JP5245681B2 - Driving force control device - Google Patents

Driving force control device Download PDF

Info

Publication number
JP5245681B2
JP5245681B2 JP2008246485A JP2008246485A JP5245681B2 JP 5245681 B2 JP5245681 B2 JP 5245681B2 JP 2008246485 A JP2008246485 A JP 2008246485A JP 2008246485 A JP2008246485 A JP 2008246485A JP 5245681 B2 JP5245681 B2 JP 5245681B2
Authority
JP
Japan
Prior art keywords
failure
braking
vehicle
wheel
wheels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008246485A
Other languages
Japanese (ja)
Other versions
JP2010076568A (en
Inventor
陽一郎 勇
一哉 荒川
弘一 奥田
監介 吉末
順一 出口
雅仁 中山
滋 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008246485A priority Critical patent/JP5245681B2/en
Publication of JP2010076568A publication Critical patent/JP2010076568A/en
Application granted granted Critical
Publication of JP5245681B2 publication Critical patent/JP5245681B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/102Indicating wheel slip ; Correction of wheel slip of individual wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Regulating Braking Force (AREA)

Description

この発明は、車両の少なくとも左右の二輪のそれぞれの駆動力あるいは制動力を制御する駆動力制御装置に関するものである。   The present invention relates to a driving force control device for controlling the driving force or braking force of at least two left and right wheels of a vehicle.

従来、車両の少なくとも左右二輪に駆動装置(例えば電動機)を設けて駆動する車両が知られている。その一例が特許文献1に記載されている。この特許文献1に記載された車両は産業用車両であり、各車輪に電動機が設けられている。この特許文献1に記載の車両では、各車輪の内のどれか一つの車輪が何らかの故障などが原因で動作しなくなった場合、他の正常に動作する車輪の駆動力により移動が可能とされている。   Conventionally, a vehicle that is driven by providing a drive device (for example, an electric motor) on at least two left and right wheels of the vehicle is known. One example thereof is described in Patent Document 1. The vehicle described in Patent Document 1 is an industrial vehicle, and an electric motor is provided on each wheel. In the vehicle described in Patent Document 1, when any one of the wheels stops operating due to some failure or the like, the vehicle can be moved by the driving force of the other normally operating wheels. Yes.

また、特許文献2に記載されている車両では、車両の各車輪のうち少なくとも左右二輪に駆動装置とその制御装置とが個別に設けられており、その駆動装置(電動機)の制御装置のうちどちらか一方が故障した場合においてフェイルセーフ機能が働く構成となっている。そのフェイルセーフ機能とは、故障した電動機の制御を正常に動作する電動機の制御装置が代替して行うことで、左右二輪の駆動力を調和させようとするものである。   Further, in the vehicle described in Patent Document 2, a drive device and its control device are individually provided on at least two left and right wheels of each wheel of the vehicle, and either of the control devices of the drive device (electric motor). If either one fails, the fail-safe function works. The fail-safe function is intended to harmonize the driving force of the left and right two wheels by substituting the control device of the motor that operates normally for the malfunctioning motor.

特開平11−127506号公報JP-A-11-127506 特開2004−175313号公報JP 2004-175313 A

上記の特許文献1に記載されている車両では、車輪の駆動に異常が発生した場合、異常が発生した車輪を停止させ、他の正常に動作する車輪を駆動させ、移動可能となる。この制御方法では、正常に動作する車輪を駆動させて車両を走行させる場合、左右の駆動力のアンバランスが生じ、車両の走行安定性が損なわれ、ヨーイングなどを惹き起こす可能性がある。   In the vehicle described in Patent Document 1, when an abnormality occurs in driving the wheel, the wheel in which the abnormality has occurred is stopped and the other normally operating wheels are driven to move. In this control method, when the vehicle is driven by driving normally operating wheels, the left and right driving forces are unbalanced, and the running stability of the vehicle is impaired, which may cause yawing and the like.

また、上記の特許文献2に記載されている車両では、各車輪に設けられた電動機の制御装置が故障した場合、他の正常に動作する制御装置により、左右二輪の調和をはかり、車両安定性を確保する構成が記載されている。しかし、故障時において左右二輪のうち正常に動作する電動機による回生については依然改善の余地があった。   In addition, in the vehicle described in the above-mentioned Patent Document 2, when the motor control device provided on each wheel fails, the other left and right control devices are harmonized by other normally operating control devices, and the vehicle stability is improved. A configuration for ensuring the above is described. However, there was still room for improvement with regard to regeneration by the motor that operates normally between the two left and right wheels at the time of failure.

この発明は上記の技術的課題に着目してなされたものであり、各車輪ごとに駆動装置とブレーキ機構とが設けられた車両を対象として、左右の二輪のうちの一つの駆動装置に何らかの異常が発生した場合にも、車両安定性を確保し、かつ正常に動作する駆動装置による回生を行い、エネルギ効率を向上させることのできる駆動力制御装置を提供することを目的とするものである。   The present invention has been made paying attention to the above technical problem, and is intended for a vehicle in which a drive device and a brake mechanism are provided for each wheel. An object of the present invention is to provide a driving force control device that can ensure vehicle stability and perform regeneration by a driving device that operates normally to improve energy efficiency.

