WO2017209492A1 - Gas treatment system and ship including same - Google Patents

Gas treatment system and ship including same Download PDF

Info

Publication number
WO2017209492A1
WO2017209492A1 PCT/KR2017/005643 KR2017005643W WO2017209492A1 WO 2017209492 A1 WO2017209492 A1 WO 2017209492A1 KR 2017005643 W KR2017005643 W KR 2017005643W WO 2017209492 A1 WO2017209492 A1 WO 2017209492A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
boil
compressor
liquefied
storage tank
Prior art date
Application number
PCT/KR2017/005643
Other languages
French (fr)
Korean (ko)
Inventor
이준호
고준호
임원섭
홍원종
최훈
김현석
김주일
Original Assignee
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160179559A external-priority patent/KR101913015B1/en
Application filed by 현대중공업 주식회사 filed Critical 현대중공업 주식회사
Publication of WO2017209492A1 publication Critical patent/WO2017209492A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation

Definitions

  • the present invention relates to a gas treatment system and a vessel comprising the same.
  • liquefied gas such as liquefied natural gas and liquefied petroleum gas has been widely used in place of gasoline or diesel according to technology development.
  • Liquefied natural gas is liquefied by cooling methane obtained by refining natural gas collected from a gas field. It is a colorless and transparent liquid.
  • Liquefied petroleum gas is a liquid fuel made by compressing a gas mainly composed of propane (C3H8) and butane (C4H10), which come with oil from an oil field, at room temperature.
  • Liquefied petroleum gas like liquefied natural gas, is colorless and odorless and is widely used as a fuel for household, business, industrial, and automobile use.
  • Such liquefied gas is stored in a liquefied gas storage tank installed on the ground or in a liquefied gas storage tank provided in a ship which is a means of transporting the ocean, and liquefied natural gas is liquefied to a volume of 1/600.
  • the liquefied petroleum gas is reduced by the liquefied propane is 1/260, butane is reduced to a volume of 1/230 has the advantage of high storage efficiency.
  • the temperature, pressure, and the like required for driving the engine using such a liquefied gas as fuel may be different from the state of the liquefied gas stored in the tank.
  • boil off gas (BOG)
  • LNG when LNG is stored in the liquid phase, heat permeation occurs in the tank, so that some LNG is vaporized to generate boil off gas (BOG), which may cause problems in the liquefied gas treatment system.
  • BOG boil off gas
  • the present invention has been made to improve the prior art, and an object of the present invention is to provide a gas treatment system and a vessel including the same, which effectively supply liquefied gas and / or boil-off gas to a demand destination in a liquefied gas storage tank, and / Another object is to provide a gas treatment system having a layout optimized on board and a vessel comprising the same.
  • the pressurized evaporation gas generated in the liquefied gas storage tank is supplied to the demand destination, provided with a plurality of boil-off gas compressor built in parallel with each other; And a controller configured to control the boil-off gas compressor according to the boil-off gas generated in the liquefied gas storage tank, wherein the controller is configured to compress at least one of the boil-off gas compressors according to the boil-off gas generated by compression of the boil-off gas. It is characterized by controlling to a standby state not implemented.
  • the boil-off gas compressor is provided with a constituent compressor in which four or five stage pistons are connected in series, and four constituent compressors may be provided in parallel to each other.
  • control unit receives the evaporation gas generation amount measured from the evaporation gas generation sensor, the evaporation It is possible to control the driving of the gas compressor.
  • the controller controls one of the boil-off gas compressors to the standby state, and the remaining boil-off gas compressors connected in parallel. Can be controlled to increase the load.
  • an evaporation gas heat exchanger for heat-exchanging the boil-off gas supplied from the liquefied gas storage tank and the boil-off gas compressed by the boil-off gas compressor; And a bypass line for bypassing the boil-off gas heat exchanger, wherein the controller is further configured to supply the boil-off gas supplied from the liquefied gas storage tank to the boil-off gas through the bypass line when the amount of boil-off gas is less than or equal to the predetermined amount.
  • Bypassing the boil-off gas heat exchanger is controlled to be supplied to the boil-off gas compressor, when the boil-off gas generation amount is greater than the preset generation amount, the boil-off gas supplied from the liquefied gas storage tank is evaporated through the boil-off gas heat exchanger
  • the compressed boil-off gas in the gas compressor can be partially reliquefied.
  • the preset generation amount is the amount of boil-off gas introduced into the boil-off gas compressor at the point of inefficiency of the boil-off gas compressor, and the point of inefficiency of the boil-off gas compressor is the ratio of power consumption to the flow rate of the boil-off gas compressor. Even if the flow rate supplied to the boil-off gas compressor is reduced, it may be a point at which power consumption is not reduced.
  • the load amount at the inefficiency point of the boil-off gas compressor may be a flow rate of 20 to 40% of the flow rate of the boil-off gas compressor having the maximum load.
  • an evaporation gas decompressor for decompressing the heat exchanged evaporated gas supplied from the evaporation gas heat exchanger; And a gas-liquid separator which receives the reduced-pressure evaporated gas from the boil-off gas reducer and separates the liquid-liquid and the gas phase.
  • the demand destination high pressure demand destination for consuming 150 to 350 bar of high pressure evaporation gas; And it may include a low pressure demand destination for consuming low pressure boil-off gas of 4 to 8 bar.
  • the boil-off gas supply line having the boil-off compressor;
  • An evaporating gas branching line branched from an intermediate stage of the evaporating gas compressor on the evaporating gas supply line to connect the low pressure demand destination;
  • a boil-off gas first return line branched after the boil-off gas compressor of the boil-off gas supply line to connect the boil-off gas heat exchanger;
  • a second boil-off gas connecting the boil-off gas heat exchanger and the gas-liquid separator, and including the boil-off gas reducer;
  • a flash gas supply line connecting upstream of the gas-liquid separator and the boil-off gas heat exchanger on the boil-off gas supply line;
  • a reliquefaction gas return line connecting the gas-liquid separator and the liquefied gas storage tank.
  • the boil-off gas generation sensor may calculate the boil-off gas generation amount through the internal pressure of the liquefied gas storage tank.
  • the boil-off gas compressor may be a standard high pressure compressor.
  • it may be a ship comprising the gas treatment system.
  • the gas treatment system and the ship including the same have an effect of effectively supplying liquefied gas and / or boil-off gas to a demand destination in a liquefied gas storage tank to increase system stability and reliability, and the gas treatment system optimizes the space on board. By being arranged so as to have an effect onboard space utilization is improved.
  • FIG. 1 is a conceptual diagram of a gas treatment system according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram of a gas treatment system according to another embodiment of the present invention.
  • FIG. 3 is a conceptual diagram of a gas treatment system according to another embodiment of the present invention.
  • Figure 4 is a graph of the power consumption compared to the flow rate of the boil-off gas compressor according to an embodiment of the present invention.
  • FIG. 5 is a graph of the amount of boil-off gas generated in the liquefied gas storage tank compared to the operating time of the ship according to an embodiment of the present invention.
  • FIG. 6 is a side view of a vessel equipped with a gas treatment system according to an embodiment of the present invention.
  • FIG. 7 is an interior plan view of a cargo compressor room of a ship according to an embodiment of the present invention.
  • FIG. 8 is an interior plan view of a cargo compressor room of a ship according to another embodiment of the present invention.
  • FIG. 9 is an internal cross-sectional view of a cargo compressor room of a ship according to another embodiment of the present invention.
  • FIG. 10 is a modified cross-sectional interior view of a cargo compressor room of a ship according to another embodiment of the present invention.
  • the liquefied gas may be LPG, LNG, ethane, etc.
  • LNG Liquefied Natural Gas
  • BOG Air Off Gas
  • Liquefied gas may be referred to regardless of the change of state, such as liquid state, gas state, liquid and gas mixed state, subcooled state, supercritical state, etc., it is also known that evaporated gas is the same.
  • the present invention is not limited to the liquefied gas to be treated, it may be a liquefied gas treatment system and / or boil-off gas treatment system, it is apparent that the system of each of the drawings to be described below can be applied to each other.
  • the mixed fluid described below may be a mixed boil-off gas or a fluid containing at least some liquid phase.
  • the embodiments of the gas treatment system 2 of the present invention may be configured in combination with each other, and of course, the addition of the respective components may be made to cross each other.
  • the gas treatment system 2 according to the embodiment of the present invention may be mounted on the hull (H), in this case, the vessel 1 may be a vessel such as an LNG carrier, a container carrier, but is not limited thereto.
  • FIG. 1 is a conceptual diagram of a gas treatment system according to an embodiment of the present invention.
  • the gas treatment system 2 includes a liquefied gas storage tank 10, a boil-off gas heat exchanger 20, a boil-off gas pressure reducer 30, and a gas-liquid separator. 40, first to fourth boil-off compressors 51 to 54, a first demand destination 71, a second demand destination 72, a first control unit 90, and a second control unit 91.
  • the flow path may be a line through which the fluid flows, but is not limited thereto, and any flow path may be used.
  • the boil-off gas may further include a second return line L4, a reliquefaction return line L5, a flash gas supply line L6, and a boil-off gas bypass line L7.
  • Each line may be provided with valves (not shown) that can adjust the opening degree, and the supply amount of the boil-off gas may be controlled by adjusting the opening degree of each valve.
  • the boil-off gas supply line L1 connects the liquefied gas storage tank 10 and the first demand destination 71 and includes an boil-off gas heat exchanger 20 and first to fourth boil-off compressors 51 to 54.
  • the boil-off gas generated in the liquefied gas storage tank 10 may be supplied to the first demand destination 71.
  • the boil-off gas supply line L1 may connect the first to fourth boil-off gas compressors 51 to 54 in parallel.
  • the boil-off gas supply line L1 may include a boil-off gas first flow valve 81a upstream of the boil-off gas heat exchanger 20, and heat-exchange the boil-off gas through the boil-off gas first flow valve 81a.
  • the flow rate of the boil-off gas supplied to the machine 20 can be controlled.
  • the first boil-off gas flow rate valve 81a may be connected to the first controller 90 in a wired or wireless manner to receive an opening degree adjustment command of the first controller 90.
  • the boil-off gas first return line L2 is branched from the rear end of the first to fourth boil-off gas compressors 51 to 54 on the boil-off gas supply line L1 and connected to the boil-off gas heat exchanger 20. At least a portion of the boil-off gas compressed by the fourth to boil-off gas compressors 51 to 54 may be supplied to the boil-off gas heat exchanger 20.
  • Boil off gas branch line (L3) is. Branched at an intermediate end of the first to fourth boil-off gas compressors 51 to 54 on the boil-off gas supply line L1 and connected to the second demand destination 72, the first to fourth boil-off gas compressors 51 to 54. ) Can be supplied to the second demand destination (72).
  • the boil-off gas branch line L3 is illustrated as being branched between the first and second ends of the fourth boil-off gas compressor 54, but is not limited thereto. Of course, it can be branched between each of the first stage and the second stage. Through this, the boil-off gas branch line L3 may supply the boil-off gas compressed at a pressure of 2 to 6 bar to the second demand destination 72.
  • the boil-off gas second return line L4 connects the boil-off gas heat exchanger 20 and the gas-liquid separator 40 and includes a boil-off gas decompressor 30, and the boil-off gas heat-exchanged in the boil-off gas heat exchanger 20.
  • the pressure can be supplied to the gas-liquid separator 40 by reducing the pressure with the boil-off gas decompressor 30.
  • the reliquefaction return line L5 connects the gas-liquid separator 40 and the liquefied gas storage tank 10, and supplies the liquid phase separated from the gas-liquid separator 40 to the liquefied gas storage tank 10.
  • the flash gas supply line L6 may be connected to an upstream of the gas-liquid separator 40 and the boil-off gas heat exchanger 20 on the boil-off gas supply line L1, and supplies the gaseous phase separated from the gas-liquid separator 40 to the boil-off gas. Join line L1.
  • the boil-off gas bypass line L7 is branched upstream of the boil-off gas heat exchanger 20 on the boil-off gas supply line L1 and connected to the boil-off gas heat exchanger 20 on the boil-off gas supply line L1 and evaporated.
  • a gas flow rate valve 81b is provided so that the boil-off gas supplied from the liquefied gas storage tank 10 bypasses the boil-off gas heat exchanger 20 to the first to fourth boil-off gas compressors 51 to 54. Can be supplied.
  • the second boil-off gas flow rate valve 81b may be connected to the first controller 90 in a wired or wireless manner to receive an opening degree adjustment command of the first controller 90.
  • the liquefied gas storage tank 10 stores the liquefied gas to be supplied to the first and second demand destinations 71 and 72.
  • the liquefied gas storage tank 10 should store the liquefied gas in a liquid state, where the liquefied gas storage tank 10 may have a pressure tank form.
  • the liquefied gas storage tank 10 is disposed inside the hull H, and may be formed in four, for example, in front of the engine room (not shown).
  • the liquefied gas storage tank 10 is, for example, a membrane type tank, but not limited thereto, and various types such as a stand-alone tank are not particularly limited.
  • the boil-off gas heat exchanger (20) is provided between the liquefied gas storage tank (10) and the first to fourth boil-off gas compressors (51 to 54) on the boil-off gas supply line (L1).
  • the supplied boil-off gas and the boil-off gas compressed by the first to fourth boil-off compressors 51 to 54 may be heat-exchanged.
  • the boil-off gas compressed by the first to fourth boil-off gas compressors 51 to 54 of the boil-off gas exchanged by the boil-off gas heat exchanger 20 is supplied to the boil-off gas decompressor 30, and the boil-off gas heat exchanger 20
  • the boil-off gas supplied from the liquefied gas storage tank 10 of the boil-off gas heat exchanged in) may be supplied to the first to fourth boil-off gas compressors 51 to 54.
  • the boil-off gas compressed by the first to fourth boil-off gas compressors 51 to 54 may be partially reliquefied by receiving cold heat from the boil-off gas supplied from the liquefied gas storage tank 10, and liquefied gas storage tank.
  • the boil-off gas supplied from 10 is preheated before being supplied to the first to fourth boil-off gas compressors 51 to 54 by receiving a heat source from the boil-off gas compressed in the first to fourth boil-off gas compressors 51 to 54. Can be.
  • the boil-off gas decompressor 30 depressurizes or expands the boil-off gas pressurized by the first to fourth boil-off gas compressors 51 to 54 and heat-exchanged in the boil-off gas heat exchanger 20 to liquefy at least a portion.
  • the boil-off gas decompressor 30 may reduce the boil-off gas of 150 to 350 bar to 1 bar to 10 bar, and the boil-off gas may be reduced to 1 bar when the boil-off gas is liquefied and transferred to the liquefied gas storage tank 10. At reduced pressure, the evaporated gas may achieve a cooling effect.
  • the boil-off gas pressurized by the first to fourth boil-off gas compressors 51 to 54 is cooled by heat-exchanging with the boil-off gas supplied from the liquefied gas storage tank 10 in the boil-off gas heat exchanger 20.
  • the pressure may maintain the discharge pressure discharged from the first to fourth boil-off gas compressors 51 to 54.
  • the present embodiment uses high pressure even after the boil-off gas pressurized by the first to fourth boil-off gas compressors 51 to 54 is heat-exchanged in the boil-off gas heat exchanger 20 to receive cold heat.
  • the boil-off gas may be further reduced by reducing the boil-off gas through the boil-off gas reducer 30.
  • the boil-off gas pressurized by the first to fourth boil-off gas compressors 51 to 54 may be partially liquefied in the boil-off gas heat exchanger 20, but finally completely liquefied in the boil-off gas decompressor 30.
  • the boil-off gas may be pressurized in the first to fourth boil-off gas compressors 51 to 54 to have a pressure of 150 to 350 bar, and the temperature may be about 45 degrees.
  • the boil-off gas raised to a temperature of about 45 degrees is recovered by the boil-off gas heat exchanger 20 and heat-exchanged with the boil-off gas around -100 degrees supplied from the liquefied gas storage tank 10, and cooled to a temperature of around -97 degrees.
  • the boil-off gas decompressor (30) is supplied to the boil-off gas decompressor (30).
  • the boil-off gas in the boil-off gas decompressor 30 is cooled by the reduced pressure may have a pressure of about 1bar and a temperature of about -162.3 degrees.
  • the boil-off gas since the boil-off gas has a temperature lower than ⁇ 162 degrees due to the reduced pressure of the boil-off gas through the boil-off gas decompressor 30, the boil-off gas liquefaction rate of about 30 to 40% can be realized. This is because the larger the pressure range of the reduced pressure of the boil-off gas can increase the cooling effect of the boil-off gas.
  • the boil-off gas pressure reducer 30 may be made of a Joule-Thomson Valve.
  • the boil-off gas decompressor 30 may be formed of an expander (expander).
  • the inflator can be driven without using extra power.
  • the efficiency of the gas treatment system 2 can be improved.
  • Power transmission may be achieved, for example, by gear connection or after electric conversion.
  • the gas liquid separator 40 temporarily stores the reduced or expanded evaporated gas in the boil-off gas decompressor 30 and separates the boil-off gas into liquid and gas through gravity.
  • the gas is then a flash gas and the temperature is approximately -162.3 degrees.
  • the flash gas and the -100 degrees evaporated gas generated in the liquefied gas storage tank 10 are mixed upstream of the evaporative gas heat exchanger 20 to be a mixed gas having a temperature of -110 to -120 degrees (about -114 degrees).
  • the mixed gas may be introduced into the boil-off gas heat exchanger 20 in a state having a temperature of -110 to -120 degrees (about -114 degrees).
  • the 45 degree boil-off gas recovered along the boil-off gas first return line L2 exchanges heat with -110 to -120 degree mixed gas supplied from the boil-off gas heat exchanger 20 through the boil-off gas supply line L1.
  • additional cooling of the boil-off gas can be realized in contrast to the absence of flash gas recovery (45-degree boil-off gas exchanges with -100-degree boil-off gas).
  • the evaporated gas discharged from the boil-off gas heat exchanger 20 and introduced into the boil-off gas decompressor 30 may be about -112 degrees, which is lower than that of no flash gas circulation (about -97 degrees).
  • the pressure When the pressure is reduced by the pressure reducer 30, the pressure may be cooled to about ⁇ 163.7 degrees. In this case, more evaporated gas may be liquefied by the evaporating gas decompressor 30 and recovered to the liquefied gas storage tank 10 than there is no flash gas circulation.
  • the boil-off gas is separated into a liquid and a gas so that the liquid is supplied to the liquefied gas storage tank 10, and the gas is flash gas upstream of the first to fourth boil-off compressors 51 to 54. Can be recovered.
  • the boil-off gas when the boil-off gas is separated into liquid and gas in the gas-liquid separator 40, the liquefied boil-off gas (liquid) and the flash gas (gas) are respectively liquefied gas storage tank 10 through the re-liquefied gas return line (L5). ), Or upstream of the boil-off gas heat exchanger 20 through the flash gas supply line L6.
  • the gas-liquid separator 40 in the present embodiment recovers the liquefied boil-off gas to the liquefied gas storage tank 10, and recovers the flash gas generated by the gas-liquid separator 40 upstream of the boil-off gas heat exchanger 20.
  • the excess evaporated gas can be re-liquefied and re-stored in the liquefied gas storage tank 10.
  • the first and fourth evaporated gas compressors 51 to 54 can be repressurized without discarding the flash gas. 2 can be reused as a demand source (71, 72).
  • the first to fourth boil-off gas compressors 51 to 54 pressurize the boil-off gas generated in the liquefied gas storage tank 10 and supply the boil-off gas to the first and second demand destinations 71 and 72, and supply the boil-off gas supply line ( It is provided in parallel with each other on L1).
  • the first to fourth boil-off gas compressors 51 to 54 are connected in series to a plurality of stages (pistons) to pressurize the boil-off gas in multiple stages.
  • the first to fourth boil-off compressors 51 to 54 have a structure in which four or five pistons are connected in series, that is, a structure connected in series in four or five stages, and the boil-off gas is discharged at the final stage. It can be compressed and discharged to 350 bar (preferably approximately 306 bar) and supplied to the first demand destination 71.
  • the boil-off gas first return line L2 is branched between the first to fourth boil-off gas compressors 51 to 54 on the boil-off gas supply line L1 and the first demand destination 72, so that the boil-off gas heat exchanger ( 20).
  • the branch point on the boil-off gas supply line (L1) may be provided with a valve (not shown), the valve to the flow rate of the boil-off gas supplied to the first demand source 71 or the boil-off gas heat exchanger 20 It is possible to control the flow rate of the boil-off gas supplied, it may be a three-way valve.
  • the first to fourth boil-off gas compressors 51 to 54 may be provided with boil-off gas coolers (not shown) between the stages.
  • boil-off gas coolers not shown
  • the boil-off gas cooler may be installed in the same number as each stage of the first to fourth boil-off compressors 51 to 54, and each boil-off gas cooler is downstream of each stage of the first to fourth boil-off compressors 51 to 54. Can be provided.
  • first to fourth boil-off gas compressors 51 to 54 may be a boil-off gas compressor for room temperature, wherein the temperature of the boil-off gas sucked in the first stage is minus 40 degrees to minus 20 degrees.
  • a separate heating device (not shown) is required at the front end of the first to fourth boil-off compressors 51 to 54.
  • the heating device may increase the temperature of the evaporation gas of approximately 110 degrees below zero generated from the liquefied gas storage tank 10 to 40 degrees below zero and 20 degrees below zero, thereby introducing the first to fourth evaporative gas compressors 51 to 54. .
  • the boil-off gas branch line L3 is branched so that the second demand source 72 and Can be connected.
  • the boil-off gas discharged from the first stage of the first to fourth boil-off gas compressors 51 to 54 may be compressed to a low pressure of 4 bar to 6 bar, and may be supplied to the second demand destination 72.
  • first to fourth boil-off gas compressors 51 to 54 may be, for example, a standard high pressure compressor (SHP compressor).
  • SHP compressor standard high pressure compressor
  • the cylinder is formed in a V-shape, can be formed so that the size of the compressor itself is significantly reduced, thereby significantly reducing the space occupied by the compressor.
  • the first demand destination 71 uses evaporated gas or liquefied gas as a fuel from the liquefied gas storage tank 10.
  • the first demand destination 71 may be a high-pressure gas injection engine (eg, MEGI), and in the case of the MEGI engine, the boil-off gas pressurized to a high pressure of about 150 to 350 bar may be used as a fuel.
  • MEGI high-pressure gas injection engine
  • a crank shaft (not shown) connected to the piston As the first demand destination 71 reciprocates the piston (not shown) inside the cylinder (not shown) by combustion of liquefied gas or evaporated gas, a crank shaft (not shown) connected to the piston is rotated. , The propeller shaft (S) connected to the crank shaft can be rotated. Therefore, as the propeller P connected to the propeller shaft S rotates when the first demand destination 71 is driven, the hull H may move forward or backward.
  • the first demand destination 71 is a two-stroke DF engine which is usually driven by a diesel cycle and may be a low speed engine.
  • a diesel cycle basically, air is compressed by a piston, and the compressed hot air is ignited by a pilot fuel, and the remaining high-pressure gas is injected to explode.
  • the ignition fuel uses HFO (Heavy Fuel Oil) or MDO (Marine Diesel Oil), the ratio of the ignition fuel and the high-pressure gas is about 5:95, the injection amount of the ignition fuel is adjusted to 5 ⁇ 100%. It is possible.
  • the ignition fuel is therefore also available as a driving fuel for the engine.
  • evaporated gas or heated liquefied gas; about 95%) is mainly used as the engine driving fuel, and when the injection amount of the ignition fuel is 100%, the engine driving fuel is ignited.
  • the fuel (oil) is used up.
  • the injection amount of the ignition fuel is about 50% (and about 50% of the boil-off gas)
  • the ignition fuel and the boil-off gas are not mixed and flow into the engine, but the ignition fuel ignites first to produce a calorific value, and then the remaining evaporation.
  • the gas is introduced and exploded to produce a calorific value to produce a calorific value necessary for driving the first demand destination 71.
  • the second demand destination 72 uses the evaporated gas supplied from the liquefied gas storage tank 10 as a fuel. That is, the second demand destination 72 requires the boil-off gas and can be driven using it as a raw material.
  • the second demand destination 72 may be a generator (for example, DFDG), a gas combustion device (GCU), or a boiler (for example, a boiler for generating steam), but is not limited thereto.
  • the second demand destination 72 may be connected through the first to fourth boil-off gas compressors 51 to 54 and the boil-off gas branch line L3, and the first to fourth boil-off gas compressors 51 to 54.
  • the first stage of the) can be used as a fuel by receiving a compressed boil-off gas at a low pressure (2 to 8 bar; preferably 4 to 6 bar).
  • the second consumer 72 may be a heterogeneous fuel engine capable of using heterogeneous fuels, and may use oil as fuel as well as evaporated gas, but the evaporated gas or oil is not supplied without being mixed with the evaporated gas and the oil is selected. Can be supplied. This is to prevent two materials having different combustion temperatures from being mixed and supplied, thereby preventing the efficiency of the second consumer 72 from falling.
  • the second consumer 72 may generate fresh steam by heating fresh water as a boiler, and store the generated steam in a separate steam storage medium.
  • the boiler 72 may supply the generated steam to a heater (shown in FIGS. 2 and 3; 61) or a forced vaporizer (shown in FIG. 3; 62), through which the heater 61 or forced vaporizer ( Allow 62 to heat the boil-off gas.
  • a heater shown in FIGS. 2 and 3; 61
  • a forced vaporizer shown in FIG. 3; 62
  • the evaporation gas generation measurement sensor 85, the evaporation gas bypass first to fourth lines BL1 to BL4, a pressure sensor 831, and a flow rate sensor 832 may be further included.
  • the boil-off gas generation amount measuring sensor 85 may measure the amount of boil-off gas generated in the liquefied gas storage tank 10, and may be located in the liquefied gas storage tank 10 according to the internal pressure of the liquefied gas storage tank 10. The amount of generated boil-off gas generated in the liquefied gas storage tank 10 may be calculated based on the remaining boil-off gas properties.
  • the boil-off gas generation amount measurement sensor 85 may transmit the boil-off gas generation amount information measured by being connected to the first control unit 90 by wire or wirelessly, to the first control unit 90.
  • Boil-off gas bypass 1st-4th line BL1-BL4 are the 1st-4th boil-off gas compressor on the boil-off gas supply line L1 provided with the 1st-4th boil-off gas compressor 51-54, respectively. Branches at each rear end 51 to 54 may connect front ends of the first to fourth boil-off gas compressors 51 to 54.
  • boil-off gas bypass first to fourth lines BL1 to BL4 are controlled by the first to fourth boil-off gas compressors 51 to 54 under the control of the first and second control units 90 and 91 which will be described later. At least a part of the discharged boil-off gas may be bypassed (returned) to the front end of the first to fourth boil-off compressors 51 to 54.
  • the boil-off gas bypass first to fourth lines BL1 to BL4 are first to fourth when the preset time exceeds the first to fourth boil-off gas compressors 51 to 54 in the operation standby state.
  • the boil-off gas compressors 51 to 54 are operable (controlled by the first control unit 90), and at the same time, the discharge degree in the first to fourth boil-off gas compressors 51 to 54 is the pressure of the boil-off gas or The flow rate can be adjusted. (Control by the second control unit 91)
  • the boil-off gas bypass first line BL1 includes a pressure control valve 841 for adjusting the pressure of the boil-off gas discharged from the first boil-off gas compressor 51, and the boil-off gas bypass second to fourth.
  • the lines BL2 to BL4 may further include first to third flow control valves 842 to 844 for adjusting the flow rates of the boil-off gas discharged from the second to fourth boil-off compressors 52 to 54.
  • Each of the pressure regulating valve 841 and the first to third flow regulating valves 842 to 844 may be controlled by the second control unit 91.
  • the pressure sensor 831 and the flow rate sensor 832 are provided at the rear ends of the first to fourth boil-off gas compressors 51 to 54 on the boil-off gas supply line L1, and the first to fourth boil-off gas compressors 51 to 54.
  • the pressure or flow rate of the boil-off gas discharged at ⁇ 54) may be measured.
  • the pressure sensor 831 and the flow rate sensor 832 are connected to the second control unit 91 in a wired or wireless manner, so that the pressure or flow rate information discharged from the first to fourth evaporative gas compressors 51 to 54 may be obtained. It may transmit to the second control unit 91.
  • the first control unit 90 controls the first to fourth boil-off gas compressors 51 to 54 according to the amount of boil-off gas generated in the liquefied gas storage tank 10, and in detail, the boil-off gas generation amount is a preset generation amount.
  • the boil-off gas generation amount is a preset generation amount.
  • at least one of the first to fourth boil-off gas compressors 51 to 54 is controlled in a standby state.
  • the standby state refers to a state in which the compression of the boil-off gas is not implemented and encompasses both the standby state of operation of the boil-off gas compressor or the shutdown state.
  • the first control unit 90 may receive the evaporation gas generation amount measured from the evaporation gas generation measurement sensor 85 in a wired or wireless manner to control the first to fourth evaporative gas compressors 51 to 54. have.
  • the first control unit 90 operates any one of the first to fourth boil-off gas compressors 51 to 54 when the boil-off gas generation amount received from the boil-off gas generation amount measurement sensor 85 is less than or equal to the preset generation amount. Control to stand by, and to increase the remaining three loads of the first to fourth boil-off gas compressors 51 to 54 connected in parallel.
  • the first control unit 90 controls the first boil-off gas compressor 51 to stand by when the boil-off gas generation amount received from the boil-off gas generation sensor 85 is less than or equal to a preset generation amount, and the second through The load of the fourth boil-off compressors 52 to 54 may be controlled to increase.
  • the first control unit 90 may operate all of the first to fourth boil-off gas compressors 51 to 54 when the amount of boil-off gas received from the boil-off gas generation sensor 85 is greater than the preset generation. Can be controlled.
  • the first control unit 90 closes the amount of the boil-off gas first flow valve 81a and opens the boil-off gas second flow valve 81b to store the liquefied gas storage tank ( 10 to control the boil-off gas supplied from the boil-off gas heat exchanger 20 through the boil-off gas bypass line L7 to be supplied to the first to fourth boil-off gas compressors 51 to 54, and the boil-off gas
  • the boil-off gas first flow valve 81a is opened and the boil-off gas second flow valve 81b is closed so that the boil-off gas supplied from the liquefied gas storage tank 10 exchanges the boil-off gas.
  • the apparatus 20 may be controlled to partially reliquefy the boiled gas compressed in the first to fourth boiled gas compressors 51 to 54.
  • the predetermined generation amount is the amount of boil-off gas flowing into the first-fourth boil-off gas compressors 51 to 54 at the inefficiency point A of the first to fourth boil-off gas compressors 51 to 54.
  • the inefficiency point A is consumed even if the flow rate supplied to the first to fourth boil-off gas compressors 51 to 54 decreases in the ratio of the power consumption to the flow rate of the first to fourth boil-off gas compressors 51 to 54. It may be a flow rate of the first to fourth boil-off gas compressors 51 to 54 at a point where power is not reduced.
  • the flow rate of the inefficiency point A of the first to fourth boil-off gas compressors 51 to 54 may be a flow rate of 20 to 40% of the flow rate at which the first to fourth boil-off gas compressors 51 to 54 have a maximum load. have.
  • Figure 4 is a graph of the power consumption versus the flow rate of the evaporative gas compressor according to an embodiment of the present invention.
  • the power consumption increases proportionally if the flow rate is increased when the flow rate is a section above the inefficient point (A). This means that a lot of power consumption is required to compress a large flow rate of boil-off gas.
  • the inefficiency point (A) is a flow rate value determined according to specifications, driving conditions, etc. of the first to fourth boil-off gas compressors 51 to 54, and the first to fourth boil-off gas compressors 51 to 54 have a maximum load. 20 to 40% of the flow rate having a flow rate.
  • the power consumption does not decrease even if the flow rate is reduced. This is because of the power consumption consumed to prevent surging that occurs when a constant volume of boil-off gas does not flow into the first to fourth boil-off compressors 51 to 54.
  • a part of the boil-off gas flowing into the first to fourth boil-off gas compressors 51 to 54 is recycled so that the volume of the boil-off gas into the first to fourth boil-off gas compressors 51 to 54 is equal to or greater than a predetermined value.
  • separate power consumption is generated in the first to fourth boil-off gas compressors 51 to 54 in order to perform the recycling, which is introduced into the first to fourth boil-off gas compressors 51 to 54 due to the power consumption. Even if the amount of boil-off gas is reduced, power consumption is not reduced.
  • the first to fourth boil-off gas compressors 51 to 54 when the first to fourth boil-off gas compressors 51 to 54 are driven in parallel, the first to fourth boil-off gas compressors 51 to 54 disclosed in FIG. 4 are characterized. By using the power consumption can be minimized to the first to fourth boil-off compressors 51 to 54.
  • the flow rate at the point of inefficiency (A) is 50
  • the power consumption at that time is also 50
  • the ratio (tilt) of the flow rate and power consumption is 1 at a section above A (based on one evaporative gas compressor).
  • the flow rate of the boil-off gas flowing into the first to fourth boil-off gas compressors 51 to 54 is 30 each (when the amount of boil-off gas generated in the liquefied gas storage tank 10 is less than or equal to the preset generation amount) 2) the power consumption when the first to fourth boil-off compressors 51 to 54 are driven, and 2) the first to fourth boil-off compressors 51 to 54 are standby. Let's compare.
  • the first to fourth boil-off gas compressors 51 to 54 when the first to fourth boil-off gas compressors 51 to 54 are driven in parallel, the first to fourth boil-off gas compressors 51 when the amount of boil-off gas is less than or equal to a preset generation amount.
  • the first to fourth boil-off gas compressors 51 when the amount of boil-off gas is less than or equal to a preset generation amount.
  • the first control unit 90 may alternately control at least one of the plurality of boil-off gas compressors 51 to 54 in a standby state when the boil-off gas generation amount is repeatedly generated at or below a preset generation amount.
  • the first control unit 90 controls the at least one of the first to fourth boil-off gas compressors 51 to 54 in a standby state when the boil-off gas generation amount is less than or equal to the preset generation amount.
  • the other one of the first to fourth boil-off gas compressors 51 to 54 may be controlled in a standby state.
  • the first control unit 90 controls the first evaporated gas compressor 51 to be in a standby state, and the second to fourth evaporated gas compressors 52 to 54 are operated. Control to keep.
  • the first controller 90 releases the standby state of the first boil-off gas compressor 51 and starts it again, thereby operating the first to fourth boil-off gas compressors 51 to 4. 54) are all operated.
  • the second boil-off gas compressor 52 is controlled to be in a stopped state rather than the first boil-off gas compressor 51, and the first, third, and fourth The boil-off gas compressors 51, 53, 54 are controlled to maintain an operating state.
  • the durability of the first to fourth boil-off gas compressors 51 to 54 can be improved.
  • the first control unit 90 controls at least one of the first to fourth boil-off gas compressors 51 to 54 to an operation stop state, and controls the boil-off boiled gas compressor to an operation standby state under a predetermined condition. do.
  • the first control unit 90 when the operation standby state of the boil-off gas compressor (for example, the first boil-off gas compressor 51) waited for operation exceeds a predetermined period, the boil-off boil-off compressor 51 is operated.
  • the boil-off gas compressor 51 which is controlled to stop or restarts the boil-off gas compressor 51 and started to operate through the boil-off gas compressor bypass line (for example, the boil-off gas compressor bypass first line BL1).
  • the discharged boil-off gas may be controlled to bypass the start-up of the boil-off gas compressor 51.
  • each of the boil-off gas compressor bypass lines BL1 to Bl4 is provided with control valves (not shown).
  • the first control unit 90 may perform the bypass control through a control valve.
  • the preset condition may be a condition that reaches the previous time by the time it takes to restart the deactivated boil-off gas compressor 51 at the point when the deactivated boil-off gas compressor 51 is restarted.
  • the time point for the boil-off gas compressor 51 to be restarted is a time when the internal pressure of the liquefied gas storage tank 10 exceeds a preset pressure or when the amount of boil-off gas generated in the liquefied gas storage tank 10 exceeds a preset amount. Can be.
  • the first to fourth boil-off gas compressors 51 to 54 can quickly return to the operating state from the standby state, thereby improving the reliability of the boil-off gas supply. Stability is maximized.
  • the second control unit 91 is the pressure of the boil-off gas discharged from the first to fourth boil-off gas compressors 51 to 54 according to the pressure or the flow rate of the boil-off gas required by the first and second demand destinations 71 and 72. Or control the flow rate.
  • the second control unit 91 compares the pressure or flow rate of the boil-off gas required by the first demand destination 71 with the pressure or flow rate measured by the pressure sensor 831 and the flow rate sensor 832, respectively. Control controls only the pressure of the boil-off gas discharged for only one boil-off gas compressor among the first to fourth boil-off compressors 51 to 54, and the control of the flow rate is the first to the fourth boil-off compressor 51. Only the flow rate of the boil-off gas discharged to the boil-off gas compressor other than the boil-off gas compressor of ⁇ 54) may be controlled.
  • the second control unit 91 closes the pressure regulating valve 841, and the first control unit 91 closes the first control unit.
  • the pressure regulating valve 842 is opened.
  • the second control unit 91 may operate the first to third flow control valves 842 to 844. Closes and controls to increase the load of the second to fourth boil-off compressors 52 to 54, and the flow rate of the boil-off gas required by the first demand destination 71 is less than the flow rate measured by the flow sensor 832.
  • the first to third flow control valves 842 to 844 are opened, and the second to fourth evaporative gas compressors 52 to 54 are provided through the second and fourth lines BL2 to BL4 of the boil-off gas compressor bypass. At least a part of the discharged boil-off gas may be controlled to be supplied to the front end of the second to fourth boil-off compressors 52 to 54.
  • the pressure or flow rate required by the first demand destination 71 is appropriate. It can be controlled so that the reliability of the boil-off gas supply is improved and the stability is maximized.
  • FIG. 2 is a conceptual diagram of a gas treatment system according to another embodiment of the present invention.
  • the gas treatment system 2 includes a liquefied gas storage tank 10, a boil-off gas heat exchanger 20, a boil-off gas pressure reducer 30, and a gas-liquid separator. 40, first to fourth evaporative gas compressors 51 to 54, a heater 61, a first demand destination 71, a second demand destination 72, and a third control unit 92.
  • the heater 61 is provided on the boil-off gas bypass line L7 and bypasses the boil-off gas heat exchanger 20 to heat the boil-off gas supplied to the first to fourth boil-off gas compressors 51 to 54. do.
  • the heater 61 may be supplied with steam supplied from the boiler 72 as a heat source, and the evaporation gas of about minus 110 degrees may be lowered by heat exchange between the steam and the evaporated gas generated in the liquefied gas storage tank 10.
  • the temperature can be raised from 40 degrees to minus 20 degrees.
  • a boil-off gas temperature measuring sensor (86).
  • the boil-off gas temperature measuring sensor 86 may be provided downstream of the boil-off gas heat exchanger 20 on the boil-off gas supply line L1 and upstream of the first to fourth boil-off gas compressors 51 to 54. The temperature of the boil-off gas flowing into the first to fourth boil-off compressors 51 to 54 may be measured and transmitted to the third controller 92.
  • the boil-off gas temperature measuring sensor 86 may be connected to the third control unit 92 by wire or wirelessly.
  • the third control unit 92 controls the flow rate of the boil-off gas supplied to the boil-off gas heat exchanger 20 and the heater 61 in accordance with the amount of boil-off gas generated in the liquefied gas storage tank 10.
  • the third controller 92 controls the boil-off gas supplied from the liquefied gas storage tank 10 to be supplied only to the heater 61, and the amount of generated boil-off gas
  • the first preset generation amount is less than the second preset generation amount, it is controlled to supply the boil-off gas supplied from the liquefied gas storage tank 10 to both the boil-off gas heat exchanger 20 and the heater 61, and the amount of boil-off gas generated
  • the evaporated gas supplied from the liquefied gas storage tank 10 may be controlled to be supplied only to the evaporated gas heat exchanger 20.
  • the first preset generation amount is an amount smaller than the second preset generation amount.
  • FIG. 5 is a graph of the amount of boil-off gas generated in the liquefied gas storage tank compared to the operating time of the ship according to an embodiment of the present invention.
  • the amount of boil-off gas generated in the liquefied gas storage tank 10 changes depending on the operating time of the vessel 1.
  • the amount of boil-off gas generated in the liquefied gas storage tank 10 is continuously increased at a constant rate in the amount of the boil-off gas generated in the operation initial section B1 and the operation elementary and medium-sized section B2. Thereafter, in the operating medium section B3, the amount of boil-off gas is initially increased at a constant rate, then the amount of stagnation is stagnated at a certain flow rate in the middle, and the amount of boil-off gas is reduced at a constant rate in the second half. Finally, the amount of boil-off gas continuously decreases at a constant rate in the operation end device B2 and the operation end device B1.
  • the operation initial section B1 and the operation end section B1 are sections which are less than or equal to the first predetermined generation amount X
  • the operation elementary and intermediate sections B2 and the operation terminal section B2 are the first predetermined generation amounts X.
  • the heavy machinery section B3 refers to a section that is greater than or equal to the second preset generation amount (Y).
  • the first to fourth through the third control unit 92 The preheating drive control of the boil-off gas flowing into the boil-off gas compressors 51 to 54 is optimized.
  • the third control unit 92 when the amount of boil-off gas generated in the liquefied gas storage tank 10 is less than or equal to the first predetermined amount (X) (B1 section), the third flow rate of the boil-off gas first flow valve 81a The opening degree is closed and the opening degree of the second boil-off gas flow rate valve 81b is opened, so that the boil-off gas supplied from the liquefied gas storage tank 10 can be controlled to be supplied only to the heater 61.
  • the third control unit 92 when the amount of boil-off gas generated in the liquefied gas storage tank 10 is less than the first preset amount (X) and less than the second preset amount (Y) (section B2), the boil-off gas Opening the openings of the first and second flow rate valves 81a and 81b to control the evaporated gas supplied from the liquefied gas storage tank 10 to be supplied to the boil-off gas heat exchanger 20 and the heater 61, but the evaporation According to the temperature measured by the gas temperature measuring sensor 86, the opening ratio between the boil-off gas first and second flow valves 81a and 81b can be controlled.
  • the third control unit 92 opens the opening degree of the boil-off gas first flow valve 81a when the boil-off gas generated in the liquefied gas storage tank 10 is equal to or greater than the second preset generation amount Y (section B3). Then, the opening degree of the second boil-off gas flow rate valve 81b may be closed to control the boil-off gas supplied from the liquefied gas storage tank 10 to be supplied only to the boil-off gas heat exchanger 20.
  • the preheating operation of the boil-off gas flowing into the first to fourth boil-off gas compressors 51 to 54 is controlled according to the operating time of the ship 1, so that the boil-off gas heat exchanger 20
  • the malfunction of the first to fourth boil-off gas compressors 51 to 54, which may occur when only one is present, may be prevented, thereby improving the reliability of the system.
  • FIG. 3 is a conceptual diagram of a gas treatment system according to another embodiment of the present invention.
  • the gas treatment system 2 includes a liquefied gas storage tank 10, an evaporated gas heat exchanger 20, an evaporated gas pressure reducer 30, and a gas liquid.
  • Separator 40 first to fourth boil-off gas compressors 51 to 54, heaters 61, forced vaporizers 62, pumps 63, first demand destination 71, second demand destination 72, first 4, the control unit 93 is included.
  • it may further include a forced evaporation gas supply line (L8).
  • the forced evaporation gas supply line L8 connects the liquefied gas storage tank 10 and the downstream of the boil-off gas heat exchanger 20 on the boil-off gas supply line L1 and may include a forced vaporizer 62.
  • the forced evaporation gas supply line L8 may be provided with an additional boil-off gas supply valve 82, and a supply amount of the liquefied gas supplied to the forced vaporizer 62 according to the opening degree of the additional boil-off gas supply valve 82. Can be controlled.
  • the additional boil-off gas supply valve 82 may be connected to the fourth control unit 93 in a wired or wireless manner to receive an opening degree adjustment command of the fourth control unit 93.
  • the forced vaporizer 62 is provided on the forced evaporation gas supply line L8.
  • the forced vaporizer 62 receives the liquefied gas stored in the liquefied gas storage tank 10 from the pump 63 and forcibly vaporizes the first to fourth boil-off gas compressors. Supply to (51 ⁇ 54).
  • the forced vaporizer 62 may receive steam supplied from the boiler 72 as a heat source, and heat the liquefied liquefied gas by vapor-exchanging the vaporized gas generated in the liquefied gas storage tank 10. It can be changed into forced vaporization gas.
  • the liquid liquefied gas can be raised to a forced vaporized evaporation gas having a temperature of about 163 degrees below zero, and a temperature of about 40 degrees below zero to about 20 degrees below zero, which is a phase change from the liquid phase to the gas phase as described above.
  • the forced vaporizer 62 can share steam with the heater 61.
  • the boiler 72 may supply steam not only to the forced vaporizer 62 but also to the heater 61.
  • the forced vaporizer 62 may be driven together with the heater 61.
  • the reason why the heater 61 is driven in the embodiment of the present invention is that the preheating function of the boil-off gas heat exchanger 20 is weakened and must be replenished. That is, in this case, the amount of generated boil-off gas generated in the liquefied gas storage tank 10 is reduced, so that the amount of boil-off gas to be supplied to the first to fourth boil-off gas compressors 51 to 54 is small. Lose.
  • the amount of boil-off gas to be supplied to the first to fourth boil-off gas compressor (51 to 54) can be replenished.
  • driving reliability of the first to fourth boil-off gas compressors 51 to 54 may be improved.
  • the forced vaporizer 62 and the heater 61 uses steam as a heat exchange medium, and by sharing this steam with each other, it is possible to share the location where the equipment is installed. Details thereof will be described later.
  • the pump 63 may be provided on the forced evaporation gas supply line L8 to supply the liquefied gas stored in the liquefied gas storage tank 10 to the forced vaporizer 62.
  • the pump 63 is connected to the fourth control unit 93 in a wired or wireless manner to receive a pump operation signal or a pump operation stop signal, and is operated by the pump operation signal of the fourth control unit 93 to liquefy gas.
  • the liquefied gas stored in the storage tank 10 may be supplied to the forced vaporizer 62 or stopped by the pump operation stop signal to stop the supply of the liquefied gas supplied to the forced vaporizer 62.
  • the pump 63 may be provided inside or outside the liquefied gas storage tank 10, and may be, for example, a centrifugal pump.
  • the fourth controller 93 supplies the flow rate of the boil-off gas supplied to the boil-off gas heat exchanger 20 and the heater 61 and the forced vaporizer 62 according to the amount of boil-off gas generated in the liquefied gas storage tank 10.
  • the flow rate of the liquefied gas to be controlled can be controlled.
  • the fourth control unit 93 controls the heater 61 and the forced vaporizer 62 to be driven together when the amount of generated evaporation gas is less than or equal to the first predetermined amount generated, but not to operate the evaporated gas heat exchanger 20.
  • the heater 61 and the forced vaporizer 62 are driven together, and the boil-off gas heat exchanger 20 is also controlled to operate together.
  • the amount of generation is greater than or equal to the second preset amount, it may be controlled to operate only the boil-off gas heat exchanger 20.
  • the fourth control unit 93 closes the opening degree of the boil-off gas first flow valve 81a when the boil-off gas generation amount is equal to or less than the first predetermined generation amount X (section B1), and the boil-off gas second flow valve 81b. While opening the opening of the liquefied gas storage tank 10 to control the evaporation gas supplied to the heater 61 only, while opening the opening of the additional boil-off gas supply valve 82 and operating the pump 63 liquefied gas The liquefied gas stored in the storage tank 10 may be controlled to be supplied to the forced vaporizer 62.
  • the fourth control unit 93 when the amount of boil-off gas generated is greater than the first preset amount (X) and less than the second preset amount (Y) (section B2), the first boil-off gas first flow valve 81a and the second boil-off gas While opening all the openings of the flow valve 81b to control the evaporated gas supplied from the liquefied gas storage tank 10 to be supplied to both the boil-off gas heat exchanger 20 and the heater 61, the additional boil-off gas supply valve 82 By opening the opening degree and operating the pump 63 can be controlled so that the liquefied gas stored in the liquefied gas storage tank 10 is also supplied to the forced vaporizer (62).
  • the fourth control unit 93 opens the first and second flow rate valves 81a and 81b and the additional supply valve 82 of the evaporation gas according to the temperature measured by the evaporation gas temperature measuring sensor 86.
  • the temperature of the boil-off gas supplied to the first to fourth boil-off compressors 51 to 54 may be controlled.
  • the fourth control unit 93 opens the opening degree of the boil-off gas first flow valve 81a when the boil-off gas generation amount is equal to or greater than the second preset generation amount Y (section B3), and the boil-off gas second flow valve 81b.
  • the opening of the liquefied gas storage tank 10 so that the evaporated gas supplied only to the boil-off gas heat exchanger 20, the opening of the additional boil-off gas supply valve 82 is closed and the pump 63 is operated.
  • By stopping the liquefied gas stored in the liquefied gas storage tank 10 can be controlled so as not to be supplied to the forced vaporizer (62).
  • the preliminary driving of the boil-off gas flowing into the first to fourth boil-off gas compressors 51 to 54 is controlled according to the operating time of the ship 1, and the forced vaporizer 62 is controlled.
  • the flow rate of the boil-off gas flowing into the first to fourth boil-off gas compressors 51 to 54 can be adequately satisfied at all times, thereby maximizing driving efficiency of the first to fourth boil-off gas compressors 51 to 54.
  • the reliability of the system is improved.
  • Figure 6 is a side view of a ship having a gas treatment system according to an embodiment of the present invention
  • Figure 7 is an internal plan view of a cargo compressor room of the ship according to an embodiment of the present invention
  • Figure 8 is another embodiment of the present invention
  • 9 is an internal cross-sectional view of a cargo compressor room of a ship according to another embodiment of the present invention
  • FIG. 10 is a cargo compressor room of a ship according to another embodiment of the present invention. It is a modified internal cross section.
  • the ship 1 having the gas treatment system 2 includes a cargo compressor room 100, a skid 101, and a motor room 200. , An engine casing 300, a liquefied gas storage tank 10, first to fourth boil-off compressors 51 to 54, a first demand destination 71, and a second demand destination 72.
  • the first to fourth boil-off gas compressors 51 to 54 may be classified into a driving boil-off gas compressor and a power-saving boil-off gas compressor, which is one embodiment of the present invention described with reference to FIGS. 1 to 3.
  • the boil-off gas compressor serving as an operating atmosphere may be a power-saving boil-off gas compressor
  • the boil-off gas compressor that is always operating without waiting for operation may be a boil-off gas compressor.
  • the driving boil-off gas compressor may be the first to third boil-off gas compressors 51 to 53
  • the power-saving boil-off gas compressor may be the fourth boil-off gas compressor 54.
  • the first to fourth boil-off gas compressors 51 to 54 are used in the gas treatment system 2 according to the embodiment of the present invention described with reference to FIGS. 1 to 3.
  • the alternating control described is not performed.
  • the vessel 1 can accommodate the liquefied gas storage tank 10 and the first and second demand destinations 71 and 72 in the hull H under the upper deck (not shown), and on the upper deck.
  • the compressor room 100, the motor room 200, and the engine casing 300 may be provided.
  • the vessel 1 may be provided with only a plurality of liquefied gas storage tank 10 in the hull (H) in accordance with the transport purpose, that is, in the case of the LNG carrier, the cargo compressor room 100, the motor room (on the upper deck) 200 and the engine casing 300, in the case of a container carrier ship, the liquefied gas storage tank 10, the cargo compressor room 100, the motor room 200 and the container holding hold in the hull (H)
  • a plurality may be provided together, and the engine casing 300 and the containers may be provided on the upper deck.
  • the cargo compressor room 100 is a separate isolated space provided on the upper deck of the hull H, for example, may be provided in front of the motor room 200.
  • the cargo compressor room 100 accommodates the 1st-4th boil-off gas compressor 51-54 inside in the structure arrange
  • the cargo compressor room 100 is bound to be limited in the interior receiving space.
  • the first to fourth boil-off gas compressors 51 to 54 have a problem of utilizing space inside the cargo compressor room 100 as the compression capacity and size are gradually increased.
  • the height of the first to fourth boil-off gas compressors 51 to 54 is half the height of the cargo compressor room 100, that is, the existing boil-off gas having a size of preferably within 2 to 4 m. It is composed of an evaporative gas compressor having the same performance as the compressors. That is, the first to fourth boil-off gas compressors 51 to 54 may be standard high pressure compressors, and the pistons of the first to fourth boil-off gas compressors 51 to 54 may be one example. It can be configured by intersecting in a V-shape to connect a plurality of series.
  • the first to fourth boil-off gas compressors 51 to 54 are constructed by connecting a plurality of pistons in series in a V-shape and connected in series so that they can have a size of 2 to 4 m or less in height, and thus the cargo compressor room 100 It is now possible to implement optimal deployment within.
  • the first and second boil-off gas compressors 51 and 52 are on the upper side, and the third and fourth boil-off gas compressors 53 and 54 on the lower side. It can be arranged in the cargo compressor room 100 in a two-layer structure provided to be stacked on each other, so that the space in the cargo compressor room 100 occupied by the first and second boil-off gas compressor (51, 52) Can be further secured.
  • the cargo compressor room 100 has a boil-off gas heat exchanger 20, a boil-off gas reducer 30, and a gas-liquid separator 40 in addition to the first to fourth boil-off gas compressors 51 to 54 in the additionally secured space.
  • the heater 61, the forced vaporizer 62, and the like can accommodate a device for processing a liquefied gas or evaporated gas, it can also accommodate a skid 101 to be described later.
  • the heater 61 may be disposed above the first to fourth boil-off gas compressors 51 to 54 when the first to fourth boil-off gas compressors 51 to 54 are arranged in the same layer rather than the stacked structure. Can be.
  • the skid 101 is a flat support plate provided to support the first to fourth boil-off gas compressors 51 to 54 from the upper deck and is provided in the cargo compressor room 100.
  • the skid can be used interchangeably with the support plate and has the same meaning.
  • the skid 101 is configured to support a driving boil-off gas compressor (eg, first to third boil-off gas compressors 51 to 53) which are not standby among the first to fourth boil-off gas compressors 51 to 54 from the upper deck.
  • a driving boil-off gas compressor eg, first to third boil-off gas compressors 51 to 53
  • the second support plate 101b for supporting the power saving evaporative gas compressor (for example, the fourth evaporative gas compressor) 54 which is standby among the first support plate 101a and the first to fourth evaporative gas compressors 51 to 54 is provided. It may include.
  • first support plate 101a and the second support plate 101b may be spaced apart from each other from side to side as shown in FIGS. 7 and 8 to form a vibration blocking gap 102.
  • the vibration blocking gap 102 includes first to third boil-off gas compressors 51 to 53 when the first to fourth boil-off gas compressors 51 to 54 are arranged in a 4 * 1 matrix.
  • the fourth boil-off gas compressor 54 is standby by falling below the set generation amount, vibration generated by the operation from the first to third boil-off gas compressors 51 to 53 may be blocked.
  • the standby evaporative gas compressor 54 may be protected from vibration, thereby improving durability.
  • the vibration blocking gap 102 is the first to third boil-off gas compressor 51 when the first to fourth boil-off gas compressors 51 to 54 are arranged in a 2 * 2 matrix as shown in FIG. 8.
  • ⁇ 53 is provided between the first support plate 101a and the second support plate 101b for supporting the fourth boil-off gas compressor 54 to form a liquefied gas in the liquefied gas storage tank 10.
  • the vibration blocking gap 102 may include a member for damping vibration, and may be, for example, air or a damper provided separately.
  • the skid 101 includes an upper skid 101u and a third and fourth boil-off gas compressors 53 and 54 which support the first and second boil-off gas compressors 51 and 52 at a predetermined interval from the upper deck. ) May include a lower skid 101l supporting the upper deck.
  • the upper skid 101u and the lower skid 101l may be disposed to be spaced apart from each other up and down as shown in FIGS. 9 and 10, and the upper skid 101u is upper side from the upper deck by the spacer 103. It can be spaced apart by a certain interval.
  • the heater 61 may be provided in the upper skid 101u together with the first boil-off gas compressor 51, in which case the second boil-off gas compressor 52 is the third and fourth boil-off gas compressors 53. And 54 may be provided on the lower skid 101l.
  • the spacer member 103 allows the upper skid 101u to be spaced apart from the upper deck by a predetermined interval, and connects the upper deck and the upper skid 101u, or connects the lower skid 101l and the upper skid 101u.
  • the lower skid 101l is disposed on the upper deck portion perpendicular to the position of the spacer 103 connected to the upper skid 101u. ) May be arranged not to be provided so as to be vertically connected to the spacer 103 and the upper deck.
  • the spacer 103 when the spacer 103 connects the lower skid 101l and the upper skid 101u, the spacer 103 is formed when the upper skid 101u and the lower skid 101l have the same area and shape. It can be connected in the form of upper deck and oblique line.
  • the spacer 103 may include a vibration damping unit (not shown).
  • the vibration damping unit may be a hydraulic damping device or an elastic body formed of a material having an elastic force.
  • the motor room 200 may accommodate a motor (not shown) for driving the first to fourth boil-off gas compressors 51 to 54 and the like in a separate isolated space provided on the upper deck of the hull H. It is provided adjacent to the cargo compressor room (100). For example, the motor room 200 may be disposed at the rear of the cargo compressor room 100.
  • the motor room 200 should be isolated from the cargo compressor room 100 which is a hazard zone as a safety zone. For this reason, in the embodiment of the present invention, an isolation wall (not shown) is installed between the cargo compressor room 100 and the motor room 200 so that sparks or the like caused by the operation of the motor are not generated in the cargo compressor room 100. By doing so, the stability of the ship 1 is ensured.
  • the engine casing 300 is provided on the upper deck of the hull H, and at least a part of the engine room (not shown) provided with the first demand destination 71 and the second demand destination 72 and a stack (symbol illustrated). And ventmasts (not shown).
  • the engine casing 300 discharges the exhaust gas discharged from the first demand destination 71 and the second demand destination 72 through the stack and vents the air discharged from the hull H or from the cabin (not shown). Can be discharged to the outside.
  • the gas treatment system 2 is arranged to optimize the space inside the hull H, so that the utilization of the space inside the hull H is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

