WO2012108001A1 - Drive control device for front and rear wheel drive vehicle - Google Patents

Drive control device for front and rear wheel drive vehicle Download PDF

Info

Publication number
WO2012108001A1
WO2012108001A1 PCT/JP2011/052644 JP2011052644W WO2012108001A1 WO 2012108001 A1 WO2012108001 A1 WO 2012108001A1 JP 2011052644 W JP2011052644 W JP 2011052644W WO 2012108001 A1 WO2012108001 A1 WO 2012108001A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
regenerative braking
wheel
vehicle
electric motor
Prior art date
Application number
PCT/JP2011/052644
Other languages
French (fr)
Japanese (ja)
Inventor
矢野 雅也
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/052644 priority Critical patent/WO2012108001A1/en
Publication of WO2012108001A1 publication Critical patent/WO2012108001A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/106Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels
    • B60L3/108Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels whilst braking, i.e. ABS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/119Conjoint control of vehicle sub-units of different type or different function including control of all-wheel-driveline means, e.g. transfer gears or clutches for dividing torque between front and rear axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/12Conjoint control of vehicle sub-units of different type or different function including control of differentials
    • B60W10/14Central differentials for dividing torque between front and rear axles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/348Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed
    • B60K17/35Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/403Torque distribution between front and rear axle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a technique for controlling a regenerative braking torque of a motor in a vehicle drive device in which the motor is regeneratively operated by torque from a drive wheel.
  • the regenerative braking torque of the electric motor is transmitted to one of the front wheels and the rear wheels, and the electric motor is connected to the other of the front wheels and the rear wheels via a torque distribution device.
  • a drive control device for a front and rear wheel drive vehicle to which the regenerative braking torque is transmitted is well known.
  • the drive control apparatus for four-wheel drive vehicles of patent document 1 is the example.
  • the one wheel is a rear wheel
  • the other wheel is a front wheel
  • the torque distribution device is a clutch device in which transmission torque is changed according to engagement force. .
  • the drive control apparatus of the patent document 1 transmits a part of the regenerative braking torque of the motor to the front wheels by engaging the clutch device during regenerative operation of the motor, that is, during regenerative braking.
  • the fuel efficiency can be improved by the regenerative operation of the electric motor.
  • the fuel efficiency is a travel distance per unit fuel consumption
  • a reduction in fuel consumption means that the travel distance per unit fuel consumption is shortened, or the fuel consumption rate of the entire vehicle is increased. This definition of fuel consumption is the same throughout the specification.
  • JP 2010-149745 A Japanese Patent Laid-Open No. 2005-082048
  • the present invention has been made against the background of the above circumstances, and an object of the present invention is to provide a drive control device capable of improving the stability of vehicle behavior during regenerative braking of front and rear wheel drive vehicles. is there.
  • the gist of the present invention is that (a) during regenerative braking in front and rear wheel drive traveling, the regenerative braking torque of the motor is transmitted to one of the front wheels and the rear wheels, and the front wheels And a drive control device for front and rear wheel drive vehicles in which the regenerative braking torque of the electric motor is transmitted to the other of the rear wheels via a torque distribution device, and (b) torque transmission of the torque distribution device
  • the torque transmission is limited
  • the regenerative braking torque of the electric motor is set to be smaller than that when the torque distribution device of the torque distribution device is limited.
  • the distribution ratio of the regenerative braking torque of the motor transmitted to the other wheel is lower than when the non-torque transmission is limited, while the torque transmission is transmitted to the one wheel. Since the regenerative braking torque distribution ratio is increased, if the regenerative braking torque does not change from that at the time of non-torque transmission restriction, the one wheel slips and the vehicle behavior tends to become unstable. Since the regenerative braking torque is made smaller than that when the non-torque transmission is limited, the regenerative braking torque of the motor is generated without considering the torque transmission limitation of the torque distribution device. The stability of vehicle behavior can be improved during regenerative braking.
  • the torque distribution device may increase or decrease the transmission torque to the other wheel continuously or stepwise.
  • the torque distribution device is a power interrupting device that selectively sets the transmission torque to zero. There is no problem.
  • the temperature of the torque distribution device is equal to or higher than a predetermined torque distribution device temperature determination value. In this way, it is possible to easily determine whether or not the torque transmission is limited by detecting the temperature of the torque distribution device.
  • the regenerative braking torque of the electric motor is limited to a predetermined maximum allowable regenerative braking torque, or (b) the maximum allowable regenerative braking torque is set to the non-torque when the torque transmission is limited.
  • the regenerative braking torque of the motor is made smaller when the torque transmission is restricted than when the non-torque transmission is restricted. In this case, the regenerative braking torque of the electric motor can be easily reduced by changing the setting of the maximum allowable regenerative braking torque.
  • the maximum allowable regenerative braking torque is set so that the regenerative braking torque of the electric motor is not transmitted to the other wheel, so that the slip of the one wheel does not occur.
  • the regenerative braking torque of the electric motor is limited to the same magnitude as that of a two-wheel drive vehicle that travels by driving only the one wheel, the slip of one wheel is sufficiently suppressed.
  • sufficient stability of vehicle behavior can be secured.
  • FIG. 2 is a skeleton diagram for explaining a configuration of a power transmission device and a transfer provided in the part-time four-wheel drive vehicle of FIG. 1. It is a functional block diagram for demonstrating the principal part of the control function with which the electronic control apparatus shown in FIG. 1 was equipped. It is a figure showing the relationship between the maximum torque capacity and coupling temperature of the control coupling apparatus shown in FIG.
  • FIG. 2 is a flowchart for explaining a main part of a control operation of the electronic control device shown in FIG. 1, that is, a control operation for generating a vehicle braking force when a part-time four-wheel drive vehicle performs regenerative braking traveling.
  • FIG. 7 is a flowchart for explaining the main part of the control operation of the electronic control device shown in FIG. 1 together with FIG. 6, and is a flowchart showing a subroutine executed in step SA ⁇ b> 3 of FIG. 6. It is the figure which showed an example of the electric vehicle which remove
  • FIG. 1 shows a vehicle drive device 8 provided in a part-time four-wheel drive vehicle 6 (hereinafter referred to as a vehicle 6) that is a front and rear wheel drive vehicle to which the present invention is applied, and an electronic control device for controlling the vehicle drive device 8.
  • 10 is a diagram for explaining 10.
  • the electronic control device 10 corresponds to the drive control device in the present invention.
  • the vehicle drive device 8 of the present embodiment is suitably used for a hybrid vehicle that employs a part-time 4WD system based on a front engine rear wheel drive system (FR).
  • FR front engine rear wheel drive system
  • a vehicle 6 includes an electronic control device 10, a vehicle drive device 8 including an engine 12 and a power transmission device 14, a transfer 16, a front propeller shaft 18, and a front wheel differential gear device. 20, a pair of front wheel axles 22, a rear propeller shaft 24, a rear wheel differential gear device 26, a pair of rear wheel axles 28, a pair of front wheel front drive wheels 30, and a front drive wheel 30 thereof. And a rear drive wheel 32 which is a pair of rear wheels having the same wheel diameter.
  • a driving force (driving torque) generated by an engine 12 that is an internal combustion engine such as a gasoline engine or a diesel engine is transmitted to a transfer 16 via a power transmission device 14.
  • the driving force transmitted to the transfer 16 is distributed to the front propeller shaft 18 and the rear propeller shaft 24.
  • the driving force transmitted to the front propeller shaft 18 is transmitted to the pair of left and right front drive wheels 30 via the front wheel differential gear unit 20 and the front wheel axle 22.
  • the driving force transmitted to the rear propeller shaft 24 is transmitted to the pair of left and right rear driving wheels 32 via the rear wheel differential gear device 26 and the rear wheel axle 28.
  • the front-wheel differential gear device 20 and the rear-wheel differential gear device 26 are well-known so-called bevel gear types, and a pair of left and right front wheel axles 22 and rear wheel axles 28 while allowing a difference in rotation. Are driven to rotate.
  • the front drive wheel 30 corresponds to the other wheel of the present invention
  • the rear drive wheel 32 corresponds to one wheel of the present invention.
  • FIG. 2 is a skeleton diagram for explaining the configuration of the power transmission device 14 and the transfer 16 shown in FIG.
  • the power transmission device 14 includes an input shaft 36 connected to the crankshaft of the engine 12, a power distribution mechanism 46 connected to the input shaft 36, and power to the power distribution mechanism 46 in the transmission case 34.
  • the first electric motor M1 that is connected so as to be able to transmit and controls the differential state of the power distribution mechanism 46, and the second electric motor M2 that is connected to the output shaft 44 so as to rotate integrally with the output shaft 44 are shared. It is equipped on the axis RC1.
  • the power transmission device 14 is an electric that continuously changes a speed ratio ⁇ 0 (rotational speed Nin of the input shaft 36 / rotational speed Nout of the output shaft 44), which is a rotational speed ratio of the output shaft 44 to the input shaft 36. It functions as a continuously variable transmission.
  • the output shaft 44 is an output side rotation member of the power transmission device 14, but also corresponds to an input side rotation member of the transfer 16.
  • the power distribution mechanism 46 includes a sun gear S0 connected to the first electric motor M1, a planetary gear P0, a carrier CA0 connected to the input shaft 36 and supporting the planetary gear P0 so as to rotate and revolve, and a planetary gear.
  • the first electric motor M1 and the second electric motor M2 (hereinafter referred to as the electric motor M when not particularly distinguished) selectively function as an electric motor that generates driving torque and function as a generator that generates regenerative torque.
  • the rotating machine is configured by, for example, an AC synchronous motor generator.
  • a power storage device 50 that is a battery and an inverter 48 for controlling the motors M1 and M2 are provided in the vehicle drive device 8 (see FIG.
  • the first electric motor M1 and the second electric motor M2 is connected to be able to exchange electric power with each other.
  • Each of the first electric motor M1 and the second electric motor M2 is controlled by the electronic control device 10 via the inverter 48, generates electric energy by regenerative operation, and stores (charges) the electric energy in, for example, the power storage device 50.
  • the second electric motor M2 is transmitted from one or both of the front drive wheels 30 and the rear drive wheels 32 during coasting when the accelerator is off (coast driving) or when the vehicle is braked by operating the brake pedal 96. A regenerative operation for converting the kinetic energy of the vehicle 6 into electrical energy is performed.
  • the second electric motor M2 corresponds to the electric motor that generates the regenerative braking torque in the present invention. Since the power transmission device 14 is configured symmetrically with respect to the axis RC1, the lower side is omitted in the skeleton diagram of FIG. In this embodiment, the rotational speed Nin of the input shaft 36 is the same as the engine rotational speed Ne because the input shaft 36 is connected in series to the crankshaft of the engine 12.
  • the output of the engine 12 is distributed to the first electric motor M1 and the output shaft 44, and at the same time, a part of the distributed output of the engine 12 is stored with the electric energy generated from the first electric motor M1, or the second electric motor. M2 is driven to rotate.
  • the rotation speed of the first electric motor M1 is controlled so that the rotation of the output shaft 44 is continuously changed regardless of the predetermined rotation of the engine 12, whereby the speed ratio ⁇ 0 of the power distribution mechanism 46 is increased from the minimum value ⁇ 0min to the maximum.
  • a continuously variable transmission state that functions as an electrical continuously variable transmission that is continuously changed to the value ⁇ 0max is set.
  • the transfer 16 distributes the driving force output from the power transmission device 14 to the front propeller shaft 18 and the rear propeller shaft 24.
  • the transfer 16 according to the present embodiment is provided between a transmission device 52 for transmitting torque between the output shaft 44 and the front propeller shaft 18, and between the output shaft 44 and the front propeller shaft 18.
  • a control coupling device 54 that restricts the rotation and controls the front-rear driving force distribution.
  • the control coupling device 54 corresponds to the torque distribution device according to the present invention.
  • the transmission device 52 is interposed between the drive gear 56 connected to the output shaft 44, the driven gear 60 that is an input rotation member of the control coupling device 54, and the drive gear 56 and the driven gear 60. And an intermediate gear 62 for transmitting power between 56 and 60.
  • the control coupling device 54 is, for example, a so-called friction engagement device that transmits torque by friction, that is, a friction clutch.
  • the control coupling device 54 includes a wet multi-plate type hydraulic friction engagement device in which a plurality of friction plates stacked on each other are pressed by a hydraulic actuator, and both sides on which both are inserted.
  • the rotating member, that is, the driven gear 60 and the coupling output shaft 64 connected in series to the front propeller shaft 18 are selectively connected.
  • the hydraulic pressure (engagement pressure) of the hydraulic oil supplied to the hydraulic actuator is adjusted by the electronic control device 10 shown in FIG. ) Is continuously changed.
  • the torque distribution ratio between the front drive wheel 30 and the rear drive wheel 32 is 0 (front drive wheel): 100 (rear drive wheel) to 50 (front drive wheel). : 50 (rear drive wheel) is continuously controlled.
  • the control coupling device 54 when the control coupling device 54 is fully engaged, the driven gear 60 and the coupling output shaft 64 rotate integrally, and when the control coupling device 54 is half-engaged.
  • the torque transmitted from the output shaft 44 of the power transmission device 14 to the front propeller shaft 18 changes according to the engagement force.
  • the control coupling device 54 is disengaged, that is, released, torque transmission between the driven gear 60 and the coupling output shaft 64 is interrupted, and the output torque from the power transmission device 14 is the rear propeller. It is transmitted only to the shaft 24. That is, the vehicle 6 is in a two-wheel drive state by the rear drive wheels 32.
  • the control coupling device 54 functions as a torque distribution device that distributes the output torque from the power transmission device 14 to the front drive wheels 30 and the rear drive wheels 32.
  • the control coupling device 54 functions as a torque distribution device that distributes the output torque from the power transmission device 14 to the front drive wheels 30 and the rear drive wheels 32.
  • the regenerative braking torque Tgr of the second electric motor M2 is transmitted to the rear drive wheel 32 and the front drive wheel 30 is connected to the front drive wheel 30 via the control coupling device 54.