上記の目的を達成するために、請求項1の発明は、少なくとも前後車輪いずれかの左右二輪にそれぞれ個別に設けられ、かつ駆動トルクを増減させるとともに発電機能を備えた駆動装置と、油圧によって動作して前記左右二輪のそれぞれに個別に制動力を付与するブレーキ機構とが設けられた駆動力制御装置において、前記左右二輪のいずれか一方の駆動装置が故障したか否かを判別する故障判別手段と、前記一方の駆動装置の故障が検出された場合、その故障が検出された駆動装置と当該駆動装置に連結されている車輪とを機械的に遮断させ、かつ他方の故障が検出されていない駆動装置と当該駆動装置に連結されている車輪とを機械的に遮断させる遮断手段と、前記一方の駆動装置の故障が検出された場合の制動要求時に、前記故障が検出された駆動装置が設けられている車輪および前記他方の故障が検出されていない駆動装置が設けられている車輪に、前記ブレーキ機構による制動力を付与させる制動指示手段と、前記他方の故障が検出されていない駆動装置が設けられている車輪に前記制動指示手段により付与される制動力を、前記ブレーキ機構による制動力から当該駆動装置による制動力に移行させる制動力切換手段とを備えていることを特徴とするものである。
In order to achieve the above object, the invention according to claim 1 is provided by a drive device that is individually provided on at least two left and right wheels of the front and rear wheels, and that increases or decreases the drive torque and has a power generation function, and is operated by hydraulic pressure. In the driving force control device provided with a brake mechanism that individually applies a braking force to each of the left and right wheels, a failure determination unit that determines whether one of the left and right wheels has failed. When the failure of the one drive device is detected, the drive device in which the failure is detected and the wheel connected to the drive device are mechanically disconnected, and the other failure is not detected. and interrupting means for mechanically disconnecting the wheel is connected to a drive unit and the drive unit, during braking request when the failure of one of the driving device is detected, the failure detection To be the wheel driving device failure beauty the other hand Oyo wheels provided is not detected driving device is provided, a braking instruction unit for applying a braking force by the brake mechanism, of the other Braking force switching means for causing a braking force applied by the braking instruction means to a wheel provided with a driving device in which no failure is detected to be transferred from a braking force by the brake mechanism to a braking force by the driving device. It is characterized by that.

請求項1の発明によれば、故障判別手段によって駆動装置の故障が検出され、制動指示手段により、左右の二輪に対してブレーキ機構による制動力が加えられ、さらに故障が検出されていない駆動装置に連結されている車輪に加えられる制動力が、制動力切替手段によりブレーキ機構による制動力から駆動装置による制動力に移行させるため、車両安定性を確保した状態で駆動装置による制動すなわち回生が可能となる。また、故障が検出された駆動装置を前記車輪から機械的に遮断することで、エネルギー損失を軽減することができる。
According to the first aspect of the present invention, a failure of the drive device is detected by the failure determination means, the braking force by the brake mechanism is applied to the left and right two wheels by the braking instruction means, and no failure is detected. The braking force applied to the wheels connected to the vehicle is shifted from the braking force by the braking mechanism to the braking force by the driving device by the braking force switching means, so that braking or regeneration by the driving device is possible while ensuring vehicle stability. It becomes . Further, energy loss can be reduced by mechanically disconnecting the drive device in which the failure is detected from the wheel.

つぎに、この発明の実施例を図面に基づいて説明する。図1にはこの発明で対象とする車両の構成および制御系統の一例が示されている。例として図1に示す車両Veは、内燃機関とモータとを動力源として駆動するハイブリッド式の四輪駆動車である。すなわち、エンジン(ENG)1と、発電機能のあるモータ・ジェネレータ(MG1,MG2)2,3が動力源として設けられ、四輪すべてが駆動可能となっている。   Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an example of a configuration of a vehicle and a control system targeted by the present invention. As an example, a vehicle Ve shown in FIG. 1 is a hybrid four-wheel drive vehicle that is driven using an internal combustion engine and a motor as power sources. That is, the engine (ENG) 1 and the motor generators (MG1, MG2) 2, 3 having a power generation function are provided as power sources, and all four wheels can be driven.

エンジン1は、例えばガソリンエンジンやディーゼルエンジン、あるいは天然ガスエンジンなどの燃料を燃焼して動力を出力する動力機関であり、図示しないエンジン電子制御装置(エンジンECU)などにより、出力を電気的に自動制御することができる。また、所定の負荷に対して回転数を制御することにより燃費が最も良好な最適運転点に設定できる内燃機関である。なお、図1に示す例ではエンジン1は車両の前方向に配置されて伝動機構により後輪を駆動するように構成されており、車両Veはエンジン駆動系に関して言えばFR(フロントエンジン・リヤドライブ)方式ということになる。なお、このエンジン駆動系に関してエンジン1は車両内のどの位置に配置されても構わず、また、RR(リヤエンジン・リヤドライブ)方式やその他方式とする構成であってもよい。   The engine 1 is a power engine that outputs power by burning a fuel such as a gasoline engine, a diesel engine, or a natural gas engine. The output is electrically automatically output by an engine electronic control unit (engine ECU) (not shown). Can be controlled. Further, the internal combustion engine can be set to an optimum operating point with the best fuel efficiency by controlling the rotational speed with respect to a predetermined load. In the example shown in FIG. 1, the engine 1 is arranged in the front direction of the vehicle and is configured to drive the rear wheels by a transmission mechanism. The vehicle Ve is FR (front engine / rear drive) in terms of the engine drive system. ) Method. It should be noted that the engine 1 may be arranged at any position in the vehicle with respect to this engine drive system, and may be configured to be an RR (rear engine / rear drive) system or other system.