According to one embodiment of the present invention, a gas treatment system comprises: a plurality of evaporation gas compressors, which pressurize evaporation gas generated in a liquefied gas storage tank so as to supply the pressurized evaporation gas to a source of demand and are constructed in parallel with each other; and a control unit for controlling the evaporation gas compressors according to a generation amount of the evaporation gas generated in the liquefied gas storage tank, wherein the control unit controls at least one of the evaporation gas compressors in a standby state in which the compression of the evaporation gas is not implemented, according to the generation amount of the evaporation gas.

Description

가스 처리 시스템 및 이를 포함하는 선박Gas treatment system and vessel comprising the same
본 발명은 가스 처리 시스템 및 이를 포함하는 선박에 관한 것이다. The present invention relates to a gas treatment system and a vessel comprising the same.
최근 기술 개발에 따라 가솔린이나 디젤을 대체하여 액화천연가스(Liquefied Natural Gas), 액화석유가스(Liquefied Petroleum Gas) 등과 같은 액화가스를 널리 사용하고 있다.Recently, liquefied gas such as liquefied natural gas and liquefied petroleum gas has been widely used in place of gasoline or diesel according to technology development.
액화천연가스는 가스전에서 채취한 천연가스를 정제하여 얻은 메탄을 냉각해 액화시킨 것이며, 무색ㆍ투명한 액체로 공해물질이 거의 없고 열량이 높아 대단히 우수한 연료이다. 반면 액화석유가스는 유전에서 석유와 함께 나오는 프로판(C3H8)과 부탄(C4H10)을 주성분으로 한 가스를 상온에서 압축하여 액체로 만든 연료이다. 액화석유가스는 액화천연가스와 마찬가지로 무색무취이고 가정용, 업무용, 공업용, 자동차용 등의 연료로 널리 사용되고 있다.Liquefied natural gas is liquefied by cooling methane obtained by refining natural gas collected from a gas field. It is a colorless and transparent liquid. Liquefied petroleum gas, on the other hand, is a liquid fuel made by compressing a gas mainly composed of propane (C3H8) and butane (C4H10), which come with oil from an oil field, at room temperature. Liquefied petroleum gas, like liquefied natural gas, is colorless and odorless and is widely used as a fuel for household, business, industrial, and automobile use.
이와 같은 액화가스는 지상에 설치되어 있는 액화가스 저장탱크에 저장되거나 또는 대양을 항해하는 운송수단인 선박에 구비되는 액화가스 저장탱크에 저장되는데, 액화천연가스는 액화에 의해 1/600의 부피로 줄어들고, 액화석유가스는 액화에 의해 프로판은 1/260, 부탄은 1/230의 부피로 줄어들어 저장 효율이 높다는 장점이 있다. 이러한 액화가스를 연료로 사용하는 엔진이 구동되기 위해서 필요한 온도 및 압력 등은, 탱크에 저장되어 있는 액화가스의 상태와는 다를 수 있다. Such liquefied gas is stored in a liquefied gas storage tank installed on the ground or in a liquefied gas storage tank provided in a ship which is a means of transporting the ocean, and liquefied natural gas is liquefied to a volume of 1/600. The liquefied petroleum gas is reduced by the liquefied propane is 1/260, butane is reduced to a volume of 1/230 has the advantage of high storage efficiency. The temperature, pressure, and the like required for driving the engine using such a liquefied gas as fuel may be different from the state of the liquefied gas stored in the tank.
또한 LNG를 액상으로 보관할 때 탱크로 열침투가 발생함에 따라 일부 LNG가 기화되어 증발가스(BOG: Boil off Gas)가 생성되는데, 이러한 증발가스는 액화가스 처리 시스템상에 문제를 일으킬 수 있어 기존에는 증발가스를 외부로 배출시켜 태우는 방법(기존에는 탱크 압력을 낮춰 탱크의 파손 위험을 제거하기 위해서 증발가스를 단순히 외부로 배출 처리하였다.)으로 소비를 시킴으로서 문제를 해결하고자 하였으나 이는 환경오염과 자원낭비의 문제를 일으키고 있다.In addition, when LNG is stored in the liquid phase, heat permeation occurs in the tank, so that some LNG is vaporized to generate boil off gas (BOG), which may cause problems in the liquefied gas treatment system. We tried to solve the problem by discharging the boil-off gas to the outside by burning it (in the past, the boil-off gas was simply discharged to the outside to reduce the risk of damage to the tank by lowering the tank pressure). Is causing problems.
이에 최근에는 증발가스를 효율적으로 처리하는 기술로서, 생성된 증발가스를 액화가스를 통해 재응축하여 액화시켜 엔진에 공급하는 등의 활용방안에 대한 연구 및 개발이 활발히 이루어지고 있는 실정이다.  In recent years, as a technology for efficiently treating the boil-off gas, research and development of the utilization method such as re-condensing the generated boil-off gas through the liquefied gas to liquefy and supply to the engine has been actively conducted.
본 발명은 종래의 기술을 개선하고자 창출된 것으로서, 본 발명의 목적은, 액화가스 저장탱크에서 수요처로 액화가스 및/또는 증발가스를 효과적으로 공급하는 가스 처리 시스템 및 이를 포함하는 선박을 제공, 및/또는 선내에 최적화된 배치를 가지는 가스 처리 시스템 및 이를 포함하는 선박을 제공하기 위한 것이다. SUMMARY OF THE INVENTION The present invention has been made to improve the prior art, and an object of the present invention is to provide a gas treatment system and a vessel including the same, which effectively supply liquefied gas and / or boil-off gas to a demand destination in a liquefied gas storage tank, and / Another object is to provide a gas treatment system having a layout optimized on board and a vessel comprising the same.
본 발명에 따른 가스 처리 시스템은, 액화가스 저장탱크에서 발생된 증발가스를 가압하여 수요처로 공급하며, 복수 개 마련되어 서로 병렬로 구축되는 증발가스 압축기; 및 상기 액화가스 저장탱크에서 발생되는 증발가스 발생량에 따라 상기 증발가스 압축기를 제어하는 제어부를 포함하고, 상기 제어부는, 상기 증발가스 발생량에 따라, 상기 증발가스 압축기 중 적어도 하나를 증발가스의 압축을 구현하지 않는 스탠바이 상태로 제어하는 것을 특징으로 한다. Gas processing system according to the present invention, the pressurized evaporation gas generated in the liquefied gas storage tank is supplied to the demand destination, provided with a plurality of boil-off gas compressor built in parallel with each other; And a controller configured to control the boil-off gas compressor according to the boil-off gas generated in the liquefied gas storage tank, wherein the controller is configured to compress at least one of the boil-off gas compressors according to the boil-off gas generated by compression of the boil-off gas. It is characterized by controlling to a standby state not implemented.
구체적으로, 상기 증발가스 압축기는, 4단 또는 5단의 피스톤이 직렬연결되는 구성 압축기가 구비되되, 상기 구성 압축기가 4 개가 마련되어 서로 병렬 연결될 수 있다. Specifically, the boil-off gas compressor is provided with a constituent compressor in which four or five stage pistons are connected in series, and four constituent compressors may be provided in parallel to each other.
구체적으로, 상기 액화가스 저장탱크 내에 발생되는 증발가스 발생량을 측정하는 증발가스 발생량 측정센서를 더 포함하고, 상기 제어부는, 상기 증발가스 발생량 측정센서로부터 측정되는 상기 증발가스 발생량을 전달받아, 상기 증발가스 압축기의 구동을 제어할 수 있다. Specifically, further comprising an evaporation gas generation amount measuring sensor for measuring the amount of boil-off gas generated in the liquefied gas storage tank, wherein the control unit receives the evaporation gas generation amount measured from the evaporation gas generation sensor, the evaporation It is possible to control the driving of the gas compressor.
구체적으로, 상기 제어부는, 상기 증발가스 발생량 측정센서로부터 전달받은 상기 증발가스 발생량이 상기 기설정 발생량 이하인 경우, 상기 증발가스 압축기 중 어느 하나를 상기 스탠바이 상태로 제어하고, 병렬 연결된 상기 증발가스 압축기 나머지의 부하를 증가시키도록 제어할 수 있다. Specifically, when the amount of generated boil-off gas received from the measured amount of boil-off gas generation sensor is less than or equal to the preset generation amount, the controller controls one of the boil-off gas compressors to the standby state, and the remaining boil-off gas compressors connected in parallel. Can be controlled to increase the load.
구체적으로, 상기 액화가스 저장탱크에서 공급되는 증발가스와 상기 증발가스 압축기에서 압축된 증발가스를 열교환하는 증발가스 열교환기; 및 상기 증발가스 열교환기를 바이패스하는 바이패스 라인을 더 포함하고, 상기 제어부는, 상기 증발가스 발생량이 상기 기설정 발생량 이하인 경우, 상기 액화가스 저장탱크에서 공급되는 증발가스가 상기 바이패스 라인을 통해 상기 증발가스 열교환기를 바이패스하여 상기 증발가스 압축기로 공급되도록 제어하되, 상기 증발가스 발생량이 상기 기설정 발생량 초과인 경우, 상기 액화가스 저장탱크에서 공급되는 증발가스가 상기 증발가스 열교환기를 통해 상기 증발가스 압축기에서 압축된 증발가스를 부분 재액화시킬 수 있다. Specifically, an evaporation gas heat exchanger for heat-exchanging the boil-off gas supplied from the liquefied gas storage tank and the boil-off gas compressed by the boil-off gas compressor; And a bypass line for bypassing the boil-off gas heat exchanger, wherein the controller is further configured to supply the boil-off gas supplied from the liquefied gas storage tank to the boil-off gas through the bypass line when the amount of boil-off gas is less than or equal to the predetermined amount. Bypassing the boil-off gas heat exchanger is controlled to be supplied to the boil-off gas compressor, when the boil-off gas generation amount is greater than the preset generation amount, the boil-off gas supplied from the liquefied gas storage tank is evaporated through the boil-off gas heat exchanger The compressed boil-off gas in the gas compressor can be partially reliquefied.
구체적으로, 상기 기설정 발생량은, 상기 증발가스 압축기의 비효율지점에서 상기 증발가스 압축기로 유입되는 증발가스량이며, 상기 증발가스 압축기의 비효율지점은, 상기 증발가스 압축기의 유량 대비 소비전력량의 비율에서, 상기 증발가스압축기로 공급되는 유량이 감소하더라도 소비전력이 줄어들지 않는 지점일 수 있다. Specifically, the preset generation amount is the amount of boil-off gas introduced into the boil-off gas compressor at the point of inefficiency of the boil-off gas compressor, and the point of inefficiency of the boil-off gas compressor is the ratio of power consumption to the flow rate of the boil-off gas compressor. Even if the flow rate supplied to the boil-off gas compressor is reduced, it may be a point at which power consumption is not reduced.
구체적으로, 상기 증발가스 압축기의 비효율지점에서의 부하량은, 상기 증발가스 압축기가 최대부하를 가지는 유량의 20 내지 40%의 유량일 수 있다. Specifically, the load amount at the inefficiency point of the boil-off gas compressor may be a flow rate of 20 to 40% of the flow rate of the boil-off gas compressor having the maximum load.
구체적으로, 상기 증발가스 열교환기로부터 공급되는 열교환된 증발가스를 감압하는 증발가스 감압기; 및 상기 증발가스 감압기로부터 감압된 증발가스를 공급받아 액상과 기상으로 분리하는 기액분리기를 더 포함할 수 있다. Specifically, an evaporation gas decompressor for decompressing the heat exchanged evaporated gas supplied from the evaporation gas heat exchanger; And a gas-liquid separator which receives the reduced-pressure evaporated gas from the boil-off gas reducer and separates the liquid-liquid and the gas phase.
구체적으로, 상기 수요처는, 150 내지 350bar의 고압 증발가스를 소비하는 고압 수요처; 및 4 내지 8bar의 저압 증발가스를 소비하는 저압 수요처를 포함할 수 있다. Specifically, the demand destination, high pressure demand destination for consuming 150 to 350 bar of high pressure evaporation gas; And it may include a low pressure demand destination for consuming low pressure boil-off gas of 4 to 8 bar.
구체적으로, 상기 액화가스 저장탱크와 상기 고압 수요처를 연결하며, 상기 증발가스 압축기를 구비하는 증발가스 공급라인; 상기 증발가스 공급라인 상의 상기 증발가스 압축기 중간 단에서 분기되어 상기 저압 수요처를 연결하는 증발가스 분기라인; 상기 증발가스 공급라인의 상기 증발가스 압축기 후단에서 분기되어 상기 증발가스 열교환기를 연결하는 증발가스 제1 리턴라인; 상기 증발가스 열교환기와 상기 기액분리기를 연결하며, 상기 증발가스 감압기를 구비하는 증발가스 제2 리턴라인; 상기 기액분리기와 상기 증발가스 공급라인 상의 상기 증발가스 열교환기 상류를 연결하는 플래시가스 공급라인; 및 상기 기액분리기와 상기 액화가스 저장탱크를 연결하는 재액화가스 리턴라인을 더 포함할 수 있다. Specifically, the liquefied gas storage tank and the high pressure demand destination, the boil-off gas supply line having the boil-off compressor; An evaporating gas branching line branched from an intermediate stage of the evaporating gas compressor on the evaporating gas supply line to connect the low pressure demand destination; A boil-off gas first return line branched after the boil-off gas compressor of the boil-off gas supply line to connect the boil-off gas heat exchanger; A second boil-off gas connecting the boil-off gas heat exchanger and the gas-liquid separator, and including the boil-off gas reducer; A flash gas supply line connecting upstream of the gas-liquid separator and the boil-off gas heat exchanger on the boil-off gas supply line; And a reliquefaction gas return line connecting the gas-liquid separator and the liquefied gas storage tank.
구체적으로, 상기 증발가스 발생량 측정센서는, 상기 액화가스 저장탱크의 내압을 통해 상기 증발가스 발생량을 산출할 수 있다. Specifically, the boil-off gas generation sensor may calculate the boil-off gas generation amount through the internal pressure of the liquefied gas storage tank.
구체적으로, 상기 증발가스 압축기는, 표준 고압 압축기(Standard High Pressure Compressor)일 수 있다. Specifically, the boil-off gas compressor may be a standard high pressure compressor.
구체적으로, 상기 가스 처리 시스템을 포함하는 것을 특징으로 하는 선박일 수 있다.Specifically, it may be a ship comprising the gas treatment system.
본 발명에 따른 가스 처리 시스템 및 이를 포함하는 선박은, 액화가스 저장탱크에서 수요처로 액화가스 및/또는 증발가스를 효과적으로 공급하여 시스템 안정성 및 신뢰성을 높이는 효과가 있으며, 가스 처리 시스템이 선내 공간을 최적화하도록 배치됨으로써 선내 공간 활용성이 향상되는 효과가 있다. The gas treatment system and the ship including the same according to the present invention have an effect of effectively supplying liquefied gas and / or boil-off gas to a demand destination in a liquefied gas storage tank to increase system stability and reliability, and the gas treatment system optimizes the space on board. By being arranged so as to have an effect onboard space utilization is improved.
도 1은 본 발명의 일 실시예에 따른 가스 처리 시스템의 개념도이다.1 is a conceptual diagram of a gas treatment system according to an embodiment of the present invention.
도 2는 본 발명의 다른 실시예에 따른 가스 처리 시스템의 개념도이다.2 is a conceptual diagram of a gas treatment system according to another embodiment of the present invention.
도 3은 본 발명의 또 다른 실시예에 따른 가스 처리 시스템의 개념도이다.3 is a conceptual diagram of a gas treatment system according to another embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 증발가스 압축기의 유량 대비 소비전력에 대한 그래프이다. Figure 4 is a graph of the power consumption compared to the flow rate of the boil-off gas compressor according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 선박의 운항시간 대비 액화가스 저장탱크에서 발생되는 증발가스량에 대한 그래프이다. 5 is a graph of the amount of boil-off gas generated in the liquefied gas storage tank compared to the operating time of the ship according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따른 가스 처리 시스템을 구비한 선박의 측면도이다.6 is a side view of a vessel equipped with a gas treatment system according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 선박의 카고 컴프레서 룸의 내부평면도이다. 7 is an interior plan view of a cargo compressor room of a ship according to an embodiment of the present invention.
도 8은 본 발명의 다른 실시예에 따른 선박의 카고 컴프레서 룸의 내부평면도이다. 8 is an interior plan view of a cargo compressor room of a ship according to another embodiment of the present invention.
도 9는 본 발명의 또 다른 실시예에 따른 선박의 카고 컴프레서 룸의 내부 단면도이다. 9 is an internal cross-sectional view of a cargo compressor room of a ship according to another embodiment of the present invention.
도 10은 본 발명의 또 다른 실시예에 따른 선박의 카고 컴프레서 룸이 변형된 내부 단면도이다. 10 is a modified cross-sectional interior view of a cargo compressor room of a ship according to another embodiment of the present invention.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.The objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and the preferred embodiments associated with the accompanying drawings. In the present specification, in adding reference numerals to the components of each drawing, it should be noted that the same components as possible, even if displayed on different drawings have the same number as possible. In addition, in describing the present invention, if it is determined that the detailed description of the related known technology may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
이하에서 액화가스는 LPG, LNG, 에탄 등일 수 있으며, 예시적으로 LNG(Liquefied Natural Gas)를 의미할 수 있으며, 증발가스는 자연 기화된 LNG 등인 BOG(Boil Off Gas)를 의미할 수 있다. Hereinafter, the liquefied gas may be LPG, LNG, ethane, etc. For example, it may mean LNG (Liquefied Natural Gas), and the evaporated gas may mean BOG (Boil Off Gas), which is natural vaporized LNG.
액화가스는 액체 상태, 기체 상태, 액체와 기체 혼합 상태, 과냉 상태, 초임계 상태 등과 같이 상태 변화와 무관하게 지칭될 수 있으며, 증발가스 역시 마찬가지임을 알려 둔다. 또한 본 발명은 처리 대상이 액화가스로 한정되지 않고, 액화가스 처리 시스템 및/또는 증발가스 처리 시스템일 수 있고, 하기 설시할 각 도면의 시스템은 서로 적용될 수 있음은 자명하다. 또한, 이하에서 기술하는 혼합 유체는, 혼합된 증발가스 또는 적어도 일부 액상이 포함된 유체일 수 있다.Liquefied gas may be referred to regardless of the change of state, such as liquid state, gas state, liquid and gas mixed state, subcooled state, supercritical state, etc., it is also known that evaporated gas is the same. In addition, the present invention is not limited to the liquefied gas to be treated, it may be a liquefied gas treatment system and / or boil-off gas treatment system, it is apparent that the system of each of the drawings to be described below can be applied to each other. In addition, the mixed fluid described below may be a mixed boil-off gas or a fluid containing at least some liquid phase.
또한, 본 발명의 가스 처리 시스템(2)의 실시예들은 각각 서로 조합되어 구성될 수 있으며, 각 구성들의 추가가 서로 교차로 이루어질 수 있음은 물론이다. 그리고 본 발명의 실시예에 따른 가스 처리 시스템(2)은, 선체(H)에 장착될 수 있고, 이때, 선박(1)은 LNG Carrier, 컨테이너 운반선 등의 선박일 수 있으며, 이에 한정되지 않는다. Further, the embodiments of the gas treatment system 2 of the present invention may be configured in combination with each other, and of course, the addition of the respective components may be made to cross each other. And the gas treatment system 2 according to the embodiment of the present invention, may be mounted on the hull (H), in this case, the vessel 1 may be a vessel such as an LNG carrier, a container carrier, but is not limited thereto.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 가스 처리 시스템의 개념도이다.1 is a conceptual diagram of a gas treatment system according to an embodiment of the present invention.
도 1에 도시한 바와 같이, 본 발명의 일 실시예에 따른 가스 처리 시스템(2)은, 액화가스 저장탱크(10), 증발가스 열교환기(20), 증발가스 감압기(30), 기액분리기(40), 제1 내지 제4 증발가스 압축기(51~54), 제1 수요처(71), 제2 수요처(72), 제1 제어부(90) 및 제2 제어부(91)를 포함한다. As shown in FIG. 1, the gas treatment system 2 according to an embodiment of the present invention includes a liquefied gas storage tank 10, a boil-off gas heat exchanger 20, a boil-off gas pressure reducer 30, and a gas-liquid separator. 40, first to fourth boil-off compressors 51 to 54, a first demand destination 71, a second demand destination 72, a first control unit 90, and a second control unit 91.
이하에서는 도 1을 참고로 하여 본 발명의 실시예에 따른 가스 처리 시스템(2)을 설명하도록 한다.Hereinafter, a gas treatment system 2 according to an exemplary embodiment of the present invention will be described with reference to FIG. 1.
본 발명의 실시예에 따른 가스 처리 시스템(2)의 개별적인 구성을 기술하기에 앞서, 개별적인 구성들을 유기적으로 연결하는 기본적인 유로들에 대해서 설명하기로 한다. 여기서 유로는 유체가 흐르는 통로로 라인(Line)일 수 있으며 이에 한정되지 않고 유체가 유동하는 구성이면 모두 가능하다. Prior to describing the individual configurations of the gas treatment system 2 according to the embodiment of the present invention, basic flow paths for organically connecting the individual components will be described. Here, the flow path may be a line through which the fluid flows, but is not limited thereto, and any flow path may be used.
본 발명의 실시예에서는, 증발가스 공급라인(L1), 증발가스 제1 리턴라인(L2), 증발가스 분기라인(L3). 증발가스 제2 리턴라인(L4), 재액화 리턴라인(L5), 플래시가스 공급라인(L6), 증발가스 바이패스라인(L7)을 더 포함할 수 있다. 각각의 라인에는 개도 조절이 가능한 밸브(도시하지 않음)들이 설치될 수 있으며, 각 밸브의 개도 조절에 따라 증발가스의 공급량이 제어될 수 있다.In the embodiment of the present invention, the boil-off gas supply line (L1), boil-off gas first return line (L2), boil-off gas branch line (L3). The boil-off gas may further include a second return line L4, a reliquefaction return line L5, a flash gas supply line L6, and a boil-off gas bypass line L7. Each line may be provided with valves (not shown) that can adjust the opening degree, and the supply amount of the boil-off gas may be controlled by adjusting the opening degree of each valve.
증발가스 공급라인(L1)은, 액화가스 저장탱크(10)와 제1 수요처(71)를 연결하고, 증발가스 열교환기(20)와 제1 내지 제4 증발가스 압축기(51~54)를 구비하여, 액화가스 저장탱크(10)에서 발생되는 증발가스를 제1 수요처(71)로 공급할 수 있다. 이때, 증발가스 공급라인(L1)은, 제1 내지 제4 증발가스 압축기(51~54)를 각각 병렬로 연결할 수 있다.The boil-off gas supply line L1 connects the liquefied gas storage tank 10 and the first demand destination 71 and includes an boil-off gas heat exchanger 20 and first to fourth boil-off compressors 51 to 54. Thus, the boil-off gas generated in the liquefied gas storage tank 10 may be supplied to the first demand destination 71. In this case, the boil-off gas supply line L1 may connect the first to fourth boil-off gas compressors 51 to 54 in parallel.
또한, 증발가스 공급라인(L1)은, 증발가스 열교환기(20)의 상류에 증발가스 제1 유량밸브(81a)를 구비할 수 있으며, 증발가스 제1 유량밸브(81a)를 통해 증발가스 열교환기(20)로 공급되는 증발가스의 유량을 제어할 수 있다. 여기서 증발가스 제1 유량밸브(81a)는, 제1 제어부(90)와 유선 또는 무선으로 연결되어 제1 제어부(90)의 개도 조절 명령을 수신받을 수 있다. In addition, the boil-off gas supply line L1 may include a boil-off gas first flow valve 81a upstream of the boil-off gas heat exchanger 20, and heat-exchange the boil-off gas through the boil-off gas first flow valve 81a. The flow rate of the boil-off gas supplied to the machine 20 can be controlled. Here, the first boil-off gas flow rate valve 81a may be connected to the first controller 90 in a wired or wireless manner to receive an opening degree adjustment command of the first controller 90.
증발가스 제1 리턴라인(L2)은, 증발가스 공급라인(L1) 상의 제1 내지 제4 증발가스 압축기(51~54)의 후단에서 분기되어 증발가스 열교환기(20)와 연결되며, 제1 내지 제4 증발가스 압축기(51~54)에서 압축된 증발가스의 적어도 일부를 증발가스 열교환기(20)로 공급할 수 있다. The boil-off gas first return line L2 is branched from the rear end of the first to fourth boil-off gas compressors 51 to 54 on the boil-off gas supply line L1 and connected to the boil-off gas heat exchanger 20. At least a portion of the boil-off gas compressed by the fourth to boil-off gas compressors 51 to 54 may be supplied to the boil-off gas heat exchanger 20.
증발가스 분기라인(L3)은. 증발가스 공급라인(L1) 상의 제1 내지 제4 증발가스 압축기(51~54)의 중간단에서 분기되어 제2 수요처(72)와 연결될 수 있으며, 제1 내지 제4 증발가스 압축기(51~54)에서 저압으로 압축된 증발가스를 제2 수요처(72)로 공급할 수 있다. 여기서 증발가스 분기라인(L3)은, 제4 증발가스 압축기(54)의 제1 단과 제2 단 사이에 분기되는 것으로 도시되어 있으나, 이에 한정되지 않고 제1 내지 제3 증발가스 압축기(51~53) 각각의 제1 단과 제2 단 사이에서 분기될 수 있음은 물론이다. 이를 통해 증발가스 분기라인(L3)은, 2 내지 6bar의 압력으로 압축된 증발가스를 제2 수요처(72)로 공급할 수 있다.Boil off gas branch line (L3) is. Branched at an intermediate end of the first to fourth boil-off gas compressors 51 to 54 on the boil-off gas supply line L1 and connected to the second demand destination 72, the first to fourth boil-off gas compressors 51 to 54. ) Can be supplied to the second demand destination (72). Here, the boil-off gas branch line L3 is illustrated as being branched between the first and second ends of the fourth boil-off gas compressor 54, but is not limited thereto. Of course, it can be branched between each of the first stage and the second stage. Through this, the boil-off gas branch line L3 may supply the boil-off gas compressed at a pressure of 2 to 6 bar to the second demand destination 72.
증발가스 제2 리턴라인(L4)은, 증발가스 열교환기(20)와 기액분리기(40)를 연결하고 증발가스 감압기(30)를 구비하여, 증발가스 열교환기(20)에서 열교환된 증발가스를 증발가스 감압기(30)로 감압시켜 기액분리기(40)로 공급할 수 있다. The boil-off gas second return line L4 connects the boil-off gas heat exchanger 20 and the gas-liquid separator 40 and includes a boil-off gas decompressor 30, and the boil-off gas heat-exchanged in the boil-off gas heat exchanger 20. The pressure can be supplied to the gas-liquid separator 40 by reducing the pressure with the boil-off gas decompressor 30.
재액화 리턴라인(L5)은, 기액분리기(40)와 액화가스 저장탱크(10)를 연결하며, 기액분리기(40)에서 분리된 액상을 액화가스 저장탱크(10)로 공급할 수 있다.The reliquefaction return line L5 connects the gas-liquid separator 40 and the liquefied gas storage tank 10, and supplies the liquid phase separated from the gas-liquid separator 40 to the liquefied gas storage tank 10.
플래시가스 공급라인(L6)은, 기액분리기(40)와 증발가스 공급라인(L1) 상의 증발가스 열교환기(20)의 상류에 연결될 수 있으며, 기액분리기(40)에서 분리된 기상을 증발가스 공급라인(L1)에 합류시킬 수 있다. The flash gas supply line L6 may be connected to an upstream of the gas-liquid separator 40 and the boil-off gas heat exchanger 20 on the boil-off gas supply line L1, and supplies the gaseous phase separated from the gas-liquid separator 40 to the boil-off gas. Join line L1.
