WO2020158087A1 - Regenerative braking system and electrically driven vehicle - Google Patents

Regenerative braking system and electrically driven vehicle Download PDF

Info

Publication number
WO2020158087A1
WO2020158087A1 PCT/JP2019/043321 JP2019043321W WO2020158087A1 WO 2020158087 A1 WO2020158087 A1 WO 2020158087A1 JP 2019043321 W JP2019043321 W JP 2019043321W WO 2020158087 A1 WO2020158087 A1 WO 2020158087A1
Authority
WO
WIPO (PCT)
Prior art keywords
regenerative
drive wheel
rotation speed
maximum value
electric motor
Prior art date
Application number
PCT/JP2019/043321
Other languages
French (fr)
Japanese (ja)
Inventor
格 東又
祥一 東海林
Original Assignee
株式会社日立インダストリアルプロダクツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立インダストリアルプロダクツ filed Critical 株式会社日立インダストリアルプロダクツ
Publication of WO2020158087A1 publication Critical patent/WO2020158087A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a regenerative braking system and an electric drive vehicle.
  • Patent Document 1 a friction brake device, a regenerative braking device, a required braking force calculation unit, and a vehicle motion that distributes the required braking force to the other left or right non-regenerative braking side of the left and right front wheels and the left and right rear wheels.
  • a brake control device that includes a braking force control unit that calculates power in a range that does not exceed the smaller one of the maximum braking forces of the left and right wheels on the regenerative braking side (see summary).
  • Patent Document 2 includes an engine that operates by burning fuel and a motor that operates by electric energy, and at least a pair of left and right wheels are linked to both an engine drive system and a motor drive system.
  • the engine is driven, if the wheel slips excessively, the motor connected to the wheel is regenerated and braked to eliminate the wheel slip.
  • a hybrid vehicle is described that is provided so that it can be charged and driven and that wheels that are linked to an engine drive system can be shut off from the engine (see the summary).
  • the brake control device described in Patent Document 1 calculates the regenerative braking force generated on the left and right wheels on the regenerative braking side within a range that does not exceed the smaller one of the maximum braking forces on the left and right wheels on the regenerative braking side. It is a thing.
  • the hybrid vehicle described in Patent Document 2 regenerates a motor connected to a wheel to apply a brake when the wheel is slipping excessively when the engine is driven.
  • the brake control device described in Patent Document 1 and the hybrid vehicle described in Patent Document 2 are, in an electrically driven vehicle having drive wheels that are individually driven on the left and right sides, drive wheels that are driven separately on the left and right sides. It does not control the braking force of the regenerative brake when the rotational speeds or the rotational speeds of the wheels are different.
  • the present invention can control the braking force of the regenerative brake to stabilize the posture even when the left and right driving wheels of the left and right driving wheels have different rotational speeds or rotational speeds.
  • a system and an electrically driven vehicle are provided.
  • the regenerative braking system of the present invention is installed in an electrically driven vehicle having drive wheels that are driven separately on the left and right sides, and the drive wheels are regenerative to determine whether they are in a power running mode or a regenerative mode.
  • a power consumption controller for calculating.
  • the electric drive vehicle of the present invention includes an engine that operates by burning fuel, a generator that converts mechanical energy generated by the engine into electric energy, and generates electric energy, and an electric energy generated by the generator.
  • a power converter for conversion a right electric motor driven by electric energy output by the power converter, a left electric motor driven by electric energy output by the power converter, a right drive wheel connected to the right electric motor, and a left side It has a left drive wheel connected to the electric motor, a right driven wheel, and a left driven wheel, and the regenerative brake is based on the rotational speed or the rotational speed of the right drive wheel and the maximum value of the rotational speed or the rotational speed of the left drive wheel. Is calculated.
  • the regenerative brake that can control the braking force of the regenerative brake and stabilize the posture even when the rotational speed or the rotational speed of the left and right drive wheels of the drive wheels that are individually driven on the left and right differ.
  • a system and an electrically driven vehicle can be provided.
  • FIG. 1 is a partial schematic conceptual diagram showing a schematic configuration of an electrically driven vehicle described in this embodiment.
  • the electric drive vehicle described in this embodiment is an automobile such as a bus or a truck or a railroad vehicle, and is a vehicle equipped with an electric drive device (electric transmission) and a regenerative braking (regenerative braking) system.
  • the electric drive vehicle described in the present embodiment converts an internal combustion engine (hereinafter, referred to as “engine”) 1 that operates by burning fuel and mechanical energy generated by the engine 1 into electric energy to generate electric energy.
  • Generator 2 for generating electricity and electric energy (AC) generated by the generator 2 are input, AC is converted to DC, rectified, DC is converted to AC, and electric power is output to output electric energy (AC).
  • the right drive wheel 4a and the left drive wheel 4b are individually driven on the left and right sides. That is, the right drive motor 4a is connected to the right drive wheel 4a, and the left drive motor 6b is connected to the left drive wheel 4b, and the left drive motor 4b and the left drive motor 4b are driven individually.
  • the right-side electric motor 6a and the left-side electric motor 6b are AC electric motors (AC motors), and have two modes of power running and regeneration.
  • regeneration power generation
  • regenerative braking means that an electric motor (motor) that outputs electric energy as kinetic energy during power running (power running mode) is operated as a generator (generator) during regenerative operation to convert kinetic energy into electric energy. By consuming this electric energy, it is used for braking (braking), and the braking force of the regenerative brake (regenerative braking force) can be acquired.
  • the braking force of the regenerative brake is a force for decelerating and stopping the vehicle, and is defined by the product of the speed of the decelerating vehicle and the mass of the decelerating vehicle. In the present embodiment, when the vehicle shifts from power running to regeneration, the mass of the decelerating vehicle remains constant.
  • the right electric motor 6a and the left electric motor 6b shift from the power running mode to the regenerative mode, and convert the kinetic energy of the right drive wheel 4a and the left drive wheel 4b into electric energy.
  • the power conversion device 3 is connected to the right side electric motor 6a and the left side electric motor 6b by a power line through which electric power flows (thick solid line in the figure) and a signal line (not shown) through which signals are transferred.
  • thin solid lines are signal lines to which signals are transferred.
  • the electric drive vehicle described in the present embodiment includes a right-side detector 5a that detects the rotational speed or the number of revolutions of the right-side drive wheel 4a (hereinafter referred to as "rotational speed etc.") and a left-side drive wheel 4b. And a left-side detector 5b that detects a rotation speed and the like.
  • the right detector 5a is installed coaxially with the right drive wheel 4a and the right electric motor 6a
  • the left detector 5b is installed coaxially with the left drive wheel 4b and the left electric motor 6b.
  • the electric drive vehicle described in the present embodiment has the power processing unit 7 that consumes (processes) the electric energy generated by the right electric motor 6a and the left electric motor 6b during regeneration.
  • the power processing unit 7 is, for example, a resistor or a storage battery.
  • the electric drive vehicle described in the present embodiment has the electric drive device including the engine 1, the generator 2, the power conversion device 3, the right side electric motor 6a and the left side electric motor 6b, and the regenerative brake. It has a system.
  • the regenerative braking system described in the present embodiment has a regenerative operation determiner 8, a maximum value determiner 9, and a power consumption controller 10.
  • This regenerative braking system is used especially in an electrically driven vehicle in which the left and right drive wheels are individually driven, requires a large regenerative braking force, and needs to obtain a desired regenerative braking force. Suitable for vehicles.
  • the regenerative operation determiner 8 inputs the operation mode signal A from the right electric motor 6a and the left electric motor 6b.
  • the operation mode signal A is a signal indicating the operation state of the right electric motor 6a and the left electric motor 6b.
  • the regenerative operation determiner 8 determines the power running mode or the regenerative mode from the operation mode signal A which is a signal indicating the operating state of the right electric motor 6a and the left electric motor 6b.