そして、このエンジン1には、変速機4が連結されており、その変速機4の出力側にプロペラシャフト5を介してディファレンシャルが連結されている。さらにこのディファレンシャルに左右の車軸6,7を介して右後輪(RR)8、左後輪(RL)9のそれぞれが個別に連結されている。なお、この発明で対象とする車両の構成において、エンジン1を内燃機関とするのではなく、モータ・ジェネレータなどの電動機とする構成や後輪二輪に個別にモータ・ジェネレータ(電動機)を設けて左右個別に駆動する構成とし、車両Veをハイブリッド車両とするのではなく電気自動車とする構成であってもよい。   A transmission 4 is connected to the engine 1, and a differential is connected to the output side of the transmission 4 via a propeller shaft 5. Furthermore, each of a right rear wheel (RR) 8 and a left rear wheel (RL) 9 is individually connected to the differential via left and right axles 6 and 7. In the configuration of the vehicle that is the subject of the present invention, the engine 1 is not an internal combustion engine, but a motor / generator or other motor, or a motor / generator (electric motor) is separately provided for the two rear wheels. A configuration in which the vehicle is driven individually and the vehicle Ve is not a hybrid vehicle but an electric vehicle may be employed.

また、左右二輪(右前輪10と左前輪11)に設けられるモータ・ジェネレータ(電動機)2,3は、一つの例として発電機および電動機として機能するように、つまり、電気エネルギを運動エネルギに変換する力行機能と、運動エネルギを電気エネルギに変換する回生機能とを兼備するように構成されている電動機である。なお、回生機能により電気エネルギに変換されたエネルギは、さらに化学エネルギなどに変換して蓄電可能とされている。   The motor generators (motors) 2 and 3 provided on the left and right two wheels (the right front wheel 10 and the left front wheel 11) function as a generator and an electric motor as an example, that is, convert electric energy into kinetic energy. The electric motor is configured to have both a power running function to perform and a regenerative function to convert kinetic energy into electric energy. Note that the energy converted into electric energy by the regenerative function can be further converted into chemical energy and stored.

このモータ・ジェネレータ2,3は右前輪(FR)10、左前輪(FL)11の近傍やホイール内部に設けられ、前輪二輪10,11を個別に駆動する構造を形成するインホイールモータである。その動力伝達機構の構成は、前記モータ・ジェネレータ2,3からそれぞれ車軸14,17が同軸上に連結されており、さらに動力の伝達および遮断が段階的に可能なように構成されているクラッチ13,16を介して車軸12,15に動力が伝わり、右前輪10,左前輪11が駆動可能となっている。なお、このモータ・ジェネレータ2,3による各車輪の駆動機構は、モータ制御装置(モータECU)18,19などの電子制御装置により制御可能となっており、運転者からの操作意図に基づいた車両ECU39などからの指令を受ける制御や、車両の走行状態に応じた制御が可能となっている。   The motor generators 2 and 3 are in-wheel motors that are provided in the vicinity of the right front wheel (FR) 10 and the left front wheel (FL) 11 or inside the wheel, and form a structure for individually driving the two front wheels 10 and 11. The structure of the power transmission mechanism is such that the axles 14 and 17 are coaxially connected from the motor / generators 2 and 3, respectively, and the clutch 13 is configured so that transmission and interruption of power can be performed in stages. , 16 is transmitted to the axles 12, 15 so that the right front wheel 10 and the left front wheel 11 can be driven. The driving mechanism of each wheel by the motor / generators 2 and 3 can be controlled by an electronic control device such as a motor control device (motor ECU) 18 or 19, and the vehicle is based on the operation intention of the driver. Control that receives a command from the ECU 39 or the like and control according to the traveling state of the vehicle are possible.

また、このモータ・ジェネレータ2,3の制御を行うモータ制御装置(モータECU)18,19は、図示しないインバータや電気回路などに信号を入出力して、モータ・ジェネレータの制駆動制御を行う構成とされている。このモータECU18,19を介して、バッテリあるいはキャパシタなどの蓄電装置20に接続され電力の授受を行うことでできるように構成されている。この蓄電装置20では、モータ・ジェネレータ2,3をモータとして動作させる際の電力を供給し、また、モータ・ジェネレータ2,3を発電機として動作させて回生電力を電気エネルギから化学エネルギなどに変換させて蓄えられる。   Further, motor control devices (motor ECUs) 18 and 19 for controlling the motor / generators 2 and 3 are configured to perform braking / driving control of the motor / generator by inputting / outputting signals to / from an inverter or an electric circuit (not shown). It is said that. The motor ECUs 18 and 19 are connected to a power storage device 20 such as a battery or a capacitor so that power can be exchanged. The power storage device 20 supplies electric power when the motor / generators 2 and 3 are operated as motors, and operates the motor / generators 2 and 3 as generators to convert regenerative power from electric energy to chemical energy. Can be stored.

各モータ・ジェネレータ2,3では車輪のコースト走行時における慣性トルクが車軸12,14、クラッチ13,16および車軸15,17を介してモータ・ジェネレータ2,3内に収められている図示しないロータ軸に伝わり、ロータの慣性回転による運動エネルギを電気エネルギに変換し、モータ制御装置(モータECU)18,19を介してバッテリあるいはキャパシタなどの蓄電装置20に充電すなわち回生可能なように構成されている。この回生機能は回生ECU21によってコントロールされる。   In each motor / generator 2, 3, the rotor torque (not shown) is stored in the motor / generator 2, 3 through the axles 12, 14, the clutches 13, 16 and the axles 15, 17. The kinetic energy generated by the inertial rotation of the rotor is converted into electric energy, and the power storage device 20 such as a battery or a capacitor can be charged, that is, regenerated via motor control devices (motor ECUs) 18 and 19. . This regeneration function is controlled by the regeneration ECU 21.