  • the regenerative braking torque Tgr of the second electric motor M2 is transmitted.
  • the vehicle 6 applies a braking torque to the front drive wheel 30 that generates a braking torque on the front drive wheel 30 according to the supplied hydraulic pressure, and to the rear drive wheel 32 according to the supplied hydraulic pressure.
  • a rear wheel hydraulic brake 92 is generated, and a brake hydraulic control circuit 94 that supplies hydraulic pressure to the front wheel hydraulic brake 90 and the rear wheel hydraulic brake 92 is provided.
  • the brake hydraulic control circuit 94 includes, for example, a hydraulic pump and an accumulator that generate hydraulic pressure to perform ABS control and VSC control, and an electromagnetic valve that adjusts the hydraulic pressure supplied to each hydraulic brake 90 and 92 independently, such as a linear solenoid valve.
  • the electronic control device 10 supplies the hydraulic pressure generated by the master cylinder 98 or the hydraulic pressure generated by the hydraulic pump in accordance with the brake depression force F BR of the brake pedal 96 and the brake depression speed SPD BR by the driver. Is supplied to each of the hydraulic brakes 90 and 92 according to a command from, and the supplied hydraulic pressure is controlled.
  • the braking torque generated on the front drive wheel 30 and the rear drive wheel 32 by the front wheel hydraulic brake 90 and the rear wheel hydraulic brake 92, respectively, is supplied from the brake hydraulic control circuit 94 to the front wheel hydraulic brake 90 and the rear wheel hydraulic brake 92.
  • the hydraulic pressure can be increased or decreased according to the hydraulic pressure supplied to each.
  • the electronic control device 10 is a control device for controlling the operation of the vehicle drive device 8 and the brake hydraulic pressure control circuit 94.
  • the electronic control device 10 includes a plurality of so-called microcomputers including a CPU, a ROM, a RAM, an input / output interface, and the like.
  • the electronic control device 10 uses a temporary storage function of the RAM, and signals according to a program stored in the ROM in advance.
  • Various controls are executed by performing the processing.
  • the various controls include, for example, hybrid drive control that calculates the required outputs of the engine 12 and the electric motor M and gives commands to each device so that the required outputs are obtained, and the engine output that controls the output of the engine according to the commands.
  • Control motor output control for controlling the operation of the motor M as a driving force source or generator according to the command, and front / rear driving force distribution control for controlling the torque capacity of the control coupling device 54 to control the front / rear driving force distribution and so on.
  • the electronic control device 10 is supplied with various signals from sensors and switches provided in the vehicle. For example, a signal representing the engine rotational speed Ne from the engine rotational speed sensor 100, a signal representing the rotational speed Nout of the output shaft 44 corresponding to the vehicle speed V from the output shaft rotational speed sensor 102, and a first motor from the first motor rotational speed sensor 104 A signal representing a rotation speed N M1 of M1 (hereinafter referred to as a first motor rotation speed N M1 ), a rotation speed N M2 of the second motor M2 from the second motor rotation speed sensor 106 (hereinafter referred to as a second motor rotation speed N M2 ).
  • a signal representing the rotation speed Nf of the front drive wheel 30 (hereinafter referred to as front wheel rotation speed Nf) from the front wheel rotation speed sensor 108, and a rotation speed Nr (hereinafter referred to as rear wheel rotation speed sensor 110) of the rear wheel rotation speed sensor 110.
  • a command signal for controlling the output of the engine 12 for example, a command signal for controlling the operation of the electric motor M, a command signal for controlling the operation of the control coupling device 54, brake hydraulic pressure
  • Various signals such as a command signal for controlling the operation of the control circuit 94 are output.
  • FIG. 3 is a functional block diagram for explaining the main part of the control function provided in the electronic control unit 10.
  • the electronic control unit 10 includes a hybrid control unit 120 as a hybrid control unit, a regenerative braking travel determination unit 122 as a regenerative braking travel determination unit, and a vehicle braking force determination unit as a vehicle braking force determination unit.
  • a required charging amount determining unit 126 as a required charging amount determining unit
  • a torque transmission limit determining unit 128 as a torque transmission limit determining unit
  • a maximum allowable regenerative braking torque setting unit 130 as a maximum allowable regenerative braking torque setting unit.
  • a regenerative braking torque determining unit 132 as a regenerative braking torque determining unit
  • a front and rear wheel torque distribution control unit 134 as a front and rear wheel torque distribution control unit
  • a vehicle braking execution unit 136 as a vehicle braking execution unit.
  • the hybrid control means 120 controls the operation of the engine 12 and the electric motor M based on various signals supplied to the electronic control device 10 from each sensor, switch, and the like. For example, while instructing the engine output control device 121 to operate the engine 12 in an efficient operating range, the distribution of the driving force between the engine 12 and the second electric motor M2 and the reaction force due to the power generation of the first electric motor M1 The speed ratio ⁇ 0 as an electric continuously variable transmission of the power transmission device 14 is controlled by changing it optimally. Further, when the regenerative braking travel determining means 122 described later determines that the regenerative braking traveling should be performed, the hybrid control means 120 sets the first electric motor M1 in the idling state and transmits power from the input shaft 36 to the output shaft 44. While shutting off, the engine 12 is temporarily stopped to improve fuel consumption.
  • the regenerative braking travel determination means 122 determines whether or not to perform decelerating travel that causes the vehicle 6 to travel while decelerating, that is, regenerative braking travel that brakes the vehicle 6 while regenerating the second electric motor M2. Specifically, the regenerative braking travel determination unit 122 determines whether or not to perform the regenerative braking travel based on the vehicle speed V, the accelerator opening degree Acc, and the like. For example, the regenerative braking is performed when the vehicle speed V is equal to or higher than the determination reference vehicle speed stored in the electronic control device 10 in advance and the accelerator opening Acc is less than the determination reference accelerator opening stored in the electronic control device 10 in advance. Judge that it should run.
  • the determination reference accelerator opening is experimentally set to such a small opening that it can be determined that the accelerator pedal is not depressed, for example.
  • the determination reference vehicle speed is experimentally set to a vehicle speed V at which it can be determined that applying a braking force equal to or higher than an engine brake in a normal engine vehicle is in line with the driver's intention.
  • the vehicle braking force determination unit 124 determines a target vehicle braking force that is a target value of the vehicle braking force F VL in the regenerative braking travel.
  • F VL * is sequentially determined. From the target vehicle braking force F VL * is made vehicle braking along the intention of the driver driving performance and driving comfort relationships predetermined experimentally so as not to impair, the vehicle speed V, the brake pressing force F BR, And the brake depression speed SPD BR and the like. For example, the target vehicle braking force F VL * is determined to increase as the brake depression force F BR increases.
  • the requested charge amount determining means 126 sequentially detects the remaining charge SOC of the power storage device 50, and based on the remaining charge SOC determined in advance from an experimentally determined relationship, The required charging amount to be charged, that is, the generated power to be generated by the regenerative operation of the second electric motor M2, is sequentially determined. For example, the requested charge amount determining unit 126 determines the generated power to be generated by the second electric motor M2 as the remaining charge SOC of the power storage device 50 is lower.
  • the torque transmission restriction determining means 128 determines whether or not the control coupling device 54 is in a torque transmission restricted state in which torque transmission of the control coupling device 54 is restricted from a predetermined normal use, that is, the control coupling device. It is determined whether or not the torque transmission is limited when the torque transmission is limited more than the predetermined normal use. Since the control coupling device 54 is in the torque transmission limit state at a high temperature, specifically, the torque transmission limit determination means 128 sequentially detects the coupling temperature TEMP CP , and the coupling temperature TEMP CP is Then, it is sequentially determined whether or not it is equal to or greater than a predetermined coupling temperature determination value TEMP1 so that it can be determined whether or not the torque transmission of the control coupling device 54 is limited.
  • the torque transmission restriction determination unit 128 determines that the torque transmission restriction of the control coupling device 54 is in effect when the coupling temperature TEMP CP is equal to or higher than the coupling temperature determination value TEMP1. On the other hand, when the coupling temperature TEMP CP is less than the coupling temperature determination value TEMP1, it is determined that the non-torque transmission limit of the control coupling device 54, that is, the predetermined normal use time.
  • the coupling temperature determination value TEMP1 corresponds to the torque distribution device temperature determination value of the present invention.
  • FIG. 4 shows the relationship between the maximum torque capacity and the coupling temperature TEMP CP .
  • the maximum torque capacity of the control coupling device 54 tends to decrease as the coupling temperature TEMP CP is higher, and the predetermined common use shown by being surrounded by a two-dot chain line L01 in FIG.
  • the rate of decrease of the maximum torque capacity with respect to the coupling temperature TEMP CP is small.
  • the control coupling device 54 is normally used in the normal temperature range, but when the coupling temperature TEMP CP exceeds the use limit temperature TEMP1, the control coupling device 54 causes the torque from the engine 12 or the electric motor M to be used. Is not transmitted to the front drive wheels 30 and the torque transmission is limited. In this case, for example, the vehicle 6 is equivalent to a rear wheel drive vehicle that exclusively exhibits the driving force by the rear drive wheels 32. Therefore, the use limit temperature TEMP1 is experimentally obtained in advance, and the use limit temperature TEMP1 is preset as the coupling temperature determination value TEMP1.
  • Maximum allowable regenerative braking torque setting means 130 when the vehicle braking force determining means 124 determines a target vehicle braking force F VL *, the upper limit allowable value of the regenerative braking torque Tgr generated by the regenerative operation of the second electric motor M2 T1GR
  • the maximum allowable regenerative braking torque T1gr is sequentially set.
  • the maximum permissible regenerative braking torque T1gr is intended to be set larger as the brake pedal force F BR is large, for improving the fuel efficiency is the maximum allowable regenerative so that it can regenerate more electrical energy the second electric motor M2
  • the braking torque T1gr is preferably set large.
  • the setting condition of the maximum allowable regenerative braking torque T1gr differs depending on the determination of the torque transmission limit determination means 128. That is, if the maximum allowable regenerative braking torque setting means 130 determines that the non-torque transmission limit of the control coupling device 54 is determined by the torque transmission restriction determination means 128, the regenerative braking torque Tgr is equal to the front drive wheel 30.
  • the front drive wheel 30 and the rear drive are assumed to be transmitted to each of the rear drive wheels 32 at a predetermined torque distribution ratio, for example, “50 (front drive wheel): 50 (rear drive wheel)”.
  • the maximum allowable regenerative braking torque T1gr of the second electric motor M2 is set so that each slip of the wheel 32 does not occur.
  • the vehicle speed V, the brake pedaling force F BR , and the brake are determined based on a relationship that is experimentally determined in advance so that the slip of the front drive wheel 30 and the rear drive wheel 32 does not occur under the predetermined torque distribution ratio.
  • the maximum allowable regenerative braking torque T1gr is set based on the stepping speed SPD BR and the like.
  • the regenerative braking torque Tgr is The maximum allowable regenerative braking torque T1gr of the second electric motor M2 is set so that the rear drive wheel 32 does not slip, assuming that it is transmitted only to the drive wheel 32 and not to the front drive wheel 30.
  • the vehicle speed V and the brake pedal force F BR are determined based on a relationship that is experimentally determined in advance so that the regenerative braking torque Tgr is transmitted only to the rear drive wheel 32 so that the rear drive wheel 32 does not slip.
  • the maximum allowable regenerative braking torque T1gr is set based on the brake depression speed SPD BR and the like. However, the maximum allowable regenerative braking torque setting means 130 determines whether or not the target vehicle control determined by the vehicle braking force determination means 124 regardless of whether the torque transmission limit of the control coupling device 54 or the non-torque transmission limit.
  • the maximum allowable regenerative braking torque T1gr of the second electric motor M2 is set within a range equal to or less than the torque (target vehicle braking force conversion torque) obtained by converting the power F VL * into the torque around the output shaft 44.
  • the maximum allowable regenerative braking torque T1gr set based on the relationship determined experimentally in advance exceeds the target vehicle braking force conversion torque, the maximum allowable regenerative braking torque T1gr is equal to the target vehicle braking force conversion torque. Set to the same value. Since the maximum allowable regenerative braking torque T1gr so is in the range of less than the target vehicle braking force conversion torque, the maximum allowable regenerative braking torque T1gr, the target vehicle braking force F VL * similarly to driving performance and driving comfort It is set so as not to impair the performance.
  • the maximum allowable regenerative braking torque setting means 130 sets the maximum allowable regenerative braking torque T1gr as described above for the non-torque transmission restriction and the torque transmission restriction of the control coupling device 54, respectively.
  • the rear drive wheel 32 slips more when Tgr is transmitted only to the rear drive wheel 32 than when the regenerative braking torque Tgr is transmitted to each of the front drive wheel 30 and the rear drive wheel 32. Since it is easy, the maximum allowable regenerative braking torque setting means 130 sets the maximum allowable regenerative braking torque T1gr smaller than when the non-torque transmission is limited when the torque transmission is limited.
  • the maximum allowable regenerative braking torque T1gr when the torque transmission is limited is set to about half that when the non-torque transmission is limited.
  • the regenerative braking torque determining means 132 is configured so that when the maximum allowable regenerative braking torque setting means 130 sets the maximum allowable regenerative braking torque T1gr, the second required charging amount determined by the charging request amount determining means 126 is obtained.
  • the regenerative braking torque Tgr of the electric motor M2 is sequentially determined. However, the regenerative braking torque determining means 132 determines the regenerative braking torque Tgr within a range equal to or less than the maximum allowable regenerative braking torque T1gr determined by the maximum allowable regenerative braking torque setting means 130.
  • the regenerative braking torque determination means 132 limits the regenerative braking torque Tgr to the maximum allowable regenerative braking torque T1gr or less. For example, if the regenerative braking torque Tgr determined so as to obtain the required charging amount exceeds the maximum allowable regenerative braking torque T1gr, the regenerative braking torque Tgr is set to the same value as the maximum allowable regenerative braking torque T1gr. .