증발가스 바이패스라인(L7)은, 증발가스 공급라인(L1) 상의 증발가스 열교환기(20) 상류에서 분기되어 증발가스 공급라인(L1) 상의 증발가스 열교환기(20) 하류에 연결되고, 증발가스 제2 유량밸브(81b)를 구비하여, 액화가스 저장탱크(10)에서 공급되는 증발가스가 증발가스 열교환기(20)를 바이패스하여 제1 내지 제4 증발가스 압축기(51~54)로 공급되도록 할 수 있다. 여기서 증발가스 제2 유량밸브(81b)는, 제1 제어부(90)와 유선 또는 무선으로 연결되어 제1 제어부(90)의 개도 조절 명령을 수신받을 수 있다. The boil-off gas bypass line L7 is branched upstream of the boil-off gas heat exchanger 20 on the boil-off gas supply line L1 and connected to the boil-off gas heat exchanger 20 on the boil-off gas supply line L1 and evaporated. A gas flow rate valve 81b is provided so that the boil-off gas supplied from the liquefied gas storage tank 10 bypasses the boil-off gas heat exchanger 20 to the first to fourth boil-off gas compressors 51 to 54. Can be supplied. Here, the second boil-off gas flow rate valve 81b may be connected to the first controller 90 in a wired or wireless manner to receive an opening degree adjustment command of the first controller 90.
이하에서는 상기 설명한 각 라인들(L1~L7)에 의해 유기적으로 형성되어 가스 처리 시스템(2)을 구현하는 개별적인 구성들에 대해서 설명하도록 한다. Hereinafter, individual components that are organically formed by the lines L1 to L7 described above to implement the gas treatment system 2 will be described.
액화가스 저장탱크(10)는, 제1 및 제2 수요처(71,72)에 공급될 액화가스를 저장한다. 액화가스 저장탱크(10)는, 액화가스를 액체상태로 보관하여야 하는데, 이때 액화가스 저장탱크(10)는 압력 탱크 형태를 가질 수 있다. The liquefied gas storage tank 10 stores the liquefied gas to be supplied to the first and second demand destinations 71 and 72. The liquefied gas storage tank 10 should store the liquefied gas in a liquid state, where the liquefied gas storage tank 10 may have a pressure tank form.
여기서 액화가스 저장탱크(10)는, 선체(H)의 내부에 배치되며, 엔진룸(부호 도시하지 않음)의 전방에 일례로 4개 형성될 수 있다. 또한, 액화가스 저장탱크(10)는 일례로 멤브레인 형 탱크이나, 이에 한정되지 않고 독립형 탱크 등, 다양한 형태로 그 종류를 특별히 한정하지는 않는다.Here, the liquefied gas storage tank 10 is disposed inside the hull H, and may be formed in four, for example, in front of the engine room (not shown). In addition, the liquefied gas storage tank 10 is, for example, a membrane type tank, but not limited thereto, and various types such as a stand-alone tank are not particularly limited.
증발가스 열교환기(20)는, 증발가스 공급라인(L1) 상에서 액화가스 저장탱크(10)와 제1 내지 제4 증발가스 압축기(51~54) 사이에 마련되어, 액화가스 저장탱크(10)에서 공급되는 증발가스와 제1 내지 제4 증발가스 압축기(51~54)에서압축된 증발가스를 열교환시킬 수 있다. The boil-off gas heat exchanger (20) is provided between the liquefied gas storage tank (10) and the first to fourth boil-off gas compressors (51 to 54) on the boil-off gas supply line (L1). The supplied boil-off gas and the boil-off gas compressed by the first to fourth boil-off compressors 51 to 54 may be heat-exchanged.
증발가스 열교환기(20)에서 열교환된 증발가스 중 제1 내지 제4 증발가스 압축기(51~54)에서압축된 증발가스는, 증발가스 감압기(30)로 공급되고, 증발가스 열교환기(20)에서 열교환된 증발가스 중 액화가스 저장탱크(10)에서 공급되는 증발가스는 제1 내지 제4 증발가스 압축기(51~54)로 공급될 수 있다. The boil-off gas compressed by the first to fourth boil-off gas compressors 51 to 54 of the boil-off gas exchanged by the boil-off gas heat exchanger 20 is supplied to the boil-off gas decompressor 30, and the boil-off gas heat exchanger 20 The boil-off gas supplied from the liquefied gas storage tank 10 of the boil-off gas heat exchanged in) may be supplied to the first to fourth boil-off gas compressors 51 to 54.
이를 통해서 제1 내지 제4 증발가스 압축기(51~54)에서 압축된 증발가스는, 액화가스 저장탱크(10)에서 공급되는 증발가스로부터 냉열을 공급받아 부분재액화될 수 있으며, 액화가스 저장탱크(10)에서 공급되는 증발가스는 제1 내지 제4 증발가스 압축기(51~54)에서 압축된 증발가스로부터 열원을 공급받아 제1 내지 제4 증발가스 압축기(51~54)로 공급되기 전에 예열될 수 있다. Through this, the boil-off gas compressed by the first to fourth boil-off gas compressors 51 to 54 may be partially reliquefied by receiving cold heat from the boil-off gas supplied from the liquefied gas storage tank 10, and liquefied gas storage tank. The boil-off gas supplied from 10 is preheated before being supplied to the first to fourth boil-off gas compressors 51 to 54 by receiving a heat source from the boil-off gas compressed in the first to fourth boil-off gas compressors 51 to 54. Can be.
증발가스 감압기(30)는, 제1 내지 제4 증발가스 압축기(51~54)에서 가압되어 증발가스 열교환기(20)에서 열교환된 증발가스를 감압 또는 팽창시켜 적어도 일부를 액화시킨다. 예를 들어, 증발가스 감압기(30)는 150 내지 350bar의 증발가스를 1bar 내지 10bar로 감압할 수 있으며, 증발가스가 액화되어 액화가스 저장탱크(10)로 이송시 1bar 까지도 감압될 수 있고, 감압시 증발가스는 냉각효과가 이루어질 수 있다.The boil-off gas decompressor 30 depressurizes or expands the boil-off gas pressurized by the first to fourth boil-off gas compressors 51 to 54 and heat-exchanged in the boil-off gas heat exchanger 20 to liquefy at least a portion. For example, the boil-off gas decompressor 30 may reduce the boil-off gas of 150 to 350 bar to 1 bar to 10 bar, and the boil-off gas may be reduced to 1 bar when the boil-off gas is liquefied and transferred to the liquefied gas storage tank 10. At reduced pressure, the evaporated gas may achieve a cooling effect.
본 실시예서는, 제1 내지 제4 증발가스 압축기(51~54)에서 가압된 증발가스는 증발가스 열교환기(20)에서 액화가스 저장탱크(10)에서 공급된 증발가스와 열교환되어 냉각되나, 압력은 제1 내지 제4 증발가스 압축기(51~54)에서 토출된 토출압을 유지할 수 있다. In the present embodiment, the boil-off gas pressurized by the first to fourth boil-off gas compressors 51 to 54 is cooled by heat-exchanging with the boil-off gas supplied from the liquefied gas storage tank 10 in the boil-off gas heat exchanger 20. The pressure may maintain the discharge pressure discharged from the first to fourth boil-off gas compressors 51 to 54.
이에 따라 본 실시예는 상기와 같이 제1 내지 제4 증발가스 압축기(51~54)에서 가압된 증발가스가 증발가스 열교환기(20)에서 열교환되어 냉열을 공급받은 후에도 고압을 유지하고 있음을 이용하여, 증발가스 감압기(30)를 통해 증발가스를 감압시켜서 증발가스가 추가 냉각되도록 할 수 있다. 이를 통해 제1 내지 제4 증발가스 압축기(51~54)에서 가압된 증발가스는 증발가스 열교환기(20)에서 부분 재액화되나 증발가스 감압기(30)에서는 최종적으로 완전 액화될 수 있다. Accordingly, the present embodiment uses high pressure even after the boil-off gas pressurized by the first to fourth boil-off gas compressors 51 to 54 is heat-exchanged in the boil-off gas heat exchanger 20 to receive cold heat. As a result, the boil-off gas may be further reduced by reducing the boil-off gas through the boil-off gas reducer 30. Through this, the boil-off gas pressurized by the first to fourth boil-off gas compressors 51 to 54 may be partially liquefied in the boil-off gas heat exchanger 20, but finally completely liquefied in the boil-off gas decompressor 30.
구체적으로, 증발가스는 제1 내지 제4 증발가스 압축기(51~54)에서 다단 가압되어 150 내지 350bar의 압력을 가질 수 있고, 온도는 45도 내외로 이루어질 수 있다. 45도 내외의 온도로 상승된 증발가스는 증발가스 열교환기(20)로 회수되어 액화가스 저장탱크(10)에서 공급되는 -100도 내외의 증발가스와 열교환되며, -97도 내외의 온도로 냉각된 후 증발가스 감압기(30)로 공급된다. 이때, 증발가스 감압기(30)에서 증발가스는, 감압에 의해 냉각되어 약 1bar의 압력과 약 -162.3도 정도의 온도를 가질 수 있다.Specifically, the boil-off gas may be pressurized in the first to fourth boil-off gas compressors 51 to 54 to have a pressure of 150 to 350 bar, and the temperature may be about 45 degrees. The boil-off gas raised to a temperature of about 45 degrees is recovered by the boil-off gas heat exchanger 20 and heat-exchanged with the boil-off gas around -100 degrees supplied from the liquefied gas storage tank 10, and cooled to a temperature of around -97 degrees. After it is supplied to the boil-off gas decompressor (30). At this time, the boil-off gas in the boil-off gas decompressor 30 is cooled by the reduced pressure may have a pressure of about 1bar and a temperature of about -162.3 degrees.
이와 같이, 본 실시예에서는, 증발가스 감압기(30)를 통한 증발가스의 감압으로 증발가스가 -162도보다 낮은 온도를 가지게 되므로, 약 30~40%의 증발가스 액화율을 구현할 수 있다. 이는 증발가스의 감압되는 압력 범위가 클수록 증발가스의 냉각효과가 증대될 수 있음을 이용한 것이다. As such, in the present embodiment, since the boil-off gas has a temperature lower than −162 degrees due to the reduced pressure of the boil-off gas through the boil-off gas decompressor 30, the boil-off gas liquefaction rate of about 30 to 40% can be realized. This is because the larger the pressure range of the reduced pressure of the boil-off gas can increase the cooling effect of the boil-off gas.
여기서, 증발가스 감압기(30)는 줄 톰슨 밸브(Joule-Thomson Valve)로 이루어질 수 있다. 이와 달리, 증발가스 감압기(30)는 팽창기(익스팬더; Expander)로 이루어질 수도 있다. Here, the boil-off gas pressure reducer 30 may be made of a Joule-Thomson Valve. Alternatively, the boil-off gas decompressor 30 may be formed of an expander (expander).
팽창기는 별도의 전력을 이용하지 않고도 구동될 수 있다. 특히, 발생된 동력을 제1 내지 제4 증발가스 압축기(51~54) 구동시키는 전력으로 활용함으로써, 가스 처리 시스템(2)의 효율을 향상시킬 수 있다. 동력전달은 예를 들어, 기어연결 또는 전기변환 후 전달 등에 의해 이루어질 수 있다.The inflator can be driven without using extra power. In particular, by utilizing the generated power as the electric power to drive the first to fourth boil-off gas compressors 51 to 54, the efficiency of the gas treatment system 2 can be improved. Power transmission may be achieved, for example, by gear connection or after electric conversion.
기액분리기(separator; 40)는, 증발가스 감압기(30)에서 감압 또는 팽창된 증발가스를 임시저장하며, 중력을 통해 증발가스를 액체와 기체로 분리한다. The gas liquid separator 40 temporarily stores the reduced or expanded evaporated gas in the boil-off gas decompressor 30 and separates the boil-off gas into liquid and gas through gravity.
이때 기체는 플래시 가스이며, 온도가 대략 -162.3도가 된다. 이 플래시 가스와 액화가스 저장탱크(10)에서 발생한 -100도의 증발가스는 증발가스 열교환기(20) 상류에서 혼합되어 -110 내지 -120도(약 -114도)의 온도를 가진 혼합가스가 되고, 혼합가스는 -110 내지 -120도(약 -114도)의 온도를 가진 상태로 증발가스 열교환기(20)에 유입될 수 있다.The gas is then a flash gas and the temperature is approximately -162.3 degrees. The flash gas and the -100 degrees evaporated gas generated in the liquefied gas storage tank 10 are mixed upstream of the evaporative gas heat exchanger 20 to be a mixed gas having a temperature of -110 to -120 degrees (about -114 degrees). , The mixed gas may be introduced into the boil-off gas heat exchanger 20 in a state having a temperature of -110 to -120 degrees (about -114 degrees).
따라서, 증발가스 제1 리턴라인(L2)을 따라 회수되는 45도의 증발가스는, 증발가스 열교환기(20)에서 증발가스 공급라인(L1)을 통해 공급되는 -110 내지 -120도의 혼합가스와 열교환함으로써 냉각될 수 있다. 이는 플래시 가스의 회수가 없을 경우(45도의 증발가스가 -100도의 증발가스와 열교환)와 대비할 때, 증발가스의 추가적인 냉각이 구현될 수 있음을 알 수 있다.Therefore, the 45 degree boil-off gas recovered along the boil-off gas first return line L2 exchanges heat with -110 to -120 degree mixed gas supplied from the boil-off gas heat exchanger 20 through the boil-off gas supply line L1. By cooling. It can be seen that additional cooling of the boil-off gas can be realized in contrast to the absence of flash gas recovery (45-degree boil-off gas exchanges with -100-degree boil-off gas).
이로 인해 증발가스 열교환기(20)에서 토출되어 증발가스 감압기(30)로 유입되는 증발가스는, 플래시 가스의 순환이 없을 경우(약 -97도)보다 낮은 약 -112도일 수 있으며, 증발가스 감압기(30)에 의해 감압되면 약 -163.7도로 냉각될 수 있다. 이 경우 플래시 가스의 순환이 없는 경우보다 더욱 많은 증발가스가 증발가스 감압기(30)에 의해 액화되어 액화가스 저장탱크(10)로 회수될 수 있다.As a result, the evaporated gas discharged from the boil-off gas heat exchanger 20 and introduced into the boil-off gas decompressor 30 may be about -112 degrees, which is lower than that of no flash gas circulation (about -97 degrees). When the pressure is reduced by the pressure reducer 30, the pressure may be cooled to about −163.7 degrees. In this case, more evaporated gas may be liquefied by the evaporating gas decompressor 30 and recovered to the liquefied gas storage tank 10 than there is no flash gas circulation.
따라서 본 실시예서는, 기액분리기(40)를 통해 발생된 플래시 가스를 증발가스 열교환기(20) 상류에 공급함으로써, 액화가스 저장탱크(10)로부터 증발가스 열교환기(20)로 공급되는 증발가스의 온도가 충분히 낮게 되고, 이로 인해 제1 내지 제4 증발가스 압축기(51~54)에서 압축되어 증발가스 열교환기(20)로 리턴되는 증발가스의 액화 효율을 60% 이상으로 끌어 올릴 수 있는 효과가 있다.Therefore, in the present embodiment, by supplying the flash gas generated through the gas-liquid separator 40 upstream of the boil-off gas heat exchanger 20, the boil-off gas supplied from the liquefied gas storage tank 10 to the boil-off gas heat exchanger 20 Temperature is sufficiently low, thereby increasing the liquefaction efficiency of the boil-off gas compressed in the first to fourth boil-off gas compressors 51 to 54 and returned to the boil-off gas heat exchanger 20 to 60% or more. There is.
기액분리기(40)에서 증발가스는, 액체와 기체로 분리되어 액체는 액화가스 저장탱크(10)로 공급되고, 기체는 플래시 가스로서 제1 내지 제4 증발가스 압축기(51~54)의 상류로 회수될 수 있다. In the gas-liquid separator 40, the boil-off gas is separated into a liquid and a gas so that the liquid is supplied to the liquefied gas storage tank 10, and the gas is flash gas upstream of the first to fourth boil-off compressors 51 to 54. Can be recovered.
즉, 기액분리기(40)에서 증발가스가 액체와 기체로 분리되면, 액화된 증발가스(액체)와 플래시 가스(기체)는 각각이 재액화가스 리턴라인(L5)을 통해 액화가스 저장탱크(10)로 회수거나, 플래시가스 공급라인(L6)을 통해 증발가스 열교환기(20)의 상류로 회수될 수 있다.That is, when the boil-off gas is separated into liquid and gas in the gas-liquid separator 40, the liquefied boil-off gas (liquid) and the flash gas (gas) are respectively liquefied gas storage tank 10 through the re-liquefied gas return line (L5). ), Or upstream of the boil-off gas heat exchanger 20 through the flash gas supply line L6.
이와 같이 본 실시예에서의 기액분리기(40)는, 액화된 증발가스를 액화가스 저장탱크(10)로 회수시키고, 기액분리기(40)에서 발생된 플래시 가스를 증발가스 열교환기(20)의 상류로 회수시킴으로써, 잉여 증발가스를 재액화시켜 액화가스 저장탱크(10)에 재저장할 수 있으며 플래시가스를 버리지 않고 제1 내지 제4 증발가스 압축기(51~54)를 통해 재가압시켜 제1 및 제2 수요처(71,72)로 재사용할 수 있다. As described above, the gas-liquid separator 40 in the present embodiment recovers the liquefied boil-off gas to the liquefied gas storage tank 10, and recovers the flash gas generated by the gas-liquid separator 40 upstream of the boil-off gas heat exchanger 20. By recovering, the excess evaporated gas can be re-liquefied and re-stored in the liquefied gas storage tank 10. The first and fourth evaporated gas compressors 51 to 54 can be repressurized without discarding the flash gas. 2 can be reused as a demand source (71, 72).
제1 내지 제4 증발가스 압축기(51~54)는, 액화가스 저장탱크(10)에서 발생된 증발가스를 가압하여 제1 및 제2 수요처(71,72)로 공급하며, 증발가스 공급라인(L1) 상에 서로 각각 병렬로 구비된다. The first to fourth boil-off gas compressors 51 to 54 pressurize the boil-off gas generated in the liquefied gas storage tank 10 and supply the boil-off gas to the first and second demand destinations 71 and 72, and supply the boil-off gas supply line ( It is provided in parallel with each other on L1).
제1 내지 제4 증발가스 압축기(51~54)는, 복수 개의 단(피스톤)으로 직렬 연결되어 증발가스를 다단 가압시킬 수 있다. 일례로, 제1 내지 제4 증발가스 압축기(51~54)는, 4개 또는 5개의 피스톤이 직렬로 연결된 구조, 즉 4단 또는 5단으로 직렬 연결된 구조를 가지며, 최종 단에서 증발가스를 150 내지 350bar (바람직하게는 대략 306bar)로 압축하여 토출하여 제1 수요처(71)로 공급할 수 있다. The first to fourth boil-off gas compressors 51 to 54 are connected in series to a plurality of stages (pistons) to pressurize the boil-off gas in multiple stages. For example, the first to fourth boil-off compressors 51 to 54 have a structure in which four or five pistons are connected in series, that is, a structure connected in series in four or five stages, and the boil-off gas is discharged at the final stage. It can be compressed and discharged to 350 bar (preferably approximately 306 bar) and supplied to the first demand destination 71.
여기서 증발가스 제1 리턴라인(L2)은, 증발가스 공급라인(L1) 상의 제1 내지 제4 증발가스 압축기(51~54)와 제1 수요처(72) 사이에서 분기되어, 증발가스 열교환기(20)로 공급될 수 있다. 이때, 증발가스 공급라인(L1) 상의 상기 분기지점에는 밸브(도시하지 않음)가 구비될 수 있고, 밸브는 제1 수요처(71)로 공급되는 증발가스의 유량 또는 증발가스 열교환기(20)로 공급되는 증발가스의 유량을 제어할 수 있으며, 삼방밸브일 수 있다.Here, the boil-off gas first return line L2 is branched between the first to fourth boil-off gas compressors 51 to 54 on the boil-off gas supply line L1 and the first demand destination 72, so that the boil-off gas heat exchanger ( 20). At this time, the branch point on the boil-off gas supply line (L1) may be provided with a valve (not shown), the valve to the flow rate of the boil-off gas supplied to the first demand source 71 or the boil-off gas heat exchanger 20 It is possible to control the flow rate of the boil-off gas supplied, it may be a three-way valve.
제1 내지 제4 증발가스 압축기(51~54)는, 각 단들의 사이에 증발가스 냉각기(도시하지 않음)가 구비될 수 있다. 제1 내지 제4 증발가스 압축기(51~54)에 의하여 증발가스가 가압되면, 압력 상승에 따라 온도 역시 상승될 수 있기 때문에, 본 실시예는 증발가스 냉각기를 사용하여 증발가스의 온도를 다시 낮춰줄 수 있다. 증발가스 냉각기는 제1 내지 제4 증발가스 압축기(51~54)의 각 단과 동일한 수로 설치될 수 있으며, 각 증발가스 냉각기는, 제1 내지 제4 증발가스 압축기(51~54)의 각 단 하류에 마련될 수 있다.The first to fourth boil-off gas compressors 51 to 54 may be provided with boil-off gas coolers (not shown) between the stages. When the boil-off gas is pressurized by the first to fourth boil-off gas compressors 51 to 54, since the temperature may also increase as the pressure increases, the present embodiment lowers the temperature of the boil-off gas using the boil-off gas cooler again. Can give The boil-off gas cooler may be installed in the same number as each stage of the first to fourth boil-off compressors 51 to 54, and each boil-off gas cooler is downstream of each stage of the first to fourth boil-off compressors 51 to 54. Can be provided.
또한, 제1 내지 제4 증발가스 압축기(51~54)는, 제1 단에서 흡입되는 증발가스의 온도가 영하 40도 내지 영하 20도인 상온용 증발가스 압축기일 수 있다. 이를 위해서 제1 내지 제4 증발가스 압축기(51~54)의 전단에는 별도의 히팅 장치(도시하지 않음)가 필요로 해진다.In addition, the first to fourth boil-off gas compressors 51 to 54 may be a boil-off gas compressor for room temperature, wherein the temperature of the boil-off gas sucked in the first stage is minus 40 degrees to minus 20 degrees. To this end, a separate heating device (not shown) is required at the front end of the first to fourth boil-off compressors 51 to 54.
이 히팅장치는, 액화가스 저장탱크(10)에서 발생된 대략 영하 110도의 증발가스를 영하 40 도 내지 영하 20도까지 승온시켜 제1 내지 제4 증발가스 압축기(51~54)로 유입시킬 수 있다. The heating device may increase the temperature of the evaporation gas of approximately 110 degrees below zero generated from the liquefied gas storage tank 10 to 40 degrees below zero and 20 degrees below zero, thereby introducing the first to fourth evaporative gas compressors 51 to 54. .
증발가스 공급라인(L1) 상의 제1 내지 제4 증발가스 압축기(51~54)의 제1 단에서 제2 단 사이 각각에는, 증발가스 분기라인(L3)이 분기되어 제2 수요처(72)와 연결될 수 있다. Between each of the first to second stages of the first to fourth boil-off gas compressors 51 to 54 on the boil-off gas supply line L1, the boil-off gas branch line L3 is branched so that the second demand source 72 and Can be connected.
여기서 제1 내지 제4 증발가스 압축기(51~54)의 제1 단에서 토출되는 증발가스는, 저압인 4bar 내지 6bar로 압축될 수 있으며, 제2 수요처(72)로 공급될 수 있다. Here, the boil-off gas discharged from the first stage of the first to fourth boil-off gas compressors 51 to 54 may be compressed to a low pressure of 4 bar to 6 bar, and may be supplied to the second demand destination 72.
또한, 제1 내지 제4 증발가스 압축기(51~54)는, 일례로 표준 고압 압축기(Standard High Pressure Compressor;SHP 압축기)일 수 있다. 여기서, 표준 고압 압축기(SHP 압축기)는, 실린더가 V자형태로 형성되어, 압축기 자체의 크기가 상당히 축소되도록 형성될 수 있고, 이로 인해 압축기가 차지하는 공간을 획기적으로 줄일 수 있다.In addition, the first to fourth boil-off gas compressors 51 to 54 may be, for example, a standard high pressure compressor (SHP compressor). Here, the standard high pressure compressor (SHP compressor), the cylinder is formed in a V-shape, can be formed so that the size of the compressor itself is significantly reduced, thereby significantly reducing the space occupied by the compressor.
제1 수요처(71)는, 액화가스 저장탱크(10)로부터 증발가스 또는 액화가스를 연료로 사용한다. 이때, 제1 수요처(71)는, 고압가스분사엔진(일례로 MEGI)일 수 있으며, MEGI엔진의 경우 약 150 내지 350bar의 고압으로 가압된 증발가스를 연료로 사용할 수 있다.The first demand destination 71 uses evaporated gas or liquefied gas as a fuel from the liquefied gas storage tank 10. In this case, the first demand destination 71 may be a high-pressure gas injection engine (eg, MEGI), and in the case of the MEGI engine, the boil-off gas pressurized to a high pressure of about 150 to 350 bar may be used as a fuel.
제1 수요처(71)는, 액화가스 또는 증발가스의 연소에 의해 실린더(도시하지 않음) 내부의 피스톤(도시하지 않음)이 왕복운동 함에 따라, 피스톤에 연결된 크랭크 축(도시하지 않음)이 회전되고, 크랭크 축에 연결되는 프로펠러 축(S)이 회전될 수 있다. 따라서 제1 수요처(71) 구동 시 프로펠러 축(S)에 연결된 프로펠러(P)가 회전함에 따라, 선체(H)가 전진 또는 후진할 수 있다.As the first demand destination 71 reciprocates the piston (not shown) inside the cylinder (not shown) by combustion of liquefied gas or evaporated gas, a crank shaft (not shown) connected to the piston is rotated. , The propeller shaft (S) connected to the crank shaft can be rotated. Therefore, as the propeller P connected to the propeller shaft S rotates when the first demand destination 71 is driven, the hull H may move forward or backward.
제1 수요처(71)은, 통상 디젤 사이클로 구동되는 2행정 엔진(2-stroke DF engine)이며 저속엔진일 수 있다. 이러한 디젤 사이클은 기본적으로, 공기가 피스톤에 의해 압축되고, 압축된 고온의 공기는 점화연료(Pilot Fuel)에 의해서 점화가 이루어지며, 나머지 고압의 가스가 분사되어 폭발이 이루어진다. The first demand destination 71 is a two-stroke DF engine which is usually driven by a diesel cycle and may be a low speed engine. In this diesel cycle, basically, air is compressed by a piston, and the compressed hot air is ignited by a pilot fuel, and the remaining high-pressure gas is injected to explode.
이때, 점화연료는 HFO(Heavy Fuel Oil) 또는 MDO(Marine Diesel Oil)를 사용하게 되며, 보통 점화연료와 고압 가스의 비율은 약 5:95이고, 점화연료의 분사량은 5~100%까지 조정이 가능하다. 따라서 점화연료는 엔진의 구동 연료로도 이용가능하다. At this time, the ignition fuel uses HFO (Heavy Fuel Oil) or MDO (Marine Diesel Oil), the ratio of the ignition fuel and the high-pressure gas is about 5:95, the injection amount of the ignition fuel is adjusted to 5 ~ 100%. It is possible. The ignition fuel is therefore also available as a driving fuel for the engine.
즉, 점화연료의 분사량이 약 5%정도인 경우 엔진 구동 연료로 증발가스(또는 가열된 액화가스; 약 95%)가 주로 사용되며, 점화 연료의 분사량이 100%인 경우에는 엔진 구동 연료로 점화연료(오일)가 전부 사용된다.That is, when the injection amount of the ignition fuel is about 5%, evaporated gas (or heated liquefied gas; about 95%) is mainly used as the engine driving fuel, and when the injection amount of the ignition fuel is 100%, the engine driving fuel is ignited. The fuel (oil) is used up.
이때, 점화연료의 분사량 약 50%인 경우(와 증발가스 약 50%)에는, 점화연료와 증발가스가 혼합되어 엔진으로 유입되는 것이 아닌 점화연료가 먼저 발화하여 발열량을 생산하고, 이후, 나머지 증발가스가 유입되어 폭발하여 발열량을 생산하여 제1 수요처(71)의 구동에 필요한 발열량을 생산한다. At this time, when the injection amount of the ignition fuel is about 50% (and about 50% of the boil-off gas), the ignition fuel and the boil-off gas are not mixed and flow into the engine, but the ignition fuel ignites first to produce a calorific value, and then the remaining evaporation. The gas is introduced and exploded to produce a calorific value to produce a calorific value necessary for driving the first demand destination 71.
제2 수요처(72)는, 액화가스 저장탱크(10)로부터 공급되는 증발가스를 연료로 사용한다. 즉, 제2 수요처(72)는, 증발가스를 필요로 하며 이를 원료로 하여 구동될 수 있다. 제2 수요처(72)는, 발전기(예를들어 DFDG), 가스연소장치(GCU), 보일러(예를들어 스팀을 생성하는 보일러)일 수 있으며, 이에 한정되지 않는다.The second demand destination 72 uses the evaporated gas supplied from the liquefied gas storage tank 10 as a fuel. That is, the second demand destination 72 requires the boil-off gas and can be driven using it as a raw material. The second demand destination 72 may be a generator (for example, DFDG), a gas combustion device (GCU), or a boiler (for example, a boiler for generating steam), but is not limited thereto.
구체적으로, 제2 수요처(72)는, 제1 내지 제4 증발가스 압축기(51~54)와 증발가스 분기라인(L3)을 통해 연결될 수 있으며, 제1 내지 제4 증발가스 압축기(51~54)의 제1 단에서 저압(2 내지 8bar; 바람직하게는 4 내지 6bar)으로 압축된 증발가스를 공급받아 연료로 사용할 수 있다. Specifically, the second demand destination 72 may be connected through the first to fourth boil-off gas compressors 51 to 54 and the boil-off gas branch line L3, and the first to fourth boil-off gas compressors 51 to 54. In the first stage of the) can be used as a fuel by receiving a compressed boil-off gas at a low pressure (2 to 8 bar; preferably 4 to 6 bar).
또한, 제2 수요처(72)는, 이종연료가 사용가능한 이종연료엔진일 수 있어, 증발가스뿐만 아니라 오일을 연료로 사용할 수 있으나, 증발가스와 오일이 혼합되어 공급되지 않고 증발가스 또는 오일이 선택적으로 공급될 수 있다. 이는 연소 온도가 상이한 두 물질이 혼합 공급되는 것을 차단하여, 제2 수요처(72)의 효율이 떨어지는 것을 방지하기 위함이다.In addition, the second consumer 72 may be a heterogeneous fuel engine capable of using heterogeneous fuels, and may use oil as fuel as well as evaporated gas, but the evaporated gas or oil is not supplied without being mixed with the evaporated gas and the oil is selected. Can be supplied. This is to prevent two materials having different combustion temperatures from being mixed and supplied, thereby preventing the efficiency of the second consumer 72 from falling.