また、右前輪10および左前輪11のそれぞれには油圧式の摩擦ブレーキが設けられている。すなわち、右前輪10の車軸12側には、ディスクロータ22、ブレーキキャリパ23、ホイールシリンダ24および圧力センサ25が設けられており、これらを作動させて摩擦による制動が可能なように構成されている。また同様に、左前輪11の車軸15側には、ディスクロータ26、ブレーキキャリパ27、ホイールシリンダ28および圧力センサ29が設けられており、これらを作動させて摩擦による制動が可能なように構成されている。   Each of the right front wheel 10 and the left front wheel 11 is provided with a hydraulic friction brake. That is, a disc rotor 22, a brake caliper 23, a wheel cylinder 24, and a pressure sensor 25 are provided on the axle 12 side of the right front wheel 10, and are configured to be able to perform braking by friction by operating these. . Similarly, a disc rotor 26, a brake caliper 27, a wheel cylinder 28, and a pressure sensor 29 are provided on the axle 15 side of the left front wheel 11, and are configured to be capable of braking by friction by operating these. ing.

この油圧式の摩擦ブレーキでは、ブレーキペダル30が踏まれて制動が行われる場合、ペダル踏力を増幅するために設けられたバキュームポンプ31、モータ32、バキュームブースタ33などにより、マスタシリンダ34を動作させる油圧が増幅されて油圧制御装置35を経由して油圧がホイールシリンダ24,28に送られ、ブレーキキャリパ23,27を駆動する。そして、ブレーキキャリパ23,27内の図示しないブレーキパッドを押しつけることにより、運動エネルギを熱エネルギに変換して摩擦による車両の制動、すなわちブレーキが効く構成とされている。また、これらの油圧制御は、連動して摩擦による制動およびその制御を行うための油圧が適切にコントロールが可能なように油圧ECU36により行われる構成とされている。なお、この油圧による摩擦ブレーキは、次に述べるモータ・ジェネレータ2,3による回生ブレーキと連動して制動を行うように構成されている。   In this hydraulic friction brake, when the brake pedal 30 is depressed and braking is performed, the master cylinder 34 is operated by a vacuum pump 31, a motor 32, a vacuum booster 33, and the like provided to amplify the pedal depression force. The hydraulic pressure is amplified and sent to the wheel cylinders 24 and 28 via the hydraulic control device 35 to drive the brake calipers 23 and 27. Then, by pressing a brake pad (not shown) in the brake calipers 23 and 27, the kinetic energy is converted into thermal energy, and the vehicle is braked by friction, that is, the brake is effective. In addition, these hydraulic pressure controls are configured to be performed by the hydraulic ECU 36 so that braking by friction and hydraulic pressure for performing the control can be appropriately controlled. The friction brake by hydraulic pressure is configured to perform braking in conjunction with regenerative braking by the motor generators 2 and 3 described below.

この摩擦ブレーキと回生ブレーキとによる制動協調制御(回生協調制御)では、ブレーキペダル30が操作されると、ブレーキペダルセンサ37により、その踏み込み度合いに基づいて要求制動力が求められる。その要求制動力は、前述した摩擦ブレーキおよびモータ・ジェネレータ2,3による回生制動のいずれによっても発生させることができるので、制動操作の行われた時点の車速やバッテリのSOC(充電容量)などに基づいて、制動力を発生させるブレーキ機構が選択される。また、フェールの有無によっても、制動力を発生するべき機構が選択される。このような制動制御や制動力を発生するべき機構の選択などを行うためのブレーキ・モータ統合ECU38が設けられている。なお、ブレーキ・モータ統合ECU38は前述した回生ECU21や油圧ECU36に信号を出力することにより、この回生ECU21と油圧ECU36によって右前輪10、左前輪11の制駆動制御を統括的に行うようになっている。   In the brake cooperative control (regenerative cooperative control) using the friction brake and the regenerative brake, when the brake pedal 30 is operated, the brake pedal sensor 37 obtains the required braking force based on the degree of depression. The required braking force can be generated by any of the above-described friction brake and regenerative braking by the motor / generators 2, 3. Therefore, the required braking force depends on the vehicle speed at the time of the braking operation, the SOC (charge capacity) of the battery, etc. Based on this, a brake mechanism that generates a braking force is selected. Also, a mechanism for generating a braking force is selected depending on the presence or absence of a failure. A brake / motor integrated ECU 38 is provided for performing such braking control and selection of a mechanism for generating braking force. The brake / motor integrated ECU 38 outputs signals to the regenerative ECU 21 and the hydraulic ECU 36 described above, so that the braking / driving control of the right front wheel 10 and the left front wheel 11 is comprehensively performed by the regenerative ECU 21 and the hydraulic ECU 36. Yes.

また、上述したブレーキ・モータ統合ECU38と回生ECU21と油圧ECU36とはさらに車両ECU39と通信可能に接続されている。この車両ECU39により車両の走行状態を適時に車両全体の各部位に設けられたセンサによって感知し、車両を最適な状態で走行できるように統括的に管理することができる。   The brake / motor integrated ECU 38, the regenerative ECU 21 and the hydraulic ECU 36 described above are further connected to the vehicle ECU 39 so as to be communicable. By this vehicle ECU 39, the running state of the vehicle can be sensed by sensors provided in each part of the entire vehicle in a timely manner, and can be comprehensively managed so that the vehicle can run in an optimum state.

