. 10 is a conceptual diagram of a gas processing system according to a tenth embodiment of the present invention.
  • the gas processing system 1 includes a high-pressure fuel tank 12a and a low-pressure fuel tank 12b while the fuel storage unit 10 has a low-pressure fuel tank.
  • a fuel transmission unit 123 that directly connects the 12b and the high-pressure fuel tank 12a may be provided.
  • the fuel delivery unit 123 delivers liquefied gas through the liquefied gas delivery line L13 connected from the low pressure fuel tank 12b to the high pressure fuel tank 12a.
  • the high-pressure fuel tank 12a stores the liquefied gas at a critical pressure or higher, the generation of the evaporation gas at room temperature is suppressed, so the re-liquefaction section 40 has the evaporation gas and the low-pressure fuel tank of the cargo tank 11 ( It is provided to re-liquefy the boil-off gas of 12b).
  • the boil-off gas generated in the low-pressure fuel tank 12b may be liquefied and returned to the liquefier 41.
  • the re-liquefaction unit 40 generally does not produce electric power to operate ( It is necessary to cope with the occurrence of evaporation gas in the cargo tank 11 or the low-pressure fuel tank 12b, which generates only the minimum power for the hotel load in the ship 100 or receives the minimum power from the land).
  • the liquefied gas of the low pressure fuel tank 12b is pressed into the high pressure fuel tank 12a.
  • the orphan fuel tank 12 to store the liquefied gas or when the accumulator is provided on the propulsion engine E and can be detached with a propeller or clutch, or when the propulsion engine E is an electric propulsion method
  • the fuel delivery unit 123 passes the liquefied gas of the high pressure fuel tank 12a to the low pressure fuel tank 12b, the high pressure fuel tank 12a stores the liquefied gas without vaporization, so the high pressure fuel tank 12a ) Can be omitted.
  • the fuel delivery unit 123 when changing the composition of the liquefied gas stored in the cargo tank 11, the fuel delivery unit 123 may be utilized.
  • the liquefied gas A is stored in the cargo tank 11 and the low-pressure fuel tank 12b.
  • the fuel delivery unit 123 has a low pressure.
  • a of the fuel tank 12b is transferred to the high-pressure fuel tank 12a, and A remaining in the cargo tank 11 can also be captured by the high-pressure fuel tank 12a.
  • a and B may be fuels suitable for the propulsion engine E.
  • the high-pressure fuel tank 12a is used to reduce/minimize evaporative gas treatment, thereby significantly reducing operating costs. can do.
  • FIG. 10 is a conceptual diagram of a gas processing system according to a tenth embodiment of the present invention.
  • the fuel delivery unit 123 in the ninth embodiment transfers evaporated gas instead of (or in addition to liquefied gas) liquefied gas Implement
  • the fuel delivery unit 123 of the present embodiment may transfer the evaporation gas from the low pressure fuel tank 12b to the high pressure fuel tank 12a. At this time, considering that there is a pressure difference between the low-pressure fuel tank 12b and the high-pressure fuel tank 12a, the fuel delivery unit 123 uses the boil-off gas generated in the low-pressure fuel tank 12b to the internal pressure of the high-pressure fuel tank 12a. Compressed with a compressor 124 to correspond to the can be delivered to the high-pressure fuel tank (12a).
  • the compressor 124 of the fuel delivery unit 123 compresses the boil-off gas by the difference in the internal pressure between the low-pressure fuel tank 12b and the high-pressure fuel tank 12a, but the boil-off gas in the low-pressure fuel tank 12b is greater than or equal to the critical pressure.
  • the high-pressure fuel tank (12a) may supply the evaporated gas delivered by the fuel delivery unit 123 to the storage or propulsion engine (E).
  • the reliquefaction unit 40 can omit the operation of the reliquefaction unit 40 with respect to the fuel tank 12.
  • the reliquefaction unit 40 is not a fuel tank 12 but a cargo tank.
  • the size of the reliquefaction unit 40 can be compacted and the refrigerant treatment cost required for liquefaction can be reduced by providing a specification that can only process the liquefied gas of (11).
  • FIG. 11 is a conceptual diagram of a gas processing system according to an eleventh embodiment of the present invention.
  • the fuel recovery unit 30 recovers liquefied gas and transfers it to the high pressure pump 21, but the fuel recovery unit 30 The liquefied gas recovered by can be recovered in the fuel tank 12 of the fuel storage unit 10 instead of being recovered in the fuel supply unit 20.
  • the fuel recovery line L30 is directly connected, and the liquefied gas recovered by the fuel recovery line L30 is internal. Can be injected with In this case, the fuel recovery line L30 may spray liquefied gas on the upper part in the fuel tank 12, but the injection method is not limited thereto.
  • the fuel recovery unit 30 recovers the high-pressure/high-temperature liquefied gas discharged from the propulsion engine E by the pressure-reducing valve 31 and recovers it to the fuel tank 12, and recovers the recovered high-temperature liquefied gas at high pressure. Transfer to the fuel tank 12a may increase the internal pressure and temperature of the high-pressure fuel tank 12a. That is, the function of the internal pressure rise unit 122 described above with reference to FIG. 8 may be implemented using the recovered liquefied gas.
  • the amount of liquefied gas required by the propulsion engine E is, for example, 3 to 4 m3 per hour
  • the returned high-temperature liquefied gas is sprayed into the high-pressure fuel tank 12a in the fuel storage unit 10.
  • the high-pressure fuel tank 12a through which the liquefied gas is recovered by the fuel recovery unit 30 may be connected to the vent mast 36 for venting of liquefied gas and purging gas during abnormal operation. That is, the vent line L32 is connected from the high pressure fuel tank 12a to the vent mast 36, and the liquefied gas of the high pressure fuel tank 12a or the purging gas recovered through the fuel recovery line L30 is vent line ( L32) to be transferred to the vent mast 36 to be discharged to the outside.
  • the purging gas discharged from the high pressure fuel tank 12a through the vent line L32 may be transmitted to the low pressure fuel tank 12b instead of being transferred to the vent mast 36.
  • the purge gas recovery line L33 connected to the low-pressure fuel tank 12b may be branched to the vent line L32.
  • the purging gas recovered after purging of the fuel supply unit 20 by the fuel recovery unit 30 flows into the high-pressure fuel tank 12a along the fuel recovery line L30, and then exits along the vent line L32. After coming out, it can be stored in the low pressure fuel tank 12b through the purge gas recovery line.
  • the purging gas recovered through the purging gas recovery line L33 may have a pressure equal to or higher than the internal pressure of the low-pressure fuel tank 12b. Therefore, when the purging gas flows in, the pressure of the low pressure fuel tank 12b increases.
  • the low-pressure fuel tank 12b may transfer the liquefied gas to the fuel supply unit 20 by internal pressure without the transfer pump 121. That is, the low-pressure fuel tank 12b is able to omit the transfer pump 121 or reduce the load on the transfer pump 121 by increasing the internal pressure by the inflow of purging gas.
  • the present embodiment can regulate the internal pressure without discharging the purging gas to the outside (using the reliquefaction unit 40). It can be recovered and collected by the fuel tank 12b to control the purge gas discharge to the outside air, thereby improving safety and preventing air pollution.
  • the low-pressure fuel tank 12b is capable of adjusting the internal pressure through liquefaction return of evaporated gas, so that the internal pressure of the low-pressure fuel tank 12b is maintained so that the internal pressure of the low-pressure fuel tank 12b is increased by the high-pressure purging gas. , It is possible to reduce the load of liquefied gas discharge from the low pressure fuel tank (12b).
  • the purging gas can be delivered to the low pressure fuel tank 12b as above, but the liquefied gas recovered in addition to the purging gas is also transferred to the low pressure fuel tank 12b through the high pressure fuel tank 12a in the same manner as the flow of the purging gas. It is of course also possible to increase the internal pressure of the low-pressure fuel tank 12b.
  • the high-pressure fuel tank 12a stores liquefied gas at a pressure that does not vaporize at room temperature, but as the liquefied gas above room temperature flows into the high-pressure fuel tank 12a through the fuel recovery unit 30, the high-pressure fuel Evaporated gas is generated in the tank 12a and can be transferred to the low pressure fuel tank 12b through the vent line L32 and the purging gas recovery line L33.
  • the present embodiment also suppresses the generation of evaporation gas at room temperature as the high-pressure fuel tank 12a stores liquefied gas above a critical pressure, and the low-pressure fuel tank 12b has independent pressure.
  • the reliquefaction unit 40 re-liquefies the evaporation gas of the cargo tank 11 and the low pressure fuel tank 12b, but is not connected to the high pressure fuel tank 12a. It may not.
  • the recovered liquefied gas is directly introduced into the high-pressure fuel tank 12a to increase the internal pressure of the high-pressure fuel tank 12a to stably implement liquefied gas fuel supply, and the purging gas is a low-pressure fuel tank.
  • FIG. 12 is a partial side view of a ship to which a gas treatment system according to a twelfth embodiment of the present invention is applied
  • FIG. 13 is a partial plan view of a ship to which a gas treatment system according to a twelfth embodiment of the present invention is applied.
  • the fuel storage unit 10 may include a plurality of cargo tanks 11 and separate fuel tanks. Even if the (12) is not provided, a space for separately storing the liquefied gas supplied as fuel of the propulsion engine E may be provided.
  • the fuel storage unit 10 may allow the cargo storage space 113 and the fuel storage space 114 to be provided in at least one of the plurality of cargo tanks 11 at a time.
  • the cargo tank 11 may be provided with a sealed partition wall 112 separating two or more spaces in various directions, such as a front-rear direction or a left-right direction, and the cargo storage space 113 by the partition wall 112.
  • the fuel storage space 114 for storing the liquefied gas to be supplied to the propulsion engine E may be configured to be partitioned.
  • the cargo tank 11 may store liquefied gas at normal pressure, and may be a membrane type or a stand-alone tank (excluding Type C), so the fuel storage space 114 formed in the cargo tank 11 is also 98%. Filling limit is applied, so it is possible to store maximum liquefied gas in a specific volume.
  • the partition wall 112 is provided under the dome 115 in consideration of the position of the dome 115 provided in the cargo tank 11, so that the cargo storage space 113 and the fuel storage space 114 are one dome. It may be provided to share 115.
  • the liquefied gas in the cargo storage space 113 is loaded/unloaded through the cargo pump 111a and the main lines (VM, LM), and the liquefied gas in the fuel storage space 114 is a transfer pump 111 and a fuel supply line It is supplied to the propulsion engine (E) through (L20).
  • this embodiment is a dome 115 that is basically provided in the cargo tank 11
  • the fuel storage space 114 can also be utilized to discharge liquefied gas.
  • the dome 115 of the cargo tank 11 may be provided with a bias toward the bow or stern side of the ship 100 accommodating the cargo tank 11, as shown in FIG. 13, considering the arrangement of the dome 115 112 may be provided biased to one side in the front-rear direction from the inside of the cargo tank (11).
  • the dome 115 may be disposed at the center in the left and right directions, so when the partition 112 divides the interior of the cargo tank 11 in the left and right directions, the partition wall 112 may be disposed at the center.
  • one or more partition walls 112 may be provided to form one or more fuel storage spaces 114.
  • the cargo storage space 113 and the fuel storage space 114 divided by the partition wall 112 may be provided in the same volume or different volumes, or the volumes of the spaces divided by the partition wall 112 may be the same, A small number of spaces are fuel storage spaces 114, and the remaining large number of spaces can be used as cargo storage spaces 113.
  • the interior of the cargo tank 11 is divided into four spaces by two partition walls 112, only one space can be used as the fuel storage space 114, in this case, the space divided into four spaces. They can all be provided to share one dome 115.
  • the partition wall 112 may have a height communicating two spaces within the dome 115 as shown in FIG. 12, instead of completely isolating the space inside the cargo tank 11. That is, the spaces separated by the partition wall 112 may communicate with each other so that the evaporation gas moves through the dome 115.
  • the evaporation gas of the fuel storage space 114 is a cargo storage space because the evaporation gas is lighter than liquefied gas. There is little risk of being transferred to the liquefied gas of 113 or the boil-off gas of the cargo storage space 113 to be introduced into the liquefied gas of the fuel storage space 114.
  • the partition wall 112 is separated from at least the cargo storage space 113 and the fuel storage space 114 so that the vaporized gas can be isolated, unlike in the drawing, the partition wall 112 may be provided with a structure that completely separates the two spaces. It might be.
  • the two spaces separated by the partition wall 112 may be independently made of liquefied gas pumping and re-liquefaction, but when loading suitable liquefied gas as fuel of the propulsion engine E into the cargo storage space 113, The liquefied gas in the cargo storage space 113 may be supplemented with the fuel storage space 114.
  • a partially penetrated opening is formed in the partition wall 112 and a liquefied gas delivery valve (not shown) may be provided, so that liquefied gas delivery through the partition wall 112 may be performed.
  • a liquefied gas delivery valve (not shown) may be provided, so that liquefied gas delivery through the partition wall 112 may be performed.
  • the liquefied gas loaded in the cargo storage space 113 is discharged from the cargo tank 11, the liquefied gas extending from the main line (VM, LM) or the fuel supply line (L20) toward the fuel storage space 114
  • liquefied gas may be delivered through the replenishment line L12.
  • this embodiment forms a separated space using a partition wall 112 inside any one of the cargo tanks 11, and allows the separated space to be used as the fuel storage space 114 (propylene Excluding liquefied gas), it is not necessary to place the fuel tank 12 on the upper deck 101, so that the visibility problem can be solved, and does not cause interference with other equipment in the upper deck 101.
  • the fuel storage space 114 propane Excluding liquefied gas
  • FIG. 14 is a central sectional view of a vessel to which a gas treatment system according to a thirteenth embodiment of the present invention is applied.
  • the gas treatment system 1 according to the thirteenth embodiment of the present invention is provided in that the bulkhead 112 is provided in the cargo tank 11 which is a membrane type or a standalone tank (except for Type C). Similar to the 12th embodiment, the partition wall 112 is provided in a closed type, and is characterized in that the space is completely separated by the partition wall 112.
  • At least one of the plurality of cargo tanks 11 included in the fuel storage unit 10 is provided with a sealed partition wall 112 that completely divides the storage space into two or more.
  • two or more storage spaces divided by the partition wall 112 do not communicate with each other in the cargo tank 11. Therefore, the cargo pump or the transfer pump 111 provided in the cargo tank 11 to discharge liquefied gas to the outside may be provided independently for each of a plurality of storage spaces divided by the partition wall 112.
  • the partition wall 112 may be in a form of completely dividing the storage space from side to side. That is, the partition wall 112 may be a vertical partition wall 112 provided in the front-rear direction of the ship 100.
  • a liquefied gas carrier having a cargo tank 11 for storing liquefied gas as cargo
  • cargo according to IGC code (International code for construction & equipment of ships carrying liquefied gases in bulk)
  • IGC code International code for construction & equipment of ships carrying liquefied gases in bulk
  • a single-hull structure is provided on the outside of the cargo tank 11 to surround the outer shell 102 of the single wall, and the space between the outer shell 102 and the wall of the cargo tank 11 is the cargo tank. It depends on the volume of (11).
  • the cargo tank 11 is arranged inside from the outer shell plate 102 in accordance with the space between the cargo tank 11 and the outer shell plate 102 according to the IGC code based on the volume of the storage space, and the distance is within the ship. It is not possible to secure the load of liquefied gas. At this time, the larger the volume of the cargo tank 11, the larger the gap.
  • the bulkhead 112 for completely dividing the storage space of the cargo tank 11 is placed so as to ensure the maximum storage capacity of the liquefied gas in the ship while satisfying the interval according to the IGC code.
  • the cargo tank 11 according to the IGC code and the side shell plate 102 may be spaced apart from the side shell plate 102 of the ship 100 by a distance D1 smaller than the gap D0. .
  • this embodiment can reduce the reference volume when calculating the interval of the IGC code through the sealed partition wall 112, so that the interval Can be reduced from D0 to D1. That is, in the present embodiment, the space between the cargo tank 11 and the side shell plate 102 is reduced by placing the partition wall 112 in the form of dividing the storage space left and right within the cargo tank 11, thereby reducing the cargo tank 11 itself. Can grow.
  • partition walls 112 when two or more partition walls 112 are provided, there is a problem in that a pump should be provided for each of the plurality of storage spaces formed by the sealed partition walls 112, so the partition walls 112 store the storage space of the cargo tank 11. Only one may be provided to be divided into two, and one storage space may be a fuel storage space 114 and the other storage space may be a cargo storage space 113.
  • the gap of the IGC code is calculated using the sealed partition wall 112.
  • 15 is a plan view of a ship to which a gas treatment system according to a 14th embodiment of the present invention is applied.
  • the gas processing system 1 includes a cargo tank 11 in which the fuel storage unit 10 is mounted on board as described in the ninth to eleventh embodiments described above. ) And two or more independent pressure vessels, a fuel tank 12.
  • the cargo tank 11 stores liquefied gas at atmospheric pressure and is provided on board with an octagonal cross-section, but the dome 115 of the cargo tank 11 may be exposed to the upper deck 101 of the ship 100, the dome A moving passage 120 (piping area & access way) may be provided on the left or right side of the 115 in the longitudinal direction of the ship 100.
  • the movement passage 120 shown in the drawings means a certain area in which the movement passage 120 is installed, not the movement passage 120 itself, and in this specification, the movement passage 120 is accessed by a sailor to access each facility. It is an access way, and a piping area through which the main line passes, meaning a space that should not interfere with other components.
  • the fuel tank 12 of the fuel storage unit 10 may be provided on the upper deck 101 instead of on board, and interference with the moving passage 120 may be a problem. Therefore, the fuel tank 12 is provided with a first fuel tank 12 between the moving passage 120 and the outer shell plate 102 on one side (portion side in the figure) where the moving passage 120 is provided in the upper deck 101. On the other hand, the second fuel tank 12 may be provided between the dome 115 and the side shell plate 102 on the opposite side (right side in the figure) of the one side where the movement passage 120 is provided in the upper deck 101. have.
  • the first fuel tank 12 the distance from the dome 115 compared to the second fuel tank 12 is formed larger, the area where the first fuel tank 12 is installed is the second fuel tank 12 ), the first fuel tank 12 may have a smaller volume than the second fuel tank 12 in order to resolve interference with the movement passage 120.
  • the first fuel tank 12 is a high-pressure fuel tank 12a that stores liquefied gas at a critical pressure or higher to suppress the generation of evaporated gas at room temperature, and the second fuel tank 12 stores the liquefied gas below a critical pressure. It may be a low pressure fuel tank (12b) to be stored. In this case, the first fuel tank 12 may have a smaller volume than the second fuel tank 12 and a large outer wall, and may have a greater density than the second fuel tank 12.
  • the fuel tank 12 in order to balance the left and right of the vessel 100, the fuel tank 12 is disposed on the left and right sides of the upper deck 101 based on the dome 115, but the high-pressure fuel tank 12a having a relatively small size. (First fuel tank 12) may be disposed outside the left and right directions of the movement passage 120.
  • the first fuel tank 12 may be disposed at a position that is not projected on the upper surface of the cargo tank 11 in the vertical direction, and the second fuel tank 12 is disposed on the upper surface of the cargo tank 11 in the vertical direction. It can be provided at the projected position. This is because the first fuel tank 12 is disposed at a position closer to the side shell plate 102 than the dome 115 to avoid interference with the movement passage 120.
  • the left and right balance of the ship 100 is ensured while interference with the movement passage 120 is not made, and the ship 100 It can reduce the fatal rolling.
  • FIG. 16 is a conceptual view of a ship to which the gas treatment system according to the fifteenth embodiment of the present invention is applied
  • FIG. 17 is a front sectional view of a ship to which the gas treatment system according to the fifteenth embodiment of the invention is applied.
  • the fuel storage unit 10 may include a fuel tank 12 separately from the cargo tank 11.
  • the fuel tank 12 is a stand-alone pressure vessel and can be mounted on board.
  • a plurality of cargo tanks 11 may be provided in three or four in the front-rear direction of the ship 100, the Aesop fuel tank 12, as shown in Figure 16, the rear of the plurality of cargo tanks 11 Can be placed on. That is, the fuel tank 12 is disposed at the rear of the rearmost cargo tank 11.
  • the fuel tank 12 may be disposed inside the engine room as shown in FIG. 16, or, unlike the drawing, may be disposed between the engine compartment front bulkhead 112 and the rearmost cargo tank 11 outside the engine room. Do.
  • the propulsion engine (E) may be a fuel-fuel engine (Duel-Fuel engine) that uses oil as fuel in addition to liquefied gas, and requires an oil tank 13 to store oil to be supplied to the propulsion engine (E).
  • Diesel-Fuel engine a fuel-fuel engine that uses oil as fuel in addition to liquefied gas, and requires an oil tank 13 to store oil to be supplied to the propulsion engine (E).
  • the oil tank 13 may be provided on the front partition 112 of the engine room in the engine room, but in the case of this embodiment, the fuel tank 12 as shown in FIG. ) Can be provided on the left and right of the oil tank (13).
  • two or more longitudinal bulkheads 112 are provided above the bottom plate 103 in the interior of the engine room or in the space of the space between the engine compartment front bulkhead 112 and the rearmost cargo tank 11, and in the middle space, the fuel tank ( 12) is accommodated, the left and right spaces can be utilized as the oil tank 13 in which the oil is stored, the fuel tank 12 and the oil tank 13 may be disposed around the ballast tank 110.
  • the fuel tank 12 is a stand-alone pressure vessel, and may be a lattice type pressure vessel in order to have a shape capable of securing a maximum volume of liquefied gas while responding to various structural shapes such as an engine room.
  • the fuel tank 12 is disposed by utilizing the position where the oil tank 13 is provided, thereby sufficiently protecting the liquefied gas from external shock or the like while securing space in the upper deck 101. .
  • the present invention encompasses all of the embodiments that occur by a combination of at least two or more of the above embodiments or a combination of at least one or more of the above embodiments and known techniques.

Abstract

The present invention relates to a gas processing system and a ship including same, the gas processing system comprising: a storage tank for storing a liquefied gas; a propulsion engine using the liquefied gas as a fuel; a fuel supply line for supplying the liquefied gas in the storage tank to the propulsion engine; and a fuel collection line for collecting excess liquefied gas discharged from the propulsion engine, wherein: a high-pressure pump and a heat exchanger are provided in the fuel supply line, the heat exchanger being provided upstream of the high-pressure pump so as to change the temperature of the liquefied gas; and the heat exchanger performs heat exchange between the liquefied gas supplied from the storage tank to the propulsion engine and the liquefied gas collected through the fuel collection line.

Description

가스 처리 시스템 및 이를 포함하는 선박Gas treatment systems and vessels containing same
본 발명은 가스 처리 시스템 및 이를 포함하는 선박에 관한 것이다.The present invention relates to a gas treatment system and a ship including the same.
일반적으로, 액화석유가스 즉, LPG(Liquefied petroleum gas)는 석유 성분 중 프로판 및 부탄 등 비등점이 낮은 탄화수소를 주성분으로 가스를 상온에서 가압하여 액화한 것이다. 이러한 액화석유가스를 소형의 가벼운 압력용기(봄베)에 충전해서 가정용, 업무용, 공업용, 자동차용 등의 연료로 널리 이용하게 된다.In general, liquefied petroleum gas, that is, LPG (Liquefied petroleum gas) is a liquefied by pressurizing the gas at room temperature as a main component of hydrocarbons having a low boiling point, such as propane and butane. The liquefied petroleum gas is filled into a small, lightweight pressure vessel (cylinder), and is widely used as fuel for household, business, industrial, and automobile applications.
액화석유가스는 생산지에서 기체 상태로 추출되며, 액화석유가스 처리 설비를 통해 액화되어 저장되었다가, 액화석유가스 운반선에 의해 액상을 유지하면서 육상으로 수송된 후, 기체 등의 다양한 형태로 수요처에 공급된다.Liquefied petroleum gas is extracted in gaseous form at the production site, liquefied and stored through a liquefied petroleum gas treatment facility, and then transported to the land while maintaining the liquid phase by the liquefied petroleum gas carrier, and then supplied to customers in various forms such as gas do.
이러한 액화석유가스의 비등점은 약 -50℃ 내외이므로, 액화석유가스를 운반하기 위한 액화석유가스 운반선은 이보다 낮은 온도를 유지해야 한다. 따라서 액화석유가스를 보관하는 저장탱크는 저온에 강한 저온강(Low Temperature Carbon Steel 및 Nickel Steel)을 사용하며, 액화석유가스 운반선에는 재액화설비도 마련된다.Since the boiling point of such liquefied petroleum gas is about -50°C, the liquefied petroleum gas carrier for transporting liquefied petroleum gas must maintain a temperature lower than this. Therefore, the storage tank for storing liquefied petroleum gas uses low temperature carbon steel and nickel steel resistant to low temperature, and a reliquefaction facility is also provided on the liquefied petroleum gas carrier.
이러한 액화석유가스 운반선은, 종래의 경우 디젤유를 사용하여 엔진을 가동함으로써 추진력을 발생시켰다. 그런데 디젤유는 선박 추진용 엔진에서 연소하는 과정에서 유해성분인 질소산화물(NOx), 유황산화물(SOx), 이산화탄소(CO2)가 발생하게 되고, 이러한 유해성분이 대기로 방출됨으로써 환경을 오염시키는 문제가 있다.Such a liquefied petroleum gas carrier has generated propulsion by operating an engine using diesel oil in the conventional case. However, diesel oil generates nitrogen oxides (NOx), sulfur oxides (SOx), and carbon dioxide (CO2), which are harmful components in the process of combustion in a ship-propelled engine, and these harmful components are released into the atmosphere, thereby contaminating the environment. have.
따라서 최근에는 디젤유를 사용하는 경우와 대비할 때 배기의 오염도를 대폭 낮출 수 있도록, 액화석유가스를 이용하여 가동하는 엔진의 개발 및 액화석유가스를 엔진에 공급하는 제반 시스템의 개발이 지속적으로 이루어지고 있다.Therefore, in recent years, the development of engines using liquefied petroleum gas and the development of various systems that supply liquefied petroleum gas to the engine have been continuously conducted to significantly reduce the pollution level of exhaust when compared with the case of using diesel oil. have.
본 발명은 상기와 같은 종래기술의 문제점을 해결하고자 창출된 것으로서, 본 발명의 목적은, 액화석유가스를 이용하여 추진력을 발생시킬 수 있는 가스 처리 시스템 및 이를 포함하는 선박을 제공하기 위한 것이다.The present invention was created to solve the problems of the prior art as described above, and an object of the present invention is to provide a gas treatment system capable of generating propulsion using liquefied petroleum gas and a ship including the same.
본 발명의 일 측면에 따른 가스 처리 시스템은, 액화가스를 저장하는 저장탱크; 액화석유가스를 연료로 사용하는 추진엔진; 상기 저장탱크의 액화가스를 상기 추진엔진에 공급하는 연료 공급라인; 및 상기 추진엔진에서 배출되는 잉여분의 액상 액화가스를 회수하는 연료 회수라인을 포함하며, 상기 연료 공급라인에는, 고압펌프와, 상기 고압펌프의 상류에 마련되어 액화가스의 온도를 변화시키는 열교환기가 마련되고, 상기 열교환기는, 상기 저장탱크로부터 상기 추진엔진으로 공급되는 액화가스와, 상기 연료 회수라인에서 회수되는 액화가스를 열교환시키는 것을 특징으로 하는 가스 처리 시스템을 갖는다.Gas processing system according to an aspect of the present invention, a storage tank for storing liquefied gas; Propulsion engine using liquefied petroleum gas as fuel; A fuel supply line for supplying liquefied gas from the storage tank to the propulsion engine; And a fuel recovery line for recovering excess liquid liquefied gas discharged from the propulsion engine, wherein the fuel supply line is provided with a high pressure pump and a heat exchanger provided upstream of the high pressure pump to change the temperature of the liquefied gas. , The heat exchanger has a gas processing system characterized by exchanging liquefied gas supplied from the storage tank to the propulsion engine and liquefied gas recovered from the fuel recovery line.
구체적으로, 상기 열교환기는, 상기 저장탱크로부터 상기 추진엔진으로 공급되는 액화가스가 흐르는 스트림과, 상기 연료 회수라인에서 회수되는 액화가스가 흐르는 스트림과, 열교환 매체가 흐르는 스트림을 갖는 3 스트림 구조일 수 있다.Specifically, the heat exchanger may be a three-stream structure having a stream through which liquefied gas supplied from the storage tank to the propulsion engine flows, a stream through which liquefied gas recovered from the fuel recovery line flows, and a stream through which heat exchange medium flows. have.
구체적으로, 상기 연료 회수라인은, 액상 액화가스를 상기 고압펌프로 전달하며, 상기 열교환기는, 상기 연료 회수라인의 액화가스를 상기 추진엔진으로 공급되는 액화가스 및 열교환 매체로 냉각하여 상기 고압펌프에 액상으로 유입되도록 할 수 있다.Specifically, the fuel recovery line delivers liquid liquefied gas to the high pressure pump, and the heat exchanger cools the liquefied gas of the fuel recovery line with liquefied gas and a heat exchange medium supplied to the propulsion engine to the high pressure pump. It can be brought into the liquid phase.
구체적으로, 상기 연료 회수라인에는, 액상 액화가스를 감압하는 감압밸브가 마련되며, 상기 열교환기는, 감압된 액화가스를 냉각해 상기 고압펌프에 액상으로 유입되도록 할 수 있다.Specifically, the fuel recovery line is provided with a pressure reducing valve for depressurizing the liquid liquefied gas, and the heat exchanger may cool the decompressed liquefied gas to flow into the high pressure pump as a liquid.
구체적으로, 상기 연료 회수라인에는, 상기 열교환기와 상기 고압펌프 사이에 마련되어, 상기 열교환기를 경유한 액화가스와, 상기 저장탱크로부터 공급되는 액화가스를 혼합해 상기 고압펌프로 전달하는 혼합기가 마련될 수 있다.Specifically, in the fuel recovery line, a mixer that is provided between the heat exchanger and the high pressure pump, and mixes liquefied gas passing through the heat exchanger and liquefied gas supplied from the storage tank and delivers it to the high pressure pump. have.
본 발명에 따른 가스 처리 시스템 및 이를 포함하는 선박은, 디젤유만을 사용하던 종래의 시스템을 벗어나서, 액화석유가스를 추진 연료로 사용할 수 있도록 하여 환경 오염을 저감하고 에너지 효율을 높일 수 있다.The gas treatment system according to the present invention and a ship including the same can move beyond the conventional system using only diesel oil, so that liquefied petroleum gas can be used as a propulsive fuel to reduce environmental pollution and increase energy efficiency.
도 1은 본 발명의 제1 실시예에 따른 가스 처리 시스템의 개념도이다.1 is a conceptual diagram of a gas processing system according to a first embodiment of the present invention.
도 2는 본 발명의 제2 실시예에 따른 가스 처리 시스템의 개념도이다.2 is a conceptual diagram of a gas processing system according to a second embodiment of the present invention.
도 3은 본 발명의 제3 실시예에 따른 가스 처리 시스템의 개념도이다.3 is a conceptual diagram of a gas processing system according to a third embodiment of the present invention.
도 4는 본 발명의 제4 실시예에 따른 가스 처리 시스템의 개념도이다.4 is a conceptual diagram of a gas processing system according to a fourth embodiment of the present invention.
도 5는 본 발명의 제5 실시예에 따른 가스 처리 시스템의 개념도이다.5 is a conceptual diagram of a gas processing system according to a fifth embodiment of the present invention.
도 6은 본 발명의 제6 실시예에 따른 가스 처리 시스템의 개념도이다.6 is a conceptual diagram of a gas processing system according to a sixth embodiment of the present invention.
도 7은 본 발명의 제7 실시예에 따른 가스 처리 시스템의 개념도이다.7 is a conceptual diagram of a gas processing system according to a seventh embodiment of the present invention.
도 8은 본 발명의 제8 실시예에 따른 가스 처리 시스템의 개념도이다.8 is a conceptual diagram of a gas processing system according to an eighth embodiment of the present invention.
도 9는 본 발명의 제9 실시예에 따른 가스 처리 시스템의 개념도이다.9 is a conceptual diagram of a gas processing system according to a ninth embodiment of the present invention.
도 10은 본 발명의 제10 실시예에 따른 가스 처리 시스템의 개념도이다.10 is a conceptual diagram of a gas processing system according to a tenth embodiment of the present invention.
도 11은 본 발명의 제11 실시예에 따른 가스 처리 시스템의 개념도이다.11 is a conceptual diagram of a gas processing system according to an eleventh embodiment of the present invention.
도 12는 본 발명의 제12 실시예에 따른 가스 처리 시스템이 적용된 선박의 부분 측면도이다.12 is a partial side view of a vessel to which a gas treatment system according to a twelfth embodiment of the present invention is applied.
도 13은 본 발명의 제12 실시예에 따른 가스 처리 시스템이 적용된 선박의 부분 평면도이다.13 is a partial plan view of a ship to which a gas treatment system according to a twelfth embodiment of the present invention is applied.
도 14는 본 발명의 제13 실시예에 따른 가스 처리 시스템이 적용된 선박의 중앙단면도이다.14 is a central sectional view of a vessel to which a gas treatment system according to a thirteenth embodiment of the present invention is applied.
도 15는 본 발명의 제14 실시예에 따른 가스 처리 시스템이 적용된 선박의 평면도이다.15 is a plan view of a ship to which a gas treatment system according to a 14th embodiment of the present invention is applied.
도 16은 본 발명의 제15 실시예에 따른 가스 처리 시스템이 적용된 선박의 개념도이다.16 is a conceptual view of a vessel to which a gas processing system according to a fifteenth embodiment of the present invention is applied.
도 17은 본 발명의 제15 실시예에 따른 가스 처리 시스템이 적용된 선박의 정단면도이다.17 is a front sectional view of a vessel to which a gas treatment system according to a fifteenth embodiment of the present invention is applied.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.The objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and preferred embodiments, which are associated with the accompanying drawings. In addition, it should be noted that, in addition to reference numerals to the components of each drawing in the present specification, the same components have the same numbers as possible, even if they are displayed on different drawings. In addition, in the description of the present invention, when it is determined that detailed descriptions of related known technologies may unnecessarily obscure the subject matter of the present invention, detailed descriptions thereof will be omitted.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 참고로 본 명세서에서 액화가스는 LPG일 수 있지만 이로 한정하는 것은 아니며, 비등점이 상온보다 낮아 저장을 위해 강제로 액화되며 발열량을 갖는 모든 물질을 포괄할 수 있다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. For reference, the liquefied gas may be LPG in the present specification, but is not limited thereto, and the boiling point is lower than room temperature, forcibly liquefied for storage, and may cover all substances having a calorific value.
또한 본 명세서에서 액화가스/증발가스는 탱크 내부에서의 상태를 기준으로 구분되는 것이고, 명칭으로 인하여 액상 또는 기상으로 반드시 한정되는 것은 아님을 알려둔다.Also, in this specification, liquefied gas/evaporation gas is classified based on the state in the tank, and it is noted that the name is not necessarily limited to liquid or gaseous phases.
본 발명은 이하에서 설명하는 가스 처리 시스템(1)이 구비되는 선박(100)을 포함한다. 이때 선박(100)은 가스 운반선, 가스가 아닌 화물이나 사람을 운반하는 상선, FSRU, FPSO, Bunkering vessel, 해양플랜트 등을 모두 포함하는 개념이며, 다만 예시로서 액화석유가스 운반선일 수 있음을 알려둔다.The present invention includes a ship 100 equipped with a gas treatment system 1 described below. At this time, the ship 100 is a concept including a gas carrier, a merchant ship carrying cargo or people other than gas, FSRU, FPSO, Bunkering vessel, offshore plant, etc., but it is noted that it may be a liquefied petroleum gas carrier as an example. .
본 발명의 도면에서 PT는 압력센서, TT는 온도센서를 나타내며, 각 센서에 의한 측정값은 이하에서 설명하는 구성들의 운영에 제한 없이 다양하게 사용될 수 있다.In the drawings of the present invention, PT is a pressure sensor, TT is a temperature sensor, and the measured value by each sensor can be used in various ways without limitation in the operation of the components described below.
도 1은 본 발명의 제1 실시예에 따른 가스 처리 시스템의 개념도이다.1 is a conceptual diagram of a gas processing system according to a first embodiment of the present invention.
도 1을 참조하면, 본 발명의 제1 실시예에 따른 가스 처리 시스템(1)은, 연료 저장부(10), 연료 공급부(20), 연료 회수부(30), 재액화부(40)를 포함한다.Referring to FIG. 1, the gas processing system 1 according to the first embodiment of the present invention includes a fuel storage unit 10, a fuel supply unit 20, a fuel recovery unit 30, and a reliquefaction unit 40. do.
연료 저장부(10)는, 중탄화수소를 주성분으로 하는 액화가스를 저장한다. 여기서 액화가스는 앞서 설명한 LPG 등일 수 있고, 부탄, 프로판, 프로필렌, 에틸렌 등일 수 있지만 이로 한정하는 것은 아니다.The fuel storage unit 10 stores a liquefied gas mainly composed of heavy hydrocarbons. Here, the liquefied gas may be LPG or the like described above, butane, propane, propylene, ethylene, and the like, but is not limited thereto.
연료 저장부(10)는, 선박(100)이 가스 운반선일 경우 선박(100)의 선내에 마련되는 복수 개의 카고탱크(11)일 수 있으며, 선박(100)이 가스 운반선 외의 선종일 경우에는 별도로 마련되는 탱크나 용기 등일 수 있다.The fuel storage unit 10 may be a plurality of cargo tanks 11 provided on board the ship 100 when the ship 100 is a gas carrier, and separately when the ship 100 is a ship other than a gas carrier It may be a provided tank or container.
카고탱크(11)는 대기압에서 액화가스를 저온 액상으로 저장하는 탱크이며, 액화가스의 기화를 방지하기 위하여 벽체에 다양한 단열 구조가 부가될 수 있다. 또한 카고탱크(11)는 멤브레인형 탱크이거나 독립형 탱크 등일 수 있으며, 그 형태나 제원 등은 한정되지 않는다.The cargo tank 11 is a tank that stores liquefied gas in a low-temperature liquid at atmospheric pressure, and various insulating structures may be added to the wall to prevent vaporization of the liquefied gas. In addition, the cargo tank 11 may be a membrane-type tank or a stand-alone tank, and the shape and specifications are not limited.
연료 저장부(10)는, 액화가스를 배출하여 연료 공급부(20)로 전달하는 이송펌프(111)를 갖는다. 이송펌프(111)는 카고탱크(11)의 내부에 마련될 수 있으며, 액화가스에 잠겨있는 submerged type으로 마련될 수 있다.The fuel storage unit 10 has a transfer pump 111 that discharges liquefied gas and delivers it to the fuel supply unit 20. The transfer pump 111 may be provided inside the cargo tank 11 and may be provided in a submerged type submerged in liquefied gas.
다만 이송펌프(111)는, 복수 개의 카고탱크(11) 중 일부에만 마련될 수 있다. 카고탱크(11)는 기본적으로 화물 운송을 목적으로 하는 것으로서 화물의 언로딩(unloading)을 위한 카고펌프(111a)(하역펌프, 스트리핑펌프 등, 도시하지 않음)가 각 카고탱크(11)마다 약 2개씩 마련되는데, 적어도 어느 하나의 카고탱크(11)는 내부에 저장된 액화가스를 추진엔진(E)(ME-LGI) 또는 발전엔진(DFDE, 도시하지 않음) 등의 연료로도 사용하기 위해, 카고펌프(111a)에 더하여 이송펌프(111)가 추가될 수 있다.However, the transfer pump 111 may be provided only in a part of the plurality of cargo tanks 11. The cargo tank 11 is basically for cargo transportation, and the cargo pump 111a (unloading pump, stripping pump, etc., not shown) for unloading cargo is weak for each cargo tank 11. Two are provided, and at least one of the cargo tanks 11 is used to use liquefied gas stored therein as fuel such as a propulsion engine (E) (ME-LGI) or a power generation engine (DFDE, not shown), In addition to the cargo pump 111a, the transfer pump 111 may be added.
일례로 카고탱크(11)가 4개일 때, 추진엔진(E)이 수용된 엔진룸에 근접한 4번 카고탱크(11)에 저장된 액화가스가 추진엔진(E)의 연료로 사용될 수 있고, 이를 위해 4번 카고탱크(11)에만 이송펌프(111)가 마련될 수 있다.For example, when there are four cargo tanks 11, the liquefied gas stored in the cargo tank 11 no. 4 close to the engine room in which the propulsion engine E is accommodated may be used as fuel for the propulsion engine E, for this purpose 4 The transfer pump 111 may be provided only in the cargo tank 11.
연료 저장부(10)가 포함하는 복수 개의 카고탱크(11)에는 기상 액화가스를 전달하기 위한 기상 메인라인(VM)(vapour main)과 액상 액화가스를 전달하기 위한 액상 메인라인(LM)(liquid main)이 마련될 수 있다. 이때 기상 메인라인(VM)과 액상 메인라인(LM)은, 카고탱크(11) 중에서 적어도 둘 이상을 서로 연결하도록 마련될 수 있다. A plurality of cargo tanks 11 included in the fuel storage unit 10 include a vapor main line (VM) for delivering gaseous liquefied gas and a liquid main line (LM) for delivering liquid liquefied gas (liquid) main) may be provided. At this time, the gaseous main line VM and the liquid main line LM may be provided to connect at least two or more of the cargo tanks 11 to each other.
참고로 메인라인(VM, LM)은 카고탱크(11)에 마련된 돔(115)을 관통하는 라인들에 연결되는 것으로서, 돔(115)을 관통하는 라인들은 액화가스나 증발가스를 배출/회수하는 라인일 수 있다. 따라서 메인라인(VM, LM)에서의 유동 방향은 도면에 나타난 것으로 한정 해석되지 않으며, 카고탱크(11) 내부에서 외부를 향하는 방향이거나, 또는 카고탱크(11) 외부에서 내부를 향하는 방향이 모두 가능하다.For reference, the main lines (VM, LM) are connected to lines passing through the dome 115 provided in the cargo tank 11, and the lines passing through the dome 115 discharge/recover liquefied gas or evaporation gas. It can be a line. Therefore, the flow direction in the main lines (VM, LM) is not limited to that shown in the drawings, and the direction from the inside of the cargo tank 11 to the outside or the direction from the outside of the cargo tank 11 to the inside is possible. Do.
복수 개의 카고탱크(11)는, 적어도 두 그룹으로 나뉠 수 있다. 일례로 선내에 4개의 카고탱크(11)가 마련되는 경우, 카고탱크(11)는 2개의 그룹으로 나뉜다. The plurality of cargo tanks 11 may be divided into at least two groups. For example, when four cargo tanks 11 are provided on board, the cargo tanks 11 are divided into two groups.
그룹은 메인라인(VM, LM)의 연결에 따라 구분될 수 있으며, 일례로 제1 메인라인(VM, LM)에 의해 서로 연결되는 적어도 2개의 카고탱크(11a)가 속한 제1 그룹, 제2 메인라인(VM, LM)에 의해 서로 연결되는 적어도 2개의 카고탱크(11b)가 속한 제2 그룹으로 구분될 수 있다.Groups may be classified according to the connection of the main lines (VM, LM), for example, the first group, the second to belong to at least two cargo tanks (11a) connected to each other by the first main line (VM, LM), the second At least two cargo tanks 11b connected to each other by the main lines VM and LM may belong to a second group.
제1 그룹의 카고탱크(11a)들을 서로 연결하는 제1 메인라인(VM, LM)은, 복수 개의 카고탱크(11a) 간의 기상 액화가스를 통합하는 제1 기상 메인라인(VM1), 복수 개의 카고탱크(11a) 간의 액상 액화가스를 통합하는 제1 액상 메인라인(LM1)을 포함한다.The first main line (VM, LM) connecting the cargo tanks (11a) of the first group to each other, the first gaseous main line (VM1) to integrate the gaseous liquefied gas between the plurality of cargo tanks (11a), a plurality of cargo It includes a first liquid main line (LM1) for integrating the liquid liquefied gas between the tank (11a).
물론 제2 메인라인(VM, LM) 역시, 제1 메인라인(VM, LM)과 마찬가지로 제2 그룹에 속한 카고탱크(11b)들의 기상 액화가스 또는 액상 액화가스를 통합하기 위해 제2 기상 메인라인(VM2)과 제2 액상 메인라인(LM2)을 포함할 수 있다.Of course, the second main line (VM, LM), as well as the first main line (VM, LM), the second gas phase main line to integrate the gaseous liquefied gas or liquid liquefied gas of the cargo tanks (11b) belonging to the second group (VM2) and a second liquid main line LM2.
카고탱크(11)에 저장되는 액화가스는, 조성에 따라 추진엔진(E)에 사용되지 못할 수도 있다. 일례로 액화가스가 프로판이나 부탄일 경우에는 이송펌프(111)를 통해 연료 공급부(20)를 거쳐 추진엔진(E)에 공급됨으로써 추진력을 얻을 수 있지만, 액화가스가 프로필렌일 경우 현재 개발된 추진엔진(E)들로는 소비가 불가능하거나 바람직하지 않다.The liquefied gas stored in the cargo tank 11 may not be used for the propulsion engine E depending on the composition. For example, when the liquefied gas is propane or butane, propulsion can be obtained by being supplied to the propulsion engine (E) through the fuel supply unit (20) through the transfer pump (111), but when the liquefied gas is propylene, the propulsion engine currently developed With (E), consumption is impossible or undesirable.
앞서 설명한 바와 같이 4개의 카고탱크(11)는 2개씩 서로 다른 그룹으로 구분될 수 있고, 제1 그룹과 제2 그룹이 동종의 액화가스를 저장하거나, 이송펌프(111)가 없는 제1 그룹의 카고탱크(11a)들은 추진엔진(E)의 연료로 부적합한 액화가스를 저장하고, 이송펌프(111)가 마련된 카고탱크(11b)를 포함한 제2 그룹의 카고탱크(11b)들은 추진엔진(E)의 연료로 적합한 액화가스를 저장하는 경우가 있다.As described above, the four cargo tanks 11 may be divided into two different groups, and the first group and the second group store the same type of liquefied gas, or the first group without the transfer pump 111. The cargo tanks 11a store inadequate liquefied gas as fuel for the propulsion engine E, and the second group of cargo tanks 11b including the cargo tank 11b provided with the transfer pump 111 is the propulsion engine E In some cases, liquefied gas suitable for fuel may be stored.
그런데 앞서 설명한 바와 같이 4번 카고탱크(11)만 연료 전용으로 사용되는데, 이 경우 4번 카고탱크(11)가 속한 그룹에서의 메인라인(VM, LM)이나 연료 공급부(20)와의 연결 부분에 문제가 발생하는 경우에는, 액화가스에 의한 추진이 불가능해지는 문제가 발생한다.However, as described above, only the fourth cargo tank 11 is used exclusively for fuel. In this case, the fourth cargo tank 11 is connected to the main line (VM, LM) or the fuel supply unit 20 in the group to which it belongs. When a problem occurs, a problem occurs that propulsion by liquefied gas becomes impossible.
즉, 카고탱크(11)들을 서로 연통시키는 메인라인(VM, LM)이 적어도 2개의 그룹으로 분할되어 있고, 액화가스를 연료로 사용하기 위한 카고탱크(11)는 어느 하나의 그룹에만 속하기 때문에, 연료 전용 카고탱크(11)에 할당된 메인라인(VM, LM)을 통한 흐름이 항상 보장되어야 하는 부담이 존재한다.That is, since the main lines (VM, LM) communicating the cargo tanks 11 with each other are divided into at least two groups, and the cargo tank 11 for using liquefied gas as fuel belongs to only one group. , There is a burden that the flow through the main lines (VM, LM) allocated to the fuel-only cargo tank 11 should always be guaranteed.
본 실시예는 이를 개선하기 위하여, 연료 전용인 4번 카고탱크(11)에 이송펌프(111)를 복수 개 설치하고, 이송펌프(111)가 제1 메인라인(VM, LM)과 제2 메인라인(VM, LM)에 각각 연결되도록 마련될 수 있다.In order to improve this embodiment, a plurality of transfer pumps 111 are installed in the fourth cargo tank 11 dedicated to fuel, and the transfer pumps 111 are provided with a first main line (VM, LM) and a second main. It may be provided to be connected to the lines (VM, LM), respectively.
구체적으로 어느 하나의 이송펌프(111)는 연료 전용인 카고탱크(11)가 속한 그룹에 할당되는 메인라인(VM, LM)(일례로 제2 액상 메인라인(LM2))에 연결되는 반면, 다른 하나의 이송펌프(111)는 연료 전용인 카고탱크(11)가 속하지 않는 다른 그룹에 할당된 메인라인(VM, LM)(일례로 제1 액상 메인라인(LM1))에 연결되도록 할 수 있다.Specifically, any one of the transfer pump 111 is connected to the main line (VM, LM) (for example, the second liquid main line (LM2)) that is assigned to the group to which the cargo tank 11 dedicated to fuel belongs, while the other One transfer pump 111 may be connected to the main line (VM, LM) (for example, the first liquid main line LM1) assigned to another group to which the cargo tank 11 dedicated to fuel does not belong.
따라서 본 실시예는, 연료 전용으로 사용되는 카고탱크(11)가 어느 하나의 그룹에 할당된 메인라인(VM, LM)에만 연결되는 것이 아니라, 모든 그룹에 다 연결되도록 함으로써, 하나의 카고탱크(11)로 복수 개의 그룹을 통한 연료 공급이 가능하도록 할 수 있다. 즉 서로 다른 그룹이 연료 공급을 서로 백업하는 구조로 마련되도록 할 수 있다.Therefore, in the present embodiment, the cargo tank 11 used exclusively for fuel is not connected only to the main lines VM and LM allocated to any one group, but is connected to all groups, thereby allowing one cargo tank ( 11) can be used to supply fuel through a plurality of groups. That is, different groups can be provided with a structure that backs up the fuel supply to each other.
또한 연료 전용인 카고탱크(11)가 둘 이상의 그룹에 할당된 메인라인(VM, LM)에 연결되도록 마련됨에 따라, 화물 적재 운영 방식도 아래와 같이 확장될 수 있다.In addition, as the cargo tank 11 dedicated to fuel is provided to be connected to the main lines VM and LM allocated to two or more groups, the cargo loading operation method can also be expanded as follows.
그룹group 기본basic 본 발명The present invention
1One 1, 3번 카고탱크 Cargo Tank 1 and 3 1, 3번 카고탱크 Cargo Tank 1 and 3 1, 3, 4번 카고탱크 Cargo tanks 1, 3 and 4
22 2, 4번 카고탱크Cargo Tank 2 and 4 2, 4번 카고탱크Cargo Tank 2 and 4 2번 카고탱크Cargo Tank 2
즉 본 실시예에서 이송펌프(111)를 갖는 카고탱크(11)는, 아래와 같이 동일한 그룹에 속하며 이송펌프(111)가 없는 카고탱크(11)와 상이하거나 동일한 액화가스의 저장이 가능하다. 참고로 이하에서 P는 프로필렌, B는 부탄을 의미한다.That is, in the present embodiment, the cargo tank 11 having the transfer pump 111 belongs to the same group as below, and it is possible to store the same or different liquefied gas from the cargo tank 11 without the transfer pump 111. For reference, P means propylene and B means butane.
카고탱크(11)Cargo Tank(11)
1번no. 1 2번No.2 3번number 3 4번Number 4
기본basic PP PP PP PP
BB BB BB BB
PP BB PP BB
BB PP BB PP
본 발명The present invention BB PP BB BB
PP BB PP PP
즉 본 실시예의 연료 저장부(10)는, 두 그룹으로 나뉘는 카고탱크(11)들 및 어느 하나의 그룹에 속한 연료 전용 카고탱크(11)를 구비하는 것에서 더 나아가, 연료 전용 카고탱크(11)가 다른 그룹에 할당된 메인라인(VM, LM)에도 연결되는 구조를 갖도록 함으로써, 어느 하나의 그룹에 의한 액화가스 전달에 문제가 발생하더라도 연료 공급에는 중단이 없도록 보장할 수 있다.That is, the fuel storage unit 10 of the present embodiment is further provided with a cargo tank 11 that is divided into two groups and a fuel-only cargo tank 11 belonging to any one group, and furthermore, a fuel-only cargo tank 11 By having a structure that is also connected to the main lines (VM, LM) allocated to other groups, it is possible to ensure that there is no interruption in fuel supply even if a problem occurs in the delivery of liquefied gas by any one group.
연료 공급부(20)는, 연료 저장부(10)의 액화가스를 선박(100)의 추진엔진(E)에 액상으로 공급하며, 이를 위해 연료 공급부(20)는 메인라인(VM, LM)으로부터 추진엔진(E)으로 연결되는 연료 공급라인(L20)을 구비한다. 일반적으로 LNG의 경우에는 엔진에 기상으로 공급되어야 하므로 LNG는 가열에 의해 기화된 후 엔진에 공급되지만, 본 발명에서 연료 공급부(20)는 추진엔진(E)에 LPG 등을 액상으로 공급하게 된다.The fuel supply unit 20 supplies the liquefied gas of the fuel storage unit 10 to the propulsion engine E of the ship 100 in a liquid state, and for this purpose, the fuel supply unit 20 propels from the main lines (VM, LM) It has a fuel supply line (L20) connected to the engine (E). In general, in the case of LNG, since it must be supplied in the gas phase to the engine, LNG is vaporized by heating and then supplied to the engine, but in the present invention, the fuel supply unit 20 supplies LPG or the like to the propulsion engine E in a liquid state.
이때 추진엔진(E)은 MAN사에서 개발한 ME-LGI 등의 LPG엔진일 수 있지만, 그에 한정하지 않으며 LPG 등을 소비할 수 있는 모든 엔진 제품을 포괄할 수 있다.At this time, the propulsion engine (E) may be an LPG engine such as ME-LGI developed by MAN, but is not limited thereto and may include all engine products that can consume LPG.
다만 연료 공급부(20)가 가압해 추진엔진(E)에 공급하는 액상 액화가스의 상태는, 구체적으로 임계압력(이하에서 임계압력은 액화가스 고유의 임계압력이 아닌, 상온(20도씨 이상)에서 기화되지 않는 압력을 의미하는 표현일 수도 있음을 알려둔다.) 이상 및 임계온도 이하인 과냉 상태일 수 있다. 즉 본 명세서에서 액상이라 함은 과냉을 포괄하는 표현일 수 있다.However, the state of the liquid liquefied gas that the fuel supply unit 20 pressurizes and supplies to the propulsion engine E is specifically at a critical pressure (hereinafter, the critical pressure is not a critical pressure inherent to the liquefied gas, but is at room temperature (over 20 degrees Celsius). Note that it may be an expression that means a pressure that does not vaporize at .) It may be a supercooled state that is above and below a critical temperature. That is, in the present specification, the liquid phase may be an expression encompassing supercooling.
연료 공급부(20)는, 카고탱크(11)에 마련된 이송펌프(111)를 통해 전달된 액화가스를 추진엔진(E)에서 요구하는 온도(일례로 20 내지 50도씨)와 압력(일례로 20 내지 60bar)을 맞춰서 추진엔진(E) 등에 공급할 수 있으며, 물론 추진엔진(E)의 상류에서 액화가스 중 적어도 일부를 분기하여 발전엔진, 보일러(B) 등의 기타 수요처에 공급할 수 있다.The fuel supply unit 20, the temperature (for example, 20 to 50 degrees Celsius) and pressure (eg, 20, for example) required of the liquefied gas delivered through the transfer pump 111 provided in the cargo tank 11 in the propulsion engine E It can be supplied to the propulsion engine (E) according to the (60 ~ 60bar), of course, at least a portion of the liquefied gas from the upstream of the propulsion engine (E) can be supplied to other demand sources, such as power generation engine, boiler (B).
이 경우 발전엔진 등이 요구하는 액화가스의 조건이 추진엔진(E)에서와 다를 수 있는 바, 연료 공급부(20)는 발전엔진 등으로 분기되는 액화가스에 대해서도 온도나 압력 등을 추가로 조정할 수 있는 수단이 부가될 수 있음은 물론이다.In this case, the conditions of the liquefied gas required by the power generation engine or the like may be different from that of the propulsion engine E. The fuel supply unit 20 may additionally adjust the temperature or pressure of the liquefied gas branched to the power generation engine or the like. It goes without saying that any means can be added.
연료 공급부(20)는, 연료 공급라인(L20) 상에 마련되는 열교환기(22), 고압펌프(21), 필터(23)를 포함한다. The fuel supply unit 20 includes a heat exchanger 22, a high pressure pump 21, and a filter 23 provided on the fuel supply line L20.
열교환기(22)는 액화가스의 온도를 변화시킨다. 열교환기(22)는 액화가스의 온도를 상승시킬 수 있고 또는 낮출 수도 있으므로, fuel conditioner로 지칭될 수도 있다. The heat exchanger 22 changes the temperature of the liquefied gas. Since the heat exchanger 22 may raise or lower the temperature of the liquefied gas, it may be referred to as a fuel conditioner.
일례로 본 실시예의 초기 가동 시에는, 후술할 연료 회수부(30)에 의하여 회수되는 고온 액화가스의 유량이 많기 때문에, 열교환기(22)는 액화가스의 온도를 낮출 수 있으며, 안정 가동에 접어들 경우 열교환기(22)는 액화가스의 온도를 높일 수 있다.For example, during the initial operation of the present embodiment, since the flow rate of the high temperature liquefied gas recovered by the fuel recovery unit 30 to be described later is large, the heat exchanger 22 can lower the temperature of the liquefied gas, and enters stable operation In this case, the heat exchanger 22 may increase the temperature of the liquefied gas.
또한 열교환기(22)는, 열교환기(22)의 하류에 마련된 고압펌프(21)에 기상 액화가스가 유입되지 않도록, 액화가스의 비등점 이하로 액화가스의 온도를 조절할 수 있다.In addition, the heat exchanger 22 may adjust the temperature of the liquefied gas to a boiling point or less of the liquefied gas so that gaseous liquefied gas does not flow into the high pressure pump 21 provided downstream of the heat exchanger 22.
또한 열교환기(22)는, 연료 회수부(30)에 의해 리턴되는 액화가스에는 추진엔진(E)에서 사용된 윤활유가 혼입되는 점을 고려, 고압펌프(21)에 유입되는 액화가스에서 윤활유가 결빙되지 않는 온도 이상으로 액화가스의 온도를 조절할 수 있다.In addition, the heat exchanger 22, considering that the lubricating oil used in the propulsion engine (E) is mixed into the liquefied gas returned by the fuel recovery unit 30, the lubricating oil from the liquefied gas flowing into the high pressure pump (21) The temperature of the liquefied gas can be adjusted above the temperature that does not freeze.
즉 열교환기(22)는 연료 저장부(10)로부터 고압펌프(21)로 전달되는 액화가스와 연료 회수부(30)로부터 고압펌프(21)로 전달되는 액화가스가 혼합되었을 때, 액화가스의 비등점 이하 및 윤활유의 결빙점 이상이 되도록, 액화가스의 온도를 제어하게 된다.That is, when the heat exchanger 22 is mixed with the liquefied gas delivered from the fuel storage unit 10 to the high pressure pump 21 and the liquefied gas delivered from the fuel recovery unit 30 to the high pressure pump 21, the liquefied gas The temperature of the liquefied gas is controlled to be below the boiling point and above the freezing point of the lubricant.
열교환기(22)는 매체 공급라인(L21)을 통해 공급되는 다양한 열교환 매체를 이용하여 액화가스와의 열교환을 구현할 수 있으며, 일례로 열교환 매체는 해수, 청수, 글리콜워터, 배기 등일 수 있지만, 이로 한정되는 것은 아니다.The heat exchanger 22 may implement heat exchange with liquefied gas using various heat exchange media supplied through the medium supply line L21. For example, the heat exchange medium may be sea water, fresh water, glycol water, exhaust, etc. It is not limited.
열교환기(22)가 가열하는 액화가스의 온도는 추진엔진(E)의 요구온도와 다를 수 있는데, 이는 열교환기(22) 하류에 마련된 고압펌프(21)에 의한 가압 시, 액화가스의 온도가 다소 증가할 수 있기 때문이다. 따라서 열교환기(22)는 고압펌프(21)의 가압 과정에서 액화가스의 온도 상승을 고려하여, 추진엔진(E)에 유입되는 액화가스의 온도가 적정해지도록 액화가스의 가열 또는 냉각을 제어할 수 있다.The temperature of the liquefied gas heated by the heat exchanger 22 may be different from the required temperature of the propulsion engine E. When the pressure is applied by the high pressure pump 21 provided downstream of the heat exchanger 22, the temperature of the liquefied gas is Because it can increase somewhat. Therefore, the heat exchanger 22 controls the heating or cooling of the liquefied gas so that the temperature of the liquefied gas flowing into the propulsion engine E is appropriate in consideration of the temperature rise of the liquefied gas during the pressurization process of the high pressure pump 21. Can.
고압펌프(21)는, 연료 공급라인(L20)에서 열교환기(22)의 하류에 마련되며 열교환기(22)에 의해 온도가 조절된 액화가스를 추진엔진(E)이 요구하는 압력으로 가압한다. 추진엔진(E)이 요구하는 압력은 20 내지 50bar일 수 있지만, 추진엔진(E)의 제원에 따라 달라질 수 있다.The high pressure pump 21 is provided downstream of the heat exchanger 22 in the fuel supply line L20 and pressurizes the liquefied gas whose temperature is controlled by the heat exchanger 22 to a pressure required by the propulsion engine E. . The pressure required by the propulsion engine (E) may be 20 to 50 bar, but may vary depending on the specifications of the propulsion engine (E).
고압펌프(21)의 타입은 특별히 한정하지 않으며, 또한 고압펌프(21)는 도면에 나타난 것과 같이 복수 개가 서로 백업 가능하게 병렬로 마련될 수 있다. The type of the high pressure pump 21 is not particularly limited, and the high pressure pump 21 may be provided in parallel so that a plurality of high pressure pumps 21 can be backed up to each other as shown in the drawings.
다만 고압펌프(21)는, 가압 과정에서 캐비테이션(cavitation)의 발생을 억제하기 위해, 액화가스가 액상으로 유입될 수 있다. 이를 위해 열교환기(22)가 액화가스의 온도를 제어할 수 있음은 앞서 설명한 바와 같다.However, the high pressure pump 21, in order to suppress the generation of cavitation (cavitation) in the pressurization process, liquefied gas may be introduced into the liquid. To this end, the heat exchanger 22 can control the temperature of the liquefied gas as described above.
고압펌프(21)에 흡입되는 액화가스의 압력은, 이송펌프(111)에 의하여 토출되는 액화가스의 압력에 대응될 수 있다. 또한 후술할 연료 회수부(30)의 감압밸브(31)에 의해 감압된 액화가스의 압력에도 대응될 수 있다.The pressure of the liquefied gas sucked into the high pressure pump 21 may correspond to the pressure of the liquefied gas discharged by the transfer pump 111. In addition, it can also correspond to the pressure of the liquefied gas decompressed by the pressure reducing valve 31 of the fuel recovery unit 30 to be described later.
고압펌프(21)의 흡입 압력을 높이게 되면(일례로 액화가스의 임계압력인 약 20bar 이상) 고압펌프(21)의 부하가 줄어드는 반면, 이송펌프(111)의 부하가 커지게 된다. 다만 연료 회수부(30)에서 감압밸브(31)에 의한 감압 정도가 줄어들게 되면서(비등점이 비교적 높은 상태) 회수되는 액상 액화가스가 기화되는 것을 방지할 수 있다.When the suction pressure of the high pressure pump 21 is increased (eg, about 20 bar or more, which is a critical pressure of liquefied gas), the load of the high pressure pump 21 is reduced, while the load of the transfer pump 111 is increased. However, as the degree of decompression by the pressure reducing valve 31 in the fuel recovery unit 30 decreases (a state in which the boiling point is relatively high), the recovered liquefied gas can be prevented from being vaporized.
반면 고압펌프(21)의 흡입 압력을 낮추게 되면(일례로 액화가스의 임계압력 이하로 약 5 내지 10bar), 고압펌프(21)의 부하가 커지는 반면 이송펌프(111)의 부하가 줄어들게 된다. 이 경우 고압펌프(21)의 흡입 압력을 맞추기 위해 감압밸브(31)에 의한 감압 정도가 커지게 되며(비등점이 낮은 상태), 회수되는 액상 액화가스가 기화되어 고압펌프(21)에 유입될 우려가 있다.On the other hand, when the suction pressure of the high pressure pump 21 is lowered (for example, about 5 to 10 bar below the critical pressure of liquefied gas), the load of the high pressure pump 21 is increased while the load of the transfer pump 111 is reduced. In this case, in order to match the suction pressure of the high pressure pump 21, the degree of decompression by the pressure reducing valve 31 is increased (the boiling point is low), and the recovered liquid liquefied gas may be vaporized and flow into the high pressure pump 21. There is.
그럼에도 불구하고 본 실시예는, 고압펌프(21)의 흡입 압력을 낮출 수 있다. 일례로 고압펌프(21)의 흡입 압력(이송펌프(111)의 토출 압력)은 1 내지 10bar일 수 있다. 이를 통해 본 실시예는, 연료 저장부(10)에서 고압펌프(21) 전단까지의 장치 및 라인들의 구성들에 대해, 운전 압력을 낮출 수 있게 되어 설치 비용은 물론이고 유지보수 비용의 혁신적인 절감이 가능하다.Nevertheless, this embodiment can lower the suction pressure of the high pressure pump (21). For example, the suction pressure of the high pressure pump 21 (the discharge pressure of the transfer pump 111) may be 1 to 10 bar. Through this embodiment, for the configurations of the devices and lines from the fuel storage unit 10 to the front end of the high-pressure pump 21, it is possible to lower the operating pressure, resulting in an innovative reduction of installation costs as well as maintenance costs. It is possible.
다만 앞서 언급한 바와 같이 고압펌프(21)로 유입될 액화가스의 기화 문제가 남아있게 되는데, 본 실시예는 이를 해소하기 위해 연료 회수부(30)에 쿨러(32)를 부가할 수 있다. 이에 대해서는 후술한다.However, as mentioned above, the problem of vaporization of the liquefied gas to be introduced into the high pressure pump 21 remains. In this embodiment, the cooler 32 may be added to the fuel recovery unit 30 to solve this problem. This will be described later.
필터(23)는, 연료 공급라인(L20)에서 고압펌프(21)의 하류에 마련되며, 고압펌프(21)에서 가압된 액화가스를 필터(23)링하여 추진엔진(E)에 전달한다. 필터(23)가 필터(23)링하는 물질은 추진엔진(E)의 효율을 떨어뜨리는 다양한 이물질을 의미할 수 있으며, 종류는 제한되지 않는다.The filter 23 is provided downstream of the high pressure pump 21 in the fuel supply line L20 and filters 23 the liquefied gas pressurized by the high pressure pump 21 to be transmitted to the propulsion engine E. The material that the filter 23 rings on the filter 23 may mean various foreign materials that degrade the efficiency of the propulsion engine E, and the type is not limited.
연료 공급부(20)는 필터(23)와 추진엔진(E) 사이에 연료공급밸브(도시하지 않음)를 마련할 수 있으며, 이때 연료공급밸브와 후술할 연료 회수부(30)의 감압밸브(31)는, 하나의 트레인으로 구성되어 FVT(fuel valve train)로 지칭될 수 있음을 알려둔다.The fuel supply unit 20 may provide a fuel supply valve (not shown) between the filter 23 and the propulsion engine E. At this time, the fuel supply valve and the pressure reducing valve 31 of the fuel recovery unit 30 to be described later ), it can be referred to as consisting of a single train can be referred to as FVT (fuel valve train).
연료 회수부(30)는, 추진엔진(E)에서 배출되며 윤활유가 섞인 잉여분의 액상 액화가스를 회수한다. LNG를 기상으로 공급받아 소비하는 상용 엔진(ME-GI, XDF 등)과 달리, 본 발명에서의 추진엔진(E)(ME-LGI 등)은 LPG 등을 액상으로 공급받아 소비하면서 잉여분의 액상 연료를 배출하는 구조를 갖는다. The fuel recovery unit 30 recovers the excess liquid liquefied gas mixed with the lubricating oil discharged from the propulsion engine E. Unlike commercial engines (ME-GI, XDF, etc.) that receive and consume LNG in the gas phase, the propulsion engine (E) (ME-LGI, etc.) in the present invention receives LPG, etc. in liquid form and consumes excess liquid fuel. It has a structure to discharge.
이는 기상의 경우와 달리 액상의 경우 연료공급량의 미세 제어가 용이하지 않아, 추진엔진(E)이 충분한 양의 액상 연료를 공급받음에 따라 잉여분의 연료가 발생하기 때문이다.This is because, unlike the gaseous phase, the fine control of the fuel supply amount is not easy in the case of the liquid phase, and thus excess fuel is generated as the propulsion engine E is supplied with a sufficient amount of the liquid fuel.
다만 추진엔진(E)에서 회수되는 액화가스는 추진엔진(E)에 유입되기 전의 액화가스가 아니라, 추진엔진(E)의 내부를 거친 액화가스로서, 추진엔진(E)의 요구압력에 대응되는 온도/압력을 갖는 상태이면서(일례로 45bar 내외, 50도씨 이상), 액화가스 내부에는 추진엔진(E)에서 사용되는 윤활유가 혼입될 수 있다.However, the liquefied gas recovered from the propulsion engine (E) is not liquefied gas before entering the propulsion engine (E), but liquefied gas that has passed through the interior of the propulsion engine (E), which corresponds to the required pressure of the propulsion engine (E). While having a temperature/pressure condition (eg, around 45 bar, 50 degrees C or more), lubricating oil used in the propulsion engine E may be mixed inside the liquefied gas.
따라서 연료 회수부(30)가 회수하는 잉여분의 액화가스에는, 윤활유가 섞여 있게 되므로, 연료 회수부(30)는 화물 오염을 방지하기 위하여 액화가스를 카고탱크(11)로 전달하지 않는 것이 바람직하다. 즉 연료 회수부(30)는 액상 액화가스를 카고탱크(11)가 아닌 고압펌프(21)로 전달하여 추진엔진(E)에 재유입되도록 할 수 있다.Therefore, since the surplus liquefied gas recovered by the fuel recovery unit 30 is mixed with lubricating oil, it is preferable that the fuel recovery unit 30 does not deliver the liquefied gas to the cargo tank 11 to prevent cargo contamination. . That is, the fuel recovery unit 30 may transfer the liquid liquefied gas to the high-pressure pump 21 instead of the cargo tank 11 so as to be re-introduced into the propulsion engine E.
연료 회수부(30)는 추진엔진(E)으로부터 연장되는 연료 회수라인(L30)을 구비하며, 연료 회수라인(L30)에 마련되는 감압밸브(31), 쿨러(32)를 포함한다.The fuel recovery unit 30 includes a fuel recovery line L30 extending from the propulsion engine E, and includes a pressure reducing valve 31 and a cooler 32 provided in the fuel recovery line L30.
감압밸브(31)는, 액상 액화가스를 감압한다. 감압밸브(31)는 줄-톰슨 밸브일 수 있고, 앞서 설명한 바와 같이 연료 공급부(20)의 연료공급밸브와 함께 연료공급트레인(FVT)을 구성하도록 마련될 수 있다.The pressure reducing valve 31 decompresses the liquid liquefied gas. The pressure reducing valve 31 may be a Joule-Thomson valve, and may be provided to constitute a fuel supply train (FVT) together with the fuel supply valve of the fuel supply unit 20 as described above.
감압밸브(31)는 추진엔진(E)에서 회수되는 고압(약 30 내지 50bar 내외)의 액화가스를 감압하여 고압펌프(21)의 흡입압력에 맞출 수 있다. 이때 감압밸브(31)가 액화가스를 임계압력(일례로 20bar) 이상으로 감압하게 되면, 연료 저장부(10)로부터 공급되는 액화가스와 혼합된 후 고압펌프(21)에 유입되는 과정에서 기상 액화가스가 생성되지 않을 수 있다. 그러나 이 경우에는 고압펌프(21)의 흡입압력이 입계압력 이상인 것으로서, 이송펌프(111) 및 고압펌프(21) 상류에서의 구성들이 모두 임계압력 이상에 맞춘 고가의 제원으로 세팅되어야 한다.The pressure reducing valve 31 can reduce the liquefied gas of high pressure (about 30 to 50 bar or so) recovered from the propulsion engine E to match the suction pressure of the high pressure pump 21. At this time, when the pressure reducing valve 31 decompresses the liquefied gas to a critical pressure (for example, 20 bar or more), it is mixed with the liquefied gas supplied from the fuel storage unit 10 and then gas phase liquefaction in the process of flowing into the high pressure pump 21 Gas may not be produced. However, in this case, the suction pressure of the high-pressure pump 21 is higher than the intergranular pressure, and the components upstream of the transfer pump 111 and the high-pressure pump 21 must be set to an expensive specification suitable for a critical pressure or higher.
그러나 본 실시예는, 감압밸브(31)가 임계압력 이상의 액화가스를 임계압력 이하(일례로 1 내지 10bar)로 감압할 수 있으며, 이를 통해 고압펌프(21)의 흡입압력을 낮춤으로써, 이송펌프(111)의 토출 압력이 감압밸브(31)의 압력 강하에 대응하여 임계압력 이하로 설정되도록 하여, 이송펌프(111) 및 고압펌프(21) 상류의 연료 공급라인(L20) 등이 비교적 낮은 압력에 맞춘 저가의 제원으로 설치되도록 할 수 있다.However, in the present embodiment, the pressure reducing valve 31 can reduce the liquefied gas above the critical pressure to a pressure below the critical pressure (for example, 1 to 10 bar), thereby lowering the suction pressure of the high pressure pump 21, thereby transferring the pump The discharge pressure of (111) is set to be below the critical pressure in response to the pressure drop of the pressure reducing valve (31), so that the transfer pump (111) and the fuel supply line (L20) upstream of the high pressure pump (21) are relatively low pressure It can be installed with low-cost specifications tailored to.
다만 이 경우 액화가스는 압력 강하로 인해 비등점이 하강하게 되는데, 추진엔진(E)에서 회수되는 액화가스는 추진엔진(E)의 요구온도에 맞게 가열되고 추진엔진(E)을 경유하면서 추가로 가열된 상태(약 60도씨 내외)일 수 있기 때문에, 감압 시 액화가스는 기화될 수 있다.However, in this case, the boiling point of the liquefied gas is lowered due to the pressure drop. The liquefied gas recovered from the propulsion engine (E) is heated to the required temperature of the propulsion engine (E) and further heated while passing through the propulsion engine (E). Since it can be in a state (around 60 degrees C), the liquefied gas can be vaporized when decompressed.
물론 회수되는 액화가스는 연료 공급부(20)를 통해 공급되는 액화가스와 혼합되면서 일부 다시 액화될 수도 있지만, 기상의 액화가스가 고압펌프(21)로 유입되면 캐비테이션 문제가 발생할 수 있음은 분명하다. 따라서 연료 회수라인(L30)에서 감압밸브(31) 하류에는, 쿨러(32)가 마련되어 액화가스의 기화를 방지할 수 있다.Of course, the recovered liquefied gas may be partially liquefied again while being mixed with the liquefied gas supplied through the fuel supply unit 20, but it is clear that a cavitation problem may occur when the gaseous liquefied gas flows into the high pressure pump 21. Therefore, a cooler 32 is provided downstream of the pressure reducing valve 31 in the fuel recovery line L30 to prevent vaporization of liquefied gas.
쿨러(32)는, 감압된 액화가스를 냉각해 고압펌프(21)에 액상으로 유입되도록 한다. 쿨러(32)는 제한되지 않는 다양한 냉매를 활용할 수 있으며, 감압된 액화가스의 비등점 이하로 액화가스를 냉각할 수 있다.The cooler 32 cools the decompressed liquefied gas to flow into the high pressure pump 21 as a liquid. The cooler 32 may utilize various refrigerants that are not limited, and may cool the liquefied gas below the boiling point of the decompressed liquefied gas.
쿨러(32)에 의한 냉각은, 연료 저장부(10)로부터 고압펌프(21)로 전달되는 액화가스와의 혼합을 고려하여 이루어질 수 있으므로, 쿨러(32)는 감압된 액화가스의 비등점보다 다소 높은 온도로 액화가스를 냉각하는 제어도 가능하다.Cooling by the cooler 32 may be achieved in consideration of mixing with liquefied gas delivered from the fuel storage unit 10 to the high pressure pump 21, so the cooler 32 is somewhat higher than the boiling point of the decompressed liquefied gas. Control of cooling the liquefied gas to a temperature is also possible.
쿨러(32)에 의해 냉각된 액상(또는 액상에 근접한 상태) 액화가스는, 연료 회수라인(L30)을 통해 연료 공급라인(L20)에서 고압펌프(21)의 상류에 혼입되며, 연료 회수라인(L30)이 연료 공급라인(L20)에 연결되는 지점에는 믹서(도시하지 않음)가 마련될 수 있다.The liquid phase (or the state close to the liquid phase) liquefied gas cooled by the cooler 32 is mixed upstream of the high pressure pump 21 in the fuel supply line L20 through the fuel recovery line L30, and the fuel recovery line ( A mixer (not shown) may be provided at a point where L30) is connected to the fuel supply line L20.
이와 같이 본 실시예는 회수되는 액화가스가 감압밸브(31)에 의하여 임계압력 이하로 감압되도록 하여, 고압펌프(21) 상류에 마련되는 구성들의 제원을 낮춰 설치 비용은 물론이고 운영, 유지/보수 비용을 모두 절감하는 효과를 거둘 수 있다.As described above, this embodiment allows the liquefied gas to be recovered to be decompressed below the critical pressure by the pressure reducing valve 31, thereby lowering the specifications of the components provided upstream of the high pressure pump 21, as well as the installation cost, operation, maintenance, and maintenance. The effect of reducing all costs can be achieved.
또한 연료 회수부(30)는, 연료 회수라인(L30)이 부분적으로 병렬 구조를 갖도록 마련될 수 있으며, 병렬의 연료 회수라인(L30)에서 일측에 포집탱크(34)(collecting tank)가 마련되며, 포집탱크(34)에는 벤트마스트(36)가 연결된다.In addition, the fuel recovery unit 30, the fuel recovery line (L30) may be provided to have a partially parallel structure, a collection tank 34 (collecting tank) is provided on one side in the parallel fuel recovery line (L30) , Vent mast 36 is connected to the collection tank 34.
연료 회수라인(L30)은 감압밸브(31) 하류에서 분기되어 부분적으로 병렬로 구성되었다가 다시 합류되어 연료 공급라인(L20)에 연결될 수 있으며, 포집탱크(34)는 감압밸브(31) 하류에 배치된다.The fuel recovery line (L30) is branched downstream from the pressure reducing valve (31) and is partially composed in parallel and then joined again to be connected to the fuel supply line (L20), and the collection tank (34) is downstream of the pressure reducing valve (31). Is placed.
포집탱크(34)는 연료 회수부(30)를 통해 회수되는 액화가스 중 일부를 저장할 수 있는데, 이때 포집탱크(34)로 전달되는 액화가스는 연료 저장부(10)로부터 공급되는 액화가스의 유량과 추진엔진(E)의 요구유량, 회수되는 액화가스의 상태 등을 전반적으로 고려하여 결정될 수 있다. 일례로 회수되는 액화가스의 유량이 많을 경우 적어도 일부의 액화가스가 포집탱크(34)에 임시 저장될 수 있다.The collection tank 34 may store a portion of the liquefied gas recovered through the fuel recovery unit 30, wherein the liquefied gas delivered to the collection tank 34 is the flow rate of the liquefied gas supplied from the fuel storage unit 10 And the required flow rate of the propulsion engine (E), the state of the liquefied gas recovered, and the like can be determined in general. For example, if the flow rate of the liquefied gas recovered is large, at least a portion of the liquefied gas may be temporarily stored in the collection tank 34.
또는 포집탱크(34)는 퍼징을 위해 마련될 수 있다. 퍼징 시 연료 공급부(20) 등에 외부로부터 퍼징가스가 주입되며, 추진엔진(E)까지 경유하는 퍼징가스는 연료 회수라인(L30)을 통해 회수되면서 포집탱크(34)로 전달된다. 이때 퍼징가스는 포집탱크(34)에 연결된 벤트마스트(36)를 이용해 외부로 배출될 수 있다.Alternatively, the collection tank 34 may be provided for purging. When purging, the purging gas is injected from the outside to the fuel supply unit 20 and the like, and the purging gas passing through the propulsion engine E is recovered through the fuel recovery line L30 and transferred to the collection tank 34. At this time, the purging gas may be discharged to the outside using a vent mast 36 connected to the collection tank 34.
벤트마스트(36)는, 포집탱크(34)로부터 벤트라인(L32)을 통해 연결되며, 추진엔진(E)의 가동 중단 등과 같이 벤트가 필요한 비정상운전 상황에서 액화가스 등을 외부로 벤트시킬 수 있다. 물론 이를 위해 포집탱크(34)는 비정상운전에서 액화가스를 전달받아 벤트마스트(36)로 배출할 수 있다.The vent mast 36 is connected from the collection tank 34 through a vent line L32, and can vent liquefied gas or the like to an outside in an abnormal driving situation in which a vent is required, such as an operation stop of the propulsion engine E. . Of course, for this purpose, the collection tank 34 may receive liquefied gas in abnormal operation and discharge it to the vent mast 36.
또는 벤트마스트(36)는 연료 공급부(20) 등의 퍼징 시 포집탱크(34)로 순환되는 퍼징가스를 외부로 배출하여 퍼징을 구현하는 구성으로 사용될 수도 있음은 물론이다.Alternatively, the vent mast 36 may be used as a configuration to implement purging by discharging the purging gas circulated to the collection tank 34 to the outside when purging the fuel supply unit 20 or the like.
재액화부(40)는, 연료 저장부(10)에서 발생하는 증발가스를 액화하여 연료 저장부(10)로 리턴한다. 재액화부(40)는 다양한 냉매를 이용하여 증발가스를 비등점 이하로 냉각하는 액화기(41)를 포함할 수 있다.The reliquefaction unit 40 liquefies the boil-off gas generated in the fuel storage unit 10 and returns it to the fuel storage unit 10. The reliquefaction unit 40 may include a liquefier 41 that cools the evaporation gas to a boiling point or lower using various refrigerants.
액화기(41)는 질소, 혼합냉매(MR: Mixed Refrigerant) 등을 이용하여 증발가스를 냉각해 액화시킨다. 이때 연료 저장부(10)인 카고탱크(11)로부터 액화기(41)로는 재액화라인(L40)이 순환되도록 연결될 수 있다.The liquefier 41 is liquefied by cooling the evaporation gas using nitrogen, a mixed refrigerant (MR), or the like. In this case, the re-liquefaction line L40 may be connected to the liquefier 41 from the cargo tank 11 that is the fuel storage unit 10.
카고탱크(11)에서 액화기(41)로 연결된 재액화라인(L40)에는 카고탱크(11)의 기상 메인라인(VM)을 통해 배출된 기상 증발가스가 유동할 수 있으며, 액화기(41)에서 카고탱크(11)로 연결된 재액화라인(L40)에는 액화기(41)에서 냉각되어 액화된 액상 증발가스가 유동할 수 있다.In the re-liquefaction line (L40) connected from the cargo tank (11) to the liquefier (41), gaseous vaporized gas discharged through the vapor phase main line (VM) of the cargo tank (11) can flow, and the liquefier (41) In the re-liquefaction line (L40) connected to the cargo tank 11, the liquefied liquid vaporized gas cooled by the liquefier 41 may flow.
다만 액화 효율을 높이기 위하여, 증발가스의 비등점을 상승시키는 압축기(도시하지 않음)가 카고탱크(11)와 액화기(41) 사이의 재액화라인(L40) 상에 배치될 수도 있다. 다만 압축기(124)를 구비하는 경우에도 액화기(41)에서 카고탱크(11) 사이의 재액화라인(L40)에는 감압기가 생략될 수 있는데, 이는 재액화라인(L40)을 통해 카고탱크(11)로 증발가스가 리턴되는 과정에서 부피가 큰 공간인 카고탱크(11)로 유입되면서 자연스럽게 감압이 이루어질 수 있기 때문이다.However, in order to increase the liquefaction efficiency, a compressor (not shown) that increases the boiling point of the evaporated gas may be disposed on the reliquefaction line L40 between the cargo tank 11 and the liquefier 41. However, even when the compressor 124 is provided, a pressure reducer may be omitted in the reliquefaction line L40 between the liquefier 41 and the cargo tank 11, which is the cargo tank 11 through the reliquefaction line L40. This is because decompression can be naturally performed as the evaporation gas is returned to the cargo tank 11, which is a bulky space.
액화기(41)에서 카고탱크(11)로 연결되는 재액화라인(L40)은, 카고탱크(11)에 마련된 액상 메인라인(LM)을 통해 카고탱크(11) 내부로 액상 증발가스를 전달할 수 있으며, 액상 증발가스는 카고탱크(11) 내에서 액화가스 내에 주입되도록 하측에 전달되거나, 카고탱크(11)에서 발생한 증발가스 위에 뿌려져 증발가스의 배출량을 줄일 수 있도록 상측에서 분무될 수 있다. 물론 액상 증발가스가 카고탱크(11) 내에 리턴되는 방식은 상기로 한정하지 않는다.The reliquefaction line (L40) connected from the liquefier (41) to the cargo tank (11) can transmit liquid vaporized gas into the cargo tank (11) through the liquid main line (LM) provided in the cargo tank (11). The liquid vaporized gas may be delivered to the lower side to be injected into the liquefied gas in the cargo tank 11 or sprayed on the vaporized gas generated in the cargo tank 11 to be sprayed from the upper side to reduce the emission amount of the vaporized gas. Of course, the manner in which the liquid vaporized gas is returned in the cargo tank 11 is not limited to the above.
이와 같이 본 실시예는, 연료 저장부(10)에 저장된 액화가스를 연료 공급부(20)가 액상으로 추진엔진(E)에 공급하되, 추진엔진(E)에서 액상 액화가스가 회수될 때 액화가스를 임계압력 이하로 감압하여, 고압펌프(21) 상류 부분의 제원을 다운시켜 비용을 대폭 절감할 수 있으면서도, 액화가스가 기상으로 고압펌프(21)에 유입되는 것을 막아 안정적인 가동이 가능하다.As described above, in the present embodiment, when the fuel supply unit 20 supplies the liquefied gas stored in the fuel storage unit 10 to the propulsion engine E as a liquid, when the liquid liquefied gas is recovered from the propulsion engine E, the liquefied gas By reducing the pressure to below the critical pressure, the specification of the upstream portion of the high pressure pump 21 can be significantly reduced, while stable operation is possible by preventing liquefied gas from entering the high pressure pump 21 in the gas phase.
도 2는 본 발명의 제2 실시예에 따른 가스 처리 시스템의 개념도이다.2 is a conceptual diagram of a gas processing system according to a second embodiment of the present invention.
이하에서는 본 실시예가 앞선 실시예 대비 달라지는 점 위주로 설명하도록 하며, 설명을 생략한 부분은 앞선 내용으로 갈음한다. 이는 후술하는 제3 실시예 등의 내용에서도 마찬가지로 적용된다.Hereinafter, the present embodiment will be mainly described in terms of differences from the previous embodiment, and parts omitted from description will be replaced with the previous content. This also applies to the contents of the third embodiment described later.
도 2를 참조하면, 본 발명의 제2 실시예에 따른 가스 처리 시스템(1)은, 연료 회수부(30)가 기액분리부(35)를 구비할 수 있다.Referring to FIG. 2, in the gas processing system 1 according to the second embodiment of the present invention, the fuel recovery unit 30 may include a gas-liquid separation unit 35.
기액분리부(35)는, 연료 회수라인(L30)에서 감압밸브(31)의 하류에 마련되어, 감압된 액화가스를 기액분리하여 액상만 고압펌프(21)에 유입되도록 한다. 이를 위해 기액분리부(35)는 액화가스가 회수되는 연료 회수라인(L30) 중 일부가 부분적으로 확관된 형태이거나, 또는 밀도 차를 이용하여 기체와 액체를 분리하는 용기 형태 등으로 마련될 수 있다.The gas-liquid separator 35 is provided downstream of the pressure-reducing valve 31 in the fuel recovery line L30 to separate the decompressed liquefied gas into gas-liquid so that only the liquid is introduced into the high-pressure pump 21. To this end, the gas-liquid separator 35 may be provided in a partially expanded form of a part of the fuel recovery line L30 in which liquefied gas is recovered, or in a container form for separating gas and liquid using a density difference. .
앞서 설명한 바와 같이 연료 회수부(30)의 감압밸브(31)가 액화가스를 임계압력 이하로 감압하게 되면, 액화가스는 온도에 따라 기화될 수 있는 상태가 된다. 그런데 추진엔진(E)을 거쳐 회수되는 액화가스의 온도가 높기 때문에, 감압 시 온도가 일부 떨어지더라도 액화가스는 기화될 우려가 있고, 이로 인해 액화가스가 유입되는 고압펌프(21)에서의 캐비테이션이 문제된다.As described above, when the pressure reducing valve 31 of the fuel recovery unit 30 decompresses the liquefied gas to a critical pressure or less, the liquefied gas is in a state that can be vaporized according to the temperature. However, because the temperature of the liquefied gas recovered through the propulsion engine (E) is high, the liquefied gas may be vaporized even if the temperature is partially reduced during decompression, which causes cavitation in the high pressure pump (21) through which the liquefied gas flows. It becomes a problem.
물론 이를 해결하기 위해 감압밸브(31) 하류에 액화가스를 냉각하는 쿨러(32)를 추가하는 것도 가능하나, 본 실시예는 보다 안정적인 가동을 위하여 기액분리부(35)를 쿨러(32)에 대체하여 또는 쿨러(32)와 함께 사용할 수 있다. 쿨러(32)와 기액분리기를 모두 구비할 경우 쿨러(32)는 감압된 액화가스를 냉각해 기액분리부(35)로 전달할 수 있다.Of course, to solve this, it is also possible to add a cooler 32 for cooling the liquefied gas downstream of the pressure reducing valve 31, but this embodiment replaces the gas-liquid separator 35 in the cooler 32 for more stable operation. Or can be used with the cooler 32. When both the cooler 32 and the gas-liquid separator are provided, the cooler 32 may cool the decompressed liquefied gas and transfer it to the gas-liquid separator 35.
기액분리부(35)는, 회수되는 액화가스에 포함된 질소 성분을 분리할 수 있다. 질소 성분은 비등점이 액화가스보다 상당히 낮은 물질로서 쉽게 기화하므로, 기액분리부(35)는 질소 등을 분리하여 외부로 배출할 수 있다. 이때 외부는 질소 수요처나 대기 중일 수 있다.The gas-liquid separator 35 may separate nitrogen components contained in the liquefied gas to be recovered. Since the nitrogen component is easily vaporized as a substance having a boiling point significantly lower than that of liquefied gas, the gas-liquid separator 35 may separate nitrogen and the like and discharge it to the outside. At this time, the outside may be a source of nitrogen or waiting.
기액분리부(35) 내에서 기체가 축적되면, 기액분리부(35) 내의 압력이 상승하게 된다. 이 경우 액화가스의 비등점이 올라가게 되면서 기체가 액체 내에 자연적으로 응축될 수 있으므로, 기액분리부(35)는 효과적으로 고압펌프(21)로의 기체 유입 방지를 구현할 수 있다.When gas is accumulated in the gas-liquid separator 35, the pressure in the gas-liquid separator 35 rises. In this case, as the boiling point of the liquefied gas rises, the gas may naturally condense in the liquid, so the gas-liquid separator 35 can effectively prevent the gas from entering the high-pressure pump 21.
다만 질소 성분의 경우 기액분리부(35) 내압 상승에도 불구하고 기액분리부(35) 내의 액체에 의해 응축되지 못할 것이어서, 앞서 설명한 바와 같이 질소 성분은 기액분리부(35)의 상측을 통해 외부로 배출될 수 있다. 질소 성분의 배출은 기액분리부(35)의 내압, 저장 레벨 등에 따라 밸브의 개도 조절을 통해 제어될 수 있다.However, in the case of the nitrogen component, despite the increase in the internal pressure of the gas-liquid separation unit 35, it will not be condensed by the liquid in the gas-liquid separation unit 35. Can be discharged. The discharge of the nitrogen component can be controlled by adjusting the opening degree of the valve according to the internal pressure of the gas-liquid separator 35, the storage level, and the like.
이와 같이 본 실시예는, 연료 회수라인(L30) 상에 확장 배관 형태 등으로 마련되는 기액분리부(35)를 두어, 액체만 고압펌프(21)로 리턴시킴으로써 고압펌프(21)의 공동현상을 억제할 수 있다. 물론 감압밸브(31)가 액화가스를 임계압력 이상으로 감압하는 경우에도, 질소 성분 분리를 위해 기액분리부(35)가 활용될 수 있다. Thus, in this embodiment, by placing the gas-liquid separator 35 provided in the form of an extended pipe on the fuel recovery line L30, only the liquid is returned to the high-pressure pump 21, thereby improving the cavitation of the high-pressure pump 21. Can be suppressed. Of course, even when the pressure reducing valve 31 decompresses the liquefied gas to a critical pressure or higher, the gas-liquid separation unit 35 may be used to separate nitrogen components.
참고로 감압밸브(31)가 액화가스를 감압하는 정도는 본 발명 전체에서 임계압력 이상이거나 임계압력보다 낮을 수 있고, 다만 임계압력보다 낮게 감압하는 경우에는 기화를 방지하기 위한 다양한 수단이 사용될 수 있다.For reference, the degree to which the pressure-reducing valve 31 decompresses the liquefied gas may be greater than or equal to a critical pressure or lower than a critical pressure in the present invention. However, when decompressing the pressure lower than the critical pressure, various means for preventing vaporization may be used. .
도 3은 본 발명의 제3 실시예에 따른 가스 처리 시스템의 개념도이다.3 is a conceptual diagram of a gas processing system according to a third embodiment of the present invention.
도 3을 참조하면, 본 발명의 제3 실시예에 따른 가스 처리 시스템(1)은, 연료 공급부(20)의 열교환기(22)가 앞선 실시예와 다르게 구성될 수 있다.Referring to FIG. 3, in the gas treatment system 1 according to the third embodiment of the present invention, the heat exchanger 22 of the fuel supply unit 20 may be configured differently from the previous embodiment.
열교환기(22)는, 연료 저장부(10)로부터 추진엔진(E)으로 공급되는 액화가스의 온도를 변화시킨다는 점에서는 앞선 실시예에서와 동일하다. 다만 본 실시예의 열교환기(22)는, 연료 회수부(30)를 통해 회수되는 액화가스를 열교환에 활용할 수 있다.The heat exchanger 22 is the same as in the previous embodiment in that it changes the temperature of the liquefied gas supplied from the fuel storage unit 10 to the propulsion engine E. However, the heat exchanger 22 of the present embodiment may utilize liquefied gas recovered through the fuel recovery unit 30 for heat exchange.
즉 열교환기(22)는, 연료 저장부(10)로부터 추진엔진(E)으로 공급되는 액화가스와, 연료 회수부(30)에서 회수되는 액화가스를 열교환시킬 수 있다. 이 경우 열교환기(22)는 연료 회수부(30)의 액화가스를 추진엔진(E)으로 공급되는 액화가스로 냉각하여, 고압펌프(21)에 액상으로 유입되도록 한다.That is, the heat exchanger 22 may exchange heat between the liquefied gas supplied from the fuel storage unit 10 to the propulsion engine E and the liquefied gas recovered from the fuel recovery unit 30. In this case, the heat exchanger 22 cools the liquefied gas of the fuel recovery unit 30 with the liquefied gas supplied to the propulsion engine E, so as to flow into the high pressure pump 21 as a liquid.
본 발명에서는 연료 회수부(30)를 통해 회수되는 액화가스가 고압펌프(21)로 유입될 때 기체가 발생하지 않도록 하는 것이 중요한데, 앞선 실시예에서는 쿨러(32), 기액분리부(35) 등을 활용할 수 있는 반면, 본 실시예는 열교환기(22)를 (추가로) 이용할 수 있다.In the present invention, it is important not to generate gas when the liquefied gas recovered through the fuel recovery unit 30 flows into the high pressure pump 21. In the previous embodiment, the cooler 32, the gas-liquid separation unit 35, etc. Whereas, this embodiment may use (additionally) the heat exchanger 22.
따라서 열교환기(22)는, 연료 회수부(30)의 감압밸브(31)에 의해 감압된 액화가스를 냉각해 고압펌프(21)에 액상으로 유입되도록 함으로써, 고압펌프(21)에서의 공동현상을 방지할 수 있게 된다.Therefore, the heat exchanger 22 cools the liquefied gas decompressed by the pressure reducing valve 31 of the fuel recovery unit 30 to flow into the high pressure pump 21 as a liquid, thereby causing cavitation in the high pressure pump 21. It is possible to prevent.
또한 열교환기(22)는, 회수되는 액화가스를 연료 저장부(10)에서 전달되는 액화가스와 열교환하는 것에서 더 나아가, 열교환 매체를 활용할 수도 있다. 이 경우 열교환기(22)는 연료 저장부(10)로부터 추진엔진(E)으로 공급되는 액화가스가 흐르는 스트림(연료 공급라인(L20)에 연결)과, 연료 회수부(30)에서 회수되는 액화가스가 흐르는 스트림(연료 회수라인(L30)에 연결)과, 열교환 매체가 흐르는 스트림을 갖는 적어도 3스트림 구조일 수 있다.In addition, the heat exchanger 22 may further utilize heat exchange media by further heat-exchanging the recovered liquefied gas with the liquefied gas delivered from the fuel storage unit 10. In this case, the heat exchanger 22 includes a stream (connected to the fuel supply line L20) through which liquefied gas supplied from the fuel storage unit 10 to the propulsion engine E flows, and liquefaction recovered from the fuel recovery unit 30 It may be at least three-stream structure having a stream through which the gas flows (connected to the fuel recovery line L30) and a stream through which the heat exchange medium flows.
이때 열교환기(22)는 핀-튜브 타입이거나, PCHE 타입 등으로 마련될 수 있으며, 공간 활용성 증대를 위해서 PCHE 타입으로 마련되는 것이 바람직하다. 이는 본 명세서 내에서 열교환을 구현하는 모든 구성에 적용된다.At this time, the heat exchanger 22 may be of a fin-tube type or a PCHE type, and is preferably provided of a PCHE type to increase space utilization. This applies to all configurations that implement heat exchange within this specification.
연료 회수라인(L30)을 기준으로 열교환기(22)의 하류에는, 혼합기(33)가 마련될 수 있다. 혼합기(33)는 연료 공급라인(L20)을 기준으로 열교환기(22)와 고압펌프(21) 사이에 마련되어, 열교환기(22)를 경유한 액화가스와, 연료 저장부(10)로부터 공급되는 액화가스를 혼합해 고압펌프(21)로 전달한다.A mixer 33 may be provided downstream of the heat exchanger 22 based on the fuel recovery line L30. The mixer 33 is provided between the heat exchanger 22 and the high-pressure pump 21 based on the fuel supply line L20, and is supplied from the liquefied gas passing through the heat exchanger 22 and the fuel storage unit 10 The liquefied gas is mixed and transferred to the high pressure pump 21.
혼합기(33)만을 사용할 경우 추진엔진(E)에서 회수되는 고온의 액화가스가 연료 저장부(10)로부터 전달되는 저온의 액화가스와 직접 만나면서 냉각될 수는 있지만, 이 경우 급격한 냉각으로 인해 회수되는 액화가스에 포함된 윤활유가 결빙될 우려가 있다.When only the mixer 33 is used, the high temperature liquefied gas recovered from the propulsion engine E may be cooled while directly meeting the low temperature liquefied gas delivered from the fuel storage unit 10, but in this case, it is recovered due to rapid cooling. There is a risk that the lubricating oil contained in the liquefied gas freezes.
따라서 본 실시예는 회수되는 액화가스가 저온 액화가스에 의해 냉각된 후 저온 액화가스에 혼합되도록 온도 강하를 단계적으로 구현하여, 윤활유의 급격한 냉각으로 인한 결빙을 방지할 수 있다.Therefore, in the present embodiment, the temperature drop is implemented stepwise so that the recovered liquefied gas is cooled by the low temperature liquefied gas and then mixed with the low temperature liquefied gas, thereby preventing freezing due to rapid cooling of the lubricant.
이와 같이 본 실시예는, 추진엔진(E)으로부터 회수되는 액화가스가 연료 저장부(10)로부터 전달되는 액화가스에 의하여 열교환 및 혼합되면서 냉각되도록 하여, 추진엔진(E)에서 회수된 후 고압펌프(21)로 재유입되는 액화가스가 액상으로 이루어지게 함으로써 고압펌프(21)를 보호할 수 있다.As described above, the present embodiment allows the liquefied gas recovered from the propulsion engine E to be cooled while being heat exchanged and mixed by the liquefied gas delivered from the fuel storage unit 10, and then recovered from the propulsion engine E to obtain a high pressure pump. The high pressure pump 21 can be protected by making the liquefied gas re-introduced to (21) into a liquid phase.
도 4는 본 발명의 제4 실시예에 따른 가스 처리 시스템의 개념도이다.4 is a conceptual diagram of a gas processing system according to a fourth embodiment of the present invention.
도 4를 참조하면, 본 발명의 제4 실시예에 따른 가스 처리 시스템(1)은, 연료 공급부(20)의 열교환기(22)가 앞선 제3 실시예와 다르게 배치된다. Referring to FIG. 4, in the gas treatment system 1 according to the fourth embodiment of the present invention, the heat exchanger 22 of the fuel supply unit 20 is disposed differently from the previous third embodiment.
앞선 실시예의 경우 고압펌프(21) 상류에서 액화가스의 온도 제어가 이루어지는 반면, 본 실시예의 경우 종래에 널리 알려져 있는 LNG 연료공급 시스템과 유사하게 고압펌프(21) 하류에서 액화가스의 온도 제어가 이루어질 수 있다. In the case of the previous embodiment, the temperature control of the liquefied gas is made upstream of the high pressure pump 21, whereas in the case of the present embodiment, the temperature control of the liquefied gas is made downstream of the high pressure pump 21 similar to the LNG fuel supply system well known in the art. Can.
본 실시예의 열교환기(22)는, 제3 실시예에서와 반대로 연료 공급라인(L20)에서 고압펌프(21)의 하류에 마련될 수 있다. 이 경우 열교환기(22)는 고압펌프(21)에서 가압된 고압 액화가스와, 연료 회수부(30)에서 회수되는 액화가스를 열교환시킬 수 있다.The heat exchanger 22 of the present embodiment may be provided downstream of the high pressure pump 21 in the fuel supply line L20, as opposed to the third embodiment. In this case, the heat exchanger 22 may heat-exchange the high-pressure liquefied gas pressurized by the high-pressure pump 21 and the liquefied gas recovered by the fuel recovery unit 30.
구체적으로 열교환기(22)는, 고압펌프(21)에 의해 임계압력 이상으로 가압된 고압 액화가스를, 연료 회수부(30)의 액화가스로 가열하게 된다. 따라서 본 실시예는 앞선 실시예와 유사하게, 추진엔진(E)으로 공급되는 액화가스를 가열해야 하는 부하를 절감할 수 있다.Specifically, the heat exchanger 22 heats the high-pressure liquefied gas pressurized by the high-pressure pump 21 to a critical pressure or higher with the liquefied gas of the fuel recovery unit 30. Therefore, the present embodiment can reduce the load to heat the liquefied gas supplied to the propulsion engine E, similar to the previous embodiment.
또한 열교환기(22)는 앞선 실시예와 유사하게, 연료 저장부(10)로부터 추진엔진(E)으로 공급되는 액화가스가 흐르는 스트림과, 연료 회수부(30)에서 회수되는 액화가스가 흐르는 스트림과, 열교환 매체가 흐르는 스트림을 갖는 3 스트림 이상의 구조로 마련될 수 있음은 물론이다.In addition, the heat exchanger 22 is similar to the previous embodiment, the stream flowing liquefied gas supplied from the fuel storage unit 10 to the propulsion engine E, and the stream flowing liquefied gas recovered from the fuel recovery unit 30 And, of course, it can be provided in a structure of three or more streams having a stream through which the heat exchange medium flows.
본 실시예의 열교환기(22)는 추진엔진(E)으로부터 회수되어 감압밸브(31)에 의하여 감압된 액화가스를 고압펌프(21)에 의해 가압된 고압 액화가스로 냉각하기 때문에, 앞선 실시예 대비 냉각 정도가 낮을 수 있으므로, 윤활유의 결빙을 충분히 억제할 수 있다.Since the heat exchanger 22 of this embodiment cools the liquefied gas recovered from the propulsion engine E and depressurized by the pressure reducing valve 31 with high pressure liquefied gas pressurized by the high pressure pump 21, compared to the previous embodiment Since the degree of cooling may be low, freezing of the lubricant can be sufficiently suppressed.
이때 추진엔진(E)에서 회수되고 열교환기(22)에서 냉각된 액화가스는, 연료 회수라인(L30)에서 고압펌프(21) 상류에 마련되는 혼합기(33)를 통해 연료 저장부(10)로부터 전달되는 액화가스와 혼합될 수 있고, 혼합되면서 고압펌프(21)로의 유입에 문제없는 상태(액상)가 될 수 있다.At this time, the liquefied gas recovered from the propulsion engine (E) and cooled in the heat exchanger (22) is from the fuel storage unit (10) through the mixer (33) provided upstream of the high pressure pump (21) in the fuel recovery line (L30). It can be mixed with the liquefied gas to be transferred, and can be in a state (liquid phase) that does not have any problem in the flow into the high pressure pump 21 while being mixed.
즉 혼합기(33)는 고압펌프(21)의 상류에 마련되어 열교환기(22)를 경유한 액화가스와, 연료 저장부(10)로부터 공급되는 액화가스를 혼합해 (대부분) 액상인 상태로 고압펌프(21)로 전달할 수 있다.That is, the mixer 33 is provided upstream of the high pressure pump 21 and mixes the liquefied gas passing through the heat exchanger 22 and the liquefied gas supplied from the fuel storage unit 10 (mostly) a high pressure pump in a liquid state (21).
이와 같이 본 실시예는, 회수되는 윤활유의 결빙을 방지하고자, 고압펌프(21) 하류의 액화가스를 이용하여 회수되는 액화가스를 냉각할 수 있으며, 또한 고압펌프(21)로 유입되는 액화가스에 vapor 생성을 억제할 수 있다.As described above, in the present embodiment, in order to prevent freezing of the lubricating oil to be recovered, the liquefied gas recovered using the liquefied gas downstream of the high-pressure pump 21 may be cooled, and the liquefied gas flowing into the high-pressure pump 21 may be cooled. Vapor production can be suppressed.
도 5는 본 발명의 제5 실시예에 따른 가스 처리 시스템의 개념도이다.5 is a conceptual diagram of a gas processing system according to a fifth embodiment of the present invention.
도 5를 참조하면, 본 발명의 제5 실시예에 따른 가스 처리 시스템(1)은, 연료 회수부(30)에 마련되는 포집탱크(34)의 배치가 앞선 실시예들과 달라질 수 있다.Referring to FIG. 5, in the gas processing system 1 according to the fifth embodiment of the present invention, the arrangement of the collection tank 34 provided in the fuel recovery unit 30 may be different from the previous embodiments.
포집탱크(34)는, 회수되는 액화가스를 전달받아 임시 저장한다. 포집탱크(34)는 연료 회수라인(L30)에 마련되는데, 앞선 실시예의 경우 연료 회수라인(L30)에서 포집탱크(34)가 마련되는 부분은 적어도 부분적으로 병렬로 구비되는 반면, 본 실시예의 경우 연료 회수라인(L30)이 연료 공급라인(L20)에 연결되는 지점에 포집탱크(34)가 구비될 수 있다.The collection tank 34 receives the recovered liquefied gas and temporarily stores it. While the collection tank 34 is provided in the fuel recovery line L30, in the case of the previous embodiment, the portion where the collection tank 34 is provided in the fuel recovery line L30 is provided at least partially in parallel, whereas in the present embodiment A collection tank 34 may be provided at a point where the fuel recovery line L30 is connected to the fuel supply line L20.
즉 포집탱크(34)는, 연료 회수라인(L30)과 연료 공급라인(L20)의 합류 지점에 마련되어 혼합기(33)의 기능을 구현할 수 있다. 또한 포집탱크(34)는 연료 공급라인(L20)을 기준으로 고압펌프(21)의 상류에 마련되는데, 포집탱크(34)에 유입된 액화가스에서 액상만 고압펌프(21)로 전달될 수 있다. 즉 포집탱크(34)는 기액분리부(35)의 기능도 구현할 수 있다.That is, the collection tank 34 is provided at the confluence point of the fuel recovery line L30 and the fuel supply line L20 to implement the function of the mixer 33. Also, the collection tank 34 is provided upstream of the high pressure pump 21 based on the fuel supply line L20, and only the liquid from the liquefied gas flowing into the collection tank 34 can be delivered to the high pressure pump 21. . That is, the collecting tank 34 can also implement the function of the gas-liquid separator 35.
또한 포집탱크(34)는 내부에 저장된 액화가스를 가열하는 히터(341)를 구비할 수 있다. 즉 포집탱크(34)는 앞서 설명한 혼합기(33)나 기액분리부(35)의 기능에 더하여, 열교환기(22)의 기능을 구현하도록 마련될 수 있다.In addition, the collection tank 34 may include a heater 341 for heating the liquefied gas stored therein. That is, the collection tank 34 may be provided to implement the function of the heat exchanger 22 in addition to the functions of the mixer 33 or the gas-liquid separator 35 described above.
이때 히터(341)는, 포집탱크(34) 내부에 코일 형태로 마련되는 in-tank heater일 수 있으며, 전기를 이용하거나 별도의 매체 공급라인(L31)을 통해 유입되는 열교환 매체를 이용할 수 있다.At this time, the heater 341 may be an in-tank heater provided in the form of a coil inside the collection tank 34, and may use electricity or heat exchange media introduced through a separate medium supply line L31.
따라서 포집탱크(34)는 임시 저장된 액화가스를 가열해 고압펌프(21)로 전달할 수 있다. 다만 반복적으로 언급한 바와 같이 고압펌프(21)에는 기상이 유입되면 캐비테이션이 문제될 수 있는바, 포집탱크(34)가 가열하는 액화가스의 온도는 비등점 이하의 온도일 수 있다.Therefore, the collection tank 34 may heat the temporarily stored liquefied gas and transfer it to the high pressure pump 21. However, as repeatedly mentioned, when the gas phase flows into the high pressure pump 21, cavitation may be a problem, and the temperature of the liquefied gas heated by the collection tank 34 may be a temperature below the boiling point.
이 경우 연료 공급부(20)는, 고압펌프(21)의 하류에 마련되며 액화가스의 온도를 변화시키는 열교환기(22)를 더 포함할 수 있으며, 열교환기(22)는 열교환 매체를 활용하거나, 아니면 연료 회수부(30)에서 회수되는 액화가스를 활용할 수 있다. 후자의 경우 열교환기(22)는 연료 저장부(10)로부터 추진엔진(E)으로 공급되는 액화가스와, 연료 회수부(30)에서 회수되는 액화가스를 열교환시키는 적어도 2스트림 이상의 구조로 마련될 수 있다.In this case, the fuel supply unit 20 is provided downstream of the high pressure pump 21 and may further include a heat exchanger 22 to change the temperature of the liquefied gas, and the heat exchanger 22 utilizes a heat exchange medium, Otherwise, the liquefied gas recovered from the fuel recovery unit 30 may be used. In the latter case, the heat exchanger 22 may be provided with a structure of at least two streams for exchanging the liquefied gas supplied from the fuel storage unit 10 to the propulsion engine E and the liquefied gas recovered from the fuel recovery unit 30. Can.
위의 경우 고압펌프(21)로 전달되는 액화가스의 압력이 임계압력 이하일 수 있는데, 감압밸브(31)는 액화가스를 임계압력 이하로 감압할 수 있고 고압펌프(21) 상류에서의 유동 압력은 임계압력 이하일 수 있으므로, 고압펌프(21) 상류의 구성들에 대한 제원을 하향할 수 있다. 이때 고압펌프(21)로의 기체 유입은 포집탱크(34)에 의해 방지된다.In the above case, the pressure of the liquefied gas delivered to the high pressure pump 21 may be less than or equal to the critical pressure. The pressure reducing valve 31 can reduce the liquefied gas to below the critical pressure, and the flow pressure upstream of the high pressure pump 21 is Since it may be below the critical pressure, the specifications for the components upstream of the high pressure pump 21 can be lowered. At this time, gas inflow into the high pressure pump 21 is prevented by the collecting tank 34.
또는 포집탱크(34)에서 고압펌프(21)로 전달되는 액화가스의 압력은 상온에서 기화가 이루어지지 않는 임계압력 이상일 수 있다. 이 경우 고압펌프(21) 상류에서의 유동 압력이 임계압력 이상이므로 고압펌프(21) 상류의 구성들의 제원이 상향될 수 있지만, 반면 쿨러(32) 등과 같은 구성을 생략할 수 있게 된다.Alternatively, the pressure of the liquefied gas delivered from the collection tank 34 to the high pressure pump 21 may be greater than or equal to a critical pressure at which no vaporization occurs at room temperature. In this case, since the pressure in the upstream of the high pressure pump 21 is greater than or equal to the critical pressure, specifications of the components upstream of the high pressure pump 21 may be increased, but on the other hand, a configuration such as a cooler 32 may be omitted.
포집탱크(34)에는, 벤트라인(L32)을 통해 벤트마스트(36)가 연결된다. 벤트마스트(36)는 포집탱크(34)로 회수되는 액화가스 중 적어도 일부를 외부로 벤트하며, 이때 벤트는 시스템이 비정상상태인 경우거나, 퍼징의 경우 등에 이루어질 수 있다.A vent mast 36 is connected to the collection tank 34 through a vent line L32. The vent mast 36 vents at least a portion of the liquefied gas recovered to the collection tank 34 to the outside, wherein the vent may be made when the system is in an abnormal state or purging.
벤트라인(L32)은 포집탱크(34)에서 벤트마스트(36)로 연결될 수 있는데, 벤트라인(L32)은 연료 공급부(20) 등의 퍼징 후 포집탱크(34)로 회수되는 퍼징가스를 벤트마스트(36)에 전달할 수 있다. 즉 퍼징 시 퍼징가스는 연료 공급부(20)와 추진엔진(E)을 거쳐 연료 회수라인(L30)을 따라 포집탱크(34)에 포집된 후, 벤트라인(L32)을 따라 벤트마스트(36)로 전달됨으로써 처리될 수 있다.The vent line L32 may be connected to the vent mast 36 from the capture tank 34, and the vent line L32 vents the purging gas recovered into the collection tank 34 after purging of the fuel supply unit 20 and the like. (36). That is, when purging, the purging gas is collected in the collection tank 34 along the fuel recovery line L30 through the fuel supply unit 20 and the propulsion engine E, and then to the vent mast 36 along the vent line L32. It can be processed by being delivered.
이와 같이 본 실시예는, 고압펌프(21) 상류에서의 액화가스 온도 조절 구성과, 회수되는 액화가스를 연료 저장부(10)로부터 공급되는 액화가스와 혼합하는 구성 등을 하나의 포집탱크(34)로 구성함으로써, 시스템을 간소화하고 설치/유지/보수 등의 비용을 대폭 절감할 수 있다.As described above, in the present embodiment, the configuration of adjusting the temperature of the liquefied gas in the upstream of the high pressure pump 21 and the configuration of mixing the recovered liquefied gas with the liquefied gas supplied from the fuel storage unit 10 are collected in one collection tank 34 ) To simplify the system and significantly reduce installation/maintenance/repair costs.
도 6은 본 발명의 제6 실시예에 따른 가스 처리 시스템의 개념도이다.6 is a conceptual diagram of a gas processing system according to a sixth embodiment of the present invention.
도 6을 참조하면, 본 발명의 제6 실시예에 따른 가스 처리 시스템(1)은, 연료 공급부(20)의 연료 공급라인(L20) 상에 열교환기(22), 고압펌프(21), 히터(24)가 차례로 마련된다. 이하 본 실시예에 대해서는 도 3에 나타난 제3 실시예와 대비하여 비교 설명하도록 한다.Referring to FIG. 6, the gas processing system 1 according to the sixth embodiment of the present invention includes a heat exchanger 22, a high pressure pump 21, and a heater on the fuel supply line L20 of the fuel supply unit 20 (24) is provided in turn. Hereinafter, this embodiment will be described in comparison with the third embodiment shown in FIG. 3.
제3 실시예 대비 본 실시예는, 연료 공급부(20)가 고압펌프(21) 하류에 히터(24)를 추가로 구비할 수 있다. 즉 연료 공급부(20)는 고압펌프(21)와, 고압펌프(21) 상류에 마련되어 액화가스의 온도를 변화시키는 열교환기(22)와, 고압펌프(21)의 하류에 마련되는 히터(24)를 포함할 수 있다.Compared to the third embodiment, in the present embodiment, the fuel supply unit 20 may further include a heater 24 downstream of the high pressure pump 21. That is, the fuel supply unit 20 includes a high pressure pump 21, a heat exchanger 22 provided upstream of the high pressure pump 21 to change the temperature of the liquefied gas, and a heater 24 provided downstream of the high pressure pump 21 It may include.
이때 열교환기(22)는, 연료 회수부(30)의 감압밸브(31)에 의해 감압된 액화가스를 냉각해 고압펌프(21)에 액상으로 유입되도록 하는 구성으로서, 연료 저장부(10)로부터 추진엔진(E)으로 공급되는 액화가스와, 연료 회수부(30)에서 회수되는 액화가스를 열교환시킬 수 있다. At this time, the heat exchanger 22 is configured to cool the liquefied gas decompressed by the pressure reducing valve 31 of the fuel recovery unit 30 to flow into the high pressure pump 21 as a liquid, from the fuel storage unit 10 The liquefied gas supplied to the propulsion engine E and the liquefied gas recovered from the fuel recovery unit 30 may be exchanged.
구체적으로 열교환기(22)는, 연료 저장부(10)로부터 추진엔진(E)으로 공급되는 액화가스가 흐르는 스트림과, 연료 회수부(30)에서 회수되는 액화가스가 흐르는 스트림을 갖는 적어도 2 스트림 이상의 구조로 마련될 수 있다.Specifically, the heat exchanger 22 has at least two streams having a stream through which the liquefied gas supplied from the fuel storage unit 10 to the propulsion engine E flows, and a stream through which the liquefied gas recovered from the fuel recovery unit 30 flows. It can be provided with the above structure.
히터(24)는, 고압펌프(21) 하류에서 액화가스를 가열하여 추진엔진(E)의 요구온도에 맞춰 변화시킨다. 즉 본 실시예는 고압펌프(21) 상류에서 액화가스의 온도 제어가 이루어지고, 또한 고압펌프(21) 하류에서도 액화가스의 온도 제어가 이루어질 수 있는데, 추진엔진(E)의 요구온도에 따른 액화가스 온도 제어는 고압펌프(21) 하류의 히터(24)에서 주로 이루어질 수 있다.The heater 24 heats the liquefied gas downstream of the high pressure pump 21 and changes it according to the required temperature of the propulsion engine E. That is, in the present embodiment, the temperature control of the liquefied gas is made upstream of the high pressure pump 21, and also the temperature control of the liquefied gas can be made downstream of the high pressure pump 21. Liquefaction according to the required temperature of the propulsion engine E Gas temperature control can be achieved primarily in the heater 24 downstream of the high pressure pump 21.
연료 회수부(30)에 의하여 회수되는 액화가스는, 열교환기(22)로 전달되어 열교환기(22)에서 냉각된 후, 연료 공급라인(L20)에서 열교환기(22)와 고압펌프(21) 사이에 마련되는 혼합기(33)를 통해, 연료 저장부(10)로부터 공급되는 액화가스에 혼합될 수 있다. The liquefied gas recovered by the fuel recovery unit 30 is transferred to the heat exchanger 22 and cooled in the heat exchanger 22, and then the heat exchanger 22 and the high pressure pump 21 in the fuel supply line L20 Through the mixer 33 provided therebetween, it may be mixed with liquefied gas supplied from the fuel storage unit 10.
또한 연료 회수부(30)는, 감압밸브(31)를 거쳐 열교환기(22)를 경유해 혼합기(33)로 연결되는 연료 회수라인(L30)에 더하여, 바이패스라인(L34)을 추가로 구비할 수 있다. 바이패스라인(L34)은 회수되는 액화가스가 열교환기(22)를 우회하여 추진엔진(E)으로 공급되는 액화가스에 전달되도록 한다.In addition, the fuel recovery unit 30 further includes a bypass line L34 in addition to the fuel recovery line L30 connected to the mixer 33 via the heat exchanger 22 via the pressure reducing valve 31. can do. The bypass line (L34) allows the recovered liquefied gas to be transferred to the liquefied gas supplied to the propulsion engine (E) by bypassing the heat exchanger (22).
바이패스라인(L34)은, 혼합기(33)와 고압펌프(21) 사이의 연료 공급라인(L20)에 연결될 수 있고, 또는 혼합기(33)에 직접 연결되는 것도 가능하다. 바이패스라인(L34)에는 바이패스밸브(부호 도시하지 않음)가 마련되어, 추진엔진(E)의 가동 상태에 따라 바이패스가 제어될 수 있다.The bypass line L34 may be connected to the fuel supply line L20 between the mixer 33 and the high pressure pump 21, or may be directly connected to the mixer 33. A bypass valve (not shown) is provided in the bypass line L34, and the bypass can be controlled according to the operation state of the propulsion engine E.
구체적으로 연료 회수부(30)는, 추진엔진(E)의 정상 가동 시 액화가스를 연료 회수라인(L30)을 따라 열교환기(22)로 전달하고, 추진엔진(E)의 초기 가동 시 액화가스를 바이패스라인(L34)을 따라 열교환기(22)를 우회하여 고압펌프(21)로 전달할 수 있다.Specifically, the fuel recovery unit 30 transfers liquefied gas to the heat exchanger 22 along the fuel recovery line L30 during normal operation of the propulsion engine E, and liquefied gas during initial operation of the propulsion engine E Bypass the heat exchanger 22 along the bypass line (L34) can be transferred to the high pressure pump (21).
이는 초기 가동(start-up) 시에는 연료 회수부(30)를 통해 회수되는 액화가스가 정상 가동 시의 액화가스 대비 유량, 온도 등에서 차이가 있기 때문에(일례로 유량이 많거나 온도가 높음), 열교환기(22)를 경유하지 않더라도 윤활유의 결빙 우려가 없을 수 있다.This is because, during initial start-up, the liquefied gas recovered through the fuel recovery unit 30 differs in flow rate and temperature compared to liquefied gas during normal operation (for example, the flow rate is high or the temperature is high). Even without passing through the heat exchanger 22, there may be no risk of freezing of the lubricant.
따라서 본 실시예는, 추진엔진(E)의 가동 상태를 고려하여 회수되는 액화가스가 연료 저장부(10)에서 공급되는 액화가스와 열교환하거나 열교환을 우회하도록 함으로써, 효율적인 액화가스의 온도 제어가 가능하다.Therefore, in the present embodiment, the temperature of the liquefied gas can be efficiently controlled by allowing the liquefied gas recovered in consideration of the operation state of the propulsion engine E to exchange heat with the liquefied gas supplied from the fuel storage unit 10 or bypass heat exchange. Do.
이와 같이 본 실시예는, 연료 회수라인(L30)에 바이패스라인(L34)을 두어 추진엔진(E)의 초기 가동 시 추진엔진(E)에서 배출되는 액화가스의 상태를 고려하여, 회수되는 액화가스가 열교환기(22)를 우회해 추진엔진(E)으로 재유입되도록 함으로써, 운영 상의 효율을 대폭 개선할 수 있다.As described above, in the present embodiment, by placing the bypass line L34 in the fuel recovery line L30, considering the state of liquefied gas discharged from the propulsion engine E during the initial operation of the propulsion engine E, liquefaction is recovered. By bypassing the heat exchanger 22 and allowing the gas to re-enter the propulsion engine E, operational efficiency can be significantly improved.
도 7은 본 발명의 제7 실시예에 따른 가스 처리 시스템의 개념도이다.7 is a conceptual diagram of a gas processing system according to a seventh embodiment of the present invention.
도 7을 참조하면, 본 발명의 제7 실시예에 따른 가스 처리 시스템(1)은, 앞선 제6 실시예에서와 유사하게, 고압펌프(21)의 상류와 하류 모두에서 액화가스의 온도 변화가 가능하다. 다만 앞선 실시예의 경우 고압펌프(21) 상류 또는 하류 중 적어도 일측에서 액화가스 간의 열교환이 활용되는 반면, 본 실시예는 고압펌프(21) 상류와 하류 모두에서 열교환 매체에 의한 열교환을 이용할 수 있다.Referring to FIG. 7, in the gas treatment system 1 according to the seventh embodiment of the present invention, the temperature change of the liquefied gas in both upstream and downstream of the high pressure pump 21 is similar to that in the previous sixth embodiment. It is possible. However, in the case of the previous embodiment, heat exchange between liquefied gas is utilized at least one side of the high pressure pump 21 upstream or downstream, whereas this embodiment may use heat exchange by the heat exchange medium both upstream and downstream of the high pressure pump 21.
구체적으로 연료 공급부(20)는, 고압펌프(21)와, 고압펌프(21)의 상류에 마련되어 액화가스의 온도를 변화시키는 열교환기(22)와, 고압펌프(21)의 하류에 마련되는 히터(24)를 포함한다.Specifically, the fuel supply unit 20 includes a high pressure pump 21, a heat exchanger 22 provided upstream of the high pressure pump 21 to change the temperature of the liquefied gas, and a heater provided downstream of the high pressure pump 21 (24).
이 경우 연료 회수부(30)의 감압밸브(31)는, 회수되는 액화가스를 임계압력 이하로 감압하여 고압펌프(21)로 전달할 수 있다. 다만 고압펌프(21)로 기상이 유입되는 것을 억제하기 위하여, 감압밸브(31)의 하류에는 감압된 액화가스를 냉각해 고압펌프(21)에 액상으로 유입되도록 하는 쿨러(32)가 마련될 수 있다.In this case, the pressure-reducing valve 31 of the fuel recovery unit 30 may reduce the recovered liquefied gas to a critical pressure or lower and deliver it to the high-pressure pump 21. However, in order to prevent the gas phase from flowing into the high pressure pump 21, a cooler 32 may be provided downstream of the pressure reducing valve 31 to cool the decompressed liquefied gas and flow into the high pressure pump 21 as a liquid. have.
이와 같이 감압밸브(31)에 의한 감압을 액화가스의 임계압력 이하(일례로 6 내지 10bar)로 하면, 연료 저장부(10)의 이송펌프(111) 등은 연료 공급부(20)의 고압펌프(21)에 액화가스를 임계압력 이하(일례로 6 내지 10bar)로 전달할 수 있다.When the pressure reduction by the pressure reducing valve 31 is lower than the critical pressure of the liquefied gas (for example, 6 to 10 bar), the transfer pump 111 of the fuel storage unit 10, etc., is a high pressure pump of the fuel supply unit 20 ( It is possible to transfer the liquefied gas to 21) below a critical pressure (eg, 6 to 10 bar).
따라서 본 실시예는 이송펌프(111)나 메인라인(VM, LM) 등에서의 유동압력이 임계압력 이하로 세팅될 수 있으므로, 본 실시예는 관련 구성들의 design pressure를 낮춰 비용을 대폭 절감할 수 있다.Therefore, in the present embodiment, since the flow pressure in the transfer pump 111, the main line (VM, LM), etc. can be set below the critical pressure, this embodiment can significantly reduce the cost by lowering the design pressure of related components. .
다만 고압펌프(21)로의 기체 유입 방지를 위하여, 열교환기(22)는 열교환 매체를 이용해 액화가스를 가열할 때, 액화가스의 온도를 연료 저장부(10)로부터 전달되는 액화가스의 압력에서의 비등점 이하로 제어할 수 있다.However, in order to prevent gas from flowing into the high pressure pump 21, when the heat exchanger 22 heats the liquefied gas using a heat exchange medium, the temperature of the liquefied gas is at the pressure of the liquefied gas delivered from the fuel storage unit 10. It can be controlled below the boiling point.
또한 회수되는 액화가스에 윤활유가 혼입되어 있음을 고려, 열교환기(22)는 연료 회수부(30)의 액화가스에 혼합되는 윤활유의 결빙점(약 -18도씨) 이상의 온도로 액화가스의 온도를 제어할 수 있다. 즉 열교환기(22)는 액화가스의 온도를 비등점과 윤활유의 결빙점 사이의 온도로 제어한다.In addition, considering that the lubricating oil is mixed with the recovered liquefied gas, the heat exchanger 22 sets the temperature of the liquefied gas to a temperature above the freezing point (about -18 degrees C) of the lubricating oil mixed with the liquefied gas of the fuel recovery unit 30. Can be controlled. That is, the heat exchanger 22 controls the temperature of the liquefied gas to the temperature between the boiling point and the freezing point of the lubricant.
다만 연료 저장부(10)로부터 고압펌프(21)로 공급되는 액화가스는, 회수되는 액화가스와 혼합되면서 온도가 상승할 수 있으므로, 열교환기(22)는 연료 회수부(30)에 의해 고압펌프(21)에 전달되는 액화가스의 온도에 따라, 연료 저장부(10)로부터 전달되는 액화가스의 온도를 제어하여, 고압펌프(21)로 유입되는 액화가스의 온도가 비등점 이하가 되도록 할 수 있다. 즉 연료 저장부(10)로부터 전달되는 액화가스는, 열교환기(22)에서 비등점보다 충분한 온도간격(회수되는 액화가스의 혼합으로 인한 가열분 고려) 만큼 낮은 온도까지 가열될 수 있다.However, since the temperature of the liquefied gas supplied from the fuel storage unit 10 to the high-pressure pump 21 may be increased while being mixed with the recovered liquefied gas, the heat exchanger 22 has a high-pressure pump by the fuel recovery unit 30. According to the temperature of the liquefied gas delivered to the (21), by controlling the temperature of the liquefied gas delivered from the fuel storage unit 10, it is possible to make the temperature of the liquefied gas flowing into the high pressure pump 21 below the boiling point. . That is, the liquefied gas delivered from the fuel storage unit 10 may be heated to a temperature lower than the boiling point in the heat exchanger 22 by a temperature interval (considering the heating component due to the mixing of the recovered liquefied gas).
고압펌프(21) 하류에 마련되는 히터(24)는, 열교환 매체를 이용하여 액화가스를 추진엔진(E)의 요구온도로 가열할 수 있다. 이때 히터(24)는, 스팀을 이용하여 액화가스를 직접 가열하는 구조로 마련된다.The heater 24 provided downstream of the high pressure pump 21 may heat the liquefied gas to a required temperature of the propulsion engine E using a heat exchange medium. At this time, the heater 24 is provided in a structure that directly heats the liquefied gas using steam.
즉 본 실시예는 연료 공급라인(L20)에 마련되는 액화가스의 온도 조절 구성이 글리콜워터 등과 같은 열교환 매체를 사용하는 대신, 스팀을 직접 사용하도록 할 수 있으며, 이를 통해 연료 공급부(20) 전체에서 글리콜워터를 순환 공급하는 사이클의 유량을 약 60%까지 감소시킬 수 있고, 관련된 구성들을 모두 감축할 수 있게 된다.That is, in the present embodiment, the temperature control configuration of the liquefied gas provided in the fuel supply line L20 may use steam directly instead of using a heat exchange medium such as glycol water, thereby allowing the entire fuel supply unit 20 to be used. The flow rate of the cycle for supplying the glycol water can be reduced by about 60%, and all related configurations can be reduced.
이와 같이 본 실시예는, 고압펌프(21) 상류와 하류 모두에서 액화가스의 온도를 조절하면서 회수되는 액화가스의 압력을 낮춰서 이송펌프(111) 등의 제원을 낮춰 비용 절감이 가능하고, 히터(24)가 스팀 직접 가열방식을 사용함으로써 글리콜워터의 공급 구성을 컴팩트화 할 수 있다.As described above, in the present embodiment, the pressure of the liquefied gas recovered while controlling the temperature of the liquefied gas in both the upstream and downstream of the high pressure pump 21 can be reduced to reduce costs by reducing the specifications of the transfer pump 111 and the heater ( 24) By using the direct steam heating method, the supply structure of glycol water can be made compact.
도 8은 본 발명의 제8 실시예에 따른 가스 처리 시스템의 개념도이다.8 is a conceptual diagram of a gas processing system according to an eighth embodiment of the present invention.
도 8을 참조하면, 본 발명의 제8 실시예에 따른 가스 처리 시스템(1)은, 앞선 실시예들 대비 연료 저장부(10)가 연료탱크(12)를 더 포함할 수 있고, 이와 관련된 구성들이 추가/변경될 수 있다.Referring to FIG. 8, in the gas processing system 1 according to the eighth embodiment of the present invention, the fuel storage unit 10 may further include a fuel tank 12 as compared to the previous embodiments, and a configuration related thereto Can be added/modified.
연료 저장부(10)는, 액화가스를 화물로 저장하는 복수 개의 카고탱크(11)와, 액화가스를 추진엔진(E)에 공급할 연료로 저장하는 연료탱크(12)를 포함한다. 이때 카고탱크(11)에 저장된 액화가스는 연료 공급부(20)에 직접 전달되지 않고, 대신 연료탱크(12)에 전달되었다가 연료탱크(12)를 통해 추진엔진(E)으로 공급될 수 있다.The fuel storage unit 10 includes a plurality of cargo tanks 11 for storing liquefied gas as cargo, and a fuel tank 12 for storing the liquefied gas as fuel to be supplied to the propulsion engine E. At this time, the liquefied gas stored in the cargo tank 11 is not directly transmitted to the fuel supply unit 20, but instead can be delivered to the fuel tank 12 and then supplied to the propulsion engine E through the fuel tank 12.
이 경우 카고탱크(11)에서 연료탱크(12)로는 액화가스 보충라인(L12)이 마련될 수 있으며, 액화가스 보충라인(L12)에는 펌프(부호 도시하지 않음)가 마련되어 액화가스를 카고탱크(11)로부터 연료탱크(12)로 전달해줄 수 있다. 물론 액화가스 보충라인(L12)은 카고탱크(11) 내에 마련되어 액화가스를 언로딩(unloading)하는데 사용되는 카고펌프(111a)를 통해 액화가스를 연료탱크(12)로 전달할 수 있으므로 별도의 펌프는 없을 수 있다.In this case, a liquefied gas replenishing line L12 may be provided from the cargo tank 11 to the fuel tank 12, and a liquefied gas replenishing line L12 is provided with a pump (not shown) to supply the liquefied gas to the cargo tank ( 11) can be delivered to the fuel tank (12). Of course, the liquefied gas replenishment line (L12) is provided in the cargo tank 11, so the liquefied gas can be delivered to the fuel tank 12 through the cargo pump 111a used for unloading the liquefied gas. It may not be.
카고탱크(11)는 복수의 그룹으로 구분될 수 있음을 앞서 설명하였는데, 적어도 두 그룹의 카고탱크(11) 중에서 일부 그룹의 카고탱크(11)에는 추진엔진(E)의 연료로 적합하지 않은 액화가스(프로필렌 등)가 적재되어 있을 수 있다. Cargo tank 11 has been described above that can be divided into a plurality of groups. At least two groups of cargo tanks 11 among some groups of cargo tanks 11 are liquefied as fuel for propulsion engine E. Gas (such as propylene) may be loaded.
따라서 연료탱크(12)는, 카고탱크(11) 중 추진엔진(E)의 연료로 적합한 액화가스(프로판, 부탄 등)가 적재된 카고탱크(11)로부터 액화가스를 넘겨받아 연료 공급부(20)로 전달할 수 있다.Therefore, the fuel tank 12 receives the liquefied gas from the cargo tank 11 loaded with liquefied gas (propane, butane, etc.) suitable as fuel for the propulsion engine E of the cargo tank 11, and the fuel supply unit 20 Can be delivered to.
연료탱크(12)는 대기압으로 액화가스를 대량 저장하는 독립형(SPB타입, MOSS타입)이나 멤브레인형인 카고탱크(11)와 달리, 고압으로 액화가스를 저장하는 독립형(Type C, 압력용기타입)일 수 있다. 이때 연료탱크(12)의 저장 압력은 액화가스의 임계압력 이하인 5bar 내외일 수 있고, 액화가스의 기화 방지를 위해 벽체의 내부 또는 외부 중 적어도 일측에 단열구조가 마련될 수 있다.The fuel tank 12 is a standalone type (SPB type, MOSS type) or a membrane type cargo tank 11 that stores liquefied gas in bulk at atmospheric pressure, or a standalone type (Type C, pressure vessel type) that stores liquefied gas at high pressure. Can. At this time, the storage pressure of the fuel tank 12 may be about 5 bar or less, which is equal to or less than the critical pressure of the liquefied gas, and an insulating structure may be provided on at least one side of the inside or outside of the wall to prevent vaporization of the liquefied gas.
연료탱크(12)는 선박(100)에서 상갑판(101) 상에 탑재될 수 있고, 새들(saddle)을 통해 상갑판(101)에 지지되도록 마련된다. 연료탱크(12)는 상갑판(101)에서 카고탱크(11)의 액화가스 로딩/언로딩을 위한 구성들(메인라인(VM, LM), 매니폴드 등)과 간섭되지 않으면서, 선박(100)의 항해 시 시야(visibility)를 가리지 않는 위치에 배치될 수 있다. 일례로 연료탱크(12)는 상갑판(101)에서 선수 측의 좌현 또는 우현에 마련될 수 있다.The fuel tank 12 may be mounted on the upper deck 101 in the ship 100, and is provided to be supported on the upper deck 101 through a saddle. The fuel tank 12 does not interfere with components (main line (VM, LM), manifold, etc.) for loading/unloading the liquefied gas of the cargo tank 11 from the upper deck 101, and the ship 100 It may be arranged in a position that does not cover the visibility (visibility) when sailing. For example, the fuel tank 12 may be provided on the starboard side or starboard side of the bow side in the upper deck 101.
독립형 압력용기인 연료탱크(12)는, 액화가스를 임계압력 미만으로 저장할 수 있는데, 이 경우 연료탱크(12)에 저장된 액화가스는 연료탱크(12) 내에 마련된 이송펌프(121)에 의하여 연료 공급부(20)로 전달될 수 있다. 연료탱크(12)의 이송펌프(121)는, 앞선 실시예에서 설명한 카고탱크(11)의 이송펌프(111)와 동일유사한 구성일 수 있다.The fuel tank 12, which is a stand-alone pressure container, can store liquefied gas below a critical pressure. In this case, the liquefied gas stored in the fuel tank 12 is supplied with a fuel by the transfer pump 121 provided in the fuel tank 12. It can be delivered to (20). The transfer pump 121 of the fuel tank 12 may have a configuration similar to the transfer pump 111 of the cargo tank 11 described in the previous embodiment.
다만 연료탱크(12)의 경우 카고탱크(11)와 달리 액화가스의 저장량이 작기 때문에, 추진엔진(E)에서 요구하는 유량을 맞춰주기 위해서는 연료탱크(12)에 충분한 액화가스의 저장량이 보장될 필요가 있다. 이를 위해 연료탱크(12)의 레벨에 따라 카고탱크(11)에서 연료탱크(12)로 액화가스 보충라인(L12)을 통해 액화가스의 로딩이 제어될 수 있다.However, in the case of the fuel tank 12, unlike the cargo tank 11, since the storage amount of liquefied gas is small, a sufficient amount of liquefied gas is guaranteed in the fuel tank 12 in order to match the flow rate required by the propulsion engine E. There is a need. To this end, loading of the liquefied gas may be controlled through the liquefied gas replenishing line L12 from the cargo tank 11 to the fuel tank 12 according to the level of the fuel tank 12.
또한 연료탱크(12)에서의 내압이 낮으면 연료탱크(12) 내 이송펌프(121)의 펌핑 부하가 증가하게 될 수 있다. 일례로 외기가 저온(약 -20도씨)인 겨울 상태일 때에는 연료탱크(12)에 저장된 액화가스 내압이 낮아지게 될 수 있다.In addition, when the internal pressure in the fuel tank 12 is low, the pumping load of the transfer pump 121 in the fuel tank 12 may increase. For example, when the outside air is in a cold (about -20 degrees C) winter state, the internal pressure of the liquefied gas stored in the fuel tank 12 may be lowered.
따라서 본 실시예는, 연료탱크(12)에서 연료 공급부(20)로의 액화가스 배출을 원활하게 구현하기 위해, 연료탱크(12)에 내압 상승부(122)를 둘 수 있다. 이때 내압 상승부(122)는 연료탱크(12) 내에 저장된 액화가스를 전달받아 가열한 뒤 연료탱크(12) 내부로 다시 주입시키는 PBU(Pressure Build-up Unit)일 수 있다.Therefore, in the present embodiment, in order to smoothly implement liquefied gas discharge from the fuel tank 12 to the fuel supply unit 20, the internal pressure rise unit 122 may be placed in the fuel tank 12. At this time, the internal pressure riser 122 may be a pressure build-up unit (PBU) that receives and heats the liquefied gas stored in the fuel tank 12 and injects it back into the fuel tank 12.
즉 연료탱크(12)는 저장된 액화가스를 가열하는 내압 상승부(122)를 이용하여 연료 공급부(20)의 고압펌프(21) 흡입유량을 보장해줄 수 있다. 이때 내압 상승부(122)는 연료탱크(12)의 외기온도, 연료탱크(12)의 액화가스 저장량, 및/또는 연료탱크(12)의 내압 등에 따라 가동될 수 있다.That is, the fuel tank 12 may ensure the suction flow rate of the high pressure pump 21 of the fuel supply unit 20 by using the internal pressure raising unit 122 for heating the stored liquefied gas. At this time, the internal pressure riser 122 may be operated according to the outside temperature of the fuel tank 12, the amount of liquefied gas stored in the fuel tank 12, and/or the internal pressure of the fuel tank 12.
연료 공급부(20)와 연료 회수부(30)는, 앞서 설명한 실시예들과 동일/유사하므로 자세한 설명은 생략한다. 다만 본 실시예의 재액화부(40)는, 카고탱크(11) 및 연료탱크(12)의 증발가스를 모두 재액화하도록 마련될 수 있다.Since the fuel supply unit 20 and the fuel recovery unit 30 are the same/similar to the above-described embodiments, detailed descriptions are omitted. However, the re-liquefaction unit 40 of the present embodiment may be provided to re-liquefy all the vaporized gas of the cargo tank 11 and the fuel tank 12.
다만 카고탱크(11)에는 추진엔진(E)의 연료로 적합하지 않은 프로필렌 등이 적재될 수도 있고, 프로필렌에 대해서도 재액화가 필요하다. 그런데 카고탱크(11)와 연료탱크(12)가 재액화부(40)의 액화기(41)를 공유하게 되면, 카고탱크(11)의 프로필렌이 재액화된 후 재액화부(40)에 잔류되었다가 연료탱크(12)로 회수되어 연료탱크(12) 내 액화가스의 품질을 변형시키는 문제가 발생할 수 있다.However, the cargo tank 11 may be loaded with unsuitable propylene or the like as fuel for the propulsion engine E, and liquefaction is also required for the propylene. However, when the cargo tank 11 and the fuel tank 12 share the liquefier 41 of the reliquefaction unit 40, the propylene of the cargo tank 11 is re-liquefied and then remains in the reliquefaction unit 40. The problem that the quality of the liquefied gas in the fuel tank 12 is changed by being recovered to the fuel tank 12 may occur.
따라서 본 실시예는, 재액화부(40)의 액화기(41)가 카고탱크(11)의 증발가스와 연료탱크(12)의 증발가스 모두를 액화해 리턴시킬 수 있도록 하면서도, 연료로 적합하지 않은 액화가스가 카고탱크(11)에 적재되는 경우를 고려하여, 연료탱크(12)의 증발가스가 액화기(41)로부터 기설정 범위 내에서 카고탱크(11)에서 액화기(41)로 유입되는 흐름에 합류되도록 할 수 있다.Therefore, the present embodiment allows the liquefier 41 of the reliquefaction unit 40 to liquefy and return both the evaporation gas of the cargo tank 11 and the evaporation gas of the fuel tank 12, but is not suitable as fuel. Considering the case where the liquefied gas is loaded in the cargo tank 11, the boil-off gas of the fuel tank 12 flows into the liquefier 41 from the cargo tank 11 within a predetermined range from the liquefier 41. You can make it join the flow.
및/또는, 액화기(41)에서 액화된 연료탱크(12)의 증발가스는 액화기(41)로부터 기설정 범위 내에서 액화기(41)에서 카고탱크(11)로 전달되는 흐름에서 분기되어 연료탱크(12)로 전달되도록 할 수 있다. And/or, the boil-off gas of the fuel tank 12 liquefied in the liquefier 41 is branched from the flow from the liquefier 41 to the cargo tank 11 from the liquefier 41 within a predetermined range. It can be delivered to the fuel tank (12).
이때 기설정 범위는, 액화기(41)를 기준으로 카고탱크(11)로부터의 흐름 또는 카고탱크(11)를 향하는 흐름의 10% 이내의 위치일 수 있다. At this time, the preset range may be a position within 10% of the flow from the cargo tank 11 or the flow toward the cargo tank 11 based on the liquefier 41.
구체적으로 재액화부(40)는, 카고탱크(11)에서 배출된 증발가스를 액화기(41)를 경유해 카고탱크(11)로 리턴하는 재액화라인(L40)이 마련되고, 연료탱크(12)에서 배출된 증발가스를 액화기(41) 상류의 재액화라인(L40)에 전달하고 액화기(41) 하류의 재액화라인(L40)으로부터 분기되어 연료탱크(12)로 연결되는 연료 재액화라인(L41)을 포함할 수 있는데, 연료 재액화라인(L41)이 재액화라인(L40)에 합류되는 지점은 카고탱크(11)와 액화기(41) 사이에서 액화기(41) 측에 근접한 위치(액화기(41)에 10% 이내로 근접한 위치)일 수 있고, 연료 재액화라인(L41)이 재액화라인(L40)에서 분기되는 지점 역시 액화기(41)와 카고탱크(11) 사이에서 액화기(41) 측에 근접한 위치(액화기(41)에서 10% 범위 내)일 수 있다.Specifically, the reliquefaction unit 40 is provided with a reliquefaction line (L40) for returning the evaporated gas discharged from the cargo tank 11 to the cargo tank 11 via the liquefier 41, and the fuel tank 12 ) To transfer the evaporated gas discharged from the liquefier 41 to the reliquefaction line (L40) upstream and branched from the reliquefaction line (L40) downstream of the liquefier (41) to refuel the fuel connected to the fuel tank (12) A line L41 may be included, and the point where the fuel reliquefaction line L41 joins the reliquefaction line L40 is close to the liquefier 41 side between the cargo tank 11 and the liquefier 41. It may be a position (a position close to within 10% of the liquefier 41), and the point at which the fuel reliquefaction line L41 branches off from the reliquefaction line L40 is also between the liquefier 41 and the cargo tank 11. It may be a position close to the liquefier 41 side (within 10% of the range of the liquefier 41).
따라서 본 실시예는, 카고탱크(11)와 연료탱크(12)의 증발가스가 액화기(41)를 공유하도록 하면서도, 추진엔진(E)의 연료로 적합하지 않은 카고탱크(11)의 증발가스가 연료탱크(12)의 증발가스 재액화 시 연료탱크(12)로 넘어가는 것이 방지되도록 하여, 추진엔진(E)의 가동 효율을 보장할 수 있다.Therefore, this embodiment, while allowing the boil-off gas of the cargo tank 11 and the fuel tank 12 to share the liquefier 41, the boil-off gas of the cargo tank 11 which is not suitable as fuel for the propulsion engine E When the re-liquefaction of the evaporation gas of the fuel tank 12 is prevented from being passed to the fuel tank 12, it is possible to ensure the operation efficiency of the propulsion engine E.
참고로 연료 재액화라인(L41)을 따라 흐르는 연료탱크(12)의 증발가스는, 액화기(41)로 유입될 수도 있지만 일부는 보일러(B)로 분기되어 보일러(B)에서의 스팀 생성에 일조할 수 있다.For reference, the boil-off gas of the fuel tank 12 flowing along the fuel reliquefaction line (L41) may be introduced into the liquefier 41, but partly branches to the boiler (B) to generate steam in the boiler (B). It can help.
또한 연료탱크(12)의 증발가스는, 카고탱크(11)에서 액화기(41)로 유입되는 흐름과 독립적으로 액화기(41)에 유입되거나, 액화기(41)에서 카고탱크(11)로 전달되는 흐름과 독립적으로 액화기(41)에서 배출되도록 하여, 서로 다른 조성의 액화가스가 혼합되지 않도록 할 수 있다. 즉 카고탱크(11)의 증발가스 재액화와 연료탱크(12)의 증발가스 재액화는 서로 다른 시각(이시)에 처리될 수 있다.In addition, the boil-off gas of the fuel tank 12 flows into the liquefier 41 independently of the flow flowing from the cargo tank 11 to the liquefier 41 or from the liquefier 41 to the cargo tank 11 It can be discharged from the liquefier 41 independently of the flow to be transmitted, so that liquefied gases of different compositions may not be mixed. That is, the re-liquefaction of the evaporation gas of the cargo tank 11 and the re-liquefaction of the evaporation gas of the fuel tank 12 may be processed at different times (at this time).
이와 같이 본 실시예는, 연료탱크(12)를 설치하여 연료탱크(12)로부터 액화가스가 추진엔진(E)에 전달되도록 하면서, 연료탱크(12)의 액화가스 배출을 원활하게 하면서도, 연료탱크(12)의 증발가스를 재액화 리턴할 때 연료 품질이 오염되지 않도록 할 수 있다.As described above, in the present embodiment, the fuel tank 12 is installed to allow the liquefied gas to be transmitted from the fuel tank 12 to the propulsion engine E, while smoothly discharging the liquefied gas from the fuel tank 12, When returning the liquefied gas of (12) to liquefaction, it is possible to prevent the fuel quality from being contaminated.
도 9는 본 발명의 제9 실시예에 따른 가스 처리 시스템의 개념도이다.9 is a conceptual diagram of a gas processing system according to a ninth embodiment of the present invention.
도 9를 참조하면, 본 발명의 제9 실시예에 따른 가스 처리 시스템(1)은, 적어도 2개의 연료탱크(12)를 구비할 수 있으며, 이하 자세히 설명한다.Referring to FIG. 9, the gas treatment system 1 according to the ninth embodiment of the present invention may include at least two fuel tanks 12, which will be described in detail below.
연료탱크(12)는, 독립형 압력용기이며 액화가스를 임계압력 이상으로 저장하는 고압 연료탱크(12a)와, 독립형 압력용기이며 액화가스를 임계압력 미만으로 저장하는 저압 연료탱크(12b)를 가질 수 있다.The fuel tank 12 is an independent pressure vessel and may have a high pressure fuel tank 12a that stores liquefied gas above a critical pressure, and a low pressure fuel tank 12b that is an independent pressure vessel and stores liquefied gas below a critical pressure. have.
이때 고압 연료탱크(12a)는 약 18bar 이상의 압력으로 액화가스를 저장하여, 본 시스템의 운영 과정에서 고압 연료탱크(12a)에 적용되는 온도 대역에서 액화가스의 기화가 이루어지지 않도록 할 수 있다. 따라서 고압 연료탱크(12a)에는 증발가스가 (거의) 발생하지 않으며, 고압 연료탱크(12a)는 fully-pressurized type으로 지칭될 수 있다.At this time, the high pressure fuel tank 12a stores liquefied gas at a pressure of about 18 bar or more, so that the liquefied gas is not vaporized in a temperature range applied to the high pressure fuel tank 12a in the course of operating the system. Therefore, (almost) no boil-off gas is generated in the high-pressure fuel tank 12a, and the high-pressure fuel tank 12a may be referred to as a fully-pressurized type.
반면 저압 연료탱크(12b)는, 약 5bar 내외의 압력으로 액화가스를 저장한다. 이 경우 저압 연료탱크(12b)는 외기 온도 등의 상태 조건에 따라 내부에서 증발가스가 발생할 수 있으며, semi-pressurized type으로 지칭될 수 있다.On the other hand, the low pressure fuel tank 12b stores liquefied gas at a pressure of about 5 bar. In this case, the low-pressure fuel tank 12b may generate evaporation gas therein according to conditions such as outside temperature, and may be referred to as a semi-pressurized type.
위와 같은 구성을 위해, 고압 연료탱크(12a)는 저압 연료탱크(12b) 대비 높은 압력을 견딜 수 있는 제원으로 마련된다. 이를 위해 고압 연료탱크(12a)는 벽체에 마련된 단열구조의 두께가 저압 연료탱크(12b) 대비 클 수 있다.For the above configuration, the high pressure fuel tank 12a is provided as a specification capable of withstanding high pressure compared to the low pressure fuel tank 12b. To this end, the high-pressure fuel tank 12a may have a larger thickness of the insulation structure provided on the wall than the low-pressure fuel tank 12b.
또한 고압 연료탱크(12a)는, 18bar 이상으로 액화가스를 가두면서 선박(100)의 상갑판(101) 상에 빈 공간에 배치되기 위하여, 기설정된 크기 이하의 사이즈로 설계될 수 있다. 즉 고압 연료탱크(12a)는, 선박(100) 설계 시 일반적으로 고려되는 항해거리(voyage range)인 10,000NM을 커버할 수 없는 용량(일례로 1,300m3)으로 마련될 수 있다.In addition, the high pressure fuel tank 12a may be designed to have a size equal to or less than a predetermined size in order to be disposed in an empty space on the upper deck 101 of the ship 100 while confining liquefied gas at 18 bar or more. That is, the high-pressure fuel tank 12a may be provided with a capacity (eg, 1,300 m3) that cannot cover 10,000 NM, which is a voyage range generally considered when designing the ship 100.
특히 고압 연료탱크(12a)는 저장 압력이 높아져서 카고탱크(11)의 98% filling limit 보다 낮은 filling limit(일례로 80% 내외)이 설정된다는 점을 추가로 고려할 때, 선박(100) 운항을 위한 액화가스 저장을 위하여, 저압 연료탱크(12b)는 고압 연료탱크(12a)보다 큰 용적을 갖도록 마련될 수 있다.In particular, the high-pressure fuel tank (12a) is further considering that the storage pressure is higher, the filling limit (for example, around 80%) lower than the 98% filling limit of the cargo tank 11 is set, for the vessel 100 to operate For storage of liquefied gas, the low pressure fuel tank 12b may be provided to have a larger volume than the high pressure fuel tank 12a.
즉 고압 연료탱크(12a)만으로는 선박(100)의 운항을 대비할 수 없기 때문에, 저압 연료탱크(12b)는 10,000NM을 커버할 수 있는 용적(일례로 2,350m3 내외)으로 마련될 수 있다. 또한 저압 연료탱크(12b)는 고압 연료탱크(12a) 대비 저장 압력이 낮으므로, filling limit가 더 확보될 수 있다.That is, since the high-pressure fuel tank 12a alone cannot prepare for the operation of the ship 100, the low-pressure fuel tank 12b may be provided in a volume (for example, about 2,350 m3) that can cover 10,000 NM. In addition, since the storage pressure of the low-pressure fuel tank 12b is lower than that of the high-pressure fuel tank 12a, a filling limit may be further secured.
앞서 설명한 바와 같이 고압 연료탱크(12a)는 액화가스를 임계압력 이상으로 저장함에 따라 상온에서 증발가스의 발생이 억제되는 반면, 저압 연료탱크(12b)는 액화가스를 임계압력 미만으로 저장함에 따라 외부 열침투에 의해 증발가스가 발생하므로, 본 실시예의 재액화부(40)는, 카고탱크(11)의 증발가스 및 저압 연료탱크(12b)의 증발가스를 재액화하도록 마련되고, 고압 연료탱크(12a)와는 연결되지 않을 수 있다.As described above, as the high-pressure fuel tank 12a stores the liquefied gas above the critical pressure, generation of evaporation gas is suppressed at room temperature, while the low-pressure fuel tank 12b stores the liquefied gas below the critical pressure. Since the evaporation gas is generated by the thermal penetration, the reliquefaction unit 40 of this embodiment is provided to re-liquefy the evaporation gas of the cargo tank 11 and the low pressure fuel tank 12b, and the high pressure fuel tank 12a ) May not be connected.
이와 같이 본 실시예는, 연료탱크(12)를 고압 연료탱크(12a)와 저압 연료탱크(12b)로 나누어, 고압 연료탱크(12a)로는 액화가스를 기화되지 않은 압력으로 저장하고, 저압 연료탱크(12b)로는 액화가스를 일정 압력 이상으로 저장하여, 고압 연료탱크(12a)나 저압 연료탱크(12b)에서의 이송펌프(121)를 이용해 연료를 공급할 수 있다.Thus, in this embodiment, the fuel tank 12 is divided into a high-pressure fuel tank 12a and a low-pressure fuel tank 12b, and the high-pressure fuel tank 12a stores liquefied gas at an unvaporized pressure, and the low-pressure fuel tank. As (12b), the liquefied gas may be stored at a predetermined pressure or higher, and fuel may be supplied using the transfer pump 121 in the high-pressure fuel tank 12a or the low-pressure fuel tank 12b.
이때 이송펌프(121)를 통해 고압펌프(21)로 전달되는 액화가스의 압력은, 고압 연료탱크(12a)의 저장압력 이상이 되므로, 이와 연계하여 연료 회수부(30)에 의해 고압펌프(21)로 회수되는 액화가스의 압력 역시 임계압력 이상일 수 있다. 따라서 연료 회수부(30)에 의해 감압 및 회수되는 액화가스는 기화가 이루어지지 않으므로 쿨러(32) 등의 구성이 생략될 수 있다.At this time, since the pressure of the liquefied gas delivered to the high pressure pump 21 through the transfer pump 121 becomes greater than or equal to the storage pressure of the high pressure fuel tank 12a, the high pressure pump 21 by the fuel recovery unit 30 in connection with this ), the pressure of the liquefied gas recovered may also be greater than or equal to the critical pressure. Therefore, since the liquefied gas that is decompressed and recovered by the fuel recovery unit 30 is not vaporized, a configuration such as a cooler 32 may be omitted.
또한 본 실시예는 서로 다른 압력으로 액화가스를 저장하는 2개의 연료탱크(12)를 구비함으로써, 연료탱크(12)들이 서로 백업하도록 할 수 있고, 또한 연료탱크(12)(특히 고압 연료탱크(12a))가 카고탱크(11)의 유지/보수 시 액화가스를 저장해두는 용기로 활용될 수도 있다. 이에 대해서는 이하 다른 실시예에서 자세히 설명한다.In addition, the present embodiment is provided with two fuel tanks 12 for storing liquefied gas at different pressures, so that the fuel tanks 12 can back up to each other, and also the fuel tank 12 (especially the high-pressure fuel tank ( 12a)) may be utilized as a container for storing liquefied gas during maintenance/repair of the cargo tank 11. This will be described in detail in other embodiments below.
도 10은 본 발명의 제10 실시예에 따른 가스 처리 시스템의 개념도이다.10 is a conceptual diagram of a gas processing system according to a tenth embodiment of the present invention.
도 10을 참조하면, 본 발명의 제10 실시예에 따른 가스 처리 시스템(1)은, 고압 연료탱크(12a)와 저압 연료탱크(12b)를 구비하면서도, 연료 저장부(10)가 저압 연료탱크(12b)와 고압 연료탱크(12a)를 직접 서로 연결하는 연료 전달부(123)를 구비할 수 있다.Referring to FIG. 10, the gas processing system 1 according to the tenth embodiment of the present invention includes a high-pressure fuel tank 12a and a low-pressure fuel tank 12b while the fuel storage unit 10 has a low-pressure fuel tank. A fuel transmission unit 123 that directly connects the 12b and the high-pressure fuel tank 12a may be provided.
연료 전달부(123)는, 저압 연료탱크(12b)에서 고압 연료탱크(12a)로 연결된 액화가스 전달라인(L13)을 통해 액화가스를 전달한다. 앞서 설명한 바와 같이 고압 연료탱크(12a)는 액화가스를 임계압력 이상으로 저장함에 따라 상온에서 증발가스의 발생이 억제되므로, 재액화부(40)는 카고탱크(11)의 증발가스와 저압 연료탱크(12b)의 증발가스를 재액화하도록 마련된다.The fuel delivery unit 123 delivers liquefied gas through the liquefied gas delivery line L13 connected from the low pressure fuel tank 12b to the high pressure fuel tank 12a. As described above, since the high-pressure fuel tank 12a stores the liquefied gas at a critical pressure or higher, the generation of the evaporation gas at room temperature is suppressed, so the re-liquefaction section 40 has the evaporation gas and the low-pressure fuel tank of the cargo tank 11 ( It is provided to re-liquefy the boil-off gas of 12b).
그런데 운항 중일 경우에는 저압 연료탱크(12b)에서 발생한 증발가스는 액화기(41)로 액화해 리턴하면 되나, 정박 중일 경우에는 일반적으로 재액화부(40)를 가동하기 위한 전력을 생산하지 않게 되므로(선박(100) 내 hotel load를 위한 최소전력만을 발전하거나 육상으로부터 최소전력을 전달받음), 카고탱크(11)나 저압 연료탱크(12b)에서 증발가스가 발생하는 것에 대한 대처가 필요하다.However, when in operation, the boil-off gas generated in the low-pressure fuel tank 12b may be liquefied and returned to the liquefier 41.However, when moored, the re-liquefaction unit 40 generally does not produce electric power to operate ( It is necessary to cope with the occurrence of evaporation gas in the cargo tank 11 or the low-pressure fuel tank 12b, which generates only the minimum power for the hotel load in the ship 100 or receives the minimum power from the land).
따라서 본 실시예는, 연료 전달부(123)를 두어 카고탱크(11)의 로딩 또는 언로딩을 위한 선박(100)의 정박 시, 저압 연료탱크(12b)의 액화가스를 고압 연료탱크(12a)로 전달해 고아 연료탱크(12)가 액화가스를 보관하도록 하여(또는 추진엔진(E)에 축발전기가 마련되고 프로펠러와 클러치로 탈착될 수 있는 경우나 추진엔진(E)이 전기추진 방식인 경우에는 추진엔진(E)에 공급도 가능), 정박 기간 동안 재액화부(40)의 가동을 생략하거나 줄일 수 있다.Therefore, in the present embodiment, when the anchoring of the ship 100 for loading or unloading the cargo tank 11 by placing the fuel delivery unit 123, the liquefied gas of the low pressure fuel tank 12b is pressed into the high pressure fuel tank 12a. To the orphan fuel tank 12 to store the liquefied gas (or when the accumulator is provided on the propulsion engine E and can be detached with a propeller or clutch, or when the propulsion engine E is an electric propulsion method) It is also possible to supply to the propulsion engine E), and the operation of the reliquefaction unit 40 can be omitted or reduced during the anchoring period.
즉 연료 전달부(123)가 고압 연료탱크(12a)의 액화가스를 저압 연료탱크(12b)로 넘기게 되면, 고압 연료탱크(12a)는 액화가스를 기화 없이 저장하게 되므로, 고압 연료탱크(12a)에서의 증발가스에 대한 처리가 생략되도록 할 수 있다.That is, when the fuel delivery unit 123 passes the liquefied gas of the high pressure fuel tank 12a to the low pressure fuel tank 12b, the high pressure fuel tank 12a stores the liquefied gas without vaporization, so the high pressure fuel tank 12a ) Can be omitted.
또한 로딩 전에 카고탱크(11)에 남아있는 액화가스(heel)의 경우에는, 액화가스 보충라인(L12)을 통해 고압 연료탱크(12a)로 전달됨으로써, 정박 중일 때 카고탱크(11) 및 저압 연료탱크(12b) 모두에서 증발가스가 발생하지 않도록 하여, 재액화부(40)의 가동을 생략하거나 줄일 수 있다.In addition, in the case of liquefied gas (heel) remaining in the cargo tank 11 before loading, it is transferred to the high-pressure fuel tank 12a through the liquefied gas replenishing line L12, so that the cargo tank 11 and low-pressure fuel during anchoring Since no evaporation gas is generated in both tanks 12b, the operation of the reliquefaction unit 40 can be omitted or reduced.
더 나아가 본 실시예는, 카고탱크(11)에 저장하는 액화가스의 조성을 변경할 경우 연료 전달부(123)를 활용할 수 있다. 일례로 카고탱크(11)와 저압 연료탱크(12b)에 A라는 액화가스가 저장되어 있는데, 카고탱크(11)의 화물을 A에서 B로 변경하고자 하는 경우에, 연료 전달부(123)는 저압 연료탱크(12b)의 A를 고압 연료탱크(12a)로 전달하며, 또한 카고탱크(11)에 잔류한 A 역시 고압 연료탱크(12a)로 포집될 수 있다.Furthermore, in the present embodiment, when changing the composition of the liquefied gas stored in the cargo tank 11, the fuel delivery unit 123 may be utilized. For example, the liquefied gas A is stored in the cargo tank 11 and the low-pressure fuel tank 12b. When the cargo of the cargo tank 11 is to be changed from A to B, the fuel delivery unit 123 has a low pressure. A of the fuel tank 12b is transferred to the high-pressure fuel tank 12a, and A remaining in the cargo tank 11 can also be captured by the high-pressure fuel tank 12a.
이 경우 연료 전달부(123)에 의해 저압 연료탱크(12b)가 비어있는 상태가 되므로, 이후 B를 로딩할 때, B는 카고탱크(11) 및 저압 연료탱크(12b)에 모두 로딩 가능하게 된다. 물론 여기서 A, B는 추진엔진(E)에 적합한 연료일 수 있다.In this case, since the low-pressure fuel tank 12b is empty by the fuel transmission unit 123, when loading B thereafter, B can be loaded into both the cargo tank 11 and the low-pressure fuel tank 12b. . Of course, A and B may be fuels suitable for the propulsion engine E.
따라서 본 실시예는, 터미널 등에 정박한 상태에서 (액화가스 화물 종류를 변경하여) 로딩하는 과정에서, 고압 연료탱크(12a)를 활용하여 증발가스 처리가 생략/최소화되도록 하여 운항 비용을 혁신적으로 감축할 수 있다.Therefore, in the present embodiment, in the process of loading (by changing the type of liquefied gas cargo) while anchored at a terminal, etc., the high-pressure fuel tank 12a is used to reduce/minimize evaporative gas treatment, thereby significantly reducing operating costs. can do.
도 10은 본 발명의 제10 실시예에 따른 가스 처리 시스템의 개념도이다.10 is a conceptual diagram of a gas processing system according to a tenth embodiment of the present invention.
도 10을 참조하면, 본 발명의 제10 실시예에 따른 가스 처리 시스템(1)은, 제9 실시예에서의 연료 전달부(123)가 액화가스 대신(혹은 액화가스에 더하여) 증발가스의 전달을 구현한다.Referring to FIG. 10, in the gas processing system 1 according to the tenth embodiment of the present invention, the fuel delivery unit 123 in the ninth embodiment transfers evaporated gas instead of (or in addition to liquefied gas) liquefied gas Implement
본 실시예의 연료 전달부(123)는, 저압 연료탱크(12b)에서 고압 연료탱크(12a)로 증발가스를 전달할 수 있다. 이때 저압 연료탱크(12b)와 고압 연료탱크(12a) 간에 내압 차이가 존재하는 것을 고려하여, 연료 전달부(123)는 저압 연료탱크(12b)에서 발생한 증발가스를 고압 연료탱크(12a)의 내압에 대응되도록 압축기(124)로 압축하여 고압 연료탱크(12a)에 전달할 수 있다. The fuel delivery unit 123 of the present embodiment may transfer the evaporation gas from the low pressure fuel tank 12b to the high pressure fuel tank 12a. At this time, considering that there is a pressure difference between the low-pressure fuel tank 12b and the high-pressure fuel tank 12a, the fuel delivery unit 123 uses the boil-off gas generated in the low-pressure fuel tank 12b to the internal pressure of the high-pressure fuel tank 12a. Compressed with a compressor 124 to correspond to the can be delivered to the high-pressure fuel tank (12a).
즉 연료 전달부(123)의 압축기(124)는, 저압 연료탱크(12b)와 고압 연료탱크(12a) 간의 내압 차이만큼 증발가스를 압축하되, 저압 연료탱크(12b)의 증발가스를 임계압력 이상으로 압축하여 고압 연료탱크(12a)로 전달하며, 고압 연료탱크(12a)는 연료 전달부(123)에 의해 전달된 증발가스를 보관 또는 추진엔진(E)에 공급할 수 있다.That is, the compressor 124 of the fuel delivery unit 123 compresses the boil-off gas by the difference in the internal pressure between the low-pressure fuel tank 12b and the high-pressure fuel tank 12a, but the boil-off gas in the low-pressure fuel tank 12b is greater than or equal to the critical pressure. Compressed to deliver to the high-pressure fuel tank (12a), the high-pressure fuel tank (12a) may supply the evaporated gas delivered by the fuel delivery unit 123 to the storage or propulsion engine (E).
이와 같이 저압 연료탱크(12b)의 증발가스가 고압 연료탱크(12a)로 전달될 경우, 저압 연료탱크(12b)의 증발가스를 재액화하여 리턴할 필요가 생략/최소화 될 수 있다. 따라서 재액화부(40)는, 연료탱크(12)에 대한 재액화부(40)의 가동을 생략할 수 있다.In this way, when the boil-off gas of the low-pressure fuel tank 12b is delivered to the high-pressure fuel tank 12a, the need to re-liquefy the boil-off gas of the low-pressure fuel tank 12b and return it may be omitted/minimized. Therefore, the reliquefaction unit 40 can omit the operation of the reliquefaction unit 40 with respect to the fuel tank 12.
즉 본 실시예는, 저압 연료탱크(12b)의 증발가스를 고압 연료탱크(12a)로 전달하는 연료 전달부(123)를 둠으로써, 재액화부(40)가 연료탱크(12)가 아닌 카고탱크(11)의 증발가스의 액화만 처리할 수 있는 제원으로 마련되도록 하여, 재액화부(40)의 사이즈를 컴팩트화 할 수 있고 액화 시 소요되는 냉매 처리 비용 등을 절감할 수 있다.That is, in the present embodiment, by placing the fuel delivery unit 123 that delivers the evaporation gas of the low pressure fuel tank 12b to the high pressure fuel tank 12a, the reliquefaction unit 40 is not a fuel tank 12 but a cargo tank. The size of the reliquefaction unit 40 can be compacted and the refrigerant treatment cost required for liquefaction can be reduced by providing a specification that can only process the liquefied gas of (11).
도 11은 본 발명의 제11 실시예에 따른 가스 처리 시스템의 개념도이다.11 is a conceptual diagram of a gas processing system according to an eleventh embodiment of the present invention.
도 11을 참조하면, 본 발명의 제11 실시예에 따른 가스 처리 시스템(1)은, 연료 회수부(30)가 액화가스를 회수하여 고압펌프(21)로 전달하되, 연료 회수부(30)에 의해 회수되는 액화가스가 연료 공급부(20)에 회수되는 대신, 연료 저장부(10)의 연료탱크(12)에 회수될 수 있다.Referring to FIG. 11, in the gas processing system 1 according to the eleventh embodiment of the present invention, the fuel recovery unit 30 recovers liquefied gas and transfers it to the high pressure pump 21, but the fuel recovery unit 30 The liquefied gas recovered by can be recovered in the fuel tank 12 of the fuel storage unit 10 instead of being recovered in the fuel supply unit 20.
즉 연료 저장부(10)의 연료탱크(12)(일례로 고압 연료탱크(12a))는, 연료 회수라인(L30)이 직접 연결되며, 연료 회수라인(L30)에 의해 회수되는 액화가스가 내부로 주입될 수 있다. 이때 연료 회수라인(L30)은, 연료탱크(12) 내에서 상부에 스프레이 방식으로 액화가스를 뿌려줄 수 있지만, 주입 방식은 이로 한정하지 않는다.That is, in the fuel tank 12 (eg, the high-pressure fuel tank 12a) of the fuel storage unit 10, the fuel recovery line L30 is directly connected, and the liquefied gas recovered by the fuel recovery line L30 is internal. Can be injected with In this case, the fuel recovery line L30 may spray liquefied gas on the upper part in the fuel tank 12, but the injection method is not limited thereto.
연료 회수부(30)는, 추진엔진(E)에서 배출되는 고압/고온의 액화가스를 감압밸브(31)에 의하여 감압 후 연료탱크(12)로 회수하게 되며, 회수되는 고온의 액화가스를 고압 연료탱크(12a)로 전달하여 고압 연료탱크(12a)의 내압 및 온도를 상승시킬 수 있다. 즉 회수되는 액화가스를 활용해 앞서 도 8에서 설명한 내압 상승부(122)의 기능을 구현할 수 있다.The fuel recovery unit 30 recovers the high-pressure/high-temperature liquefied gas discharged from the propulsion engine E by the pressure-reducing valve 31 and recovers it to the fuel tank 12, and recovers the recovered high-temperature liquefied gas at high pressure. Transfer to the fuel tank 12a may increase the internal pressure and temperature of the high-pressure fuel tank 12a. That is, the function of the internal pressure rise unit 122 described above with reference to FIG. 8 may be implemented using the recovered liquefied gas.
따라서 본 실시예는, 추진엔진(E)이 요구하는 액화가스의 양이 일례로 시간당 3 내지 4m3일 경우, 리턴되는 고온 액화가스를 고압 연료탱크(12a) 내에 스프레이하여 연료 저장부(10)에서 추진엔진(E)으로 전달되는 액화가스의 배출량을 증가시켜서, 추진엔진(E)의 안정적 가동을 보장할 수 있다.Therefore, in the present embodiment, when the amount of liquefied gas required by the propulsion engine E is, for example, 3 to 4 m3 per hour, the returned high-temperature liquefied gas is sprayed into the high-pressure fuel tank 12a in the fuel storage unit 10. By increasing the amount of liquefied gas delivered to the propulsion engine (E), it is possible to ensure stable operation of the propulsion engine (E).
연료 회수부(30)에 의해 액화가스가 회수되는 고압 연료탱크(12a)는, 비정상 동작 시 액화가스의 벤트 및 퍼징가스의 배출을 위해, 벤트마스트(36)에 연결될 수 있다. 즉 고압 연료탱크(12a)에서 벤트마스트(36)로 벤트라인(L32)이 연결되어, 고압 연료탱크(12a)의 액화가스나 연료 회수라인(L30)을 통해 회수되는 퍼징가스가, 벤트라인(L32)을 따라 벤트마스트(36)로 전달되어 외부로 방출될 수 있다.The high-pressure fuel tank 12a through which the liquefied gas is recovered by the fuel recovery unit 30 may be connected to the vent mast 36 for venting of liquefied gas and purging gas during abnormal operation. That is, the vent line L32 is connected from the high pressure fuel tank 12a to the vent mast 36, and the liquefied gas of the high pressure fuel tank 12a or the purging gas recovered through the fuel recovery line L30 is vent line ( L32) to be transferred to the vent mast 36 to be discharged to the outside.
다만 퍼징가스의 경우 퍼징 과정에서 연료 공급부(20) 등에 잔류해 있던 폭발성 물질이 혼입될 수 있기 때문에, 벤트마스트(36)를 통해 바로 배출하는 것은 환경 오염을 유발할 수 있다.However, in the case of purging gas, since explosive substances remaining in the fuel supply unit 20 or the like during the purging process may be mixed, discharge through the vent mast 36 may cause environmental pollution.
따라서 본 실시예는 고압 연료탱크(12a)로부터 벤트라인(L32)을 통해 배출된 퍼징가스가 벤트마스트(36)로 전달되는 대신, 저압 연료탱크(12b)로 전달되도록 할 수 있다. 이를 위해 벤트라인(L32)에는, 저압 연료탱크(12b)로 연결되는 퍼징가스 회수라인(L33)이 분기될 수 있다.Therefore, in the present embodiment, the purging gas discharged from the high pressure fuel tank 12a through the vent line L32 may be transmitted to the low pressure fuel tank 12b instead of being transferred to the vent mast 36. For this, the purge gas recovery line L33 connected to the low-pressure fuel tank 12b may be branched to the vent line L32.
따라서 연료 회수부(30)에 의해 연료 공급부(20)의 퍼징 후 회수되는 퍼징가스는, 연료 회수라인(L30)을 따라 고압 연료탱크(12a)로 유입된 후, 벤트라인(L32)을 따라 빠져나오다가 퍼지가스 회수라인을 통해 저압 연료탱크(12b)에 저장될 수 있다.Accordingly, the purging gas recovered after purging of the fuel supply unit 20 by the fuel recovery unit 30 flows into the high-pressure fuel tank 12a along the fuel recovery line L30, and then exits along the vent line L32. After coming out, it can be stored in the low pressure fuel tank 12b through the purge gas recovery line.
이때 퍼징가스 회수라인(L33)을 통해 회수되는 퍼징가스는, 저압 연료탱크(12b)의 내압 이상의 압력을 가질 수 있다. 따라서 퍼징가스의 유입 시 저압 연료탱크(12b)의 압력이 상승하게 된다.At this time, the purging gas recovered through the purging gas recovery line L33 may have a pressure equal to or higher than the internal pressure of the low-pressure fuel tank 12b. Therefore, when the purging gas flows in, the pressure of the low pressure fuel tank 12b increases.
이 경우 본 실시예는, 저압 연료탱크(12b)가 이송펌프(121) 없이 내압에 의해 액화가스를 연료 공급부(20)로 전달하도록 할 수 있다. 즉 저압 연료탱크(12b)는 퍼징가스의 유입에 의해 내압이 상승함으로써, 이송펌프(121)를 생략하거나 이송펌프(121)의 부하를 줄일 수 있게 된다.In this case, in the present embodiment, the low-pressure fuel tank 12b may transfer the liquefied gas to the fuel supply unit 20 by internal pressure without the transfer pump 121. That is, the low-pressure fuel tank 12b is able to omit the transfer pump 121 or reduce the load on the transfer pump 121 by increasing the internal pressure by the inflow of purging gas.
따라서 특정 터미널 조건에 따라 추진엔진(E)이 트립(Trip) 되는 정지 등의 비정상 상황에서, 본 실시예는 퍼징가스를 외기에 방출하지 않고 내압 조절이 가능(재액화부(40) 활용)한 저압 연료탱크(12b)로 회수 및 포집하여, 외기로의 퍼징가스 방출을 제어하여 안전성 향상 및 대기오염 방지 효과를 얻을 수 있다.Therefore, in an abnormal situation such as a stop in which the propulsion engine E is tripped according to a specific terminal condition, the present embodiment can regulate the internal pressure without discharging the purging gas to the outside (using the reliquefaction unit 40). It can be recovered and collected by the fuel tank 12b to control the purge gas discharge to the outside air, thereby improving safety and preventing air pollution.
특히 저압 연료탱크(12b)는 증발가스의 액화 리턴 등을 통해 내압 조절이 가능하므로, 고압의 퍼징가스에 의해 저압 연료탱크(12b)의 내압이 상승하도록 저압 연료탱크(12b)의 내압이 유지됨으로써, 저압 연료탱크(12b)에서의 액화가스 방출 부하를 줄일 수 있다.In particular, the low-pressure fuel tank 12b is capable of adjusting the internal pressure through liquefaction return of evaporated gas, so that the internal pressure of the low-pressure fuel tank 12b is maintained so that the internal pressure of the low-pressure fuel tank 12b is increased by the high-pressure purging gas. , It is possible to reduce the load of liquefied gas discharge from the low pressure fuel tank (12b).
물론 위와 같이 퍼징가스가 저압 연료탱크(12b)로 전달될 수 있지만, 퍼징가스 외에도 회수되는 액화가스 역시 퍼징가스의 흐름과 동일하게 고압 연료탱크(12a)를 거쳐 저압 연료탱크(12b)로 전달되어 저압 연료탱크(12b)의 내압을 상승시키는 것도 물론 가능하다. Of course, the purging gas can be delivered to the low pressure fuel tank 12b as above, but the liquefied gas recovered in addition to the purging gas is also transferred to the low pressure fuel tank 12b through the high pressure fuel tank 12a in the same manner as the flow of the purging gas. It is of course also possible to increase the internal pressure of the low-pressure fuel tank 12b.
일례로 고압 연료탱크(12a)는 상온에서 기화가 이루어지지 않는 압력으로 액화가스를 저장하지만, 상온 이상의 액화가스가 연료 회수부(30)를 통해 고압 연료탱크(12a)로 유입됨에 따라, 고압 연료탱크(12a)에서 증발가스가 발생하여 벤트라인(L32)과 퍼징가스 회수라인(L33)을 통해 저압 연료탱크(12b)로 전달될 수 있다.As an example, the high-pressure fuel tank 12a stores liquefied gas at a pressure that does not vaporize at room temperature, but as the liquefied gas above room temperature flows into the high-pressure fuel tank 12a through the fuel recovery unit 30, the high-pressure fuel Evaporated gas is generated in the tank 12a and can be transferred to the low pressure fuel tank 12b through the vent line L32 and the purging gas recovery line L33.
물론 앞서 설명한 다른 실시예에서와 마찬가지로, 본 실시예 역시 고압 연료탱크(12a)는 액화가스를 임계압력 이상으로 저장함에 따라 상온에서 증발가스의 발생이 억제되고, 저압 연료탱크(12b)는 독립형 압력용기이면서 액화가스를 임계압력 미만으로 저장하므로, 재액화부(40)는 카고탱크(11)의 증발가스 및 저압 연료탱크(12b)의 증발가스를 재액화하되, 고압 연료탱크(12a)와는 연결되지 않을 수 있다.Of course, as in the other embodiments described above, the present embodiment also suppresses the generation of evaporation gas at room temperature as the high-pressure fuel tank 12a stores liquefied gas above a critical pressure, and the low-pressure fuel tank 12b has independent pressure. As the container and the liquefied gas are stored below the critical pressure, the reliquefaction unit 40 re-liquefies the evaporation gas of the cargo tank 11 and the low pressure fuel tank 12b, but is not connected to the high pressure fuel tank 12a. It may not.
이와 같이 본 실시예는, 회수되는 액화가스가 고압 연료탱크(12a)로 직접 유입되도록 하여 고압 연료탱크(12a)의 내압을 높여 액화가스의 연료 공급을 안정적으로 구현하고, 퍼징가스가 저압 연료탱크(12b)에 포집되도록 하여 환경오염의 우려를 해소할 수 있다.As described above, in the present embodiment, the recovered liquefied gas is directly introduced into the high-pressure fuel tank 12a to increase the internal pressure of the high-pressure fuel tank 12a to stably implement liquefied gas fuel supply, and the purging gas is a low-pressure fuel tank. By collecting it in (12b), concerns about environmental pollution can be eliminated.
도 12는 본 발명의 제12 실시예에 따른 가스 처리 시스템이 적용된 선박의 부분 측면도이고, 도 13은 본 발명의 제12 실시예에 따른 가스 처리 시스템이 적용된 선박의 부분 평면도이다.12 is a partial side view of a ship to which a gas treatment system according to a twelfth embodiment of the present invention is applied, and FIG. 13 is a partial plan view of a ship to which a gas treatment system according to a twelfth embodiment of the present invention is applied.
도 12 및 도 13을 참조하면, 본 발명의 제12 실시예에 따른 가스 처리 시스템(1)은, 연료 저장부(10)가 복수 개의 카고탱크(11)를 구비할 수 있으며, 별도의 연료탱크(12)를 구비하지 않더라도 추진엔진(E)의 연료로 공급되는 액화가스를 별도로 저장하는 공간을 구비할 수 있다.12 and 13, in the gas processing system 1 according to the twelfth embodiment of the present invention, the fuel storage unit 10 may include a plurality of cargo tanks 11 and separate fuel tanks. Even if the (12) is not provided, a space for separately storing the liquefied gas supplied as fuel of the propulsion engine E may be provided.
구체적으로 연료 저장부(10)는, 복수 개의 카고탱크(11) 중 적어도 어느 하나의 카고탱크(11)에, 화물 저장공간(113)과 연료 저장공간(114)이 한꺼번에 마련되도록 할 수 있다.Specifically, the fuel storage unit 10 may allow the cargo storage space 113 and the fuel storage space 114 to be provided in at least one of the plurality of cargo tanks 11 at a time.
이때 카고탱크(11)는, 전후 방향 또는 좌우 방향 등의 다양한 방향으로 공간을 둘 이상으로 분리하는 밀폐형의 격벽(112)이 마련될 수 있으며, 격벽(112)에 의해 화물 저장공간(113)과 추진엔진(E)에 공급될 액화가스를 저장하는 연료 저장공간(114)이 구획되는 구조일 수 있다.At this time, the cargo tank 11 may be provided with a sealed partition wall 112 separating two or more spaces in various directions, such as a front-rear direction or a left-right direction, and the cargo storage space 113 by the partition wall 112. The fuel storage space 114 for storing the liquefied gas to be supplied to the propulsion engine E may be configured to be partitioned.
앞서 설명한 바와 같이 카고탱크(11)는 상압으로 액화가스를 저장할 수 있으며, 멤브레인형이거나 독립형 탱크(Type C 제외)일 수 있으므로 카고탱크(11) 내에 형성되는 연료 저장공간(114) 역시 98%의 filling limit이 적용되므로 특정 용적에 최대한의 액화가스를 저장할 수 있다.As described above, the cargo tank 11 may store liquefied gas at normal pressure, and may be a membrane type or a stand-alone tank (excluding Type C), so the fuel storage space 114 formed in the cargo tank 11 is also 98%. Filling limit is applied, so it is possible to store maximum liquefied gas in a specific volume.
이때 격벽(112)은 카고탱크(11)에 마련되는 돔(115)의 위치를 고려하여 돔(115)의 하측에 마련됨으로써, 화물 저장공간(113)과 연료 저장공간(114)이 하나의 돔(115)을 공유하도록 마련될 수 있다.At this time, the partition wall 112 is provided under the dome 115 in consideration of the position of the dome 115 provided in the cargo tank 11, so that the cargo storage space 113 and the fuel storage space 114 are one dome. It may be provided to share 115.
화물 저장공간(113)의 액화가스는 카고펌프(111a)와 메인라인(VM, LM)을 통해서 로딩/언로딩되며, 연료 저장공간(114)의 액화가스는 이송펌프(111)와 연료 공급라인(L20)을 통해서 추진엔진(E)에 공급된다. 이때 화물 저장공간(113)과 연료 저장공간(114) 모두 외부로 연통되는 구조(라인 및 돔(115))이 필요하므로, 본 실시예는 카고탱크(11)에 기본적으로 마련되는 돔(115)이 연료 저장공간(114)의 액화가스 배출에도 활용되도록 할 수 있다.The liquefied gas in the cargo storage space 113 is loaded/unloaded through the cargo pump 111a and the main lines (VM, LM), and the liquefied gas in the fuel storage space 114 is a transfer pump 111 and a fuel supply line It is supplied to the propulsion engine (E) through (L20). At this time, since both the cargo storage space 113 and the fuel storage space 114 need a structure (line and dome 115) that communicates with the outside, this embodiment is a dome 115 that is basically provided in the cargo tank 11 The fuel storage space 114 can also be utilized to discharge liquefied gas.
카고탱크(11)의 돔(115)은 도 13에 나타난 것과 같이 카고탱크(11)를 수용하는 선박(100)의 선수 또는 선미 측으로 치우쳐 마련될 수 있는데, 돔(115)의 배치를 고려하여 격벽(112)은 카고탱크(11) 내부에서 전후 방향으로 일측에 치우쳐 마련될 수 있다.The dome 115 of the cargo tank 11 may be provided with a bias toward the bow or stern side of the ship 100 accommodating the cargo tank 11, as shown in FIG. 13, considering the arrangement of the dome 115 112 may be provided biased to one side in the front-rear direction from the inside of the cargo tank (11).
물론 돔(115)은 좌우 방향으로는 중앙에 배치될 수 있으므로, 격벽(112)이 좌우 방향으로 카고탱크(11)의 내부를 분할하는 경우에는 격벽(112)은 중앙에 배치될 수 있다. 또한 이외에도 격벽(112)은 하나 이상으로 마련되어, 하나 이상의 연료 저장공간(114)을 형성할 수 있다.Of course, the dome 115 may be disposed at the center in the left and right directions, so when the partition 112 divides the interior of the cargo tank 11 in the left and right directions, the partition wall 112 may be disposed at the center. In addition, one or more partition walls 112 may be provided to form one or more fuel storage spaces 114.
격벽(112)에 의해 분할되는 화물 저장공간(113)과 연료 저장공간(114)은, 동일한 용적이거나 상이한 용적으로 마련될 수 있으며, 또는 격벽(112)에 의해 분할되는 공간들의 용적은 동일하나, 공간들 중 적은 수의 공간이 연료 저장공간(114)이고, 나머지 많은 수의 공간이 화물 저장공간(113)으로 사용될 수 있다. The cargo storage space 113 and the fuel storage space 114 divided by the partition wall 112 may be provided in the same volume or different volumes, or the volumes of the spaces divided by the partition wall 112 may be the same, A small number of spaces are fuel storage spaces 114, and the remaining large number of spaces can be used as cargo storage spaces 113.
일례로 2개의 격벽(112)에 의해 카고탱크(11)의 내부가 4개의 공간으로 구획될 경우, 1개의 공간만 연료 저장공간(114)으로 사용될 수 있으며, 이 경우 4개의 공간으로 구획된 공간들이 모두 하나의 돔(115)을 공유하도록 마련될 수 있다.For example, when the interior of the cargo tank 11 is divided into four spaces by two partition walls 112, only one space can be used as the fuel storage space 114, in this case, the space divided into four spaces. They can all be provided to share one dome 115.
돔(115)을 공유하도록 하기 위해 격벽(112)은 카고탱크(11) 내부 공간을 완전히 격리시키는 대신, 도 12에서와 같이 돔(115) 내에서 두 공간을 연통시키는 높이를 가질 수 있다. 즉 격벽(112)에 의해 분리되는 공간들은 서로 돔(115)을 통해 증발가스가 이동하도록 연통될 수 있다.To allow the dome 115 to be shared, the partition wall 112 may have a height communicating two spaces within the dome 115 as shown in FIG. 12, instead of completely isolating the space inside the cargo tank 11. That is, the spaces separated by the partition wall 112 may communicate with each other so that the evaporation gas moves through the dome 115.
화물 저장공간(113)이나 연료 저장공간(114)에서 발생하는 증발가스가 돔(115)을 향해 유동할 경우, 증발가스는 액화가스 대비 가벼우므로 연료 저장공간(114)의 증발가스가 화물 저장공간(113)의 액화가스로 전달되거나, 화물 저장공간(113)의 증발가스가 연료 저장공간(114)의 액화가스로 유입될 우려는 적다.When the evaporation gas generated in the cargo storage space 113 or the fuel storage space 114 flows toward the dome 115, the evaporation gas of the fuel storage space 114 is a cargo storage space because the evaporation gas is lighter than liquefied gas. There is little risk of being transferred to the liquefied gas of 113 or the boil-off gas of the cargo storage space 113 to be introduced into the liquefied gas of the fuel storage space 114.
그러나 화물 저장공간(113)의 증발가스가 연료 저장공간(114)의 증발가스와 섞인 뒤 재액화하여 리턴될 때, 연료 저장공간(114)의 액화가스 품질이 변질될 우려가 존재한다. 특히 화물 저장공간(113)에는 추진엔진(E)의 연료로 적합 또는 부적합한 액화가스(부탄/프로판이나 가 저장되는 반면, 연료 저장공간(114)에는 화물 저장공간(113)과 달리 추진엔진(E)의 연료로 적합한 액화가스만 저장하기 때문에, 두 저장공간에 저장된 액화가스의 조성이 다를 수 있기 때문이다.However, when the boil-off gas in the cargo storage space 113 is mixed with the boil-off gas in the fuel storage space 114 and then re-liquefied and returned, there is a fear that the liquefied gas quality of the fuel storage space 114 may deteriorate. In particular, in the cargo storage space 113, liquefied gas (butane/propane or the like) which is suitable or inappropriate as fuel of the propulsion engine E is stored, whereas the fuel storage space 114 has a propulsion engine (E) unlike the cargo storage space 113. This is because the composition of liquefied gas stored in the two storage spaces may be different because only suitable liquefied gas is stored as fuel.
따라서 격벽(112)은 증발가스의 격리가 가능하도록, 적어도 화물 저장공간(113)과 연료 저장공간(114)을 구분하는 격벽(112)은 도면에서와 달리 두 공간을 완전히 격리시키는 구조로 마련될 수도 있다. Accordingly, the partition wall 112 is separated from at least the cargo storage space 113 and the fuel storage space 114 so that the vaporized gas can be isolated, unlike in the drawing, the partition wall 112 may be provided with a structure that completely separates the two spaces. It might be.
격벽(112)에 의해 분리된 두 공간은 액화가스 펌핑 및 재액화 등이 독립적으로 이루어질 수 있는데, 다만 화물 저장공간(113)에 추진엔진(E)의 연료로 적합한 액화가스를 적재하는 경우에는, 화물 저장공간(113)의 액화가스가 연료 저장공간(114)으로 보충되도록 할 수도 있다. The two spaces separated by the partition wall 112 may be independently made of liquefied gas pumping and re-liquefaction, but when loading suitable liquefied gas as fuel of the propulsion engine E into the cargo storage space 113, The liquefied gas in the cargo storage space 113 may be supplemented with the fuel storage space 114.
이를 위해 격벽(112)에는 부분적으로 관통된 개구가 형성되고 액화가스 전달밸브(도시하지 않음)가 마련될 수 있어서 격벽(112)을 통한 액화가스 전달이 이루어질 수 있다. 또는 화물 저장공간(113)에 적재된 액화가스가 카고탱크(11)로부터 배출된 후, 메인라인(VM, LM)이나 연료 공급라인(L20)에서 연료 저장공간(114)을 향해 연장되는 액화가스 보충라인(L12)을 통하여 액화가스가 전달될 수도 있음은 물론이다.To this end, a partially penetrated opening is formed in the partition wall 112 and a liquefied gas delivery valve (not shown) may be provided, so that liquefied gas delivery through the partition wall 112 may be performed. Or after the liquefied gas loaded in the cargo storage space 113 is discharged from the cargo tank 11, the liquefied gas extending from the main line (VM, LM) or the fuel supply line (L20) toward the fuel storage space 114 Of course, liquefied gas may be delivered through the replenishment line L12.
이와 같이 본 실시예는, 카고탱크(11) 중 어느 하나 내부에 격벽(112)을 이용해 분리된 공간(segregated space)을 형성하고, 분리된 공간이 연료 저장공간(114)으로 사용되도록 하여(프로필렌을 제외한 액화가스 적재), 상갑판(101) 상에 연료탱크(12)를 두지 않아도 되므로 visibility 문제를 해소할 수 있으면서, 상갑판(101) 내의 다른 장비들과의 간섭 문제를 야기하지 않는다.As described above, this embodiment forms a separated space using a partition wall 112 inside any one of the cargo tanks 11, and allows the separated space to be used as the fuel storage space 114 (propylene Excluding liquefied gas), it is not necessary to place the fuel tank 12 on the upper deck 101, so that the visibility problem can be solved, and does not cause interference with other equipment in the upper deck 101.
도 14는 본 발명의 제13 실시예에 따른 가스 처리 시스템이 적용된 선박의 중앙단면도이다.14 is a central sectional view of a vessel to which a gas treatment system according to a thirteenth embodiment of the present invention is applied.
도 14을 참조하면, 본 발명의 제13 실시예에 따른 가스 처리 시스템(1)은, 멤브레인형 또는 독립형 탱크(Type C 제외)인 카고탱크(11)에 격벽(112)을 마련한다는 점에서는 제12 실시예와 유사하나, 격벽(112)이 밀폐형으로 마련되어 격벽(112)에 의해 공간이 완전히 분리된다는 특징이 있다.Referring to FIG. 14, the gas treatment system 1 according to the thirteenth embodiment of the present invention is provided in that the bulkhead 112 is provided in the cargo tank 11 which is a membrane type or a standalone tank (except for Type C). Similar to the 12th embodiment, the partition wall 112 is provided in a closed type, and is characterized in that the space is completely separated by the partition wall 112.
즉 연료 저장부(10)에 포함되는 복수 개의 카고탱크(11) 중 적어도 어느 하나에는, 저장공간을 완전히 둘 이상으로 분할하는 밀폐형의 격벽(112)이 구비된다. 이 경우 격벽(112)에 의해 분할된 둘 이상의 저장공간은, 카고탱크(11) 내에서 서로 연통되지 않는다. 따라서 카고탱크(11) 내에 마련되어 액화가스를 외부로 배출하는 화물펌프나 이송펌프(111)는, 격벽(112)에 의해 분할되는 복수 개의 저장공간마다 독립적으로 마련될 수 있다.That is, at least one of the plurality of cargo tanks 11 included in the fuel storage unit 10 is provided with a sealed partition wall 112 that completely divides the storage space into two or more. In this case, two or more storage spaces divided by the partition wall 112 do not communicate with each other in the cargo tank 11. Therefore, the cargo pump or the transfer pump 111 provided in the cargo tank 11 to discharge liquefied gas to the outside may be provided independently for each of a plurality of storage spaces divided by the partition wall 112.
격벽(112)은 저장공간을 좌우로 완전히 분할하는 형태일 수 있다. 즉 격벽(112)은 선박(100)의 전후 방향으로 마련되는 종격벽(112)일 수 있다. The partition wall 112 may be in a form of completely dividing the storage space from side to side. That is, the partition wall 112 may be a vertical partition wall 112 provided in the front-rear direction of the ship 100.
액화가스를 화물로 저장하는 카고탱크(11)를 갖는 액화가스 운반선의 경우, IGC 코드(International code for construction & equipment of ships carrying liquefied gases in bulk, 국제 액화가스 운송선의 구조 및 설비 규칙)에 따라 카고탱크(11)와 선측외판(102) 사이에 일정한 간격을 두어야 한다. In the case of a liquefied gas carrier having a cargo tank 11 for storing liquefied gas as cargo, cargo according to IGC code (International code for construction & equipment of ships carrying liquefied gases in bulk) A certain gap should be provided between the tank 11 and the side shell plate 102.
일례로 LPG 운반선의 경우 카고탱크(11) 외부에 단일벽의 선측외판(102)이 둘러싸는 single hull 구조로 마련되는데, 선측외판(102)과 카고탱크(11) 벽체 사이의 간격은, 카고탱크(11)의 용적에 따라 달라진다.For example, in the case of an LPG carrier, a single-hull structure is provided on the outside of the cargo tank 11 to surround the outer shell 102 of the single wall, and the space between the outer shell 102 and the wall of the cargo tank 11 is the cargo tank. It depends on the volume of (11).
즉 카고탱크(11)는, 저장공간의 용적을 기준으로 IGC 코드에 따른 상기 카고탱크(11)와 선측외판(102) 간의 간격에 맞춰 선측외판(102)으로부터 내측에 배치되며, 간격 만큼은 선내에서 액화가스의 적재량을 확보할 수 없게 된다. 이때 카고탱크(11)의 용적이 클수록 간격이 커지게 된다.That is, the cargo tank 11 is arranged inside from the outer shell plate 102 in accordance with the space between the cargo tank 11 and the outer shell plate 102 according to the IGC code based on the volume of the storage space, and the distance is within the ship. It is not possible to secure the load of liquefied gas. At this time, the larger the volume of the cargo tank 11, the larger the gap.
본 실시예는 IGC 코드에 따른 간격은 충족하면서도, 선내에서의 액화가스 저장용량을 최대로 확보할 수 있도록, 카고탱크(11)의 저장공간을 완전히 분할하는 격벽(112)을 두어, 전체 저장공간의 용적을 기준으로 IGC 코드에 따른 카고탱크(11)와 선측외판(102) 간의 간격(D0)보다 작은 간격(D1)만큼 선박(100)의 선측외판(102)과 좌우로 이격 배치될 수 있다.In the present embodiment, the bulkhead 112 for completely dividing the storage space of the cargo tank 11 is placed so as to ensure the maximum storage capacity of the liquefied gas in the ship while satisfying the interval according to the IGC code. Based on the volume of the IGC code, the cargo tank 11 according to the IGC code and the side shell plate 102 may be spaced apart from the side shell plate 102 of the ship 100 by a distance D1 smaller than the gap D0. .
IGC 코드에 따른 간격은 격리되는 저장공간의 용적에 따라 결정되는 것이므로, 본 실시예는 밀폐형 격벽(112)을 통해 IGC 코드의 간격을 산정할 때 기준이 되는 용적을 절반으로 줄일 수 있게 되므로, 간격을 D0에서 D1으로 줄일 수 있다. 즉 본 실시예는 카고탱크(11) 내에 저장공간을 좌우로 완전히 분할하는 형태의 격벽(112)을 둠으로써 카고탱크(11)와 선측외판(102)의 간격을 축소해 카고탱크(11) 자체가 커질 수 있다. Since the interval according to the IGC code is determined according to the volume of the storage space to be isolated, this embodiment can reduce the reference volume when calculating the interval of the IGC code through the sealed partition wall 112, so that the interval Can be reduced from D0 to D1. That is, in the present embodiment, the space between the cargo tank 11 and the side shell plate 102 is reduced by placing the partition wall 112 in the form of dividing the storage space left and right within the cargo tank 11, thereby reducing the cargo tank 11 itself. Can grow.
다만 격벽(112)을 둘 이상으로 마련하게 되면 밀폐형의 격벽(112)에 의해 형성되는 복수 개의 저장공간마다 펌프가 구비되어야 하는 문제가 있으므로, 격벽(112)은 카고탱크(11)의 저장공간을 둘로 나누도록 하나만 마련될 수 있고, 어느 하나의 저장공간은 연료 저장공간(114)이 되며 다른 하나의 저장공간은 화물 저장공간(113)이 될 수 있다.However, when two or more partition walls 112 are provided, there is a problem in that a pump should be provided for each of the plurality of storage spaces formed by the sealed partition walls 112, so the partition walls 112 store the storage space of the cargo tank 11. Only one may be provided to be divided into two, and one storage space may be a fuel storage space 114 and the other storage space may be a cargo storage space 113.
이와 같이 본 실시예는, 카고탱크(11)와 선측외판(102) 사이의 간격에 의해 선내 액화가스 적재공간이 줄어들게 되는 부분을 보완하고자, 밀폐형의 격벽(112)을 활용해 IGC 코드의 간격 계산 시의 용적을 줄여, 카고탱크(11) 자체의 전체 용적을 확장할 수 있다.As described above, in the present embodiment, to compensate for the portion in which the onboard liquefied gas loading space is reduced by the gap between the cargo tank 11 and the side shell plate 102, the gap of the IGC code is calculated using the sealed partition wall 112. By reducing the volume of the city, the entire volume of the cargo tank 11 itself can be expanded.
도 15는 본 발명의 제14 실시예에 따른 가스 처리 시스템이 적용된 선박의 평면도이다.15 is a plan view of a ship to which a gas treatment system according to a 14th embodiment of the present invention is applied.
도 15를 참조하면, 본 발명의 제14 실시예에 따른 가스 처리 시스템(1)은, 연료 저장부(10)가 앞선 제9 내지 제11 실시예에서 설명한 것과 같이 선내에 탑재되는 카고탱크(11) 및 둘 이상의 독립형 압력용기인 연료탱크(12)를 구비할 수 있다.15, the gas processing system 1 according to the fourteenth embodiment of the present invention includes a cargo tank 11 in which the fuel storage unit 10 is mounted on board as described in the ninth to eleventh embodiments described above. ) And two or more independent pressure vessels, a fuel tank 12.
카고탱크(11)는 대기압으로 액화가스를 저장하며 팔각형의 단면을 갖고 선내에 마련되나, 카고탱크(11)의 돔(115)은 선박(100)의 상갑판(101)으로 노출될 수 있는데, 돔(115)의 좌측 또는 우측에는 선박(100)의 전후 방향으로 길게 이동통로(120)(piping area & access way)가 마련될 수 있다. 도면에 표시한 이동통로(120)는 이동통로(120) 자체가 아닌 이동통로(120)가 설치되는 일정한 구역을 의미하며, 본 명세서에서 이동통로(120)는 선원이 이동하여 각 시설에 접근할 수 있도록 하는 통로(access way)이면서, 주요 라인이 지나가는 구역(piping area)으로서, 다른 구성과 간섭이 이루어지면 안되는 공간을 의미한다.The cargo tank 11 stores liquefied gas at atmospheric pressure and is provided on board with an octagonal cross-section, but the dome 115 of the cargo tank 11 may be exposed to the upper deck 101 of the ship 100, the dome A moving passage 120 (piping area & access way) may be provided on the left or right side of the 115 in the longitudinal direction of the ship 100. The movement passage 120 shown in the drawings means a certain area in which the movement passage 120 is installed, not the movement passage 120 itself, and in this specification, the movement passage 120 is accessed by a sailor to access each facility. It is an access way, and a piping area through which the main line passes, meaning a space that should not interfere with other components.
연료 저장부(10)의 연료탱크(12)는, 선내가 아닌 상갑판(101) 상에 마련될 수 있는데, 이때 이동통로(120)와의 간섭이 문제될 수 있다. 따라서 연료탱크(12)는, 상갑판(101)에서 이동통로(120)가 마련된 일측(도면에서 좌현측)에서 이동통로(120)와 선측외판(102) 사이에 제1 연료탱크(12)를 마련할 수 있고, 반면 상갑판(101)에서 이동통로(120)가 마련된 일측의 반대측(도면에서 우현측)에서 돔(115)과 선측외판(102) 사이에 제2 연료탱크(12)를 마련할 수 있다.The fuel tank 12 of the fuel storage unit 10 may be provided on the upper deck 101 instead of on board, and interference with the moving passage 120 may be a problem. Therefore, the fuel tank 12 is provided with a first fuel tank 12 between the moving passage 120 and the outer shell plate 102 on one side (portion side in the figure) where the moving passage 120 is provided in the upper deck 101. On the other hand, the second fuel tank 12 may be provided between the dome 115 and the side shell plate 102 on the opposite side (right side in the figure) of the one side where the movement passage 120 is provided in the upper deck 101. have.
이때 제1 연료탱크(12)는, 제2 연료탱크(12) 대비 돔(115)으로부터 이격된 거리가 더 크게 형성되어, 제1 연료탱크(12)가 설치되는 면적은 제2 연료탱크(12)가 설치되는 면적보다 작을 수 있으므로, 이동통로(120)와의 간섭 해소를 위해 제1 연료탱크(12)는 제2 연료탱크(12) 대비 용적이 작게 마련될 수 있다.At this time, the first fuel tank 12, the distance from the dome 115 compared to the second fuel tank 12 is formed larger, the area where the first fuel tank 12 is installed is the second fuel tank 12 ), the first fuel tank 12 may have a smaller volume than the second fuel tank 12 in order to resolve interference with the movement passage 120.
일례로 제1 연료탱크(12)는 액화가스를 임계압력 이상으로 저장하여 상온에서 증발가스의 발생이 억제되는 고압 연료탱크(12a)이며, 제2 연료탱크(12)는 액화가스를 임계압력 미만으로 저장하는 저압 연료탱크(12b)일 수 있다. 이 경우 제1 연료탱크(12)는 제2 연료탱크(12)보다 부피가 작고 외벽의 두께가 크며, 제2 연료탱크(12) 대비 밀도가 클 수 있다. For example, the first fuel tank 12 is a high-pressure fuel tank 12a that stores liquefied gas at a critical pressure or higher to suppress the generation of evaporated gas at room temperature, and the second fuel tank 12 stores the liquefied gas below a critical pressure. It may be a low pressure fuel tank (12b) to be stored. In this case, the first fuel tank 12 may have a smaller volume than the second fuel tank 12 and a large outer wall, and may have a greater density than the second fuel tank 12.
이와 같이 연료탱크(12)를 복수 개로 마련하면서 좌우 비대칭으로 두는 것은, LNG(0.65kg/m3)보다 밀도가 큰 LPG(프로판 1.8kg/m3, 2.4kg/m3)의 경우 상갑판(101)에 하나의 연료탱크(12)만을 구비하게 되면 좌우 균형을 맞추지 못하여 선체 안정성이 문제되기 때문이다.In this way, while providing a plurality of fuel tanks 12 and placing them asymmetrically, in the case of LPG (propane 1.8 kg/m3, 2.4 kg/m3) having a density greater than that of LNG (0.65 kg/m3), one is placed on the upper deck 101 This is because when only the fuel tank 12 is provided, the hull stability is a problem because the right and left balance cannot be balanced.
즉 본 실시예는 선박(100)의 좌우 균형을 맞추기 위해 상갑판(101)에서 돔(115)을 기준으로 좌우에 각각 연료탱크(12)를 배치하되, 크기가 상대적으로 작은 고압 연료탱크(12a)(제1 연료탱크(12))는 이동통로(120)의 좌우방향 외측에 배치할 수 있다.That is, in this embodiment, in order to balance the left and right of the vessel 100, the fuel tank 12 is disposed on the left and right sides of the upper deck 101 based on the dome 115, but the high-pressure fuel tank 12a having a relatively small size. (First fuel tank 12) may be disposed outside the left and right directions of the movement passage 120.
이때 제1 연료탱크(12)는, 상하 방향으로 카고탱크(11)의 상면에 투영되지 않는 위치에 배치될 수 있고, 제2 연료탱크(12)는 상하 방향으로 카고탱크(11)의 상면에 투영되는 위치에 마련될 수 있다. 이는 제1 연료탱크(12)가 이동통로(120)와의 간섭 회피를 위해, 돔(115) 보다는 선측외판(102)에 가까운 위치에 배치되기 때문이다.At this time, the first fuel tank 12 may be disposed at a position that is not projected on the upper surface of the cargo tank 11 in the vertical direction, and the second fuel tank 12 is disposed on the upper surface of the cargo tank 11 in the vertical direction. It can be provided at the projected position. This is because the first fuel tank 12 is disposed at a position closer to the side shell plate 102 than the dome 115 to avoid interference with the movement passage 120.
이와 같이 본 실시예는, 둘 이상의 연료탱크(12)를 상갑판(101)에 마련할 때 이동통로(120) 등과 간섭이 이루어지지 않도록 하면서 선박(100)의 좌우 균형을 보장해, 선박(100)에서 치명적으로 일어나는 rolling을 감소시킬 수 있다.As described above, in the present embodiment, when two or more fuel tanks 12 are provided on the upper deck 101, the left and right balance of the ship 100 is ensured while interference with the movement passage 120 is not made, and the ship 100 It can reduce the fatal rolling.
도 16은 본 발명의 제15 실시예에 따른 가스 처리 시스템이 적용된 선박의 개념도이고, 도 17은 본 발명의 제15 실시예에 따른 가스 처리 시스템이 적용된 선박의 정단면도이다.16 is a conceptual view of a ship to which the gas treatment system according to the fifteenth embodiment of the present invention is applied, and FIG. 17 is a front sectional view of a ship to which the gas treatment system according to the fifteenth embodiment of the invention is applied.
도 16 및 도 17을 참조하면, 본 발명의 제15 실시예에 따른 가스 처리 시스템(1)은, 연료 저장부(10)가 카고탱크(11)와 별도로 연료탱크(12)를 구비할 수 있는데, 연료탱크(12)가 독립형 압력용기이면서 선내에 탑재될 수 있다..16 and 17, in the gas processing system 1 according to the fifteenth embodiment of the present invention, the fuel storage unit 10 may include a fuel tank 12 separately from the cargo tank 11. , The fuel tank 12 is a stand-alone pressure vessel and can be mounted on board.
복수 개의 카고탱크(11)가 선박(100)의 전후 방향으로 3개 또는 4개 등이 마련될 수 있는데, 이떄 연료탱크(12)는, 도 16에 나타난 것처럼 복수 개의 카고탱크(11)의 후방에 배치될 수 있다. 즉 연료탱크(12)는 최후방 카고탱크(11)의 후방에 배치된다.A plurality of cargo tanks 11 may be provided in three or four in the front-rear direction of the ship 100, the Aesop fuel tank 12, as shown in Figure 16, the rear of the plurality of cargo tanks 11 Can be placed on. That is, the fuel tank 12 is disposed at the rear of the rearmost cargo tank 11.
연료탱크(12)는, 도 16에서와 같이 엔진룸 내부에 배치될 수 있으며, 또는 도면과 달리 엔진룸 외부에서 엔진룸 전방격벽(112)과 최후방 카고탱크(11) 사이에 배치되는 것도 가능하다.The fuel tank 12 may be disposed inside the engine room as shown in FIG. 16, or, unlike the drawing, may be disposed between the engine compartment front bulkhead 112 and the rearmost cargo tank 11 outside the engine room. Do.
추진엔진(E)은 액화가스 외에도 오일을 연료로 사용하는 이종연료엔진(Duel-Fuel engine)일 수 있는데, 추진엔진(E)에 공급할 오일을 저장하는 오일탱크(13)가 필요하다.The propulsion engine (E) may be a fuel-fuel engine (Duel-Fuel engine) that uses oil as fuel in addition to liquefied gas, and requires an oil tank 13 to store oil to be supplied to the propulsion engine (E).
본 실시예에서 설명한 연료탱크(12)가 없다면 오일탱크(13)는 엔진룸 내에서 엔진룸의 전방격벽(112)에 마련될 수 있지만, 본 실시예의 경우에는 도 17에서와 같이 연료탱크(12)의 좌우에 오일탱크(13)를 마련할 수 있다.If there is no fuel tank 12 described in the present embodiment, the oil tank 13 may be provided on the front partition 112 of the engine room in the engine room, but in the case of this embodiment, the fuel tank 12 as shown in FIG. ) Can be provided on the left and right of the oil tank (13).
즉 엔진룸 내부 또는 엔진룸 전방격벽(112)과 최후방 카고탱크(11) 사이 공간의 선내에서 선저판(103) 상측에는 종방향 격벽(112)이 둘 이상 마련되며, 가운데 공간에는 연료탱크(12)가 수납되고, 좌우 공간은 오일이 저장되는 오일탱크(13)로서 활용될 수 있으며, 연료탱크(12)와 오일탱크(13) 주변에 발라스트 탱크(110)가 배치될 수 있다.That is, two or more longitudinal bulkheads 112 are provided above the bottom plate 103 in the interior of the engine room or in the space of the space between the engine compartment front bulkhead 112 and the rearmost cargo tank 11, and in the middle space, the fuel tank ( 12) is accommodated, the left and right spaces can be utilized as the oil tank 13 in which the oil is stored, the fuel tank 12 and the oil tank 13 may be disposed around the ballast tank 110.
이때 연료탱크(12)는 독립형 압력용기로서, 엔진룸 등의 다양한 구조적 형상에 대응되면서도 액화가스의 용적을 최대한 확보할 수 있는 형상을 갖기 위해 래티스(lattice) 타입의 압력용기일 수 있다.At this time, the fuel tank 12 is a stand-alone pressure vessel, and may be a lattice type pressure vessel in order to have a shape capable of securing a maximum volume of liquefied gas while responding to various structural shapes such as an engine room.
이와 같이 본 실시예는, 오일탱크(13)가 마련되던 자리를 활용하여 연료탱크(12)가 배치되도록 하여, 상갑판(101) 내 공간을 확보하면서 액화가스를 외부 충격 등으로부터 충분히 보호할 수 있다.As described above, in the present exemplary embodiment, the fuel tank 12 is disposed by utilizing the position where the oil tank 13 is provided, thereby sufficiently protecting the liquefied gas from external shock or the like while securing space in the upper deck 101. .
본 발명은 앞서 설명된 실시예 외에도, 상기 실시예들 중 적어도 둘 이상의 조합 또는 적어도 하나 이상의 상기 실시예와 공지기술의 조합에 의해 발생하는 실시예들을 모두 포괄한다. In addition to the above-described embodiments, the present invention encompasses all of the embodiments that occur by a combination of at least two or more of the above embodiments or a combination of at least one or more of the above embodiments and known techniques.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당해 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함은 명백하다고 할 것이다.The present invention has been described in detail through specific examples, but it is for the purpose of specifically describing the present invention, and the present invention is not limited to this, and by those skilled in the art within the technical spirit of the present invention. It will be apparent that the modification or improvement is possible.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.All simple modifications or changes of the present invention belong to the scope of the present invention, and the specific protection scope of the present invention will be clarified by the appended claims.

Claims (5)

  1. 액화가스를 저장하는 저장탱크;A storage tank for storing liquefied gas;
    액화석유가스를 연료로 사용하는 추진엔진;Propulsion engine using liquefied petroleum gas as fuel;
    상기 저장탱크의 액화가스를 상기 추진엔진에 공급하는 연료 공급라인; 및A fuel supply line for supplying liquefied gas from the storage tank to the propulsion engine; And
    상기 추진엔진에서 배출되는 잉여분의 액상 액화가스를 회수하는 연료 회수라인을 포함하며,And a fuel recovery line for recovering excess liquid liquefied gas discharged from the propulsion engine,
    상기 연료 공급라인에는, 고압펌프와, 상기 고압펌프의 상류에 마련되어 액화가스의 온도를 변화시키는 열교환기가 마련되고,The fuel supply line is provided with a high pressure pump and a heat exchanger provided upstream of the high pressure pump to change the temperature of the liquefied gas,
    상기 열교환기는, 상기 저장탱크로부터 상기 추진엔진으로 공급되는 액화가스와, 상기 연료 회수라인에서 회수되는 액화가스를 열교환시키는 것을 특징으로 하는 가스 처리 시스템을 갖는 액화석유가스 운반선.The heat exchanger, a liquefied petroleum gas carrier having a gas treatment system, characterized in that the heat exchange between the liquefied gas supplied from the storage tank to the propulsion engine and the liquefied gas recovered from the fuel recovery line.
  2. 제 1 항에 있어서, 상기 열교환기는,The method of claim 1, wherein the heat exchanger,
    상기 저장탱크로부터 상기 추진엔진으로 공급되는 액화가스가 흐르는 스트림과, 상기 연료 회수라인에서 회수되는 액화가스가 흐르는 스트림과, 열교환 매체가 흐르는 스트림을 갖는 3 스트림 구조인 것을 특징으로 하는 가스 처리 시스템을 갖는 액화석유가스 운반선.A gas treatment system comprising a stream having a stream through which liquefied gas is supplied from the storage tank to the propulsion engine, a stream through which the liquefied gas is recovered from the fuel recovery line, and a stream through which a heat exchange medium flows. Liquefied petroleum gas carrier.
  3. 제 1 항에 있어서, According to claim 1,
    상기 연료 회수라인은, 액상 액화가스를 상기 고압펌프로 전달하며,The fuel recovery line delivers liquid liquefied gas to the high pressure pump,
    상기 열교환기는, 상기 연료 회수라인의 액화가스를 상기 추진엔진으로 공급되는 액화가스 및 열교환 매체로 냉각하여 상기 고압펌프에 액상으로 유입되도록 하는 것을 특징으로 하는 가스 처리 시스템을 갖는 액화석유가스 운반선.The heat exchanger is a liquefied petroleum gas carrier having a gas treatment system characterized in that the liquefied gas of the fuel recovery line is cooled with liquefied gas and a heat exchange medium supplied to the propulsion engine to flow into the high pressure pump in a liquid phase.
  4. 제 1 항에 있어서,According to claim 1,
    상기 연료 회수라인에는, 액상 액화가스를 감압하는 감압밸브가 마련되며,The fuel recovery line is provided with a pressure reducing valve for reducing the pressure of the liquid liquefied gas,
    상기 열교환기는, 감압된 액화가스를 냉각해 상기 고압펌프에 액상으로 유입되도록 하는 것을 특징으로 하는 가스 처리 시스템을 갖는 액화석유가스 운반선.The heat exchanger, a liquefied petroleum gas carrier having a gas treatment system, characterized in that to cool the decompressed liquefied gas to flow into the high pressure pump in a liquid phase.
  5. 제 4 항에 있어서, 상기 연료 회수라인에는,According to claim 4, In the fuel recovery line,
    상기 열교환기와 상기 고압펌프 사이에 마련되어, 상기 열교환기를 경유한 액화가스와, 상기 저장탱크로부터 공급되는 액화가스를 혼합해 상기 고압펌프로 전달하는 혼합기가 마련되는 것을 특징으로 하는 가스 처리 시스템을 갖는 액화석유가스 운반선.Liquefaction having a gas treatment system, which is provided between the heat exchanger and the high pressure pump, and a mixer is provided to mix the liquefied gas passing through the heat exchanger and the liquefied gas supplied from the storage tank and deliver it to the high pressure pump. Oil gas carrier.
PCT/KR2020/001535 2019-02-01 2020-01-31 Gas processing system and ship including same WO2020159317A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080004018.2A CN112437738B (en) 2019-02-01 2020-01-31 Gas treatment system and vessel comprising a gas treatment system
JP2021504194A JP7357670B2 (en) 2019-02-01 2020-01-31 Gas treatment systems and ships containing them
PH12021550158A PH12021550158A1 (en) 2019-02-01 2021-01-19 Gas processing system and ship including same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20190013328 2019-02-01
KR10-2019-0013328 2019-02-01
KR10-2019-0109688 2019-09-04
KR1020190109688A KR102242212B1 (en) 2019-02-01 2019-09-04 Gas treatment system and ship having the same
KR1020190140523A KR102306458B1 (en) 2019-02-01 2019-11-05 Gas treatment system and ship having the same
KR10-2019-0140523 2019-11-05

Publications (1)

Publication Number Publication Date
WO2020159317A1 true WO2020159317A1 (en) 2020-08-06

Family

ID=71841566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001535 WO2020159317A1 (en) 2019-02-01 2020-01-31 Gas processing system and ship including same

Country Status (1)

Country Link
WO (1) WO2020159317A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016169837A (en) * 2015-03-13 2016-09-23 三井造船株式会社 Boil-off gas recovery system
KR20160120161A (en) * 2015-04-07 2016-10-17 현대중공업 주식회사 Treatment system of liquefied natural gas
KR20160127880A (en) * 2015-04-27 2016-11-07 현대중공업 주식회사 A Treatment System of Liquefied Gas
KR20180038652A (en) * 2016-10-07 2018-04-17 대우조선해양 주식회사 Boil Off Gas Processing System and Method of Ship
KR20180110430A (en) * 2017-03-29 2018-10-10 대우조선해양 주식회사 Boil-Off Gas Proceeding System and Method for Ship

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016169837A (en) * 2015-03-13 2016-09-23 三井造船株式会社 Boil-off gas recovery system
KR20160120161A (en) * 2015-04-07 2016-10-17 현대중공업 주식회사 Treatment system of liquefied natural gas
KR20160127880A (en) * 2015-04-27 2016-11-07 현대중공업 주식회사 A Treatment System of Liquefied Gas
KR20180038652A (en) * 2016-10-07 2018-04-17 대우조선해양 주식회사 Boil Off Gas Processing System and Method of Ship
KR20180110430A (en) * 2017-03-29 2018-10-10 대우조선해양 주식회사 Boil-Off Gas Proceeding System and Method for Ship

Similar Documents

Publication Publication Date Title
WO2017078245A1 (en) Gas treatment system and vessel containing same
WO2014092368A1 (en) Liquefied gas processing system for ship
WO2014209029A1 (en) System and method for treating boil-off gas in ship
WO2020017769A1 (en) Volatile organic compound treatment system and ship
WO2012124886A1 (en) System for supplying fuel to marine structure having re-liquefying device and high-pressure natural gas injection engine
WO2012128448A1 (en) Method and system for supplying fuel to high-pressure natural gas injection engine
WO2012128447A1 (en) System for supplying fuel to high-pressure natural gas injection engine having excess evaporation gas consumption means
WO2014065618A1 (en) System for processing liquefied gas in ship
WO2017171163A1 (en) Boil-off gas re-liquefying device and method for ship
WO2018062601A1 (en) Apparatus and method for reliquefaction of boil-off gas of vessel
WO2012053705A1 (en) Ship for transporting a liquefied natural gas storage container
WO2009102136A2 (en) Apparatus and method for processing hydrocarbon liquefied gas
WO2013172644A1 (en) System and method for processing liquefied gas
WO2012124884A1 (en) Method for supplying fuel for high-pressure natural gas injection engine
WO2012053704A1 (en) Storage container for liquefied natural gas
WO2012050273A1 (en) Method for producing pressurized liquefied natural gas, and production system used in same
WO2016195279A1 (en) Ship
WO2016195232A1 (en) Ship
WO2019194670A1 (en) Gas treatment system and ship including same
WO2016126025A1 (en) Fuel gas supply system for ship
WO2018230950A1 (en) Re-liquefaction system of evaporative gas and ship
WO2020159317A1 (en) Gas processing system and ship including same
WO2016195233A1 (en) Ship
WO2016148318A1 (en) System for supplying fuel to engine of ship
WO2016195229A1 (en) Ship

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748942

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504194

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748942

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/11/2021)