JP2016169837A - Boil-off gas recovery system - Google Patents

Boil-off gas recovery system Download PDF

Info

Publication number
JP2016169837A
JP2016169837A JP2015051266A JP2015051266A JP2016169837A JP 2016169837 A JP2016169837 A JP 2016169837A JP 2015051266 A JP2015051266 A JP 2015051266A JP 2015051266 A JP2015051266 A JP 2015051266A JP 2016169837 A JP2016169837 A JP 2016169837A
Authority
JP
Japan
Prior art keywords
gas
boil
pressure
heat exchanger
recovery system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015051266A
Other languages
Japanese (ja)
Inventor
伸哉 湯浅
Shinya Yuasa
伸哉 湯浅
貴士 渡邉
Takashi Watanabe
貴士 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2015051266A priority Critical patent/JP2016169837A/en
Publication of JP2016169837A publication Critical patent/JP2016169837A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0208Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0254Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform an efficient recovery of boil-off gas at a liquefaction gas carrier and improve a degree of freedom in selection of a target ship speed.SOLUTION: BOG in a cargo tank 11 is sent as cooling side gas to a first heat exchanger 14 through a first piping 12 and further compressed at a multi-stage high pressure gas compressor 15. Middle pressure BOG with a pressure more than a critical point is extracted from a middle stage of the high pressure gas compressor 15, transported as cooled side gas to the first heat exchanger 14 through a second piping 16 and cooled. BOG is further cooled with a re-cooling device 24, expanded by a Joule-Thomson valve 17 and liquefied. The liquefied BOG and gas-liquid double phase flow of gas gasified through flash are transferred to a separator 18. Gas composition separated by the separator 18 is returned back an upstream side of the first heat exchanger 14 at the first piping 12 through a pressure adjustment valve 19, liquid composition is returned back to the cargo tank 11 through a transfer pump 21.SELECTED DRAWING: Figure 1

Description

本発明は、液化ガスが荷載されるカーゴタンクで発生するボイルオフガス(BOG)を回収するシステムに関する。   The present invention relates to a system for collecting boil-off gas (BOG) generated in a cargo tank loaded with liquefied gas.

液化天然ガス運搬船(LNGタンカー)には、カーゴタンクで発生するボイルオフガス(BOG)を船内の推進機関、発電機関や蒸気ボイラの燃料に利用するものがある。しかし、近年では、2元燃料焚き中速ディーゼル発電機関を用いた電気推進や2元燃料焚き低速ディーゼル直結推進を採用することにより、推進効率の向上が図られている。その結果、推進機関で消費する燃料ガス消費量が抑えられ、ボイルオフガスの全てを燃料として消費できない船速域が広がっている。そのため余剰ボイルオフガスは、コンプレッサと冷媒を用いた再液化装置(特許文献1、2)で再液化してカーゴタンクへ回収するか、ガス燃焼装置やガス焚きボイラなどで焼却処理する必要がある。   Some liquefied natural gas carriers (LNG tankers) use boil-off gas (BOG) generated in cargo tanks as fuel for propulsion engines, power generation engines, and steam boilers. However, in recent years, the propulsion efficiency has been improved by adopting electric propulsion using a dual fuel-fired medium speed diesel power generation engine and dual fuel-fired low-speed diesel direct-propulsion. As a result, the amount of fuel gas consumed by the propulsion engine is suppressed, and the ship speed range in which all of the boil-off gas cannot be consumed as fuel is widening. Therefore, the surplus boil-off gas needs to be re-liquefied by a re-liquefaction device (Patent Documents 1 and 2) using a compressor and a refrigerant and collected in a cargo tank, or incinerated by a gas combustion device or a gas-fired boiler.

特開2001−132899号公報JP 2001-132899 A 特開2005−265170号公報JP 2005-265170 A

コンプレッサや冷媒を用いた従来の再液化装置を搭載する場合、初期費用が嵩む上、電力消費も大きいため運用コストも高い。一方、2元燃料焚き低速ディーゼル直結推進を利用したLNGタンカーでは、約30MPa程度の高圧ガスをディーゼル機関に供給するため、高圧ガスコンプレッサを搭載している。そのため、このような船では、2元燃料焚き低速ディーゼル機関へ燃料ガスを供給する高圧ガスコンプレッサを利用してBOG回収装置を構成することが考えられる。   When a conventional reliquefaction apparatus using a compressor or a refrigerant is installed, the initial cost increases and the power consumption is large, so the operation cost is high. On the other hand, in an LNG tanker using a dual fuel-fired low-speed diesel direct drive, a high-pressure gas compressor is mounted to supply a high-pressure gas of about 30 MPa to a diesel engine. Therefore, in such a ship, it is conceivable to configure the BOG recovery device using a high-pressure gas compressor that supplies fuel gas to a dual fuel-fired low-speed diesel engine.

本発明は、液化ガス運搬船において、ボイルオフガスを効率的に回収するとともに、ターゲット船速の選択の自由度を高めることを課題としている。   An object of the present invention is to efficiently recover boil-off gas in a liquefied gas carrier ship and increase the degree of freedom in selecting a target ship speed.

本発明のボイルオフガス回収システムは、カーゴタンクからのボイルオフガスを圧縮する高圧ガスコンプレッサと、高圧ガスコンプレッサへ送られるボイルオフガスと、高圧ガスコンプレッサにおいて臨界点以上の圧力にまで圧縮されたボイルオフガスの間で熱交換を行う第1熱交換器と、高圧ガスコンプレッサにおいて圧縮され、第1熱交換器を介して冷却されたボイルオフガスを同圧力の下、あるいは臨界点以上の所定圧力まで減圧した後、更に冷却する再冷却手段と、再冷却手段により冷却されたボイルオフガスを膨張させ、少なくともその一部を液化する液化手段と、液化手段によりボイルオフガスの一部が液化された気液2相流をガス成分と液体成分とに分離するセパレータとを備え、セパレータで分離されたガス成分を、セパレータから高圧ガスコンプレッサの入口側であって、第1熱交換器よりも上流側へと還流させるとともに、セパレータで分離された液体成分をカーゴタンクへ移送することを特徴としている。   The boil-off gas recovery system of the present invention includes a high-pressure gas compressor that compresses boil-off gas from a cargo tank, boil-off gas that is sent to the high-pressure gas compressor, and boil-off gas that has been compressed to a pressure higher than a critical point in the high-pressure gas compressor. After depressurizing the boil-off gas compressed in the high-pressure gas compressor and cooled through the first heat exchanger to the predetermined pressure above the critical point or above the critical point. Further, recooling means for further cooling, boil-off gas cooled by the recooling means, liquefying means for liquefying at least a part thereof, and gas-liquid two-phase flow in which part of the boil-off gas is liquefied by the liquefaction means A separator that separates the gas component into a liquid component and a gas component separated by the separator. A inlet side of the high pressure gas compressor from data, causes reflux to the upstream side of the first heat exchanger is characterized by transferring the liquid component separated by the separator into the cargo tank.

液化手段は、膨張弁またはジュールトムソンバルブを備えることが好ましい。ボイルオフガス回収システムは、セパレータで分離されたガス成分を、第1熱交換器よりも上流側へと還流させる経路に圧力調整弁を更に備えることが好ましく、圧力調整弁により、セパレータ内の圧力は所定圧力に維持される。再冷却手段は、ボイルオフガスと冷媒との間で熱交換を行う第2熱交換器を備えることが好ましい。また、ボイルオフガス回収システムは、液体成分をセパレータからカーゴタンクへと移送する移送ポンプを備えてもよい。   The liquefying means preferably comprises an expansion valve or a Joule Thomson valve. The boil-off gas recovery system preferably further includes a pressure adjusting valve in a path for returning the gas component separated by the separator to the upstream side of the first heat exchanger, and the pressure in the separator is reduced by the pressure adjusting valve. A predetermined pressure is maintained. The recooling means preferably includes a second heat exchanger that exchanges heat between the boil-off gas and the refrigerant. In addition, the boil-off gas recovery system may include a transfer pump that transfers the liquid component from the separator to the cargo tank.

ボイルオフガス回収システムは、高圧ガスコンプレッサにおいて圧縮され、第1熱交換器へ移送されるボイルオフガスの流量を制御する流量制御弁を更に備え、ボイルオフガス回収システムの液化回収量を制御することが好ましい。高圧ガスコンプレッサは、圧縮したボイルオフガスの一部を2元燃料焚き低速ディーゼル機関の燃料として吐出する。高圧ガスコンプレッサは、例えば多段コンプレッサであり、第1熱交換器へは、途中段から抽気したボイルオフガスが供給される。ボイルオフガスは、例えば高圧ガスコンプレッサの吐出側から減圧して第1熱交換器へ供給される。   The boil-off gas recovery system preferably further includes a flow rate control valve that controls the flow rate of the boil-off gas that is compressed in the high-pressure gas compressor and transferred to the first heat exchanger, and controls the liquefaction recovery amount of the boil-off gas recovery system. . The high-pressure gas compressor discharges a part of the compressed boil-off gas as fuel for a dual fuel-fired low-speed diesel engine. The high-pressure gas compressor is, for example, a multistage compressor, and boil-off gas extracted from the middle stage is supplied to the first heat exchanger. For example, the boil-off gas is decompressed from the discharge side of the high-pressure gas compressor and supplied to the first heat exchanger.

本発明の液化ガス運搬船は、上記何れかのボイルオフガス回収システムを備えたことを特徴としている。   The liquefied gas carrier of the present invention is characterized by including any of the above boil-off gas recovery systems.

本発明によれば、液化ガス運搬船において、ボイルオフガスを効率的に回収するとともに、ターゲット船速の選択の自由度を高めることができる。   According to the present invention, a boil-off gas can be efficiently recovered and a degree of freedom in selecting a target ship speed can be increased in a liquefied gas carrier ship.

本発明の本実施形態のボイルオフガス回収システムの構成を示すブロック図である。It is a block diagram which shows the structure of the boil off gas collection | recovery system of this embodiment of this invention. ボイルオフガスの主成分であるメタンの圧力−比エンタルピー(p−h)線図において、本実施形態の再液化処理の熱力学的な経路を示す図である。It is a figure which shows the thermodynamic path | route of the reliquefaction process of this embodiment in the pressure-specific enthalpy (ph) diagram of the methane which is a main component of boil-off gas. 第1熱交換器において(a)被冷却側ガスが臨界点以下の圧力状態で熱交換を行った場合と、(b)被冷却ガスが臨界点以上の圧力状態で熱交換を行った場合の熱交換器内部の交換熱量と温度の変化を示すグラフである。In the first heat exchanger, when (a) heat exchange is performed in a state where the gas to be cooled is under the critical point, and (b) heat exchange is performed in a state where the gas to be cooled is over the critical point. It is a graph which shows the amount of exchange heat inside a heat exchanger, and the change of temperature. ボイルオフガスの主成分であるメタンの圧力−比エンタルピー(p−h)線図において、第1熱交換器の冷却効果について説明する図である。It is a figure explaining the cooling effect of a 1st heat exchanger in the pressure-specific enthalpy (ph) diagram of methane which is the main ingredients of boil-off gas. 本実施形態における液化ガス積載時の船速と、使用ガス燃料消費量およびボイルオフガス発生量の関係を示すグラフである。It is a graph which shows the relationship between the ship speed at the time of liquefied gas loading in this embodiment, consumption gas fuel consumption, and boil-off gas generation amount. 変形例のボイルオフガス回収システムの構成を示すブロック図である。It is a block diagram which shows the structure of the boil off gas collection | recovery system of a modification.

以下、本発明の実施形態について添付図面を参照して説明する。
図1は、本発明の一実施形態であるボイルオフガス回収システムの構成を示すブロック図である。また、図2には、ボイルオフガスの主成分であるメタンの圧力−比エンタルピー(p−h)線図において、本実施形態の再液化処理における熱力学的な経路を示す。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a block diagram showing a configuration of a boil-off gas recovery system according to an embodiment of the present invention. FIG. 2 shows a thermodynamic path in the reliquefaction process of this embodiment in the pressure-specific enthalpy (ph) diagram of methane, which is the main component of the boil-off gas.

本実施形態のボイルオフガス回収システム10は、高圧ガスコンプレッサを搭載し、天然ガスなどの液化ガスを運搬する船舶に適用され、特に、2元燃料焚き低速ディーゼル(直結)推進を利用した液化ガス運搬船への適用が好適である。   The boil-off gas recovery system 10 of the present embodiment is applied to a ship carrying a high-pressure gas compressor and carrying a liquefied gas such as natural gas, and in particular, a liquefied gas carrier ship using dual fuel-fired low-speed diesel (direct connection) propulsion. Application to is preferable.

液化ガス(本実施形態ではLNG)はカーゴタンク11に荷載され、カーゴタンク11内で発生するボイルオフガス(約−162℃)は、第1配管12を通して、カーゴマシナリールーム13に導かれ、第1熱交換器14を介して高圧ガスコンプレッサ15へと移送される。高圧ガスコンプレッサ15は例えば多段圧縮機であり、吐出側からは例えば約30MPa程の高圧ガスが吐出され、図示しない2元燃料焚き低速ディーゼルエンジン(主機関)や、発電用の2元燃料焚きディーゼルエンジン、ガス焚きボイラなどにガス燃料として供給される。また、高圧ガスコンプレッサ15が多段圧縮機で、ガス焚き可能な発電用ディーゼル機関やボイラの必要なガス圧が高圧ガスより低い場合、これらへの燃料ガスは圧縮機途中段から抽気して供給することもできる。   The liquefied gas (LNG in the present embodiment) is loaded on the cargo tank 11, and the boil-off gas (about −162 ° C.) generated in the cargo tank 11 is guided to the cargo machinery room 13 through the first pipe 12, and the first It is transferred to the high-pressure gas compressor 15 via the heat exchanger 14. The high-pressure gas compressor 15 is, for example, a multistage compressor, and a high-pressure gas of about 30 MPa is discharged from the discharge side, for example, a dual fuel-fired low-speed diesel engine (main engine) or a dual-fuel-fired diesel for power generation. It is supplied as gas fuel to engines and gas-fired boilers. In addition, when the high pressure gas compressor 15 is a multistage compressor and the required gas pressure of the power generating diesel engine or boiler is lower than the high pressure gas, the fuel gas to these is extracted and supplied from the middle stage of the compressor You can also.

一方、高圧ガスコンプレッサ15の途中段からは、余剰となるボイルオフガスが、例えば約10MPa程の中圧ガス(約45℃)として第2配管16へと抽気され、第2配管16を通して第1熱交換器14へ移送される。第1熱交換器14では、第1配管12を通るボイルオフガスを冷却側流体として、第2配管16内の中圧ボイルオフガス(被冷却側ガス)の冷却が行われ、ボイルオフガスは例えば約−100℃前後まで冷却される(図2、経路L2)。   On the other hand, from the middle stage of the high-pressure gas compressor 15, surplus boil-off gas is extracted into the second pipe 16 as, for example, a medium-pressure gas (about 45 ° C.) of about 10 MPa, and the first heat is passed through the second pipe 16. It is transferred to the exchanger 14. In the first heat exchanger 14, the boil-off gas passing through the first pipe 12 is used as a cooling side fluid to cool the medium pressure boil-off gas (cooled side gas) in the second pipe 16, and the boil-off gas is, for example, about − It is cooled to around 100 ° C. (FIG. 2, path L2).

なお、第2配管16に設けられる流量制御弁23によって、第1熱交換器14へ移送される中圧ガスの流量を制御して液化量を調整し、ボイルオフガス回収システムの液化回収量を制御することができる。また図1において流量制御弁23は熱交換器の上流側に設置されているが、下流側に設置しても構わない。   The flow rate control valve 23 provided in the second pipe 16 controls the flow rate of the medium pressure gas transferred to the first heat exchanger 14 to adjust the liquefaction amount, thereby controlling the liquefaction recovery amount of the boil-off gas recovery system. can do. In FIG. 1, the flow control valve 23 is installed on the upstream side of the heat exchanger, but may be installed on the downstream side.

ここで、高圧ガスコンプレッサ15の途中段から抽気されるボイルオフガスの圧力は、同気体の臨界点以上の圧力であり(本実施形態では臨界点の圧力は約4MPa)、第1熱交換器14で冷却されたボイルオフガスは、超臨界状態にある。また、高圧ガスコンプレッサ15において、余剰ボイルオフガスが抽気されるまでの段には、例えば無給油式の圧縮機を用い、そこから先の吐出側高圧段には給油式の圧縮機を用いてもよい。なお、全てに給油式圧縮機を用いる場合には、例えば第2配管16にキャリーオーバーされた油分を取り除くためのフィルタ(不図示)を配置する。   Here, the pressure of the boil-off gas extracted from the middle stage of the high-pressure gas compressor 15 is a pressure equal to or higher than the critical point of the same gas (in this embodiment, the critical point pressure is about 4 MPa), and the first heat exchanger 14 The boil-off gas cooled in is in a supercritical state. In the high-pressure gas compressor 15, for example, an oil-free compressor is used for the stage until the excess boil-off gas is extracted, and an oil-feed compressor is used for the discharge-side high-pressure stage thereafter. Good. In addition, when using an oil supply type compressor for all, the filter (not shown) for removing the oil component carried over to the 2nd piping 16, for example is arrange | positioned.

第2配管16の第1熱交換器14の下流側は、例えば第2熱交換器を備える再冷却装置24に導かれる。すなわち第1熱交換器14で冷却されたボイルオフガスは、再冷却装置24の第2熱交換器において冷媒用配管25を用いる低温冷媒サイクルと熱交換を行い約−100℃〜−165℃まで超臨界状態を維持したまま更に冷却される(図2、経路L4)。また再冷却装置24の下流側の第2配管16には、ジュールトムソン(J−T)バルブ(あるいは膨張弁)17が設けられる。ボイルオフガスは、ジュールトムソンバルブ17を介して所定のセパレータ設定圧力にまで減圧され、ボイルオフガスは超臨界状態から液体となり、一部は膨張時にフラッシュされ気体となる(図2、経路L5)。これにより、ボイルオフガスは気液2相流となる。   The downstream side of the first heat exchanger 14 of the second pipe 16 is led to a recooling device 24 including, for example, a second heat exchanger. In other words, the boil-off gas cooled by the first heat exchanger 14 exchanges heat with the low-temperature refrigerant cycle using the refrigerant pipe 25 in the second heat exchanger of the recooling device 24 and exceeds about −100 ° C. to −165 ° C. Further cooling is performed while maintaining the critical state (FIG. 2, path L4). Further, a Joule Thomson (JT) valve (or expansion valve) 17 is provided in the second pipe 16 on the downstream side of the recooling device 24. The boil-off gas is depressurized to a predetermined separator set pressure via the Joule-Thompson valve 17, and the boil-off gas becomes liquid from the supercritical state, and a part of the boil-off gas is flushed during expansion to become gas (path L5 in FIG. 2). As a result, the boil-off gas becomes a gas-liquid two-phase flow.

ボイルオフガスの気液2相流は、その後第2配管16を通してセパレータ18へと移送され、気液分離が行われる。セパレータ18で分離されたボイルオフガスは、圧力調整弁19が設けられた第3配管20を介して第1配管12の第1熱交換器14よりも上流側へ還流される。一方、分離された液化ガス(LNG)は、移送ポンプ21により、第4配管22を通してカーゴマシナリールーム13から貨物区画のカーゴタンク11へと移送されて回収される。なお、セパレータ圧力によりカーゴタンク11へ再液化ガスを移送できる場合には、移送ポンプ21は省略できる。また、セパレータ18内の圧力は、圧力調整弁19によって設定圧力に維持される。   The gas-liquid two-phase flow of the boil-off gas is then transferred to the separator 18 through the second pipe 16 and gas-liquid separation is performed. The boil-off gas separated by the separator 18 is refluxed to the upstream side of the first heat exchanger 14 of the first pipe 12 through the third pipe 20 provided with the pressure regulating valve 19. On the other hand, the separated liquefied gas (LNG) is transferred by the transfer pump 21 from the cargo machinery room 13 to the cargo tank 11 in the cargo section through the fourth pipe 22 and collected. If the reliquefied gas can be transferred to the cargo tank 11 by the separator pressure, the transfer pump 21 can be omitted. Further, the pressure in the separator 18 is maintained at a set pressure by the pressure adjusting valve 19.

次に、図3、図4を参照して、第1熱交換器14での冷却効果について説明する。図3(a)は、第2配管16に抽気されるボイルオフガス(被冷却側ガス)の圧力が臨界点以下となる場合の第1熱交換器14における冷却側ガスと被冷却側ガスの熱交換器内部の交換熱量と温度の変化を示すグラフであり、図3(b)は、本実施形態に対応し、第2配管16に抽気されるボイルオフガス(被冷却側ガス)の圧力が臨界点以上のときの図3(a)に対応するグラフである。なお図3(a)、図3(b)において、横軸左端が冷却側ガスの入り口と被冷却側ガスの出口、右端が冷却側ガスの出口と被冷却側ガスの入り口に対応し、縦軸は温度(℃)である。また、図4は、ボイルオフガスの主成分であるメタンの模式的な圧力−比エンタルピー(p−h)線図である。   Next, the cooling effect in the first heat exchanger 14 will be described with reference to FIGS. 3 and 4. FIG. 3A shows the heat of the cooling side gas and the cooled side gas in the first heat exchanger 14 when the pressure of the boil-off gas (cooled side gas) extracted in the second pipe 16 is below the critical point. FIG. 3B is a graph showing changes in heat exchange and temperature inside the exchanger, and FIG. 3B corresponds to this embodiment, and the pressure of boil-off gas (cooled side gas) extracted to the second pipe 16 is critical. It is a graph corresponding to Drawing 3 (a) when it is more than a point. 3 (a) and 3 (b), the left end of the horizontal axis corresponds to the inlet of the cooling side gas and the outlet of the cooled side gas, and the right end corresponds to the outlet of the cooling side gas and the inlet of the cooled side gas. The axis is temperature (° C). FIG. 4 is a schematic pressure-specific enthalpy (ph) diagram of methane, which is the main component of the boil-off gas.

図3(a)に示されるように、被冷却側ガスの圧力が臨界点以下(例えば3.5MPa)の場合、被冷却側ガスは第1熱交換器14内で飽和温度まで低下し、その後一部液体の状態で熱交換が行われる。このとき熱交換が低温の飽和温度での熱交換領域があるため、冷却側との第1熱交換器14内の熱交換途中でピンチポイントが厳しくなり、熱交換可能な熱量が制限される(図4の経路L1:臨界点以下の圧力(3.5MPa)で45℃から−100℃へ冷却)。   As shown in FIG. 3 (a), when the pressure of the cooled side gas is below the critical point (for example, 3.5 MPa), the cooled side gas falls to the saturation temperature in the first heat exchanger 14, and thereafter Heat exchange is performed in a partially liquid state. At this time, since there is a heat exchange region where the heat exchange is at a low saturation temperature, the pinch point becomes severe during the heat exchange in the first heat exchanger 14 with the cooling side, and the amount of heat that can be exchanged is limited ( FIG. 4 path L1: cooling from 45 ° C. to −100 ° C. at a pressure below the critical point (3.5 MPa).

一方、図4に示されるように、被冷却側ガスの圧力が臨界点以上(例えば10MPa)の場合、超臨界状態での熱交換となり第1熱交換器14内において被冷却側ガスが液化することはない。すなわち、飽和状態での熱交換がない(相変化がない)ためピンチポイントが緩和され(図3(b))、十分な熱交換が可能な熱交換器を設計可能である(図4の経路L2:臨界点以上の圧力(10MPa)で45℃〜−100℃へ冷却)。   On the other hand, as shown in FIG. 4, when the pressure of the cooled side gas is equal to or higher than the critical point (for example, 10 MPa), heat exchange is performed in a supercritical state, and the cooled side gas is liquefied in the first heat exchanger 14. There is nothing. That is, since there is no heat exchange in a saturated state (no phase change), the pinch point is relaxed (FIG. 3B), and a heat exchanger capable of sufficient heat exchange can be designed (path of FIG. 4). L2: cooled to 45 ° C. to −100 ° C. at a pressure (10 MPa) above the critical point).

次に図5を使用して流量制御弁23、再冷却装置24を用いたボイルオフガスの液化量調整制御について説明する。   Next, the boil-off gas liquefaction amount adjustment control using the flow control valve 23 and the recooling device 24 will be described with reference to FIG.

図5は運航船速Vと使用燃料ガス消費量Qの関係と、ボイルオフガス発生量を示すグラフである。図5において、横軸は船速V、縦軸は燃料ガス消費量Qである。曲線Sは船速と燃料ガス消費量(単位時)の関係を示す曲線であり、燃料消費量Qは略船速Vの3乗に比例する。直線M1(NATURAL BOG)は、カーゴタンク11内の液化ガス(天然ガス)が自然蒸発し、ボイルオフガスとなる単位時間当たりの量である。すなわち、図5において、ボイルオフガスのみ、かつその全てを船内でガスを消費するエンジンおよびボイラの燃料として利用すると、曲線Sと直線M1の交点P1に対応する船速V1が得られる。一方、運転点P1よりも低速側(V<V1の領域)では、直線M1と曲線Sの差が余剰ボイルオフガスとなり、運転点P1よりも高速側(V>V1の領域)では、曲線Sと直線M1の差が、追加する必要のあるガス燃料量となる。   FIG. 5 is a graph showing the relationship between the operating vessel speed V and the used fuel gas consumption Q and the boil-off gas generation amount. In FIG. 5, the horizontal axis represents the ship speed V, and the vertical axis represents the fuel gas consumption Q. A curve S is a curve showing the relationship between the ship speed and the fuel gas consumption (unit time), and the fuel consumption Q is approximately proportional to the cube of the ship speed V. The straight line M1 (NATURAL BOG) is an amount per unit time at which the liquefied gas (natural gas) in the cargo tank 11 spontaneously evaporates and becomes boil-off gas. That is, in FIG. 5, when only the boil-off gas is used as fuel for the engine and boiler that consumes gas in the ship, a ship speed V1 corresponding to the intersection P1 of the curve S and the straight line M1 is obtained. On the other hand, on the lower speed side (V <V1 region) than the operating point P1, the difference between the straight line M1 and the curve S becomes surplus boil-off gas, and on the higher speed side (V> V1 region) than the operating point P1, the curve S and The difference between the straight lines M1 is the amount of gas fuel that needs to be added.

再冷却装置24を停止した状態で、流量制御弁23を開いてボイルオフガス回収装置を作動させると、第1熱交換器14、ジュールトムソンバルブ17によりボイルオフガスの一部液化が行われる。これによりボイルオフガスの単位時間当たりの発生量が実質的に低下する。第1熱交換器14、ジュールトムソンバルブ17を用いた液化システムによる回収を最大にしたときのボイルオフガスの単位時間当たりの発生量を直線M2とすると、同液化システムにより、ボイルオフガスの単位時間当たりの発生量は、直線M1から、直線M2へと低減可能であり、運転点を示す曲線Sとの交点はP1からP2へと移動可能である。そのため、余剰ボイルオフガスの発生を抑えながら、運航速度Vを運転点P1の船速V1から運転点P2の船速V2まで下げる減速運航を行うことが可能となる。   When the flow control valve 23 is opened and the boil-off gas recovery device is operated while the recooling device 24 is stopped, the boil-off gas is partially liquefied by the first heat exchanger 14 and the Joule Thomson valve 17. As a result, the amount of boil-off gas generated per unit time is substantially reduced. Assuming that the amount of boil-off gas generated per unit time when the recovery by the liquefaction system using the first heat exchanger 14 and the Joule Thomson valve 17 is maximized is a straight line M2, the same liquefaction system allows the boil-off gas per unit time. Can be reduced from the straight line M1 to the straight line M2, and the intersection with the curve S indicating the operating point can be moved from P1 to P2. Therefore, it is possible to perform a decelerating operation that reduces the operation speed V from the ship speed V1 at the operating point P1 to the ship speed V2 at the operating point P2 while suppressing the generation of surplus boil-off gas.

また、運航速度VがV1とV2の間で運転される場合、流量制御弁23によって第1熱交換器14に移送される被冷却側ガスの流量を制御することによって、液化量をコントロールすることが可能なので、ボイルオフガス量をM1からM2の間で使用ガス燃料に合わせて最適に制御することができ、この運転領域における余剰ボイルオフガスの処理が不要となる。   Further, when the operation speed V is operated between V1 and V2, the amount of liquefaction is controlled by controlling the flow rate of the cooled side gas transferred to the first heat exchanger 14 by the flow rate control valve 23. Therefore, the amount of boil-off gas can be optimally controlled between M1 and M2 in accordance with the gas fuel used, and the processing of surplus boil-off gas in this operation region is not necessary.

上記M2は、第1熱交換器14とジュールトムソンバルブ17を用いた液化システムの液化ガスの回収限界であるので、本実施形態では、更に減速運航を行う場合には、再冷却装置24を用いてボイルオフガスの再液化量を更に増大し、ボイルオフガス回収システム10の液化ガス回収能力を高める。図5の直線M3は、第1熱交換器14、ジュールトムソンバルブ17、および再冷却装置24を用い、本実施形態のボイルオフガス回収システム10の液化ガス回収量を最大にしたときの単位時間当たりのボイルオフガス発生量である。すなわち、再冷却装置24を用いてジュールトムソンバルブ17手前における超臨界状態のボイルオフガスの温度を更に下げることで、ジュールトムソンバルブ17を通した膨張時の再液化量を調整する。これにより、単位時間当たりのボイルオフガス発生量はM2とM3の間で調整可能となる。すなわち、余剰ボイルオフガスの処理(焼却処分など)を行わなくとも、直線M3と曲線Sの交点である運転点P3の船速V3まで、運航速度Vを下げた減速運航を行うことが可能になる。   Since M2 is a recovery limit of the liquefied gas of the liquefaction system using the first heat exchanger 14 and the Joule Thomson valve 17, in the present embodiment, the recooling device 24 is used for further deceleration operation. Thus, the amount of liquefaction of the boil-off gas is further increased, and the liquefied gas recovery capability of the boil-off gas recovery system 10 is increased. A straight line M3 in FIG. 5 per unit time when the first heat exchanger 14, the Joule Thomson valve 17 and the recooling device 24 are used and the liquefied gas recovery amount of the boil-off gas recovery system 10 of the present embodiment is maximized. The amount of boil-off gas generated. That is, the re-liquefaction amount during expansion through the Joule-Thomson valve 17 is adjusted by further lowering the temperature of the boil-off gas in the supercritical state before the Joule-Thomson valve 17 using the recooling device 24. Thereby, the boil-off gas generation amount per unit time can be adjusted between M2 and M3. In other words, it is possible to perform a reduced speed operation with the operating speed V lowered to the ship speed V3 of the operating point P3 that is the intersection of the straight line M3 and the curved line S without performing surplus boil-off gas processing (incineration disposal, etc.). .

なお、本ボイルオフガス回収システム10において、高圧ガスコンプレッサ15の容量は、カーゴタンク11で発生するボイルオフガスの発生量と、ガスを消費燃料として使用するエンジンやボイラのガス消費量などから決定される。また、高圧ガスコンプレッサ容量は、液化量を増加させるために第1熱交換器14の上流側へ還流されるガス量を更に加えた容量とすることが望ましい。   In the boil-off gas recovery system 10, the capacity of the high-pressure gas compressor 15 is determined from the amount of boil-off gas generated in the cargo tank 11 and the gas consumption of an engine or boiler that uses the gas as fuel. . The capacity of the high-pressure gas compressor is desirably a capacity obtained by further adding the amount of gas recirculated to the upstream side of the first heat exchanger 14 in order to increase the amount of liquefaction.

また、再冷却装置24における冷却能力(kW)は、発生ガスを全て再液化する場合には、セパレータ設定圧力と、ボイルオフガス発生量から第1熱交換器14とジュールトムソンバルブ17を用いた液化システムによる回収限界量を差し引いたガス量とに基づいて決定され、部分再液化する場合には、セパレータ設定圧力と、ボイルオフガス発生量から第1熱交換器14とジュールトムソンバルブ17を用いた液化システムによる回収限界量および、ターゲット船速の燃料ガス消費量を差し引いたガス量とに基づいて決定される。   Further, the cooling capacity (kW) in the recooling device 24 is liquefied using the first heat exchanger 14 and the Joule Thomson valve 17 from the separator set pressure and the boil-off gas generation amount when all the generated gas is reliquefied. When the partial reliquefaction is determined based on the gas amount obtained by subtracting the recovery limit amount by the system, liquefaction using the first heat exchanger 14 and the Joule Thomson valve 17 from the separator set pressure and the boil-off gas generation amount It is determined based on the recovery limit amount by the system and the gas amount obtained by subtracting the fuel gas consumption amount at the target ship speed.

以上のように、本実施形態のボイルオフガス回収システムによれば、2元燃料焚き低速ディーゼルエンジンの燃料ガス供給に使用される高圧ガスコンプレッサを利用し、かつ、圧縮前のボイルオフガスを利用して圧縮後のボイルオフガスを冷却するとともにジュールトムソンバルブ(膨張弁)を用いた液化を行っているので、極めて効率的にボイルオフガスを再液化し回収することができる。   As described above, according to the boil-off gas recovery system of the present embodiment, the high-pressure gas compressor used for fuel gas supply of the dual fuel-fired low-speed diesel engine is used, and the boil-off gas before compression is used. Since the boil-off gas after compression is cooled and liquefied using the Joule Thomson valve (expansion valve), the boil-off gas can be re-liquefied and recovered very efficiently.

また再冷却装置(第2熱交換器)をジュールトムソンバルブの下流側に配置することも可能であるが、この場合は図2に示される経路L2、L3、L6に沿って冷却され、経路L6が再冷却装置で冷却される領域に対応する。そのため再冷却装置(第2熱交換器)では気液2相流の熱交換を行うことになる。本実施形態では図2に示される経路L2、L4、L5に沿って冷却され、経路L4が再冷却装置で冷却される領域に対応するため、再冷却装置(第2熱交換器)では超臨界領域での熱交換を行うことになる。すなわち、本実施形態では、第1熱交換器とジュールトムソンバルブの間に再冷却装置(第2熱交換器)を配置したことで、再冷却装置(第2熱交換器)へ導入されるボイルオフガスは超臨界状態の単相となり、ボイルオフガスの物性の推定が単純化され、再冷却装置(第2熱交換器)の設計が容易になる。また再冷却装置(第2熱交換器)内が2相流体に含まれる液滴により浸食されることも防止される。   It is also possible to arrange a recooling device (second heat exchanger) on the downstream side of the Joule Thompson valve. In this case, the recooling device (second heat exchanger) is cooled along the paths L2, L3, and L6 shown in FIG. Corresponds to the region cooled by the recooling device. Therefore, in the recooling device (second heat exchanger), heat exchange of the gas-liquid two-phase flow is performed. In this embodiment, since cooling is performed along the paths L2, L4, and L5 shown in FIG. 2 and the path L4 corresponds to the region cooled by the recooling device, the recooling device (second heat exchanger) is supercritical. Heat exchange is performed in the area. That is, in this embodiment, boil-off introduced into the recooling device (second heat exchanger) by disposing the recooling device (second heat exchanger) between the first heat exchanger and the Joule Thompson valve. The gas becomes a single phase in a supercritical state, the estimation of the physical properties of the boil-off gas is simplified, and the recooling device (second heat exchanger) can be easily designed. Further, the recooling device (second heat exchanger) is prevented from being eroded by droplets contained in the two-phase fluid.

また、再冷却装置(第2熱交換器)をジュールトムソンバルブの下流側に配置する場合、膨張したボイルオフガスが再冷却装置(第2熱交換器)に導入されるため、圧力損失を抑えるには再冷却装置(第2熱交換器)を大型化させる必要がある。一方、本実施形態では、膨張前のボイルオフガスを冷却するため再液化装置(第2熱交換器)を小型化できる。   Further, when the recooling device (second heat exchanger) is disposed downstream of the Joule Thomson valve, the expanded boil-off gas is introduced into the recooling device (second heat exchanger), so that pressure loss is suppressed. Needs to increase the size of the recooling device (second heat exchanger). On the other hand, in this embodiment, since the boil-off gas before expansion is cooled, the reliquefaction device (second heat exchanger) can be reduced in size.

また本実施形態では、液化しなかったガス成分を冷却側ガスとして第1熱交換器の冷却側に還流しているため、ボイルオフガス回収システム内でのガス循環量を一定量以上確保でき、更に第1熱交換器の冷却側ガスの入り口温度を下げることにより、システムの冷却量を増大させることができる。   Further, in this embodiment, since the gas component that has not been liquefied is recirculated to the cooling side of the first heat exchanger as a cooling side gas, a gas circulation amount in the boil-off gas recovery system can be secured at a certain amount or more, The cooling amount of the system can be increased by lowering the inlet temperature of the cooling side gas of the first heat exchanger.

以上のことから、本実施形態のボイルオフ回収システムでは、回収システムを小型化し、初期費用および運転コストを抑えながらも、効率的にボイルオフガスを回収でき、かつターゲット船速の選択の自由度も高められる。   From the above, in the boil-off recovery system of the present embodiment, the boil-off gas can be recovered efficiently and the degree of freedom in selecting the target ship speed can be increased while reducing the initial cost and operating cost. It is done.

更に、本実施形態では、圧力調整弁によりセパレータ内の圧力を設定値に維持するため、カーゴタンクへの移送ポンプの入口圧力が一定値に維持され、移送ポンプの有効吸込ヘッド(available NPSH)が必要正味吸込ヘッド(required NPSH:Net Positive Suction Head)を下回ることを防止する。   Further, in this embodiment, the pressure in the separator is maintained at a set value by the pressure regulating valve, so that the inlet pressure of the transfer pump to the cargo tank is maintained at a constant value, and the effective suction head (available NPSH) of the transfer pump is Prevents falling below the required net suction head (required NPSH).

なお図6に示されるように、第1熱交換器14と、再冷却装置24の第2熱交換器を一体化し、冷却装置26としてもよく、この場合、回収システムはより小型化することができる。   In addition, as FIG. 6 shows, the 1st heat exchanger 14 and the 2nd heat exchanger of the recooling apparatus 24 may be integrated, and it is good also as the cooling apparatus 26, In this case, a collection | recovery system may be reduced more in size. it can.

また、本実施形態では、高圧ガスコンプレッサの多段の途中段から、被冷却側ガスを抽気して熱交換器へと移送したが、吐出側から減圧器を通して熱交換器へと移送する構成としてもよい。また、本実施形態では、再冷却装置を1台しか用いていないが、小型の再冷却装置を複数並列に配置する構成とすることもできる。   In the present embodiment, the cooled side gas is extracted from the middle stage of the high-pressure gas compressor and transferred to the heat exchanger, but it may be transferred from the discharge side to the heat exchanger through the decompressor. Good. In the present embodiment, only one recooling device is used. However, a plurality of small recooling devices may be arranged in parallel.

以上の実施形態ではメタンを主成分とするLNGを運ぶ液化ガス運搬船を対象に記載したが、LNG以外の貨物を運ぶ液化ガス運搬船についても適用可能である(例えばエタンなど)。使用する燃料ガスの性状により、低速ディーゼル機関が要求する機関入口のガス圧力は様々であり、LNGを燃料として使用する場合よりも高い圧力が必要となる場合がある(例えば40MPa〜60MPa)。運搬する液化ガスの性状により、使用する液化ガス燃料の臨界点での圧力や温度、貨物タンクで発生するボイルオフガスの温度が異なるため、第1熱交換器出口温度及び第2熱交換器出口温度をボイルオフガスの主成分に合わせて変更する必要があるが、メタンを主成分とした実施形態と同様の構成で同様の効果を得ることができる。   Although the liquefied gas carrier ship which carries LNG which has methane as a main component was described in the above embodiment, it is applicable also to the liquefied gas carrier ship which carries cargoes other than LNG (for example, ethane etc.). Depending on the nature of the fuel gas used, the gas pressure at the engine inlet required by the low-speed diesel engine varies, and a higher pressure may be required than when LNG is used as fuel (for example, 40 MPa to 60 MPa). Since the pressure and temperature at the critical point of the liquefied gas fuel to be used and the temperature of the boil-off gas generated in the cargo tank differ depending on the properties of the liquefied gas being transported, the first heat exchanger outlet temperature and the second heat exchanger outlet temperature Need to be changed in accordance with the main component of the boil-off gas, but the same effect can be obtained with the same configuration as the embodiment using methane as the main component.

また、実施形態ではジュールトムソンバルブ(または膨張弁)は1台のみ設置し、再冷却装置(第2熱交換器)はジュールトムソンバルブの上流側に配置しているが、再冷却装置(第2熱交換器)の設計耐圧の関係で、第1熱交換器の出口の圧力よりも再冷却装置(第2熱交換器)の入口圧力を下げる必要がある場合、第1熱交換器と再冷却装置(第2熱交換器)との間に1段目の第1ジュールトムソンバルブを設けて、1次減圧(図2、経路L3’)を行ってから再冷却装置(第2熱交換器)にボイルオフガスを導き冷却し(図2、経路L4’)、再冷却装置(第2熱交換器)出口側に2段目の第2ジュールトムソンバルブを設け、セパレータの設定圧力まで減圧する(図2、経路L5’)構成としても良い。この場合、再冷却装置(第2熱交換器)の入り口ガス圧力は臨界圧以上の圧力とする必要がある。   In the embodiment, only one Joule-Thomson valve (or an expansion valve) is installed, and the recooling device (second heat exchanger) is arranged on the upstream side of the Joule-Thomson valve. If the inlet pressure of the recooling device (second heat exchanger) needs to be lower than the outlet pressure of the first heat exchanger due to the design pressure resistance of the heat exchanger), the first heat exchanger and the recooling A first-stage first Joule-Thompson valve is provided between the apparatus (second heat exchanger) and the primary cooling (Fig. 2, path L3 ') is performed, and then the recooling apparatus (second heat exchanger) The boil-off gas is introduced into the pipe and cooled (FIG. 2, path L4 ′), and a second-stage second Joule-Thompson valve is provided on the outlet side of the recooling device (second heat exchanger) to reduce the pressure to the set pressure of the separator (FIG. 2, path L5 ′). In this case, the inlet gas pressure of the recooling device (second heat exchanger) needs to be a pressure higher than the critical pressure.

10、10’ ボイルオフガス回収システム
11 カーゴタンク
12 第1配管
13 カーゴマシナリールーム
14 第1熱交換器
15 高圧ガスコンプレッサ(多段コンプレッサ)
16 第2配管
17 ジュールトムソンバルブ(膨張弁)
18 セパレータ
19 圧力調整弁
20 第3配管
21 移送ポンプ
22 第4配管
23 流量制御弁
24 再冷却装置(第2熱交換器)
25 冷媒用配管
26 冷却装置
10, 10 'Boil-off gas recovery system 11 Cargo tank 12 First piping 13 Cargo machinery room 14 First heat exchanger 15 High-pressure gas compressor (multistage compressor)
16 Second piping 17 Joule Thomson valve (expansion valve)
18 Separator 19 Pressure adjustment valve 20 3rd piping 21 Transfer pump 22 4th piping 23 Flow control valve 24 Recooling device (2nd heat exchanger)
25 Refrigerant piping 26 Cooling device

Claims (11)

カーゴタンクからのボイルオフガスを圧縮する高圧ガスコンプレッサと、
前記高圧ガスコンプレッサへ送られる前記ボイルオフガスと、前記高圧ガスコンプレッサにおいて臨界点以上の圧力にまで圧縮された前記ボイルオフガスの間で熱交換を行う第1熱交換器と、
前記高圧ガスコンプレッサにおいて圧縮され、前記第1熱交換器を介して冷却された前記ボイルオフガスを同圧力の下、あるいは臨界点以上の所定圧力まで減圧した後、更に冷却する再冷却手段と、
前記再冷却手段により冷却された前記ボイルオフガスを膨張させ、少なくともその一部を液化する液化手段と、
前記液化手段により前記ボイルオフガスの一部が液化された気液2相流をガス成分と液体成分とに分離するセパレータとを備え、
前記セパレータで分離されたガス成分を、前記セパレータから前記高圧ガスコンプレッサの入口側であって、前記第1熱交換器よりも上流側へと還流させるとともに、前記セパレータで分離された液体成分を前記カーゴタンクへ移送する
ことを特徴とする液化ガスのボイルオフガス回収システム。
A high-pressure gas compressor that compresses boil-off gas from the cargo tank;
A first heat exchanger for exchanging heat between the boil-off gas sent to the high-pressure gas compressor and the boil-off gas compressed to a pressure above a critical point in the high-pressure gas compressor;
Re-cooling means for further cooling after the pressure of the boil-off gas compressed in the high-pressure gas compressor and cooled via the first heat exchanger is reduced to a predetermined pressure equal to or higher than the critical point;
Liquefying means for expanding the boil-off gas cooled by the recooling means and liquefying at least a part thereof;
A separator that separates a gas-liquid two-phase flow in which a part of the boil-off gas is liquefied by the liquefaction means into a gas component and a liquid component;
The gas component separated by the separator is refluxed from the separator to the upstream side of the first heat exchanger on the inlet side of the high-pressure gas compressor, and the liquid component separated by the separator is A boil-off gas recovery system for liquefied gas, which is transferred to a cargo tank.
前記液化手段が、膨張弁またはジュールトムソンバルブを備えることを特徴とする請求項1に記載のボイルオフガス回収システム。   The boil-off gas recovery system according to claim 1, wherein the liquefying means includes an expansion valve or a Joule Thomson valve. 前記セパレータで分離されたガス成分を、前記第1熱交換器よりも上流側へと還流させる経路に圧力調整弁を更に備え、前記圧力調整弁により、前記セパレータ内の圧力が所定圧力に維持されることを特徴とする請求項1〜2の何れか一項に記載のボイルオフガス回収システム。   A pressure adjusting valve is further provided in a path for returning the gas component separated by the separator to the upstream side of the first heat exchanger, and the pressure in the separator is maintained at a predetermined pressure by the pressure adjusting valve. The boil-off gas recovery system according to any one of claims 1 and 2. 前記再冷却手段が、前記ボイルオフガスと、冷媒との間で熱交換を行う第2熱交換器を備えることを特徴とする請求項1〜3の何れか一項に記載のボイルオフガス回収システム。   The boil-off gas recovery system according to any one of claims 1 to 3, wherein the recooling unit includes a second heat exchanger that exchanges heat between the boil-off gas and a refrigerant. 前記液体成分を前記セパレータから前記カーゴタンクへと移送する移送ポンプを備えることを特徴とする請求項1〜4の何れか一項に記載のボイルオフガス回収システム。   The boil-off gas recovery system according to any one of claims 1 to 4, further comprising a transfer pump that transfers the liquid component from the separator to the cargo tank. 前記高圧ガスコンプレッサにおいて圧縮され、前記第1熱交換器へ移送される前記ボイルオフガスの流量を制御する流量制御弁を更に備え、ボイルオフガス回収システムの液化回収量を制御することを特徴とする請求項1〜5の何れか一項に記載のボイルオフガス回収システム。   The liquefied recovery amount of the boil-off gas recovery system is controlled by further comprising a flow rate control valve that controls the flow rate of the boil-off gas that is compressed in the high-pressure gas compressor and transferred to the first heat exchanger. Item 6. The boil-off gas recovery system according to any one of Items 1 to 5. 前記高圧ガスコンプレッサは、圧縮した前記ボイルオフガスの一部を2元燃料焚き低速ディーゼル機関の燃料として吐出することを特徴とする請求項1〜6の何れか一項に記載のボイルオフガス回収システム。   The boil-off gas recovery system according to any one of claims 1 to 6, wherein the high-pressure gas compressor discharges a part of the compressed boil-off gas as fuel for a dual fuel-fired low-speed diesel engine. 前記高圧ガスコンプレッサが多段コンプレッサであり、前記第1熱交換器へは、途中段から抽気した前記ボイルオフガスが供給されることを特徴とする請求項1〜7の何れか一項に記載のボイルオフガス回収システム。   The boil-off according to any one of claims 1 to 7, wherein the high-pressure gas compressor is a multi-stage compressor, and the boil-off gas extracted from an intermediate stage is supplied to the first heat exchanger. Gas recovery system. 前記高圧ガスコンプレッサの吐出側から減圧して前記第1熱交換器へ前記ボイルオフガスが供給されることを特徴とする請求項1〜7の何れか一項に記載のボイルオフガス回収システム。   The boil-off gas recovery system according to any one of claims 1 to 7, wherein the boil-off gas is supplied to the first heat exchanger by reducing pressure from a discharge side of the high-pressure gas compressor. 前記第1熱交換器と前記再冷却手段の前記第2熱交換器とが一体化されたことを特徴とする請求項4に記載のボイルオフガス回収システム。   The boil-off gas recovery system according to claim 4, wherein the first heat exchanger and the second heat exchanger of the recooling means are integrated. 請求項1〜10の何れか一項に記載のボイルオフガス回収システムを備えたことを特徴とする液化ガス運搬船。   A liquefied gas carrier ship comprising the boil-off gas recovery system according to any one of claims 1 to 10.
JP2015051266A 2015-03-13 2015-03-13 Boil-off gas recovery system Pending JP2016169837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015051266A JP2016169837A (en) 2015-03-13 2015-03-13 Boil-off gas recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015051266A JP2016169837A (en) 2015-03-13 2015-03-13 Boil-off gas recovery system

Publications (1)

Publication Number Publication Date
JP2016169837A true JP2016169837A (en) 2016-09-23

Family

ID=56983444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015051266A Pending JP2016169837A (en) 2015-03-13 2015-03-13 Boil-off gas recovery system

Country Status (1)

Country Link
JP (1) JP2016169837A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107620863A (en) * 2017-09-14 2018-01-23 上海铠韧气体工程股份有限公司 A kind of re-liquefied systems of hydro carbons BOG and technique peculiar to vessel of liquefying
CN107664258A (en) * 2017-08-10 2018-02-06 吉林省华生燃气集团有限公司 BOG gas recovery systems in a kind of urban gate station
WO2018163717A1 (en) * 2017-03-10 2018-09-13 三井E&S造船株式会社 Liquefied gas fuel supply system
CN108870866A (en) * 2017-05-09 2018-11-23 中海石油气电集团有限责任公司 It is a kind of to make the re-liquefied recovery process of BOG that refrigerant is suitable for LNG cargo ship using BOG
CN109027667A (en) * 2018-07-31 2018-12-18 荆门宏图特种飞行器制造有限公司 Liquefied gas storage uninstalling system
CN109916135A (en) * 2019-02-15 2019-06-21 酷豹低碳新能源装备科技(常州)有限公司 It is a kind of for small gas liquefying plant without pump circulation method
WO2020159317A1 (en) * 2019-02-01 2020-08-06 현대중공업 주식회사 Gas processing system and ship including same
CN112046686A (en) * 2020-08-03 2020-12-08 沪东中华造船(集团)有限公司 Ethane transport ship non-liquefiable high-methane-content volatile gas treatment system
WO2022239259A1 (en) * 2021-05-13 2022-11-17 株式会社Ihi Gas cooling system
WO2023279907A1 (en) * 2021-07-09 2023-01-12 China Energy Investment Corporation Limited System and method with boil-off management for liquefied gas storage

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4988904A (en) * 1972-12-11 1974-08-26
JPS6262100U (en) * 1985-10-08 1987-04-17
JP2012083051A (en) * 2010-10-13 2012-04-26 Mitsubishi Heavy Ind Ltd Liquefaction method, liquefaction apparatus and floating liquefied gas production equipment including the same
JP2014512474A (en) * 2011-03-11 2014-05-22 デウ シップビルディング アンド マリーン エンジニアリング カンパニー リミテッド Method of operating fuel supply system for offshore structure having reliquefaction device and high pressure natural gas injection engine
JP2014234927A (en) * 2013-05-30 2014-12-15 ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド Liquefied gas treatment system
JP2015505941A (en) * 2012-10-24 2015-02-26 デウ シップビルディング アンド マリーン エンジニアリング カンパニー リミテッド Ship liquefied gas treatment system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4988904A (en) * 1972-12-11 1974-08-26
JPS6262100U (en) * 1985-10-08 1987-04-17
JP2012083051A (en) * 2010-10-13 2012-04-26 Mitsubishi Heavy Ind Ltd Liquefaction method, liquefaction apparatus and floating liquefied gas production equipment including the same
JP2014512474A (en) * 2011-03-11 2014-05-22 デウ シップビルディング アンド マリーン エンジニアリング カンパニー リミテッド Method of operating fuel supply system for offshore structure having reliquefaction device and high pressure natural gas injection engine
JP2015505941A (en) * 2012-10-24 2015-02-26 デウ シップビルディング アンド マリーン エンジニアリング カンパニー リミテッド Ship liquefied gas treatment system
JP2014234927A (en) * 2013-05-30 2014-12-15 ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド Liquefied gas treatment system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018163717A1 (en) * 2017-03-10 2018-09-13 三井E&S造船株式会社 Liquefied gas fuel supply system
CN108870866A (en) * 2017-05-09 2018-11-23 中海石油气电集团有限责任公司 It is a kind of to make the re-liquefied recovery process of BOG that refrigerant is suitable for LNG cargo ship using BOG
CN107664258A (en) * 2017-08-10 2018-02-06 吉林省华生燃气集团有限公司 BOG gas recovery systems in a kind of urban gate station
CN107620863A (en) * 2017-09-14 2018-01-23 上海铠韧气体工程股份有限公司 A kind of re-liquefied systems of hydro carbons BOG and technique peculiar to vessel of liquefying
CN109027667A (en) * 2018-07-31 2018-12-18 荆门宏图特种飞行器制造有限公司 Liquefied gas storage uninstalling system
WO2020159317A1 (en) * 2019-02-01 2020-08-06 현대중공업 주식회사 Gas processing system and ship including same
CN109916135A (en) * 2019-02-15 2019-06-21 酷豹低碳新能源装备科技(常州)有限公司 It is a kind of for small gas liquefying plant without pump circulation method
CN109916135B (en) * 2019-02-15 2021-09-24 酷豹低碳新能源装备科技(常州)有限公司 Pump-free circulation method for small gas liquefaction device
CN112046686A (en) * 2020-08-03 2020-12-08 沪东中华造船(集团)有限公司 Ethane transport ship non-liquefiable high-methane-content volatile gas treatment system
CN112046686B (en) * 2020-08-03 2022-12-13 沪东中华造船(集团)有限公司 Ethane transport ship non-liquefiable high-methane-content volatile gas treatment system
WO2022239259A1 (en) * 2021-05-13 2022-11-17 株式会社Ihi Gas cooling system
GB2621049A (en) * 2021-05-13 2024-01-31 Ihi Corp Gas cooling system
WO2023279907A1 (en) * 2021-07-09 2023-01-12 China Energy Investment Corporation Limited System and method with boil-off management for liquefied gas storage

Similar Documents

Publication Publication Date Title
JP2016169837A (en) Boil-off gas recovery system
JP6158725B2 (en) Boil-off gas recovery system
Tan et al. A new boil-off gas re-liquefaction system for LNG carriers based on dual mixed refrigerant cycle
JP6250519B2 (en) Boil-off gas recovery system
JP6628328B2 (en) Ships including gas treatment systems
JP5429719B2 (en) Gas supply system for gas engine
CN105008834B (en) For the method and apparatus of re-liquefied natural gas
JP5737894B2 (en) Boil-off gas reliquefaction equipment
CN107709912A (en) The re-liquefied system of boil-off gas
KR102430896B1 (en) Boil-off gas reliquefaction device
KR20170112946A (en) Vessel
KR101924536B1 (en) Bunkering vessel, and method of processing return gas of the same
RU2719258C2 (en) System and method of treating gas obtained during cryogenic liquid evaporation
JP2016203852A (en) Boil-off gas utilization system
KR101831177B1 (en) Vessel Including Engines
JP6591410B2 (en) Method and system for reliquefaction of boil-off gas
JP6429159B2 (en) Boil-off gas recovery system
JP2019501059A (en) Ship with engine
JP6909229B2 (en) Ship
CN108027197B (en) Expansion storage method for liquefied natural gas flow of natural gas liquefaction equipment and related equipment
JP6341523B2 (en) Boil-off gas recovery system
KR102460410B1 (en) Vessel
KR20160150346A (en) Vessel Including Storage Tanks
KR20160149461A (en) Vessel Including Storage Tanks
KR101665498B1 (en) BOG Re-liquefaction Apparatus and Method for Vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180423

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190226