また、この発明は少なくとも左右の二輪に設けられた駆動装置の故障時の制動に関するものであり、この発明で対象となる駆動装置の故障とは、一例を挙げれば、故障判定手段において車両の目標制動力と実際の車両の制動力との差が所定値を超えた値となり、もしくは車両の目標駆動力と実際の車両の駆動力との差が所定値を超えた値となり、駆動装置に異常ありと判定する場合などが考えられる。なお、故障判定手段はこのようなものに限定されず、他の算出方法などであってもよい。また故障判定は、車両ECU39と各部位に設けられたセンサ(図示せず)が行う構成となっている。   Further, the present invention relates to braking at the time of failure of the drive devices provided at least on the left and right two wheels. The failure of the drive device targeted by the present invention is, for example, a vehicle target in the failure determination means. The difference between the braking force and the actual vehicle braking force exceeds a predetermined value, or the difference between the target driving force of the vehicle and the actual driving force of the vehicle exceeds a predetermined value. A case where it is determined that there is a possibility is considered. Note that the failure determination means is not limited to this, and may be another calculation method. In addition, the failure determination is performed by the vehicle ECU 39 and sensors (not shown) provided in each part.

さらに、これらの故障と判定される状態は、構成部品の劣化(経年変化)、構成部品の不具合や突発的な構成部品要素の破損・欠損などにより発生する場合がある。このような故障が発生した場合には各種センサ等によりどの箇所において故障が発生したかが瞬時に判断され、各ECUなどに送信される構成となっている。この発明では、左右いずれか一輪に故障が生じた場合、車両安定性を維持しつつ、必要な制動力が発生されるように構成されている。より具体的には、左右いずれか一輪において回生ブレーキ側で故障が発生した場合、故障した一輪では油圧ブレーキによる制動を行う一方、正常な一輪側では摩擦ブレーキと回生ブレーキとを併用して両ブレーキによる協調により必要な総制動力が得られ、かつ回生も行われる構成とされている。   Furthermore, the state determined as such a failure may occur due to deterioration of component parts (aging), failure of the component parts, or sudden breakage / deletion of the component parts. When such a failure occurs, the location where the failure has occurred is determined instantaneously by various sensors and transmitted to each ECU or the like. In the present invention, when a failure occurs in any one of the left and right wheels, a necessary braking force is generated while maintaining vehicle stability. More specifically, if a failure occurs on the regenerative brake side on either the left or right wheel, the braked one wheel is braked with a hydraulic brake, while the normal one wheel side uses both a friction brake and a regenerative brake. The necessary total braking force can be obtained by the cooperation of and the regeneration is also performed.

図2はこの発明における故障した側の駆動装置と正常に動作する側の駆動装置との制御を簡略的に表すフローチャートである。まず故障が検出されているか否かが判別される(ステップS101)。故障が検出されていないことによりステップS101で否定的に判断された場合は再度フローチャートのスタートに戻る。これとは反対に故障が検出されていることによりステップS101で肯定的に判断された場合には、故障が検出されている駆動装置についての車輪が摩擦ブレーキによって制動される(ステップS102)。さらに正常に動作する駆動装置において摩擦ブレーキから駆動装置による回生ブレーキに移行しながら制動が実行される。   FIG. 2 is a flowchart schematically showing control of the drive device on the failed side and the drive device on the normally operating side in the present invention. First, it is determined whether or not a failure has been detected (step S101). If a negative determination is made in step S101 because no failure has been detected, the process returns to the start of the flowchart again. On the other hand, if a failure is detected and a positive determination is made in step S101, the wheel of the drive device in which the failure is detected is braked by the friction brake (step S102). Further, in the drive device that operates normally, braking is executed while shifting from the friction brake to the regenerative brake by the drive device.

さらに図3においてこの発明の左右の二輪の駆動装置による制動制御に関して、上記図1の構成による一例をフローチャートにより詳細に説明する。まず右前輪10と左前輪11の内どちらかが故障したか否かが判別され(ステップS201)、両車輪10,11のどちらからも故障が検出されていないことによりステップS201で否定的に判断された場合には元に戻る。左右二輪10,11の内どちらか一方に故障が検出されたことによりステップS201において肯定的に判断された場合には、つぎに故障部位が左右輪のどちらなのか特定する手順として、故障部位が右前輪10のみかどうかが判別される(ステップS202)。右前輪10のみに故障が検出されたことによりステップS202で肯定的に判断された場合には右前輪10と左前輪11との動力が遮断される(ステップS203)。そして、制動要求があるか否かが判別され(ステップS204)、制動要求がないことによりステップS204において否定的に判断された場合にはループして再度この判別(ステップS204)が繰り返される。また、制動要求があることによりステップS204で肯定的に判断された場合には、車両の左右二輪の制動が回生協調制御により行われる。すなわち故障部位である右前輪10が油圧ブレーキで制動され、正常側の左前輪11では油圧ブレーキから回生ブレーキへ移行させながら制動が行われる(ステップS205)。   Further, in FIG. 3, an example of the configuration of FIG. 1 will be described in detail with reference to a flowchart regarding the braking control by the left and right two-wheel drive devices of the present invention. First, it is determined whether one of the right front wheel 10 and the left front wheel 11 has failed (step S201), and a negative determination is made in step S201 because no failure has been detected from either of the wheels 10, 11. If it is, return to the original. If a failure is detected in either one of the left and right two wheels 10 and 11 and an affirmative determination is made in step S201, then as a procedure for specifying which one of the left and right wheels is the failure part, It is determined whether only the right front wheel 10 is present (step S202). If a failure is detected only in the right front wheel 10 and an affirmative determination is made in step S202, the power of the right front wheel 10 and the left front wheel 11 is cut off (step S203). Then, it is determined whether or not there is a braking request (step S204). If it is determined negative in step S204 because there is no braking request, a loop is made and this determination (step S204) is repeated again. Further, when the determination is positive in step S204 due to the request for braking, braking of the left and right two wheels of the vehicle is performed by regenerative cooperative control. That is, the right front wheel 10 which is the failure part is braked by the hydraulic brake, and the normal left front wheel 11 is braked while shifting from the hydraulic brake to the regenerative brake (step S205).