  • the operating states of the right electric motor 6a and the left electric motor 6b include the rotational speeds of the right drive wheel 4a and the left drive wheel 4b, and the torque command to the right drive wheel 4a and the left drive wheel 4b (the brake pedal of the electrically driven vehicle (minus: -) or the operation command from the accelerator pedal (plus: +)).
  • the operating states of the right-side electric motor 6a and the left-side electric motor 6b are as follows: (1) rotational speed (plus:+) and torque command (plus:+) are in power running mode, and (2) rotational speed (plus:+) and torque command ( Minus:-) is regeneration mode, (3) Rotational speed (minus:-) and torque command (plus:+) is regeneration mode, (4) Rotational speed (minus:-) and torque command (minus:-) is power running. It is classified into four modes.
  • the regenerative operation determiner 8 determines the regenerative mode, the result of the determination is output to the power conversion device 3, and the power conversion device 3 operates in the regenerative mode.
  • the maximum value determiner 9 inputs a signal B such as the rotation speed from the right side detector 5a and the left side detector 5b.
  • This rotation speed etc. signal B is a signal of the rotation speed etc. of the right drive wheel 4a and the left drive wheel 4b.
  • the maximum value determiner 9 determines which of the right drive wheel 4a and the left drive wheel 4b has a higher rotation speed or the like (the maximum value of the rotation speed or the like). Then, the maximum value determiner 9 outputs the maximum value (signal) such as the rotation speed to the power consumption controller 10.
  • the power consumption controller 10 calculates the electric energy (electric energy) consumed by the power processing unit 7 based on the maximum value such as the input rotation speed.
  • this electric energy has a relationship with the rotation speed or the like set in advance by, for example, a table or a function. That is, the relationship between the rotational speed and the like and the braking force (electrical energy) of the regenerative brake, for example, a table and a function are stored in the database, and the braking force of the regenerative brake for a predetermined rotational speed and the like is determined.
  • the power conversion device 3 outputs the power generation amount control signal C of the generator 2 to the power consumption controller 10 by operating in the regenerative mode.
  • the power generation amount control signal C of the power generator 2 is a signal indicating the electric energy (power generation amount) output by the power generator 2.
  • the power consumption controller 10 calculates the power consumption control signal D based on the power generation control signal C of the generator 2 and the maximum value such as the rotation speed.
  • This power consumption amount control signal D is a signal indicating the electric energy (power amount) finally consumed by the power processing unit 7.
  • the difference between the maximum value of the electric energy generated by the right electric motor 6a or the electric energy generated by the left electric motor 6b and the electric energy output by the generator 2 is consumed by the electric power processing unit 7,
  • the magnitude of the electric energy (electric energy) consumed in the power processing unit 7 becomes the magnitude of the braking force of the regenerative brake.
  • the power consumption controller 10 finally outputs this power consumption amount control signal D to the power processing unit 7, and the power processing unit 7 based on this power consumption amount control signal D outputs electric energy (power amount). ) Is consumed.
  • the power consumption controller 10 determines the maximum of the electric energy output from the generator 2 (power generation amount control signal C of the generator 2: power generation amount) and the rotation speed. The electric energy (electric energy) calculated based on the value is compared.
  • the electric energy (electric power amount) calculated based on the maximum value of the rotation speed or the like is the electric energy output from the generator 2 (power generation amount control signal C of the generator 2: power generation amount). ) Set to a larger (higher) value.
  • the power consumption control signal D thus set is finally output to the power processing unit 7, and the power processing unit 7 consumes electric energy (power amount) based on the power consumption control signal D. ..
  • the electric energy (power generation amount) output by the generator 2 is determined based on the operation command from the brake pedal or the accelerator pedal of the electrically driven vehicle, and the electric energy based on one operation command is determined. Is unchanged and constant.
  • the electric energy generated by the right electric motor 6a and the left electric motor 6b is supplied to the power conversion device 3 via the power line, and further supplied to the power processing unit 7 and consumed.
  • the electric energy generated by the right electric motor 6a and the left electric motor 6b is consumed, and the braking force of the regenerative brake is acquired.
  • the maximum value of the electric energy generated by the right electric motor 6a and the maximum value of the electric energy generated by the left electric motor 6b is used, and further set to a value larger than the electric energy output by the generator 2 to ensure the , It is possible to acquire the braking force of the regenerative brake.
  • the braking force of the regenerative brake is determined by the speed at which the electrically driven vehicle decelerates, that is, the electric energy generated by the right electric motor 6a and the left electric motor 6b (the maximum value of the rotation speed or the like). .. Then, the electric energy (electric energy) generated by the right electric motor 6 a and the left electric motor 6 b is supplied to the electric power processing unit 7 via the electric power conversion device 3.
  • the power processing unit 7 consumes electric energy (power amount) based on the power consumption amount control signal D calculated by the power consumption controller 10.
  • the drive wheels are driven individually on the left and right sides, and the braking force of the regenerative brake is not calculated from the average value of the rotational speeds of the left and right drive wheels. It is calculated from the maximum value such as the rotational speed of the left and right drive wheels. Further, the braking force of the regenerative brake is set in advance based on the rotational speed of the drive wheels, etc., and the required braking force increases as the vehicle speed increases.
  • the rotational speeds of the left and right driving wheels may differ.
  • the desired braking force of the regenerative brake may not be obtained for the drive wheel that rotates faster than the average value of the rotation speed and the like, since it may differ from the rotation speed and the like.
  • the braking force of the regenerative brake is calculated based on the average value of the rotation speed and the like, it becomes impossible to consume all the electric energy generated in the electric motor 6a or the electric motor 6b on either side.
  • the drive wheels that cannot consume all the electric energy may not be able to acquire sufficient braking force of the regenerative brake, and the posture of the vehicle may become unstable.
  • the braking force of the regenerative brake is calculated based on the maximum value of the rotational speeds of the left and right driving wheels, so that the desired braking force of the regenerative brake can be reliably obtained. Even when the left and right drive wheels of the left and right drive wheels have different rotational speeds or rotational speeds, the braking force of the regenerative brake can be controlled to stabilize the posture of the vehicle.
  • FIG. 2 is a flowchart showing a processing flow in the regenerative braking system described in this embodiment.
  • the right electric motor 6a and the left electric motor 6b judge the power running mode or the regenerative mode. That is, it is determined whether the electric motor is in the regenerative operation (101). It should be noted that this determination is performed based on an operation command from the brake pedal or the accelerator pedal of the electrically driven vehicle.
  • the maximum value determiner 9 determines the rotation speed of each drive wheel (the right drive wheel 4a and the left drive wheel 4b), etc. (the rotation speed of the right drive wheel, Va, etc.).
  • the rotational speed Vb) of the left drive wheel is input (102).
  • the maximum value determiner 9 determines the maximum value Vmax of Va and Vb (103).
  • the power consumption controller 10 inputs Vmax (104).
  • the power consumption controller 10 calculates electric energy (power consumption) consumed by the power processing unit 7 based on the input Vmax (105).
  • the relationship of the electric energy with respect to the rotation speed and the like is set in advance by, for example, a table or a function, and the braking force of the regenerative brake with respect to the predetermined rotation speed and the like is determined.
  • the regenerative braking system described in the present embodiment calculates the braking force of the regenerative brake based on the maximum value of the rotational speeds of the left and right driving wheels, so that the braking force of the desired regenerative brake is surely obtained. Can be obtained. Even when the left and right drive wheels of the left and right drive wheels have different rotational speeds or rotational speeds, the braking force of the regenerative brake can be controlled to stabilize the posture of the vehicle.
  • the present invention is not limited to the above-described embodiments, but includes various modifications.
  • the above-described embodiments are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with a part of the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Abstract