또한, 제2 수요처(72)는, 보일러로서 청수(Fresh water)를 가열하여 스팀을 생성할 수 있고, 생성된 스팀을 별도의 스팀저장매체에 저장할 수 있다. In addition, the second consumer 72 may generate fresh steam by heating fresh water as a boiler, and store the generated steam in a separate steam storage medium.
보일러(72)는, 생성된 스팀을 히터(도 2 및 도 3에 도시됨; 61) 또는 강제 기화기(도 3에 도시됨; 62)에 공급할 수 있으며, 이를 통해 히터(61) 또는 강제 기화기(62)가 증발가스를 가열할 수 있도록 한다.The boiler 72 may supply the generated steam to a heater (shown in FIGS. 2 and 3; 61) or a forced vaporizer (shown in FIG. 3; 62), through which the heater 61 or forced vaporizer ( Allow 62 to heat the boil-off gas.
본 발명의 실시예에서는 증발가스 발생량 측정센서(85), 증발가스 바이패스 제1 내지 제4 라인(BL1~BL4), 압력센서(831) 및 유량센서(832)를 더 포함할 수 있다. In an embodiment of the present invention, the evaporation gas generation measurement sensor 85, the evaporation gas bypass first to fourth lines BL1 to BL4, a pressure sensor 831, and a flow rate sensor 832 may be further included.
증발가스 발생량 측정센서(85)는, 액화가스 저장탱크(10)에서 발생되는 증발가스의 양을 측정할 수 있으며, 액화가스 저장탱크(10)의 내압에 따른 액화가스 저장탱크(10) 내부에 잔존하는 증발가스의 물성치를 통해 액화가스 저장탱크(10)에서 발생되는 증발가스의 발생량을 산출할 수 있다. The boil-off gas generation amount measuring sensor 85 may measure the amount of boil-off gas generated in the liquefied gas storage tank 10, and may be located in the liquefied gas storage tank 10 according to the internal pressure of the liquefied gas storage tank 10. The amount of generated boil-off gas generated in the liquefied gas storage tank 10 may be calculated based on the remaining boil-off gas properties.
또한, 증발가스 발생량 측정센서(85)는, 제1 제어부(90)와 유선 또는 무선으로 연결되어 측정한 증발가스 발생량 정보를 제1 제어부(90)로 송신할 수 있다. In addition, the boil-off gas generation amount measurement sensor 85 may transmit the boil-off gas generation amount information measured by being connected to the first control unit 90 by wire or wirelessly, to the first control unit 90.
증발가스 바이패스 제1 내지 제4 라인(BL1~BL4)는, 각각 제1 내지 제4 증발가스 압축기(51~54)가 구비되는 증발가스 공급라인(L1) 상에서 제1 내지 제4 증발가스 압축기(51~54) 각각의 후단에서 분기되어, 제1 내지 제4 증발가스 압축기(51~54)의 전단을 연결할 수 있다. Boil-off gas bypass 1st-4th line BL1-BL4 are the 1st-4th boil-off gas compressor on the boil-off gas supply line L1 provided with the 1st-4th boil-off gas compressor 51-54, respectively. Branches at each rear end 51 to 54 may connect front ends of the first to fourth boil-off gas compressors 51 to 54.
이를 통해서 증발가스 바이패스 제1 내지 제4 라인(BL1~BL4)은, 후술할 제1 및 제2 제어부(90,91)의 제어를 받아 제1 내지 제4 증발가스 압축기(51~54)에서 토출되는 증발가스의 적어도 일부를 제1 내지 제4 증발가스 압축기(51~54)의 전단으로 바이패스(리턴)시킬 수 있다. Through this, the boil-off gas bypass first to fourth lines BL1 to BL4 are controlled by the first to fourth boil-off gas compressors 51 to 54 under the control of the first and second control units 90 and 91 which will be described later. At least a part of the discharged boil-off gas may be bypassed (returned) to the front end of the first to fourth boil-off compressors 51 to 54.
그에 따라 증발가스 바이패스 제1 내지 제4 라인(BL1~BL4)은, 제1 내지 제4 증발가스 압축기(51~54)가 작동 대기 상태에서 기설정시간이 초과하는 경우에 제1 내지 제4 증발가스 압축기(51~54)가 작동가능하게 하며(제1 제어부(90)에 의한 제어), 또한 이와 더불어 제1 내지 제4 증발가스 압축기(51~54)에서 토출도는 증발가스의 압력 또는 유량을 조절할 수 있다.(제2 제어부(91)에 의한 제어)Accordingly, the boil-off gas bypass first to fourth lines BL1 to BL4 are first to fourth when the preset time exceeds the first to fourth boil-off gas compressors 51 to 54 in the operation standby state. The boil-off gas compressors 51 to 54 are operable (controlled by the first control unit 90), and at the same time, the discharge degree in the first to fourth boil-off gas compressors 51 to 54 is the pressure of the boil-off gas or The flow rate can be adjusted. (Control by the second control unit 91)
이때, 증발가스 바이패스 제1 라인(BL1)은 제1 증발가스 압축기(51)에서 토출되는 증발가스의 압력을 조절하는 압력조절밸브(841)를 구비하고, 증발가스 바이패스 제2 내지 제4 라인(BL2~BL4)은 제2 내지 제4 증발가스 압축기(52~54)에서 토출되른 증발가스의 유량을 조절하는 제1 내지 제3 유량조절밸브(842~844)를 더 포함할 수 있다. At this time, the boil-off gas bypass first line BL1 includes a pressure control valve 841 for adjusting the pressure of the boil-off gas discharged from the first boil-off gas compressor 51, and the boil-off gas bypass second to fourth. The lines BL2 to BL4 may further include first to third flow control valves 842 to 844 for adjusting the flow rates of the boil-off gas discharged from the second to fourth boil-off compressors 52 to 54.
각 압력조절밸브(841)와 제1 내지 제3 유량조절밸브(842~844)는 제2 제어부(91)에 의해 개도조절이 제어될 수 있다. Each of the pressure regulating valve 841 and the first to third flow regulating valves 842 to 844 may be controlled by the second control unit 91.
압력센서(831) 및 유량센서(832)는, 증발가스 공급라인(L1) 상의 제1 내지 제4 증발가스 압축기(51~54)의 후단에 마련되며, 제1 내지 제4 증발가스 압축기(51~54)에서 토출되는 증발가스의 압력 또는 유량을 측정할 수 있다. The pressure sensor 831 and the flow rate sensor 832 are provided at the rear ends of the first to fourth boil-off gas compressors 51 to 54 on the boil-off gas supply line L1, and the first to fourth boil-off gas compressors 51 to 54. The pressure or flow rate of the boil-off gas discharged at ˜54) may be measured.
여기서 압력센서(831) 및 유량센서(832)는, 제2 제어부(91)와 유선 또는 무선으로 연결되어, 제1 내지 제4 증발가스 압축기(51~54)에서 토출되는 압력 또는 유량의 정보를 제2 제어부(91)로 송신할 수 있다.Here, the pressure sensor 831 and the flow rate sensor 832 are connected to the second control unit 91 in a wired or wireless manner, so that the pressure or flow rate information discharged from the first to fourth evaporative gas compressors 51 to 54 may be obtained. It may transmit to the second control unit 91.
제1 제어부(90)는, 액화가스 저장탱크(10)에서 발생되는 증발가스 발생량에 따라 제1 내지 제4 증발가스 압축기(51~54)를 제어하며, 상세하게는 증발가스 발생량이 기설정 발생량 이하인 경우 제1 내지 제4 증발가스 압축기(51~54) 중 적어도 하나를 스탠바이 상태로 제어한다. 여기서 스탠바이 상태란 증발가스의 압축이 구현되지 않는 상태로 증발가스 압축기의 작동 대기 상태 또는 작동 중단 상태를 모두 포괄하는 상태를 말한다. The first control unit 90 controls the first to fourth boil-off gas compressors 51 to 54 according to the amount of boil-off gas generated in the liquefied gas storage tank 10, and in detail, the boil-off gas generation amount is a preset generation amount. In the following case, at least one of the first to fourth boil-off gas compressors 51 to 54 is controlled in a standby state. Here, the standby state refers to a state in which the compression of the boil-off gas is not implemented and encompasses both the standby state of operation of the boil-off gas compressor or the shutdown state.
구체적으로, 제1 제어부(90)는, 증발가스 발생량 측정센서(85)로부터 측정되는 증발가스 발생량을 유선 또는 무선으로 전달받아, 제1 내지 제4 증발가스 압축기(51~54)를 제어할 수 있다. Specifically, the first control unit 90 may receive the evaporation gas generation amount measured from the evaporation gas generation measurement sensor 85 in a wired or wireless manner to control the first to fourth evaporative gas compressors 51 to 54. have.
상세하게는 제1 제어부(90)는, 증발가스 발생량 측정센서(85)로부터 전달받은 증발가스 발생량이 기설정 발생량 이하인 경우, 제1 내지 제4 증발가스 압축기(51~54) 중 어느 하나를 작동 스탠바이하도록 제어하고, 병렬 연결된 제1 내지 제4 증발가스 압축기(51~54)의 나머지 세 개의 부하를 증가시키도록 제어할 수 있다. 일례로 제1 제어부(90)는, 증발가스 발생량 측정센서(85)로부터 전달받은 증발가스 발생량이 기설정 발생량 이하인 경우, 제1 증발가스 압축기(51)를 스탠바이하도록 제어하고, 병렬 연결된 제2 내지 제4 증발가스 압축기(52~54)의 부하를 증가시키도록 제어할 수 있다. In detail, the first control unit 90 operates any one of the first to fourth boil-off gas compressors 51 to 54 when the boil-off gas generation amount received from the boil-off gas generation amount measurement sensor 85 is less than or equal to the preset generation amount. Control to stand by, and to increase the remaining three loads of the first to fourth boil-off gas compressors 51 to 54 connected in parallel. As an example, the first control unit 90 controls the first boil-off gas compressor 51 to stand by when the boil-off gas generation amount received from the boil-off gas generation sensor 85 is less than or equal to a preset generation amount, and the second through The load of the fourth boil-off compressors 52 to 54 may be controlled to increase.
물론, 제1 제어부(90)는, 증발가스 발생량 측정센서(85)로부터 전달받은 증발가스 발생량이 기설정 발생량 초과인 경우, 제1 내지 제4 증발가스 압축기(51~54)를 모두 가동하도로 제어할 수 있다. Of course, the first control unit 90 may operate all of the first to fourth boil-off gas compressors 51 to 54 when the amount of boil-off gas received from the boil-off gas generation sensor 85 is greater than the preset generation. Can be controlled.
또한, 제1 제어부(90)는, 증발가스 발생량이 기설정 발생량 이하인 경우, 증발가스 제1 유량밸브(81a)를 폐쇄하고 증발가스 제2 유량밸브(81b)를 개방하여, 액화가스 저장탱크(10)에서 공급되는 증발가스가 증발가스 바이패스라인(L7)을 통해 증발가스 열교환기(20)를 바이패스 하여 제1 내지 제4 증발가스 압축기(51~54)로 공급되도록 제어하고, 증발가스 발생량이 기설정 발생량 초과인 경우, 증발가스 제1 유량밸브(81a)를 개방하고 증발가스 제2 유량밸브(81b)를 폐쇄하여, 액화가스 저장탱크(10)에서 공급되는 증발가스가 증발가스 열교환기(20)를 통해 제1 내지 제4 증발가스 압축기(51~54)에서 압축된 증발가스를 부분재액화하도록 제어할 수 있다. In addition, when the amount of generation of the boil-off gas is less than or equal to the preset generation amount, the first control unit 90 closes the amount of the boil-off gas first flow valve 81a and opens the boil-off gas second flow valve 81b to store the liquefied gas storage tank ( 10 to control the boil-off gas supplied from the boil-off gas heat exchanger 20 through the boil-off gas bypass line L7 to be supplied to the first to fourth boil-off gas compressors 51 to 54, and the boil-off gas When the generation amount exceeds the preset generation amount, the boil-off gas first flow valve 81a is opened and the boil-off gas second flow valve 81b is closed so that the boil-off gas supplied from the liquefied gas storage tank 10 exchanges the boil-off gas. The apparatus 20 may be controlled to partially reliquefy the boiled gas compressed in the first to fourth boiled gas compressors 51 to 54.
여기서, 기설정 발생량은, 제1 내지 제4 증발가스 압축기(51~54)의 비효율지점(A)에서 제1 내지 제4 증발가스 압축기(51~54)로 유입되는 증발가스량이다. Here, the predetermined generation amount is the amount of boil-off gas flowing into the first-fourth boil-off gas compressors 51 to 54 at the inefficiency point A of the first to fourth boil-off gas compressors 51 to 54.
비효율지점(A)은, 제1 내지 제4 증발가스 압축기(51~54)의 유량 대비 소비전력량의 비율에서, 제1 내지 제4 증발가스 압축기(51~54)로 공급되는 유량이 감소하더라도 소비전력이 줄어들지 않는 지점에서의 제1 내지 제4 증발가스 압축기(51~54)의 유량일 수 있다. 제1 내지 제4 증발가스 압축기(51~54)의 비효율지점(A)의 유량은 제1 내지 제4 증발가스 압축기(51~54)가 최대부하를 가지는 유량의 20 내지 40%의 유량일 수 있다. The inefficiency point A is consumed even if the flow rate supplied to the first to fourth boil-off gas compressors 51 to 54 decreases in the ratio of the power consumption to the flow rate of the first to fourth boil-off gas compressors 51 to 54. It may be a flow rate of the first to fourth boil-off gas compressors 51 to 54 at a point where power is not reduced. The flow rate of the inefficiency point A of the first to fourth boil-off gas compressors 51 to 54 may be a flow rate of 20 to 40% of the flow rate at which the first to fourth boil-off gas compressors 51 to 54 have a maximum load. have.
이에 대한 상세한 내용은 도 4를 참고로 하여 상세히 살펴보도록 한다. Details thereof will be described in detail with reference to FIG. 4.
도 4는 본 발명의 실시예에 따른 증발가스 압축기의 유량 대비 소비전력에 대한 그래프이다. Figure 4 is a graph of the power consumption versus the flow rate of the evaporative gas compressor according to an embodiment of the present invention.
도 4의 그래프에서 도시한 바와 같이, 제1 내지 제4 증발가스 압축기(51~54)는, 유량이 비효율지점(A) 이상의 구간일 경우 유량이 증가하면 비례적으로 소비전력이 증가한다. 이는 많은 유량의 증발가스를 압축하기 위해 많은 소비전력이 필요한 것을 의미한다. 이때, 비효율지점(A)은 제1 내지 제4 증발가스 압축기(51~54)의 제원, 구동 조건 등에 따라 결정되는 유량값으로, 제1 내지 제4 증발가스 압축기(51~54)가 최대부하를 가지는 유량의 20 내지 40%의 유량이다.As shown in the graph of Figure 4, the first to fourth boil-off gas compressor (51 ~ 54), the power consumption increases proportionally if the flow rate is increased when the flow rate is a section above the inefficient point (A). This means that a lot of power consumption is required to compress a large flow rate of boil-off gas. At this time, the inefficiency point (A) is a flow rate value determined according to specifications, driving conditions, etc. of the first to fourth boil-off gas compressors 51 to 54, and the first to fourth boil-off gas compressors 51 to 54 have a maximum load. 20 to 40% of the flow rate having a flow rate.
반면 제1 내지 제4 증발가스 압축기(51~54)로 유입되는 증발가스의 유량이 비효율지점(A)보다 적은 구간에서는, 유량이 줄어들더라도 소비전력이 감소하지 않는다. 이는 제1 내지 제4 증발가스 압축기(51~54)에 일정한 체적의 증발가스가 유입되지 않을 경우 발생하는 서징(surging)을 방지하기 위해 소비되는 소비전력때문이다. On the other hand, in a section where the flow rate of the boil-off gas flowing into the first to fourth boil-off compressors 51 to 54 is less than the inefficiency point A, the power consumption does not decrease even if the flow rate is reduced. This is because of the power consumption consumed to prevent surging that occurs when a constant volume of boil-off gas does not flow into the first to fourth boil-off compressors 51 to 54.
즉, 제1 내지 제4 증발가스 압축기(51~54)로 유입되는 증발가스의 일부를 리사이클(recycle) 시켜 제1 내지 제4 증발가스 압축기(51~54)로의 증발가스 유입체적을 일정한 값 이상으로 유지하면 제1 내지 제4 증발가스 압축기(51~54)에 서징을 방지할 수 있다. 이때, 리사이클을 수행하기 위해서 제1 내지 제4 증발가스 압축기(51~54)에는 별도의 소비전력이 발생되는데, 이 소비전력으로 인해 제1 내지 제4 증발가스 압축기(51~54)에 유입되는 증발가스량이 줄어들더라도 소비전력이 감소하지 않는다.That is, a part of the boil-off gas flowing into the first to fourth boil-off gas compressors 51 to 54 is recycled so that the volume of the boil-off gas into the first to fourth boil-off gas compressors 51 to 54 is equal to or greater than a predetermined value. When maintained at, it is possible to prevent surging in the first to fourth boil-off compressors 51 to 54. In this case, separate power consumption is generated in the first to fourth boil-off gas compressors 51 to 54 in order to perform the recycling, which is introduced into the first to fourth boil-off gas compressors 51 to 54 due to the power consumption. Even if the amount of boil-off gas is reduced, power consumption is not reduced.
따라서, 본 발명의 실시예에서는, 제1 내지 제4 증발가스 압축기(51~54)가 병렬로 구동되는 경우에, 상기 도 4에 개시된 제1 내지 제4 증발가스 압축기(51~54)의 특징을 이용하여 제1 내지 제4 증발가스 압축기(51~54)에 소모되는 소비전력을 최소화할 수 있다.  Therefore, in the embodiment of the present invention, when the first to fourth boil-off gas compressors 51 to 54 are driven in parallel, the first to fourth boil-off gas compressors 51 to 54 disclosed in FIG. 4 are characterized. By using the power consumption can be minimized to the first to fourth boil-off compressors 51 to 54.
즉, 본 발명의 실시예에서는, 증발가스 발생량이 기설정값 이하(이때가 도 4에 도시된 A 지점의 이하 구간)가 되면, 제1 내지 제4 증발가스 압축기(51~54) 중 적어도 하나의 증발가스 압축기를 스탠바이하고, 나머지 증발가스 압축기의 부하를 증가시켜 소비전력이 낭비되는 것을 방지할 수 있다. That is, in the embodiment of the present invention, when the amount of boil-off gas generated is less than or equal to the preset value (this is the period below the point A shown in Fig. 4), at least one of the first to fourth boil-off gas compressors 51 to 54. It is possible to prevent the wasted power consumption by standby of the boil-off gas compressor and increasing the load of the remaining boil-off gas compressors.
예를 들어, 비효율지점(A)의 유량을 50이라고 하고 그 때의 소비전력도 50이라고 하며 A이상의 구간에서 유량과 소비전력의 비(기울기)가 1이라고 할 때(하나의 증발가스 압축기 기준), 제1 내지 제4 증발가스 압축기(51~54)로 유입되는 증발가스의 유량이 각각 30씩인 경우(액화가스 저장탱크(10)에서 발생되는 증발가스 발생량이 기설정 발생량 이하인 경우)에 1)제1 내지 제4 증발가스 압축기(51~54) 모두 구동하는 경우와 2)제1 내지 제4 증발가스 압축기(51~54) 중 제1 증발가스 압축기(51)를 스탠바이하는 경우의 소비전력을 비교해보도록 한다. For example, when the flow rate at the point of inefficiency (A) is 50, the power consumption at that time is also 50, and the ratio (tilt) of the flow rate and power consumption is 1 at a section above A (based on one evaporative gas compressor). 1, when the flow rate of the boil-off gas flowing into the first to fourth boil-off gas compressors 51 to 54 is 30 each (when the amount of boil-off gas generated in the liquefied gas storage tank 10 is less than or equal to the preset generation amount) 2) the power consumption when the first to fourth boil-off compressors 51 to 54 are driven, and 2) the first to fourth boil-off compressors 51 to 54 are standby. Let's compare.
1)의 경우 제1 내지 제4 증발가스 압축기(51~54) 모두 구동하게 되므로, 소비전력은 50*4=200이 된다. 그러나 2)의 경우 제1 증발가스 압축기(51)의 구동이 정지되고 나머지 제2 내지 제4 증발가스 압축기(52~54)로 증발가스가 유량 10씩 추가 공급되어 60*3=180이 된다. In the case of 1), since all of the first to fourth boil-off compressors 51 to 54 are driven, power consumption is 50 * 4 = 200. However, in case 2), the driving of the first boil-off gas compressor 51 is stopped and the boil-off gas is additionally supplied by the flow rate 10 to the remaining second to fourth boil-off gas compressors 52 to 54 to 60 * 3 = 180.
즉, 1)에 비해 2)의 구동이 증발가스 압축기의 소비전력측면에서 매우 효율적이게된다. That is, the driving of 2) as compared to 1) becomes very efficient in terms of power consumption of the boil-off gas compressor.
이와 같이 본 발명의 실시예에서는, 제1 내지 제4 증발가스 압축기(51~54)가 병렬로 구동되는 경우, 증발가스 발생량이 기설정발생량 이하가 될 때 제1 내지 제4 증발가스 압축기(51~54) 중 적어도 하나를 스탠바이시킴으로써, 제1 내지 제4 증발가스 압축기(51~54)에 소모되는 소비전력을 최소화할 수 있다. As described above, in the embodiment of the present invention, when the first to fourth boil-off gas compressors 51 to 54 are driven in parallel, the first to fourth boil-off gas compressors 51 when the amount of boil-off gas is less than or equal to a preset generation amount. By standby of at least one of ˜54), power consumption consumed by the first to fourth boil-off compressors 51 to 54 may be minimized.
또한, 제1 제어부(90)는, 증발가스 발생량이 기설정발생량 이하로 반복 발생되는 경우, 복수 개의 증발가스 압축기(51~54) 중 적어도 하나를 스탠바이 상태로 교번적인 제어를 수행할 수 있다. In addition, the first control unit 90 may alternately control at least one of the plurality of boil-off gas compressors 51 to 54 in a standby state when the boil-off gas generation amount is repeatedly generated at or below a preset generation amount.
구체적으로, 제1 제어부(90)는, 증발가스 발생량이 기설정 발생량 이하인 경우, 제1 내지 제4 증발가스 압축기(51~54) 중 적어도 하나를 스탠바이 상태로 제어하되, 증발가스 발생량이 다시 기설정 발생량 이하가 되는 경우, 제1 내지 제4 증발가스 압축기(51~54) 중 나머지 하나를 스탠바이 상태로 제어할 수 있다. Specifically, the first control unit 90 controls the at least one of the first to fourth boil-off gas compressors 51 to 54 in a standby state when the boil-off gas generation amount is less than or equal to the preset generation amount. When the amount is less than or equal to the set generation amount, the other one of the first to fourth boil-off gas compressors 51 to 54 may be controlled in a standby state.
일례로 제1 제어부(90)는, 증발가스 발생량이 기설정 발생량 이하인 경우, 제1 증발가스 압축기(51)를 스탠바이 상태로 제어하고 제2 내지 제4 증발가스 압축기(52~54)는 가동상태를 유지하도록 제어한다. For example, when the amount of generated evaporation gas is less than or equal to the predetermined amount generated, the first control unit 90 controls the first evaporated gas compressor 51 to be in a standby state, and the second to fourth evaporated gas compressors 52 to 54 are operated. Control to keep.
이후 증발가스 발생량이 기설정 발생량 초과로 복귀하는 경우 제1 제어부(90)는, 제1 증발가스 압축기(51)의 스탠바이 상태를 해제하여 다시 가동시킴으로써, 제1 내지 제4 증발가스 압축기(51~54)가 모두 가동되게 제어한다. Thereafter, when the amount of boil-off gas is returned to exceed the preset amount, the first controller 90 releases the standby state of the first boil-off gas compressor 51 and starts it again, thereby operating the first to fourth boil-off gas compressors 51 to 4. 54) are all operated.
그 다음으로 증발가스 발생량이 다시 기설정 발생량 이하로 변화하는 경우, 제1 증발가스 압축기(51)가 아닌 제2 증발가스 압축기(52)를 작동 중단 상태로 제어하고 제1, 제3 및 제4 증발가스 압축기(51,53,54)는 가동 상태를 유지하도록 제어한다. Subsequently, when the amount of boil-off gas is changed back to less than or equal to the preset generation amount, the second boil-off gas compressor 52 is controlled to be in a stopped state rather than the first boil-off gas compressor 51, and the first, third, and fourth The boil-off gas compressors 51, 53, 54 are controlled to maintain an operating state.
따라서, 본 발명의 실시예에서는 제1 제어부(90)를 통해 상기와 같은 교번 제어를 수행함으로써, 제1 내지 제4 증발가스 압축기(51~54)의 내구성을 향상시킬 수 있는 효과가 있다. Therefore, in the embodiment of the present invention, by performing the above-described alternating control through the first control unit 90, the durability of the first to fourth boil-off gas compressors 51 to 54 can be improved.
또한, 제1 제어부(90)는, 제1 내지 제4 증발가스 압축기(51~54) 중 적어도 하나를 작동 중단 상태로 제어하고, 작동 중단된 증발가스 압축기를 기설정 조건에서 작동 대기 상태로 제어한다. In addition, the first control unit 90 controls at least one of the first to fourth boil-off gas compressors 51 to 54 to an operation stop state, and controls the boil-off boiled gas compressor to an operation standby state under a predetermined condition. do.
여기서 제1 제어부(90)는, 작동 대기된 증발가스 압축기(일례로 제1 증발가스 압축기(51))의 작동 대기 상태가 기설정기간을 초과하는 경우, 작동 대기된 증발가스 압축기(51)를 가동 중단하도록 제어거나, 작동 대기된 증발가스 압축기(51)를 다시 가동시키고 증발가스 압축기 바이패스 라인(일례로 증발가스 압축기 바이패스 제1 라인(BL1)을 통해 가동 시작된 증발가스 압축기(51)에서 토출되는 증발가스를 가동 시작된 증발가스 압축기(51) 전단으로 바이패스하도록 제어할 수 있다. 물론 증발가스 압축기 바이패스 라인(BL1~Bl4)에는 각각 조절 밸브(도시하지 않음)가 구비되며, 각각의 조절 밸브를 통해 제1 제어부(90)가 상기 바이패스 제어를 수행하도록 할 수 있다. Here, the first control unit 90, when the operation standby state of the boil-off gas compressor (for example, the first boil-off gas compressor 51) waited for operation exceeds a predetermined period, the boil-off boil-off compressor 51 is operated. In the boil-off gas compressor 51 which is controlled to stop or restarts the boil-off gas compressor 51 and started to operate through the boil-off gas compressor bypass line (for example, the boil-off gas compressor bypass first line BL1). The discharged boil-off gas may be controlled to bypass the start-up of the boil-off gas compressor 51. Of course, each of the boil-off gas compressor bypass lines BL1 to Bl4 is provided with control valves (not shown). The first control unit 90 may perform the bypass control through a control valve.
여기서 기설정 조건은, 작동 중단된 증발가스 압축기(51)가 재가동하기 위한 시점에서 작동 중단된 증발가스 압축기(51)를 다시 가동하는데 걸리는 시간만큼 전의 시간에 도달하는 조건일 수 있으며, 작동 중단된 증발가스 압축기(51)가 재가동하기 위한 시점은 액화가스 저장탱크(10)의 내압이 기설정압력 초과인 시점이거나 또는 액화가스 저장탱크(10)에서 발생되는 증발가스 발생량이 기설정 발생량 초과인 시점일 수 있다. Here, the preset condition may be a condition that reaches the previous time by the time it takes to restart the deactivated boil-off gas compressor 51 at the point when the deactivated boil-off gas compressor 51 is restarted. The time point for the boil-off gas compressor 51 to be restarted is a time when the internal pressure of the liquefied gas storage tank 10 exceeds a preset pressure or when the amount of boil-off gas generated in the liquefied gas storage tank 10 exceeds a preset amount. Can be.
이와 같이 본 발명의 실시예에서는 제1 제어부(90)를 통해서, 제1 내지 제4 증발가스 압축기(51~54)가 스탠바이 상태에서 빠르게 작동 상태로 복귀할 수 있어 증발가스 공급의 신뢰성이 향상되고 안정성이 극대화되는 효과가 있다. Thus, in the embodiment of the present invention, through the first control unit 90, the first to fourth boil-off gas compressors 51 to 54 can quickly return to the operating state from the standby state, thereby improving the reliability of the boil-off gas supply. Stability is maximized.
제2 제어부(91)는, 제1 및 제2 수요처(71,72)에서 요구하는 증발가스의 압력 또는 유량에 따라 제1 내지 제4 증발가스 압축기(51~54)에서 토출되는 증발가스의 압력 또는 유량을 제어한다. The second control unit 91 is the pressure of the boil-off gas discharged from the first to fourth boil-off gas compressors 51 to 54 according to the pressure or the flow rate of the boil-off gas required by the first and second demand destinations 71 and 72. Or control the flow rate.
구체적으로, 제2 제어부(91)는, 제1 수요처(71)에서 요구하는 증발가스의 압력 또는 유량과 압력센서(831) 및 유량센서(832)에서 측정되는 압력 또는 유량을 각각 비교하여, 압력의 제어는, 제1 내지 제4 증발가스 압축기(51~54) 중 하나의 증발가스 압축기에 대해서만 토출되는 증발가스의 압력만을 제어하고, 유량의 제어는, 제1 내지 제4 증발가스 압축기(51~54) 중 하나의 증발가스 압축기 외의 증발가스 압축기에 대해서 토출되는 증발가스의 유량만을 제어할 수 있다. Specifically, the second control unit 91 compares the pressure or flow rate of the boil-off gas required by the first demand destination 71 with the pressure or flow rate measured by the pressure sensor 831 and the flow rate sensor 832, respectively. Control controls only the pressure of the boil-off gas discharged for only one boil-off gas compressor among the first to fourth boil-off compressors 51 to 54, and the control of the flow rate is the first to the fourth boil-off compressor 51. Only the flow rate of the boil-off gas discharged to the boil-off gas compressor other than the boil-off gas compressor of ˜54) may be controlled.
예를 들어, 제2 제어부(91)는, 제1 수요처(71)에서 요구하는 증발가스의 압력이 압력센서(831)에서 측정한 압력보다 낮은 경우, 압력조절밸브(841)를 폐쇄하고 제1 증발가스 압축기(51)의 부하를 증가시키도록 제어하며, 제1 수요처(71)에서 요구하는 증발가스의 압력이 압력센서(831)에서 측정한 압력보다 높은 경우, 압력조절밸브(842)를 개방하여, 증발가스 압축기 바이패스 제1 라인(BL1)을 통해 제1 증발가스 압축기(51)에서 토출되는 증발가스의 적어도 일부를 제1 증발가스 압축기(51) 전단으로 공급되도록 제어할 수 있다. (압력제어)For example, when the pressure of the boil-off gas required by the first demand destination 71 is lower than the pressure measured by the pressure sensor 831, the second control unit 91 closes the pressure regulating valve 841, and the first control unit 91 closes the first control unit. When the load of the boil-off gas compressor 51 is controlled to increase, and the pressure of the boil-off gas required by the first demand destination 71 is higher than the pressure measured by the pressure sensor 831, the pressure regulating valve 842 is opened. Thus, at least a part of the boil-off gas discharged from the first boil-off gas compressor 51 through the boil-off gas compressor bypass first line BL1 may be controlled to be supplied to the front of the first boil-off gas compressor 51. (Pressure control)
또한 제2 제어부(91)는, 제1 수요처(71)에서 요구하는 증발가스의 유량이 유량센서(832)에서 측정한 유량보다 많은 경우, 제1 내지 제3 유량조절밸브(842~844)를 폐쇄하고 제2 내지 제4 증발가스 압축기(52~54)의 부하를 증가시키도록 제어하며, 제1 수요처(71)에서 요구하는 증발가스의 유량이 유량센서(832)에서 측정한 유량보다 적은 경우, 제1 내지 제3 유량조절밸브(842~844)를 개방하여, 증발가스 압축기 바이패스 제2 내지 제4 라인(BL2~BL4)을 통해 제2 내지 제4 증발가스 압축기(52~54)에서 토출되는 증발가스의 적어도 일부를 제2 내지 제4 증발가스 압축기(52~54) 전단으로 공급하도록 제어할 수 있다. In addition, when the flow rate of the boil-off gas required by the first demand destination 71 is larger than the flow rate measured by the flow rate sensor 832, the second control unit 91 may operate the first to third flow control valves 842 to 844. Closes and controls to increase the load of the second to fourth boil-off compressors 52 to 54, and the flow rate of the boil-off gas required by the first demand destination 71 is less than the flow rate measured by the flow sensor 832. The first to third flow control valves 842 to 844 are opened, and the second to fourth evaporative gas compressors 52 to 54 are provided through the second and fourth lines BL2 to BL4 of the boil-off gas compressor bypass. At least a part of the discharged boil-off gas may be controlled to be supplied to the front end of the second to fourth boil-off compressors 52 to 54.
이와 같이 본 발명의 실시예에서는 제2 제어부(91)를 통해서, 제1 내지 제4 증발가스 압축기(51~54)가 병렬 구동되는 경우에도 제1 수요처(71)가 요구하는 압력 또는 유량을 적절하게 제어할 수 있어 증발가스 공급의 신뢰성이 향상되고 안정성이 극대화되는 효과가 있다. Thus, in the embodiment of the present invention, even when the first to fourth boil-off gas compressors 51 to 54 are driven in parallel through the second control unit 91, the pressure or flow rate required by the first demand destination 71 is appropriate. It can be controlled so that the reliability of the boil-off gas supply is improved and the stability is maximized.
도 2는 본 발명의 다른 실시예에 따른 가스 처리 시스템의 개념도이다.2 is a conceptual diagram of a gas treatment system according to another embodiment of the present invention.
도 2에 도시한 바와 같이, 본 발명의 다른 실시예에 따른 가스 처리 시스템(2)은, 액화가스 저장탱크(10), 증발가스 열교환기(20), 증발가스 감압기(30), 기액분리기(40), 제1 내지 제4 증발가스 압축기(51~54), 히터(61), 제1 수요처(71), 제2 수요처(72), 제3 제어부(92)를 포함한다. As shown in FIG. 2, the gas treatment system 2 according to another embodiment of the present invention includes a liquefied gas storage tank 10, a boil-off gas heat exchanger 20, a boil-off gas pressure reducer 30, and a gas-liquid separator. 40, first to fourth evaporative gas compressors 51 to 54, a heater 61, a first demand destination 71, a second demand destination 72, and a third control unit 92.
본 발명의 실시예에서 히터(61) 및 제3 제어부(92)를 제외한 구성들은 도 1을 참고로 기술한 본 발명의 일 실시예에 따른 가스 처리 시스템(2)에서의 각 구성과 편의상 동일한 도면 부호를 사용하나, 반드시 동일한 구성을 지칭하는 것은 아니다. Except for the heater 61 and the third control unit 92 in the embodiment of the present invention are the same drawings for convenience and each configuration in the gas treatment system 2 according to an embodiment of the present invention described with reference to FIG. Reference numerals are used, but are not necessarily referring to the same configuration.
이하에서는 도 2를 참고로 하여 본 발명의 다른 실시예에 따른 가스 처리 시스템(2)을 설명하도록 하며, 히터(61) 및 제3 제어부(92)를 중점적으로 설명하도록 한다. Hereinafter, a gas treatment system 2 according to another exemplary embodiment of the present invention will be described with reference to FIG. 2, and the heater 61 and the third controller 92 will be mainly described.
히터(61)는, 증발가스 바이패스라인(L7)상에 구비되며, 증발가스 열교환기(20)를 바이패스하여 제1 내지 제4 증발가스 압축기(51~54)로 공급되는 증발가스를 가열한다. The heater 61 is provided on the boil-off gas bypass line L7 and bypasses the boil-off gas heat exchanger 20 to heat the boil-off gas supplied to the first to fourth boil-off gas compressors 51 to 54. do.
히터(61)는, 보일러(72)에서 공급되는 스팀(Steam)을 열원으로 공급받을 수 있으며, 스팀과 액화가스 저장탱크(10)에서 발생되는 증발가스를 열교환시킴으로써 대략 영하 110도의 증발가스를 영하 40 도 내지 영하 20도로 승온시킬 수 있다. The heater 61 may be supplied with steam supplied from the boiler 72 as a heat source, and the evaporation gas of about minus 110 degrees may be lowered by heat exchange between the steam and the evaporated gas generated in the liquefied gas storage tank 10. The temperature can be raised from 40 degrees to minus 20 degrees.
본 발명의 실시예에서는 증발가스 온도측정센서(86)를 더 포함할 수 있다. In the embodiment of the present invention may further include a boil-off gas temperature measuring sensor (86).
증발가스 온도측정센서(86)는, 증발가스 공급라인(L1) 상의 증발가스 열교환기(20)의 하류와 제1 내지 제4 증발가스 압축기(51~54)의 상류에 구비될 수 있으며, 제1 내지 제4 증발가스 압축기(51~54)로 유입되는 증발가스의 온도를 측정하여 측정된 증발가스의 온도를 제3 제어부(92)로 송신할 수 있다. The boil-off gas temperature measuring sensor 86 may be provided downstream of the boil-off gas heat exchanger 20 on the boil-off gas supply line L1 and upstream of the first to fourth boil-off gas compressors 51 to 54. The temperature of the boil-off gas flowing into the first to fourth boil-off compressors 51 to 54 may be measured and transmitted to the third controller 92.
여기서 증발가스 온도측정센서(86)는, 제3 제어부(92)와 유선 또는 무선으로 연결될 수 있다. Here, the boil-off gas temperature measuring sensor 86 may be connected to the third control unit 92 by wire or wirelessly.
제3 제어부(92)는, 액화가스 저장탱크(10)에서 발생되는 증발가스 발생량에 따라 증발가스 열교환기(20) 및 히터(61)로 공급되는 증발가스의 유량을 제어한다. The third control unit 92 controls the flow rate of the boil-off gas supplied to the boil-off gas heat exchanger 20 and the heater 61 in accordance with the amount of boil-off gas generated in the liquefied gas storage tank 10.
구체적으로, 제3 제어부(92)는, 증발가스 발생량이 제1 기설정발생량 이하인 경우, 액화가스 저장탱크(10)에서 공급되는 증발가스를 히터(61)로만 공급되도록 제어하고, 증발가스 발생량이 제1 기설정발생량 초과 제2 기설정발생량 미만인 경우, 액화가스 저장탱크(10)에서 공급되는 증발가스를 증발가스 열교환기(20)와 히터(61) 모두에 공급되도록 제어하며, 증발가스 발생량이 제2 기설정 발생량 이상인 경우 액화가스 저장탱크(10)에서 공급되는 증발가스를 증발가스 열교환기(20)로만 공급되도록 제어할 수 있다. 여기서 제1 기설정 발생량은, 제2 기설정 발생량보다 적은 양이다. Specifically, when the amount of generated boil-off gas is less than or equal to the first preset amount, the third controller 92 controls the boil-off gas supplied from the liquefied gas storage tank 10 to be supplied only to the heater 61, and the amount of generated boil-off gas When the first preset generation amount is less than the second preset generation amount, it is controlled to supply the boil-off gas supplied from the liquefied gas storage tank 10 to both the boil-off gas heat exchanger 20 and the heater 61, and the amount of boil-off gas generated When the amount is greater than or equal to the second preset generation amount, the evaporated gas supplied from the liquefied gas storage tank 10 may be controlled to be supplied only to the evaporated gas heat exchanger 20. The first preset generation amount is an amount smaller than the second preset generation amount.
이에 대한 상세한 내용은 도 5를 참고로 하여 상세히 살펴보도록 한다. Details thereof will be described in detail with reference to FIG. 5.
도 5는 본 발명의 실시예에 따른 선박의 운항시간 대비 액화가스 저장탱크에서 발생되는 증발가스량에 대한 그래프이다. 5 is a graph of the amount of boil-off gas generated in the liquefied gas storage tank compared to the operating time of the ship according to an embodiment of the present invention.
도 5의 그래프에서 도시한 바와 같이, 액화가스 저장탱크(10)에서 발생되는 증발가스 발생량은, 선박(1)의 운항시간에 따라 변화한다. As shown in the graph of FIG. 5, the amount of boil-off gas generated in the liquefied gas storage tank 10 changes depending on the operating time of the vessel 1.
구체적으로, 액화가스 저장탱크(10)에서 발생되는 증발가스 발생량은, 운항 초기구간(B1)과 운항 초중기구간(B2)에서는 증발가스 발생량이 계속적으로 일정한 비율로 증가한다. 이후 운항 중기구간(B3)에서는 초반에 증발가스 발생량이 일정한 비율로 증가하다가 중반에 임의의 유량에서 증가량이 정체되고 후반에 증발가스 발생량이 일정한 비율로 감소하게 된다. 마지막으로 운항 중말기구간(B2)과 운항 말기구간(B1)에서는 증발가스 발생량이 계속적으로 일정한 비율로 감소한다. Specifically, the amount of boil-off gas generated in the liquefied gas storage tank 10 is continuously increased at a constant rate in the amount of the boil-off gas generated in the operation initial section B1 and the operation elementary and medium-sized section B2. Thereafter, in the operating medium section B3, the amount of boil-off gas is initially increased at a constant rate, then the amount of stagnation is stagnated at a certain flow rate in the middle, and the amount of boil-off gas is reduced at a constant rate in the second half. Finally, the amount of boil-off gas continuously decreases at a constant rate in the operation end device B2 and the operation end device B1.
여기서 운항 초기구간(B1)과 운항 말기구간(B1)은 제1 기설정발생량(X) 이하인 구간이며, 운항 초중기구간(B2)과 운항 중말기구간(B2)은 제1 기설정발생량(X) 초과 제2 기설정발생량(Y) 이하인 구간이고, 운항 중기구간(B3)은, 제2 기설정발생량(Y) 이상인 구간을 말한다. Here, the operation initial section B1 and the operation end section B1 are sections which are less than or equal to the first predetermined generation amount X, and the operation elementary and intermediate sections B2 and the operation terminal section B2 are the first predetermined generation amounts X. ) Excessive second preset generation amount (Y) or less, and the heavy machinery section B3 refers to a section that is greater than or equal to the second preset generation amount (Y).
이와 같이 본 발명의 실시예에서는, 선박(1)의 운항 시간에 따른 액화가스 저장탱크(10)에서 발생되는 증발가스 발생량의 변화를 고려하여, 제3 제어부(92)를 통해 제1 내지 제4 증발가스 압축기(51~54)에 유입되는 증발가스의 예열 구동 제어를 최적화하고 있다. As described above, in the embodiment of the present invention, considering the change in the amount of generated boil-off gas generated in the liquefied gas storage tank 10 according to the operating time of the vessel 1, the first to fourth through the third control unit 92 The preheating drive control of the boil-off gas flowing into the boil-off gas compressors 51 to 54 is optimized.
구체적으로, 제3 제어부(92)는, 액화가스 저장탱크(10)에서 발생되는 증발가스 발생량이 제1 기설정 발생량(X) 이하인 경우(B1 구간), 증발가스 제1 유량밸브(81a)의 개도를 폐쇄하고, 증발가스 제2 유량밸브(81b)의 개도를 개방하여, 액화가스 저장탱크(10)에서 공급되는 증발가스가 히터(61)로만 공급되도록 제어할 수 있다. Specifically, the third control unit 92, when the amount of boil-off gas generated in the liquefied gas storage tank 10 is less than or equal to the first predetermined amount (X) (B1 section), the third flow rate of the boil-off gas first flow valve 81a The opening degree is closed and the opening degree of the second boil-off gas flow rate valve 81b is opened, so that the boil-off gas supplied from the liquefied gas storage tank 10 can be controlled to be supplied only to the heater 61.
또한, 제3 제어부(92)는, 액화가스 저장탱크(10)에서 발생되는 증발가스 발생량이 제1 기설정 발생량(X) 초과 제2 기설정 발생량(Y) 미만인 경우(B2 구간), 증발가스 제1 및 제2 유량밸브(81a, 81b)의 개도를 모두 개방하여 액화가스 저장탱크(10)에서 공급되는 증발가스가 증발가스 열교환기(20)와 히터(61)로 공급하도록 제어하되, 증발가스 온도측정센서(86)에서 측정되는 온도에 따라 증발가스 제1 및 제2 유량밸브(81a, 81b) 서로 간의 개도 개방비율을 제어할 수 있다. In addition, the third control unit 92, when the amount of boil-off gas generated in the liquefied gas storage tank 10 is less than the first preset amount (X) and less than the second preset amount (Y) (section B2), the boil-off gas Opening the openings of the first and second flow rate valves 81a and 81b to control the evaporated gas supplied from the liquefied gas storage tank 10 to be supplied to the boil-off gas heat exchanger 20 and the heater 61, but the evaporation According to the temperature measured by the gas temperature measuring sensor 86, the opening ratio between the boil-off gas first and second flow valves 81a and 81b can be controlled.
제3 제어부(92)는, 액화가스 저장탱크(10)에서 발생되는 증발가스 발생량이 제2 기설정 발생량(Y) 이상인 경우(B3 구간), 증발가스 제1 유량밸브(81a)의 개도를 개방하고 증발가스 제2 유량밸브(81b)의 개도를 폐쇄하여, 액화가스 저장탱크(10)에서 공급되는 증발가스가 증발가스 열교환기(20)로만 공급되도록 제어할 수 있다. The third control unit 92 opens the opening degree of the boil-off gas first flow valve 81a when the boil-off gas generated in the liquefied gas storage tank 10 is equal to or greater than the second preset generation amount Y (section B3). Then, the opening degree of the second boil-off gas flow rate valve 81b may be closed to control the boil-off gas supplied from the liquefied gas storage tank 10 to be supplied only to the boil-off gas heat exchanger 20.
이와 같이 본 발명의 실시예에서는, 선박(1)의 운항 시간에 따라 제1 내지 제4 증발가스 압축기(51~54)에 유입되는 증발가스의 예열 구동을 제어하여, 증발가스 열교환기(20)만 존재할 경우에 발생할 수 있는 제1 내지 제4 증발가스 압축기(51~54)의 오작동을 방지할 수 있어 시스템의 신뢰성이 향상되는 효과가 있다. As described above, according to the exemplary embodiment of the present invention, the preheating operation of the boil-off gas flowing into the first to fourth boil-off gas compressors 51 to 54 is controlled according to the operating time of the ship 1, so that the boil-off gas heat exchanger 20 The malfunction of the first to fourth boil-off gas compressors 51 to 54, which may occur when only one is present, may be prevented, thereby improving the reliability of the system.
도 3은 본 발명의 또 다른 실시예에 따른 가스 처리 시스템의 개념도이다.3 is a conceptual diagram of a gas treatment system according to another embodiment of the present invention.
도 3에 도시한 바와 같이, 본 발명의 또 다른 실시예에 따른 가스 처리 시스템(2)은, 액화가스 저장탱크(10), 증발가스 열교환기(20), 증발가스 감압기(30), 기액분리기(40), 제1 내지 제4 증발가스 압축기(51~54), 히터(61), 강제기화기(62), 펌프(63), 제1 수요처(71), 제2 수요처(72), 제4 제어부(93)를 포함한다. As shown in FIG. 3, the gas treatment system 2 according to another embodiment of the present invention includes a liquefied gas storage tank 10, an evaporated gas heat exchanger 20, an evaporated gas pressure reducer 30, and a gas liquid. Separator 40, first to fourth boil-off gas compressors 51 to 54, heaters 61, forced vaporizers 62, pumps 63, first demand destination 71, second demand destination 72, first 4, the control unit 93 is included.
본 발명의 실시예에서 강제기화기(62), 펌프(63) 및 제4 제어부(93)를 제외한 구성들은 도 1 및 도 2를 참고로 기술한 본 발명의 일 실시예에 따른 가스 처리 시스템(2)에서의 각 구성과 편의상 동일한 도면 부호를 사용하나, 반드시 동일한 구성을 지칭하는 것은 아니다. Except for the forced vaporizer 62, the pump 63 and the fourth control unit 93 in the embodiment of the present invention, the gas treatment system 2 according to the embodiment of the present invention described with reference to Figs. In the drawings, the same reference numerals are used for the sake of simplicity and, but not necessarily, the same reference numerals.
이하에서는 도 3을 참고로 하여 본 발명의 또 다른 실시예에 따른 가스 처리 시스템(2)을 설명하도록 하며, 강제기화기(62), 펌프(63) 및 제4 제어부(93)를 중점적으로 설명하도록 한다. Hereinafter, a gas treatment system 2 according to another embodiment of the present invention will be described with reference to FIG. 3, and the forced vaporizer 62, the pump 63, and the fourth control unit 93 will be described. do.
본 발명의 실시예에서는, 강제증발가스 공급라인(L8)을 더 포함할 수 있다. In an embodiment of the present invention, it may further include a forced evaporation gas supply line (L8).
강제증발가스 공급라인(L8)은, 액화가스 저장탱크(10)와 증발가스 공급라인(L1) 상의 증발가스 열교환기(20)의 하류를 연결하며, 강제기화기(62)를 포함할 수 있다. The forced evaporation gas supply line L8 connects the liquefied gas storage tank 10 and the downstream of the boil-off gas heat exchanger 20 on the boil-off gas supply line L1 and may include a forced vaporizer 62.
강제증발가스 공급라인(L8)은, 증발가스 추가공급밸브(82)가 설치될 수 있으며, 증발가스 추가공급밸브(82)의 개도 조절에 따라 강제기화기(62)로 공급되는 액화가스의 공급량이 제어될 수 있다. The forced evaporation gas supply line L8 may be provided with an additional boil-off gas supply valve 82, and a supply amount of the liquefied gas supplied to the forced vaporizer 62 according to the opening degree of the additional boil-off gas supply valve 82. Can be controlled.
여기서 증발가스 추가공급밸브(82)는, 제4 제어부(93)와 유선 또는 무선으로 연결되어 제4 제어부(93)의 개도 조절 명령을 수신받을 수 있다. Here, the additional boil-off gas supply valve 82 may be connected to the fourth control unit 93 in a wired or wireless manner to receive an opening degree adjustment command of the fourth control unit 93.
강제기화기(62)는, 강제증발가스 공급라인(L8) 상에 구비되며, 펌프(63)로부터 액화가스 저장탱크(10)에 저장된 액화가스를 공급받아 강제 기화시켜 제1 내지 제4 증발가스 압축기(51~54)로 공급한다. The forced vaporizer 62 is provided on the forced evaporation gas supply line L8. The forced vaporizer 62 receives the liquefied gas stored in the liquefied gas storage tank 10 from the pump 63 and forcibly vaporizes the first to fourth boil-off gas compressors. Supply to (51 ~ 54).
강제기화기(62)는, 보일러(72)에서 공급되는 스팀(Steam)을 열원으로 공급받을 수 있으며, 스팀과 액화가스 저장탱크(10)에서 발생되는 증발가스를 열교환시킴으로써 액상의 액화가스를 기상의 강제기화증발가스로 상변화시킬 수 있다. The forced vaporizer 62 may receive steam supplied from the boiler 72 as a heat source, and heat the liquefied liquefied gas by vapor-exchanging the vaporized gas generated in the liquefied gas storage tank 10. It can be changed into forced vaporization gas.
이때, 액상의 액화가스는 대략 영하 163도로, 이 액화가스를 영하 40 도 내지 영하 20도를 가지는 강제기화된 증발가스로 승온시킬 수 있으며, 이는 상기 기술한 바와 같이 액상에서 기상으로의 상변화를 동반한다.In this case, the liquid liquefied gas can be raised to a forced vaporized evaporation gas having a temperature of about 163 degrees below zero, and a temperature of about 40 degrees below zero to about 20 degrees below zero, which is a phase change from the liquid phase to the gas phase as described above. Accompany
강제기화기(62)는, 히터(61)와 함께 스팀을 공유할 수 있다. 구체적으로, 보일러(72)는 강제기화기(62)로 스팀을 공급할 뿐만 아니라 히터(61)로도 스팀을 공급할 수 있다. The forced vaporizer 62 can share steam with the heater 61. Specifically, the boiler 72 may supply steam not only to the forced vaporizer 62 but also to the heater 61.
또한, 강제기화기(62)는, 히터(61)와 함께 구동될 수 있다. In addition, the forced vaporizer 62 may be driven together with the heater 61.
본 발명의 실시예에서 히터(61)가 구동되는 이유는, 증발가스 열교환기(20)의 예열기능이 약화되어 이를 보충해야하기 때문이다. 즉, 이 경우에는, 액화가스 저장탱크(10)에서 발생되는 증발가스의 발생량이 적어지게되는데, 이로 인해 제1 내지 제4 증발가스 압축기(51~54)로 공급되어야할 증발가스의 양이 적어진다. The reason why the heater 61 is driven in the embodiment of the present invention is that the preheating function of the boil-off gas heat exchanger 20 is weakened and must be replenished. That is, in this case, the amount of generated boil-off gas generated in the liquefied gas storage tank 10 is reduced, so that the amount of boil-off gas to be supplied to the first to fourth boil-off gas compressors 51 to 54 is small. Lose.
이에 본 발명의 실시예에서는, 강제기화기(62)와 히터(61)를 함께 구동하여, 제1 내지 제4 증발가스 압축기(51~54)로 공급되어야할 증발가스의 양을 보충할 수 있다. 이로 인해 제1 내지 제4 증발가스 압축기(51~54)의 구동 신뢰성이 향상될 수 있다. Thus, in the embodiment of the present invention, by driving the forced vaporizer 62 and the heater 61 together, the amount of boil-off gas to be supplied to the first to fourth boil-off gas compressor (51 to 54) can be replenished. As a result, driving reliability of the first to fourth boil-off gas compressors 51 to 54 may be improved.
즉, 강제기화기(62)와 히터(61)는 열교환매체로 스팀을 사용하며, 이 스팀을 서로 공유함으로써, 장비가 설치되는 위치를 공유할 수 있다. 이에 대한 상세한 내용은 후술하도록 한다. That is, the forced vaporizer 62 and the heater 61 uses steam as a heat exchange medium, and by sharing this steam with each other, it is possible to share the location where the equipment is installed. Details thereof will be described later.
펌프(63)는, 강제증발가스 공급라인(L8) 상에 구비되어 액화가스 저장탱크(10)에 저장된 액화가스를 강제기화기(62)로 공급할 수 있다. The pump 63 may be provided on the forced evaporation gas supply line L8 to supply the liquefied gas stored in the liquefied gas storage tank 10 to the forced vaporizer 62.
펌프(63)는, 제4 제어부(93)와 유선 또는 무선으로 연결되어, 펌프가동신호 또는 펌프가동중단신호를 수신받을 수 있으며, 제4 제어부(93)의 펌프가동신호에 의해 가동되어 액화가스 저장탱크(10)에 저장된 액화가스를 강제기화기(62)로 공급하거나 펌프가동중단신호에 의해 중단되어 강제기화기(62)로 공급되는 액화가스의 공급을 중단할 수 있다. The pump 63 is connected to the fourth control unit 93 in a wired or wireless manner to receive a pump operation signal or a pump operation stop signal, and is operated by the pump operation signal of the fourth control unit 93 to liquefy gas. The liquefied gas stored in the storage tank 10 may be supplied to the forced vaporizer 62 or stopped by the pump operation stop signal to stop the supply of the liquefied gas supplied to the forced vaporizer 62.
여기서 펌프(63)는, 액화가스 저장탱크(10) 내부 또는 외부에 마련될 수 있으며, 일례로 원심형 펌프일 수 있다. The pump 63 may be provided inside or outside the liquefied gas storage tank 10, and may be, for example, a centrifugal pump.
제4 제어부(93)는, 액화가스 저장탱크(10)에서 발생되는 증발가스 발생량에 따라 증발가스 열교환기(20) 및 히터(61)로 공급되는 증발가스의 유량과 강제기화기(62)로 공급되는 액화가스의 유량을 제어할 수 있다. The fourth controller 93 supplies the flow rate of the boil-off gas supplied to the boil-off gas heat exchanger 20 and the heater 61 and the forced vaporizer 62 according to the amount of boil-off gas generated in the liquefied gas storage tank 10. The flow rate of the liquefied gas to be controlled can be controlled.
구체적으로, 제4 제어부(93)는, 증발가스 발생량이 제1 기설정발생량 이하인 경우, 히터(61)와 강제기화기(62)를 함께 구동하되, 증발가스 열교환기(20)는 가동하지 않도록 제어하고, 증발가스 발생량이 제1 기설정발생량 초과 제2 기설정 발생량 미만인 경우, 히터(61)와 강제기화기(62)를 함께 구동하되 증발가스 열교환기(20)도 함께 가동하도록 제어하며, 증발가스 발생량이 제2 기설정 발생량 이상인 경우, 증발가스 열교환기(20)만 가동되도록 제어할 수 있다. In detail, the fourth control unit 93 controls the heater 61 and the forced vaporizer 62 to be driven together when the amount of generated evaporation gas is less than or equal to the first predetermined amount generated, but not to operate the evaporated gas heat exchanger 20. When the amount of generated boil-off gas is greater than the first predetermined amount and less than the second set amount, the heater 61 and the forced vaporizer 62 are driven together, and the boil-off gas heat exchanger 20 is also controlled to operate together. When the amount of generation is greater than or equal to the second preset amount, it may be controlled to operate only the boil-off gas heat exchanger 20.
이에 대한 상세한 제어는 도 5를 참고하여 기술하도록 하며, 도 5의 상세한 기술내용은 상기에 기술하였으므로 이에 갈음하도록 한다. Detailed control thereof will be described with reference to FIG. 5, and the detailed description of FIG. 5 has been described above.
제4 제어부(93)는, 증발가스 발생량이 제1 기설정발생량(X) 이하인 경우(B1 구간), 증발가스 제1 유량밸브(81a)의 개도를 폐쇄하고 증발가스 제2 유량밸브(81b)의 개도를 개방하여 액화가스 저장탱크(10)에서 공급되는 증발가스가 히터(61)로만 공급되도록 제어하되, 증발가스 추가공급밸브(82)의 개도를 개방하고 펌프(63)를 가동하여 액화가스 저장탱크(10)에 저장된 액화가스가 강제기화기(62)로 공급되도록 제어할 수 있다. The fourth control unit 93 closes the opening degree of the boil-off gas first flow valve 81a when the boil-off gas generation amount is equal to or less than the first predetermined generation amount X (section B1), and the boil-off gas second flow valve 81b. While opening the opening of the liquefied gas storage tank 10 to control the evaporation gas supplied to the heater 61 only, while opening the opening of the additional boil-off gas supply valve 82 and operating the pump 63 liquefied gas The liquefied gas stored in the storage tank 10 may be controlled to be supplied to the forced vaporizer 62.
제4 제어부(93)는, 증발가스 발생량이 제1 기설정발생량(X) 초과 제2 기설정발생량(Y) 미만인 경우(B2 구간), 증발가스 제1 유량밸브(81a) 및 증발가스 제2 유량밸브(81b)의 개도를 모두 개방하여 액화가스 저장탱크(10)에서 공급되는 증발가스가 증발가스 열교환기(20)와 히터(61) 모두로 공급되도록 제어하되, 증발가스 추가공급밸브(82)의 개도를 개방하고 펌프(63)를 가동하여 액화가스 저장탱크(10)에 저장된 액화가스가 강제기화기(62)로도 공급되도록 제어할 수 있다. 이때, 제4 제어부(93)는, 증발가스 온도측정센서(86)에서 측정되는 온도에 따라 증발가스 제1 및 제2 유량밸브(81a, 81b), 증발가스 추가공급밸브(82) 서로 간의 개방 비율을 제어하여 제1 내지 제4 증발가스 압축기(51~54)로 공급되는 증발가스의 온도를 제어할 수 있다. The fourth control unit 93, when the amount of boil-off gas generated is greater than the first preset amount (X) and less than the second preset amount (Y) (section B2), the first boil-off gas first flow valve 81a and the second boil-off gas While opening all the openings of the flow valve 81b to control the evaporated gas supplied from the liquefied gas storage tank 10 to be supplied to both the boil-off gas heat exchanger 20 and the heater 61, the additional boil-off gas supply valve 82 By opening the opening degree and operating the pump 63 can be controlled so that the liquefied gas stored in the liquefied gas storage tank 10 is also supplied to the forced vaporizer (62). In this case, the fourth control unit 93 opens the first and second flow rate valves 81a and 81b and the additional supply valve 82 of the evaporation gas according to the temperature measured by the evaporation gas temperature measuring sensor 86. By controlling the ratio, the temperature of the boil-off gas supplied to the first to fourth boil-off compressors 51 to 54 may be controlled.
제4 제어부(93)는, 증발가스 발생량이 제2 기설정발생량(Y) 이상인 경우(B3 구간), 증발가스 제1 유량밸브(81a)의 개도를 개방하고 증발가스 제2 유량밸브(81b)의 개도를 폐쇄하여 액화가스 저장탱크(10)에서 공급되는 증발가스가 증발가스 열교환기(20)로만 공급되도록 제어하되, 증발가스 추가공급밸브(82)의 개도를 폐쇄하고 펌프(63)를 가동중단시켜 액화가스 저장탱크(10)에 저장된 액화가스가 강제기화기(62)로 공급되지 않도록 제어할 수 있다.The fourth control unit 93 opens the opening degree of the boil-off gas first flow valve 81a when the boil-off gas generation amount is equal to or greater than the second preset generation amount Y (section B3), and the boil-off gas second flow valve 81b. By controlling the opening of the liquefied gas storage tank 10 so that the evaporated gas supplied only to the boil-off gas heat exchanger 20, the opening of the additional boil-off gas supply valve 82 is closed and the pump 63 is operated. By stopping the liquefied gas stored in the liquefied gas storage tank 10 can be controlled so as not to be supplied to the forced vaporizer (62).
이와 같이 본 발명의 실시예에서는, 선박(1)의 운항 시간에 따라 제1 내지 제4 증발가스 압축기(51~54)에 유입되는 증발가스의 예열 구동을 제어함과 동시에 강제기화기(62)를 통해 제1 내지 제4 증발가스 압축기(51~54)에 유입되는 증발가스의 유량을 항상 적정하게 충족시킬 수 있어, 제1 내지 제4 증발가스 압축기(51~54)의 구동효율을 극대화시킬 수 있으며, 시스템의 신뢰성이 향상되는 효과가 있다. As described above, according to the embodiment of the present invention, the preliminary driving of the boil-off gas flowing into the first to fourth boil-off gas compressors 51 to 54 is controlled according to the operating time of the ship 1, and the forced vaporizer 62 is controlled. Through this, the flow rate of the boil-off gas flowing into the first to fourth boil-off gas compressors 51 to 54 can be adequately satisfied at all times, thereby maximizing driving efficiency of the first to fourth boil-off gas compressors 51 to 54. In addition, the reliability of the system is improved.
도 6은 본 발명의 실시예에 따른 가스 처리 시스템을 구비한 선박의 측면도, 도 7은 본 발명의 일 실시예에 따른 선박의 카고 컴프레서 룸의 내부평면도, 도 8은 본 발명의 다른 실시예에 따른 선박의 카고 컴프레서 룸의 내부평면도, 도 9는 본 발명의 또 다른 실시예에 따른 선박의 카고 컴프레서 룸의 내부 단면도이고, 도 10은 본 발명의 또 다른 실시예에 따른 선박의 카고 컴프레서 룸이 변형된 내부 단면도이다. Figure 6 is a side view of a ship having a gas treatment system according to an embodiment of the present invention, Figure 7 is an internal plan view of a cargo compressor room of the ship according to an embodiment of the present invention, Figure 8 is another embodiment of the present invention 9 is an internal cross-sectional view of a cargo compressor room of a ship according to another embodiment of the present invention, and FIG. 10 is a cargo compressor room of a ship according to another embodiment of the present invention. It is a modified internal cross section.
도 6 내지 도 10에 도시한 바와 같이, 본 발명의 실시예에 따른 가스 처리 시스템(2)을 구비한 선박(1)은, 카고 컴프레서 룸(100), 스키드(101), 모터룸(200), 엔진 케이싱(300), 액화가스 저장탱크(10), 제1 내지 제4 증발가스 압축기(51~54), 제1 수요처(71), 제2 수요처(72)를 포함한다. As shown in FIGS. 6 to 10, the ship 1 having the gas treatment system 2 according to the embodiment of the present invention includes a cargo compressor room 100, a skid 101, and a motor room 200. , An engine casing 300, a liquefied gas storage tank 10, first to fourth boil-off compressors 51 to 54, a first demand destination 71, and a second demand destination 72.
본 발명의 실시예에서 카고 컴프레서 룸(100), 스키드(101), 모터룸(200) 및 엔진 케이싱(300)을 제외한 구성들은 도 1 내지 도 3을 참고로 기술한 본 발명의 일 실시예에 따른 가스 처리 시스템(2)에서의 각 구성과 편의상 동일한 도면 부호를 사용하나, 반드시 동일한 구성을 지칭하는 것은 아니다. Except for the cargo compressor room 100, the skid 101, the motor room 200 and the engine casing 300 in the embodiment of the present invention are shown in one embodiment of the present invention described with reference to Figs. Although the same reference numerals are used for convenience of the respective configurations in the gas treatment system 2 according to the drawings, the same reference numerals are not necessarily used.
여기서 제1 내지 제4 증발가스 압축기(51~54)는, 구동용 증발가스 압축기와 절전용 증발가스 압축기로 구분될 수 있으며, 이는 상기 도 1 내지 도 3을 참고로 기술한 본 발명의 일 실시예에 따른 가스 처리 시스템(2)에서 설명한 바와 같이 작동 대기가 되는 증발가스 압축기가 절전용 증발가스 압축기이며, 작동 대기되지 않고 항상 가동하는 증발가스 압축기가 구동용 증발가스 압축기일 수 있다. 일례로 구동용 증발가스 압축기는 제1 내지 제3 증발가스 압축기(51~53)일 수 있으며, 절전용 증발가스 압축기는 제4 증발가스 압축기(54)일 수 있다. Here, the first to fourth boil-off gas compressors 51 to 54 may be classified into a driving boil-off gas compressor and a power-saving boil-off gas compressor, which is one embodiment of the present invention described with reference to FIGS. 1 to 3. As described in the gas treatment system 2 according to the example, the boil-off gas compressor serving as an operating atmosphere may be a power-saving boil-off gas compressor, and the boil-off gas compressor that is always operating without waiting for operation may be a boil-off gas compressor. For example, the driving boil-off gas compressor may be the first to third boil-off gas compressors 51 to 53, and the power-saving boil-off gas compressor may be the fourth boil-off gas compressor 54.
이하 설명하는 본 발명의 실시예에서 제1 내지 제4 증발가스 압축기(51~54)는 상기 상기 도 1 내지 도 3을 참고로 기술한 본 발명의 일 실시예에 따른 가스 처리 시스템(2)에서 설명한 교번제어가 수행되지 않는다. In the embodiment of the present invention described below, the first to fourth boil-off gas compressors 51 to 54 are used in the gas treatment system 2 according to the embodiment of the present invention described with reference to FIGS. 1 to 3. The alternating control described is not performed.
이하에서는 도 6을 참고로 하여 본 발명의 실시예에 따른 가스 처리 시스템(2)을 구비한 선박(1)을 설명하도록 한다. Hereinafter, with reference to Figure 6 will be described a vessel (1) having a gas treatment system 2 according to an embodiment of the present invention.
선박(1)은, 상갑판(부호 도시하지 않음) 하측의 선체(H) 내부에 액화가스 저장탱크(10), 제1 및 제2 수요처(71,72)를 수용할 수 있으며, 상갑판 상에 카고 컴프레서 룸(100), 모터룸(200) 및 엔진 케이싱(300)을 구비할 수 있다. The vessel 1 can accommodate the liquefied gas storage tank 10 and the first and second demand destinations 71 and 72 in the hull H under the upper deck (not shown), and on the upper deck. The compressor room 100, the motor room 200, and the engine casing 300 may be provided.
선박(1)은, 운반 목적에 따라 즉, LNG 캐리어인 경우에 선체(H)의 내부에는 액화가스 저장탱크(10)만이 복수 개 구비될 수 있으며 상갑판 상에는 카고 컴프레서 룸(100), 모터룸(200) 및 엔진 케이싱(300)이 구비될 수 있고, 컨테이너 운반선인 경우에 선체(H)의 내부에 액화가스 저장탱크(10), 카고 컴프레서 룸(100), 모터룸(200)과 컨테이너 수용 홀드가 함께 복수 개 구비될 수 있고 상갑판 상에는 엔진 케이싱(300)과 컨테이너들이 마련될 수 있다. The vessel 1 may be provided with only a plurality of liquefied gas storage tank 10 in the hull (H) in accordance with the transport purpose, that is, in the case of the LNG carrier, the cargo compressor room 100, the motor room (on the upper deck) 200 and the engine casing 300, in the case of a container carrier ship, the liquefied gas storage tank 10, the cargo compressor room 100, the motor room 200 and the container holding hold in the hull (H) A plurality may be provided together, and the engine casing 300 and the containers may be provided on the upper deck.
본 발명의 실시예에서는 LNG 캐리어인 경우에 한정되지 않으나 설명의 편의를 위해 선박(1)이 LNG 캐리어인 경우를 일례로 하여 설명하기로 한다. In the embodiment of the present invention is not limited to the case of the LNG carrier, but for the convenience of description, the case where the vessel 1 is the LNG carrier will be described by way of example.
카고 컴프레서 룸(100)은, 선체(H)의 상갑판 상에 마련되는 별도로 격리된 공간으로 일례로 모터룸(200)의 전방에 마련될 수 있다. The cargo compressor room 100 is a separate isolated space provided on the upper deck of the hull H, for example, may be provided in front of the motor room 200.
또한, 카고 컴프레서 룸(100)은, 선체(H)의 폭 방향으로만 일렬로 길게 배치되는 구조로 내부에 제1 내지 제4 증발가스 압축기(51~54)를 수용한다. Moreover, the cargo compressor room 100 accommodates the 1st-4th boil-off gas compressor 51-54 inside in the structure arrange | positioned elongate only in the width direction of ship body H.
즉, 카고 컴프레서 룸(100)은 내부의 수용공간이 한정될 수 밖에 없다. 그에 반해 증발가스의 처리량이 점차 증대되어 제1 내지 제4 증발가스 압축기(51~54)는 점차 압축 용량이나 사이즈가 커짐에 따라 카고 컴프레서 룸(100) 내부의 공간 활용이 문제되어져 왔다. That is, the cargo compressor room 100 is bound to be limited in the interior receiving space. On the other hand, as the throughput of the boil-off gas is gradually increased, the first to fourth boil-off gas compressors 51 to 54 have a problem of utilizing space inside the cargo compressor room 100 as the compression capacity and size are gradually increased.
이에 본 발명의 실시예에서는, 제1 내지 제4 증발가스 압축기(51~54)를 높이가 카고 컴프레서 룸(100) 높이의 절반 즉, 바람직하게 2 내지 4m 이내의 사이즈를 가지면서 기존의 증발가스 압축기들과 동일한 성능을 가지는 증발가스 압축기로 구성하였다. 즉, 제1 내지 제4 증발가스 압축기(51~54)는, 스탠다드 고압 압축기(Standard High Pressure Compressor)일 수 있으며, 이때, 제1 내지 제4 증발가스 압축기(51~54)의 피스톤들은, 일례로 V자형으로 교차되어 복수 개 직렬연결됨으로써 구성될 수 있다. Accordingly, in the embodiment of the present invention, the height of the first to fourth boil-off gas compressors 51 to 54 is half the height of the cargo compressor room 100, that is, the existing boil-off gas having a size of preferably within 2 to 4 m. It is composed of an evaporative gas compressor having the same performance as the compressors. That is, the first to fourth boil-off gas compressors 51 to 54 may be standard high pressure compressors, and the pistons of the first to fourth boil-off gas compressors 51 to 54 may be one example. It can be configured by intersecting in a V-shape to connect a plurality of series.
제1 내지 제4 증발가스 압축기(51~54)는, 피스톤이 V자형으로 교차되어 복수 개 직렬연결됨으로써 구성되어 높이가 2 내지 4m 이내의 사이즈를 가질 수 있게 되었고, 그로 인해 카고 컴프레서 룸(100) 내에서 최적의 배치를 구현할 수 있게 되었다. The first to fourth boil-off gas compressors 51 to 54 are constructed by connecting a plurality of pistons in series in a V-shape and connected in series so that they can have a size of 2 to 4 m or less in height, and thus the cargo compressor room 100 It is now possible to implement optimal deployment within.
구체적으로, 제1 내지 제4 증발가스 압축기(51~54)는, 제1 및 제2 증발가스압축기(51,52)가 상측에 제3 및 제4 증발가스 압축기(53,54)가 하측에 마련되어 서로 적층되는 2층 구조로 카고 컴프레서 룸(100) 내에 배치될 수 있으며, 그에 따르 기존의 제1 및 제2 증발가스압축기(51,52)가 차지했던 카고 컴프레서 룸(100) 내의 공간이 여분으로 추가확보될 수 있다. Specifically, in the first to fourth boil-off gas compressors 51 to 54, the first and second boil-off gas compressors 51 and 52 are on the upper side, and the third and fourth boil-off gas compressors 53 and 54 on the lower side. It can be arranged in the cargo compressor room 100 in a two-layer structure provided to be stacked on each other, so that the space in the cargo compressor room 100 occupied by the first and second boil-off gas compressor (51, 52) Can be further secured.
이로 인해 카고 컴프레서 룸(100)은 상기 추가확보된 공간에 제1 내지 제4 증발가스 압축기(51~54)외에도 증발가스 열교환기(20), 증발가스 감압기(30), 기액분리기(40), 히터(61), 강제기화기(62) 등 액화가스 또는 증발가스를 처리하는 장치들을 수용할 수 있으며, 후술할 스키드(101) 또한 수용할 수 있다. As a result, the cargo compressor room 100 has a boil-off gas heat exchanger 20, a boil-off gas reducer 30, and a gas-liquid separator 40 in addition to the first to fourth boil-off gas compressors 51 to 54 in the additionally secured space. In addition, the heater 61, the forced vaporizer 62, and the like can accommodate a device for processing a liquefied gas or evaporated gas, it can also accommodate a skid 101 to be described later.
이로 인해 본 발명의 실시예에서는 선박(1)의 내부 공간을 최적화하여 사용할 수 있으며, 여분의 공간이 발생하여 운송능력이 향상될 수 있는 효과가 있다. Because of this, in the embodiment of the present invention can be used to optimize the internal space of the ship (1), there is an effect that the extra space occurs to improve the transport capacity.
여기서 히터(61)는, 제1 내지 제4 증발가스 압축기(51~54)가 적층구조가 아닌 동일한 층 내에 배치되는 경우에 제1 내지 제4 증발가스 압축기(51~54)의 상측에 배치될 수 있다. Here, the heater 61 may be disposed above the first to fourth boil-off gas compressors 51 to 54 when the first to fourth boil-off gas compressors 51 to 54 are arranged in the same layer rather than the stacked structure. Can be.
스키드(101)는, 제1 내지 제4 증발가스 압축기(51~54)를 상갑판으로부터 지지하도록 마련되는 평평한 지지판으로, 카고 컴프레서 룸(100) 내에 마련된다. 여기서 스키드는 지지판과 혼용될 수 있으며, 동일한 의미를 지닌다. The skid 101 is a flat support plate provided to support the first to fourth boil-off gas compressors 51 to 54 from the upper deck and is provided in the cargo compressor room 100. The skid can be used interchangeably with the support plate and has the same meaning.
스키드(101)는, 제1 내지 제4 증발가스 압축기(51~54) 중 스탠바이되지 않는 구동용 증발가스 압축기(일례로 제1 내지 제3 증발가스 압축기; 51~53)를 상갑판으로부터 지지하는 제1 지지판(101a)과 제1 내지 제4 증발가스 압축기(51~54) 중 스탠바이되는 절전용 증발가스 압축기(일례로 제4 증발가스 압축기; 54)를 상갑판으로부터 지지하는 제2 지지판(101b)을 포함할 수 있다. The skid 101 is configured to support a driving boil-off gas compressor (eg, first to third boil-off gas compressors 51 to 53) which are not standby among the first to fourth boil-off gas compressors 51 to 54 from the upper deck. The second support plate 101b for supporting the power saving evaporative gas compressor (for example, the fourth evaporative gas compressor) 54 which is standby among the first support plate 101a and the first to fourth evaporative gas compressors 51 to 54 is provided. It may include.
이때, 제1 지지판(101a)과 제2 지지판(101b)은 도 7 및 도 8에 도시된 바와 같이 좌우로 서로 이격되어 진동차단용 갭(102)을 형성될 수 있다.In this case, the first support plate 101a and the second support plate 101b may be spaced apart from each other from side to side as shown in FIGS. 7 and 8 to form a vibration blocking gap 102.
진동차단용 갭(102)은, 도 7에 도시된 바와 같이 제1 내지 제4 증발가스 압축기(51~54)가 4*1 행렬로 배치되는 경우 제1 내지 제3 증발가스 압축기(51~53)를 지지하는 제1 지지판(101a)과 제4 증발가스 압축기(54)를 지지하는 제2 지지판(101b) 사이에 직선으로 마련됨으로써, 액화가스 저장탱크(10) 내에 발생되는 증발가스 발생량이 기설정 발생량 이하로 떨어져 제4 증발가스 압축기(54)가 스탠바이되는 경우에 제1 내지 제3 증발가스 압축기(51~53)로부터 가동에 의해 발생되는 진동을 차단할 수 있다. As shown in FIG. 7, the vibration blocking gap 102 includes first to third boil-off gas compressors 51 to 53 when the first to fourth boil-off gas compressors 51 to 54 are arranged in a 4 * 1 matrix. ) Is provided in a straight line between the first support plate (101a) for supporting the second support plate 101b and the second support plate (101b) for supporting the fourth boil-off gas compressor (54), the amount of boil-off gas generated in the liquefied gas storage tank 10 When the fourth boil-off gas compressor 54 is standby by falling below the set generation amount, vibration generated by the operation from the first to third boil-off gas compressors 51 to 53 may be blocked.
이로 인해 본 발명의 실시예에서는 스탠바이되는 증발가스 압축기(54)를 진동으로부터 보호할 수 있어 내구성이 향상되는 효과가 있다. Therefore, in the exemplary embodiment of the present invention, the standby evaporative gas compressor 54 may be protected from vibration, thereby improving durability.
또한, 진동차단용 갭(102)은, 도 8에 도시된 바와 같이 제1 내지 제4 증발가스 압축기(51~54)가 2 * 2 행렬로 배치되는 경우 제1 내지 제3 증발가스 압축기(51~53)를 지지하는 제1 지지판(101a)과 제4 증발가스 압축기(54)를 지지하는 제2 지지판(101b) 사이에 'ㄱ' 형태로 마련됨으로써, 액화가스 저장탱크(10) 내에 발생되는 증발가스 발생량이 기설정 발생량 이하로 떨어져 제4 증발가스 압축기(54)가 스탠바이되는 경우에 제1 내지 제3 증발가스 압축기(51~53)로부터 가동에 의해 발생되는 진동을 차단할 수 있다. In addition, the vibration blocking gap 102 is the first to third boil-off gas compressor 51 when the first to fourth boil-off gas compressors 51 to 54 are arranged in a 2 * 2 matrix as shown in FIG. 8. ˜53 is provided between the first support plate 101a and the second support plate 101b for supporting the fourth boil-off gas compressor 54 to form a liquefied gas in the liquefied gas storage tank 10. When the amount of boil-off gas is lowered below a predetermined amount of generation, when the fourth boil-off gas compressor 54 is standby, vibration generated by the operation from the first to third boil-off gas compressors 51 to 53 may be blocked.
이때, 진동차단용 갭(102)은, 진동을 감쇄하는 부재를 포함할 수 있으며, 일례로 공기이거나, 별도로 마련되는 댐퍼일 수 있다. In this case, the vibration blocking gap 102 may include a member for damping vibration, and may be, for example, air or a damper provided separately.
또한, 스키드(101)는, 제1 및 제2 증발가스 압축기(51,52)를 상갑판으로부터 상측으로 일정간격 이격시켜 지지하는 상부 스키드(101u)와 제3 및 제4 증발가스 압축기(53,54)를 상갑판으로부터 지지하는 하부 스키드(101l)를 포함할 수 있다. In addition, the skid 101 includes an upper skid 101u and a third and fourth boil-off gas compressors 53 and 54 which support the first and second boil-off gas compressors 51 and 52 at a predetermined interval from the upper deck. ) May include a lower skid 101l supporting the upper deck.
이때, 상부 스키드(101u)와 하부 스키드(101l)는 도 9 및 도 10에 도시된 바와 같이 상하로 서로 이격되어 배치될 수 있으며, 상부 스키드(101u)는 이격부재(103)에 의해 상갑판으로부터 상측으로 일정간격 이격될 수 있다. In this case, the upper skid 101u and the lower skid 101l may be disposed to be spaced apart from each other up and down as shown in FIGS. 9 and 10, and the upper skid 101u is upper side from the upper deck by the spacer 103. It can be spaced apart by a certain interval.
여기서, 히터(61)는, 상부 스키드(101u)에 제1 증발가스 압축기(51)와 함께 마련될 수 있고, 이 경우 제2 증발가스 압축기(52)는 제3 및 제4 증발가스 압축기(53,54)와 함께 하부 스키드(101l)에 마련될 수 있다. Here, the heater 61 may be provided in the upper skid 101u together with the first boil-off gas compressor 51, in which case the second boil-off gas compressor 52 is the third and fourth boil-off gas compressors 53. And 54 may be provided on the lower skid 101l.
이격부재(103)는, 상부 스키드(101u)를 상갑판으로부터 상측으로 일정간격 이격되도록 하며, 상갑판과 상부 스키드(101u)를 연결하거나, 하부 스키드(101l)와 상부 스키드(101u)를 연결할 수 있다. The spacer member 103 allows the upper skid 101u to be spaced apart from the upper deck by a predetermined interval, and connects the upper deck and the upper skid 101u, or connects the lower skid 101l and the upper skid 101u.
이격부재(103)가 하부 스키드(101l)와 상부 스키드(101u)를 연결하는 경우에는, 상부 스키드(101u)에 연결되는 이격부재(103)의 위치와 수직으로 대응하는 상갑판 부분에 하부 스키드(101l)가 마련되지 않게 배치하여 이격부재(103)과 상갑판과 수직으로 연결되도록 할 수 있다. When the spacer 103 connects the lower skid 101l and the upper skid 101u, the lower skid 101l is disposed on the upper deck portion perpendicular to the position of the spacer 103 connected to the upper skid 101u. ) May be arranged not to be provided so as to be vertically connected to the spacer 103 and the upper deck.
또한, 이격부재(103)가 하부 스키드(101l)와 상부 스키드(101u)를 연결하는 경우에 상부 스키드(101u)와 하부 스키드(101l)가 동일한 면적과 형태를 가지는 경우에 이격부재(103)는 상갑판과 사선의 형태로 연결될 수 있다. In addition, when the spacer 103 connects the lower skid 101l and the upper skid 101u, the spacer 103 is formed when the upper skid 101u and the lower skid 101l have the same area and shape. It can be connected in the form of upper deck and oblique line.
여기서, 이격부재(103)는, 진동감쇄부(도시하지 않음)를 포함할 수 있다. 진동감쇄부는 유압식 감쇄 장치이거나 탄성력을 가진 재질로 형성된 탄성체일 수 있다. Here, the spacer 103 may include a vibration damping unit (not shown). The vibration damping unit may be a hydraulic damping device or an elastic body formed of a material having an elastic force.
모터룸(200)은, 선체(H)의 상갑판 상에 마련되는 별도로 격리된 공간으로 제1 내지 제4 증발가스 압축기(51~54) 등을 구동하기 위한 모터(도시하지 않음)를 수용할 수 있으며, 카고 컴프레서 룸(100)에 인접하게 마련된다. 일례로 모터룸(200)은, 카고 컴프레서 룸(100)의 후방에 배치될 수 있다. The motor room 200 may accommodate a motor (not shown) for driving the first to fourth boil-off gas compressors 51 to 54 and the like in a separate isolated space provided on the upper deck of the hull H. It is provided adjacent to the cargo compressor room (100). For example, the motor room 200 may be disposed at the rear of the cargo compressor room 100.
모터룸(200)은, 안전구역(Safety Zone)으로 위험구역(Hazard Zone)인 카고 컴프레서 룸(100)과 격리되어야 한다. 이로 인해 본 발명의 실시예에서는, 카고 컴프레서 룸(100)과 모터룸(200) 사이에 격리벽(도시하지 않음)이 설치되어 모터의 작동으로 인한 스파크 등이 카고 컴프레서 룸(100)에서 발생되지 않도록 함으로써, 선박(1)의 안정성을 확보하고 있다. The motor room 200 should be isolated from the cargo compressor room 100 which is a hazard zone as a safety zone. For this reason, in the embodiment of the present invention, an isolation wall (not shown) is installed between the cargo compressor room 100 and the motor room 200 so that sparks or the like caused by the operation of the motor are not generated in the cargo compressor room 100. By doing so, the stability of the ship 1 is ensured.
엔진 케이싱(300)은, 선체(H)의 상갑판 상에 마련되며, 제1 수요처(71) 및 제2 수요처(72)가 마련되는 엔진룸(부호 도시하지 않음)의 적어도 일부와 연돌(부호 도시하지 않음) 및 벤트마스트(도시하지 않음)를 포함할 수 있다. The engine casing 300 is provided on the upper deck of the hull H, and at least a part of the engine room (not shown) provided with the first demand destination 71 and the second demand destination 72 and a stack (symbol illustrated). And ventmasts (not shown).
엔진 케이싱(300)은, 제1 수요처(71) 및 제2 수요처(72)에서 배출되는 배기가스를 연돌을 통해 배출시키고 선체(H) 내부 또는 선실(도시하지 않음)에서 배출되는 공기를 벤트마스트를 통해 외부로 배출시킬 수 있다. The engine casing 300 discharges the exhaust gas discharged from the first demand destination 71 and the second demand destination 72 through the stack and vents the air discharged from the hull H or from the cabin (not shown). Can be discharged to the outside.
이와 같이 본 발명의 실시예에서는, 가스 처리 시스템(2)이 선체(H) 내부 공간을 최적화하도록 배치됨으로써 선체(H) 내부 공간 활용성이 향상되는 효과가 있다. As described above, in the embodiment of the present invention, the gas treatment system 2 is arranged to optimize the space inside the hull H, so that the utilization of the space inside the hull H is improved.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당해 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함은 명백하다고 할 것이다.Although the present invention has been described in detail through specific examples, it is intended to describe the present invention in detail, and the present invention is not limited thereto, and should be understood by those skilled in the art within the technical spirit of the present invention. It is obvious that the modifications and improvements are possible.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다. All simple modifications and variations of the present invention fall within the scope of the present invention, and the specific scope of protection of the present invention will be apparent from the appended claims.

Claims (13)

  1. 액화가스 저장탱크에서 발생된 증발가스를 가압하여 수요처로 공급하며, 복수 개 마련되어 서로 병렬로 구축되는 증발가스 압축기; 및An evaporative gas compressor configured to pressurize and supply the evaporated gas generated in the liquefied gas storage tank to a demand destination, and be provided in plural to be parallel to each other; And
    상기 액화가스 저장탱크에서 발생되는 증발가스 발생량에 따라 상기 증발가스 압축기를 제어하는 제어부를 포함하고,A control unit for controlling the boil-off gas compressor according to the amount of boil-off gas generated in the liquefied gas storage tank,
    상기 제어부는, The control unit,
    상기 증발가스 발생량에 따라, 상기 증발가스 압축기 중 적어도 하나를 증발가스의 압축을 구현하지 않는 스탠바이 상태로 제어하는 것을 특징으로 하는 가스 처리 시스템.According to the amount of boil-off gas, the gas treatment system, characterized in that for controlling at least one of the boil-off gas compressor to a standby state that does not implement the compression of the boil-off gas.
  2. 제 1 항에 있어서, 상기 증발가스 압축기는, The method of claim 1, wherein the boil-off gas compressor,
    4단 또는 5단의 피스톤이 직렬연결되는 구성 압축기가 구비되되, 상기 구성 압축기가 4 개가 마련되어 서로 병렬 연결되는 것을 특징으로 하는 가스 처리 시스템.Comprising a four-stage or five-stage piston is provided with a constituent compressor in series connection, characterized in that the four constituent compressors are provided in parallel connected to each other.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 액화가스 저장탱크 내에 발생되는 증발가스 발생량을 측정하는 증발가스 발생량 측정센서를 더 포함하고, Further comprising a boil-off gas generation amount measuring sensor for measuring the amount of boil-off gas generated in the liquefied gas storage tank,
    상기 제어부는, The control unit,
    상기 증발가스 발생량 측정센서로부터 측정되는 상기 증발가스 발생량을 전달받아, 상기 증발가스 압축기의 구동을 제어하는 것을 특징으로 하는 가스 처리 시스템.Receiving the boil-off gas generation amount measured from the boil-off gas generation amount measuring sensor, characterized in that for controlling the operation of the boil-off gas compressor.
  4. 제 3 항에 있어서, 상기 제어부는, The method of claim 3, wherein the control unit,
    상기 증발가스 발생량 측정센서로부터 전달받은 상기 증발가스 발생량이 기설정 발생량 이하인 경우, 상기 증발가스 압축기 중 어느 하나를 상기 스탠바이 상태로 제어하고, 병렬 연결된 상기 증발가스 압축기 나머지의 부하를 증가시키도록 제어하는 것을 특징으로 하는 가스 처리 시스템. When the boil-off gas generation amount received from the boil-off gas generation sensor is less than a preset generation amount, controlling any one of the boil-off gas compressor to the standby state, and to increase the load of the rest of the boil-off gas compressor connected in parallel Gas treatment system, characterized in that.
  5. 제 1 항에 있어서, The method of claim 1,
    상기 액화가스 저장탱크에서 공급되는 증발가스와 상기 증발가스 압축기에서 압축된 증발가스를 열교환하는 증발가스 열교환기; 및An evaporative gas heat exchanger for exchanging the evaporated gas supplied from the liquefied gas storage tank and the evaporated gas compressed by the evaporative gas compressor; And
    상기 증발가스 열교환기를 바이패스하는 바이패스 라인을 더 포함하고,Further comprising a bypass line for bypassing the boil-off gas heat exchanger,
    상기 제어부는, The control unit,
    상기 증발가스 발생량이 기설정 발생량 이하인 경우, 상기 액화가스 저장탱크에서 공급되는 증발가스가 상기 바이패스 라인을 통해 상기 증발가스 열교환기를 바이패스하여 상기 증발가스 압축기로 공급되도록 제어하되, When the amount of generated boil-off gas is less than or equal to a preset generation amount, it is controlled so that the boil-off gas supplied from the liquefied gas storage tank is supplied to the boil-off gas compressor by bypassing the boil-off gas heat exchanger through the bypass line.
    상기 증발가스 발생량이 기설정 발생량 초과인 경우, 상기 액화가스 저장탱크에서 공급되는 증발가스가 상기 증발가스 열교환기를 통해 상기 증발가스 압축기에서 압축된 증발가스를 부분 재액화시키는 것을 특징으로 하는 가스 처리 시스템.And when the amount of generated boil-off gas exceeds a preset amount, the boil-off gas supplied from the liquefied gas storage tank partially reliquefies the boil-off gas compressed in the boil-off gas compressor through the boil-off gas heat exchanger.
  6. 제 4 항 또는 제 5 항에 있어서, 상기 기설정 발생량은, The method according to claim 4 or 5, wherein the predetermined generation amount,
    상기 증발가스 압축기의 비효율지점에서 상기 증발가스 압축기로 유입되는 증발가스량이며, The amount of boil-off gas flowing into the boil-off gas compressor at the inefficiency point of the boil-off gas compressor,
    상기 증발가스 압축기의 비효율지점은, Inefficiency point of the boil-off gas compressor,
    상기 증발가스 압축기의 유량 대비 소비전력량의 비율에서, 상기 증발가스 압축기로 공급되는 유량이 감소하더라도 소비전력이 줄어들지 않는 지점인 것을 특징으로 하는 가스 처리 시스템.Gas consumption system, characterized in that the power consumption in the ratio of the flow rate of the boil-off gas compressor, the power consumption is not reduced even if the flow rate supplied to the boil-off gas compressor.
  7. 제 6 항에 있어서, 상기 증발가스 압축기의 비효율지점에서의 부하량은, The method of claim 6, wherein the load at the point of inefficiency of the boil-off gas compressor,
    상기 증발가스 압축기가 최대부하를 가지는 유량의 20 내지 40%의 유량인 것을 특징으로 하는 가스 처리 시스템.And a flow rate of 20 to 40% of the flow rate at which the boil-off compressor has a maximum load.
  8. 제 1 항에 있어서, The method of claim 1,
    상기 증발가스 열교환기로부터 공급되는 열교환된 증발가스를 감압하는 증발가스 감압기; 및An evaporating gas decompressor for decompressing the heat exchanged evaporating gas supplied from the evaporating gas heat exchanger; And
    상기 증발가스 감압기로부터 감압된 증발가스를 공급받아 액상과 기상으로 분리하는 기액분리기를 더 포함하는 것을 특징으로 하는 가스 처리 시스템.And a gas-liquid separator which receives the reduced-pressure evaporated gas from the boil-off gas reducer and separates the liquid-liquid and the gaseous phase.
  9. 제 8 항에 있어서, 상기 수요처는, The method of claim 8, wherein the demand source,
    150 내지 350바(bar)의 고압 증발가스를 소비하는 고압 수요처; 및High-pressure demand destinations consuming 150-350 bar high-pressure evaporative gas; And
    4 내지 8바(bar)의 저압 증발가스를 소비하는 저압 수요처를 포함하는 것을 특징으로 하는 가스 처리 시스템. And a low pressure demand source consuming 4 to 8 bar low pressure boil off gas.
  10. 제 9 항에 있어서, The method of claim 9,
    상기 액화가스 저장탱크와 상기 고압 수요처를 연결하며, 상기 증발가스 압축기를 구비하는 증발가스 공급라인;An evaporative gas supply line connecting the liquefied gas storage tank and the high pressure demand destination and having the evaporative gas compressor;
    상기 증발가스 공급라인 상의 상기 증발가스 압축기 중간 단에서 분기되어 상기 저압 수요처를 연결하는 증발가스 분기라인;An evaporating gas branching line branched from an intermediate stage of the evaporating gas compressor on the evaporating gas supply line to connect the low pressure demand destination;
    상기 증발가스 공급라인의 상기 증발가스 압축기 후단에서 분기되어 상기 증발가스 열교환기를 연결하는 증발가스 제1 리턴라인;A boil-off gas first return line branched after the boil-off gas compressor of the boil-off gas supply line to connect the boil-off gas heat exchanger;
    상기 증발가스 열교환기와 상기 기액분리기를 연결하며, 상기 증발가스 감압기를 구비하는 증발가스 제2 리턴라인;A second boil-off gas connecting the boil-off gas heat exchanger and the gas-liquid separator, and including the boil-off gas reducer;
    상기 기액분리기와 상기 증발가스 공급라인 상의 상기 증발가스 열교환기 상류를 연결하는 플래시가스 공급라인; 및A flash gas supply line connecting upstream of the gas-liquid separator and the boil-off gas heat exchanger on the boil-off gas supply line; And
    상기 기액분리기와 상기 액화가스 저장탱크를 연결하는 재액화가스 리턴라인을 더 포함하는 것을 특징으로 하는 가스 처리 시스템.And a liquefied gas return line connecting the gas-liquid separator and the liquefied gas storage tank.
  11. 제 3 항에 있어서, 상기 증발가스 발생량 측정센서는, The method of claim 3, wherein the evaporation gas generation amount measuring sensor,
    상기 액화가스 저장탱크의 내압을 통해 상기 증발가스 발생량을 산출하는 것을 특징으로 하는 가스 처리 시스템.Gas generation system, characterized in that for calculating the amount of boil-off gas through the internal pressure of the liquefied gas storage tank.
  12. 제 1 항에 있어서, 상기 증발가스 압축기는, The method of claim 1, wherein the boil-off gas compressor,
    표준 고압 압축기(Standard High Pressure Compressor)인 것을 특징으로 하는 가스 재기화 시스템.Gas regasification system, characterized in that the Standard High Pressure Compressor.
  13. 제 1 항 내지 제 12 항 중 어느 한 항에서의 상기 가스 처리 시스템을 포함하는 것을 특징으로 하는 선박.13. A ship comprising the gas treatment system according to any one of the preceding claims.
PCT/KR2017/005643 2016-06-03 2017-05-30 Gas treatment system and ship including same WO2017209492A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160069736 2016-06-03
KR10-2016-0069736 2016-06-03
KR10-2016-0179559 2016-12-26
KR1020160179559A KR101913015B1 (en) 2016-06-03 2016-12-26 Gas Treatment System and Vessel having same

Publications (1)

Publication Number Publication Date
WO2017209492A1 true WO2017209492A1 (en) 2017-12-07

Family

ID=60478645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005643 WO2017209492A1 (en) 2016-06-03 2017-05-30 Gas treatment system and ship including same

Country Status (1)

Country Link
WO (1) WO2017209492A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210071815A1 (en) * 2018-01-08 2021-03-11 Cryostar Sas Method for providing pressurized gas to consumers and corresponding compressor arrangement at variable suction conditions
CN113653629A (en) * 2021-01-06 2021-11-16 株式会社神户制钢所 Compressor unit and compressor unit control program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110118988A (en) * 2010-04-26 2011-11-02 대우조선해양 주식회사 Apparatus and method for treating boil-off gas to reduce reliquefaction power consumption
KR20130014169A (en) * 2011-07-29 2013-02-07 대우조선해양 주식회사 Reliquefaction apparatus of liquified gas fuel using fuel lng and liquefied gas carrier having the same
JP2014234927A (en) * 2013-05-30 2014-12-15 ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド Liquefied gas treatment system
KR20150088778A (en) * 2012-12-11 2015-08-03 대우조선해양 주식회사 System for treating boil-off gas of a marine structure
KR20160044099A (en) * 2014-10-14 2016-04-25 현대중공업 주식회사 A Treatment System Of Liquefied Gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110118988A (en) * 2010-04-26 2011-11-02 대우조선해양 주식회사 Apparatus and method for treating boil-off gas to reduce reliquefaction power consumption
KR20130014169A (en) * 2011-07-29 2013-02-07 대우조선해양 주식회사 Reliquefaction apparatus of liquified gas fuel using fuel lng and liquefied gas carrier having the same
KR20150088778A (en) * 2012-12-11 2015-08-03 대우조선해양 주식회사 System for treating boil-off gas of a marine structure
JP2014234927A (en) * 2013-05-30 2014-12-15 ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド Liquefied gas treatment system
KR20160044099A (en) * 2014-10-14 2016-04-25 현대중공업 주식회사 A Treatment System Of Liquefied Gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210071815A1 (en) * 2018-01-08 2021-03-11 Cryostar Sas Method for providing pressurized gas to consumers and corresponding compressor arrangement at variable suction conditions
US11703187B2 (en) * 2018-01-08 2023-07-18 Cryostar Sas Method for providing pressurized gas to consumers and corresponding compressor arrangement at variable suction conditions
CN113653629A (en) * 2021-01-06 2021-11-16 株式会社神户制钢所 Compressor unit and compressor unit control program
GR1010277B (en) * 2021-01-06 2022-08-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Compressor unit and control unit thereof
GR20210100621A (en) * 2021-01-06 2022-08-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Compressor unit and control unit thereof

Similar Documents

Publication Publication Date Title
WO2014209029A1 (en) System and method for treating boil-off gas in ship
WO2014065618A1 (en) System for processing liquefied gas in ship
WO2014092368A1 (en) Liquefied gas processing system for ship
WO2015130122A1 (en) Boil-off gas treatment system
KR102315219B1 (en) Gas Treatment System and Vessel having the same
WO2018139753A1 (en) System and method for supplying fuel in liquefied natural gas fueled ship
WO2012128447A1 (en) System for supplying fuel to high-pressure natural gas injection engine having excess evaporation gas consumption means
WO2012128448A1 (en) Method and system for supplying fuel to high-pressure natural gas injection engine
WO2017078245A1 (en) Gas treatment system and vessel containing same
WO2012124884A1 (en) Method for supplying fuel for high-pressure natural gas injection engine
WO2012124886A1 (en) System for supplying fuel to marine structure having re-liquefying device and high-pressure natural gas injection engine
WO2019194670A1 (en) Gas treatment system and ship including same
WO2016126037A1 (en) Apparatus and method for treating boil-off gas of vessel
WO2017171166A1 (en) Boil-off gas re-liquefying device and method for ship
WO2016126025A1 (en) Fuel gas supply system for ship
WO2016195232A1 (en) Ship
WO2018230950A1 (en) Re-liquefaction system of evaporative gas and ship
WO2017209492A1 (en) Gas treatment system and ship including same
WO2016195233A1 (en) Ship
WO2017135804A1 (en) Ship including gas re-vaporizing system
WO2016200170A1 (en) Vessel comprising gas treatment system
WO2018124815A1 (en) Fuel gas supply system
KR102241817B1 (en) Gas Treatment System and Vessel having the same
WO2016195231A1 (en) Ship
WO2016195229A1 (en) Ship

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/03/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17806985

Country of ref document: EP

Kind code of ref document: A1