一方、ステップS202において故障が右前輪10のみでないことにより否定的に判断が行われた場合は、さらに故障部位が左前輪11のみか否かが判断される(ステップS206)。故障部位が左前輪11のみであることによりステップS206において肯定的に判断された場合には右前輪10と左前輪11との動力が遮断される(ステップS207)。つぎに制動要求があるか否かが判定され(ステップS208)、制動要求がないことによりステップS208で否定的に判断された場合にはループして再度この判別が行われる。そして、制動要求があることによりステップS208において肯定的に判断された場合には、車両の左右二輪の制動が回生協調制御により実行される。すなわち故障部位である左前輪11が油圧ブレーキで制動され、正常に動作する右前輪10側では油圧ブレーキから回生ブレーキへ移行が行われつつ、制動が実行される(ステップS209)。   On the other hand, if a negative determination is made in step S202 that the failure is not only the right front wheel 10, it is further determined whether or not the failure part is only the left front wheel 11 (step S206). If the failure part is only the left front wheel 11 and a positive determination is made in step S206, the power of the right front wheel 10 and the left front wheel 11 is cut off (step S207). Next, it is determined whether or not there is a braking request (step S208). If it is determined negative in step S208 because there is no braking request, a loop is made and this determination is performed again. If a positive determination is made in step S208 because there is a braking request, braking of the left and right wheels of the vehicle is executed by regenerative cooperative control. That is, the left front wheel 11 which is a failure part is braked by the hydraulic brake, and the braking is executed while the shift from the hydraulic brake to the regenerative brake is performed on the right front wheel 10 side which operates normally (step S209).

また、上記のステップS206において故障部位が左前輪11のみでないことにより否定的に判断が行われた場合、すなわち故障部位が左右の二輪両方であると判断された場合には、右前輪10と左前輪11との動力が遮断される(ステップS210)。つぎに制動要求があるか否かが判別され(ステップS211)、制動要求がないことによりステップS211で否定的に判断された場合にはループして再度このステップの判別がなされる(ステップS211)。そして制動要求があることによりステップS211において肯定的に判断された場合には右前輪10と左前輪11との両輪ともに油圧ブレーキによる制動が行われる(ステップS212)。   Further, when a negative determination is made in step S206 above because the failure part is not only the left front wheel 11, that is, when it is determined that the failure part is both the left and right wheels, the right front wheel 10 and the left The power with the front wheel 11 is cut off (step S210). Next, it is determined whether or not there is a braking request (step S211). If it is determined negative in step S211 because there is no braking request, a loop is made and this step is determined again (step S211). . If a positive determination is made in step S211 due to the demand for braking, both the right front wheel 10 and the left front wheel 11 are braked by a hydraulic brake (step S212).

図2,3で示した、この発明の左右二輪の故障中のブレーキ動作に関して時間を横軸に表し、制動トルクを縦軸に表した線図が図4および図5に示されている。図4は故障した側の駆動装置の制動トルクと時間との変化を概略的に表した線図である。また、図5は正常に動作する側の駆動装置の制動トルクと時間との変化を概略的に表した線図である。   4 and 5 are diagrams showing time on the horizontal axis and braking torque on the vertical axis regarding the braking operation during failure of the left and right two wheels according to the present invention shown in FIGS. FIG. 4 is a diagram schematically showing changes in braking torque and time of the failed drive device. FIG. 5 is a diagram schematically showing changes in braking torque and time of the drive device on the side that operates normally.

故障している車輪側の制動の時間的な変化について図4を用いて説明すると、故障している車輪側の制動では制動要求により時刻T11から油圧ブレーキによる制動トルクがかかり始める。なお、このとき片側車輪駆動異常のため、回生ブレーキ側では動力が遮断されている。そして油圧ブレーキによる制動トルクは緩やかにしかも短時間に片輪指令(必要)トルクまで上昇し、所定の制動トルクを車輪に与える。   The temporal change in braking on the failed wheel side will be described with reference to FIG. 4. In braking on the failed wheel side, braking torque from the hydraulic brake starts to be applied from time T11 due to a braking request. At this time, the power is cut off on the regenerative brake side because of one-side wheel drive abnormality. The braking torque by the hydraulic brake gradually increases to the one-wheel command (necessary) torque in a short time, and a predetermined braking torque is applied to the wheels.