The present invention provides a regenerative braking system in which the braking force of regenerative braking can be controlled and orientation can be stabilized even when individually driven left and right drive wheels have different rotational speeds or rotational frequencies. This regenerative braking system is installed in an electrically driven vehicle having individually driven left and right drive wheels, and is characterized by comprising: a regenerative action determining device that determines whether the drive wheels are in a powered travel mode or a regenerative mode; a maximum value determining device that inputs the rotational speed or the rotational frequency of the right drive wheel and the rotational speed or rotational frequency of the left drive wheel and determines a maximum value; and a power consumption control device that inputs the maximum value and calculates consumed electrical energy.

Description

回生ブレーキシステム及び電気駆動車両Regenerative braking system and electric drive vehicle
 本発明は、回生ブレーキシステム及び電気駆動車両に関する。 The present invention relates to a regenerative braking system and an electric drive vehicle.
 本技術分野の背景技術として、特開2014-184822号公報(特許文献1)がある。この特許文献1には、摩擦ブレーキ装置と、回生ブレーキ装置と、要求制動力演算部と、要求制動力を左右前輪および左右後輪のいずれか他方の非回生制動側左右輪に配分する車両運動制御部と、各車輪の最大制動力を演算する最大制動力演算部と、要求制動力および非回生制動側左右輪への制動力の配分に基づいて、回生制動側左右輪に発生させる回生制動力を、回生制動側左右輪のそれぞれの最大制動力のうちの小さい方の値を超えない範囲で演算する制動力制御部と、を備えるブレーキ制御装置が記載されている(要約参照)。 As background art in this technical field, there is JP-A-2014-184822 (Patent Document 1). In this patent document 1, a friction brake device, a regenerative braking device, a required braking force calculation unit, and a vehicle motion that distributes the required braking force to the other left or right non-regenerative braking side of the left and right front wheels and the left and right rear wheels. The control unit, the maximum braking force calculation unit that calculates the maximum braking force of each wheel, and the regenerative braking generated on the left and right wheels on the regenerative braking side based on the required braking force and the distribution of the braking force to the left and right wheels on the non-regenerative braking side. There is described a brake control device that includes a braking force control unit that calculates power in a range that does not exceed the smaller one of the maximum braking forces of the left and right wheels on the regenerative braking side (see summary).
 また、本技術分野の背景技術として、特開2010-143579号公報(特許文献2)がある。この特許文献2には、燃料を燃焼して作動するエンジンと電気エネルギーで作動するモーターとを備え、少なくとも左右一対の車輪がエンジン駆動系とモーター駆動系との両方に連係するものであって、エンジン駆動の際、車輪が過回転スリップしたときに、車輪に接続されたモーターを回生動作させてブレーキをかけることにより、車輪のスリップを解消するように設けられており、更に、エンジンによりモーターを充電駆動可能に設けるとともに、エンジン走行駆動系に連係する車輪をエンジンに対して遮断可能に設けたハイブリッド車両が記載されている(要約参照)。 Further, as background art of this technical field, there is JP 2010-143579 A (Patent Document 2). This patent document 2 includes an engine that operates by burning fuel and a motor that operates by electric energy, and at least a pair of left and right wheels are linked to both an engine drive system and a motor drive system. When the engine is driven, if the wheel slips excessively, the motor connected to the wheel is regenerated and braked to eliminate the wheel slip. A hybrid vehicle is described that is provided so that it can be charged and driven and that wheels that are linked to an engine drive system can be shut off from the engine (see the summary).
特開2014-184822号公報JP, 2014-184822, A 特開2010-143579号公報JP, 2010-143579, A
 特許文献1に記載されるブレーキ制御装置は、回生制動側左右輪に発生させる回生制動力を、回生制動側左右輪のそれぞれの最大制動力のうちの小さい方の値を超えない範囲で演算するものである。また、特許文献2に記載されるハイブリッド車両は、エンジン駆動の際、車輪が過回転スリップしたときに、車輪に接続されたモーターを回生動作させてブレーキをかけるものである。 The brake control device described in Patent Document 1 calculates the regenerative braking force generated on the left and right wheels on the regenerative braking side within a range that does not exceed the smaller one of the maximum braking forces on the left and right wheels on the regenerative braking side. It is a thing. In addition, the hybrid vehicle described in Patent Document 2 regenerates a motor connected to a wheel to apply a brake when the wheel is slipping excessively when the engine is driven.
 しかし、特許文献1に記載されるブレーキ制御装置や特許文献2に記載されるハイブリッド車両は、左右個別に駆動する駆動輪を有する電気駆動車両において、左右個別に駆動する駆動輪の、左右の駆動輪の回転速度又は回転数が異なる場合に、回生ブレーキの制動力を制御するものではない。 However, the brake control device described in Patent Document 1 and the hybrid vehicle described in Patent Document 2 are, in an electrically driven vehicle having drive wheels that are individually driven on the left and right sides, drive wheels that are driven separately on the left and right sides. It does not control the braking force of the regenerative brake when the rotational speeds or the rotational speeds of the wheels are different.
 そこで、本発明は、左右個別に駆動する駆動輪の、左右の駆動輪の回転速度又は回転数が異なる場合にも、回生ブレーキの制動力を制御し、姿勢を安定にすることができる回生ブレーキシステム及び電気駆動車両を提供する。 Therefore, the present invention can control the braking force of the regenerative brake to stabilize the posture even when the left and right driving wheels of the left and right driving wheels have different rotational speeds or rotational speeds. A system and an electrically driven vehicle are provided.
 上記課題を解決するため、本発明の回生ブレーキシステムは、左右個別に駆動する駆動輪を有する電気駆動車両に搭載されるものであって、駆動輪が、力行モードか回生モードかを判定する回生動作判定器と、右側駆動輪の回転速度又は回転数及び左側駆動輪の回転速度又は回転数を入力し、最大値を判定する最大値判定器と、最大値を入力し、消費する電気エネルギーを算出する消費電力制御器と、を有することを特徴とする。 In order to solve the above problems, the regenerative braking system of the present invention is installed in an electrically driven vehicle having drive wheels that are driven separately on the left and right sides, and the drive wheels are regenerative to determine whether they are in a power running mode or a regenerative mode. Input the rotation speed or rotation speed of the right-hand drive wheel and the rotation speed or rotation speed of the left-hand drive wheel to the motion determiner, enter the maximum value determiner to determine the maximum value, and enter the electrical energy consumed. And a power consumption controller for calculating.
 また、本発明の電気駆動車両は、燃料を燃焼して作動するエンジンと、エンジンが発生する機械エネルギーを電気エネルギーに変換し、電気エネルギーを発生する発電機と、発電機が発生する電気エネルギーを変換する電力変換装置と、電力変換装置が出力する電気エネルギーにて駆動する右側電動機と、電力変換装置が出力する電気エネルギーにて駆動する左側電動機と、右側電動機に接続する右側駆動輪と、左側電動機に接続する左側駆動輪と、右側従動輪と、左側従動輪とを有し、右側駆動輪の回転速度又は回転数及び左側駆動輪の回転速度又は回転数の最大値に基づいて、回生ブレーキの制動力を算出することを特徴とする。 Further, the electric drive vehicle of the present invention includes an engine that operates by burning fuel, a generator that converts mechanical energy generated by the engine into electric energy, and generates electric energy, and an electric energy generated by the generator. A power converter for conversion, a right electric motor driven by electric energy output by the power converter, a left electric motor driven by electric energy output by the power converter, a right drive wheel connected to the right electric motor, and a left side It has a left drive wheel connected to the electric motor, a right driven wheel, and a left driven wheel, and the regenerative brake is based on the rotational speed or the rotational speed of the right drive wheel and the maximum value of the rotational speed or the rotational speed of the left drive wheel. Is calculated.
 本発明によれば、左右個別に駆動する駆動輪の、左右の駆動輪の回転速度又は回転数が異なる場合にも、回生ブレーキの制動力を制御し、姿勢を安定にすることができる回生ブレーキシステム及び電気駆動車両を提供することができる。 According to the present invention, the regenerative brake that can control the braking force of the regenerative brake and stabilize the posture even when the rotational speed or the rotational speed of the left and right drive wheels of the drive wheels that are individually driven on the left and right differ. A system and an electrically driven vehicle can be provided.