  • the regenerative braking torque determining means 132 limits the regenerative braking torque Tgr of the second electric motor M2 to the maximum allowable regenerative braking torque T1gr or less, and as described above, the maximum allowable regenerative braking torque T1gr when the torque transmission is limited is As a result, the regenerative braking torque determining unit 132 sets the regenerative braking torque Tgr smaller than that when the non-torque transmission is limited. It will be. In other words, when the maximum allowable regenerative braking torque setting means 130 sets the maximum allowable regenerative braking torque T1gr smaller than when the torque transmission is limited, the regenerative braking torque determination means 132 sets the torque transmission limit. Sometimes the regenerative braking torque Tgr is determined to be smaller than when the non-torque transmission is limited.
  • the front and rear wheel torque distribution control means 134 determines that the torque transmission restriction judgment means 128 determines that the non-torque transmission restriction of the control coupling device 54 is occurring.
  • the torque distribution ratio of the regenerative braking torque Tgr transmitted to each is sequentially determined, and the torque capacity of the control coupling device 54 is hydraulically controlled so that the determined torque distribution ratio is achieved.
  • the front-rear wheel torque distribution control means 134 is the same as the front-rear wheel drive control (four-wheel drive control, 4WD control) generally performed during front-rear wheel drive travel (four-wheel drive travel, 4WD travel).
  • the torque capacity of the control coupling device 54 is controlled based on the vehicle state so that the front drive wheel 30 and the rear drive wheel 32 do not slip or are unlikely to slip.
  • the front and rear wheel torque distribution control means 134 controls the torque capacity of the control coupling device 54 when it is determined by the torque transmission restriction determination means 128 that the torque transmission limit of the control coupling device 54 is present. Do not perform hydraulic control.
  • the vehicle braking execution unit 136 When the regenerative braking torque determining unit 132 determines the regenerative braking torque Tgr of the second electric motor M2, the vehicle braking execution unit 136 outputs the regenerative braking torque Tgr from the second electric motor M2.
  • the motor regenerative braking control for controlling the motor is executed. Furthermore, when the regenerative braking force Fgr generated by the regenerative braking control of the electric motor (regenerative braking torque Tgr converted into the braking force) is less than the target vehicle braking force FVL * determined by the vehicle braking force determination means 124.
  • the rear drive wheel of the side drive wheels 32 after of VL 32 Is controlled so that the relationship with the rear wheel braking force Femr exerted from the above approaches a predetermined ideal braking force distribution curve L0 BR (see FIG. 5). Therefore, in the hydraulic brake combined braking control, if the front and rear wheel torque distribution control means 134 changes the torque distribution ratio of the regenerative braking torque Tgr to the front drive wheels 30 and the rear drive wheels 32 by the hydraulic control of the control coupling device 54. The front wheel side mechanical braking force Fmf and the rear wheel side mechanical braking force Fmr are changed according to the change in the torque distribution ratio. This control will be described with reference to FIG. Note that the ideal braking force distribution curve L0 BR is experimentally determined in advance so as to stabilize the vehicle behavior during vehicle braking, and is stored in the electronic control unit 10.
  • FIG. 5 is a diagram illustrating the relationship between the front wheel braking force Femf and the rear wheel braking force Femr when the torque transmission is restricted and when the non-torque transmission is restricted.
  • the horizontal axis represents the front wheel braking force Femf
  • the vertical axis represents the rear wheel braking force Femr
  • the non-torque transmission restriction will be described.
  • the maximum allowable regenerative braking force F1gr obtained by converting the maximum permissible regenerative braking torque T1gr the braking force is the one configured to G 4WD.
  • the regenerative braking limit line which is a straight line L0 4WD connecting the G 4WD on G 4WD and the vertical axis on the horizontal axis in FIG. 5 represents the maximum allowable regenerative braking force F1gr during the non-torque transmission limited.
  • the regenerative braking limit line is a boundary line corresponding to the maximum allowable regenerative braking force F1gr and indicating the allowable limit of regenerative braking by the second electric motor M2. Specifically, the regenerative braking limit line will be described. If the regenerative braking force Fgr is determined in the regenerative braking possible region A0 4WD on the origin side in FIG. 5 with L0 4WD as a boundary, the regenerative braking torque Tgr is determined within the range of the maximum allowable regenerative braking torque T1gr or less. It will be. In FIG.
  • the regenerative braking point indicating the regenerative braking force Fgr when the regenerative braking torque Tgr is determined to be the same value as the maximum allowable regenerative braking torque T1gr when the non-torque transmission is limited is indicated as a point P0 4WD.
  • the sum of the front wheel braking force Femf (horizontal axis) indicated by the regenerative braking point P0 4WD and the rear wheel braking force Femr (vertical axis) is the regenerative braking force Fgr, and the front wheel braking force Femf (lateral) indicated by the regenerative braking point P0 4WD.
  • the ratio between the shaft) and the rear wheel braking force Femr (vertical axis) is determined according to the torque capacity of the control coupling device 54 controlled by the front and rear wheel torque distribution control means 134. Further, when the regenerative braking force Fgr showing the regenerative braking point P0 4WD is less than the target vehicle braking force F VL * is the execution of the hydraulic brake combination brake control, the front wheel braking force Femf and a rear wheel braking force Femr The mechanical braking force Fm is generated so that the relationship approaches the ideal braking force distribution curve L0 BR .
  • FIG. 5 shows an example of a relationship between the front wheel braking force Femf and the rear wheel braking force Femr in the hydraulic brake combined braking control when the non-torque transmission is limited as a point P1 4WD .
  • the difference between the point P1 4WD and the regenerative braking point P0 4WD in FIG. 5 indicates the front wheel side mechanical braking force Fmf and the rear wheel side mechanical braking force Fmr.
  • the regenerative braking limit line of the straight line L0 FR connecting the G FR on G FR and the vertical axis on the horizontal axis in FIG. 5 represents the maximum allowable regenerative braking force F1gr when the torque transfer limit.
  • the regenerative braking force Fgr is determined within the regenerative braking possible region A0 FR on the origin side in FIG. 5 with the regenerative braking limit line L0 FR as a boundary
  • the regenerative braking torque Tgr is the maximum allowable regenerative braking. It is determined within the range of torque T1gr or less.
  • the regenerative braking point indicating the regenerative braking force Fgr when the regenerative braking torque Tgr is determined to be the same value as the maximum allowable regenerative braking torque T1gr when the torque transmission is limited is shown as a point P0 FR .
  • the traveling state of the vehicle 6 when the torque transmission is limited is the FR traveling state or a traveling state equivalent thereto
  • the front wheel braking force Femf (horizontal axis) indicated by the regenerative braking point P0 FR is zero or substantially zero.
  • the regenerative braking point P0 FR is on the vertical axis or substantially on the vertical axis.
  • FIG. 5 shows an example of the relationship between the front wheel braking force Femf and the rear wheel braking force Femr in the hydraulic brake combined braking control when the torque transmission is limited as a point P1 FR .
  • the hydraulic brake combination brake control in the same manner as when the non-torque transmission limited, in FIG.
  • the horizontal axis direction of the difference DF01 FR between the point P1 FR regenerative braking point P0 FR is a front-wheel-side mechanical braking force Fmf
  • the difference DF02 FR in the vertical axis direction between the point P1 FR and the regenerative braking point P0 FR represents the rear wheel side mechanical braking force Fmr.
  • FIGS. 6 and 7 are flowcharts for explaining a main part of the control operation of the electronic control unit 10, that is, a control operation for generating the vehicle braking force FVL when the vehicle 6 performs regenerative braking traveling.
  • the flowchart of FIG. 6 is repeatedly executed with an extremely short cycle time of, for example, about several milliseconds to several tens of milliseconds, and the flowchart of FIG. 7 is executed at step (hereinafter, “step” is omitted) SA3 of FIG. It is a subroutine.
  • the regenerative braking travel is performed.
  • the vehicle braking force F VL is controlled to coincide with the target vehicle braking force F VL * while the regenerative operation of the second electric motor M2 is performed during vehicle travel.
  • the flowchart of FIG. 7 is executed.
  • SA3 ends. Therefore, the flowchart of FIG. 6 ends and is executed again from SA1.
  • the remaining charge SOC of the power storage device 50 is detected, and the state of the remaining charge SOC is determined.
  • the generated power to be generated by the second electric motor M2 in the regenerative braking traveling is determined based on the remaining charge SOC of the power storage device 50.
  • the generated power is determined to be larger as the remaining charge SOC of the power storage device 50 is lower.
  • the regenerative braking torque Tgr of the second electric motor M2 determined in SB4 or SB8 described later increases as the generated power increases. That is, the regenerative braking torque Tgr increases as the remaining charge SOC of the power storage device 50 decreases.
  • SB1 corresponds to the charge request amount determination unit 126.
  • a state determination is made as to whether the 4WD system for performing the four-wheel drive traveling normally operates without any restriction. Specifically, it is determined whether or not the control coupling device 54 is normal, in other words, whether or not the non-torque transmission limit of the control coupling device 54 is in effect. The determination is made based on the coupling temperature TEMP CP . That is, when the coupling temperature TEMP CP is lower than the coupling temperature determination value TEMP1, it is determined that the non-torque transmission limit of the control coupling device 54 is being reached.
  • the regenerative braking torque Tgr is transmitted to each of the front drive wheels 30 and the rear drive wheels 32 at a predetermined torque distribution ratio, in other words, regenerative braking.
  • the maximum allowable regenerative braking torque T1gr is set to each of the front drive wheel 30 and the rear drive wheel 32. Is set so that no slip occurs.
  • the maximum allowable regenerative braking torque T1gr is set within the range of the target vehicle braking force conversion torque below corresponding to SA2 target vehicle braking force F VL * determined in the FIG. After SB3, the process proceeds to SB4.
  • the regenerative braking torque Tgr of the second electric motor M2 is determined (set) so as to obtain the generated power determined in SB1.
  • the regenerative braking torque Tgr is limited to the maximum allowable regenerative braking torque T1gr set in SB3. After SB4, the process proceeds to SB5.
  • SB5 the vehicle state represented by the slip ratio of the rear drive wheel 32 is determined. In other words, such a vehicle state is detected or estimated. For example, the ease of slipping of the wheels 30 and 32 such as road surface conditions is determined. After SB5, the process proceeds to SB6.
  • the torque distribution ratio of the regenerative braking torque Tgr transmitted to each of the front drive wheels 30 and the rear drive wheels 32 is determined based on the vehicle state determined in SB5. Then, hydraulic control for controlling the torque capacity of the control coupling device 54 is performed so that the determined torque distribution ratio is achieved. As a result, the regenerative braking torque Tgr is also distributed to the front drive wheels 30. SB5 and SB6 correspond to the front and rear wheel torque distribution control means 134.
  • the regenerative braking torque Tgr is transmitted only to the rear drive wheel 32 and not to the front drive wheel 30, in other words, the regenerative braking torque Tgr is rear side.
  • the maximum allowable regenerative braking torque T1gr is set so that the rear drive wheels 32 do not slip. Therefore, as illustrated in the relationship of “G FR ⁇ G 4WD ” in FIG. 5, the maximum allowable regenerative braking torque T1gr is set when set at SB7 than when set at SB3. It will be set smaller.
  • the maximum allowable regenerative braking torque T1gr is set within a range of the target vehicle braking force conversion torque corresponding to the target vehicle braking force F VL * determined at SA2 of FIG. 6 Is done. After SB7, the process proceeds to SB8.
  • the regenerative braking torque Tgr of the second electric motor M2 is determined (set) so as to obtain the generated power determined in SB1.
  • the regenerative braking torque Tgr is limited to the maximum allowable regenerative braking torque T1gr set in SB7. After SB8, the process proceeds to SB9.
  • SB9 the regenerative braking force Fgr obtained by converting the regenerative braking torque Tgr determined at SB4 or SB8 in braking force, whether less than SA2 the target vehicle braking force F VL * determined in the FIG. 6 Is judged. If the determination in SB9 is affirmative, i.e., when the regenerative braking force Fgr is less than the target vehicle braking force F VL * proceeds to SB 10. On the other hand, if the determination at SB9 is negative, the operation proceeds to SB11.
  • the electric motor regenerative braking control for controlling the second electric motor M2 is executed such that the regenerative braking torque Tgr determined in SB4 or SB8 is output from the second electric motor M2.
  • the brake control combined with the hydraulic brake is executed by a command to the brake hydraulic control circuit 94.
  • the brake control combined with hydraulic brake 94 one or both of the front-wheel hydraulic brake 90 and the rear-wheel hydraulic brake 92 It is actuated so as to compensate for the shortage of the power Fgr with respect to the target vehicle braking force F VL *.
  • SB11 the electric motor regenerative braking control is executed so that the regenerative braking torque Tgr determined in SB4 or SB8 is output from the second electric motor M2.
  • the hydraulic brake combined braking control is not executed.
  • SB9 to SB11 correspond to the vehicle braking execution means 136.
  • the regenerative braking torque determination means 132 sets the regenerative braking torque Tgr of the second electric motor M2 when the torque transmission limit of the control coupling device 54 is less than when the non-torque transmission is limited. Set smaller. Further, if the regenerative braking torque Tgr of the second electric motor M2 is not different from that at the non-torque transmission limit when the torque transmission is restricted, the rear drive wheels 32 slip and the vehicle compared with the non-torque transmission restriction. The behavior tends to be unstable.
  • the stability of the vehicle behavior is improved during the regenerative braking of the vehicle 6 as compared with the case where the regenerative braking torque Tgr of the second electric motor M2 is generated without taking into account the torque transmission limitation of the control coupling device 54.
  • such an effect of the present embodiment becomes remarkable on a low ⁇ road where the friction coefficient of the wheels 30 and 32 against the road surface is small, such as an icy road.
  • the time when the torque transmission of the control coupling device 54 is limited is a case where the coupling temperature TEMP CP is equal to or higher than the predetermined coupling temperature determination value TEMP1. Therefore, by detecting the coupling temperature TEMP CP , it is possible to easily determine whether or not the torque transmission of the control coupling device 54 is limited.