つぎに正常に動作する車輪側の制動の時間的な変化について図5を用いて説明すると、時刻T21から通常であれば即時に回生制動トルクを作動させて制動力を車輪に与えることは可能であるが、この発明では先ず、時刻T21から油圧による制動が行われ、遅れ時間が設けられ時刻T22付近から油圧制動トルクを下げていき、徐々に回生制動トルクを適切な度合いで上げていく。この方法による回生制動トルクと油圧制動トルクとで片輪指令(必要)制動トルクを車輪に与える回生協調制御が行われることで正常に動作する車輪に対する制動に必要な制動トルクが付与され、かつ走行安定性を損なわずに故障時であっても車両の制動および回生を行うことが可能となる。なお、各種センサで取得された情報に基づいて車両ECU39などにより、車両の挙動が不安定になりやすい状態であると判断された場合(たとえば、高Gな状態や旋回中など)には、前記遅れ時間をより長く取り、油圧ブレーキによる制動で車両の挙動が安定するまでの余裕時間を持たせることで車両挙動をより安定させながら回生に移行することができる。   Next, a temporal change in braking on the wheel side that operates normally will be described with reference to FIG. 5. It is possible to apply a braking force to the wheel by operating a regenerative braking torque immediately from time T21 if normal. However, in the present invention, first, braking by hydraulic pressure is performed from time T21, a delay time is provided, the hydraulic braking torque is decreased from around time T22, and the regenerative braking torque is gradually increased to an appropriate degree. The regenerative braking control and regenerative braking torque by this method are used to provide one-wheel command (necessary) braking torque to the wheel, thereby providing the braking torque necessary for braking the normally operating wheel and driving. The vehicle can be braked and regenerated even at the time of failure without impairing stability. If the vehicle ECU 39 or the like determines that the behavior of the vehicle is likely to be unstable based on information acquired by various sensors (for example, a high-G state or turning), It is possible to shift to regeneration while further stabilizing the vehicle behavior by taking a longer delay time and providing a margin time until the behavior of the vehicle is stabilized by braking by the hydraulic brake.

また、この発明の駆動力制御装置の制御に関して再度説明すると、車両の駆動装置に設けられたセンサからブレーキ・モータ統合ECU38の目標駆動力の値に対して実際の動力の値が許容できない範囲において小さい値である場合などには、その一輪側の駆動装置を故障と判定し、電気的または機械的にも遮断することで電力等の損失を回避することができる。その後、制動要求があった場合には、故障している駆動装置側で油圧ブレーキにより制動トルクが付与され、正常に動作する側の駆動装置においては油圧ブレーキによる制動トルクが付与されて車両の安定性が保たれた状態で次第にモータ・ジェネレータ2(または3)により回生トルクが付与されていき、回生協調制御による制動が行われ、電力を回生しつつ要求された制動を行うことができる。   Further, the control of the driving force control device of the present invention will be described again. In a range where the actual power value cannot be allowed with respect to the target driving force value of the brake / motor integrated ECU 38 from the sensor provided in the vehicle driving device. In the case of a small value or the like, it is possible to avoid loss of electric power or the like by determining that the driving device on the one-wheel side is out of order and shutting it off electrically or mechanically. After that, when there is a braking request, braking torque is applied by the hydraulic brake on the malfunctioning drive device side, and braking torque is applied by the hydraulic brake on the drive device on the normally operating side to stabilize the vehicle. Regenerative torque is gradually applied by the motor / generator 2 (or 3) in a state in which the power is maintained, braking is performed by regenerative cooperative control, and the required braking can be performed while regenerating electric power.

以上、上記に述べた構成例においては、制御の対象となる個別に駆動する左右の二輪は前輪二輪だったが、制御の対象となる個別に駆動する左右の二輪は後輪二輪とする構成であってもよく、また、前後輪四輪ともに個別にモータ・ジェネレータで駆動する構成とし、対象となる個別に駆動する左右の二輪の制御を前輪二輪と後輪二輪との両方に適用し、さらに前輪二輪と後輪二輪とが電子制御装置などを介して協調して制御される構成であってもよい。また、上記構成例においては、各機構に設けられた電子制御装置(ECU)は個別に設けられているが、それぞれのECUは、個々に部分的にそれぞれ任意のケースで一体となる構成やすべてを一括して統合的に車両全体の制御管理を行うECUが設けられる構成であってもよい。   As described above, in the configuration example described above, the two left and right wheels to be individually controlled to be controlled are two front wheels, but the two left and right wheels to be individually controlled to be controlled are two rear wheels. In addition, both front and rear wheels are individually driven by a motor / generator, and the control of the left and right wheels to be individually driven is applied to both the front wheels and the rear wheels. A configuration in which two front wheels and two rear wheels are cooperatively controlled via an electronic control unit or the like may be employed. Further, in the above configuration example, the electronic control unit (ECU) provided in each mechanism is individually provided. However, each ECU is configured to be partially integrated with each other in any case. Alternatively, a configuration may be provided in which an ECU that performs integrated control management of the entire vehicle is provided.

この発明の制動力制御装置を適用可能な車両の構成の一例を模式的に示す概念図である。1 is a conceptual diagram schematically showing an example of a configuration of a vehicle to which a braking force control device of the present invention can be applied. 図1に示された制動力制御装置の制御例を概略的に示すフローチャートである。2 is a flowchart schematically showing a control example of the braking force control apparatus shown in FIG. 1. 図1に示された制動力制御装置の制御例を具体的に示すフローチャートである。2 is a flowchart specifically illustrating a control example of the braking force control apparatus illustrated in FIG. 1. この発明の制動力制御装置による故障側の駆動装置の制動トルクと時間との関係を表す線図である。It is a diagram showing the relationship between the braking torque of the failure side drive device by the braking force control device of this invention and time. この発明の制動力制御装置による正常側の駆動装置の制動トルクと時間との関係を表す線図である。It is a diagram showing the relationship between the braking torque of the normal side drive device by the braking force control apparatus of this invention, and time.

符号の説明Explanation of symbols

10…右前輪、 11…左前輪、 ブレーキ・モータ統合ECU38、 39…車両ECU。   DESCRIPTION OF SYMBOLS 10 ... Right front wheel, 11 ... Left front wheel, Brake | motor motor integrated ECU38, 39 ... Vehicle ECU.