 なお、上記した以外の課題、構成及び効果は、下記の実施例の説明により明らかにされる。 The problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本実施例に記載する電気駆動車両の概略構成を示す部分模式概念図である。It is a partial schematic conceptual diagram which shows schematic structure of the electrically driven vehicle described in a present Example. 本実施例に記載する回生ブレーキシステムにおける処理フローを示すフローチャート図である。It is a flowchart figure which shows the processing flow in the regenerative braking system described in a present Example.
 以下、本発明の実施例を、図面を使用して説明する。なお、同一又は類似の構成には、同一の符号を付し、説明が重複する場合には、その説明を省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the same or similar configurations are denoted by the same reference numerals, and when the description is duplicated, the description may be omitted.
 図1は、本実施例に記載する電気駆動車両の概略構成を示す部分模式概念図である。 FIG. 1 is a partial schematic conceptual diagram showing a schematic configuration of an electrically driven vehicle described in this embodiment.
 本実施例に記載する電気駆動車両は、バスやトラックといった自動車や鉄道車両であり、電気駆動装置(電気式トランスミッション)や回生ブレーキ(回生制動)システムを搭載する車両である。 The electric drive vehicle described in this embodiment is an automobile such as a bus or a truck or a railroad vehicle, and is a vehicle equipped with an electric drive device (electric transmission) and a regenerative braking (regenerative braking) system.
 本実施例に記載する電気駆動車両は、燃料を燃焼して作動する内燃機関(以下「エンジン」と称して説明する)1と、エンジン1が発生する機械エネルギーを電気エネルギーに変換し、電気エネルギーを発生する発電機2と、発電機2が発生する電気エネルギー(交流)を入力し、交流を直流に変換し、整流し、直流を交流に変換し、電気エネルギー(交流)を出力する電力変換装置3と、電力変換装置3が出力する電気エネルギーにて駆動する右側電動機6aと、電力変換装置3が出力する電気エネルギーにて駆動する左側電動機6bと、右側電動機6aに接続する右側駆動輪4aと、左側電動機6bに接続する左側駆動輪4bと、を有する。更には、図示しないが、右側従動輪及び左側従動輪を有する。 The electric drive vehicle described in the present embodiment converts an internal combustion engine (hereinafter, referred to as “engine”) 1 that operates by burning fuel and mechanical energy generated by the engine 1 into electric energy to generate electric energy. Generator 2 for generating electricity and electric energy (AC) generated by the generator 2 are input, AC is converted to DC, rectified, DC is converted to AC, and electric power is output to output electric energy (AC). The device 3, the right electric motor 6a driven by the electric energy output by the power converter 3, the left electric motor 6b driven by the electric energy output by the power converter 3, and the right drive wheel 4a connected to the right electric motor 6a. And a left drive wheel 4b connected to the left electric motor 6b. Further, although not shown, it has a right driven wheel and a left driven wheel.
 なお、本実施例に記載する電気駆動車両は、右側駆動輪4a及び左側駆動輪4bは、左右個別に駆動する。つまり、右側駆動輪4aには右側電動機6aが、左側駆動輪4bには左側電動機6bが、それぞれ接続され、左右個別に駆動する。 In the electric drive vehicle described in this embodiment, the right drive wheel 4a and the left drive wheel 4b are individually driven on the left and right sides. That is, the right drive motor 4a is connected to the right drive wheel 4a, and the left drive motor 6b is connected to the left drive wheel 4b, and the left drive motor 4b and the left drive motor 4b are driven individually.
 なお、右側電動機6a及び左側電動機6bは、交流電動機(交流モーター)であり、力行と回生との2つのモードを有する。回生時(回生(発電)モード)には、回生ブレーキとして利用することができる。ここで、回生ブレーキとは、力行時(力行モード)には電気エネルギーを運動エネルギーとして出力する電動機(モーター)を、回生時には発電機(ジェネレーター)として作動させ、運動エネルギーを電気エネルギーに変換し、この電気エネルギーを消費することによりブレーキ(制動)に利用するものであり、回生ブレーキの制動力(回生制動力)を取得することができるものである。また、回生ブレーキの制動力は、車両を減速して停止させようとする力であり、減速する車両の速度と減速する車両の質量との積によって定義される。本実施例では、車両が力行時から回生時に移行する際には、この減速する車両の質量は変化せず一定である。 The right-side electric motor 6a and the left-side electric motor 6b are AC electric motors (AC motors), and have two modes of power running and regeneration. During regeneration (regeneration (power generation) mode), it can be used as a regenerative brake. Here, regenerative braking means that an electric motor (motor) that outputs electric energy as kinetic energy during power running (power running mode) is operated as a generator (generator) during regenerative operation to convert kinetic energy into electric energy. By consuming this electric energy, it is used for braking (braking), and the braking force of the regenerative brake (regenerative braking force) can be acquired. The braking force of the regenerative brake is a force for decelerating and stopping the vehicle, and is defined by the product of the speed of the decelerating vehicle and the mass of the decelerating vehicle. In the present embodiment, when the vehicle shifts from power running to regeneration, the mass of the decelerating vehicle remains constant.
 つまり、電気駆動車両が減速する場合、右側電動機6a及び左側電動機6bは、力行モードから回生モードへと移行し、右側駆動輪4a及び左側駆動輪4bの運動エネルギーを電気エネルギーに変換する。 That is, when the electrically driven vehicle decelerates, the right electric motor 6a and the left electric motor 6b shift from the power running mode to the regenerative mode, and convert the kinetic energy of the right drive wheel 4a and the left drive wheel 4b into electric energy.
 なお、電力変換装置3と右側電動機6a及び左側電動機6bとは、電力が流通する電力線(図中、太い実線)と信号が転送される信号線(図示なし)とにより接続される。なお、図中、細い実線は信号が転送される信号線である。 The power conversion device 3 is connected to the right side electric motor 6a and the left side electric motor 6b by a power line through which electric power flows (thick solid line in the figure) and a signal line (not shown) through which signals are transferred. In the figure, thin solid lines are signal lines to which signals are transferred.
 また、本実施例に記載する電気駆動車両は、右側駆動輪4aの回転速度又は回転数(以下「回転速度等」と称して説明する)を検出する右側検出器5aと、左側駆動輪4bの回転速度等を検出する左側検出器5bと、を有する。右側検出器5aは、右側駆動輪4a及び右側電動機6aと同軸に設置され、左側検出器5bは、左側駆動輪4b及び左側電動機6bと同軸に設置される。 Further, the electric drive vehicle described in the present embodiment includes a right-side detector 5a that detects the rotational speed or the number of revolutions of the right-side drive wheel 4a (hereinafter referred to as "rotational speed etc.") and a left-side drive wheel 4b. And a left-side detector 5b that detects a rotation speed and the like. The right detector 5a is installed coaxially with the right drive wheel 4a and the right electric motor 6a, and the left detector 5b is installed coaxially with the left drive wheel 4b and the left electric motor 6b.
 また、本実施例に記載する電気駆動車両は、回生時に、右側電動機6a及び左側電動機6bが発生する電気エネルギーを消費(処理)する電力処理部7を有する。電力処理部7は、例えば、抵抗器や蓄電池である。 Further, the electric drive vehicle described in the present embodiment has the power processing unit 7 that consumes (processes) the electric energy generated by the right electric motor 6a and the left electric motor 6b during regeneration. The power processing unit 7 is, for example, a resistor or a storage battery.
 このように、本実施例に記載する電気駆動車両は、エンジン1、発電機2、電力変換装置3、右側電動機6a及び左側電動機6b、を含む電気駆動装置を有するものであり、そして、回生ブレーキシステムを有するものである。 As described above, the electric drive vehicle described in the present embodiment has the electric drive device including the engine 1, the generator 2, the power conversion device 3, the right side electric motor 6a and the left side electric motor 6b, and the regenerative brake. It has a system.
 本実施例に記載する回生ブレーキシステムは、回生動作判定器8、最大値判定器9、消費電力制御器10を有する。この回生ブレーキシステムは、特に、左右の駆動輪が個別に駆動する電気駆動車両に使用され、大きな回生ブレーキの制動力が必要であり、所望の回生ブレーキの制動力を取得する必要がある電気駆動車両に好適である。 The regenerative braking system described in the present embodiment has a regenerative operation determiner 8, a maximum value determiner 9, and a power consumption controller 10. This regenerative braking system is used especially in an electrically driven vehicle in which the left and right drive wheels are individually driven, requires a large regenerative braking force, and needs to obtain a desired regenerative braking force. Suitable for vehicles.
 回生動作判定器8は、右側電動機6a及び左側電動機6bから動作モード信号Aを入力する。この動作モード信号Aは、右側電動機6a及び左側電動機6bの動作状態を示す信号である。回生動作判定器8は、右側電動機6a及び左側電動機6bの動作状態を示す信号である動作モード信号Aから、力行モード又は回生モードを判定する。 The regenerative operation determiner 8 inputs the operation mode signal A from the right electric motor 6a and the left electric motor 6b. The operation mode signal A is a signal indicating the operation state of the right electric motor 6a and the left electric motor 6b. The regenerative operation determiner 8 determines the power running mode or the regenerative mode from the operation mode signal A which is a signal indicating the operating state of the right electric motor 6a and the left electric motor 6b.
 右側電動機6a及び左側電動機6bの動作状態は、右側駆動輪4a及び左側駆動輪4bの回転速度等と、右側駆動輪4a及び左側駆動輪4bへのトルク指令(電気駆動車両のブレーキペダル(マイナス:-)又はアクセルペダル(プラス:+)からの動作指令)と、から決定される。 The operating states of the right electric motor 6a and the left electric motor 6b include the rotational speeds of the right drive wheel 4a and the left drive wheel 4b, and the torque command to the right drive wheel 4a and the left drive wheel 4b (the brake pedal of the electrically driven vehicle (minus: -) or the operation command from the accelerator pedal (plus: +)).
 つまり、右側電動機6a及び左側電動機6bの動作状態は、(1)回転速度(プラス:+)及びトルク指令(プラス:+)は力行モード、(2)回転速度(プラス:+)及びトルク指令(マイナス:-)は回生モード、(3)回転速度(マイナス:-)及びトルク指令(プラス:+)は回生モード、(4)回転速度(マイナス:-)及びトルク指令(マイナス:-)は力行モード、の4つに分類される。 That is, the operating states of the right-side electric motor 6a and the left-side electric motor 6b are as follows: (1) rotational speed (plus:+) and torque command (plus:+) are in power running mode, and (2) rotational speed (plus:+) and torque command ( Minus:-) is regeneration mode, (3) Rotational speed (minus:-) and torque command (plus:+) is regeneration mode, (4) Rotational speed (minus:-) and torque command (minus:-) is power running. It is classified into four modes.
 そして、電気駆動車両が減速する場合、回生動作判定器8にて、回生モードと判定され、その判定結果が、電力変換装置3に出力され、電力変換装置3は、回生モードとして動作する。 When the electrically driven vehicle decelerates, the regenerative operation determiner 8 determines the regenerative mode, the result of the determination is output to the power conversion device 3, and the power conversion device 3 operates in the regenerative mode.
 最大値判定器9は、右側検出器5a及び左側検出器5bから回転速度等信号Bを入力する。この回転速度等信号Bは、右側駆動輪4aと左側駆動輪4bとの回転速度等の信号である。そして、最大値判定器9は、右側駆動輪4aと左側駆動輪4bとのいずれの駆動輪の回転速度等が大きいかを(回転速度等の最大値)を判定する。そして、最大値判定器9は、消費電力制御器10に、この回転速度等の最大値(信号)を出力する。 The maximum value determiner 9 inputs a signal B such as the rotation speed from the right side detector 5a and the left side detector 5b. This rotation speed etc. signal B is a signal of the rotation speed etc. of the right drive wheel 4a and the left drive wheel 4b. Then, the maximum value determiner 9 determines which of the right drive wheel 4a and the left drive wheel 4b has a higher rotation speed or the like (the maximum value of the rotation speed or the like). Then, the maximum value determiner 9 outputs the maximum value (signal) such as the rotation speed to the power consumption controller 10.
 消費電力制御器10は、入力される回転速度等の最大値に基づいて、電力処理部7にて消費する電気エネルギー(電力量)を、算出する。なお、この電気エネルギーは、回転速度等に対する関係が、例えば表(テーブル)や関数により、予め設定される。つまり、回転速度等と回生ブレーキの制動力(電気エネルギー)との関係が、例えば表や関数等がデータベースに保存され、所定の回転速度等に対する回生ブレーキの制動力が決定される。 The power consumption controller 10 calculates the electric energy (electric energy) consumed by the power processing unit 7 based on the maximum value such as the input rotation speed. Note that this electric energy has a relationship with the rotation speed or the like set in advance by, for example, a table or a function. That is, the relationship between the rotational speed and the like and the braking force (electrical energy) of the regenerative brake, for example, a table and a function are stored in the database, and the braking force of the regenerative brake for a predetermined rotational speed and the like is determined.
 一方、電力変換装置3は、回生モードとして動作することにより、消費電力制御器10に、発電機2の発電量制御信号Cを出力する。この発電機2の発電量制御信号Cは、発電機2が出力する電気エネルギー(発電量)を示す信号である。 On the other hand, the power conversion device 3 outputs the power generation amount control signal C of the generator 2 to the power consumption controller 10 by operating in the regenerative mode. The power generation amount control signal C of the power generator 2 is a signal indicating the electric energy (power generation amount) output by the power generator 2.
 そして、消費電力制御器10は、発電機2の発電量制御信号Cと回転速度等の最大値とに基づいて、消費電力量制御信号Dを算出する。この消費電力量制御信号Dは、最終的に、電力処理部7にて消費する電気エネルギー(電力量)を示す信号である。 Then, the power consumption controller 10 calculates the power consumption control signal D based on the power generation control signal C of the generator 2 and the maximum value such as the rotation speed. This power consumption amount control signal D is a signal indicating the electric energy (power amount) finally consumed by the power processing unit 7.
 なお、右側電動機6aが発電した電気エネルギー又は左側電動機6bが発電した電気エネルギーの最大値と、発電機2が出力する電気エネルギーと、の差の電気エネルギーが、電力処理部7にて消費され、電力処理部7にて消費される電気エネルギー(電力量)の大きさが、回生ブレーキの制動力の大きさとなる。 In addition, the difference between the maximum value of the electric energy generated by the right electric motor 6a or the electric energy generated by the left electric motor 6b and the electric energy output by the generator 2 is consumed by the electric power processing unit 7, The magnitude of the electric energy (electric energy) consumed in the power processing unit 7 becomes the magnitude of the braking force of the regenerative brake.
 消費電力制御器10は、この消費電力量制御信号Dを、最終的に、電力処理部7に出力し、電力処理部7は、この消費電力量制御信号Dに基づいて、電気エネルギー(電力量)を消費する。 The power consumption controller 10 finally outputs this power consumption amount control signal D to the power processing unit 7, and the power processing unit 7 based on this power consumption amount control signal D outputs electric energy (power amount). ) Is consumed.
 つまり、電力変換装置3が回生モードとして動作する場合、消費電力制御器10は、発電機2が出力する電気エネルギー(発電機2の発電量制御信号C:発電量)と、回転速度等の最大値に基づいて算出される電気エネルギー(電力量)と、を比較する。 That is, when the power conversion device 3 operates in the regenerative mode, the power consumption controller 10 determines the maximum of the electric energy output from the generator 2 (power generation amount control signal C of the generator 2: power generation amount) and the rotation speed. The electric energy (electric energy) calculated based on the value is compared.
 そして、消費電力制御器10は、回転速度等の最大値に基づいて算出される電気エネルギー(電力量)が、発電機2が出力する電気エネルギー(発電機2の発電量制御信号C:発電量)より大きい(高い)値になるように設定する。この設定される消費電力量制御信号Dを、最終的に、電力処理部7に出力し、電力処理部7は、この消費電力量制御信号Dに基づいて、電気エネルギー(電力量)を消費する。 Then, in the power consumption controller 10, the electric energy (electric power amount) calculated based on the maximum value of the rotation speed or the like is the electric energy output from the generator 2 (power generation amount control signal C of the generator 2: power generation amount). ) Set to a larger (higher) value. The power consumption control signal D thus set is finally output to the power processing unit 7, and the power processing unit 7 consumes electric energy (power amount) based on the power consumption control signal D. ..
 これにより、右側電動機6a及び左側電動機6bが発電した電気エネルギーが確実に消費され、回生ブレーキの制動力を取得することができる。 With this, the electric energy generated by the right electric motor 6a and the left electric motor 6b is surely consumed, and the braking force of the regenerative brake can be acquired.
 なお、本実施例では、発電機2が出力する電気エネルギー(発電量)は、電気駆動車両のブレーキペダル又はアクセルペダルからの動作指令に基づいて決定され、一つの動作指令に基づく、この電気エネルギーは変化せず一定である。 In this embodiment, the electric energy (power generation amount) output by the generator 2 is determined based on the operation command from the brake pedal or the accelerator pedal of the electrically driven vehicle, and the electric energy based on one operation command is determined. Is unchanged and constant.
 一方、右側電動機6a及び左側電動機6bが発電した電気エネルギーは、電力線を介して、電力変換装置3に供給され、更に、電力処理部7に供給され、消費される。これにより、右側電動機6a及び左側電動機6bが発電した電気エネルギーが消費され、回生ブレーキの制動力を取得する。 On the other hand, the electric energy generated by the right electric motor 6a and the left electric motor 6b is supplied to the power conversion device 3 via the power line, and further supplied to the power processing unit 7 and consumed. As a result, the electric energy generated by the right electric motor 6a and the left electric motor 6b is consumed, and the braking force of the regenerative brake is acquired.
 つまり、右側電動機6aが発電した電気エネルギー及び左側電動機6bが発電した電気エネルギーの最大値を使用して、更に、発電機2が出力する電気エネルギーよりも、大きい値に設定することにより、確実に、回生ブレーキの制動力を取得することができる。 That is, the maximum value of the electric energy generated by the right electric motor 6a and the maximum value of the electric energy generated by the left electric motor 6b is used, and further set to a value larger than the electric energy output by the generator 2 to ensure the , It is possible to acquire the braking force of the regenerative brake.
 このように、本実施例では、回生ブレーキの制動力は、電動駆動車両の減速する速度、つまり、右側電動機6a及び左側電動機6bが発電した電気エネルギー(回転速度等の最大値)よって決定される。そして、右側電動機6a及び左側電動機6bが発電した電気エネルギー(電力量)は、電力変換装置3を介して、電力処理部7に供給される。電力処理部7では、電力変換装置3が回生モードとして動作する場合、消費電力制御器10にて算出される消費電力量制御信号Dに基づいて、電気エネルギー(電力量)を消費する。 As described above, in the present embodiment, the braking force of the regenerative brake is determined by the speed at which the electrically driven vehicle decelerates, that is, the electric energy generated by the right electric motor 6a and the left electric motor 6b (the maximum value of the rotation speed or the like). .. Then, the electric energy (electric energy) generated by the right electric motor 6 a and the left electric motor 6 b is supplied to the electric power processing unit 7 via the electric power conversion device 3. When the power conversion device 3 operates in the regeneration mode, the power processing unit 7 consumes electric energy (power amount) based on the power consumption amount control signal D calculated by the power consumption controller 10.
 このように、本実施例に記載する電気駆動車両は、駆動輪が左右個別に駆動し、回生ブレーキの制動力は、左右の駆動輪の回転速度等の平均値から算出されるものではなく、左右の駆動輪の回転速度等の最大値から算出されるものである。また、回生ブレーキの制動力は、駆動輪の回転速度等に基づいて予め設定されるものであり、車両の速度が大きくなるほど要求される制動力も大きくなる。 As described above, in the electrically driven vehicle described in the present embodiment, the drive wheels are driven individually on the left and right sides, and the braking force of the regenerative brake is not calculated from the average value of the rotational speeds of the left and right drive wheels. It is calculated from the maximum value such as the rotational speed of the left and right drive wheels. Further, the braking force of the regenerative brake is set in advance based on the rotational speed of the drive wheels, etc., and the required braking force increases as the vehicle speed increases.
 しかし、車両が旋回する場合や片方の駆動輪が悪路によりロックされる場合など、左右の駆動輪の回転速度等が相違する場合があり、回転速度等の平均値は、左右の駆動輪の回転速度等と相違する場合があり、回転速度等の平均値より速く回転する駆動輪においては、所望の回生ブレーキの制動力が取得できない場合がある。 However, when the vehicle turns or when one of the driving wheels is locked due to a bad road, the rotational speeds of the left and right driving wheels may differ. In some cases, the desired braking force of the regenerative brake may not be obtained for the drive wheel that rotates faster than the average value of the rotation speed and the like, since it may differ from the rotation speed and the like.
 つまり、回転速度等の平均値に基づいて、回生ブレーキの制動力を算出する場合、左右どちらかの電動機6a又は電動機6bにおいて発生する電気エネルギーを全て消費できなくなる。この場合、電気エネルギーを全て消費できない駆動輪は、十分な回生ブレーキの制動力が取得できず、車両の姿勢が不安定になる可能性がある。 That is, when the braking force of the regenerative brake is calculated based on the average value of the rotation speed and the like, it becomes impossible to consume all the electric energy generated in the electric motor 6a or the electric motor 6b on either side. In this case, the drive wheels that cannot consume all the electric energy may not be able to acquire sufficient braking force of the regenerative brake, and the posture of the vehicle may become unstable.
 そこで、本実施例では、左右の駆動輪の回転速度等の最大値に基づいて、回生ブレーキの制動力を算出するため、確実に、所望の回生ブレーキの制動力を取得することができる。そして、左右個別に駆動する駆動輪の、左右の駆動輪の回転速度又は回転数が異なる場合にも、回生ブレーキの制動力を制御し、車両の姿勢を安定にすることができる。 Therefore, in this embodiment, the braking force of the regenerative brake is calculated based on the maximum value of the rotational speeds of the left and right driving wheels, so that the desired braking force of the regenerative brake can be reliably obtained. Even when the left and right drive wheels of the left and right drive wheels have different rotational speeds or rotational speeds, the braking force of the regenerative brake can be controlled to stabilize the posture of the vehicle.
 図2は、本実施例に記載する回生ブレーキシステムにおける処理フローを示すフローチャート図である。 FIG. 2 is a flowchart showing a processing flow in the regenerative braking system described in this embodiment.
 回生動作判定器8では、右側電動機6a及び左側電動機6bが、力行モード又は回生モードを判定する。つまり、電動機が回生動作中か否かを判定する(101)。なお、この判定は、電気駆動車両のブレーキペダル又はアクセルペダルからの動作指令に基づいて実行される。 In the regenerative operation judging device 8, the right electric motor 6a and the left electric motor 6b judge the power running mode or the regenerative mode. That is, it is determined whether the electric motor is in the regenerative operation (101). It should be noted that this determination is performed based on an operation command from the brake pedal or the accelerator pedal of the electrically driven vehicle.
 判定の結果、回生動作中でない場合(N)は、スタート状態に戻り、待機する。 If the result of determination is that regenerative operation is not in progress (N), it returns to the start state and waits.
 判定の結果、回生動作中である場合(Y)は、最大値判定器9では、各駆動輪(右側駆動輪4a及び左側駆動輪4b)の回転速度等(右側駆動輪の回転速度等Va及び左側駆動輪の回転速度等Vb)を入力する(102)。 As a result of the determination, when the regenerative operation is being performed (Y), the maximum value determiner 9 determines the rotation speed of each drive wheel (the right drive wheel 4a and the left drive wheel 4b), etc. (the rotation speed of the right drive wheel, Va, etc.). The rotational speed Vb) of the left drive wheel is input (102).
 そして、最大値判定器9では、Va及びVbの最大値Vmaxを判定する(103)。 Then, the maximum value determiner 9 determines the maximum value Vmax of Va and Vb (103).
 そして、消費電力制御器10では、Vmaxを入力する(104)。 Then, the power consumption controller 10 inputs Vmax (104).
 消費電力制御器10では、入力されるVmaxに基づいて、電力処理部7にて消費する電気エネルギー(消費電力量)を算出する(105)。なお、この電気エネルギーは、回転速度等に対する関係が、例えば、表(テーブル)や関数により、予め設定され、所定の回転速度等に対する回生ブレーキの制動力が決定される。 The power consumption controller 10 calculates electric energy (power consumption) consumed by the power processing unit 7 based on the input Vmax (105). The relationship of the electric energy with respect to the rotation speed and the like is set in advance by, for example, a table or a function, and the braking force of the regenerative brake with respect to the predetermined rotation speed and the like is determined.
 このように、本実施例に記載する回生ブレーキシステムは、左右の駆動輪の回転速度等の最大値に基づいて、回生ブレーキの制動力を算出するため、確実に、所望の回生ブレーキの制動力を取得することができる。そして、左右個別に駆動する駆動輪の、左右の駆動輪の回転速度又は回転数が異なる場合にも、回生ブレーキの制動力を制御し、車両の姿勢を安定にすることができる。 As described above, the regenerative braking system described in the present embodiment calculates the braking force of the regenerative brake based on the maximum value of the rotational speeds of the left and right driving wheels, so that the braking force of the desired regenerative brake is surely obtained. Can be obtained. Even when the left and right drive wheels of the left and right drive wheels have different rotational speeds or rotational speeds, the braking force of the regenerative brake can be controlled to stabilize the posture of the vehicle.
 なお、本発明は、上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は、本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を有するものに限定されるものではない。また、一つの実施例の構成の一部を他の実施例の構成の一部に置き換えることができ、また、一つの実施例の構成に他の実施例の構成を加えることもできる。 It should be noted that the present invention is not limited to the above-described embodiments, but includes various modifications. For example, the above-described embodiments are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with a part of the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
1…エンジン、2…発電機、3…電力変換装置、4a…駆動輪(右)、4b…駆動輪(左)、5a…検出器(右)、5b…検出器(左)、6a…交流電動機(右)、6b…交流電動機(左)、7…電力処理部、8…回生動作判定器、9…最大値判定器、10…消費電力制御器、A…動作モード信号、B…回転速度等信号、C…発電機の発電量制御信号、D…電力消費量制御信号 1... Engine, 2... Generator, 3... Power converter, 4a... Drive wheel (right), 4b... Drive wheel (left), 5a... Detector (right), 5b... Detector (left), 6a... AC Electric motor (right), 6b... AC electric motor (left), 7... Power processing unit, 8... Regenerative operation determiner, 9... Maximum value determiner, 10... Power consumption controller, A... Operation mode signal, B... Rotation speed Equal signal, C... Generator power generation control signal, D... Electric power consumption control signal

Claims (4)

  1.  左右個別に駆動する駆動輪を有する電気駆動車両に搭載される回生ブレーキシステムであって、
     前記駆動輪が、力行モードか回生モードかを判定する回生動作判定器と、
     右側駆動輪の回転速度又は回転数及び左側駆動輪の回転速度又は回転数を入力し、最大値を判定する最大値判定器と、
     前記最大値を入力し、消費する電気エネルギーを算出する消費電力制御器と、を有することを特徴とする回生ブレーキシステム。
    A regenerative braking system mounted on an electrically driven vehicle having driving wheels that are driven separately on the left and right sides,
    The drive wheel, a regenerative operation determiner for determining whether the power running mode or the regenerative mode,
    A maximum value determiner for determining the maximum value by inputting the rotation speed or rotation speed of the right drive wheel and the rotation speed or rotation speed of the left drive wheel,
    A power consumption controller for inputting the maximum value and calculating the consumed electric energy, and a regenerative braking system.
  2.  前記最大値に基づいて、回生ブレーキの制動力を算出することを特徴とする請求項1に記載する回生ブレーキシステム。 The regenerative braking system according to claim 1, wherein the braking force of the regenerative brake is calculated based on the maximum value.
  3.  請求項1乃至請求項2のいずれか一項に記載する回生ブレーキシステムを搭載した電気駆動車両。 An electric drive vehicle equipped with the regenerative braking system according to any one of claims 1 and 2.
  4.  燃料を燃焼して作動するエンジンと、前記エンジンが発生する機械エネルギーを電気エネルギーに変換し、電気エネルギーを発生する発電機と、前記発電機が発生する電気エネルギーを変換する電力変換装置と、前記電力変換装置が出力する電気エネルギーにて駆動する右側電動機と、前記電力変換装置が出力する電気エネルギーにて駆動する左側電動機と、前記右側電動機に接続する右側駆動輪と、前記左側電動機に接続する左側駆動輪と、右側従動輪と、左側従動輪とを有し、
     前記右側駆動輪の回転速度又は回転数及び前記左側駆動輪の回転速度又は回転数の最大値に基づいて、回生ブレーキの制動力を算出することを特徴とする電気駆動車両。
    An engine that burns fuel to operate, a mechanical energy generated by the engine is converted into electrical energy, a generator that generates electrical energy, a power conversion device that converts the electrical energy generated by the generator, and A right electric motor driven by the electric energy output by the power converter, a left electric motor driven by the electric energy output by the power converter, a right drive wheel connected to the right electric motor, and a left electric motor Has a left drive wheel, a right driven wheel, and a left driven wheel,
    An electric drive vehicle, wherein the braking force of the regenerative brake is calculated based on the maximum value of the rotation speed or rotation speed of the right drive wheel and the rotation speed or rotation speed of the left drive wheel.
PCT/JP2019/043321 2019-01-29 2019-11-05 Regenerative braking system and electrically driven vehicle WO2020158087A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-012909 2019-01-29
JP2019012909A JP2020124001A (en) 2019-01-29 2019-01-29 Regenerative brake system and electric drive vehicle

Publications (1)

Publication Number Publication Date
WO2020158087A1 true WO2020158087A1 (en) 2020-08-06

Family

ID=71841081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043321 WO2020158087A1 (en) 2019-01-29 2019-11-05 Regenerative braking system and electrically driven vehicle

Country Status (2)

Country Link
JP (1) JP2020124001A (en)
WO (1) WO2020158087A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028804A (en) * 1999-07-12 2001-01-30 Nissan Motor Co Ltd Motor controller for vehicle
JP2008207739A (en) * 2007-02-27 2008-09-11 Honda Motor Co Ltd Electrically-powered vehicle
JP2010088224A (en) * 2008-09-30 2010-04-15 Mazda Motor Corp Method of controlling motor in electric vehicle and drive unit for electric vehicle
JP2016217531A (en) * 2015-11-19 2016-12-22 Ntn株式会社 Travel control method of vehicle
JP2018046664A (en) * 2016-09-14 2018-03-22 日立建機株式会社 Electrically-driven mining vehicle and brake operation guiding method in electrically-driven mining vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028804A (en) * 1999-07-12 2001-01-30 Nissan Motor Co Ltd Motor controller for vehicle
JP2008207739A (en) * 2007-02-27 2008-09-11 Honda Motor Co Ltd Electrically-powered vehicle
JP2010088224A (en) * 2008-09-30 2010-04-15 Mazda Motor Corp Method of controlling motor in electric vehicle and drive unit for electric vehicle
JP2016217531A (en) * 2015-11-19 2016-12-22 Ntn株式会社 Travel control method of vehicle
JP2018046664A (en) * 2016-09-14 2018-03-22 日立建機株式会社 Electrically-driven mining vehicle and brake operation guiding method in electrically-driven mining vehicle

Also Published As

Publication number Publication date
JP2020124001A (en) 2020-08-13

Similar Documents

Publication Publication Date Title
US6959971B2 (en) Vehicle braking apparatus
JP5263405B2 (en) Drive control device for standby four-wheel drive vehicle
JP2017118673A (en) Drive device control system
JP2004135471A (en) Controller for vehicle
JP2001238303A (en) Regenerative controller of hybrid electric vehicle
CN107791885B (en) Fail-safe apparatus of ECM system and method thereof
JP2010075036A (en) Controlling apparatus of electric automobile
JP2010058579A (en) Hybrid car
US20170225684A1 (en) Wheel equipped with multiple hub motors
JP2014050130A (en) Electric vehicle
US10889188B2 (en) Drive control device for vehicle with independently driven wheels
JP6120010B2 (en) vehicle
JP2010241166A (en) Four-wheel drive controller and four-wheel drive control method for vehicle
WO2020158087A1 (en) Regenerative braking system and electrically driven vehicle
JP2011031698A (en) Regenerative braking force controller for hybrid four-wheel drive vehicle
JP5245681B2 (en) Driving force control device
KR101927183B1 (en) Motor controlling apparatus and method for vehicle
WO2017013843A1 (en) Vehicular power source device and method of controlling vehicular power source device
JPH08308016A (en) Generator for hybrid vehicle
JP2007296933A (en) Vehicle and its control method
JP4236239B2 (en) Power supply control device for vehicle auxiliary equipment
WO2012108001A1 (en) Drive control device for front and rear wheel drive vehicle
JPH11168802A (en) Brake control device
JP2013183502A (en) Brake control device of rear wheel electric drive vehicle
JP5902041B2 (en) Electric vehicle speed control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 20.10.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19912724

Country of ref document: EP

Kind code of ref document: A1