  • the regenerative braking torque Tgr of the second electric motor M2 is limited to the maximum allowable regenerative braking torque T1gr or less, and the maximum allowable regenerative braking torque T1gr is set when the torque transmission is limited by the control coupling device 54.
  • the regenerative braking torque Tgr is determined to be smaller than that when the non-torque transmission is restricted by setting the torque smaller than when the non-torque transmission is restricted. Therefore, the regenerative braking torque of the electric motor can be easily reduced by changing the setting of the maximum allowable regenerative braking torque T1gr.
  • the regenerative braking torque setting unit 130 determines that the torque transmission limit of the control coupling device 54 is determined by the torque transmission limit determination unit 128, the regenerative braking is performed. Assuming that the torque Tgr is transmitted only to the rear drive wheel 32 and not to the front drive wheel 30, the maximum allowable regenerative braking torque T1gr of the second electric motor M2 is set so that the rear drive wheel 32 does not slip. . Accordingly, the regenerative braking torque Tgr of the second electric motor M2 is limited to a size equivalent to that of a two-wheel drive vehicle that travels by driving only the rear drive wheels 32, that is, a rear wheel drive vehicle, and is equivalent to that of a rear wheel drive vehicle. Since the torque distribution ratio of the front and rear wheels is the torque distribution ratio at which the rear drive wheels 32 are most likely to slip, the slip of the rear drive wheels 32 is sufficiently suppressed, and the stability of the vehicle behavior can be sufficiently ensured.
  • control coupling device 54 is constituted by a wet multi-plate hydraulic friction engagement device, but one or two bands wound around the outer peripheral surface of the rotating drum. It may be a band brake or the like whose one end is tightened by a hydraulic actuator, or may be a control coupling device constituted by an electromagnetic clutch or a magnetic powder clutch.
  • the torque transmission of the control coupling device 54 is limited when the torque transmission is limited more than a predetermined normal use.
  • it is made based on the ring temperature TEMP CP
  • it may be made based on a state quantity other than the coupling temperature TEMP CP .
  • the case of coupling failure in addition to the coupling temperature, abnormal noise, vibration, input / output speed difference, actuator stroke amount, in the case of hydraulic coupling, detection of hydraulic abnormality, electrical control coupling The case may be made based on short circuit detection or the like.
  • the vehicle drive device 8 includes the power distribution mechanism 46 and the first electric motor M1 as a differential mechanism.
  • the vehicle drive device 8 includes the first electric motor M1 and the power distribution mechanism 46.
  • it may be a drive device for a so-called parallel hybrid vehicle in which the engine 12, the clutch, the second electric motor M2, and the output shaft 44 are connected in series.
  • the said clutch between the engine 12 and the 2nd electric motor M2 is provided as needed, the structure for which the said drive device for parallel hybrid vehicles is not equipped with the clutch can also be considered.
  • the vehicle 6 includes the engine 12, the power distribution mechanism 46, and the first electric motor M1, but for example, as shown in FIG. 8, the engine 12, the power distribution mechanism 46, and the first electric motor.
  • a so-called electric vehicle that travels with the power from the second electric motor M2 without the M1 may be used.
  • the vehicle 6 is a four-wheel drive vehicle based on the rear wheel drive system, but may be a four-wheel drive vehicle based on the front wheel drive system.
  • the control coupling device 54 is not interposed between the transmission device 52 and the front drive wheel 30, and the transmission device 52 and the rear drive wheel 32 Intervened in between.
  • the front drive wheel 30 corresponds to one wheel of the present invention
  • the rear drive wheel 32 corresponds to the other wheel of the present invention.
  • the regenerative braking torque Tgr is transmitted only to the front drive wheel 30 and not to the rear drive wheel 32
  • the maximum allowable regenerative braking torque T1gr does not cause the front drive wheel 30 to slip. Is set as follows.
  • the ring gear R0 and the second electric motor M2 of the power distribution mechanism 46 are directly connected to the output shaft 44 of the power transmission device 14.
  • a manual transmission or an automatic transmission is used for the ring gear R0.
  • it may be interposed between the second electric motor M2 and the output shaft 44.
  • Vehicle (front and rear wheel drive vehicle) 10 Electronic control device (drive control device) 30: Front drive wheel (front wheel, other wheel) 32: Rear drive wheel (rear wheel, one wheel) 54: Control coupling device (torque distribution device) M2: Second electric motor (electric motor)

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Provided is a drive control device for a front and rear wheel drive vehicle capable of improving the stability of vehicle behavior during regenerative braking of the front and rear wheel drive vehicle. When torque transmission is limited by a control coupling device (54), a regenerative braking torque determination means (132) sets the regenerative braking torque (Tgr) of a second electric motor (M2) to be smaller than that generated when the torque transmission is not limited. When the torque transmission is limited, if the regenerative braking torque (Tgr) of the second electric motor (M2) is not changed from that generated when the torque transmission is not limited, vehicle behavior tends to become unstable compared to that when the torque transmission is not limited because rear drive wheels (32) slip. Accordingly, compared to a case in which the regenerative braking torque (Tgr) of the second electric motor (M2) is generated without considering when the torque transmission is limited by the control coupling device (54), it is possible to improve the stability of vehicle behavior during regenerative braking of a vehicle (6). Such effect becomes significant particularly when, for example, a road has a low-μ.

Description

前後輪駆動車両用の駆動制御装置Drive control device for front and rear wheel drive vehicle
 本発明は、駆動輪からのトルクで電動機が回生作動する車両用駆動装置において、その電動機の回生制動トルクを制御する技術に関するものである。 The present invention relates to a technique for controlling a regenerative braking torque of a motor in a vehicle drive device in which the motor is regeneratively operated by torque from a drive wheel.
 前後輪駆動走行における回生制動時には、電動機の回生制動トルクが前輪および後輪のうちの一方の車輪に伝達され、その前輪および後輪のうちの他方の車輪にはトルク配分装置を介して上記電動機の回生制動トルクが伝達される前後輪駆動車両用の駆動制御装置がよく知られている。例えば、特許文献1の四輪駆動車両用の駆動制御装置がその一例である。その特許文献1の四輪駆動車両では、前記一方の車輪は後輪であり、前記他方の車輪は前輪であり、前記トルク配分装置は伝達トルクが係合力に応じて変化させられるクラッチ装置である。そして、その特許文献1の駆動制御装置は、前記電動機の回生作動時すなわち回生制動時には、前記クラッチ装置を係合することにより、前記電動機の回生制動トルクの一部を前記前輪へ伝達する。このようにすることによって、前記電動機の回生制動時における車両挙動の安定性を確保しつつ、その電動機の回生作動によって燃費を向上させることができる。なお、例えば、燃費とは単位燃料消費量当たりの走行距離等であり、燃費の向上とはその単位燃料消費量当たりの走行距離が長くなることであり、或いは、車両全体としての燃料消費率(=燃料消費量/駆動輪出力)が小さくなることである。逆に、燃費の低下とはその単位燃料消費量当たりの走行距離が短くなることであり、或いは、車両全体としての燃料消費率が大きくなることである。この燃費の定義は明細書全体を通じて同じである。 During regenerative braking in front and rear wheel drive traveling, the regenerative braking torque of the electric motor is transmitted to one of the front wheels and the rear wheels, and the electric motor is connected to the other of the front wheels and the rear wheels via a torque distribution device. A drive control device for a front and rear wheel drive vehicle to which the regenerative braking torque is transmitted is well known. For example, the drive control apparatus for four-wheel drive vehicles of patent document 1 is the example. In the four-wheel drive vehicle of Patent Document 1, the one wheel is a rear wheel, the other wheel is a front wheel, and the torque distribution device is a clutch device in which transmission torque is changed according to engagement force. . And the drive control apparatus of the patent document 1 transmits a part of the regenerative braking torque of the motor to the front wheels by engaging the clutch device during regenerative operation of the motor, that is, during regenerative braking. By doing in this way, while ensuring the stability of the vehicle behavior at the time of the regenerative braking of the electric motor, the fuel efficiency can be improved by the regenerative operation of the electric motor. For example, the fuel efficiency is a travel distance per unit fuel consumption, and the improvement in fuel efficiency is an increase in the travel distance per unit fuel consumption, or the fuel consumption rate ( = Fuel consumption / drive wheel output) is reduced. Conversely, a reduction in fuel consumption means that the travel distance per unit fuel consumption is shortened, or the fuel consumption rate of the entire vehicle is increased. This definition of fuel consumption is the same throughout the specification.
特開2010-149745号公報JP 2010-149745 A 特開2005-082048号公報Japanese Patent Laid-Open No. 2005-082048
 前記特許文献1の駆動制御装置では、前記電動機の回生制動時において電動機の回生制動トルクが前輪と後輪とのそれぞれに分配されて伝達されるので、例えばその回生制動トルクと同一のトルクが後輪のみに伝達される場合と比較して、車両挙動の安定性がより向上する。しかし、前記トルク配分装置(クラッチ装置)の状態によっては、例えばそのトルク配分装置の最大トルク容量が小さくなりそのトルク配分装置のトルク伝達が制限されることが想定される。そのようなトルク配分装置のトルク伝達が制限されるトルク伝達制限時には、前記電動機の回生制動トルクが非トルク伝達制限時と同じように前輪と後輪とのそれぞれに分配されて伝達されることを前提として上記電動機が回生作動するとすれば、その前輪および後輪による車両制動を前提とした上記電動機の回生制動トルクの殆ど或いは全部が後輪へ伝達されるので、後輪がスリップし易くなり、車両挙動が不安定になる可能性があった。 In the drive control device of Patent Document 1, since the regenerative braking torque of the motor is distributed and transmitted to each of the front wheels and the rear wheels during regenerative braking of the motor, for example, the same torque as the regenerative braking torque is The stability of the vehicle behavior is further improved compared to the case where the vehicle behavior is transmitted only to the wheels. However, depending on the state of the torque distribution device (clutch device), for example, it is assumed that the maximum torque capacity of the torque distribution device is reduced and torque transmission of the torque distribution device is limited. When torque transmission is limited in such a torque distribution device, the regenerative braking torque of the motor is distributed and transmitted to each of the front and rear wheels in the same manner as when non-torque transmission is limited. Assuming that the motor is regeneratively operated as a premise, most or all of the regenerative braking torque of the motor premised on vehicle braking by the front wheels and the rear wheels is transmitted to the rear wheels, so that the rear wheels easily slip. Vehicle behavior could become unstable.
 本発明は以上の事情を背景としてなされたものであり、その目的とするところは、前後輪駆動車両の回生制動時において車両挙動の安定性を向上させることができる駆動制御装置を提供することにある。 The present invention has been made against the background of the above circumstances, and an object of the present invention is to provide a drive control device capable of improving the stability of vehicle behavior during regenerative braking of front and rear wheel drive vehicles. is there.
 前記目的を達成するための本発明の要旨とするところは、(a)前後輪駆動走行における回生制動時には、電動機の回生制動トルクが前輪および後輪のうちの一方の車輪に伝達され、その前輪およびその後輪のうちの他方の車輪にはトルク配分装置を介してその電動機の回生制動トルクが伝達される前後輪駆動車両用の駆動制御装置であって、(b)前記トルク配分装置のトルク伝達が制限されるトルク伝達制限時には、前記電動機の回生制動トルクをそのトルク配分装置の非トルク伝達制限時よりも小さくすることにある。 To achieve the above object, the gist of the present invention is that (a) during regenerative braking in front and rear wheel drive traveling, the regenerative braking torque of the motor is transmitted to one of the front wheels and the rear wheels, and the front wheels And a drive control device for front and rear wheel drive vehicles in which the regenerative braking torque of the electric motor is transmitted to the other of the rear wheels via a torque distribution device, and (b) torque transmission of the torque distribution device When the torque transmission is limited, the regenerative braking torque of the electric motor is set to be smaller than that when the torque distribution device of the torque distribution device is limited.
 このようにすれば、前記トルク伝達制限時には、非トルク伝達制限時と比較して前記他方の車輪へ伝達される前記電動機の回生制動トルクの配分割合が低くなる一方で、前記一方の車輪へ伝達されるその回生制動トルクの配分割合が高まるので、その回生制動トルクが非トルク伝達制限時と変わらなければ上記一方の車輪がスリップし車両挙動が不安定になり易いところ、前記トルク伝達制限時には、前記回生制動トルクが前記非トルク伝達制限時よりも小さくされるので、前記トルク配分装置のトルク伝達制限時が加味されずに前記電動機の回生制動トルクが発生させられる場合と比較して、車両の回生制動時において車両挙動の安定性を向上させることができる。特に、この本発明の効果は、例えば氷結路など路面に対する車輪の摩擦係数が小さい低μ路にて顕著なものになる。なお、前記トルク配分装置は、前記他方の車輪への伝達トルクを連続的に又は段階的に増減するものであってもよいし、例えばその伝達トルクを選択的に零にする動力断続装置であっても差し支えない。 In this way, when the torque transmission is limited, the distribution ratio of the regenerative braking torque of the motor transmitted to the other wheel is lower than when the non-torque transmission is limited, while the torque transmission is transmitted to the one wheel. Since the regenerative braking torque distribution ratio is increased, if the regenerative braking torque does not change from that at the time of non-torque transmission restriction, the one wheel slips and the vehicle behavior tends to become unstable. Since the regenerative braking torque is made smaller than that when the non-torque transmission is limited, the regenerative braking torque of the motor is generated without considering the torque transmission limitation of the torque distribution device. The stability of vehicle behavior can be improved during regenerative braking. In particular, the effect of the present invention becomes remarkable on a low μ road where the friction coefficient of the wheel against the road surface is small, such as an icy road. The torque distribution device may increase or decrease the transmission torque to the other wheel continuously or stepwise. For example, the torque distribution device is a power interrupting device that selectively sets the transmission torque to zero. There is no problem.
 ここで、好適には、前記トルク伝達制限時とは、前記トルク配分装置の温度が予め定められたトルク配分装置温度判定値以上である場合である。このようにすれば、そのトルク配分装置の温度を検出することにより、前記トルク伝達制限時であるか否かを容易に判断することが可能である。 Here, preferably, when the torque transmission is restricted, the temperature of the torque distribution device is equal to or higher than a predetermined torque distribution device temperature determination value. In this way, it is possible to easily determine whether or not the torque transmission is limited by detecting the temperature of the torque distribution device.
 また、好適には、(a)前記電動機の回生制動トルクを予め定められた最大許容回生制動トルク以下に制限しており、(b)前記トルク伝達制限時にその最大許容回生制動トルクを前記非トルク伝達制限時よりも小さく設定することで、そのトルク伝達制限時にその電動機の回生制動トルクをその非トルク伝達制限時よりも小さくする。このようにすれば、その最大許容回生制動トルクの設定変更により容易に、前記電動機の回生制動トルクを小さくすることができる。 Preferably, (a) the regenerative braking torque of the electric motor is limited to a predetermined maximum allowable regenerative braking torque, or (b) the maximum allowable regenerative braking torque is set to the non-torque when the torque transmission is limited. By setting it smaller than when the transmission is restricted, the regenerative braking torque of the motor is made smaller when the torque transmission is restricted than when the non-torque transmission is restricted. In this case, the regenerative braking torque of the electric motor can be easily reduced by changing the setting of the maximum allowable regenerative braking torque.
 また、好適には、前記トルク伝達制限時には、前記電動機の回生制動トルクが前記他方の車輪に伝達されないものとして、前記一方の車輪のスリップが発生しないように前記最大許容回生制動トルクを設定する。このようにすれば、前記電動機の回生制動トルクが、前記一方の車輪のみの駆動により走行する二輪駆動車両と同等の大きさにまで制限されるので、その一方の車輪のスリップが十分に抑制されて、車両挙動の安定性を十分に確保できる。 Preferably, when the torque transmission is restricted, the maximum allowable regenerative braking torque is set so that the regenerative braking torque of the electric motor is not transmitted to the other wheel, so that the slip of the one wheel does not occur. In this way, since the regenerative braking torque of the electric motor is limited to the same magnitude as that of a two-wheel drive vehicle that travels by driving only the one wheel, the slip of one wheel is sufficiently suppressed. Thus, sufficient stability of vehicle behavior can be secured.
本発明が適用された前後輪駆動車両であるのパートタイム型四輪駆動車両に設けられた車両用駆動装置およびそれを制御するための電子制御装置を説明するための図である。It is a figure for demonstrating the drive device for vehicles provided in the part time type four-wheel drive vehicle which is a front-and-rear wheel drive vehicle to which this invention was applied, and the electronic control apparatus for controlling it. 図1のパートタイム型四輪駆動車両に設けられた動力伝達装置およびトランスファの構成を説明するための骨子図である。FIG. 2 is a skeleton diagram for explaining a configuration of a power transmission device and a transfer provided in the part-time four-wheel drive vehicle of FIG. 1. 図1に示す電子制御装置に備えられた制御機能の要部を説明するための機能ブロック線図である。It is a functional block diagram for demonstrating the principal part of the control function with which the electronic control apparatus shown in FIG. 1 was equipped. 図1に示す制御カップリング装置の最大トルク容量とカップリング温度との関係を表した図である。It is a figure showing the relationship between the maximum torque capacity and coupling temperature of the control coupling apparatus shown in FIG. 図1に示す制御カップリング装置のトルク伝達制限時と非トルク伝達制限時とのそれぞれにおける、前輪制動力と後輪制動力との関係を例示した図である。It is the figure which illustrated the relationship between the front-wheel braking force and the rear-wheel braking force in each at the time of the torque transmission restriction | limiting of the control coupling apparatus shown in FIG. 図1に示す電子制御装置の制御作動の要部、すなわち、パートタイム型四輪駆動車両が回生制動走行を行う場合に車両制動力を発生させる制御作動を説明するためのフローチャートである。FIG. 2 is a flowchart for explaining a main part of a control operation of the electronic control device shown in FIG. 1, that is, a control operation for generating a vehicle braking force when a part-time four-wheel drive vehicle performs regenerative braking traveling. 図1に示す電子制御装置の制御作動の上記要部を、図6と共に説明するためのフローチャートであって、図6のステップSA3にて実行されるサブルーチンを示すフローチャートである。FIG. 7 is a flowchart for explaining the main part of the control operation of the electronic control device shown in FIG. 1 together with FIG. 6, and is a flowchart showing a subroutine executed in step SA <b> 3 of FIG. 6. 図1のパートタイム型四輪駆動車両からエンジンと動力分配機構と第1電動機とを除いた電気自動車の一例を示した図である。It is the figure which showed an example of the electric vehicle which remove | excluded the engine, the power distribution mechanism, and the 1st electric motor from the part time type | mold four-wheel drive vehicle of FIG.
 以下、本発明の一実施例を図面を参照して詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
 図1は、本発明が適用された前後輪駆動車両であるパートタイム型四輪駆動車両6(以下、車両6という)に設けられた車両用駆動装置8およびそれを制御するための電子制御装置10を説明するための図である。上記電子制御装置10は、本発明における駆動制御装置に対応するものである。本実施例の車両用駆動装置8は、前置エンジン後輪駆動方式(FR)を基本とするパートタイム4WD方式を採用するハイブリッド車両に好適に用いられるものである。 FIG. 1 shows a vehicle drive device 8 provided in a part-time four-wheel drive vehicle 6 (hereinafter referred to as a vehicle 6) that is a front and rear wheel drive vehicle to which the present invention is applied, and an electronic control device for controlling the vehicle drive device 8. 10 is a diagram for explaining 10. FIG. The electronic control device 10 corresponds to the drive control device in the present invention. The vehicle drive device 8 of the present embodiment is suitably used for a hybrid vehicle that employs a part-time 4WD system based on a front engine rear wheel drive system (FR).
 図1に示すように、車両6は、電子制御装置10と、エンジン12と動力伝達装置14とを含む車両用駆動装置8と、トランスファ16と、フロントプロペラシャフト18と、前輪用差動歯車装置20と、一対の前輪車軸22と、リアプロペラシャフト24と、後輪用差動歯車装置26と、一対の後輪車軸28と、一対の前輪である前側駆動輪30と、その前側駆動輪30と同じ車輪直径の一対の後輪である後側駆動輪32とを備えている。図1において、例えばガソリンエンジンやディーゼルエンジン等の内燃機関であるエンジン12により発生させられた駆動力(駆動トルク)は、動力伝達装置14を介してトランスファ16に伝達される。そのトランスファ16に伝達された駆動力は、フロントプロペラシャフト18およびリアプロペラシャフト24に分配される。そして、フロントプロペラシャフト18に伝達された駆動力は、前輪用差動歯車装置20および前輪車軸22を介して左右一対の前側駆動輪30へ伝達される。一方、リアプロペラシャフト24に伝達された駆動力は、後輪用差動歯車装置26および後輪車軸28を介して左右一対の後側駆動輪32へ伝達される。上記前輪用差動歯車装置20および後輪用差動歯車装置26は、良く知られた所謂傘歯車式のものであって、回転差を許容しつつ左右一対の前輪車軸22および後輪車軸28をそれぞれ回転駆動するものである。なお、前側駆動輪30は本発明の他方の車輪に対応し、後側駆動輪32は本発明の一方の車輪に対応する。 As shown in FIG. 1, a vehicle 6 includes an electronic control device 10, a vehicle drive device 8 including an engine 12 and a power transmission device 14, a transfer 16, a front propeller shaft 18, and a front wheel differential gear device. 20, a pair of front wheel axles 22, a rear propeller shaft 24, a rear wheel differential gear device 26, a pair of rear wheel axles 28, a pair of front wheel front drive wheels 30, and a front drive wheel 30 thereof. And a rear drive wheel 32 which is a pair of rear wheels having the same wheel diameter. In FIG. 1, for example, a driving force (driving torque) generated by an engine 12 that is an internal combustion engine such as a gasoline engine or a diesel engine is transmitted to a transfer 16 via a power transmission device 14. The driving force transmitted to the transfer 16 is distributed to the front propeller shaft 18 and the rear propeller shaft 24. The driving force transmitted to the front propeller shaft 18 is transmitted to the pair of left and right front drive wheels 30 via the front wheel differential gear unit 20 and the front wheel axle 22. On the other hand, the driving force transmitted to the rear propeller shaft 24 is transmitted to the pair of left and right rear driving wheels 32 via the rear wheel differential gear device 26 and the rear wheel axle 28. The front-wheel differential gear device 20 and the rear-wheel differential gear device 26 are well-known so-called bevel gear types, and a pair of left and right front wheel axles 22 and rear wheel axles 28 while allowing a difference in rotation. Are driven to rotate. The front drive wheel 30 corresponds to the other wheel of the present invention, and the rear drive wheel 32 corresponds to one wheel of the present invention.
 図2は、図1に示す動力伝達装置14およびトランスファ16の構成を説明するための骨子図である。図2において、動力伝達装置14は、トランスミッションケース34内において、エンジン12のクランク軸に連結された入力軸36と、その入力軸36に連結された動力分配機構46と、動力分配機構46に動力伝達可能に連結されて動力分配機構46の差動状態を制御する第1電動機M1と、出力軸44と一体的に回転するようにその出力軸44に連結された第2電動機M2とを、共通の軸心RC1上に備えている。本実施例の動力伝達装置14は、入力軸36に対する出力軸44の回転速度比である変速比γ0(入力軸36の回転速度Nin/出力軸44の回転速度Nout)を無段階に変化させる電気的無段変速機として機能する。上記出力軸44は、動力伝達装置14の出力側回転部材であるが、トランスファ16の入力側回転部材にも相当するものである。上記動力分配機構46は、第1電動機M1に連結されたサンギヤS0と、遊星歯車P0と、その遊星歯車P0を自転及び公転可能に支持すると共に入力軸36に連結されたキャリヤCA0と、遊星歯車P0を介してサンギヤS0と噛み合うと共に出力軸44に連結されたリングギヤR0とを備えたシングルピニオン型の遊星歯車装置である。上記第1電動機M1および第2電動機M2(以下、特に区別しないときには電動機Mと記載する)は、駆動トルクを発生させる電動モータとしての機能と回生トルクを発生させる発電機としての機能とが選択的に得られるように構成された回転機であって、例えば交流同期型のモータジェネレータにより構成される。また、バッテリである蓄電装置50と電動機M1およびM2を制御するためのインバータ48とが車両用駆動装置8に設けられており(図1参照)、その蓄電装置50と第1電動機M1と第2電動機M2とは相互に電力授受可能に接続されている。第1電動機M1および第2電動機M2はそれぞれ、インバータ48を介して電子制御装置10により制御され、回生作動により電気エネルギを発生させ、その電気エネルギを例えば蓄電装置50に蓄積(充電)する。例えば、アクセルオフの惰性走行時(コースト走行時)やブレーキペダル96の操作による車両制動時などには、第2電動機M2は、前側駆動輪30および後側駆動輪32の一方または両方から伝達される車両6の運動エネルギを電気エネルギに変換する回生作動を行う。従って、第2電動機M2は、本発明における回生制動トルクを発生させる電動機に対応する。なお、動力伝達装置14は、軸心RC1に対して対称的に構成されているため、図2の骨子図においてはその下側が省略されて図示されている。また、本実施例では、上記入力軸36の回転速度Ninは、その入力軸36がエンジン12のクランク軸に直列に連結されているので、エンジン回転速度Neと同一である。 FIG. 2 is a skeleton diagram for explaining the configuration of the power transmission device 14 and the transfer 16 shown in FIG. In FIG. 2, the power transmission device 14 includes an input shaft 36 connected to the crankshaft of the engine 12, a power distribution mechanism 46 connected to the input shaft 36, and power to the power distribution mechanism 46 in the transmission case 34. The first electric motor M1 that is connected so as to be able to transmit and controls the differential state of the power distribution mechanism 46, and the second electric motor M2 that is connected to the output shaft 44 so as to rotate integrally with the output shaft 44 are shared. It is equipped on the axis RC1. The power transmission device 14 according to the present embodiment is an electric that continuously changes a speed ratio γ0 (rotational speed Nin of the input shaft 36 / rotational speed Nout of the output shaft 44), which is a rotational speed ratio of the output shaft 44 to the input shaft 36. It functions as a continuously variable transmission. The output shaft 44 is an output side rotation member of the power transmission device 14, but also corresponds to an input side rotation member of the transfer 16. The power distribution mechanism 46 includes a sun gear S0 connected to the first electric motor M1, a planetary gear P0, a carrier CA0 connected to the input shaft 36 and supporting the planetary gear P0 so as to rotate and revolve, and a planetary gear. This is a single pinion type planetary gear device that includes a ring gear R0 that meshes with the sun gear S0 via P0 and is connected to the output shaft 44. The first electric motor M1 and the second electric motor M2 (hereinafter referred to as the electric motor M when not particularly distinguished) selectively function as an electric motor that generates driving torque and function as a generator that generates regenerative torque. The rotating machine is configured by, for example, an AC synchronous motor generator. Further, a power storage device 50 that is a battery and an inverter 48 for controlling the motors M1 and M2 are provided in the vehicle drive device 8 (see FIG. 1), and the power storage device 50, the first electric motor M1, and the second The electric motor M2 is connected to be able to exchange electric power with each other. Each of the first electric motor M1 and the second electric motor M2 is controlled by the electronic control device 10 via the inverter 48, generates electric energy by regenerative operation, and stores (charges) the electric energy in, for example, the power storage device 50. For example, the second electric motor M2 is transmitted from one or both of the front drive wheels 30 and the rear drive wheels 32 during coasting when the accelerator is off (coast driving) or when the vehicle is braked by operating the brake pedal 96. A regenerative operation for converting the kinetic energy of the vehicle 6 into electrical energy is performed. Accordingly, the second electric motor M2 corresponds to the electric motor that generates the regenerative braking torque in the present invention. Since the power transmission device 14 is configured symmetrically with respect to the axis RC1, the lower side is omitted in the skeleton diagram of FIG. In this embodiment, the rotational speed Nin of the input shaft 36 is the same as the engine rotational speed Ne because the input shaft 36 is connected in series to the crankshaft of the engine 12.
 このように構成された動力伝達装置14では、動力分配機構46の各回転要素(サンギヤS0、リングギヤR0、およびキャリヤCA0)がそれぞれ相互に相対回転可能とされて差動作用が働く差動状態において、エンジン12の出力が第1電動機M1と出力軸44とに分配されると共に、分配されたエンジン12の出力の一部で第1電動機M1から発生させられた電気エネルギで蓄電されたり第2電動機M2が回転駆動させられる。そして、第1電動機M1の回転速度が制御されてエンジン12の所定回転に拘わらず出力軸44の回転が連続的に変化させられることで、動力分配機構46の変速比γ0が最小値γ0minから最大値γ0maxまで連続的に変化させられる電気的な無段変速機として機能する無段変速状態とされる。 In the power transmission device 14 configured as described above, in the differential state in which the rotating elements (the sun gear S0, the ring gear R0, and the carrier CA0) of the power distribution mechanism 46 are relatively rotatable with respect to each other, and the differential action works. The output of the engine 12 is distributed to the first electric motor M1 and the output shaft 44, and at the same time, a part of the distributed output of the engine 12 is stored with the electric energy generated from the first electric motor M1, or the second electric motor. M2 is driven to rotate. The rotation speed of the first electric motor M1 is controlled so that the rotation of the output shaft 44 is continuously changed regardless of the predetermined rotation of the engine 12, whereby the speed ratio γ0 of the power distribution mechanism 46 is increased from the minimum value γ0min to the maximum. A continuously variable transmission state that functions as an electrical continuously variable transmission that is continuously changed to the value γ0max is set.
 図2において、トランスファ16は、動力伝達装置14から出力された駆動力をフロントプロペラシャフト18およびリアプロペラシャフト24に分配するものである。本実施例のトランスファ16は、出力軸44とフロントプロペラシャフト18との間でトルクを伝達するための伝動装置52と、出力軸44とフロントプロペラシャフト18との間に設けられ、それらの差動回転を制限して前後駆動力配分を制御する制御カップリング装置54とを備えている。上記制御カップリング装置54は、本発明におけるトルク配分装置に対応するものである。 2, the transfer 16 distributes the driving force output from the power transmission device 14 to the front propeller shaft 18 and the rear propeller shaft 24. The transfer 16 according to the present embodiment is provided between a transmission device 52 for transmitting torque between the output shaft 44 and the front propeller shaft 18, and between the output shaft 44 and the front propeller shaft 18. And a control coupling device 54 that restricts the rotation and controls the front-rear driving force distribution. The control coupling device 54 corresponds to the torque distribution device according to the present invention.
 伝動装置52は、出力軸44に連結されたドライブギヤ56と、制御カップリング装置54の入力回転部材であるドリブンギヤ60と、そのドライブギヤ56とドリブンギヤ60との間に介装されてそれらのギヤ56,60間で動力を伝達する中間ギヤ62とを備えている。 The transmission device 52 is interposed between the drive gear 56 connected to the output shaft 44, the driven gear 60 that is an input rotation member of the control coupling device 54, and the drive gear 56 and the driven gear 60. And an intermediate gear 62 for transmitting power between 56 and 60.
 制御カップリング装置54は、例えば、摩擦によってトルクを伝達する所謂摩擦係合装置すなわち摩擦クラッチである。詳細には、制御カップリング装置54は、互いに重ねられた複数枚の摩擦板が油圧アクチュエータにより押圧される湿式多板型の油圧式摩擦係合装置により構成され、それが介挿されている両側の回転部材すなわちドリブンギヤ60とフロントプロペラシャフト18に直列に連結されたカップリング出力軸64とを選択的に連結するものである。この制御カップリング装置54は、図1に示す電子制御装置10によって前記油圧アクチュエータに供給される作動油の油圧(係合圧)が調節され、その作動油の油圧に応じてトルク容量(係合力)が連続的に変化するように構成されている。従って、その係合圧の調節により、前側駆動輪30と後側駆動輪32とのそれぞれのトルク配分割合は、0(前側駆動輪):100(後側駆動輪)~50(前側駆動輪):50(後側駆動輪)の間で連続的に制御されるようになっている。例えば、制御カップリング装置54が完全係合状態とされることによりドリブンギヤ60とカップリング出力軸64とが一体的に回転し、また、制御カップリング装置54が半係合状態とされることによりその係合力に応じて動力伝達装置14の出力軸44からフロントプロペラシャフト18へ伝達されるトルクが変化するようになっている。一方で、制御カップリング装置54が非係合状態すなわち解放状態とされれば、ドリブンギヤ60とカップリング出力軸64との間のトルク伝達が遮断され、動力伝達装置14からの出力トルクはリアプロペラシャフト24のみに伝達される。すなわち、車両6は後側駆動輪32による二輪駆動状態とされる。 The control coupling device 54 is, for example, a so-called friction engagement device that transmits torque by friction, that is, a friction clutch. Specifically, the control coupling device 54 includes a wet multi-plate type hydraulic friction engagement device in which a plurality of friction plates stacked on each other are pressed by a hydraulic actuator, and both sides on which both are inserted. The rotating member, that is, the driven gear 60 and the coupling output shaft 64 connected in series to the front propeller shaft 18 are selectively connected. In this control coupling device 54, the hydraulic pressure (engagement pressure) of the hydraulic oil supplied to the hydraulic actuator is adjusted by the electronic control device 10 shown in FIG. ) Is continuously changed. Therefore, by adjusting the engagement pressure, the torque distribution ratio between the front drive wheel 30 and the rear drive wheel 32 is 0 (front drive wheel): 100 (rear drive wheel) to 50 (front drive wheel). : 50 (rear drive wheel) is continuously controlled. For example, when the control coupling device 54 is fully engaged, the driven gear 60 and the coupling output shaft 64 rotate integrally, and when the control coupling device 54 is half-engaged. The torque transmitted from the output shaft 44 of the power transmission device 14 to the front propeller shaft 18 changes according to the engagement force. On the other hand, when the control coupling device 54 is disengaged, that is, released, torque transmission between the driven gear 60 and the coupling output shaft 64 is interrupted, and the output torque from the power transmission device 14 is the rear propeller. It is transmitted only to the shaft 24. That is, the vehicle 6 is in a two-wheel drive state by the rear drive wheels 32.
 このように構成されたトランスファ16では、制御カップリング装置54の作動状態(係合状態)に応じて、動力伝達装置14からの出力トルクをフロントプロペラシャフト18とリアプロペラシャフト24とに配分するトルク配分割合が調節されるようになっている。すなわち、制御カップリング装置54は、動力伝達装置14からの出力トルクを前側駆動輪30と後側駆動輪32とに配分するトルク配分装置として機能する。例えば前後輪駆動走行すなわち四輪駆動走行における回生制動時には、第2電動機M2の回生制動トルクTgrが後側駆動輪32に伝達されると共に、前側駆動輪30には制御カップリング装置54を介してその第2電動機M2の回生制動トルクTgrが伝達される。 In the transfer 16 configured as described above, torque that distributes output torque from the power transmission device 14 to the front propeller shaft 18 and the rear propeller shaft 24 in accordance with the operating state (engaged state) of the control coupling device 54. The distribution ratio is adjusted. That is, the control coupling device 54 functions as a torque distribution device that distributes the output torque from the power transmission device 14 to the front drive wheels 30 and the rear drive wheels 32. For example, during regenerative braking in front-rear wheel drive traveling, that is, four-wheel drive traveling, the regenerative braking torque Tgr of the second electric motor M2 is transmitted to the rear drive wheel 32 and the front drive wheel 30 is connected to the front drive wheel 30 via the control coupling device 54. The regenerative braking torque Tgr of the second electric motor M2 is transmitted.
 図1に戻って、車両6は、供給される油圧に応じて前側駆動輪30に制動トルクを発生させる前輪用油圧ブレーキ90と、供給される油圧に応じて後側駆動輪32に制動トルクを発生させる後輪用油圧ブレーキ92と、それら前輪用油圧ブレーキ90および後輪用油圧ブレーキ92にそれぞれ油圧を供給するブレーキ油圧制御回路94とを備えている。上記ブレーキ油圧制御回路94は、たとえばABS制御やVSC制御を行うために油圧を発生させる油圧ポンプおよびアキュムレータと、各油圧ブレーキ90,92へ供給される油圧を独立に調圧する電磁弁たとえばリニアソレノイドバルブとを備え、運転者によるブレーキペダル96のブレーキ踏力FBRやブレーキ踏込速度SPDBRなどに応じてマスターシリンダー98で発生させられた油圧あるいは上記油圧ポンプで発生させられた油圧を、電子制御装置10からの指令に従って各油圧ブレーキ90,92へ供給するとともに、その供給される油圧を調圧制御する。前輪用油圧ブレーキ90および後輪用油圧ブレーキ92によって前側駆動輪30および後側駆動輪32にそれぞれ発生させられる制動トルクは、ブレーキ油圧制御回路94から前輪用油圧ブレーキ90および後輪用油圧ブレーキ92にそれぞれ供給される油圧の大きさに応じてそれぞれ増減させられるようになっている。 Returning to FIG. 1, the vehicle 6 applies a braking torque to the front drive wheel 30 that generates a braking torque on the front drive wheel 30 according to the supplied hydraulic pressure, and to the rear drive wheel 32 according to the supplied hydraulic pressure. A rear wheel hydraulic brake 92 is generated, and a brake hydraulic control circuit 94 that supplies hydraulic pressure to the front wheel hydraulic brake 90 and the rear wheel hydraulic brake 92 is provided. The brake hydraulic control circuit 94 includes, for example, a hydraulic pump and an accumulator that generate hydraulic pressure to perform ABS control and VSC control, and an electromagnetic valve that adjusts the hydraulic pressure supplied to each hydraulic brake 90 and 92 independently, such as a linear solenoid valve. The electronic control device 10 supplies the hydraulic pressure generated by the master cylinder 98 or the hydraulic pressure generated by the hydraulic pump in accordance with the brake depression force F BR of the brake pedal 96 and the brake depression speed SPD BR by the driver. Is supplied to each of the hydraulic brakes 90 and 92 according to a command from, and the supplied hydraulic pressure is controlled. The braking torque generated on the front drive wheel 30 and the rear drive wheel 32 by the front wheel hydraulic brake 90 and the rear wheel hydraulic brake 92, respectively, is supplied from the brake hydraulic control circuit 94 to the front wheel hydraulic brake 90 and the rear wheel hydraulic brake 92. The hydraulic pressure can be increased or decreased according to the hydraulic pressure supplied to each.
 図1において、電子制御装置10は、車両用駆動装置8およびブレーキ油圧制御回路94の作動を制御するための制御装置である。この電子制御装置10は、CPU、ROM、RAM、及び入出力インターフェースなどから成る所謂マイクロコンピュータを複数含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことにより各種制御をそれぞれ実行する。上記各種制御には、例えば、エンジン12および電動機Mの要求出力をそれぞれ算出してそれら要求出力が得られるように各装置に指令を行うハイブリッド駆動制御、上記指令に従ってエンジンの出力を制御するエンジン出力制御、上記指令に従って電動機Mによる駆動力源又は発電機としての作動を制御する電動機出力制御、および前後駆動力配分を制御するために制御カップリング装置54のトルク容量を制御する前後駆動力配分制御などがある。 1, the electronic control device 10 is a control device for controlling the operation of the vehicle drive device 8 and the brake hydraulic pressure control circuit 94. The electronic control device 10 includes a plurality of so-called microcomputers including a CPU, a ROM, a RAM, an input / output interface, and the like. The electronic control device 10 uses a temporary storage function of the RAM, and signals according to a program stored in the ROM in advance. Various controls are executed by performing the processing. The various controls include, for example, hybrid drive control that calculates the required outputs of the engine 12 and the electric motor M and gives commands to each device so that the required outputs are obtained, and the engine output that controls the output of the engine according to the commands. Control, motor output control for controlling the operation of the motor M as a driving force source or generator according to the command, and front / rear driving force distribution control for controlling the torque capacity of the control coupling device 54 to control the front / rear driving force distribution and so on.
 また、上記電子制御装置10には、車両に設けられた各センサやスイッチなどから各種信号が供給される。例えば、エンジン回転速度センサ100からエンジン回転速度Neを表す信号、出力軸回転速度センサ102から車速Vに対応する出力軸44の回転速度Noutを表す信号、第1電動機回転速度センサ104から第1電動機M1の回転速度NM1(以下、第1電動機回転速度NM1という)を表す信号、第2電動機回転速度センサ106から第2電動機M2の回転速度NM2(以下、第2電動機回転速度NM2という)を表す信号、前輪回転速度センサ108から前側駆動輪30の回転速度Nf(以下、前輪回転速度Nfという)を表す信号、後輪回転速度センサ110から後側駆動輪32の回転速度Nr(以下、後輪回転速度Nrという)を表す信号、ブレーキセンサ112からブレーキ踏力FBR及びブレーキ踏込速度SPDBRなどを表す信号、アクセル開度センサ114からアクセルペダルの操作量すなわちアクセル開度Accを表す信号、カップリング温度センサ116から制御カップリング装置54の温度TEMPCP(以下、カップリング温度TEMPCPという)として検出される制御カップリング装置54内の作動油温を表す信号、蓄電装置50からその蓄電装置50の充電状態SOCすなわち充電残量SOCを表す信号などが、それぞれ供給される。 The electronic control device 10 is supplied with various signals from sensors and switches provided in the vehicle. For example, a signal representing the engine rotational speed Ne from the engine rotational speed sensor 100, a signal representing the rotational speed Nout of the output shaft 44 corresponding to the vehicle speed V from the output shaft rotational speed sensor 102, and a first motor from the first motor rotational speed sensor 104 A signal representing a rotation speed N M1 of M1 (hereinafter referred to as a first motor rotation speed N M1 ), a rotation speed N M2 of the second motor M2 from the second motor rotation speed sensor 106 (hereinafter referred to as a second motor rotation speed N M2 ). ), A signal representing the rotation speed Nf of the front drive wheel 30 (hereinafter referred to as front wheel rotation speed Nf) from the front wheel rotation speed sensor 108, and a rotation speed Nr (hereinafter referred to as rear wheel rotation speed sensor 110) of the rear wheel rotation speed sensor 110. a signal representing a) of the rear wheel rotational speed Nr, representative of a brake pedal force F BR and the brake depression speed SPD BR from a brake sensor 112 No., detected signal representing the operation amount i.e. the accelerator opening Acc of the accelerator pedal from an accelerator opening sensor 114, the temperature TEMP CP control coupling device 54 from the coupling temperature sensor 116 (hereinafter, coupling of the ring temperatures TEMP CP) as A signal representing the hydraulic oil temperature in the control coupling device 54, a signal representing the state of charge SOC of the power storage device 50, that is, the remaining charge SOC, etc. are supplied from the power storage device 50, respectively.
 上記電子制御装置10からは、たとえば、エンジン12の出力制御のための指令信号、電動機Mの作動を制御するための指令信号、制御カップリング装置54の作動を制御するための指令信号、ブレーキ油圧制御回路94の作動を制御するための指令信号などの各種信号が、それぞれ出力される。 From the electronic control unit 10, for example, a command signal for controlling the output of the engine 12, a command signal for controlling the operation of the electric motor M, a command signal for controlling the operation of the control coupling device 54, brake hydraulic pressure Various signals such as a command signal for controlling the operation of the control circuit 94 are output.
 図3は、電子制御装置10に備えられた制御機能の要部を説明するための機能ブロック線図である。図3に示すように電子制御装置10は、ハイブリッド制御部としてのハイブリッド制御手段120と、回生制動走行判断部としての回生制動走行判断手段122と、車両制動力決定部としての車両制動力決定手段124と、充電要求量決定部としての充電要求量決定手段126と、トルク伝達制限判断部としてのトルク伝達制限判断手段128と、最大許容回生制動トルク設定部としての最大許容回生制動トルク設定手段130と、回生制動トルク決定部としての回生制動トルク決定手段132と、前後輪トルク配分制御部としての前後輪トルク配分制御手段134と、車両制動実行部としての車両制動実行手段136とを備えている。 FIG. 3 is a functional block diagram for explaining the main part of the control function provided in the electronic control unit 10. As shown in FIG. 3, the electronic control unit 10 includes a hybrid control unit 120 as a hybrid control unit, a regenerative braking travel determination unit 122 as a regenerative braking travel determination unit, and a vehicle braking force determination unit as a vehicle braking force determination unit. 124, a required charging amount determining unit 126 as a required charging amount determining unit, a torque transmission limit determining unit 128 as a torque transmission limit determining unit, and a maximum allowable regenerative braking torque setting unit 130 as a maximum allowable regenerative braking torque setting unit. And a regenerative braking torque determining unit 132 as a regenerative braking torque determining unit, a front and rear wheel torque distribution control unit 134 as a front and rear wheel torque distribution control unit, and a vehicle braking execution unit 136 as a vehicle braking execution unit. .
 図3において、ハイブリッド制御手段120は、各センサやスイッチ等から電子制御装置10に供給される各種信号に基づいてエンジン12および電動機Mの作動を制御する。例えば、エンジン12を効率のよい作動域で作動させるようにエンジン出力制御装置121に指令する一方で、エンジン12と第2電動機M2との駆動力の配分や第1電動機M1の発電による反力を最適に変化させて動力伝達装置14の電気的な無段変速機としての変速比γ0を制御する。また、ハイブリッド制御手段120は、後述の回生制動走行判断手段122が回生制動走行を行うべきと判断した場合には、第1電動機M1を空転状態として入力軸36から出力軸44への動力伝達を遮断すると共に、燃費向上のため、エンジン12を一時的に停止する。 3, the hybrid control means 120 controls the operation of the engine 12 and the electric motor M based on various signals supplied to the electronic control device 10 from each sensor, switch, and the like. For example, while instructing the engine output control device 121 to operate the engine 12 in an efficient operating range, the distribution of the driving force between the engine 12 and the second electric motor M2 and the reaction force due to the power generation of the first electric motor M1 The speed ratio γ0 as an electric continuously variable transmission of the power transmission device 14 is controlled by changing it optimally. Further, when the regenerative braking travel determining means 122 described later determines that the regenerative braking traveling should be performed, the hybrid control means 120 sets the first electric motor M1 in the idling state and transmits power from the input shaft 36 to the output shaft 44. While shutting off, the engine 12 is temporarily stopped to improve fuel consumption.
 回生制動走行判断手段122は、減速しつつ車両6を走行させる減速走行、すなわち第2電動機M2を回生作動させつつ車両6を制動する回生制動走行を行うべきか否かを判断する。具体的に、回生制動走行判断手段122は、車速V及びアクセル開度Accなどに基づいて、前記回生制動走行を行うべきか否かを判断する。例えば、車速Vが予め電子制御装置10に記憶された判断基準車速以上であり、且つアクセル開度Accが予め電子制御装置10に記憶された判断基準アクセル開度未満である場合に、前記回生制動走行を行うべきであると判断する。上記判断基準アクセル開度は、例えばアクセルペダルが踏み込まれていないと判断できる程度の小さい開度に実験的に設定されている。また、上記判断基準車速は、通常のエンジン車両におけるエンジンブレーキと同等又はそれ以上の制動力を付与することが運転者の意思に沿うと判断できる車速Vに実験的に設定されている。 The regenerative braking travel determination means 122 determines whether or not to perform decelerating travel that causes the vehicle 6 to travel while decelerating, that is, regenerative braking travel that brakes the vehicle 6 while regenerating the second electric motor M2. Specifically, the regenerative braking travel determination unit 122 determines whether or not to perform the regenerative braking travel based on the vehicle speed V, the accelerator opening degree Acc, and the like. For example, the regenerative braking is performed when the vehicle speed V is equal to or higher than the determination reference vehicle speed stored in the electronic control device 10 in advance and the accelerator opening Acc is less than the determination reference accelerator opening stored in the electronic control device 10 in advance. Judge that it should run. The determination reference accelerator opening is experimentally set to such a small opening that it can be determined that the accelerator pedal is not depressed, for example. The determination reference vehicle speed is experimentally set to a vehicle speed V at which it can be determined that applying a braking force equal to or higher than an engine brake in a normal engine vehicle is in line with the driver's intention.
 車両制動力決定手段124は、回生制動走行判断手段122によって前記回生制動走行を行うべきであると判断された場合に、その回生制動走行における車両制動力FVLの目標値である目標車両制動力FVL*を逐次決定する。その目標車両制動力FVL*は、運転者の意思に沿った車両制動がなされ運転性能や走行快適性を損なわないように予め実験的に定められた関係から、車速V、ブレーキ踏力FBR、およびブレーキ踏込速度SPDBR等に基づいて決定される。例えば、そのブレーキ踏力FBRが大きいほど目標車両制動力FVL*は大きくなるように決定される。 When the regenerative braking travel determination unit 122 determines that the regenerative braking travel should be performed, the vehicle braking force determination unit 124 determines a target vehicle braking force that is a target value of the vehicle braking force F VL in the regenerative braking travel. F VL * is sequentially determined. From the target vehicle braking force F VL * is made vehicle braking along the intention of the driver driving performance and driving comfort relationships predetermined experimentally so as not to impair, the vehicle speed V, the brake pressing force F BR, And the brake depression speed SPD BR and the like. For example, the target vehicle braking force F VL * is determined to increase as the brake depression force F BR increases.
 充電要求量決定手段126は、蓄電装置50の充電残量SOCを逐次検出しており、予め実験的に定められた関係からその充電残量SOCに基づいて、前記回生制動走行において蓄電装置50に充電すべき充電要求量、すなわち第2電動機M2の回生作動により発電すべき発電電力を逐次決定する。例えば、充電要求量決定手段126は、蓄電装置50の充電残量SOCが低いほど、第2電動機M2が発電すべき発電電力を大きく決定する。 The requested charge amount determining means 126 sequentially detects the remaining charge SOC of the power storage device 50, and based on the remaining charge SOC determined in advance from an experimentally determined relationship, The required charging amount to be charged, that is, the generated power to be generated by the regenerative operation of the second electric motor M2, is sequentially determined. For example, the requested charge amount determining unit 126 determines the generated power to be generated by the second electric motor M2 as the remaining charge SOC of the power storage device 50 is lower.
 トルク伝達制限判断手段128は、制御カップリング装置54がその制御カップリング装置54のトルク伝達が所定の常用時よりも制限されるトルク伝達制限状態であるか否か、すなわち、その制御カップリング装置54のトルク伝達が上記所定の常用時よりも制限されるトルク伝達制限時であるか否かを判断する。その制御カップリング装置54は高温時に上記トルク伝達制限状態になるので、具体的には、トルク伝達制限判断手段128は、カップリング温度TEMPCPを逐次検出しており、そのカップリング温度TEMPCPが、制御カップリング装置54のトルク伝達制限時であるか否かを判断できるように予め定められたカップリング温度判定値TEMP1以上であるか否かを逐次判断する。そして、トルク伝達制限判断手段128は、カップリング温度TEMPCPが上記カップリング温度判定値TEMP1以上である場合に、制御カップリング装置54の前記トルク伝達制限時であると判断する。一方で、カップリング温度TEMPCPが上記カップリング温度判定値TEMP1未満である場合には、制御カップリング装置54の非トルク伝達制限時すなわち前記所定の常用時であると判断する。上記カップリング温度判定値TEMP1は、本発明のトルク配分装置温度判定値に対応する。 The torque transmission restriction determining means 128 determines whether or not the control coupling device 54 is in a torque transmission restricted state in which torque transmission of the control coupling device 54 is restricted from a predetermined normal use, that is, the control coupling device. It is determined whether or not the torque transmission is limited when the torque transmission is limited more than the predetermined normal use. Since the control coupling device 54 is in the torque transmission limit state at a high temperature, specifically, the torque transmission limit determination means 128 sequentially detects the coupling temperature TEMP CP , and the coupling temperature TEMP CP is Then, it is sequentially determined whether or not it is equal to or greater than a predetermined coupling temperature determination value TEMP1 so that it can be determined whether or not the torque transmission of the control coupling device 54 is limited. Then, the torque transmission restriction determination unit 128 determines that the torque transmission restriction of the control coupling device 54 is in effect when the coupling temperature TEMP CP is equal to or higher than the coupling temperature determination value TEMP1. On the other hand, when the coupling temperature TEMP CP is less than the coupling temperature determination value TEMP1, it is determined that the non-torque transmission limit of the control coupling device 54, that is, the predetermined normal use time. The coupling temperature determination value TEMP1 corresponds to the torque distribution device temperature determination value of the present invention.
 ここで、制御カップリング装置54の制御可能なトルク容量の最大値である最大トルク容量とカップリング温度TEMPCPとの関係を図4を用いて説明する。その図4は、上記最大トルク容量とカップリング温度TEMPCPとの関係を表した図である。図4に示すように、制御カップリング装置54の最大トルク容量は全体として、カップリング温度TEMPCPが高いほど小さくなる傾向にあり、図4にて二点鎖線L01で囲んで示す前記所定の常用時の温度域である常用温度域では、上記最大トルク容量のカップリング温度TEMPCPに対する減少率が小さくなる。しかし、カップリング温度TEMPCPが、その常用温度域を超えて更に高温である使用限界温度TEMP1を超えると、その最大トルク容量の減少率は大きくなり且つ上記最大トルク容量はカップリング温度TEMPCPが高いほど小さくなる。そのため、制御カップリング装置54は、前記常用温度域で通常は使用されるが、カップリング温度TEMPCPが上記使用限界温度TEMP1を超えると、制御カップリング装置54はエンジン12や電動機Mからのトルクを前側駆動輪30へは殆ど伝達せず前記トルク伝達制限状態になり、その場合、例えば車両6は専ら後側駆動輪32で駆動力を発揮する後輪駆動車両と同等になる。そこで、前記使用限界温度TEMP1が予め実験的に求められ、その使用限界温度TEMP1が前記カップリング温度判定値TEMP1として予め設定されている。 Here, the relationship between the maximum torque capacity that is the maximum controllable torque capacity of the control coupling device 54 and the coupling temperature TEMP CP will be described with reference to FIG. FIG. 4 shows the relationship between the maximum torque capacity and the coupling temperature TEMP CP . As shown in FIG. 4, as a whole, the maximum torque capacity of the control coupling device 54 tends to decrease as the coupling temperature TEMP CP is higher, and the predetermined common use shown by being surrounded by a two-dot chain line L01 in FIG. In the normal temperature range, which is the temperature range of the hour, the rate of decrease of the maximum torque capacity with respect to the coupling temperature TEMP CP is small. However, when the coupling temperature TEMP CP exceeds the normal temperature range and exceeds the use limit temperature TEMP1, which is a higher temperature, the reduction rate of the maximum torque capacity increases, and the maximum torque capacity is equal to the coupling temperature TEMP CP. The higher the value, the smaller. Therefore, the control coupling device 54 is normally used in the normal temperature range, but when the coupling temperature TEMP CP exceeds the use limit temperature TEMP1, the control coupling device 54 causes the torque from the engine 12 or the electric motor M to be used. Is not transmitted to the front drive wheels 30 and the torque transmission is limited. In this case, for example, the vehicle 6 is equivalent to a rear wheel drive vehicle that exclusively exhibits the driving force by the rear drive wheels 32. Therefore, the use limit temperature TEMP1 is experimentally obtained in advance, and the use limit temperature TEMP1 is preset as the coupling temperature determination value TEMP1.