Claims (1)

少なくとも前後車輪いずれかの左右二輪にそれぞれ個別に設けられ、かつ駆動トルクを増減させるとともに発電機能を備えた駆動装置と、油圧によって動作して前記左右二輪のそれぞれに個別に制動力を付与するブレーキ機構とが設けられた駆動力制御装置において、
前記左右二輪のいずれか一方の駆動装置が故障したか否かを判別する故障判別手段と
前記一方の駆動装置の故障が検出された場合、その故障が検出された駆動装置と当該駆動装置に連結されている車輪とを機械的に遮断させ、かつ他方の故障が検出されていない駆動装置と当該駆動装置に連結されている車輪とを機械的に遮断させる遮断手段と、
前記一方の駆動装置の故障が検出された場合の制動要求時に、前記故障が検出された駆動装置が設けられている車輪および前記他方の故障が検出されていない駆動装置が設けられている車輪に、前記ブレーキ機構による制動力を付与させる制動指示手段と、
前記他方の故障が検出されていない駆動装置が設けられている車輪に前記制動指示手段により付与される制動力を、前記ブレーキ機構による制動力から当該駆動装置による制動力に移行させる制動力切換手段と
を備えていることを特徴とする駆動力制御装置。
A drive device that is individually provided on each of the left and right wheels of at least one of the front and rear wheels and that increases / decreases the drive torque and has a power generation function, and a brake that operates by hydraulic pressure and individually applies a braking force to each of the left and right wheels In the driving force control device provided with the mechanism,
Failure determination means for determining whether one of the left and right two wheels has failed ;
When a failure of the one drive device is detected, the drive device in which the failure is detected and a wheel connected to the drive device are mechanically disconnected, and the other drive device in which no failure is detected And a blocking means for mechanically blocking the wheel connected to the drive device,
During braking request when the failure of one of the driving device is detected by the failure wheels detected drive is provided with and failure of the other hand is not detected driving device provided Braking instruction means for applying a braking force by the brake mechanism to the existing wheel;
Braking force switching means for shifting the braking force applied by the braking instruction means to the wheel provided with the driving device in which the other failure is not detected from the braking force by the brake mechanism to the braking force by the driving device. And a driving force control device.
JP2008246485A 2008-09-25 2008-09-25 Driving force control device Expired - Fee Related JP5245681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008246485A JP5245681B2 (en) 2008-09-25 2008-09-25 Driving force control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008246485A JP5245681B2 (en) 2008-09-25 2008-09-25 Driving force control device

Publications (2)

Publication Number Publication Date
JP2010076568A JP2010076568A (en) 2010-04-08
JP5245681B2 true JP5245681B2 (en) 2013-07-24

Family

ID=42207513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008246485A Expired - Fee Related JP5245681B2 (en) 2008-09-25 2008-09-25 Driving force control device

Country Status (1)

Country Link
JP (1) JP5245681B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5734412B2 (en) * 2010-04-30 2015-06-17 マグナ ステアー ファールゾイヒテクニーク アーゲー ウント コ カーゲー Drivetrain and automobile
JP2013135501A (en) * 2011-12-26 2013-07-08 Aisin Seiki Co Ltd Device and method for controlling motor drive vehicle
JP6064762B2 (en) * 2013-04-16 2017-01-25 株式会社デンソー Vehicle control device
JP6422752B2 (en) * 2014-12-03 2018-11-14 Ntn株式会社 Vehicle braking force control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3565002B2 (en) * 1997-04-07 2004-09-15 トヨタ自動車株式会社 Hydraulic pressure control device and vehicle hydraulic brake system
JP4412476B2 (en) * 2004-05-17 2010-02-10 トヨタ自動車株式会社 Travel control device for a four-wheel independent drive vehicle
JP5176307B2 (en) * 2006-11-10 2013-04-03 トヨタ自動車株式会社 Vehicle regenerative / friction cooperative braking control system

Also Published As

Publication number Publication date
JP2010076568A (en) 2010-04-08

Similar Documents

Publication Publication Date Title
JP5721792B2 (en) Vehicle regenerative braking control method including at least one electric motor
US6959971B2 (en) Vehicle braking apparatus
JP2006246657A (en) Regenerative braking controller for vehicle
JP2007060761A (en) Deceleration controller for hybrid car
WO2013084358A1 (en) Vehicle control device
JP5359664B2 (en) Control device for four-wheel independent drive vehicle
JP2008265397A (en) Vehicular braking control device
JP2003348705A (en) Method and system of providing coastdown braking torque to electrically propelled vehicle
KR20180026179A (en) Apparatus and method for failsafe in electric corner module system
JP5245681B2 (en) Driving force control device
JP5348226B2 (en) Brake control device for vehicle
US10668810B2 (en) Vehicle stabilization for a hybrid vehicle in the event of brake slip of the drive wheels or increased risk thereof
JP6120010B2 (en) vehicle
JP4285483B2 (en) Vehicle and control method thereof
JP2010241166A (en) Four-wheel drive controller and four-wheel drive control method for vehicle
JP4449825B2 (en) Hybrid vehicle travel mode control device
JP2017034930A (en) Electric vehicle
JP4455572B2 (en) Hybrid vehicle
JP2020504048A (en) Method and apparatus for operating a vehicle and vehicle
JP2013158200A (en) Passive torque split four-wheel-drive vehicle
Bildstein et al. Regenerative braking system
JP2018024392A (en) Vehicular control device
JP2005153790A (en) Four-wheel drive vehicle
CN104553822A (en) Electric-machines-drag torque compensation
KR20080024651A (en) The control method of hydraulic brake for hybrid electric vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

R151 Written notification of patent or utility model registration

Ref document number: 5245681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees