WO2019194670A1 - Gas treatment system and ship including same - Google Patents

Gas treatment system and ship including same Download PDF

Info

Publication number
WO2019194670A1
WO2019194670A1 PCT/KR2019/004166 KR2019004166W WO2019194670A1 WO 2019194670 A1 WO2019194670 A1 WO 2019194670A1 KR 2019004166 W KR2019004166 W KR 2019004166W WO 2019194670 A1 WO2019194670 A1 WO 2019194670A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
bunkering
boil
storage tank
pressure
Prior art date
Application number
PCT/KR2019/004166
Other languages
French (fr)
Korean (ko)
Other versions
WO2019194670A8 (en
Inventor
유병용
박재훈
이훈희
박석준
이신구
Original Assignee
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대중공업 주식회사 filed Critical 현대중공업 주식회사
Priority to SG11202009864UA priority Critical patent/SG11202009864UA/en
Priority to JP2021503688A priority patent/JP2021517878A/en
Priority to CN201980022626.3A priority patent/CN111918817A/en
Publication of WO2019194670A1 publication Critical patent/WO2019194670A1/en
Publication of WO2019194670A8 publication Critical patent/WO2019194670A8/en
Priority to JP2022173486A priority patent/JP2022187023A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/30Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures
    • B63B27/34Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures using pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B17/00Vessels parts, details, or accessories, not otherwise provided for
    • B63B17/0027Tanks for fuel or the like ; Accessories therefor, e.g. tank filler caps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/04Arrangement or mounting of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/24Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0332Safety valves or pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0367Arrangements in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/043Localisation of the removal point in the gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/046Localisation of the removal point in the liquid
    • F17C2223/047Localisation of the removal point in the liquid with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • F17C2225/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/035High pressure, i.e. between 10 and 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/036Very high pressure, i.e. above 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/04Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by other properties of handled fluid after transfer
    • F17C2225/042Localisation of the filling point
    • F17C2225/043Localisation of the filling point in the gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0306Heat exchange with the fluid by heating using the same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0323Heat exchange with the fluid by heating using another fluid in a closed loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0327Heat exchange with the fluid by heating with recovery of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0339Heat exchange with the fluid by cooling using the same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • F17C2227/0355Heat exchange with the fluid by cooling using another fluid in a closed loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0365Heat exchange with the fluid by cooling with recovery of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/046Enhancing energy recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/031Treating the boil-off by discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/037Treating the boil-off by recovery with pressurising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/065Fluid distribution for refueling vehicle fuel tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids

Definitions

  • the present invention relates to a gas treatment system and a vessel comprising the same.
  • a ship is a means of transporting the ocean carrying large quantities of minerals, crude oil, natural gas, or thousands of containers. It is made of steel and is buoyant and floats on the water surface by buoyancy. Go through.
  • Such a ship generates thrust by driving an engine or a gas turbine, and the engine uses oil fuel such as gasoline or diesel to move the piston so that the crank shaft is rotated by the reciprocating motion of the piston, and the shaft connected to the crank shaft. Is rotated to drive the propellers, while gas turbines burn fuel with compressed air and generate power by rotating the turbine blades through the temperature / pressure of the combustion air to transfer power to the propellers.
  • oil fuel such as gasoline or diesel
  • gas turbines burn fuel with compressed air and generate power by rotating the turbine blades through the temperature / pressure of the combustion air to transfer power to the propellers.
  • an LNG fuel supply method that uses LNG as a fuel to drive demands such as an engine or a turbine is used in an LNG carrier carrying Liquefied Natural Gas, which is a kind of liquefied gas, and LNG is a clean fuel.
  • LNG is a kind of liquefied gas
  • LNG is a clean fuel.
  • the reserves are richer than petroleum, the use of LNG as fuel for demand is being applied to other vessels other than LNG carriers.
  • LNG has a characteristic of being kept at a cryogenic state in order to maintain a liquid phase during loading / unloading. Therefore, there is a need for research and development on the technology for stably bunkering LNG for vessels other than LNG carriers using the LNG propulsion method.
  • the present invention was created to solve the problems of the prior art as described above, an object of the present invention, by implementing a stable and rapid delivery of liquefied gas in the process of bunkering the liquefied gas to the gas propulsion vessel, it is possible to increase the bunkering efficiency have.
  • a gas processing system is a gas processing system for transferring liquefied gas from a storage tank of a bunkering vessel to a C type fuel tank provided in a gas propulsion vessel, and converting the liquefied gas of the storage tank into the fuel tank.
  • a bunkering manager configured to adjust the internal pressure of the storage tank by liquefying and returning the evaporated gas of the storage tank to a refrigerant; And an evaporation gas return line for transferring the evaporated gas generated in the fuel tank to the bunkering vessel during bunkering through the bunkering line, wherein the bunkering manager lowers the internal pressure of the storage tank to a predetermined pressure or less before the bunkering, Maintaining the internal pressure of the storage tank below the internal pressure of the fuel tank during bunkering, it is characterized in that the boil-off gas is delivered through the boil-off gas return line without compression by a separate compressor.
  • the storage tank is a tank of the membrane type or C type
  • the predetermined pressure may be 0.04barG or 0.2barG.
  • the bunkering management unit may include a reliquefaction apparatus for liquefying boil-off gas, and the boil-off gas return line may deliver the boil-off gas to the re-liquefaction apparatus.
  • the bunkering management unit may reliquefy the vaporized gas delivered through the boil-off gas return line to return to the storage tank during bunkering, and maintain the internal pressure of the storage tank below the internal pressure of the fuel tank.
  • the bunkering management unit when the bunkering management unit bunkers the fuel tank whose internal pressure before bunkering is the first pressure and the internal pressure decreases due to inflow of liquefied gas during bunkering, the bunkering management unit measures the internal pressure of the storage tank before bunkering and when bunkering. It can be below the internal pressure at the completion of bunkering.
  • the bunkering may be configured to calculate the internal pressure of the storage tank before the bunkering and the bunkering. Can be below the internal pressure at the start of bunkering.
  • the first pressure may be a pressure greater than 0.05 barG to 0.1 barG greater than the preset pressure
  • the second pressure may be a pressure less than 0.05 barG to 0.1 barG greater than the preset pressure
  • the first pressure is 0.5barG to 8barG
  • the second pressure may be 0.5barG or less.
  • a gas processing system is a gas processing system for transferring liquefied gas from a storage tank of a bunkering vessel to a fuel tank provided in a gas propulsion vessel, and a bunker ring for supplying liquefied gas of the storage tank to the fuel tank.
  • a bunkering manager configured to adjust the internal pressure of the storage tank by returning the evaporated gas of the storage tank by compressing, cooling, and reducing the pressure without heat exchange with a refrigerant; And an evaporation gas return line for transferring the evaporated gas generated in the fuel tank to the bunkering vessel during bunkering through the bunkering line, wherein the bunkering manager lowers the internal pressure of the storage tank to a predetermined pressure or less before the bunkering, When bunkering, the fuel tank is compressed by blocking the transfer of the boil-off gas through the boil-off gas return line, or the boil-off gas is separated through the boil-off gas return line by maintaining the internal pressure of the storage tank below the pressure of the fuel tank. Characterized in that to be delivered without compression by the compressor.
  • the storage tank is a tank of the membrane type or C type
  • the predetermined pressure may be 0.04barG or 0.2barG.
  • the bunkering management unit includes an evaporative gas heat exchanger for exchanging the compressed evaporated gas with the evaporated gas discharged from the storage tank, and the evaporated gas return line is an evaporated gas between the storage tank and the evaporative gas heat exchanger. Can be passed.
  • the boil-off gas return line may be provided to transfer the boil-off gas between the storage tank and the boil-off gas heat exchanger via or bypass the boil-off gas heat exchanger.
  • the bunkering management unit a plurality of low pressure compressor is provided in parallel to compress the evaporation gas of the storage tank to supply to the power generation engine;
  • a multistage boosting compressor provided at a branched position between the low pressure compressor and the power generation engine and compressing the excess evaporated gas to 150 barG or more;
  • a pressure reducing valve configured to liquefy by reducing the evaporated gas compressed by the boosting compressor, wherein the evaporating gas heat exchanger cools the high pressure evaporated gas between the boosting compressor and the pressure reducing valve with the evaporated gas discharged from the storage tank. can do.
  • the bunkering management unit may suck the evaporated gas of the storage tank by operating the plurality of low pressure compressors in parallel to reduce the internal pressure of the storage tank to a predetermined pressure or less before the bunkering.
  • the bunkering management unit a low pressure compressor for compressing the boil-off gas of the storage tank to supply to the power generation engine;
  • a multistage high pressure compressor provided in parallel with the low pressure compressor and compressing the evaporated gas of the storage tank to 150 barG or more;
  • a pressure reducing valve for liquefying the liquefied evaporated gas by the high pressure compressor, wherein the evaporating gas heat exchanger cools the high pressure evaporated gas between the high pressure compressor and the pressure reducing valve with the evaporated gas discharged from the storage tank.
  • the high pressure compressor may supply an intermediate stage boil-off gas to the power generation engine.
  • the bunkering management unit may independently operate the low pressure compressor and the high pressure compressor according to the amount of liquefied gas stored in the storage tank.
  • a gas processing system is a gas processing system for transferring liquefied gas from a storage tank of a bunkering vessel to a fuel tank provided in a gas propulsion vessel, and a bunker ring for supplying liquefied gas of the storage tank to the fuel tank.
  • a bunkering management unit which controls the internal pressure of the storage tank by subcooling the liquefied gas of the storage tank with a refrigerant; And an evaporation gas return line for transferring the evaporated gas generated in the fuel tank to the bunkering vessel during bunkering through the bunkering line, wherein the bunkering manager lowers the internal pressure of the storage tank to a predetermined pressure or less before the bunkering,
  • the fuel tank is compressed by blocking the transfer of the boil-off gas through the boil-off gas return line, or the boil-off gas is separated through the boil-off gas return line by maintaining the internal pressure of the storage tank below the pressure of the fuel tank. Characterized in that to be delivered without compression by the compressor.
  • the storage tank is a tank of the membrane type or C type
  • the predetermined pressure may be 0.04barG or 0.2barG.
  • the bunkering management unit the subcooling device for subcooling the liquefied gas with a refrigerant; And a refrigerant supply unit supplying a refrigerant to the subcooling device, wherein the refrigerant supply unit may include a refrigerant heat exchanger cooling the refrigerant with liquefied gas or evaporated gas supplied from the storage tank to a power generation engine.
  • the refrigerant supply unit a refrigerant compressor; A heat exchanger between the compressed refrigerant and the refrigerant heated in the subcooler; A refrigerant expander configured to expand a refrigerant passing through the refrigerant exchanger after compression; And the refrigerant heat exchanger for cooling the compressed refrigerant with liquefied gas or evaporated gas supplied to the power generation engine.
  • the refrigerant supply unit a refrigerant compressor;
  • the refrigerant heat exchanger for heat-exchanging a compressed refrigerant, a refrigerant heated in the subcooling apparatus, and a liquefied gas or an evaporated gas supplied to the power generation engine;
  • a refrigerant expander configured to expand the refrigerant passing through the refrigerant heat exchanger after compression.
  • a gas treatment system according to an aspect of the present invention is characterized by having the gas treatment system as a bunkering vessel.
  • the gas treatment system according to the present invention and the ship including the same in consideration of the generation of the liquefied gas from the liquefied gas when transferring the liquefied gas from the bunkering vessel to the gas propulsion vessel, by creating a technology for shortening the bunkering time and efficiency Safe and stable bunkering can be guaranteed.
  • FIG. 1 is a process flow diagram of a gas treatment system according to the first and second embodiments of the present invention.
  • FIG. 2 is a conceptual diagram of a gas treatment system according to a first embodiment of the present invention.
  • FIG 3 is a graph of the breakdown pressure change in the gas treatment system according to the first embodiment of the present invention.
  • FIG. 4 is a conceptual diagram of a gas treatment system according to a second embodiment of the present invention.
  • FIG. 5 is a graph of the breakdown pressure change in the gas treatment system according to the second embodiment of the present invention.
  • FIG. 6 is a process flow diagram of a gas treatment system according to a third embodiment of the present invention.
  • FIG. 7 is a process flow diagram of a gas treatment system according to a fourth embodiment of the present invention.
  • FIG. 8 is a process flow diagram of a gas treatment system according to a fifth embodiment of the present invention.
  • FIG. 9 is a process flow diagram of a gas treatment system according to a sixth embodiment of the present invention.
  • FIG. 10 is a process flow diagram of a gas treatment system according to a seventh embodiment of the present invention.
  • FIG. 11 is a process flowchart of the gas treatment system according to the eighth embodiment of the present invention.
  • FIG. 12 is a process flowchart of the gas treatment system according to the ninth embodiment of the present invention.
  • FIG. 13 is a process flow diagram of a gas treatment system according to a tenth embodiment of the present invention.
  • the liquefied gas may be LNG, but is not limited thereto, and may include all materials having a boiling point lower than room temperature and forcibly liquefied for storage and having a calorific value.
  • the liquefied gas / evaporation gas in the present specification is divided on the basis of the state inside the tank, it is noted that due to the name is not necessarily limited to the liquid or gas phase.
  • the high pressure / low pressure is relative herein, and is not limited to numerical values.
  • FIG. 1 is a process flow diagram of a gas treatment system according to the first and second embodiments of the present invention
  • FIG. 2 is a conceptual diagram of a gas treatment system according to the first embodiment of the present invention
  • FIG. 3 is a first diagram of the present invention.
  • the gas treatment system according to the first embodiment of the present invention is liquefied into a fuel tank 210a provided in a gas propulsion vessel GFS from a storage tank 110 of a bunkering vessel BV.
  • Bunkering system for delivering gas for delivering gas.
  • the present invention may include a bunkering vessel (BV) having a gas treatment system described below.
  • the present invention also includes a gas propulsion vessel (GFS) whose configuration is specified for the implementation of a gas treatment system.
  • GFS gas propulsion vessel
  • the present invention is a gas propulsion vessel (GFS) to which the following gas treatment system is applied, and a compressor (especially an H / D compressor) for returning the boil-off gas generated during bunkering to the bunkering vessel BV is not provided. It may include a gas propulsion vessel (GFS).
  • the gas propulsion ship may be a ship, such as a bulk carrier, a container carrier, or a mineral carrier, as a commercial vessel other than a liquefied gas carrier, and may include liquefied gas or evaporated gas stored in the fuel tank 210a in the fuel processor 220 ( A pump, compressor, heat exchanger, etc.) may be provided with a facility for supplying to the propulsion engine 230 through the gas supply line (L6) through compression / pressure / heating and the like.
  • L6 gas supply line
  • the gas treatment system may include a configuration for supplying liquefied gas from the storage tank 110 to the fuel tank 210a.
  • the storage tank 110 is a membrane type or C type tank, the bunkering line connecting the storage tank 110 and the fuel tank 210a by the liquefied gas by the transfer pump 111 provided in the storage tank 110. It may be delivered to the fuel tank 210a along the (L1).
  • the gas treatment system includes a configuration for returning the boil-off gas generated in the fuel tank 210a to the bunkering vessel BV when the liquefied gas is supplied to the fuel tank 210a.
  • the fuel tank 210a may be a C type having a design pressure of about 5 barG to 10 barG in the present embodiment, and may be installed at various positions such as a deck top or inboard of the gas propulsion vessel GFS.
  • the boil-off gas generated in the fuel tank 210a is returned to the bunkering vessel BV through the boil-off gas return line L2 and may be directly or indirectly transferred to the storage tank 110.
  • the gas treatment system includes a bunkering management unit 120.
  • the bunkering management unit 120 regulates the internal pressure of the storage tank 110.
  • the bunkering management unit 120 liquefies the evaporated gas of the storage tank 110 with a refrigerant (no nitrogen, mixed refrigerant, etc.) and returns it to the storage tank 110 for storage.
  • the internal pressure of the tank 110 may be lowered.
  • the present invention provides a bunkering management unit 120 to be described in detail below, in the bunkering fuel tank (210a) during bunkering to supply the liquefied gas of the storage tank 110 to the fuel tank (210a) through the bunkering line (L1) Evaporation gas generation and the return of the boil-off gas generated in the fuel tank 210a to the bunkering vessel (BV) and the like can be improved compared to the conventional.
  • the bunkering management unit 120 may lower the internal pressure of the storage tank 110 to less than or equal to the preset pressure before bunkering. For example, before the liquefied gas is delivered through the bunkering line L1, the bunkering management unit 120 may lower the internal pressure of the storage tank 110 to a preset pressure such as 0.04 barG or 0.2 barG. Of course, if the internal pressure of the storage tank 110 has already met the preset pressure or less, the liquefaction return of the boil-off gas may be omitted.
  • the internal pressure of the storage tank 110 of the bunkering vessel BV is lowered in advance, so that the liquefied gas delivered from the storage tank 110 to the fuel tank 210a is sufficiently stable (for example, By making the subcooled state, the amount of generated boil-off gas can be reduced when the liquefied gas is supplied to the fuel tank 210a.
  • the bunkering management unit 120 maintains the internal pressure of the storage tank 110 to less than the internal pressure of the fuel tank 210a.
  • the boil-off gas generated in the fuel tank 210a is not required to be compressed by a separate compressor in the process of being transferred to the bunkering vessel BV through the boil-off gas return line L2. That is, the present invention allows the boil-off gas NBOG returned from the gas propulsion vessel GFS to the bunkering vessel BV during the bunkering process.
  • the present invention by continuously treating the evaporated gas of the storage tank 110 in the bunkering process to maintain the internal pressure of the storage tank 110 lower than the fuel tank 210a, the storage tank 110 in the fuel tank 210a By allowing the boil-off gas to be delivered without compression, the high-duty compressor provided in the gas propulsion vessel GFS for the return of the boil-off gas during bunkering can be omitted.
  • each of the storage tank 110 and the fuel tank 210a is provided with a pressure gauge (not shown) for measuring internal pressure.
  • the bunkering management unit 120 for implementing such an effect uses a reliquefaction apparatus 122 for liquefying boil-off gas, and a plurality of boil-off gas compressors 121 back up each other in parallel upstream of the reliquefaction apparatus 122.
  • the pressure control valve 123 and the gas-liquid separator 124 are provided downstream of the reliquefaction apparatus 122.
  • the boil-off gas compressor 121, the reliquefaction apparatus 122, the pressure regulating valve 123, and the gas-liquid separator 124 are sequentially on the pressure regulating line L3 which forms a circulation passage based on the storage tank 110.
  • the bunkering management unit 120 may reduce the internal pressure of the storage tank 110 by returning to the storage tank 110 by compressing and liquefying the evaporated gas of the storage tank 110.
  • the boil-off gas delivered to the bunkering vessel BV through the boil-off gas return line L2 is transferred to the re-liquefaction apparatus 122 and stored after re-liquefaction.
  • the tank 110 may be returned to the tank 110 or may be bypassed to the reliquefaction apparatus 122 to be transferred to the storage tank 110.
  • the boil-off gas delivered from the gas propulsion vessel GFS may be used to operate the power generation engine 130 for power consumption in the bunkering vessel BV.
  • the bunkering management unit 120 evaporates.
  • the reliquefaction apparatus 122 may be utilized so that the boil-off gas delivered through the gas return line L2 does not directly flow into the storage tank 110 to cause an increase in the internal pressure of the storage tank 110.
  • the bunkering management unit 120 may liquefy the vaporized gas returned during bunkering to return to the storage tank 110 to maintain the internal pressure of the storage tank 110 below the internal pressure of the fuel tank 210a.
  • the boil-off gas return line L2 may be provided to be joined to the inlet end of the boil-off gas compressor 121 upstream of the re-liquefaction device 122 or directly connected to the re-liquefaction device 122, the fuel tank 210a.
  • the boil-off gas can be delivered directly from the boil-off gas return line (L2) to the reliquefaction apparatus 122.
  • the load of the transfer pump 111 becomes larger, so that the bunkering management unit 120 evaporates from the line where the internal pressure of the storage tank 110 is less than or equal to the internal pressure of the fuel tank 210a. Gas may be supplied to the storage tank 110 without reliquefaction, thereby increasing the internal pressure of the storage tank 110.
  • the bunkering vessel (BV) requires relatively large power to operate the reliquefaction apparatus 122, the boil-off gas compressor 121, the transfer pump 111, etc. in the anchoring state for bunkering. 130) must be activated.
  • the power generation engine 130 may receive and consume the boil-off gas through the boil-off gas consumption line L4 branched from the downstream of the boil-off gas compressor 121 in the pressure regulating line L3.
  • the discharge pressure of 121 may correspond to the required pressure of the power generation engine 130.
  • the power generation engine 130 may receive and consume the liquefied gas that has passed through the fuel supply pump 112 and the vaporizer 113 through the liquefied gas consumption line L5 in the storage tank 110, but the power generation engine 130 may be consumed.
  • the evaporation gas consumption line L4 may be additionally connected to the gas combustion device 140 (or a boiler, etc.) in order to consume the evaporated gas of the storage tank 110 in a situation in which it is not operated.
  • the boil-off gas returned through the boil-off gas return line (L2) may also be used as fuel such as the power generation engine (130), in which case the boil-off gas return line (L2) may be connected upstream of the boil-off gas compressor (121). It is not.
  • the solid line indicates the change in the internal pressure during bunkering of the fuel tank 210a having different initial internal pressures
  • the inclined dotted line indicates the amount of liquefied gas bunkered
  • the horizontal dotted line indicates the internal pressure of the storage tank 110.
  • the gas treatment system may lower the internal pressure of the storage tank 110 of the bunkering vessel BV using the reliquefaction apparatus 122 to a predetermined pressure or less.
  • the preset pressure is about 0.2 barG in Fig. 3A and about 0.04 barG in Fig. 3B.
  • the bunkering line L1 is connected between the storage tank 110 and the fuel tank 210a to start bunkering.
  • the fuel tank 210a may be cooled down to receive the cryogenic liquefied gas, but in the fuel tank 210a due to factors such as heat penetrating into the fuel tank 210a during bunkering. Boil off gas is generated in large quantities.
  • the boil-off gas should be returned to the bunkering vessel (BV).
  • BV bunkering vessel
  • the internal pressure of the storage tank 110 is changed to the fuel tank 210a during the time of bunkering. It can be made to be below the internal pressure of, so that the returned boil-off gas is delivered without compression.
  • the internal pressure before bunkering may be, for example, 0.2 / 3.0 / 6.5 barG, and as shown in FIG. 3A, the initial pressure of the fuel tank 210a may be 3.0 barG or 6.5 barG.
  • the gas propulsion vessel GFS in which the bunkering is completed is in a state in which propulsion can be performed immediately without treatment for the boil-off gas of the fuel tank 210a. This is because the storage tank 110 performs bunkering after lowering the internal pressure before bunkering.
  • the initial internal pressure of the fuel tank 210a may be 0.2 barG, which is the same as the preset pressure of the storage tank 110, in which case the fuel tank 210a has the same internal pressure as the storage tank ( As the boil-off gas is generated while receiving the liquefied gas of 110, the internal pressure may increase slightly during the bunkering process.
  • the bunkering management unit 120 has a pressure difference between the storage tank 110 and the fuel tank 210a so that the boil-off gas can still be returned to the bunkering vessel BV from the gas propulsion vessel GFS without compression. Can be maintained.
  • the internal pressure of the fuel tank 210a is 3.0 / 6.5.
  • the bunkering management unit 120 measures the internal pressure of the storage tank 110 before bunkering and at the time of bunkering of the fuel tank 210a (about 0.5 bar). )
  • the bunkering management unit 120 may set the internal pressure of the storage tank 110 before the bunkering and at the time of bunkering to be less than the internal pressure (0.2 barG) at the start of bunkering of the fuel tank 210a.
  • the first pressure may be 0.5barG to 8barG at a pressure greater than 0.05barG to 0.1barG greater than the preset pressure
  • the second pressure may be 0.5barG or less at a pressure less than 0.05barG to 0.1barG greater than the preset pressure.
  • the numerical value is not limited to this.
  • the present embodiment by lowering the internal pressure of the storage tank 110 before the bunkering, it is possible to reduce the evaporated gas generated in the fuel tank 210a during the bunkering, and further, the internal pressure of the storage tank 110 is reduced.
  • the H / D compressor of the gas propulsion vessel GFS may be omitted by maintaining the fuel tank 210a below the internal pressure so that the boil-off gas of the fuel tank 210a is returned to the bunkering vessel BV without compression.
  • FIG. 4 is a conceptual diagram of a gas treatment system according to a second embodiment of the present invention
  • FIG. 5 is a graph of a breakdown pressure change in the gas treatment system according to the second embodiment of the present invention.
  • the second embodiment of the present invention has a difference in that the fuel tank 210b is provided in a membrane type compared to the previous embodiment.
  • the present embodiment will be described based on the point that the present embodiment is different from the previous embodiment, and a part omitted from the description will be replaced with the above contents. This is also true in other embodiments described later.
  • the gas propulsion vessel GFS of the present embodiment may be a container carrier or the like, and a fuel tank 210b may be mounted on board a ship, and the fuel tank 210b may be a membrane type.
  • the tank B may be a type B (eg, a self-contained square type SPB) having a design pressure that is the same as or similar to that of the membrane type.
  • the solid line represents the change in the internal pressure during bunkering of the fuel tank 210b having different initial internal pressures
  • the inclined dotted line represents the amount of liquefied gas bunkered
  • the horizontal dotted line represents the storage tank 110. It means internal pressure.
  • the gas treatment system lowers the internal pressure of the storage tank 110 below the preset pressure before the bunkering, wherein the preset pressure is about 0.2 barG in FIG. 5A and about 0.04 barG in FIG. 5B.
  • bunkering starts.
  • the internal pressure of the storage tank 110 is maintained in the fuel tank 210b for the entire time during the bunkering.
  • the boil-off gas is returned from the fuel tank 210b to the bunkering vessel BV without compression by the HD compressor.
  • the internal pressure of the fuel tank 210b may be 0.63 / 0.2 / 0.05 barG before bunkering, and the internal pressure of the fuel tank 210b in FIG. 5A where the internal pressure before bunkering of the storage tank 110 is 0.2 barG.
  • the fuel tank ( The internal pressure of 210b) gradually decreases.
  • the internal pressure before bunkering is the first pressure (0.5 barG to 1 barG at a pressure greater than 0.05 barG to 0.1 barG relative to the preset pressure), and when bunkering, the bunkering is carried out in the fuel tank 210b in which the internal pressure falls due to the inflow of liquefied gas.
  • the bunkering management unit 120 may set the internal pressure of the storage tank 110 before or after bunkering to an internal pressure (about 0.5 bar or less) at the time of bunkering of the fuel tank 210b.
  • the bunkering management unit 120 may set the internal pressure of the storage tank 110 before the bunkering and at the time of bunkering to be less than the internal pressure (0.2 barG) at the start of bunkering of the fuel tank 210b.
  • the internal pressure before bunkering of the fuel tank 210b may be less than 0.05 barG in FIG. 5A where the internal pressure before bunkering of the storage tank 110 is 0.2 barG, and in this case, the internal pressure before bunkering As a case where the pressure of the storage tank 110 lowered below this preset pressure is a pressure larger than the internal pressure of the fuel tank 210b before bunkering, a process different from that in the first embodiment is performed.
  • the fuel tank 210b is accumulated by blocking the transfer of the boil-off gas through the boil-off gas return line L2 from the start of the bunkering to a certain point.
  • the fuel tank 210b may be controlled to exceed the internal pressure of the storage tank 110 while the internal pressure rises due to the pressure accumulation for a predetermined time from the start of the bunkering.
  • the bunkering management unit 120 blocks the return of the boil-off gas from the start of the bunkering to a certain point, and re-liquefies the return of the boil-off gas from the point of time to the completion of the bunkering to the storage tank 110 to store the storage tank 110.
  • Internal pressure may be maintained below the internal pressure of the fuel tank 210b.
  • the present embodiment is to implement bunkering for the fuel tank 210b of the membrane type, and in case the internal pressure of the storage tank 110 is higher than the internal pressure of the fuel tank 210b when the bunkering starts, Partial accumulating control of 210b may be implemented to avoid the need for a compressor to be used to return the boil-off gas.
  • FIG. 6 is a process flow diagram of a gas treatment system according to a third embodiment of the present invention.
  • the gas treatment system replaces (or in addition to) the bunkering management unit 120 having a reliquefaction apparatus 122 for liquefying and returning evaporated gas to a refrigerant.
  • the bunkering management unit 120 may adjust the internal pressure of the storage tank 110 by compressing, cooling, and reducing the evaporation gas of the storage tank 110 without heat exchange with the refrigerant.
  • the bunkering management unit 120 lowers the internal pressure of the storage tank 110 to less than the preset pressure (about 0.04 / 0.2 barG or less) before bunkering and cuts off the return of the evaporated gas during bunkering to the fuel tank. It is noted that the control of maintaining the internal pressure of the storage tank 110 ⁇ the internal pressure of the fuel tanks 210a and 210b so that the 210a and 210b are accumulated or delivered without compressing during the bunkering is the same as in the previous embodiments.
  • the bunkering management unit 120 includes a low pressure compressor 121a, a boosting compressor 121b, a boil-off gas heat exchanger 125, a pressure reducing valve 123, and a gas-liquid separator 124, and the pressure control line L3 is stored.
  • a circulation passage may be formed based on the tank 110, and the above components may be connected in series.
  • a plurality of low pressure compressors 121a are provided in parallel to compress the evaporated gas of the storage tank 110 and supply the compressed gas to the power generation engine 130.
  • the evaporative gas consumption line L4 is branched downstream of the low pressure compressor 121a to be connected to the power generation engine 130, and the low pressure compressor 121a has a discharge pressure suitable for the required pressure of the power generation engine 130. can do.
  • the boosting compressor 121b is provided in multiple stages and is provided at a position branched between the low pressure compressor 121a and the power generation engine 130 (downstream of the low pressure compressor 121a on the basis of the pressure regulating line L3) and is provided with a surplus. Compress the boil-off gas to 150 barG or more.
  • This embodiment utilizes the Joule-Thompson effect to liquefy the boil-off gas by compressing it after decompression without heat exchange.
  • the pressure before the boil-off gas should be 150 barG or more. Therefore, the present embodiment further provides a boosting compressor 121b for liquefying the boil-off gas using the reduced pressure while placing the low-pressure compressor 121a for supplying the boil-off gas to the power generation engine 130.
  • the boil-off gas heat exchanger 125 may heat the boil-off gas compressed by the boosting compressor 121b with the boil-off gas discharged from the storage tank 110 to cool the compressed high-pressure boil-off gas.
  • the inlet temperature of the low pressure compressor 121a is increased to increase the temperature at which the low pressure compressor 121a must withstand. have.
  • the boil-off gas heat exchanger 125 exchanges a stream of boil-off gas delivered from the storage tank 110 to the low pressure compressor 121a and a stream of high-pressure boil-off gas delivered from the boosting compressor 121b to the pressure reducing valve 123. And having at least two streams for heat exchange.
  • the boil-off gas return line L2 is provided to transfer the boil-off gas between the storage tank 110 and the boil-off gas heat exchanger 125, the stream delivered from the storage tank 110 to the low pressure compressor 121a is stored.
  • the boil-off gas of the fuel tanks 210a and 210b may be mixed with the boil-off gas of the tank 110.
  • the boil-off gas heat exchanger 125 may pass through the boil-off gas return line L2 so as to heat-exchange the boil-off gas of the fuel tanks 210a and 210b delivered through the boil-off gas return line L2. It may be further provided. That is, the boil-off gas return line L2 may be joined to the pressure regulating line L3 between the storage tank 110 and the low pressure compressor 121a after passing through the boil-off gas heat exchanger 125.
  • the boil-off gas return line (L2) may be provided to bypass the boil-off gas heat exchanger 125, the boil-off gas return line (L2) via the boil-off gas heat exchanger (125) or bypass the storage tank (110) And the boil-off gas between the boil-off gas heat exchanger 125.
  • the boil-off gas return line (L2) to bypass the boil-off gas heat exchanger 125 is a case where it is not necessary to utilize the cold heat of the boil-off gas recovered from the gas propulsion vessel (GFS), it is not supplied to the power generation engine (130) It may be the case that there is little or no surplus evaporated gas remaining.
  • the pressure reducing valve 123 decompresses and liquefies the boil-off gas compressed by the boosting compressor 121b and cooled in the boil-off gas heat exchanger 125.
  • the pressure reducing valve 123 may liquefy at least a portion of the boil-off gas by compressing the cooled boil-off gas to 1 to 10 barG after being compressed to 150 barG or more.
  • the gas-liquid separator 124 separates the liquefied evaporated gas into gas-liquid and returns the liquid phase (LBOG) to the storage tank 110, and the flash gas is transferred from the storage tank 110 to the boil-off gas heat exchanger 125. It can be mixed with the boil-off gas.
  • the gaseous phase separated from the gas-liquid separator 124 exchanges heat while flowing through a separate stream in the evaporating gas heat exchanger 125 without joining the evaporating gas, and then joins the evaporating gas upstream of the low pressure compressor 121a. It may be to be consumed by the power generation engine 130, a boiler or the like.
  • the bunkering management unit 120 of this embodiment constitutes an evaporative gas compressor 121 including a plurality of low pressure compressors 121a + boosting compressors 121b arranged in parallel, so that the internal pressure of the storage tank 110 is reduced before bunkering.
  • the plurality of low pressure compressors 121a may be operated in parallel to sufficiently suck the evaporated gas from the storage tank 110, thereby rapidly reducing the internal pressure drop of the storage tank 110.
  • the present embodiment by lowering the internal pressure of the storage tank 110 quickly and sufficiently before bunkering, it is possible to increase the bunkering efficiency by reducing the amount of evaporated gas generated in the storage tank 110 during bunkering.
  • FIG. 7 is a process flow diagram of a gas treatment system according to a fourth embodiment of the present invention.
  • the boil-off gas compressor 121 of the bunkering management unit 120 may be configured differently from the above-described third embodiment.
  • the bunkering management unit 120 of the present embodiment is provided with a low pressure compressor 121a for supplying boil-off gas to the power generation engine 130 and a high pressure compressor 121c for liquefying boil-off gas through the Joule-Thomson effect.
  • the low pressure compressor 121a and the high pressure compressor 121c can be provided in parallel.
  • the high pressure compressor 121c is connected to the boil-off gas consumption line L4 at the middle stage and supplies the boil-off gas compressed at the middle stage to the power generation engine 130 so that the low pressure compressor 121a is provided in multiple stages. Can be backed up by part of 121c).
  • the bunkering management unit 120 of the present embodiment uses a high pressure compressor 121c and pressurizes the boil-off gas to 150 barG or more, and then cools it by using the boil-off gas discharged from the storage tank 110 in the boil-off gas heat exchanger 125.
  • the gas may be returned to the storage tank 110 through the pressure reducing valve 123 and the gas-liquid separator 124.
  • the bunkering management unit 120 may independently operate the low pressure compressor 121a and the high pressure compressor 121c independently according to the amount of liquefied gas stored in the storage tank 110.
  • the high-pressure compressor 121c is used to supply a portion of the intermediate stage boil-off gas to the power generation engine 130 while supplying a portion of the final stage. Evaporated gas may be re-liquefied and returned to the storage tank 110.
  • the low pressure compressor 121a may be used to produce the evaporated gas. It may be consumed by the power generation engine 130 or the like and not returned to the storage tank 110.
  • the high pressure compressor 121c for implementing the boil-off gas liquefaction using the reduced pressure is provided in parallel with the low-pressure compressor 121a for supplying the boil-off gas to the power generation engine 130, Accordingly, the high pressure compressor 121c and the low pressure compressor 121a may be alternatively operated to increase the operating efficiency of the boil-off gas compressor 121.
  • Example Liquefied gas with refrigerant Subcooling Return Bunkering Ship( BV To lower the tank internal pressure Bunkering It is based on the idea of reducing the generation of municipal boil-off gas.
  • FIG. 8 is a process flow diagram of a gas treatment system according to a fifth embodiment of the present invention.
  • the gaseous liquefied gas may be partially reliquefied.
  • the internal pressure of the storage tank 110 may be adjusted by supercooling and returning the refrigerant.
  • the bunkering management unit 120 includes a subcooling device 126 and a refrigerant supply unit 127.
  • the subcooling apparatus 126 may supercool the liquefied gas with a refrigerant, and the temperature of the liquefied gas to be subcooled may be a temperature lower than the boiling point (-163 degrees Celsius) of the liquefied gas at atmospheric pressure (for example, around -170 degrees Celsius). .
  • the coolant supply unit 127 supplies a coolant, which is not limited to nitrogen or a mixed refrigerant, to the subcooler 126 to realize subcooling of the liquefied gas.
  • Refrigerant supply unit 127 is provided with a refrigerant compressor (1271), refrigerant cooler (1272), refrigerant expander (1273), refrigerant heat exchanger (1274), between the refrigerant exchanger (1275), the refrigerant circulation line (L7)
  • the flow paths through which the refrigerant circulates are formed while connecting the components in sequence.
  • the refrigerant compressor 1271 compresses the refrigerant.
  • the pressure of the compressed refrigerant may be about 10 barG, but is not limited thereto, and various values of pressure may be used to increase the supercooling efficiency.
  • the refrigerant cooler 1272 may cool the heated refrigerant while being compressed by the refrigerant compressor 1271 with various cold energy.
  • the refrigerant cooler 1272 may be provided downstream of the refrigerant compressor 1271, and may be provided at each stage of the refrigerant compressor 1271 when the refrigerant compressor 1271 is provided in multiple stages.
  • the refrigerant expander 1273 expands the compressed refrigerant.
  • the refrigerant decompressed by expansion after compression can sufficiently reduce the temperature of the refrigerant similarly to the preceding pressure reducing valve 123, and the expanded refrigerant is transferred to the subcooling device 126 and used to supercool the liquefied gas.
  • the refrigerant heat exchanger (1274) cools the refrigerant compressed by the refrigerant compressor (1271) with the evaporated gas supplied from the storage tank (110) to the power generation engine (130). At this time, the refrigerant heat exchanger (1274) may be provided between the refrigerant compressor (1271) and the subcooler (126) as shown in the drawing, on the other hand, the refrigerant heat exchanger (1274) and the refrigerant compressor (1271) and the subcooler (126). It can be installed at any point between the), and may replace the refrigerant cooler (1272).
  • the refrigerant exchanger heat exchanger 1275 may exchange heat between the compressed refrigerant and the refrigerant heated in the subcooler 126. Specifically, the inter-refrigerant heat exchanger 1275 may heat-exchange the refrigerant before compression after expansion with the refrigerant that is heated in the subcooling device 126 and before compression.
  • the refrigerant supply unit 127 may be provided as an N2 Bryton cycle to include an inter-refrigerant heat exchanger 1275, but the inter-refrigerant heat exchanger 1275 may be omitted.
  • the present embodiment uses the subcooled return of the liquefied gas to lower the internal pressure of the storage tank 110 before the bunkering, but utilizes the cold heat of the boiled gas supplied to the power generation engine 130 for the subcooled energy. It can improve the use efficiency.
  • FIG. 9 is a process flow diagram of a gas treatment system according to a sixth embodiment of the present invention.
  • the refrigerant supply unit 127 is a liquefied gas supplied from the storage tank 110 to the power generation engine 130 in comparison with the fifth embodiment. Can be cooled.
  • the liquefied gas of the storage tank 110 is supplied to the power generation engine 130 via the vaporizer 113, the present embodiment is to ensure that the liquefied gas to be vaporized is used for cooling the refrigerant, the supercooling effect of the liquefied gas before bunkering At the same time, the height of the carburetor 113 can be lowered or the carburetor 113 can be omitted.
  • Refrigerant heat exchanger (1274) of the present embodiment is different from the previous embodiment through the refrigerant circulation line (L7) and the boil-off gas consumption line (L4), so that the refrigerant circulation line (L7) and liquefied gas consumption line (L5) via Of course it is prepared.
  • the pump for liquefied gas subcooling in the previous embodiment may be a transfer pump 111 or a separate pump
  • the fuel supply pump 112 may be used as a pump for liquefied gas subcooling in this embodiment.
  • the present invention may include an embodiment of cooling the refrigerant to at least one of the boil-off gas and the liquefied gas supplied to the power generation engine 130 by combining the present embodiment and the previous embodiment, in this case refrigerant / liquefied gas It is possible to have a refrigerant heat exchanger 1274 alone / with a evaporation gas stream or to have a refrigerant heat exchanger 1274 of a refrigerant / liquefied gas stream and a refrigerant heat exchanger 1274 of a refrigerant / evaporation gas stream.
  • FIG. 10 is a process flow diagram of a gas treatment system according to a seventh embodiment of the present invention.
  • the gas treatment system according to the seventh exemplary embodiment of the present invention may be provided such that a refrigerant heat exchanger 1274 replaces an intercoolant heat exchanger 1275.
  • the refrigerant heat exchanger (1274) is composed of at least three streams for heat-exchanging the compressed refrigerant, the refrigerant heated in the subcooling device (126) and the liquefied gas or the boil-off gas supplied to the power generation engine (130), thereby performing heat exchange between the refrigerants. It may be provided in a structure containing.
  • the present embodiment does not include a heat exchanger 1275 between refrigerants, the configuration of the refrigerant supply unit 127 may be compactly reduced.
  • the power generation engine 130 in the case of the bunkering vessel BV, the power generation engine 130 must be sufficiently operated to operate the transfer pump 111 during the bunkering. Unlike gas-propelled vessels (GFS), the system is optimized efficiently considering the high fuel consumption in the berth.
  • GFS gas-propelled vessels
  • FIG. 11 is a process flowchart of the gas treatment system according to the eighth embodiment of the present invention.
  • a gas treating system is a cooling apparatus that cools and returns a liquefied gas or an evaporated gas of a storage tank 110 to a refrigerant similarly to the contents disclosed in the above embodiments.
  • Bunkering management unit 120 for adjusting the internal pressure of the storage tank 110 by using (122, 126).
  • the present embodiment presupposes the operation of the cooling apparatuses 122 and 126 to subcool the liquefied gas to allow the storage tank 110 to receive further evaporated gas, or the evaporated gas returned from the fuel tanks 210a and 210b.
  • the maximum return amount of the evaporated gas that the storage tank 110 can receive from the gas propulsion vessel GFS can be directly or indirectly derived.
  • the maximum return amount may be set to less than the flow rate of the boil-off gas delivered through the boil-off gas return line L2 during bunkering.
  • the present embodiment compresses the evaporated gas of the storage tank 110 to the power generation engine 130.
  • the sum of the amount of boil-off gas supplied by the boil-off gas compressor 121 and the maximum amount of boil-off gas of the storage tank 110 considering the cooling devices 122 and 126 may be equal to or higher than the amount of boil-off gas returned during bunkering. have.
  • Cooling device (122, 126) up to the return amount ⁇ bunkering on return amount ⁇ chiller system (122, 126) up to the return amount of the compressor throughput, taking into account consideration +
  • the compressor throughput may be a throughput when all the boil-off gas compressors 121 operate in parallel.
  • FIG. 12 is a process flowchart of the gas treatment system according to the ninth embodiment of the present invention.
  • the gas treatment system according to the ninth embodiment of the present invention optimizes the entire system in a direction different from the above embodiment.
  • the maximum return amount of the boil-off gas of the storage tank 110 considering the cooling devices 122 and 126 is equal to or higher than the boil-off gas return flow rate during bunkering. That is as follows.
  • the boil-off gas compressor 121 for compressing the boil-off gas of the storage tank 110 and supplying it to the power generation engine 130 may be omitted.
  • the liquefied gas of the storage tank 110 is pumped, It may be vaporized and supplied to the power generation engine 130.
  • the entire system may be simplified by omitting the boil-off gas compressor 121 while allowing the specifications of the cooling devices 122 and 126 to cover the boil-off flow rate returned when bunkering.
  • FIG. 13 is a process flow diagram of a gas treatment system according to a tenth embodiment of the present invention.
  • the gas treatment system according to the tenth embodiment of the present invention is optimized in a direction different from those of the eighth and ninth embodiments.
  • the storage tank 110 has a maximum return amount of the evaporated gas in the storage tank 110 considering the cooling devices 122 and 126 to be equal to or higher than the evaporation gas return flow rate during bunkering.
  • the boil-off gas can be supplied to the power generation engine 130, it is arranged as follows.
  • the boil-off gas compressor 121 for compressing the boil-off gas of the storage tank 110 and supplying the boil-off gas to the power generation engine 130 may be provided alone. That is, unlike the eighth embodiment in which the boil-off gas compressor 121 can back up each other, the back-up between the boil-off gas compressors 121 is impossible in this embodiment.
  • the present embodiment is configured such that the maximum return amount of the boil-off gas considering the cooling devices 122 and 126 already exceeds the return flow rate of the boil-off gas at the time of bunkering, it is not necessary to guarantee the backup between the boil-off compressors 121.
  • the present embodiment is provided so that at least one of the boil-off gas or liquefied gas can be supplied to the power generation engine 130, so that the supply of the boil-off gas supplies the liquefied gas. Can be backed up.
  • the present embodiment while allowing the boil-off gas returned during bunkering to be sufficiently processed, by configuring the boil-off gas compressor 121 alone, backed up the fuel supply to the liquefied gas, to reduce the installation and operation costs can do.
  • the present invention encompasses all of the embodiments generated by the combination of at least two or more of the above embodiments or a combination of at least one or more of the above embodiments and the known art, in addition to the embodiments described above.
  • bunkering management unit 121 boil-off gas compressor
  • 121a low pressure compressor 121b: boosting compressor
  • high pressure compressor 122 reliquefaction unit, chiller
  • boil-off gas heat exchanger 126 subcooling device, cooling device
  • refrigerant supply unit 130 power generation engine
  • L1 bunkering line
  • L2 boil-off gas return line
  • L5 Liquefied Gas Consumption Line
  • L6 Gas Supply Line

Abstract

The present invention relates to a gas treatment system and a ship including same, wherein the gas treatment system transfers a liquefied gas from a storage tank of a bunkering ship to a C-type fuel tank arranged in a gas-propulsion ship. The gas treatment system comprises: a bunkering line for supplying a liquefied gas from the storage tank to the fuel tank; a bunkering management part for liquefying a vaporized gas in the storage tank by a refrigerant to return the vaporized gas to a liquefied gas, thereby adjusting an internal pressure of the storage tank; and a vaporized gas return line for transferring a vaporized gas generated in the fuel tank during bunkering through the bunkering line to the bunkering ship, wherein the bunkering management part reduces an internal pressure of the storage tank to or below a preconfigured pressure before bunkering, and maintains the internal pressure of the storage tank below an internal pressure of the fuel tank so that a vaporized gas is transferred through the vaporized gas return line without being compressed by a separate compressor.

Description

가스 처리 시스템 및 이를 포함하는 선박Gas treatment system and vessel comprising the same
본 발명은 가스 처리 시스템 및 이를 포함하는 선박에 관한 것이다.The present invention relates to a gas treatment system and a vessel comprising the same.
선박은 대량의 광물이나 원유, 천연가스, 또는 몇천 개 이상의 컨테이너 등을 싣고 대양을 항해하는 운송수단으로서, 강철로 이루어져 있고 부력에 의해 수선면에 부유한 상태에서 프로펠러의 회전을 통해 발생되는 추력을 통해 이동한다.A ship is a means of transporting the ocean carrying large quantities of minerals, crude oil, natural gas, or thousands of containers. It is made of steel and is buoyant and floats on the water surface by buoyancy. Go through.
이러한 선박은 엔진이나 가스 터빈 등을 구동함으로써 추력을 발생시키는데, 이때 엔진은 가솔린 또는 디젤 등의 오일 연료를 사용하여 피스톤을 움직여서 피스톤의 왕복운동에 의해 크랭크 축이 회전되도록 하고, 크랭크 축에 연결된 샤프트가 회전되어 프로펠러가 구동되도록 하며, 반면 가스 터빈은 압축 공기와 함께 연료를 연소시키고, 연소 공기의 온도/압력을 통해 터빈 날개를 회전시킴으로써 발전하여 프로펠러에 동력을 전달하는 방식을 사용한다.Such a ship generates thrust by driving an engine or a gas turbine, and the engine uses oil fuel such as gasoline or diesel to move the piston so that the crank shaft is rotated by the reciprocating motion of the piston, and the shaft connected to the crank shaft. Is rotated to drive the propellers, while gas turbines burn fuel with compressed air and generate power by rotating the turbine blades through the temperature / pressure of the combustion air to transfer power to the propellers.
그러나 최근에는, 액화가스의 일종인 액화천연가스(Liquefied Natural Gas)를 운반하는 LNG 운반선에서 LNG를 연료로 사용하여 엔진이나 터빈 등의 수요처를 구동하는 LNG 연료공급 방식이 사용되고 있으며, LNG는 청정연료이고 매장량도 석유보다 풍부하기 때문에, 수요처의 연료로 LNG를 사용하는 방식은 LNG 운반선 외의 다른 선박에도 적용되고 있다.Recently, however, an LNG fuel supply method that uses LNG as a fuel to drive demands such as an engine or a turbine is used in an LNG carrier carrying Liquefied Natural Gas, which is a kind of liquefied gas, and LNG is a clean fuel. And since the reserves are richer than petroleum, the use of LNG as fuel for demand is being applied to other vessels other than LNG carriers.
그런데 LNG는 디젤유와 달리 로딩/언로딩 시 액상을 유지하기 위해선 극저온 상태로 유지해야 한다는 특성이 있다. 따라서 LNG 추진 방식을 적용한 LNG 운반선 외의 선박에 대해 LNG를 안정적으로 벙커링하는 기술에 대한 연구 및 개발이 필요한 상황이다.However, unlike diesel oil, LNG has a characteristic of being kept at a cryogenic state in order to maintain a liquid phase during loading / unloading. Therefore, there is a need for research and development on the technology for stably bunkering LNG for vessels other than LNG carriers using the LNG propulsion method.
본 발명은 상기와 같은 종래기술의 문제점을 해결하고자 창출된 것으로서, 본 발명의 목적은, 액화가스를 가스 추진 선박에 벙커링하는 과정에서 안정적이고 신속한 액화가스의 전달을 구현하여, 벙커링 효율을 높일 수 있다.The present invention was created to solve the problems of the prior art as described above, an object of the present invention, by implementing a stable and rapid delivery of liquefied gas in the process of bunkering the liquefied gas to the gas propulsion vessel, it is possible to increase the bunkering efficiency have.
본 발명의 일 측면에 따른 가스 처리 시스템은, 벙커링 선박의 저장탱크로부터 가스추진 선박에 마련된 C 타입의 연료탱크로 액화가스를 전달하는 가스 처리 시스템으로서, 상기 저장탱크의 액화가스를 상기 연료탱크로 공급하는 벙커링 라인; 상기 저장탱크의 증발가스를 냉매로 액화해 리턴하여 상기 저장탱크의 내압을 조절하는 벙커링관리부; 및 상기 벙커링 라인을 통한 벙커링 시 상기 연료탱크에서 발생하는 증발가스를 상기 벙커링 선박으로 전달하는 증발가스 리턴라인을 포함하며, 상기 벙커링관리부는, 벙커링 전에 상기 저장탱크의 내압을 기설정압 이하로 낮추고, 벙커링 시 상기 저장탱크의 내압을 상기 연료탱크의 내압 미만으로 유지하여 상기 증발가스 리턴라인을 통해 증발가스가 별도의 압축기에 의한 압축 없이 전달되도록 하는 것을 특징으로 한다.A gas processing system according to an aspect of the present invention is a gas processing system for transferring liquefied gas from a storage tank of a bunkering vessel to a C type fuel tank provided in a gas propulsion vessel, and converting the liquefied gas of the storage tank into the fuel tank. Supplying bunkering lines; A bunkering manager configured to adjust the internal pressure of the storage tank by liquefying and returning the evaporated gas of the storage tank to a refrigerant; And an evaporation gas return line for transferring the evaporated gas generated in the fuel tank to the bunkering vessel during bunkering through the bunkering line, wherein the bunkering manager lowers the internal pressure of the storage tank to a predetermined pressure or less before the bunkering, Maintaining the internal pressure of the storage tank below the internal pressure of the fuel tank during bunkering, it is characterized in that the boil-off gas is delivered through the boil-off gas return line without compression by a separate compressor.
구체적으로, 상기 저장탱크는, 멤브레인 타입 또는 C 타입의 탱크이며, 상기 기설정압은, 0.04barG 또는 0.2barG일 수 있다.Specifically, the storage tank is a tank of the membrane type or C type, the predetermined pressure may be 0.04barG or 0.2barG.
구체적으로, 상기 벙커링관리부는, 증발가스를 액화하는 재액화장치를 포함하며, 상기 증발가스 리턴라인은, 상기 재액화장치로 증발가스를 전달할 수 있다.Specifically, the bunkering management unit may include a reliquefaction apparatus for liquefying boil-off gas, and the boil-off gas return line may deliver the boil-off gas to the re-liquefaction apparatus.
구체적으로, 상기 벙커링관리부는, 벙커링 시 상기 증발가스 리턴라인을 통해 전달되는 증발가스를 재액화해 상기 저장탱크로 복귀시켜, 상기 저장탱크의 내압을 상기 연료탱크의 내압 미만으로 유지할 수 있다.In detail, the bunkering management unit may reliquefy the vaporized gas delivered through the boil-off gas return line to return to the storage tank during bunkering, and maintain the internal pressure of the storage tank below the internal pressure of the fuel tank.
구체적으로, 상기 벙커링관리부는, 벙커링 전의 내압이 제1 압력이고 벙커링 시 액화가스의 유입에 의해 내압이 하강하는 상기 연료탱크에 벙커링하는 경우, 벙커링 전 및 벙커링 시 상기 저장탱크의 내압을 상기 연료탱크의 벙커링 완료 시의 내압 이하로 할 수 있다.Specifically, when the bunkering management unit bunkers the fuel tank whose internal pressure before bunkering is the first pressure and the internal pressure decreases due to inflow of liquefied gas during bunkering, the bunkering management unit measures the internal pressure of the storage tank before bunkering and when bunkering. It can be below the internal pressure at the completion of bunkering.
구체적으로, 상기 벙커링관리부는, 벙커링 전의 내압이 제2 압력이고 벙커링 시 증발가스의 발생에 의해 내압이 상승하는 상기 연료탱크에 벙커링하는 경우, 벙커링 전 및 벙커링 시 상기 저장탱크의 내압을 상기 연료탱크의 벙커링 시작 시의 내압 이하로 할 수 있다.Specifically, when the bunkering management unit bunkers the fuel tank in which the internal pressure before the bunkering is the second pressure and the internal pressure rises due to the generation of boil-off gas during the bunkering, the bunkering may be configured to calculate the internal pressure of the storage tank before the bunkering and the bunkering. Can be below the internal pressure at the start of bunkering.
구체적으로, 상기 제1 압력은, 상기 기설정압 대비 0.05barG 내지 0.1barG 큰 값 이상의 압력이며, 상기 제2 압력은, 상기 기설정압 대비 0.05barG 내지 0.1barG 큰 값 미만의 압력일 수 있다.Specifically, the first pressure may be a pressure greater than 0.05 barG to 0.1 barG greater than the preset pressure, and the second pressure may be a pressure less than 0.05 barG to 0.1 barG greater than the preset pressure.
구체적으로, 상기 제1 압력은, 0.5barG 내지 8barG이며, 상기 제2 압력은, 0.5barG 이하일 수 있다.Specifically, the first pressure is 0.5barG to 8barG, the second pressure may be 0.5barG or less.
본 발명의 일 측면에 따른 가스 처리 시스템은, 벙커링 선박의 저장탱크로부터 가스추진 선박에 마련된 연료탱크로 액화가스를 전달하는 가스 처리 시스템으로서, 상기 저장탱크의 액화가스를 상기 연료탱크로 공급하는 벙커링 라인; 상기 저장탱크의 증발가스를 냉매와의 열교환 없이 압축, 냉각, 감압해 리턴하여 상기 저장탱크의 내압을 조절하는 벙커링관리부; 및 상기 벙커링 라인을 통한 벙커링 시 상기 연료탱크에서 발생하는 증발가스를 상기 벙커링 선박으로 전달하는 증발가스 리턴라인을 포함하며, 상기 벙커링관리부는, 벙커링 전에 상기 저장탱크의 내압을 기설정압 이하로 낮추고, 벙커링 시 상기 증발가스 리턴라인을 통한 증발가스의 전달을 차단하여 상기 연료탱크가 축압되도록 하거나, 상기 저장탱크의 내압을 상기 연료탱크의 내압 미만으로 유지하여 상기 증발가스 리턴라인을 통해 증발가스가 별도의 압축기에 의한 압축 없이 전달되도록 하는 것을 특징으로 한다.A gas processing system according to an aspect of the present invention is a gas processing system for transferring liquefied gas from a storage tank of a bunkering vessel to a fuel tank provided in a gas propulsion vessel, and a bunker ring for supplying liquefied gas of the storage tank to the fuel tank. line; A bunkering manager configured to adjust the internal pressure of the storage tank by returning the evaporated gas of the storage tank by compressing, cooling, and reducing the pressure without heat exchange with a refrigerant; And an evaporation gas return line for transferring the evaporated gas generated in the fuel tank to the bunkering vessel during bunkering through the bunkering line, wherein the bunkering manager lowers the internal pressure of the storage tank to a predetermined pressure or less before the bunkering, When bunkering, the fuel tank is compressed by blocking the transfer of the boil-off gas through the boil-off gas return line, or the boil-off gas is separated through the boil-off gas return line by maintaining the internal pressure of the storage tank below the pressure of the fuel tank. Characterized in that to be delivered without compression by the compressor.
구체적으로, 상기 저장탱크는, 멤브레인 타입 또는 C 타입의 탱크이며, 상기 기설정압은, 0.04barG 또는 0.2barG일 수 있다.Specifically, the storage tank is a tank of the membrane type or C type, the predetermined pressure may be 0.04barG or 0.2barG.
구체적으로, 상기 벙커링관리부는, 압축된 증발가스를 상기 저장탱크에서 배출되는 증발가스와 열교환하는 증발가스 열교환기를 포함하며, 상기 증발가스 리턴라인은, 상기 저장탱크와 상기 증발가스 열교환기 사이로 증발가스를 전달할 수 있다.Specifically, the bunkering management unit includes an evaporative gas heat exchanger for exchanging the compressed evaporated gas with the evaporated gas discharged from the storage tank, and the evaporated gas return line is an evaporated gas between the storage tank and the evaporative gas heat exchanger. Can be passed.
구체적으로, 상기 증발가스 리턴라인은, 상기 증발가스 열교환기를 경유하거나 우회하여 상기 저장탱크와 상기 증발가스 열교환기 사이로 증발가스를 전달하도록 마련될 수 있다.Specifically, the boil-off gas return line may be provided to transfer the boil-off gas between the storage tank and the boil-off gas heat exchanger via or bypass the boil-off gas heat exchanger.
구체적으로, 상기 벙커링관리부는, 병렬로 마련되며 상기 저장탱크의 증발가스를 압축해 발전엔진으로 공급하는 복수 개의 저압 압축기; 상기 저압 압축기와 상기 발전엔진 사이에서 분기된 위치에 마련되며 잉여의 증발가스를 150barG 이상으로 압축하는 다단의 부스팅 압축기; 및 상기 부스팅 압축기에서 압축된 증발가스를 감압하여 액화하는 감압밸브를 포함하며, 상기 증발가스 열교환기는, 상기 부스팅 압축기와 상기 감압밸브 사이에서 고압의 증발가스를 상기 저장탱크에서 배출되는 증발가스로 냉각할 수 있다.Specifically, the bunkering management unit, a plurality of low pressure compressor is provided in parallel to compress the evaporation gas of the storage tank to supply to the power generation engine; A multistage boosting compressor provided at a branched position between the low pressure compressor and the power generation engine and compressing the excess evaporated gas to 150 barG or more; And a pressure reducing valve configured to liquefy by reducing the evaporated gas compressed by the boosting compressor, wherein the evaporating gas heat exchanger cools the high pressure evaporated gas between the boosting compressor and the pressure reducing valve with the evaporated gas discharged from the storage tank. can do.
구체적으로, 상기 벙커링관리부는, 벙커링 전에 상기 저장탱크의 내압을 기설정압 이하로 낮추기 위해, 복수 개의 상기 저압 압축기를 병렬 운전하여 상기 저장탱크의 증발가스를 흡입할 수 있다.Specifically, the bunkering management unit may suck the evaporated gas of the storage tank by operating the plurality of low pressure compressors in parallel to reduce the internal pressure of the storage tank to a predetermined pressure or less before the bunkering.
구체적으로, 상기 벙커링관리부는, 상기 저장탱크의 증발가스를 압축해 발전엔진으로 공급하는 저압 압축기; 상기 저압 압축기와 병렬로 마련되며 상기 저장탱크의 증발가스를 150barG 이상으로 압축하는 다단의 고압 압축기; 및 상기 고압 압축기에서 압축된 증발가스를 감압하여 액화하는 감압밸브를 포함하며, 상기 증발가스 열교환기는, 상기 고압 압축기와 상기 감압밸브 사이에서 고압의 증발가스를 상기 저장탱크에서 배출되는 증발가스로 냉각하며, 상기 고압 압축기는, 중간단의 증발가스를 상기 발전엔진으로 공급할 수 있다.Specifically, the bunkering management unit, a low pressure compressor for compressing the boil-off gas of the storage tank to supply to the power generation engine; A multistage high pressure compressor provided in parallel with the low pressure compressor and compressing the evaporated gas of the storage tank to 150 barG or more; And a pressure reducing valve for liquefying the liquefied evaporated gas by the high pressure compressor, wherein the evaporating gas heat exchanger cools the high pressure evaporated gas between the high pressure compressor and the pressure reducing valve with the evaporated gas discharged from the storage tank. The high pressure compressor may supply an intermediate stage boil-off gas to the power generation engine.
구체적으로, 상기 벙커링관리부는, 상기 저장탱크의 액화가스 저장량에 따라 상기 저압 압축기와 상기 고압 압축기를 독립적으로 운전할 수 있다.In detail, the bunkering management unit may independently operate the low pressure compressor and the high pressure compressor according to the amount of liquefied gas stored in the storage tank.
본 발명의 일 측면에 따른 가스 처리 시스템은, 벙커링 선박의 저장탱크로부터 가스추진 선박에 마련된 연료탱크로 액화가스를 전달하는 가스 처리 시스템으로서, 상기 저장탱크의 액화가스를 상기 연료탱크로 공급하는 벙커링 라인; 상기 저장탱크의 액화가스를 냉매로 과냉해 리턴하여 상기 저장탱크의 내압을 조절하는 벙커링관리부; 및 상기 벙커링 라인을 통한 벙커링 시 상기 연료탱크에서 발생하는 증발가스를 상기 벙커링 선박으로 전달하는 증발가스 리턴라인을 포함하며, 상기 벙커링관리부는, 벙커링 전에 상기 저장탱크의 내압을 기설정압 이하로 낮추고, 벙커링 시 상기 증발가스 리턴라인을 통한 증발가스의 전달을 차단하여 상기 연료탱크가 축압되도록 하거나, 상기 저장탱크의 내압을 상기 연료탱크의 내압 미만으로 유지하여 상기 증발가스 리턴라인을 통해 증발가스가 별도의 압축기에 의한 압축 없이 전달되도록 하는 것을 특징으로 한다.A gas processing system according to an aspect of the present invention is a gas processing system for transferring liquefied gas from a storage tank of a bunkering vessel to a fuel tank provided in a gas propulsion vessel, and a bunker ring for supplying liquefied gas of the storage tank to the fuel tank. line; A bunkering management unit which controls the internal pressure of the storage tank by subcooling the liquefied gas of the storage tank with a refrigerant; And an evaporation gas return line for transferring the evaporated gas generated in the fuel tank to the bunkering vessel during bunkering through the bunkering line, wherein the bunkering manager lowers the internal pressure of the storage tank to a predetermined pressure or less before the bunkering, When bunkering, the fuel tank is compressed by blocking the transfer of the boil-off gas through the boil-off gas return line, or the boil-off gas is separated through the boil-off gas return line by maintaining the internal pressure of the storage tank below the pressure of the fuel tank. Characterized in that to be delivered without compression by the compressor.
구체적으로, 상기 저장탱크는, 멤브레인 타입 또는 C 타입의 탱크이며, 상기 기설정압은, 0.04barG 또는 0.2barG일 수 있다.Specifically, the storage tank is a tank of the membrane type or C type, the predetermined pressure may be 0.04barG or 0.2barG.
구체적으로, 상기 벙커링관리부는, 액화가스를 냉매로 과냉시키는 과냉장치; 및 상기 과냉장치에 냉매를 공급하는 냉매공급부를 포함하며, 상기 냉매공급부는, 냉매를 상기 저장탱크에서 발전엔진으로 공급되는 액화가스 또는 증발가스로 냉각하는 냉매 열교환기를 포함할 수 있다.Specifically, the bunkering management unit, the subcooling device for subcooling the liquefied gas with a refrigerant; And a refrigerant supply unit supplying a refrigerant to the subcooling device, wherein the refrigerant supply unit may include a refrigerant heat exchanger cooling the refrigerant with liquefied gas or evaporated gas supplied from the storage tank to a power generation engine.
구체적으로, 상기 냉매공급부는, 냉매 압축기; 압축된 냉매와 상기 과냉장치에서 가열된 냉매를 열교환하는 냉매간 열교환기; 압축 후 상기 냉매간 열교환기를 거친 냉매를 팽창하는 냉매 팽창기; 및 압축된 냉매를 상기 발전엔진으로 공급되는 액화가스 또는 증발가스로 냉각하는 상기 냉매 열교환기를 포함할 수 있다.Specifically, the refrigerant supply unit, a refrigerant compressor; A heat exchanger between the compressed refrigerant and the refrigerant heated in the subcooler; A refrigerant expander configured to expand a refrigerant passing through the refrigerant exchanger after compression; And the refrigerant heat exchanger for cooling the compressed refrigerant with liquefied gas or evaporated gas supplied to the power generation engine.
구체적으로, 상기 냉매공급부는, 냉매 압축기; 압축된 냉매와 상기 과냉장치에서 가열된 냉매 및 상기 발전엔진으로 공급되는 액화가스 또는 증발가스를 열교환하는 상기 냉매 열교환기; 및 압축 후 상기 냉매 열교환기를 거친 냉매를 팽창하는 냉매 팽창기를 포함할 수 있다.Specifically, the refrigerant supply unit, a refrigerant compressor; The refrigerant heat exchanger for heat-exchanging a compressed refrigerant, a refrigerant heated in the subcooling apparatus, and a liquefied gas or an evaporated gas supplied to the power generation engine; And a refrigerant expander configured to expand the refrigerant passing through the refrigerant heat exchanger after compression.
본 발명의 일 측면에 따른 가스 처리 시스템은, 벙커링 선박으로서 상기 가스 처리 시스템을 갖는 것을 특징으로 한다.A gas treatment system according to an aspect of the present invention is characterized by having the gas treatment system as a bunkering vessel.
본 발명에 따른 가스 처리 시스템 및 이를 포함하는 선박은, 벙커링 선박에서 가스추진 선박으로 액화가스를 전달할 때 액화가스로부터 증발가스가 발생하는 것을 고려하여, 벙커링 시간과 효율을 단축시키기 위한 기술을 창출하여 안전하고 안정적인 벙커링을 보장할 수 있다.The gas treatment system according to the present invention and the ship including the same, in consideration of the generation of the liquefied gas from the liquefied gas when transferring the liquefied gas from the bunkering vessel to the gas propulsion vessel, by creating a technology for shortening the bunkering time and efficiency Safe and stable bunkering can be guaranteed.
도 1은 본 발명의 제1 및 제2 실시예에 따른 가스 처리 시스템의 공정흐름도이다.1 is a process flow diagram of a gas treatment system according to the first and second embodiments of the present invention.
도 2는 본 발명의 제1 실시예에 따른 가스 처리 시스템의 개념도이다.2 is a conceptual diagram of a gas treatment system according to a first embodiment of the present invention.
도 3은 본 발명의 제1 실시예에 따른 가스 처리 시스템에서 내압 변화의 그래프이다.3 is a graph of the breakdown pressure change in the gas treatment system according to the first embodiment of the present invention.
도 4는 본 발명의 제2 실시예에 따른 가스 처리 시스템의 개념도이다.4 is a conceptual diagram of a gas treatment system according to a second embodiment of the present invention.
도 5는 본 발명의 제2 실시예에 따른 가스 처리 시스템에서 내압 변화의 그래프이다.5 is a graph of the breakdown pressure change in the gas treatment system according to the second embodiment of the present invention.
도 6은 본 발명의 제3 실시예에 따른 가스 처리 시스템의 공정흐름도이다.6 is a process flow diagram of a gas treatment system according to a third embodiment of the present invention.
도 7은 본 발명의 제4 실시예에 따른 가스 처리 시스템의 공정흐름도이다.7 is a process flow diagram of a gas treatment system according to a fourth embodiment of the present invention.
도 8은 본 발명의 제5 실시예에 따른 가스 처리 시스템의 공정흐름도이다.8 is a process flow diagram of a gas treatment system according to a fifth embodiment of the present invention.
도 9는 본 발명의 제6 실시예에 따른 가스 처리 시스템의 공정흐름도이다.9 is a process flow diagram of a gas treatment system according to a sixth embodiment of the present invention.
도 10은 본 발명의 제7 실시예에 따른 가스 처리 시스템의 공정흐름도이다.10 is a process flow diagram of a gas treatment system according to a seventh embodiment of the present invention.
도 11은 본 발명의 제8 실시예에 따른 가스 처리 시스템의 공정흐름도이다.11 is a process flowchart of the gas treatment system according to the eighth embodiment of the present invention.
도 12는 본 발명의 제9 실시예에 따른 가스 처리 시스템의 공정흐름도이다.12 is a process flowchart of the gas treatment system according to the ninth embodiment of the present invention.
도 13은 본 발명의 제10 실시예에 따른 가스 처리 시스템의 공정흐름도이다.13 is a process flow diagram of a gas treatment system according to a tenth embodiment of the present invention.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.The objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and the preferred embodiments associated with the accompanying drawings. In the present specification, in adding reference numerals to the components of each drawing, it should be noted that the same components as possible, even if displayed on different drawings have the same number as possible. In addition, in describing the present invention, when it is determined that the detailed description of the related known technology may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 참고로 본 명세서에서 액화가스는 LNG일 수 있지만 이로 한정하는 것은 아니며, 비등점이 상온보다 낮아 저장을 위해 강제로 액화되며 발열량을 갖는 모든 물질을 포괄할 수 있다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. For reference, the liquefied gas may be LNG, but is not limited thereto, and may include all materials having a boiling point lower than room temperature and forcibly liquefied for storage and having a calorific value.
또한 본 명세서에서 액화가스/증발가스는 탱크 내부에서의 상태를 기준으로 구분되는 것이고, 명칭으로 인하여 액상 또는 기상으로 반드시 한정되는 것은 아님을 알려둔다. 또한 본 명세서에서 고압/저압은 상대적인 것이고, 수치로 한정되지 않는다.In addition, the liquefied gas / evaporation gas in the present specification is divided on the basis of the state inside the tank, it is noted that due to the name is not necessarily limited to the liquid or gas phase. In addition, the high pressure / low pressure is relative herein, and is not limited to numerical values.
참고로, Note that, 이하 도Less than 1  One 내지 도To 5를 통해 설명하는 제1, 제2  First and second explained through 5 실시예는Example , 냉매로 증발가스를 완전 Complete the evaporation gas with refrigerant 재액화해Reliquefy 벙커링Bunkering 선박( Ship( BVBV )의 탱크 내압을 낮춰 To lower the tank internal pressure 벙커링Bunkering  city 증발가Evaporation 스 발생을 줄이는 사상을 기반으로 한 것이다.It is based on the idea of reducing the occurrence of gas.
이하에서 각 실시예에 대해 자세히 설명한다.Hereinafter, each embodiment will be described in detail.
도 1은 본 발명의 제1 및 제2 실시예에 따른 가스 처리 시스템의 공정흐름도이고, 도 2는 본 발명의 제1 실시예에 따른 가스 처리 시스템의 개념도이며, 도 3은 본 발명의 제1 실시예에 따른 가스 처리 시스템에서 내압 변화의 그래프이다.1 is a process flow diagram of a gas treatment system according to the first and second embodiments of the present invention, FIG. 2 is a conceptual diagram of a gas treatment system according to the first embodiment of the present invention, and FIG. 3 is a first diagram of the present invention. A graph of breakdown pressure change in a gas treatment system according to an embodiment.
도 1 내지 도 3을 참조하면, 본 발명의 제1 실시예에 따른 가스 처리 시스템은, 벙커링 선박(BV)의 저장탱크(110)로부터 가스추진 선박(GFS)에 마련된 연료탱크(210a)로 액화가스를 전달하는 벙커링 시스템이다.1 to 3, the gas treatment system according to the first embodiment of the present invention is liquefied into a fuel tank 210a provided in a gas propulsion vessel GFS from a storage tank 110 of a bunkering vessel BV. Bunkering system for delivering gas.
본 발명은 이하에서 설명하는 가스 처리 시스템을 구비한 벙커링 선박(BV)을 포함할 수 있다. 물론 본 발명은 가스 처리 시스템의 구현을 위하여 구성이 특정되는 가스추진 선박(GFS) 역시 포함한다. 일례로 본 발명은, 이하의 가스 처리 시스템이 적용되는 가스추진 선박(GFS)으로서, 벙커링 시 발생하는 증발가스를 벙커링 선박(BV)으로 리턴하기 위한 압축기(특히 H/D compressor)가 마련되지 않는 가스추진 선박(GFS)을 포함할 수 있다.The present invention may include a bunkering vessel (BV) having a gas treatment system described below. Of course, the present invention also includes a gas propulsion vessel (GFS) whose configuration is specified for the implementation of a gas treatment system. For example, the present invention is a gas propulsion vessel (GFS) to which the following gas treatment system is applied, and a compressor (especially an H / D compressor) for returning the boil-off gas generated during bunkering to the bunkering vessel BV is not provided. It may include a gas propulsion vessel (GFS).
참고로 가스추진 선박(GFS)은, 액화가스 운반선 외의 상선으로서 벌크선, 컨테이너 운반선, 광물 운반선 등의 선종일 수 있고, 연료탱크(210a)에 저장된 액화가스 또는 증발가스를 연료처리부(220)(펌프, 압축기, 열교환기 등)에 의해 압축/가압/가열 등을 거쳐 가스 공급라인(L6)을 통하여 추진엔진(230)으로 공급하는 설비를 구비할 수 있다.For reference, the gas propulsion ship (GFS) may be a ship, such as a bulk carrier, a container carrier, or a mineral carrier, as a commercial vessel other than a liquefied gas carrier, and may include liquefied gas or evaporated gas stored in the fuel tank 210a in the fuel processor 220 ( A pump, compressor, heat exchanger, etc.) may be provided with a facility for supplying to the propulsion engine 230 through the gas supply line (L6) through compression / pressure / heating and the like.
가스 처리 시스템은, 저장탱크(110)에서 연료탱크(210a)로 액화가스를 공급하는 구성을 포함할 수 있다. 이때 저장탱크(110)는 멤브레인 타입 또는 C 타입의 탱크이며, 저장탱크(110) 내에 마련되는 이송펌프(111)에 의해 액화가스가 저장탱크(110)와 연료탱크(210a)를 연결하는 벙커링 라인(L1)을 따라 연료탱크(210a)로 전달될 수 있다.The gas treatment system may include a configuration for supplying liquefied gas from the storage tank 110 to the fuel tank 210a. At this time, the storage tank 110 is a membrane type or C type tank, the bunkering line connecting the storage tank 110 and the fuel tank 210a by the liquefied gas by the transfer pump 111 provided in the storage tank 110. It may be delivered to the fuel tank 210a along the (L1).
또한 가스 처리 시스템은, 연료탱크(210a)에 액화가스가 공급될 때 연료탱크(210a) 내에서 발생하는 증발가스를 벙커링 선박(BV)으로 리턴시키는 구성을 포함한다. 이때 연료탱크(210a)는 본 실시예의 경우 5barG 내지 10barG 내외의 설계압력을 갖는 C 타입일 수 있고, 가스추진 선박(GFS)의 갑판 상부 또는 선내 등의 다양한 위치에 설치되어 있을 수 있다. 연료탱크(210a)에서 발생한 증발가스는 증발가스 리턴라인(L2)을 통해 벙커링 선박(BV)으로 리턴되며, 직간접적으로 저장탱크(110)로 전달될 수 있다.In addition, the gas treatment system includes a configuration for returning the boil-off gas generated in the fuel tank 210a to the bunkering vessel BV when the liquefied gas is supplied to the fuel tank 210a. In this case, the fuel tank 210a may be a C type having a design pressure of about 5 barG to 10 barG in the present embodiment, and may be installed at various positions such as a deck top or inboard of the gas propulsion vessel GFS. The boil-off gas generated in the fuel tank 210a is returned to the bunkering vessel BV through the boil-off gas return line L2 and may be directly or indirectly transferred to the storage tank 110.
또한 가스 처리 시스템은, 벙커링관리부(120)를 포함한다. 벙커링관리부(120)는 저장탱크(110)의 내압을 조절하는데, 일례로 저장탱크(110)의 증발가스를 냉매(질소, 혼합냉매 등 제한없음)로 액화해 저장탱크(110)에 리턴하여 저장탱크(110)의 내압을 낮출 수 있다.In addition, the gas treatment system includes a bunkering management unit 120. The bunkering management unit 120 regulates the internal pressure of the storage tank 110. For example, the bunkering management unit 120 liquefies the evaporated gas of the storage tank 110 with a refrigerant (no nitrogen, mixed refrigerant, etc.) and returns it to the storage tank 110 for storage. The internal pressure of the tank 110 may be lowered.
본 발명은 이하에서 자세히 서술하는 벙커링관리부(120)를 마련함으로써, 벙커링 라인(L1)을 통해 저장탱크(110)의 액화가스를 연료탱크(210a)로 공급하는 벙커링 시 연료탱크(210a)에서의 증발가스 발생 및 연료탱크(210a)에서 생성된 증발가스의 벙커링 선박(BV)으로의 리턴 등의 부분이 종래 대비 개선되도록 할 수 있다.The present invention provides a bunkering management unit 120 to be described in detail below, in the bunkering fuel tank (210a) during bunkering to supply the liquefied gas of the storage tank 110 to the fuel tank (210a) through the bunkering line (L1) Evaporation gas generation and the return of the boil-off gas generated in the fuel tank 210a to the bunkering vessel (BV) and the like can be improved compared to the conventional.
구체적으로 벙커링관리부(120)는 벙커링 전에 저장탱크(110)의 내압을 기설정압 이하로 낮출 수 있다. 일례로 벙커링관리부(120)는 벙커링 라인(L1)을 통해 액화가스가 전달되기 전에 미리, 저장탱크(110)의 내압을 0.04barG 또는 0.2barG 등의 기설정압으로 낮춰둘 수 있다. 물론 저장탱크(110)의 내압이 이미 기설정압 이하를 충족한 상태라면 증발가스의 액화 리턴은 생략될 수 있다.Specifically, the bunkering management unit 120 may lower the internal pressure of the storage tank 110 to less than or equal to the preset pressure before bunkering. For example, before the liquefied gas is delivered through the bunkering line L1, the bunkering management unit 120 may lower the internal pressure of the storage tank 110 to a preset pressure such as 0.04 barG or 0.2 barG. Of course, if the internal pressure of the storage tank 110 has already met the preset pressure or less, the liquefaction return of the boil-off gas may be omitted.
즉 본 발명은, 벙커링 선박(BV)의 저장탱크(110)의 내압을 사전에 미리 낮춰둠으로써, 저장탱크(110)에서 연료탱크(210a)로 전달되는 액화가스가 충분히 안정적인 액체 상태(일례로 과냉(subcooled) 상태)가 되도록 하여, 연료탱크(210a)에 액화가스가 공급될 때 증발가스의 발생량을 줄일 수 있다.That is, according to the present invention, the internal pressure of the storage tank 110 of the bunkering vessel BV is lowered in advance, so that the liquefied gas delivered from the storage tank 110 to the fuel tank 210a is sufficiently stable (for example, By making the subcooled state, the amount of generated boil-off gas can be reduced when the liquefied gas is supplied to the fuel tank 210a.
이후 벙커링이 시작되면 벙커링관리부(120)는 저장탱크(110)의 내압을 연료탱크(210a)의 내압 미만으로 유지한다. 이 경우 연료탱크(210a)에서 발생하는 증발가스는, 증발가스 리턴라인(L2)을 통해 벙커링 선박(BV)으로 전달되는 과정에서 별도의 압축기에 의한 압축이 필요하지 않게 된다. 즉 본 발명은 벙커링 과정에서 가스추진 선박(GFS)으로부터 벙커링 선박(BV)으로 리턴되는 증발가스(NBOG)가, 압축 없이 전달(Freeflow)되도록 한다.After the bunkering starts, the bunkering management unit 120 maintains the internal pressure of the storage tank 110 to less than the internal pressure of the fuel tank 210a. In this case, the boil-off gas generated in the fuel tank 210a is not required to be compressed by a separate compressor in the process of being transferred to the bunkering vessel BV through the boil-off gas return line L2. That is, the present invention allows the boil-off gas NBOG returned from the gas propulsion vessel GFS to the bunkering vessel BV during the bunkering process.
구체적으로 본 발명은, 벙커링 과정에서 저장탱크(110)의 증발가스를 지속적으로 처리해 줌으로써 저장탱크(110)의 내압을 연료탱크(210a) 대비 낮게 유지하여, 연료탱크(210a)에서 저장탱크(110)로 증발가스가 압축 없이 전달되도록 함으로써, 벙커링 시 증발가스 리턴을 위해 가스추진 선박(GFS)에 마련되던 고부하 압축기(High-Duty Compressor)가 생략되도록 할 수 있다. 물론 이를 위해 저장탱크(110)와 연료탱크(210a) 각각에는 내압 측정을 위한 압력계(도시하지 않음)가 구비된다.Specifically, the present invention, by continuously treating the evaporated gas of the storage tank 110 in the bunkering process to maintain the internal pressure of the storage tank 110 lower than the fuel tank 210a, the storage tank 110 in the fuel tank 210a By allowing the boil-off gas to be delivered without compression, the high-duty compressor provided in the gas propulsion vessel GFS for the return of the boil-off gas during bunkering can be omitted. Of course, for this purpose, each of the storage tank 110 and the fuel tank 210a is provided with a pressure gauge (not shown) for measuring internal pressure.
이러한 효과를 구현하기 위한 벙커링관리부(120)는, 증발가스를 액화하는 재액화장치(122)를 이용하며, 재액화장치(122)의 상류에는 병렬로 복수 개의 증발가스 압축기(121)가 서로 백업 가능하게 마련되고, 재액화장치(122)의 하류에는 압력조절밸브(123)와 기액분리기(124)가 마련된다. The bunkering management unit 120 for implementing such an effect uses a reliquefaction apparatus 122 for liquefying boil-off gas, and a plurality of boil-off gas compressors 121 back up each other in parallel upstream of the reliquefaction apparatus 122. The pressure control valve 123 and the gas-liquid separator 124 are provided downstream of the reliquefaction apparatus 122.
증발가스 압축기(121)와 재액화장치(122), 압력조절밸브(123) 및 기액분리기(124)는 저장탱크(110)를 기준으로 순환 유로를 형성하는 압력 조절라인(L3) 상에 차례대로 마련될 수 있으며, 이를 통해 벙커링관리부(120)는 저장탱크(110)의 증발가스를 압축, 액화하여 저장탱크(110)로 리턴시켜서 저장탱크(110)의 내압을 낮출 수 있게 된다.The boil-off gas compressor 121, the reliquefaction apparatus 122, the pressure regulating valve 123, and the gas-liquid separator 124 are sequentially on the pressure regulating line L3 which forms a circulation passage based on the storage tank 110. Through this, the bunkering management unit 120 may reduce the internal pressure of the storage tank 110 by returning to the storage tank 110 by compressing and liquefying the evaporated gas of the storage tank 110.
또한 본 발명은 저장탱크(110)의 내압을 낮게 유지하기 위하여, 증발가스 리턴라인(L2)을 통해 벙커링 선박(BV)으로 전달되는 증발가스가 재액화장치(122)로 전달되어 재액화 후 저장탱크(110)로 복귀되도록 할 수 있거나, 재액화장치(122)를 우회하여 저장탱크(110)로 전달되도록 할 수 있다. 또는 가스추진 선박(GFS)으로부터 전달되는 증발가스는 벙커링 선박(BV) 내 전력 소비를 위한 발전엔진(130)의 가동에 사용될 수도 있다.In addition, in the present invention, in order to keep the internal pressure of the storage tank 110 low, the boil-off gas delivered to the bunkering vessel BV through the boil-off gas return line L2 is transferred to the re-liquefaction apparatus 122 and stored after re-liquefaction. The tank 110 may be returned to the tank 110 or may be bypassed to the reliquefaction apparatus 122 to be transferred to the storage tank 110. Alternatively, the boil-off gas delivered from the gas propulsion vessel GFS may be used to operate the power generation engine 130 for power consumption in the bunkering vessel BV.
저장탱크(110)의 내압이 연료탱크(210a)의 내압 이하가 되도록 하기 위해, 즉 연료탱크(210a)의 내압이 저장탱크(110) 대비 높게 이루어지도록 하기 위하여, 벙커링관리부(120)는, 증발가스 리턴라인(L2)을 통해 전달되는 증발가스가 저장탱크(110)로 바로 유입되어 저장탱크(110)의 내압 상승을 야기하지 않도록, 재액화장치(122)를 활용할 수 있다. In order for the internal pressure of the storage tank 110 to be less than or equal to the internal pressure of the fuel tank 210a, that is, to make the internal pressure of the fuel tank 210a higher than that of the storage tank 110, the bunkering management unit 120 evaporates. The reliquefaction apparatus 122 may be utilized so that the boil-off gas delivered through the gas return line L2 does not directly flow into the storage tank 110 to cause an increase in the internal pressure of the storage tank 110.
즉 벙커링관리부(120)는 벙커링 시 리턴되는 증발가스를 재액화해 저장탱크(110)로 복귀시켜, 저장탱크(110)의 내압을 연료탱크(210a)의 내압 미만으로 유지할 수 있다. 이때 증발가스 리턴라인(L2)은 재액화장치(122)의 상류인 증발가스 압축기(121)의 유입단에 합류되거나 재액화장치(122)에 직접 연결되도록 마련될 수 있는데, 연료탱크(210a)의 내압이 증발가스 압축기(121) 하류의 압력에 대응되는 경우에는 증발가스 리턴라인(L2)으로부터 재액화장치(122)로 직접 증발가스가 전달될 수 있다.That is, the bunkering management unit 120 may liquefy the vaporized gas returned during bunkering to return to the storage tank 110 to maintain the internal pressure of the storage tank 110 below the internal pressure of the fuel tank 210a. At this time, the boil-off gas return line L2 may be provided to be joined to the inlet end of the boil-off gas compressor 121 upstream of the re-liquefaction device 122 or directly connected to the re-liquefaction device 122, the fuel tank 210a. When the internal pressure of the corresponds to the pressure downstream of the boil-off gas compressor 121, the boil-off gas can be delivered directly from the boil-off gas return line (L2) to the reliquefaction apparatus 122.
저장탱크(110)의 내압이 낮을수록 이송펌프(111)의 부하가 커지게 되므로, 벙커링관리부(120)는 저장탱크(110)의 내압이 연료탱크(210a)의 내압 이하인 선에서, 리턴되는 증발가스가 재액화 없이 저장탱크(110)에 공급되도록 하여 저장탱크(110)의 내압이 상승하게 할 수도 있다. As the internal pressure of the storage tank 110 is lower, the load of the transfer pump 111 becomes larger, so that the bunkering management unit 120 evaporates from the line where the internal pressure of the storage tank 110 is less than or equal to the internal pressure of the fuel tank 210a. Gas may be supplied to the storage tank 110 without reliquefaction, thereby increasing the internal pressure of the storage tank 110.
벙커링 선박(BV)은 벙커링을 하기 위한 정박 상태에서 재액화장치(122), 증발가스 압축기(121), 이송펌프(111) 등을 가동하기 위하여 비교적 큰 전력 확보가 필요하므로, 정박 시 발전엔진(130)이 가동되어야 한다. 이때 발전엔진(130)은 압력 조절라인(L3)에서 증발가스 압축기(121)의 하류로부터 분기되는 증발가스 소비라인(L4)을 통해 증발가스를 공급받아 소비할 수 있고, 이를 위해 증발가스 압축기(121)의 토출압력은 발전엔진(130)의 요구압력에 대응될 수 있다. The bunkering vessel (BV) requires relatively large power to operate the reliquefaction apparatus 122, the boil-off gas compressor 121, the transfer pump 111, etc. in the anchoring state for bunkering. 130) must be activated. In this case, the power generation engine 130 may receive and consume the boil-off gas through the boil-off gas consumption line L4 branched from the downstream of the boil-off gas compressor 121 in the pressure regulating line L3. The discharge pressure of 121 may correspond to the required pressure of the power generation engine 130.
발전엔진(130)은 저장탱크(110)에서 액화가스 소비라인(L5)을 통해 연료공급펌프(112), 기화기(113)를 거친 액화가스를 공급받아 소비할 수 있으며, 다만 발전엔진(130)이 가동되지 못하는 경우 등의 상황에서 저장탱크(110)의 증발가스를 소비하기 위해 증발가스 소비라인(L4)은 가스연소장치(140)(또는 보일러 등)에 추가로 연결될 수 있다.The power generation engine 130 may receive and consume the liquefied gas that has passed through the fuel supply pump 112 and the vaporizer 113 through the liquefied gas consumption line L5 in the storage tank 110, but the power generation engine 130 may be consumed. The evaporation gas consumption line L4 may be additionally connected to the gas combustion device 140 (or a boiler, etc.) in order to consume the evaporated gas of the storage tank 110 in a situation in which it is not operated.
증발가스 리턴라인(L2)을 통해 리턴되는 증발가스 역시 발전엔진(130) 등의 연료로 사용될 수 있으며, 이때 증발가스 리턴라인(L2)은 증발가스 압축기(121)의 상류로 연결될 수 있지만 이로 한정하는 것은 아니다.The boil-off gas returned through the boil-off gas return line (L2) may also be used as fuel such as the power generation engine (130), in which case the boil-off gas return line (L2) may be connected upstream of the boil-off gas compressor (121). It is not.
이하에서는 도 3을 참조하여 벙커링 과정에 대해 설명한다. 참고로 도 3에서 실선은 초기 내압이 서로 다른 연료탱크(210a)의 벙커링 시 내압 변화를 나타내며, 경사 점선은 벙커링되는 액화가스 양을 나타내고, 수평 점선은 저장탱크(110)의 내압을 의미한다.Hereinafter, the bunkering process will be described with reference to FIG. 3. For reference, in FIG. 3, the solid line indicates the change in the internal pressure during bunkering of the fuel tank 210a having different initial internal pressures, the inclined dotted line indicates the amount of liquefied gas bunkered, and the horizontal dotted line indicates the internal pressure of the storage tank 110.
먼저 벙커링 전에, 가스 처리 시스템은 재액화장치(122)를 이용해 벙커링 선박(BV)의 저장탱크(110)의 내압을 기설정압 이하로 낮춰둘 수 있다. 이때 기설정압은 도 3의 (A)에서는 0.2barG 내외이고 도 3의 (B)에서는 0.04barG 내외이다.First, prior to bunkering, the gas treatment system may lower the internal pressure of the storage tank 110 of the bunkering vessel BV using the reliquefaction apparatus 122 to a predetermined pressure or less. At this time, the preset pressure is about 0.2 barG in Fig. 3A and about 0.04 barG in Fig. 3B.
저장탱크(110)의 내압이 충분히 낮춰졌다면, 저장탱크(110)와 연료탱크(210a) 간에 벙커링 라인(L1)을 연결해 벙커링을 개시한다. 연료탱크(210a)는 극저온의 액화가스를 받기 위해 내부가 냉각된 상태(cool-down)일 수 있지만, 벙커링 도중 열이 연료탱크(210a) 내로 침투하는 등의 요인에 의해 연료탱크(210a)에서는 증발가스가 대량으로 발생하게 된다.If the internal pressure of the storage tank 110 is sufficiently lowered, the bunkering line L1 is connected between the storage tank 110 and the fuel tank 210a to start bunkering. The fuel tank 210a may be cooled down to receive the cryogenic liquefied gas, but in the fuel tank 210a due to factors such as heat penetrating into the fuel tank 210a during bunkering. Boil off gas is generated in large quantities.
이때 연료탱크(210a)를 보호하고자 증발가스를 벙커링 선박(BV)으로 되돌려야 하는데, 본 발명은 도 3에 나타난 것과 같이 벙커링이 진행되는 시간 내내 저장탱크(110)의 내압이 연료탱크(210a)의 내압 이하가 되도록 하여, 리턴되는 증발가스가 압축없이 전달되도록 할 수 있다.At this time, in order to protect the fuel tank 210a, the boil-off gas should be returned to the bunkering vessel (BV). As shown in FIG. 3, the internal pressure of the storage tank 110 is changed to the fuel tank 210a during the time of bunkering. It can be made to be below the internal pressure of, so that the returned boil-off gas is delivered without compression.
벙커링이 이루어지는 연료탱크(210a)는, 벙커링 전의 내압이 일례로 0.2/3.0/6.5barG일 수 있는데, 도 3의 (A)에 나타난 바와 같이 연료탱크(210a)의 초기 압력이 3.0barG 또는 6.5barG일 경우, 액화가스가 공급됨에 따라 연료탱크(210a)의 내압은 점차 감소하게 된다. 따라서 벙커링이 완료된 가스추진 선박(GFS)은, 연료탱크(210a)의 증발가스에 대한 처리없이 바로 추진이 가능한 상태가 된다. 이는 저장탱크(110)가 벙커링 전에 내압을 낮춘 후 벙커링을 수행하기 때문이다.In the fuel tank 210a in which bunkering is performed, the internal pressure before bunkering may be, for example, 0.2 / 3.0 / 6.5 barG, and as shown in FIG. 3A, the initial pressure of the fuel tank 210a may be 3.0 barG or 6.5 barG. In this case, as the liquefied gas is supplied, the internal pressure of the fuel tank 210a gradually decreases. Therefore, the gas propulsion vessel GFS in which the bunkering is completed is in a state in which propulsion can be performed immediately without treatment for the boil-off gas of the fuel tank 210a. This is because the storage tank 110 performs bunkering after lowering the internal pressure before bunkering.
다만 도 3의 (A)에서 연료탱크(210a)의 초기 내압이 0.2barG일 수 있는데, 이는 저장탱크(110)의 기설정압과 동일한 것으로서, 이 경우 연료탱크(210a)는 내압이 동일한 저장탱크(110)의 액화가스를 받으면서 증발가스가 생성됨에 따라 벙커링 과정에서 내압이 다소 상승할 수 있다.However, in FIG. 3A, the initial internal pressure of the fuel tank 210a may be 0.2 barG, which is the same as the preset pressure of the storage tank 110, in which case the fuel tank 210a has the same internal pressure as the storage tank ( As the boil-off gas is generated while receiving the liquefied gas of 110, the internal pressure may increase slightly during the bunkering process.
반면 도 3의 (B)의 경우에는 연료탱크(210a)의 초기 내압이 0.2barG인 경우에도 저장탱크(110)의 벙커링 전 내압이 그보다 작은 0.04barG로 준비되기 때문에, 3가지 초기 내압을 갖는 연료탱크(210a)는 벙커링 과정에서 모두 내압이 감소하게 되는 것을 확인할 수 있다.On the other hand, in the case of FIG. 3B, even when the initial internal pressure of the fuel tank 210a is 0.2 barG, since the internal pressure before bunkering of the storage tank 110 is prepared at a smaller value of 0.04 barG, fuel having three initial internal pressures Tank 210a can be seen that the internal pressure is reduced in all the bunkering process.
위와 같은 사례들 모두에서 여전히 증발가스는 압축 없이 가스추진 선박(GFS)으로부터 벙커링 선박(BV)으로 리턴될 수 있도록, 벙커링관리부(120)는 저장탱크(110)과 연료탱크(210a) 간의 압력차를 유지할 수 있다.In all of the above cases, the bunkering management unit 120 has a pressure difference between the storage tank 110 and the fuel tank 210a so that the boil-off gas can still be returned to the bunkering vessel BV from the gas propulsion vessel GFS without compression. Can be maintained.
구체적으로 벙커링 전의 내압이 제1 압력이고 벙커링 시 액화가스의 유입에 의해 내압이 하강하는 연료탱크(210a)에 벙커링하는 경우(도 3의 (A)에서 연료탱크(210a)의 내압이 3.0/6.5barG인 경우와 도 3의 (B) 모두의 경우), 벙커링관리부(120)는 벙커링 전 및 벙커링 시 저장탱크(110)의 내압을 연료탱크(210a)의 벙커링 완료 시의 내압(약 0.5bar 내외) 이하로 할 수 있다. Specifically, when the internal pressure before bunkering is the first pressure and when bunkering into the fuel tank 210a in which the internal pressure decreases due to inflow of liquefied gas during bunkering (in FIG. 3A), the internal pressure of the fuel tank 210a is 3.0 / 6.5. In the case of barG and both (B) of FIG. 3), the bunkering management unit 120 measures the internal pressure of the storage tank 110 before bunkering and at the time of bunkering of the fuel tank 210a (about 0.5 bar). )
반면 벙커링 전의 내압이 제2 압력이고 벙커링 시 증발가스의 발생에 의해 내압이 상승하는 연료탱크(210a)에 벙커링하는 경우(도 3의 (A)에서 연료탱크(210a)의 내압이 0.2barG인 경우), 벙커링관리부(120)는 벙커링 전 및 벙커링 시 저장탱크(110)의 내압을 연료탱크(210a)의 벙커링 시작 시의 내압(0.2barG) 이하로 할 수 있다.On the other hand, when the internal pressure before bunkering is the second pressure and when bunkering into the fuel tank 210a in which the internal pressure rises due to the generation of boil-off gas during bunkering (in FIG. 3A), the internal pressure of the fuel tank 210a is 0.2 barG. ), The bunkering management unit 120 may set the internal pressure of the storage tank 110 before the bunkering and at the time of bunkering to be less than the internal pressure (0.2 barG) at the start of bunkering of the fuel tank 210a.
이때 제1 압력은 기설정압 대비 0.05barG 내지 0.1barG 큰 값 이상의 압력으로 0.5barG 내지 8barG일 수 있고, 제2 압력은 기설정압 대비 0.05barG 내지 0.1barG 큰 값 미만의 압력으로 0.5barG 이하일 수 있지만, 수치를 이로 한정하는 것은 아니다.At this time, the first pressure may be 0.5barG to 8barG at a pressure greater than 0.05barG to 0.1barG greater than the preset pressure, and the second pressure may be 0.5barG or less at a pressure less than 0.05barG to 0.1barG greater than the preset pressure. The numerical value is not limited to this.
이상과 같이 본 실시예는, 벙커링 이전에 저장탱크(110)의 내압을 미리 낮춰둠으로써, 벙커링 시 연료탱크(210a)에서 발생되는 증발가스를 줄일 수 있으며, 또한 저장탱크(110)의 내압이 연료탱크(210a)의 내압 이하가 되도록 유지하여 연료탱크(210a)의 증발가스가 압축 없이 벙커링 선박(BV)에 리턴되도록 함으로써 가스추진 선박(GFS)의 H/D 압축기를 생략할 수 있다.As described above, in the present embodiment, by lowering the internal pressure of the storage tank 110 before the bunkering, it is possible to reduce the evaporated gas generated in the fuel tank 210a during the bunkering, and further, the internal pressure of the storage tank 110 is reduced. The H / D compressor of the gas propulsion vessel GFS may be omitted by maintaining the fuel tank 210a below the internal pressure so that the boil-off gas of the fuel tank 210a is returned to the bunkering vessel BV without compression.
도 4는 본 발명의 제2 실시예에 따른 가스 처리 시스템의 개념도이고, 도 5는 본 발명의 제2 실시예에 따른 가스 처리 시스템에서 내압 변화의 그래프이다.4 is a conceptual diagram of a gas treatment system according to a second embodiment of the present invention, and FIG. 5 is a graph of a breakdown pressure change in the gas treatment system according to the second embodiment of the present invention.
도 1과 함께 도 4 및 도 5를 참고하면, 본 발명의 제2 실시예는, 앞선 실시예 대비 연료탱크(210b)가 멤브레인 타입으로 마련된다는 점에서 차이가 있다. 이하에서는 본 실시예가 앞선 실시예 대비 달라지는 점 위주로 설명하도록 하며, 이하에서 설명을 생략하는 부분은 앞선 내용으로 갈음한다. 이는 후술하는 다른 실시예에서도 마찬가지임을 알려둔다.Referring to FIGS. 4 and 5 together with FIG. 1, the second embodiment of the present invention has a difference in that the fuel tank 210b is provided in a membrane type compared to the previous embodiment. Hereinafter, the present embodiment will be described based on the point that the present embodiment is different from the previous embodiment, and a part omitted from the description will be replaced with the above contents. This is also true in other embodiments described later.
본 실시예의 가스추진 선박(GFS)은, 도 4에 나타난 바와 같이 컨테이너 운반선 등으로서, 선내에 연료탱크(210b)를 탑재할 수 있고, 이때 연료탱크(210b)는 멤브레인 타입일 수 있다. 또는 멤브레인 타입의 설계압력과 동일/유사한 설계압력을 갖는 독립형 탱크로서 B 타입(자립각형 타입인 SPB 등)일 수도 있음을 알려둔다.As shown in FIG. 4, the gas propulsion vessel GFS of the present embodiment may be a container carrier or the like, and a fuel tank 210b may be mounted on board a ship, and the fuel tank 210b may be a membrane type. Alternatively, it is noted that the tank B may be a type B (eg, a self-contained square type SPB) having a design pressure that is the same as or similar to that of the membrane type.
이하에서는 도 5를 참조하여 본 실시예의 벙커링 과정에 대해 설명한다. 참고로 도 3과 마찬가지로, 도 5에서 실선은 초기 내압이 서로 다른 연료탱크(210b)의 벙커링 시 내압 변화를 나타내며, 경사 점선은 벙커링되는 액화가스 양을 나타내고, 수평 점선은 저장탱크(110)의 내압을 의미한다.Hereinafter, the bunkering process of the present embodiment will be described with reference to FIG. 5. For reference, as in FIG. 3, in FIG. 5, the solid line represents the change in the internal pressure during bunkering of the fuel tank 210b having different initial internal pressures, the inclined dotted line represents the amount of liquefied gas bunkered, and the horizontal dotted line represents the storage tank 110. It means internal pressure.
가스 처리 시스템은 벙커링 전에 기설정압 이하로 저장탱크(110)의 내압을 낮추게 되며, 이때 기설정압은 도 5의 (A)에서는 0.2barG 내외이고 도 5의 (B)에서는 0.04barG 내외이다.The gas treatment system lowers the internal pressure of the storage tank 110 below the preset pressure before the bunkering, wherein the preset pressure is about 0.2 barG in FIG. 5A and about 0.04 barG in FIG. 5B.
저장탱크(110)의 내압을 미리 낮춰둔 후 벙커링을 시작하게 되는데, 제2 실시예의 경우 앞선 제1 실시예와 마찬가지로 벙커링이 진행되는 시간 내내 저장탱크(110)의 내압이 연료탱크(210b)의 내압 이하가 되도록 함으로써 HD 압축기에 의한 압축 없이 연료탱크(210b)에서 벙커링 선박(BV)으로 증발가스가 리턴된다.After the internal pressure of the storage tank 110 is lowered in advance, bunkering starts. In the case of the second embodiment, the internal pressure of the storage tank 110 is maintained in the fuel tank 210b for the entire time during the bunkering. By bringing the pressure below the internal pressure, the boil-off gas is returned from the fuel tank 210b to the bunkering vessel BV without compression by the HD compressor.
여기서 연료탱크(210b)의 내압은 벙커링 전의 내압이 0.63/0.2/0.05barG일 수 있는데, 저장탱크(110)의 벙커링 전 내압이 0.2barG인 도 5의 (A)에서 연료탱크(210b)의 내압이 0.63barG인 경우와 저장탱크(110)의 벙커링 전 내압이 0.04barG인 도 5의 (B)에서 연료탱크(210b)의 내압이 0.63/0.2barG인 경우, 액화가스가 공급됨에 따라 연료탱크(210b)의 내압은 점차 감소하게 된다. Here, the internal pressure of the fuel tank 210b may be 0.63 / 0.2 / 0.05 barG before bunkering, and the internal pressure of the fuel tank 210b in FIG. 5A where the internal pressure before bunkering of the storage tank 110 is 0.2 barG. When the internal pressure of the fuel tank 210b is 0.63 / 0.2 barG in the case of 0.63 barG and the internal pressure before bunkering of the storage tank 110 is 0.04 barG in FIG. 5B, the fuel tank ( The internal pressure of 210b) gradually decreases.
이 경우는 벙커링 전의 내압이 제1 압력(기설정압 대비 0.05barG 내지 0.1barG 큰 값 이상의 압력으로 0.5barG 내지 1barG)이고 벙커링 시 액화가스의 유입에 의해 내압이 하강하는 연료탱크(210b)에 벙커링하는 경우로서, 벙커링관리부(120)는 벙커링 전 및 벙커링 시 저장탱크(110)의 내압을 연료탱크(210b)의 벙커링 완료 시의 내압(약 0.5bar 내외) 이하로 할 수 있다.In this case, the internal pressure before bunkering is the first pressure (0.5 barG to 1 barG at a pressure greater than 0.05 barG to 0.1 barG relative to the preset pressure), and when bunkering, the bunkering is carried out in the fuel tank 210b in which the internal pressure falls due to the inflow of liquefied gas. As a case, the bunkering management unit 120 may set the internal pressure of the storage tank 110 before or after bunkering to an internal pressure (about 0.5 bar or less) at the time of bunkering of the fuel tank 210b.
반면 저장탱크(110)의 벙커링 전 내압이 0.2barG인 도 5의 (A)에서 연료탱크(210b)의 내압이 0.2barG인 경우와 저장탱크(110)의 벙커링 전 내압이 0.04barG인 도 5의 (B)에서 연료탱크(210b)의 내압이 0.05barG인 경우, 연료탱크(210b)는 내압이 동일/유사한 저장탱크(110)의 액화가스를 받으면서 증발가스가 생성됨에 따라 벙커링 과정에서 내압이 다소 상승할 수 있다.On the other hand, when the internal pressure of the fuel tank 210b is 0.2 barG and the internal pressure before the bunkering of the storage tank 110 is 0.04 barG in FIG. 5 (A) where the internal pressure before the bunkering of the storage tank 110 is 0.2 barG. When the internal pressure of the fuel tank 210b is 0.05 barG in (B), the internal pressure of the fuel tank 210b is slightly increased in the bunkering process as the boil-off gas is generated while receiving the liquefied gas of the storage tank 110 having the same / similar internal pressure. Can rise.
이 경우는 벙커링 전의 내압이 제2 압력(기설정압 대비 0.05barG 내지 0.1barG 큰 값 미만의 압력으로 0.5barG 이하)이고 벙커링 시 증발가스의 발생에 의해 내압이 상승하는 연료탱크(210b)에 벙커링하는 경우로서, 벙커링관리부(120)는 벙커링 전 및 벙커링 시 저장탱크(110)의 내압을 연료탱크(210b)의 벙커링 시작 시의 내압(0.2barG) 이하로 할 수 있다.In this case, the bunkering in the fuel tank 210b where the internal pressure before bunkering is the second pressure (0.5 barG or less at a pressure less than 0.05 barG to 0.1 barG larger than the preset pressure) and the internal pressure rises due to the generation of boil-off gas during bunkering As a case, the bunkering management unit 120 may set the internal pressure of the storage tank 110 before the bunkering and at the time of bunkering to be less than the internal pressure (0.2 barG) at the start of bunkering of the fuel tank 210b.
다만 본 실시예는, 저장탱크(110)의 벙커링 전 내압이 0.2barG인 도 5의 (A)에서 연료탱크(210b)의 벙커링 전 내압이 0.05barG 이하인 경우가 존재하며, 이 경우에는 벙커링 전에 내압이 기설정압 이하로 낮아진 저장탱크(110)의 압력이 벙커링 전의 연료탱크(210b)의 내압보다 큰 압력인 경우로서, 제1 실시예에서와 상이한 처리가 이루어진다. However, in the present embodiment, the internal pressure before bunkering of the fuel tank 210b may be less than 0.05 barG in FIG. 5A where the internal pressure before bunkering of the storage tank 110 is 0.2 barG, and in this case, the internal pressure before bunkering As a case where the pressure of the storage tank 110 lowered below this preset pressure is a pressure larger than the internal pressure of the fuel tank 210b before bunkering, a process different from that in the first embodiment is performed.
이때 벙커링 초기에는 저장탱크(110)의 내압이 연료탱크(210b)의 내압보다 높게 형성되므로, 증발가스의 freeflow 리턴이 이루어지지 못한다. 따라서 본 실시예는, 벙커링 시작 시점부터 일정시점까지 증발가스 리턴라인(L2)을 통한 증발가스의 전달을 차단하여 연료탱크(210b)가 축압되도록 한다.At this time, since the internal pressure of the storage tank 110 is formed higher than the internal pressure of the fuel tank 210b in the early stage of bunkering, freeflow of the boil-off gas cannot be made. Therefore, in this embodiment, the fuel tank 210b is accumulated by blocking the transfer of the boil-off gas through the boil-off gas return line L2 from the start of the bunkering to a certain point.
증발가스의 리턴이 차단되면 연료탱크(210b)의 내압은 증발가스 발생으로 인해 점차 상승하게 되며, 연료탱크(210b)의 내압이 저장탱크(110)의 내압을 넘어서는 지점인 일정시점부터 벙커링 완료 시점까지는, 앞선 실시예와 마찬가지로 벙커링관리부(120)를 통해 저장탱크(110)의 내압을 연료탱크(210b)의 내압 미만으로 유지하여, 증발가스 리턴라인(L2)을 통해 증발가스를 압축 없이 전달할 수 있다.When the return of the boil-off gas is blocked, the internal pressure of the fuel tank 210b gradually increases due to the generation of the boil-off gas, and the bunkering is completed from a point in time at which the internal pressure of the fuel tank 210b exceeds the internal pressure of the storage tank 110. Until, by maintaining the internal pressure of the storage tank 110 to less than the internal pressure of the fuel tank 210b through the bunkering management unit 120 as in the previous embodiment, it is possible to deliver the evaporated gas through the boil-off gas return line (L2) without compression. have.
즉 본 실시예는 설계압력이 대기압 수준인 연료탱크(210b)에 벙커링하는 경우, 저장탱크(110)의 내압을 미리 낮추더라도 연료탱크(210b)의 벙커링 전 내압보다 높은 상황에서 벙커링이 시작되는 상황이 발생할 것을 대비하여, 벙커링 시작부터 일정시간동안 연료탱크(210b)가 축압에 의해 내압이 상승하면서 저장탱크(110)의 내압을 넘어서도록 제어할 수 있다.That is, in the present embodiment, when the design pressure is bunkered to the fuel tank 210b having the atmospheric pressure level, even if the internal pressure of the storage tank 110 is lowered in advance, the bunkering is started in a situation higher than the internal pressure before bunkering of the fuel tank 210b. In preparation for this, the fuel tank 210b may be controlled to exceed the internal pressure of the storage tank 110 while the internal pressure rises due to the pressure accumulation for a predetermined time from the start of the bunkering.
구체적으로 벙커링관리부(120)는, 벙커링 시작 시점부터 일정시점까지는 증발가스 리턴을 차단하고, 일정시점부터 벙커링 완료 시점 사이에서는 리턴되는 증발가스를 재액화해 저장탱크(110)로 복귀시켜서 저장탱크(110) 내압을 연료탱크(210b) 내압 미만으로 유지할 수 있다.Specifically, the bunkering management unit 120 blocks the return of the boil-off gas from the start of the bunkering to a certain point, and re-liquefies the return of the boil-off gas from the point of time to the completion of the bunkering to the storage tank 110 to store the storage tank 110. ) Internal pressure may be maintained below the internal pressure of the fuel tank 210b.
이와 같이 본 실시예는, 멤브레인 타입의 연료탱크(210b)에 대한 벙커링을 구현하기 위한 것으로, 벙커링 시작 시 저장탱크(110)의 내압이 연료탱크(210b)의 내압보다 높은 경우를 대비해 연료탱크(210b)의 부분적 축압 제어를 구현하여, 증발가스의 리턴에 압축기가 사용될 필요가 없도록 할 수 있다.As such, the present embodiment is to implement bunkering for the fuel tank 210b of the membrane type, and in case the internal pressure of the storage tank 110 is higher than the internal pressure of the fuel tank 210b when the bunkering starts, Partial accumulating control of 210b may be implemented to avoid the need for a compressor to be used to return the boil-off gas.
참고로, Note that, 이하 도Less than 6 및 도 7을 통해 설명하는 제3, 제4  3rd and 4th description through 6 and FIG. 실시예는Example , 압축/열교환/감압으로 증발가스를 부분 Part of the boil-off gas by compression / heat exchange / decompression 재액화해Reliquefy 벙커링Bunkering 선박( Ship( BVBV )의 탱크 내압을 낮춰 벙커링 시 증발가스 발생을 줄이는 사상을 기반으로 한 것이다.It is based on the idea of lowering the internal pressure of the tank to reduce the generation of boil-off gas during bunkering.
이하에서 각 실시예에 대해 자세히 설명한다.Hereinafter, each embodiment will be described in detail.
도 6은 본 발명의 제3 실시예에 따른 가스 처리 시스템의 공정흐름도이다.6 is a process flow diagram of a gas treatment system according to a third embodiment of the present invention.
도 6을 참조하면, 본 발명의 제3 실시예에 따른 가스 처리 시스템은, 증발가스를 냉매로 액화해 리턴하는 재액화장치(122)를 구비하는 벙커링관리부(120)를 대신하여(또는 더하여), 냉매와의 열교환 없이 저장탱크(110)의 증발가스를 압축, 냉각, 감압해 리턴하여 저장탱크(110)의 내압을 조절하는 벙커링관리부(120)를 구비할 수 있다.Referring to FIG. 6, the gas treatment system according to the third embodiment of the present invention replaces (or in addition to) the bunkering management unit 120 having a reliquefaction apparatus 122 for liquefying and returning evaporated gas to a refrigerant. In addition, the bunkering management unit 120 may adjust the internal pressure of the storage tank 110 by compressing, cooling, and reducing the evaporation gas of the storage tank 110 without heat exchange with the refrigerant.
다만 본 실시예를 포함한 이하 실시예들에서, 벙커링관리부(120)가 벙커링 전에 저장탱크(110)의 내압을 기설정압(0.04/0.2barG 내외) 이하로 낮추고 벙커링 시 증발가스 리턴을 차단해 연료탱크(210a, 210b)가 축압되도록 하거나 벙커링 시 증발가스가 압축 없이 전달되도록 저장탱크(110) 내압 < 연료탱크(210a, 210b) 내압을 유지하는 제어는, 앞선 실시예들과 동일함을 알려둔다.However, in the following embodiments including the present embodiment, the bunkering management unit 120 lowers the internal pressure of the storage tank 110 to less than the preset pressure (about 0.04 / 0.2 barG or less) before bunkering and cuts off the return of the evaporated gas during bunkering to the fuel tank. It is noted that the control of maintaining the internal pressure of the storage tank 110 <the internal pressure of the fuel tanks 210a and 210b so that the 210a and 210b are accumulated or delivered without compressing during the bunkering is the same as in the previous embodiments.
벙커링관리부(120)는, 저압 압축기(121a), 부스팅 압축기(121b), 증발가스 열교환기(125), 감압밸브(123), 기액분리기(124)를 포함하며, 압력 조절라인(L3)은 저장탱크(110)를 기준으로 순환 유로를 형성하며 위 구성들을 차례로 직렬로 연결할 수 있다.The bunkering management unit 120 includes a low pressure compressor 121a, a boosting compressor 121b, a boil-off gas heat exchanger 125, a pressure reducing valve 123, and a gas-liquid separator 124, and the pressure control line L3 is stored. A circulation passage may be formed based on the tank 110, and the above components may be connected in series.
저압 압축기(121a)는, 복수 개가 병렬로 마련되어 저장탱크(110)의 증발가스를 압축해 발전엔진(130)으로 공급한다. 이를 위해 저압 압축기(121a)의 하류에서 증발가스 소비라인(L4)이 분기되어 발전엔진(130) 등으로 연결되며, 저압 압축기(121a)는 발전엔진(130)의 요구압력에 적합한 토출압력을 구비할 수 있다.A plurality of low pressure compressors 121a are provided in parallel to compress the evaporated gas of the storage tank 110 and supply the compressed gas to the power generation engine 130. To this end, the evaporative gas consumption line L4 is branched downstream of the low pressure compressor 121a to be connected to the power generation engine 130, and the low pressure compressor 121a has a discharge pressure suitable for the required pressure of the power generation engine 130. can do.
부스팅 압축기(121b)는, 다단으로 마련되며 저압 압축기(121a)와 발전엔진(130) 사이에서 분기된 위치(압력 조절라인(L3)을 기준으로 저압 압축기(121a)의 하류)에 마련되며 잉여의 증발가스를 150barG 이상으로 압축한다.The boosting compressor 121b is provided in multiple stages and is provided at a position branched between the low pressure compressor 121a and the power generation engine 130 (downstream of the low pressure compressor 121a on the basis of the pressure regulating line L3) and is provided with a surplus. Compress the boil-off gas to 150 barG or more.
본 실시예는 증발가스를 냉매 열교환 없이 압축 후 감압하는 것으로 액화하기 위해 줄-톰슨 효과를 활용하며, 이를 위해 증발가스의 감압 전 압력을 150barG 이상으로 하여야 한다. 따라서 본 실시예는 발전엔진(130)으로의 증발가스 공급을 위해 저압 압축기(121a)를 두면서도, 감압을 이용한 증발가스 액화를 위해 부스팅 압축기(121b)를 추가로 마련한다.This embodiment utilizes the Joule-Thompson effect to liquefy the boil-off gas by compressing it after decompression without heat exchange. For this purpose, the pressure before the boil-off gas should be 150 barG or more. Therefore, the present embodiment further provides a boosting compressor 121b for liquefying the boil-off gas using the reduced pressure while placing the low-pressure compressor 121a for supplying the boil-off gas to the power generation engine 130.
증발가스 열교환기(125)는, 부스팅 압축기(121b)에서 압축된 증발가스를 저장탱크(110)에서 배출되는 증발가스와 열교환하여, 압축된 고압의 증발가스를 냉각할 수 있다. 반면 저장탱크(110)에서 배출된 증발가스는 증발가스 열교환기(125)에서 열교환에 의해 다소 가열되므로, 저압 압축기(121a)의 유입 온도가 상승하여 저압 압축기(121a)가 견뎌야 하는 온도를 높일 수 있다.The boil-off gas heat exchanger 125 may heat the boil-off gas compressed by the boosting compressor 121b with the boil-off gas discharged from the storage tank 110 to cool the compressed high-pressure boil-off gas. On the other hand, since the boil-off gas discharged from the storage tank 110 is slightly heated by heat exchange in the boil-off gas heat exchanger 125, the inlet temperature of the low pressure compressor 121a is increased to increase the temperature at which the low pressure compressor 121a must withstand. have.
증발가스 열교환기(125)는, 저장탱크(110)에서 저압 압축기(121a)로 전달되는 증발가스의 스트림과, 부스팅 압축기(121b)에서 감압밸브(123)로 전달되는 고압 증발가스의 스트림을 서로 열교환시키도록 적어도 두 스트림을 구비하는 구조를 갖는다.The boil-off gas heat exchanger 125 exchanges a stream of boil-off gas delivered from the storage tank 110 to the low pressure compressor 121a and a stream of high-pressure boil-off gas delivered from the boosting compressor 121b to the pressure reducing valve 123. And having at least two streams for heat exchange.
이때 증발가스 리턴라인(L2)이 저장탱크(110)와 증발가스 열교환기(125) 사이로 증발가스를 전달하도록 마련됨에 따라, 저장탱크(110)에서 저압 압축기(121a)로 전달되는 스트림은, 저장탱크(110)의 증발가스에 연료탱크(210a, 210b)의 증발가스가 혼합된 것일 수 있다.At this time, as the boil-off gas return line L2 is provided to transfer the boil-off gas between the storage tank 110 and the boil-off gas heat exchanger 125, the stream delivered from the storage tank 110 to the low pressure compressor 121a is stored. The boil-off gas of the fuel tanks 210a and 210b may be mixed with the boil-off gas of the tank 110.
여기에 더하여, 증발가스 열교환기(125)는 증발가스 리턴라인(L2)을 통해 전달되는 연료탱크(210a, 210b)의 증발가스를 열교환할 수 있도록, 증발가스 리턴라인(L2)이 경유하는 스트림을 추가로 구비할 수 있다. 즉 증발가스 리턴라인(L2)은 증발가스 열교환기(125)를 경유한 후 저장탱크(110)와 저압 압축기(121a) 사이의 압력 조절라인(L3)에 합류될 수 있다.In addition, the boil-off gas heat exchanger 125 may pass through the boil-off gas return line L2 so as to heat-exchange the boil-off gas of the fuel tanks 210a and 210b delivered through the boil-off gas return line L2. It may be further provided. That is, the boil-off gas return line L2 may be joined to the pressure regulating line L3 between the storage tank 110 and the low pressure compressor 121a after passing through the boil-off gas heat exchanger 125.
다만 증발가스 리턴라인(L2)은 증발가스 열교환기(125)를 우회하도록 마련될 수도 있는바, 증발가스 리턴라인(L2)은 증발가스 열교환기(125)를 경유하거나 우회하여 저장탱크(110)와 증발가스 열교환기(125) 사이로 증발가스를 전달하도록 마련된다.However, the boil-off gas return line (L2) may be provided to bypass the boil-off gas heat exchanger 125, the boil-off gas return line (L2) via the boil-off gas heat exchanger (125) or bypass the storage tank (110) And the boil-off gas between the boil-off gas heat exchanger 125.
이때 증발가스 리턴라인(L2)이 증발가스 열교환기(125)를 우회하도록 하는 것은 가스추진 선박(GFS)으로부터 회수되는 증발가스의 냉열을 활용할 필요가 없는 경우로서, 발전엔진(130)에 공급되지 않고 남는 잉여의 증발가스가 적거나 없는 경우 등일 수 있다.At this time, the boil-off gas return line (L2) to bypass the boil-off gas heat exchanger 125 is a case where it is not necessary to utilize the cold heat of the boil-off gas recovered from the gas propulsion vessel (GFS), it is not supplied to the power generation engine (130) It may be the case that there is little or no surplus evaporated gas remaining.
감압밸브(123)는, 부스팅 압축기(121b)에서 압축되고 증발가스 열교환기(125)에서 냉각된 증발가스를 감압하여 액화한다. 감압밸브(123)는 150barG 이상으로 압축된 후 냉각된 증발가스를 1 내지 10barG로 감압하여 증발가스의 적어도 일부를 액화시킬 수 있다.The pressure reducing valve 123 decompresses and liquefies the boil-off gas compressed by the boosting compressor 121b and cooled in the boil-off gas heat exchanger 125. The pressure reducing valve 123 may liquefy at least a portion of the boil-off gas by compressing the cooled boil-off gas to 1 to 10 barG after being compressed to 150 barG or more.
기액분리기(124)는, 액화된 증발가스를 기액 분리하여 액상(LBOG)은 저장탱크(110)로 리턴시키며, 기상(flash gas)은 저장탱크(110)에서 증발가스 열교환기(125)로 전달되는 증발가스에 혼합할 수 있다.The gas-liquid separator 124 separates the liquefied evaporated gas into gas-liquid and returns the liquid phase (LBOG) to the storage tank 110, and the flash gas is transferred from the storage tank 110 to the boil-off gas heat exchanger 125. It can be mixed with the boil-off gas.
또는 기액분리기(124)에서 분리된 기상은 증발가스와 합류하지 않고 증발가스 열교환기(125)에서 별도의 스트림을 통해 유동하면서 열교환한 뒤, 저압 압축기(121a)의 상류에서 증발가스와 합류되거나 또는 발전엔진(130)이나 보일러 등에 의해 소비되도록 할 수도 있다.Alternatively, the gaseous phase separated from the gas-liquid separator 124 exchanges heat while flowing through a separate stream in the evaporating gas heat exchanger 125 without joining the evaporating gas, and then joins the evaporating gas upstream of the low pressure compressor 121a. It may be to be consumed by the power generation engine 130, a boiler or the like.
이러한 본 실시예의 벙커링관리부(120)는, 복수 개가 병렬 배치된 저압 압축기(121a)+부스팅 압축기(121b)를 포함하는 증발가스 압축기(121)를 구성하여, 벙커링 전에 저장탱크(110)의 내압을 기설정압 이하로 낮추기 위해 복수 개의 저압 압축기(121a)를 병렬 운전하여 저장탱크(110)의 증발가스를 충분히 흡입함으로써, 저장탱크(110)의 내압 하강을 빠르게 구현할 수 있다.The bunkering management unit 120 of this embodiment constitutes an evaporative gas compressor 121 including a plurality of low pressure compressors 121a + boosting compressors 121b arranged in parallel, so that the internal pressure of the storage tank 110 is reduced before bunkering. In order to lower the pressure below the preset pressure, the plurality of low pressure compressors 121a may be operated in parallel to sufficiently suck the evaporated gas from the storage tank 110, thereby rapidly reducing the internal pressure drop of the storage tank 110.
따라서 본 실시예는, 벙커링 전에 저장탱크(110)의 내압을 신속하고 충분하게 낮춰둠으로써, 벙커링 시 저장탱크(110)에서 발생하는 증발가스의 양을 줄여 벙커링 효율을 높일 수 있다.Therefore, the present embodiment, by lowering the internal pressure of the storage tank 110 quickly and sufficiently before bunkering, it is possible to increase the bunkering efficiency by reducing the amount of evaporated gas generated in the storage tank 110 during bunkering.
도 7은 본 발명의 제4 실시예에 따른 가스 처리 시스템의 공정흐름도이다.7 is a process flow diagram of a gas treatment system according to a fourth embodiment of the present invention.
도 7을 참조하면 본 발명의 제4 실시예에 따른 가스 처리 시스템은, 앞선 제3 실시예 대비 벙커링관리부(120)의 증발가스 압축기(121)가 다르게 구성될 수 있다.Referring to FIG. 7, in the gas treatment system according to the fourth embodiment of the present invention, the boil-off gas compressor 121 of the bunkering management unit 120 may be configured differently from the above-described third embodiment.
본 실시예의 벙커링관리부(120)는, 발전엔진(130)에 증발가스를 공급하기 위한 저압 압축기(121a)와, 줄-톰슨 효과를 통해 증발가스를 액화하기 위한 고압 압축기(121c)를 마련하되, 저압 압축기(121a)와 고압 압축기(121c)를 병렬로 마련할 수 있다. The bunkering management unit 120 of the present embodiment is provided with a low pressure compressor 121a for supplying boil-off gas to the power generation engine 130 and a high pressure compressor 121c for liquefying boil-off gas through the Joule-Thomson effect. The low pressure compressor 121a and the high pressure compressor 121c can be provided in parallel.
이때 고압 압축기(121c)는 중간단에 증발가스 소비라인(L4)이 연결되어, 중간단에서 압축된 증발가스를 발전엔진(130)으로 공급함으로써, 저압 압축기(121a)가 다단으로 마련된 고압 압축기(121c)의 일부에 의하여 백업될 수 있다.At this time, the high pressure compressor 121c is connected to the boil-off gas consumption line L4 at the middle stage and supplies the boil-off gas compressed at the middle stage to the power generation engine 130 so that the low pressure compressor 121a is provided in multiple stages. Can be backed up by part of 121c).
본 실시예의 벙커링관리부(120)는, 고압 압축기(121c)를 이용하며 증발가스를 150barG 이상으로 가압한 후, 증발가스 열교환기(125)에서 저장탱크(110)로부터 배출된 증발가스를 이용해 냉각하고, 감압밸브(123), 기액분리기(124)를 거쳐 저장탱크(110)로 리턴시킬 수 있다.The bunkering management unit 120 of the present embodiment uses a high pressure compressor 121c and pressurizes the boil-off gas to 150 barG or more, and then cools it by using the boil-off gas discharged from the storage tank 110 in the boil-off gas heat exchanger 125. The gas may be returned to the storage tank 110 through the pressure reducing valve 123 and the gas-liquid separator 124.
이때 벙커링관리부(120)는, 저장탱크(110)의 액화가스 저장량에 따라 저압 압축기(121a)와 고압 압축기(121c)를 독립적으로 택일 운전할 수 있다. 일례로 저장탱크(110)의 액화가스 저장량이 많을 경우(증발가스량이 많은 Laden voyage 등)에는 고압 압축기(121c)를 이용하여 중간단의 증발가스 일부를 발전엔진(130)에 공급하면서 최종단의 증발가스를 재액화해 저장탱크(110)로 리턴할 수 있으며, 반면 저장탱크(110)의 액화가스 저장량이 적을 경우(증발가스량이 적은 Ballast voyage 등)에는 저압 압축기(121a)를 이용하여 증발가스가 발전엔진(130) 등에 의해 소비되고 저장탱크(110)로 리턴되지 않도록 할 수 있다.At this time, the bunkering management unit 120 may independently operate the low pressure compressor 121a and the high pressure compressor 121c independently according to the amount of liquefied gas stored in the storage tank 110. For example, when the storage tank 110 has a large amount of liquefied gas storage (such as Laden voyage with a large amount of evaporation gas), the high-pressure compressor 121c is used to supply a portion of the intermediate stage boil-off gas to the power generation engine 130 while supplying a portion of the final stage. Evaporated gas may be re-liquefied and returned to the storage tank 110. On the other hand, when the storage tank 110 has a low amount of liquefied gas storage (eg, a small amount of evaporated gas, a ballast voyage, etc.), the low pressure compressor 121a may be used to produce the evaporated gas. It may be consumed by the power generation engine 130 or the like and not returned to the storage tank 110.
이와 같이 본 실시예는, 감압을 이용한 증발가스 액화를 구현하기 위한 고압 압축기(121c)가 발전엔진(130)으로의 증발가스 공급을 위한 저압 압축기(121a)와 병렬로 구비되도록 하고, 운항 상태에 따라 고압 압축기(121c)와 저압 압축기(121a)를 택일 가동하여 증발가스 압축기(121)의 가동 효율을 높일 수 있다.Thus, the present embodiment, the high pressure compressor 121c for implementing the boil-off gas liquefaction using the reduced pressure is provided in parallel with the low-pressure compressor 121a for supplying the boil-off gas to the power generation engine 130, Accordingly, the high pressure compressor 121c and the low pressure compressor 121a may be alternatively operated to increase the operating efficiency of the boil-off gas compressor 121.
참고로, Note that, 이하 도Less than 8  8 내지 도To 10을 통해 설명하는 제5 내지 제7  5th to 7th description through 10 실시예는Example , 냉매로 액화가스를 Liquefied gas with refrigerant 과냉Subcooling 리턴해Return 벙커링Bunkering 선박( Ship( BVBV )의 탱크 내압을 낮춰 To lower the tank internal pressure 벙커링Bunkering 시 증발가스 발생을 줄이는 사상을 기반으로 한 것이다. It is based on the idea of reducing the generation of municipal boil-off gas.
이하에서 각 실시예에 대해 자세히 설명한다.Hereinafter, each embodiment will be described in detail.
도 8은 본 발명의 제5 실시예에 따른 가스 처리 시스템의 공정흐름도이다.8 is a process flow diagram of a gas treatment system according to a fifth embodiment of the present invention.
도 8을 참조하면, 본 발명의 제5 실시예에 따른 가스 처리 시스템은, 벙커링관리부(120)가 증발가스를 냉매로 완전 재액화하거나 압축/냉각/감압해 부분 재액화하는 대신, 액화가스를 냉매로 과냉해 리턴하여 저장탱크(110)의 내압을 조절할 수 있다.Referring to FIG. 8, in the gas treatment system according to the fifth embodiment of the present invention, instead of the bunkering management unit 120 completely reliquefying or compressing / cooling / depressurizing the boiled gas with a refrigerant, the gaseous liquefied gas may be partially reliquefied. The internal pressure of the storage tank 110 may be adjusted by supercooling and returning the refrigerant.
이를 위해 벙커링관리부(120)는, 과냉장치(126), 냉매공급부(127)를 구비한다. 과냉장치(126)는 액화가스를 냉매로 과냉시킬 수 있으며, 과냉되는 액화가스의 온도는 대기압에서 액화가스의 비등점(-163도씨)보다 낮은 온도(일례로 -170도씨 내외)일 수 있다.For this purpose, the bunkering management unit 120 includes a subcooling device 126 and a refrigerant supply unit 127. The subcooling apparatus 126 may supercool the liquefied gas with a refrigerant, and the temperature of the liquefied gas to be subcooled may be a temperature lower than the boiling point (-163 degrees Celsius) of the liquefied gas at atmospheric pressure (for example, around -170 degrees Celsius). .
냉매공급부(127)는, 질소나 혼합냉매 등의 제한되지 않는 물질인 냉매를 과냉장치(126)에 공급하여 액화가스의 과냉을 구현한다. 냉매공급부(127)는 냉매 압축기(1271), 냉매 쿨러(1272), 냉매 팽창기(1273), 냉매 열교환기(1274), 냉매간 열교환기(1275)를 구비하며, 냉매 순환라인(L7)이 위 구성들을 차례로 연결하면서 냉매가 순환하는 유로를 형성한다.The coolant supply unit 127 supplies a coolant, which is not limited to nitrogen or a mixed refrigerant, to the subcooler 126 to realize subcooling of the liquefied gas. Refrigerant supply unit 127 is provided with a refrigerant compressor (1271), refrigerant cooler (1272), refrigerant expander (1273), refrigerant heat exchanger (1274), between the refrigerant exchanger (1275), the refrigerant circulation line (L7) The flow paths through which the refrigerant circulates are formed while connecting the components in sequence.
냉매 압축기(1271)는, 냉매를 압축한다. 압축된 냉매의 압력은 10barG 내외일 수 있지만 이로 한정되는 것은 아니며, 과냉 효율을 높이기 위하여 다양한 수치의 압력이 사용될 수 있다.The refrigerant compressor 1271 compresses the refrigerant. The pressure of the compressed refrigerant may be about 10 barG, but is not limited thereto, and various values of pressure may be used to increase the supercooling efficiency.
냉매 쿨러(1272)는, 냉매 압축기(1271)에 의하여 압축되면서 가열된 냉매를 다양한 냉 에너지로 냉각시킬 수 있다. 냉매 쿨러(1272)는 냉매 압축기(1271)의 하류에 마련되며, 냉매 압축기(1271)가 다단으로 마련될 경우 냉매 압축기(1271)의 각 단에 마련될 수도 있다.The refrigerant cooler 1272 may cool the heated refrigerant while being compressed by the refrigerant compressor 1271 with various cold energy. The refrigerant cooler 1272 may be provided downstream of the refrigerant compressor 1271, and may be provided at each stage of the refrigerant compressor 1271 when the refrigerant compressor 1271 is provided in multiple stages.
냉매 팽창기(1273)는, 압축된 냉매를 팽창시킨다. 압축 후 팽창에 의해 감압되는 냉매는 앞선 감압밸브(123)에서와 유사하게 냉매의 온도를 충분히 떨어뜨릴 수 있으며, 팽창된 냉매는 과냉장치(126)에 전달되어 액화가스를 과냉시키는데 사용된다.The refrigerant expander 1273 expands the compressed refrigerant. The refrigerant decompressed by expansion after compression can sufficiently reduce the temperature of the refrigerant similarly to the preceding pressure reducing valve 123, and the expanded refrigerant is transferred to the subcooling device 126 and used to supercool the liquefied gas.
냉매 열교환기(1274)는, 냉매 압축기(1271)에서 압축된 냉매를 저장탱크(110)에서 발전엔진(130)으로 공급되는 증발가스로 냉각한다. 이때 냉매 열교환기(1274)는 도면에 나타난 바와 같이 냉매 압축기(1271)와 과냉장치(126) 사이에 마련될 수 있지만, 이와 달리 냉매 열교환기(1274)는 냉매 압축기(1271)와 과냉장치(126) 사이의 어떠한 지점에서도 설치 가능하며, 냉매 쿨러(1272)를 대체할 수도 있다.The refrigerant heat exchanger (1274) cools the refrigerant compressed by the refrigerant compressor (1271) with the evaporated gas supplied from the storage tank (110) to the power generation engine (130). At this time, the refrigerant heat exchanger (1274) may be provided between the refrigerant compressor (1271) and the subcooler (126) as shown in the drawing, on the other hand, the refrigerant heat exchanger (1274) and the refrigerant compressor (1271) and the subcooler (126). It can be installed at any point between the), and may replace the refrigerant cooler (1272).
냉매간 열교환기(1275)는, 압축된 냉매와 과냉장치(126)에서 가열된 냉매를 열교환할 수 있다. 구체적으로 냉매간 열교환기(1275)는 압축 후 팽창 전의 냉매를, 과냉장치(126)에서 가열되고 압축 전인 냉매와 열교환할 수 있다.The refrigerant exchanger heat exchanger 1275 may exchange heat between the compressed refrigerant and the refrigerant heated in the subcooler 126. Specifically, the inter-refrigerant heat exchanger 1275 may heat-exchange the refrigerant before compression after expansion with the refrigerant that is heated in the subcooling device 126 and before compression.
본 실시예는 냉매공급부(127)가 N2 Bryton cycle로 마련되어 냉매간 열교환기(1275)를 구비할 수 있는 것이지만, 냉매간 열교환기(1275)는 얼마든 생략 가능하다.In the present exemplary embodiment, the refrigerant supply unit 127 may be provided as an N2 Bryton cycle to include an inter-refrigerant heat exchanger 1275, but the inter-refrigerant heat exchanger 1275 may be omitted.
이와 같이 본 실시예는, 벙커링 전에 저장탱크(110)의 내압을 낮추기 위해 액화가스의 과냉 리턴을 이용하되, 과냉을 위한 냉매가 발전엔진(130)으로 공급되는 증발가스의 냉열을 활용하도록 함으로써 에너지 사용 효율을 개선할 수 있다.As described above, the present embodiment uses the subcooled return of the liquefied gas to lower the internal pressure of the storage tank 110 before the bunkering, but utilizes the cold heat of the boiled gas supplied to the power generation engine 130 for the subcooled energy. It can improve the use efficiency.
도 9는 본 발명의 제6 실시예에 따른 가스 처리 시스템의 공정흐름도이다.9 is a process flow diagram of a gas treatment system according to a sixth embodiment of the present invention.
도 9를 참조하면 본 발명의 제6 실시예에 따른 가스 처리 시스템은, 앞선 제5 실시예 대비 냉매공급부(127)가 냉매를 저장탱크(110)에서 발전엔진(130)으로 공급되는 액화가스로 냉각할 수 있다.Referring to FIG. 9, in the gas treatment system according to the sixth embodiment of the present invention, the refrigerant supply unit 127 is a liquefied gas supplied from the storage tank 110 to the power generation engine 130 in comparison with the fifth embodiment. Can be cooled.
저장탱크(110)의 액화가스는 기화기(113)를 거쳐 발전엔진(130)으로 공급되는데, 본 실시예는 기화되어야 하는 액화가스가 냉매의 냉각에 사용되도록 하여, 벙커링 전 액화가스의 과냉 효과를 높이는 동시에 기화기(113)의 부하를 낮추거나 기화기(113)를 생략할 수 있다.The liquefied gas of the storage tank 110 is supplied to the power generation engine 130 via the vaporizer 113, the present embodiment is to ensure that the liquefied gas to be vaporized is used for cooling the refrigerant, the supercooling effect of the liquefied gas before bunkering At the same time, the height of the carburetor 113 can be lowered or the carburetor 113 can be omitted.
본 실시예의 냉매 열교환기(1274)는 냉매 순환라인(L7)과 증발가스 소비라인(L4)이 경유하는 앞선 실시예와 달리, 냉매 순환라인(L7)과 액화가스 소비라인(L5)이 경유하도록 마련됨은 물론이다. 또한 앞선 실시예에서 액화가스 과냉을 위한 펌프는 이송펌프(111) 또는 별도의 펌프일 수 있는 반면, 본 실시예에서 액화가스 과냉을 위한 펌프로 연료공급펌프(112)를 사용할 수 있다.Refrigerant heat exchanger (1274) of the present embodiment is different from the previous embodiment through the refrigerant circulation line (L7) and the boil-off gas consumption line (L4), so that the refrigerant circulation line (L7) and liquefied gas consumption line (L5) via Of course it is prepared. In addition, while the pump for liquefied gas subcooling in the previous embodiment may be a transfer pump 111 or a separate pump, the fuel supply pump 112 may be used as a pump for liquefied gas subcooling in this embodiment.
또한 본 발명은 본 실시예와 앞선 실시예를 조합하여, 냉매를 발전엔진(130)으로 공급되는 증발가스 및 액화가스 중 적어도 어느 하나로 냉각하는 실시예를 포함할 수 있으며, 이 경우 냉매/액화가스/증발가스 스트림을 구비한 냉매 열교환기(1274)를 단독 구비하거나, 냉매/액화가스 스트림의 냉매 열교환기(1274)와 냉매/증발가스 스트림의 냉매 열교환기(1274)를 구비하는 것이 가능하다.In addition, the present invention may include an embodiment of cooling the refrigerant to at least one of the boil-off gas and the liquefied gas supplied to the power generation engine 130 by combining the present embodiment and the previous embodiment, in this case refrigerant / liquefied gas It is possible to have a refrigerant heat exchanger 1274 alone / with a evaporation gas stream or to have a refrigerant heat exchanger 1274 of a refrigerant / liquefied gas stream and a refrigerant heat exchanger 1274 of a refrigerant / evaporation gas stream.
도 10은 본 발명의 제7 실시예에 따른 가스 처리 시스템의 공정흐름도이다.10 is a process flow diagram of a gas treatment system according to a seventh embodiment of the present invention.
도 10을 참조하면 본 발명의 제7 실시예에 따른 가스 처리 시스템은, 냉매 열교환기(1274)가 냉매간 열교환기(1275)를 대체하도록 마련될 수 있다.Referring to FIG. 10, the gas treatment system according to the seventh exemplary embodiment of the present invention may be provided such that a refrigerant heat exchanger 1274 replaces an intercoolant heat exchanger 1275.
즉 냉매 열교환기(1274)는, 압축된 냉매와 과냉장치(126)에서 가열된 냉매 및 발전엔진(130)으로 공급되는 액화가스 또는 증발가스를 열교환하는 적어도 3개의 스트림으로 이루어져, 냉매간 열교환을 포함하는 구조로 마련될 수 있다.That is, the refrigerant heat exchanger (1274) is composed of at least three streams for heat-exchanging the compressed refrigerant, the refrigerant heated in the subcooling device (126) and the liquefied gas or the boil-off gas supplied to the power generation engine (130), thereby performing heat exchange between the refrigerants. It may be provided in a structure containing.
따라서 본 실시예는 냉매간 열교환기(1275)를 별도로 구비하지 않으므로 냉매공급부(127)의 구성을 컴팩트하게 줄일 수 있다.Therefore, since the present embodiment does not include a heat exchanger 1275 between refrigerants, the configuration of the refrigerant supply unit 127 may be compactly reduced.
참고로, 이하 도 11 내지 도 13을 통해 설명하는 제8 내지 제11 실시예는 , 벙커링 선박(BV) 의 경우 벙커링 시 이송펌프(111) 작동을 위해 발전엔진(130)을 충분히 가동해야 하므로, 가스추진 선박(GFS)과 달리 정박 상태에서 연료 소모량이 많음을 고려, 전체 시스템을 효율적으로 최적화한 것이다. For reference, in the eighth to eleventh embodiments described below with reference to FIGS . 11 to 13, in the case of the bunkering vessel BV, the power generation engine 130 must be sufficiently operated to operate the transfer pump 111 during the bunkering. Unlike gas-propelled vessels (GFS), the system is optimized efficiently considering the high fuel consumption in the berth.
이하에서 각 실시예에 대해 자세히 설명한다.Hereinafter, each embodiment will be described in detail.
도 11은 본 발명의 제8 실시예에 따른 가스 처리 시스템의 공정흐름도이다.11 is a process flowchart of the gas treatment system according to the eighth embodiment of the present invention.
도 11을 참조하면 본 발명의 제8 실시예에 따른 가스 처리 시스템은, 앞선 실시예들에서 개시된 내용과 유사하게, 저장탱크(110)의 액화가스 또는 증발가스를 냉매로 냉각해 리턴하는 냉각장치(122, 126)를 이용해 저장탱크(110)의 내압을 조절하는 벙커링관리부(120)를 구비한다.Referring to FIG. 11, a gas treating system according to an eighth exemplary embodiment of the present invention is a cooling apparatus that cools and returns a liquefied gas or an evaporated gas of a storage tank 110 to a refrigerant similarly to the contents disclosed in the above embodiments. Bunkering management unit 120 for adjusting the internal pressure of the storage tank 110 by using (122, 126).
본 실시예는, 액화가스를 과냉 리턴해 저장탱크(110)가 증발가스를 더 받을 수 있도록 하는 냉각장치(122, 126)의 가동을 전제하거나 또는 연료탱크(210a, 210b)에서 리턴되는 증발가스를 액화 리턴하는 냉각장치(122, 126)의 가동을 전제하여, 저장탱크(110)가 가스추진 선박(GFS)으로부터 전달받을 수 있는 증발가스 최대 리턴량이 직간접적으로 도출될 수 있는데, 이러한 증발가스 최대 리턴량을, 벙커링 시 증발가스 리턴라인(L2)을 통해 전달되는 증발가스 유량 미만으로 설정할 수 있다.The present embodiment presupposes the operation of the cooling apparatuses 122 and 126 to subcool the liquefied gas to allow the storage tank 110 to receive further evaporated gas, or the evaporated gas returned from the fuel tanks 210a and 210b. On the premise of the operation of the cooling apparatuses 122 and 126 returning the liquefied gas, the maximum return amount of the evaporated gas that the storage tank 110 can receive from the gas propulsion vessel GFS can be directly or indirectly derived. The maximum return amount may be set to less than the flow rate of the boil-off gas delivered through the boil-off gas return line L2 during bunkering.
즉 본 실시예는, 냉각장치(122, 126)를 가동하는 것만으로는, 가스추진 선박(GFS)에서 벙커링 선박(BV)으로 리턴되는 증발가스를 모두 소화할 수 없도록 할 수 있다. 다만 앞서 설명한 바와 같이 벙커링 선박(BV)은 가스추진 선박(GFS) 대비 정박 시 필요전력이 크다는 점을 고려하여, 본 실시예는 저장탱크(110)의 증발가스를 압축해 발전엔진(130)에 공급하는 증발가스 압축기(121)의 증발가스 처리량과, 냉각장치(122, 126)를 고려한 저장탱크(110)의 증발가스 최대 리턴량의 합이, 벙커링 시 리턴되는 증발가스 유량 이상이 되도록 할 수 있다.That is, in this embodiment, it is possible to extinguish all the boil-off gas returned from the gas propulsion vessel GFS to the bunkering vessel BV only by operating the cooling apparatuses 122 and 126. However, as described above, in consideration of the fact that the bunkering vessel BV needs more power when anchored than the gas propulsion vessel GFS, the present embodiment compresses the evaporated gas of the storage tank 110 to the power generation engine 130. The sum of the amount of boil-off gas supplied by the boil-off gas compressor 121 and the maximum amount of boil-off gas of the storage tank 110 considering the cooling devices 122 and 126 may be equal to or higher than the amount of boil-off gas returned during bunkering. have.
이를 정리하면 다음과 같다.This is summarized as follows.
냉각장치(122, 126) 고려한 최대 리턴량 < 벙커링 리턴량 < 냉각장치(122, 126) 고려한 최대 리턴량 + 압축기 처리량 Cooling device (122, 126) up to the return amount <bunkering on return amount <chiller system (122, 126) up to the return amount of the compressor throughput, taking into account consideration +
즉 본 실시예는, 벙커링 도중 증발가스 압축기(121)에 의해 충분한 증발가스가 발전엔진(130)에 공급되는 것을 고려하여, 냉각장치(122, 126)의 제원을 축소하여 CAPEX 절감이 가능하다. 다만 증발가스 압축기(121)는, 복수 개가 병렬로 마련되어 병렬 운전이 가능할 수 있으며, 위 수식에서 압축기 처리량은 병렬의 증발가스 압축기(121)를 모두 가동하는 경우의 처리량일 수 있다.That is, in the present embodiment, in consideration of supplying sufficient evaporation gas to the power generation engine 130 by the evaporation gas compressor 121 during bunkering, it is possible to reduce the capex by reducing the specifications of the cooling apparatuses 122 and 126. However, a plurality of boil-off gas compressors 121 may be provided in parallel, and parallel operation may be possible. In the above formula, the compressor throughput may be a throughput when all the boil-off gas compressors 121 operate in parallel.
도 12는 본 발명의 제9 실시예에 따른 가스 처리 시스템의 공정흐름도이다.12 is a process flowchart of the gas treatment system according to the ninth embodiment of the present invention.
도 12를 참조하면 본 발명의 제9 실시예에 따른 가스 처리 시스템은, 앞선 실시예와 다른 방향으로 전체 시스템을 최적화한다.Referring to FIG. 12, the gas treatment system according to the ninth embodiment of the present invention optimizes the entire system in a direction different from the above embodiment.
구체적으로 본 실시예는, 냉각장치(122, 126)를 고려한 저장탱크(110)의 증발가스 최대 리턴량이 벙커링 시 증발가스 리턴 유량 이상이 되도록 한다. 즉 다음과 같다.Specifically, the present embodiment, the maximum return amount of the boil-off gas of the storage tank 110 considering the cooling devices 122 and 126 is equal to or higher than the boil-off gas return flow rate during bunkering. That is as follows.
벙커링Bunkering  city 리턴량Return amount < 냉각장치(122, 126) 고려한 최대  < Maximum considering chillers 122 and 126 리턴량Return amount
이 경우 본 실시예는, 저장탱크(110)의 증발가스를 압축해 발전엔진(130)에 공급하는 증발가스 압축기(121)가 생략될 수 있고, 대신 저장탱크(110)의 액화가스가 펌핑, 기화되어 발전엔진(130)에 공급될 수 있다.In this case, in this embodiment, the boil-off gas compressor 121 for compressing the boil-off gas of the storage tank 110 and supplying it to the power generation engine 130 may be omitted. Instead, the liquefied gas of the storage tank 110 is pumped, It may be vaporized and supplied to the power generation engine 130.
즉 본 실시예는, 냉각장치(122, 126)의 제원을 벙커링 시 리턴되는 증발가스 유량을 커버할 수 있도록 하면서, 증발가스 압축기(121)를 생략하여 전체 시스템을 간략하게 구성할 수 있다.That is, in the present embodiment, the entire system may be simplified by omitting the boil-off gas compressor 121 while allowing the specifications of the cooling devices 122 and 126 to cover the boil-off flow rate returned when bunkering.
도 13은 본 발명의 제10 실시예에 따른 가스 처리 시스템의 공정흐름도이다.13 is a process flow diagram of a gas treatment system according to a tenth embodiment of the present invention.
도 13을 참조하면 본 발명의 제10 실시예에 따른 가스 처리 시스템은, 앞선 제8, 제9 실시예와 다른 방향으로 시스템을 최적화하였다.Referring to FIG. 13, the gas treatment system according to the tenth embodiment of the present invention is optimized in a direction different from those of the eighth and ninth embodiments.
구체적으로 본 실시예는, 제9 실시예와 유사하게 냉각장치(122, 126)를 고려한 저장탱크(110)의 증발가스 최대 리턴량이 벙커링 시 증발가스 리턴 유량 이상이 되도록 하면서, 저장탱크(110)의 증발가스가 발전엔진(130)에 공급되도록 할 수 있고, 다음과 같이 정리된다.In detail, in the present embodiment, similarly to the ninth embodiment, the storage tank 110 has a maximum return amount of the evaporated gas in the storage tank 110 considering the cooling devices 122 and 126 to be equal to or higher than the evaporation gas return flow rate during bunkering. Of the boil-off gas can be supplied to the power generation engine 130, it is arranged as follows.
벙커링Bunkering  city 리턴량Return amount < 냉각장치(122, 126) 고려한 최대  < Maximum considering chillers 122 and 126 리턴량Return amount < 냉각장치(122, 126) 고려한 최대  < Maximum considering chillers 122 and 126 리턴량Return amount + 압축기 처리량 + Compressor throughput
다만 본 실시예는 저장탱크(110)의 증발가스를 압축해 발전엔진(130)에 공급하는 증발가스 압축기(121)가 단독으로 마련되도록 할 수 있다. 즉 증발가스 압축기(121)가 서로 백업 가능한 제8 실시예와 달리, 본 실시예는 증발가스 압축기(121) 간의 백업은 불가능하다.In this embodiment, however, the boil-off gas compressor 121 for compressing the boil-off gas of the storage tank 110 and supplying the boil-off gas to the power generation engine 130 may be provided alone. That is, unlike the eighth embodiment in which the boil-off gas compressor 121 can back up each other, the back-up between the boil-off gas compressors 121 is impossible in this embodiment.
그러나 본 실시예는 이미 냉각장치(122, 126)를 고려한 증발가스의 최대 리턴량이 벙커링 시 증발가스의 리턴 유량을 넘어서도록 구성되기 때문에, 증발가스 압축기(121) 간의 백업을 보장할 필요가 없다.However, since the present embodiment is configured such that the maximum return amount of the boil-off gas considering the cooling devices 122 and 126 already exceeds the return flow rate of the boil-off gas at the time of bunkering, it is not necessary to guarantee the backup between the boil-off compressors 121.
다만 발전엔진(130)으로의 연료 공급을 백업하기 위해서, 본 실시예는 증발가스 또는 액화가스 중 적어도 어느 하나가 발전엔진(130)에 공급 가능하도록 마련하여, 증발가스의 공급이 액화가스의 공급으로 백업되도록 할 수 있다.However, in order to back up the fuel supply to the power generation engine 130, the present embodiment is provided so that at least one of the boil-off gas or liquefied gas can be supplied to the power generation engine 130, so that the supply of the boil-off gas supplies the liquefied gas. Can be backed up.
이와 같이 본 실시예는, 벙커링 시 리턴되는 증발가스는 충분히 처리할 수 있도록 하면서, 증발가스 압축기(121)를 단독으로만 구성하되 액화가스로 연료 공급을 백업하도록 구성하여, 설치 및 운영 비용을 절감할 수 있다.As such, the present embodiment, while allowing the boil-off gas returned during bunkering to be sufficiently processed, by configuring the boil-off gas compressor 121 alone, backed up the fuel supply to the liquefied gas, to reduce the installation and operation costs can do.
본 발명은 앞서 설명된 실시예 외에도, 상기 실시예들 중 적어도 둘 이상의 조합 또는 적어도 하나 이상의 상기 실시예와 공지기술의 조합에 의해 발생하는 실시예들을 모두 포괄한다. The present invention encompasses all of the embodiments generated by the combination of at least two or more of the above embodiments or a combination of at least one or more of the above embodiments and the known art, in addition to the embodiments described above.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당해 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함은 명백하다고 할 것이다.Although the present invention has been described in detail through specific examples, it is intended to describe the present invention in detail, and the present invention is not limited thereto, and should be understood by those skilled in the art within the technical spirit of the present invention. It is obvious that the modifications and improvements are possible.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.All simple modifications and variations of the present invention fall within the scope of the present invention, and the specific scope of protection of the present invention will be apparent from the appended claims.
[부호의 설명][Description of the code]
BV: 벙커링 선박 GFS: 가스추진 선박BV: bunkering vessel GFS: gas propulsion vessel
110: 저장탱크 111: 이송펌프110: storage tank 111: transfer pump
112: 연료공급펌프 113: 기화기112: fuel supply pump 113: carburetor
120: 벙커링관리부 121: 증발가스 압축기120: bunkering management unit 121: boil-off gas compressor
121a: 저압 압축기 121b: 부스팅 압축기121a: low pressure compressor 121b: boosting compressor
121c: 고압 압축기 122: 재액화장치, 냉각장치121c: high pressure compressor 122: reliquefaction unit, chiller
123: 압력조절밸브, 감압밸브 124: 기액분리기123: pressure regulating valve, pressure reducing valve 124: gas-liquid separator
125: 증발가스 열교환기 126: 과냉장치, 냉각장치125: boil-off gas heat exchanger 126: subcooling device, cooling device
127: 냉매공급부 130: 발전엔진127: refrigerant supply unit 130: power generation engine
140: 가스연소장치 210a, 210b: 연료탱크140: gas combustion device 210a, 210b: fuel tank
220: 연료처리부 230: 추진엔진220: fuel processor 230: propulsion engine
L1: 벙커링 라인 L2: 증발가스 리턴라인L1: bunkering line L2: boil-off gas return line
L3: 압력 조절라인 L4: 증발가스 소비라인L3: Pressure regulating line L4: Boil off gas consumption line
L5: 액화가스 소비라인 L6: 가스 공급라인L5: Liquefied Gas Consumption Line L6: Gas Supply Line
L7: 냉매 순환라인L7: refrigerant circulation line

Claims (22)

  1. 벙커링 선박의 저장탱크로부터 가스추진 선박에 마련된 C 타입의 연료탱크로 액화가스를 전달하는 가스 처리 시스템으로서,A gas processing system for transferring liquefied gas from a storage tank of a bunkering vessel to a C type fuel tank provided in a gas propulsion vessel,
    상기 저장탱크의 액화가스를 상기 연료탱크로 공급하는 벙커링 라인;A bunkering line for supplying the liquefied gas of the storage tank to the fuel tank;
    상기 저장탱크의 증발가스를 냉매로 액화해 리턴하여 상기 저장탱크의 내압을 조절하는 벙커링관리부; 및A bunkering manager configured to adjust the internal pressure of the storage tank by liquefying and returning the evaporated gas of the storage tank to a refrigerant; And
    상기 벙커링 라인을 통한 벙커링 시 상기 연료탱크에서 발생하는 증발가스를 상기 벙커링 선박으로 전달하는 증발가스 리턴라인을 포함하며,When the bunkering through the bunkering line includes a boil-off gas return line for transmitting the boil-off gas generated in the fuel tank to the bunkering vessel,
    상기 벙커링관리부는,The bunkering management unit,
    벙커링 전에 상기 저장탱크의 내압을 기설정압 이하로 낮추고, 벙커링 시 상기 저장탱크의 내압을 상기 연료탱크의 내압 미만으로 유지하여 상기 증발가스 리턴라인을 통해 증발가스가 별도의 압축기에 의한 압축 없이 전달되도록 하는 것을 특징으로 하는 가스 처리 시스템.Before bunkering, the internal pressure of the storage tank is lowered below a predetermined pressure, and during bunkering, the internal pressure of the storage tank is maintained below the internal pressure of the fuel tank so that the boil-off gas is delivered through the boil-off gas return line without compression by a separate compressor. Gas processing system, characterized in that.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 저장탱크는, 멤브레인 타입 또는 C 타입의 탱크이며,The storage tank is a tank of the membrane type or C type,
    상기 기설정압은, 0.04barG 또는 0.2barG인 것을 특징으로 하는 가스 처리 시스템.The predetermined pressure is a gas treatment system, characterized in that 0.04barG or 0.2barG.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 벙커링관리부는, 증발가스를 액화하는 재액화장치를 포함하며,The bunkering management unit includes a reliquefaction apparatus for liquefying boil-off gas,
    상기 증발가스 리턴라인은, 상기 재액화장치로 증발가스를 전달하는 것을 특징으로 하는 가스 처리 시스템.The boil-off gas return line, characterized in that for delivering the boil-off gas to the reliquefaction apparatus.
  4. 제 3 항에 있어서, 상기 벙커링관리부는, According to claim 3, The bunkering management unit,
    벙커링 시 상기 증발가스 리턴라인을 통해 전달되는 증발가스를 재액화해 상기 저장탱크로 복귀시켜, 상기 저장탱크의 내압을 상기 연료탱크의 내압 미만으로 유지하는 것을 특징으로 하는 가스 처리 시스템.And re-liquefy the vaporized gas delivered through the boil-off gas return line to the storage tank during bunkering to maintain the internal pressure of the storage tank below the internal pressure of the fuel tank.
  5. 제 1 항에 있어서, 상기 벙커링관리부는,According to claim 1, The bunkering management unit,
    벙커링 전의 내압이 제1 압력이고 벙커링 시 액화가스의 유입에 의해 내압이 하강하는 상기 연료탱크에 벙커링하는 경우, 벙커링 전 및 벙커링 시 상기 저장탱크의 내압을 상기 연료탱크의 벙커링 완료 시의 내압 이하로 하는 것을 특징으로 하는 가스 처리 시스템.When the internal pressure before bunkering is the first pressure and when bunkering into the fuel tank whose internal pressure falls due to inflow of liquefied gas during bunkering, the internal pressure of the storage tank before bunkering and during bunkering is equal to or less than the internal pressure at the completion of bunkering of the fuel tank. Gas processing system, characterized in that.
  6. 제 5 항에 있어서, 상기 벙커링관리부는,The method of claim 5, wherein the bunkering management unit,
    벙커링 전의 내압이 제2 압력이고 벙커링 시 증발가스의 발생에 의해 내압이 상승하는 상기 연료탱크에 벙커링하는 경우, 벙커링 전 및 벙커링 시 상기 저장탱크의 내압을 상기 연료탱크의 벙커링 시작 시의 내압 이하로 하는 것을 특징으로 하는 가스 처리 시스템.When bunkering in the fuel tank where the internal pressure before bunkering is the second pressure and the internal pressure rises due to the generation of boil-off gas during bunkering, the internal pressure of the storage tank before bunkering and during bunkering is below the internal pressure at the start of bunkering of the fuel tank. Gas processing system, characterized in that.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 제1 압력은, 상기 기설정압 대비 0.05barG 내지 0.1barG 큰 값 이상의 압력이며, The first pressure is a pressure of 0.05 barG to 0.1 barG or more than the preset pressure,
    상기 제2 압력은, 상기 기설정압 대비 0.05barG 내지 0.1barG 큰 값 미만의 압력인 것을 특징으로 하는 가스 처리 시스템.The second pressure is a gas treatment system, characterized in that the pressure less than 0.05barG to 0.1barG greater than the preset pressure.
  8. 제 6 항에 있어서,The method of claim 6,
    상기 제1 압력은, 0.5barG 내지 8barG이며,The first pressure is 0.5barG to 8barG,
    상기 제2 압력은, 0.5barG 이하인 것을 특징으로 하는 가스 처리 시스템.The second pressure is 0.5 barG or less, characterized in that the gas treatment system.
  9. 벙커링 선박의 저장탱크로부터 가스추진 선박에 마련된 연료탱크로 액화가스를 전달하는 가스 처리 시스템으로서,A gas processing system for transferring liquefied gas from a storage tank of a bunkering vessel to a fuel tank provided in a gas propulsion vessel,
    상기 저장탱크의 액화가스를 상기 연료탱크로 공급하는 벙커링 라인;A bunkering line for supplying the liquefied gas of the storage tank to the fuel tank;
    상기 저장탱크의 증발가스를 냉매와의 열교환 없이 압축, 냉각, 감압해 리턴하여 상기 저장탱크의 내압을 조절하는 벙커링관리부; 및A bunkering manager configured to adjust the internal pressure of the storage tank by returning the evaporated gas of the storage tank by compressing, cooling, and reducing the pressure without heat exchange with a refrigerant; And
    상기 벙커링 라인을 통한 벙커링 시 상기 연료탱크에서 발생하는 증발가스를 상기 벙커링 선박으로 전달하는 증발가스 리턴라인을 포함하며,When the bunkering through the bunkering line includes a boil-off gas return line for transmitting the boil-off gas generated in the fuel tank to the bunkering vessel,
    상기 벙커링관리부는,The bunkering management unit,
    벙커링 전에 상기 저장탱크의 내압을 기설정압 이하로 낮추고, Before bunkering, the internal pressure of the storage tank is lowered below a preset pressure,
    벙커링 시 상기 증발가스 리턴라인을 통한 증발가스의 전달을 차단하여 상기 연료탱크가 축압되도록 하거나, 상기 저장탱크의 내압을 상기 연료탱크의 내압 미만으로 유지하여 상기 증발가스 리턴라인을 통해 증발가스가 별도의 압축기에 의한 압축 없이 전달되도록 하는 것을 특징으로 하는 가스 처리 시스템.When bunkering, the fuel tank is accumulated by blocking the transfer of the boil-off gas through the boil-off gas return line, or the boil-off gas is separated through the boil-off gas return line by maintaining the internal pressure of the storage tank below the pressure of the fuel tank. Gas processing system, characterized in that to be delivered without compression by the compressor.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 저장탱크는, 멤브레인 타입 또는 C 타입의 탱크이며,The storage tank is a tank of the membrane type or C type,
    상기 기설정압은, 0.04barG 또는 0.2barG인 것을 특징으로 하는 가스 처리 시스템.The predetermined pressure is a gas treatment system, characterized in that 0.04barG or 0.2barG.
  11. 제 9 항에 있어서,The method of claim 9,
    상기 벙커링관리부는, 압축된 증발가스를 상기 저장탱크에서 배출되는 증발가스와 열교환하는 증발가스 열교환기를 포함하며,The bunkering management unit includes a boil-off gas heat exchanger for heat-exchanging the compressed boil-off gas with the boil-off gas discharged from the storage tank,
    상기 증발가스 리턴라인은, 상기 저장탱크와 상기 증발가스 열교환기 사이로 증발가스를 전달하는 것을 특징으로 하는 가스 처리 시스템.The boil-off gas return line, characterized in that for delivering the boil-off gas between the storage tank and the boil-off gas heat exchanger.
  12. 제 11 항에 있어서, 상기 증발가스 리턴라인은,The method of claim 11, wherein the boil-off gas return line,
    상기 증발가스 열교환기를 경유하거나 우회하여 상기 저장탱크와 상기 증발가스 열교환기 사이로 증발가스를 전달하도록 마련되는 것을 특징으로 하는 가스 처리 시스템.The gas treatment system characterized in that it is provided to transfer the boil-off gas between the storage tank and the boil-off gas heat exchanger by passing through or bypassing the boil-off gas heat exchanger.
  13. 제 11 항에 있어서, 상기 벙커링관리부는,The method of claim 11, wherein the bunkering management unit,
    병렬로 마련되며 상기 저장탱크의 증발가스를 압축해 발전엔진으로 공급하는 복수 개의 저압 압축기;A plurality of low pressure compressors provided in parallel and compressing the boil-off gas of the storage tank and supplying the compressed gas to a power generation engine;
    상기 저압 압축기와 상기 발전엔진 사이에서 분기된 위치에 마련되며 잉여의 증발가스를 150barG 이상으로 압축하는 다단의 부스팅 압축기; 및A multistage boosting compressor provided at a branched position between the low pressure compressor and the power generation engine and compressing the excess evaporated gas to 150 barG or more; And
    상기 부스팅 압축기에서 압축된 증발가스를 감압하여 액화하는 감압밸브를 포함하며,It includes a pressure reducing valve for liquefying by reducing the evaporated gas compressed in the boosting compressor,
    상기 증발가스 열교환기는,The boil-off gas heat exchanger,
    상기 부스팅 압축기와 상기 감압밸브 사이에서 고압의 증발가스를 상기 저장탱크에서 배출되는 증발가스로 냉각하는 것을 특징으로 하는 가스 처리 시스템.And a high pressure boil-off gas between the boosting compressor and the pressure reducing valve to boil-off gas discharged from the storage tank.
  14. 제 13 항에 있어서, 상기 벙커링관리부는,The method of claim 13, wherein the bunkering management unit,
    벙커링 전에 상기 저장탱크의 내압을 기설정압 이하로 낮추기 위해, 복수 개의 상기 저압 압축기를 병렬 운전하여 상기 저장탱크의 증발가스를 흡입하는 것을 특징으로 하는 가스 처리 시스템.And a plurality of low pressure compressors are operated in parallel to suck the evaporated gas from the storage tank in order to lower the internal pressure of the storage tank below a predetermined pressure before bunkering.
  15. 제 11 항에 있어서, 상기 벙커링관리부는,The method of claim 11, wherein the bunkering management unit,
    상기 저장탱크의 증발가스를 압축해 발전엔진으로 공급하는 저압 압축기;A low pressure compressor for compressing the evaporated gas of the storage tank and supplying the compressed gas to a power generation engine;
    상기 저압 압축기와 병렬로 마련되며 상기 저장탱크의 증발가스를 150barG 이상으로 압축하는 다단의 고압 압축기; 및A multistage high pressure compressor provided in parallel with the low pressure compressor and compressing the evaporated gas of the storage tank to 150 barG or more; And
    상기 고압 압축기에서 압축된 증발가스를 감압하여 액화하는 감압밸브를 포함하며,It includes a pressure reducing valve for liquefying by reducing the evaporated gas compressed in the high pressure compressor,
    상기 증발가스 열교환기는,The boil-off gas heat exchanger,
    상기 고압 압축기와 상기 감압밸브 사이에서 고압의 증발가스를 상기 저장탱크에서 배출되는 증발가스로 냉각하며,Between the high pressure compressor and the pressure reducing valve to cool the high pressure evaporated gas with the evaporated gas discharged from the storage tank,
    상기 고압 압축기는, 중간단의 증발가스를 상기 발전엔진으로 공급하는 것을 특징으로 하는 가스 처리 시스템.The high pressure compressor is a gas processing system, characterized in that for supplying the intermediate stage boil-off gas to the power generation engine.
  16. 제 15 항에 있어서, 상기 벙커링관리부는,The method of claim 15, wherein the bunkering management unit,
    상기 저장탱크의 액화가스 저장량에 따라 상기 저압 압축기와 상기 고압 압축기를 독립적으로 운전하는 것을 특징으로 하는 가스 처리 시스템.And independently operate the low pressure compressor and the high pressure compressor according to the amount of liquefied gas stored in the storage tank.
  17. 벙커링 선박의 저장탱크로부터 가스추진 선박에 마련된 연료탱크로 액화가스를 전달하는 가스 처리 시스템으로서,A gas processing system for transferring liquefied gas from a storage tank of a bunkering vessel to a fuel tank provided in a gas propulsion vessel,
    상기 저장탱크의 액화가스를 상기 연료탱크로 공급하는 벙커링 라인;A bunkering line for supplying the liquefied gas of the storage tank to the fuel tank;
    상기 저장탱크의 액화가스를 냉매로 과냉해 리턴하여 상기 저장탱크의 내압을 조절하는 벙커링관리부; 및A bunkering management unit which controls the internal pressure of the storage tank by subcooling the liquefied gas of the storage tank with a refrigerant; And
    상기 벙커링 라인을 통한 벙커링 시 상기 연료탱크에서 발생하는 증발가스를 상기 벙커링 선박으로 전달하는 증발가스 리턴라인을 포함하며,When the bunkering through the bunkering line includes a boil-off gas return line for transmitting the boil-off gas generated in the fuel tank to the bunkering vessel,
    상기 벙커링관리부는,The bunkering management unit,
    벙커링 전에 상기 저장탱크의 내압을 기설정압 이하로 낮추고, Before bunkering, the internal pressure of the storage tank is lowered below a preset pressure,
    벙커링 시 상기 증발가스 리턴라인을 통한 증발가스의 전달을 차단하여 상기 연료탱크가 축압되도록 하거나, 상기 저장탱크의 내압을 상기 연료탱크의 내압 미만으로 유지하여 상기 증발가스 리턴라인을 통해 증발가스가 별도의 압축기에 의한 압축 없이 전달되도록 하는 것을 특징으로 하는 가스 처리 시스템.When bunkering, the fuel tank is compressed by blocking the transfer of the boil-off gas through the boil-off gas return line, or the boil-off gas is separated through the boil-off gas return line by maintaining the internal pressure of the storage tank below the pressure of the fuel tank. Gas processing system, characterized in that to be delivered without compression by the compressor.
  18. 제 17 항에 있어서,The method of claim 17,
    상기 저장탱크는, 멤브레인 타입 또는 C 타입의 탱크이며,The storage tank is a tank of the membrane type or C type,
    상기 기설정압은, 0.04barG 또는 0.2barG인 것을 특징으로 하는 가스 처리 시스템.The predetermined pressure is a gas treatment system, characterized in that 0.04barG or 0.2barG.
  19. 제 17 항에 있어서, 상기 벙커링관리부는,The method of claim 17, wherein the bunkering management unit,
    액화가스를 냉매로 과냉시키는 과냉장치; 및A subcooling device for subcooling the liquefied gas with a refrigerant; And
    상기 과냉장치에 냉매를 공급하는 냉매공급부를 포함하며,Refrigerant supply unit for supplying a refrigerant to the subcooling device,
    상기 냉매공급부는,The refrigerant supply unit,
    냉매를 상기 저장탱크에서 발전엔진으로 공급되는 액화가스 또는 증발가스로 냉각하는 냉매 열교환기를 포함하는 것을 특징으로 하는 가스 처리 시스템.And a refrigerant heat exchanger for cooling the refrigerant with liquefied gas or evaporated gas supplied from the storage tank to a power generation engine.
  20. 제 17 항에 있어서, 상기 냉매공급부는,The method of claim 17, wherein the refrigerant supply unit,
    냉매 압축기;Refrigerant compressor;
    압축된 냉매와 상기 과냉장치에서 가열된 냉매를 열교환하는 냉매간 열교환기;A heat exchanger between the compressed refrigerant and the refrigerant heated in the subcooler;
    압축 후 상기 냉매간 열교환기를 거친 냉매를 팽창하는 냉매 팽창기; 및A refrigerant expander configured to expand a refrigerant passing through the refrigerant exchanger after compression; And
    압축된 냉매를 상기 발전엔진으로 공급되는 액화가스 또는 증발가스로 냉각하는 상기 냉매 열교환기를 포함하는 것을 특징으로 하는 가스 처리 시스템.And a refrigerant heat exchanger for cooling the compressed refrigerant with liquefied gas or evaporated gas supplied to the power generation engine.
  21. 제 17 항에 있어서, 상기 냉매공급부는,The method of claim 17, wherein the refrigerant supply unit,
    냉매 압축기;Refrigerant compressor;
    압축된 냉매와 상기 과냉장치에서 가열된 냉매 및 상기 발전엔진으로 공급되는 액화가스 또는 증발가스를 열교환하는 상기 냉매 열교환기; 및The refrigerant heat exchanger for heat-exchanging a compressed refrigerant, a refrigerant heated in the subcooling apparatus, and a liquefied gas or an evaporated gas supplied to the power generation engine; And
    압축 후 상기 냉매 열교환기를 거친 냉매를 팽창하는 냉매 팽창기를 포함하는 것을 특징으로 하는 가스 처리 시스템.And a refrigerant expander configured to expand the refrigerant passing through the refrigerant heat exchanger after compression.
  22. 제 1 항 내지 제 21 항 중 어느 한 항의 상기 가스 처리 시스템을 갖는 것을 특징으로 하는 벙커링 선박.A bunkering vessel having said gas treatment system of any of claims 1-21.
PCT/KR2019/004166 2018-04-06 2019-04-08 Gas treatment system and ship including same WO2019194670A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11202009864UA SG11202009864UA (en) 2018-04-06 2019-04-08 Gas treatment system and ship including same
JP2021503688A JP2021517878A (en) 2018-04-06 2019-04-08 Gas treatment system and ships including it
CN201980022626.3A CN111918817A (en) 2018-04-06 2019-04-08 Gas treatment system and ship comprising same
JP2022173486A JP2022187023A (en) 2018-04-06 2022-10-28 Gas processing system and vessel including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180040580 2018-04-06
KR10-2018-0040580 2018-04-06
KR10-2018-0111828 2018-09-18
KR20180111828 2018-09-18

Publications (2)

Publication Number Publication Date
WO2019194670A1 true WO2019194670A1 (en) 2019-10-10
WO2019194670A8 WO2019194670A8 (en) 2020-11-05

Family

ID=68100900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/004166 WO2019194670A1 (en) 2018-04-06 2019-04-08 Gas treatment system and ship including same

Country Status (5)

Country Link
JP (2) JP2021517878A (en)
KR (5) KR102162166B1 (en)
CN (1) CN111918817A (en)
SG (1) SG11202009864UA (en)
WO (1) WO2019194670A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113688168A (en) * 2020-05-19 2021-11-23 三井易艾斯机械有限公司 Maintenance management system for ship compressor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021517878A (en) * 2018-04-06 2021-07-29 コリア シップビルディング アンド オフショア エンジニアリング カンパニー リミテッド Gas treatment system and ships including it
KR102503180B1 (en) * 2020-12-24 2023-02-24 한국조선해양 주식회사 Bunkering Vessel
KR102469960B1 (en) * 2021-04-05 2022-11-28 현대중공업 주식회사 Bunkering Vessel
KR102594024B1 (en) * 2021-10-08 2023-10-26 한화오션 주식회사 Fuel Supply System And Method For Ship
WO2023172074A1 (en) * 2022-03-08 2023-09-14 한국조선해양 주식회사 Gas treatment system and ship including same
JP2024033951A (en) * 2022-08-31 2024-03-13 三菱造船株式会社 Bunker floating body, liquefied gas supply method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110050241A (en) * 2009-11-06 2011-05-13 대우조선해양 주식회사 Ship for supplying liquefied fuel gas
KR20140143038A (en) * 2013-06-05 2014-12-15 현대중공업 주식회사 A Treatment System Of Liquefied Natural Gas
KR20160127880A (en) * 2015-04-27 2016-11-07 현대중공업 주식회사 A Treatment System of Liquefied Gas
KR20170053105A (en) * 2015-11-05 2017-05-15 현대중공업 주식회사 Gas Treatment System and Vessel having same
KR20170120862A (en) * 2016-04-22 2017-11-01 대우조선해양 주식회사 Liquefied Gas Supply System and Method for Ship

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6012292A (en) * 1998-07-16 2000-01-11 Mobil Oil Corporation System and method for transferring cryogenic fluids
GB2416390B (en) * 2004-07-16 2006-07-26 Statoil Asa LCD Offshore Transport System
EP2072885A1 (en) * 2007-12-21 2009-06-24 Cryostar SAS Natural gas supply method and apparatus.
KR101941314B1 (en) * 2014-04-02 2019-01-23 현대중공업 주식회사 A Treatment System Liquefied Gas
WO2016195233A1 (en) * 2015-06-02 2016-12-08 대우조선해양 주식회사 Ship
KR101756646B1 (en) * 2015-10-22 2017-07-26 주식회사 디섹 Fuel Bunkering Vessel
CN105927848B (en) * 2016-04-20 2019-07-30 中国石油化工股份有限公司 A kind of small liquid natural gas boil-off gas quickly re-liquefied recyclable device and method
JP2021517878A (en) * 2018-04-06 2021-07-29 コリア シップビルディング アンド オフショア エンジニアリング カンパニー リミテッド Gas treatment system and ships including it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110050241A (en) * 2009-11-06 2011-05-13 대우조선해양 주식회사 Ship for supplying liquefied fuel gas
KR20140143038A (en) * 2013-06-05 2014-12-15 현대중공업 주식회사 A Treatment System Of Liquefied Natural Gas
KR20160127880A (en) * 2015-04-27 2016-11-07 현대중공업 주식회사 A Treatment System of Liquefied Gas
KR20170053105A (en) * 2015-11-05 2017-05-15 현대중공업 주식회사 Gas Treatment System and Vessel having same
KR20170120862A (en) * 2016-04-22 2017-11-01 대우조선해양 주식회사 Liquefied Gas Supply System and Method for Ship

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113688168A (en) * 2020-05-19 2021-11-23 三井易艾斯机械有限公司 Maintenance management system for ship compressor

Also Published As

Publication number Publication date
JP2021517878A (en) 2021-07-29
KR20190117406A (en) 2019-10-16
CN111918817A (en) 2020-11-10
KR102162150B1 (en) 2020-10-06
KR20190117402A (en) 2019-10-16
SG11202009864UA (en) 2020-11-27
WO2019194670A8 (en) 2020-11-05
KR102162164B1 (en) 2020-10-06
KR20190117404A (en) 2019-10-16
KR102162165B1 (en) 2020-10-06
KR20190117405A (en) 2019-10-16
KR102162168B1 (en) 2020-10-06
KR20190117403A (en) 2019-10-16
JP2022187023A (en) 2022-12-15
KR102162166B1 (en) 2020-10-06

Similar Documents

Publication Publication Date Title
WO2019194670A1 (en) Gas treatment system and ship including same
WO2012128448A1 (en) Method and system for supplying fuel to high-pressure natural gas injection engine
WO2014209029A1 (en) System and method for treating boil-off gas in ship
WO2012128447A1 (en) System for supplying fuel to high-pressure natural gas injection engine having excess evaporation gas consumption means
WO2014065620A1 (en) Method for processing liquefied gas in ship
WO2014092369A1 (en) Liquefied gas treatment system for ship
WO2012124884A1 (en) Method for supplying fuel for high-pressure natural gas injection engine
WO2012124886A1 (en) System for supplying fuel to marine structure having re-liquefying device and high-pressure natural gas injection engine
RU2642713C1 (en) System for processing stripping gas
WO2018139753A1 (en) System and method for supplying fuel in liquefied natural gas fueled ship
WO2018062601A1 (en) Apparatus and method for reliquefaction of boil-off gas of vessel
WO2009102136A2 (en) Apparatus and method for processing hydrocarbon liquefied gas
WO2012128449A1 (en) Non-explosive mixed refrigerant for re-liquefying device in system for supplying fuel to high-pressure natural gas injection engine
WO2017171166A1 (en) Boil-off gas re-liquefying device and method for ship
KR100747372B1 (en) Bog reliquefaction apparatus and method
WO2016195232A1 (en) Ship
WO2016126037A1 (en) Apparatus and method for treating boil-off gas of vessel
WO2016126025A1 (en) Fuel gas supply system for ship
WO2021157855A1 (en) System and method for regasifying liquefied gas of ship
WO2016195233A1 (en) Ship
WO2016200170A1 (en) Vessel comprising gas treatment system
WO2016195231A1 (en) Ship
WO2018124815A1 (en) Fuel gas supply system
WO2016195229A1 (en) Ship
WO2017209492A1 (en) Gas treatment system and ship including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781673

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503688

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19781673

Country of ref document: EP

Kind code of ref document: A1