 最大許容回生制動トルク設定手段130は、車両制動力決定手段124が目標車両制動力FVL*を決定した場合には、第2電動機M2の回生作動により発生する回生制動トルクTgrの上限許容値T1grである最大許容回生制動トルクT1grを逐次設定する。例えば、その最大許容回生制動トルクT1grは前記ブレーキ踏力FBRが大きいほど大きく設定されるものであり、燃費向上のためには第2電動機M2がより多くの電気エネルギを回生できるように最大許容回生制動トルクT1grが大きく設定されるのが好ましい。 Maximum allowable regenerative braking torque setting means 130, when the vehicle braking force determining means 124 determines a target vehicle braking force F VL *, the upper limit allowable value of the regenerative braking torque Tgr generated by the regenerative operation of the second electric motor M2 T1GR The maximum allowable regenerative braking torque T1gr is sequentially set. For example, the maximum permissible regenerative braking torque T1gr is intended to be set larger as the brake pedal force F BR is large, for improving the fuel efficiency is the maximum allowable regenerative so that it can regenerate more electrical energy the second electric motor M2 The braking torque T1gr is preferably set large.
 また、その最大許容回生制動トルクT1grの設定条件は、トルク伝達制限判断手段128の判断に応じて異なる。すなわち、最大許容回生制動トルク設定手段130は、トルク伝達制限判断手段128により制御カップリング装置54の前記非トルク伝達制限時であると判断された場合には、回生制動トルクTgrが前側駆動輪30及び後側駆動輪32のそれぞれに所定のトルク配分割合たとえば「50(前側駆動輪):50(後側駆動輪)」のトルク配分割合で伝達されるものとして、前側駆動輪30及び後側駆動輪32の各々のスリップが発生しないように、第2電動機M2の最大許容回生制動トルクT1grを設定する。例えば、前記所定のトルク配分割合の下で前側駆動輪30及び後側駆動輪32の各々のスリップが発生しないように予め実験的に定められた関係から、車速V、ブレーキ踏力FBR、およびブレーキ踏込速度SPDBR等に基づいて、上記最大許容回生制動トルクT1grを設定する。その一方で、最大許容回生制動トルク設定手段130は、トルク伝達制限判断手段128により制御カップリング装置54の前記トルク伝達制限時であると判断された場合には、前記回生制動トルクTgrが後側駆動輪32にだけ伝達され前側駆動輪30には伝達されないものとして、後側駆動輪32のスリップが発生しないように、第2電動機M2の最大許容回生制動トルクT1grを設定する。例えば、回生制動トルクTgrが後側駆動輪32にだけ伝達されるという条件下で後側駆動輪32のスリップが発生しないように予め実験的に定められた関係から、車速V、ブレーキ踏力FBR、およびブレーキ踏込速度SPDBR等に基づいて、上記最大許容回生制動トルクT1grを設定する。但し、制御カップリング装置54の前記トルク伝達制限時と前記非トルク伝達制限時との何れであっても、最大許容回生制動トルク設定手段130は、車両制動力決定手段124が決定した目標車両制動力FVL*を出力軸44まわりのトルクに換算したトルク(目標車両制動力換算トルク)以下の範囲内で、第2電動機M2の最大許容回生制動トルクT1grを設定する。つまり、前記予め実験的に定められた関係から設定される最大許容回生制動トルクT1grが上記目標車両制動力換算トルクを上回っていれば、最大許容回生制動トルクT1grはその目標車両制動力換算トルクと同一値に設定される。このように最大許容回生制動トルクT1grは上記目標車両制動力換算トルク以下の範囲内に設定されるので、最大許容回生制動トルクT1grは、目標車両制動力FVL*と同様に運転性能や走行快適性を損なわないように設定されることになる。また、最大許容回生制動トルク設定手段130は、制御カップリング装置54の前記非トルク伝達制限時と前記トルク伝達制限時とでそれぞれ上記のように最大許容回生制動トルクT1grを設定し、回生制動トルクTgrが後側駆動輪32にだけ伝達される場合の方が、その回生制動トルクTgrが前側駆動輪30及び後側駆動輪32のそれぞれに伝達される場合よりも後側駆動輪32はスリップし易いので、最大許容回生制動トルク設定手段130は、前記トルク伝達制限時には最大許容回生制動トルクT1grを前記非トルク伝達制限時よりも小さく設定することになる。例えば、前記トルク伝達制限時の最大許容回生制動トルクT1grを前記非トルク伝達制限時の半分程度に設定する。 Further, the setting condition of the maximum allowable regenerative braking torque T1gr differs depending on the determination of the torque transmission limit determination means 128. That is, if the maximum allowable regenerative braking torque setting means 130 determines that the non-torque transmission limit of the control coupling device 54 is determined by the torque transmission restriction determination means 128, the regenerative braking torque Tgr is equal to the front drive wheel 30. The front drive wheel 30 and the rear drive are assumed to be transmitted to each of the rear drive wheels 32 at a predetermined torque distribution ratio, for example, “50 (front drive wheel): 50 (rear drive wheel)”. The maximum allowable regenerative braking torque T1gr of the second electric motor M2 is set so that each slip of the wheel 32 does not occur. For example, the vehicle speed V, the brake pedaling force F BR , and the brake are determined based on a relationship that is experimentally determined in advance so that the slip of the front drive wheel 30 and the rear drive wheel 32 does not occur under the predetermined torque distribution ratio. The maximum allowable regenerative braking torque T1gr is set based on the stepping speed SPD BR and the like. On the other hand, when the maximum allowable regenerative braking torque setting means 130 determines that the torque transmission restriction of the control coupling device 54 is at the time of the torque transmission restriction by the torque transmission restriction judgment means 128, the regenerative braking torque Tgr is The maximum allowable regenerative braking torque T1gr of the second electric motor M2 is set so that the rear drive wheel 32 does not slip, assuming that it is transmitted only to the drive wheel 32 and not to the front drive wheel 30. For example, the vehicle speed V and the brake pedal force F BR are determined based on a relationship that is experimentally determined in advance so that the regenerative braking torque Tgr is transmitted only to the rear drive wheel 32 so that the rear drive wheel 32 does not slip. The maximum allowable regenerative braking torque T1gr is set based on the brake depression speed SPD BR and the like. However, the maximum allowable regenerative braking torque setting means 130 determines whether or not the target vehicle control determined by the vehicle braking force determination means 124 regardless of whether the torque transmission limit of the control coupling device 54 or the non-torque transmission limit. The maximum allowable regenerative braking torque T1gr of the second electric motor M2 is set within a range equal to or less than the torque (target vehicle braking force conversion torque) obtained by converting the power F VL * into the torque around the output shaft 44. That is, if the maximum allowable regenerative braking torque T1gr set based on the relationship determined experimentally in advance exceeds the target vehicle braking force conversion torque, the maximum allowable regenerative braking torque T1gr is equal to the target vehicle braking force conversion torque. Set to the same value. Since the maximum allowable regenerative braking torque T1gr so is in the range of less than the target vehicle braking force conversion torque, the maximum allowable regenerative braking torque T1gr, the target vehicle braking force F VL * similarly to driving performance and driving comfort It is set so as not to impair the performance. Further, the maximum allowable regenerative braking torque setting means 130 sets the maximum allowable regenerative braking torque T1gr as described above for the non-torque transmission restriction and the torque transmission restriction of the control coupling device 54, respectively. The rear drive wheel 32 slips more when Tgr is transmitted only to the rear drive wheel 32 than when the regenerative braking torque Tgr is transmitted to each of the front drive wheel 30 and the rear drive wheel 32. Since it is easy, the maximum allowable regenerative braking torque setting means 130 sets the maximum allowable regenerative braking torque T1gr smaller than when the non-torque transmission is limited when the torque transmission is limited. For example, the maximum allowable regenerative braking torque T1gr when the torque transmission is limited is set to about half that when the non-torque transmission is limited.
 回生制動トルク決定手段132は、最大許容回生制動トルク設定手段130が最大許容回生制動トルクT1grを設定した場合には、充電要求量決定手段126が決定した充電要求量が得られるように、第2電動機M2の回生制動トルクTgrを逐次決定する。但し、回生制動トルク決定手段132は、最大許容回生制動トルク設定手段130により予め定められた最大許容回生制動トルクT1gr以下の範囲内で上記回生制動トルクTgrを決定する。言い換えれば、回生制動トルク決定手段132は、その回生制動トルクTgrを上記最大許容回生制動トルクT1gr以下に制限する。例えば、前記充電要求量が得られるように決定される回生制動トルクTgrが最大許容回生制動トルクT1grを上回っていれば、回生制動トルクTgrはその最大許容回生制動トルクT1grと同一値に設定される。回生制動トルク決定手段132は上記のように第2電動機M2の回生制動トルクTgrを最大許容回生制動トルクT1gr以下に制限し、前述したように前記トルク伝達制限時の最大許容回生制動トルクT1grは前記非トルク伝達制限時よりも小さく設定されることになるので、結果として、回生制動トルク決定手段132は、前記トルク伝達制限時には、上記回生制動トルクTgrを上記非トルク伝達制限時よりも小さく設定することになる。言い換えれば、最大許容回生制動トルク設定手段130によって上記トルク伝達制限時に最大許容回生制動トルクT1grが上記非トルク伝達制限時よりも小さく設定されることで、回生制動トルク決定手段132によってそのトルク伝達制限時に上記回生制動トルクTgrがその非トルク伝達制限時よりも小さく決定される。 The regenerative braking torque determining means 132 is configured so that when the maximum allowable regenerative braking torque setting means 130 sets the maximum allowable regenerative braking torque T1gr, the second required charging amount determined by the charging request amount determining means 126 is obtained. The regenerative braking torque Tgr of the electric motor M2 is sequentially determined. However, the regenerative braking torque determining means 132 determines the regenerative braking torque Tgr within a range equal to or less than the maximum allowable regenerative braking torque T1gr determined by the maximum allowable regenerative braking torque setting means 130. In other words, the regenerative braking torque determination means 132 limits the regenerative braking torque Tgr to the maximum allowable regenerative braking torque T1gr or less. For example, if the regenerative braking torque Tgr determined so as to obtain the required charging amount exceeds the maximum allowable regenerative braking torque T1gr, the regenerative braking torque Tgr is set to the same value as the maximum allowable regenerative braking torque T1gr. . As described above, the regenerative braking torque determining means 132 limits the regenerative braking torque Tgr of the second electric motor M2 to the maximum allowable regenerative braking torque T1gr or less, and as described above, the maximum allowable regenerative braking torque T1gr when the torque transmission is limited is As a result, the regenerative braking torque determining unit 132 sets the regenerative braking torque Tgr smaller than that when the non-torque transmission is limited. It will be. In other words, when the maximum allowable regenerative braking torque setting means 130 sets the maximum allowable regenerative braking torque T1gr smaller than when the torque transmission is limited, the regenerative braking torque determination means 132 sets the torque transmission limit. Sometimes the regenerative braking torque Tgr is determined to be smaller than when the non-torque transmission is limited.
 前後輪トルク配分制御手段134は、トルク伝達制限判断手段128により制御カップリング装置54の前記非トルク伝達制限時であると判断された場合には、前側駆動輪30と後側駆動輪32とのそれぞれへ伝達される回生制動トルクTgrのトルク配分割合を逐次決定し、その決定したトルク配分割合が達成されるように制御カップリング装置54のトルク容量を油圧制御する。例えば、上記回生制動トルクTgrのトルク配分割合は、前輪回転速度Nfと後輪回転速度Nrとの回転速度差(=Nr-Nf)から算出される後側駆動輪32のスリップ率などで表される車両状態に基づいて、予め定められた関係(マップ)から、前側駆動輪30と後側駆動輪32との各々がスリップしないように決定される。要するに、前後輪トルク配分制御手段134は、前後輪駆動走行(四輪駆動走行,4WD走行)の際に一般的に行われている前後輪駆動制御(四輪駆動制御,4WD制御)と同様にして、前側駆動輪30と後側駆動輪32とがスリップしないように或いはそれらのスリップが生じ難いように、上記車両状態に基づいて制御カップリング装置54のトルク容量を制御する。 The front and rear wheel torque distribution control means 134 determines that the torque transmission restriction judgment means 128 determines that the non-torque transmission restriction of the control coupling device 54 is occurring. The torque distribution ratio of the regenerative braking torque Tgr transmitted to each is sequentially determined, and the torque capacity of the control coupling device 54 is hydraulically controlled so that the determined torque distribution ratio is achieved. For example, the torque distribution ratio of the regenerative braking torque Tgr is expressed by the slip ratio of the rear drive wheel 32 calculated from the rotational speed difference (= Nr−Nf) between the front wheel rotational speed Nf and the rear wheel rotational speed Nr. Based on a predetermined vehicle state, a predetermined relationship (map) is determined so that each of the front drive wheels 30 and the rear drive wheels 32 does not slip. In short, the front-rear wheel torque distribution control means 134 is the same as the front-rear wheel drive control (four-wheel drive control, 4WD control) generally performed during front-rear wheel drive travel (four-wheel drive travel, 4WD travel). Thus, the torque capacity of the control coupling device 54 is controlled based on the vehicle state so that the front drive wheel 30 and the rear drive wheel 32 do not slip or are unlikely to slip.
 一方、前後輪トルク配分制御手段134は、トルク伝達制限判断手段128により制御カップリング装置54の前記トルク伝達制限時であると判断された場合には、制御カップリング装置54のトルク容量を制御する油圧制御を行わない。 On the other hand, the front and rear wheel torque distribution control means 134 controls the torque capacity of the control coupling device 54 when it is determined by the torque transmission restriction determination means 128 that the torque transmission limit of the control coupling device 54 is present. Do not perform hydraulic control.
 車両制動実行手段136は、回生制動トルク決定手段132が第2電動機M2の回生制動トルクTgrを決定した場合には、その回生制動トルクTgrが第2電動機M2から出力されるように第2電動機M2を制御する電動機回生制動制御を実行する。更に、その電動機回生制動制御によって生じる回生制動力Fgr(回生制動トルクTgrを制動力に換算したもの)が車両制動力決定手段124により決定された目標車両制動力FVL*に満たない場合には、その回生制動力Fgrの目標車両制動力FVL*に対する不足分(=FVL*-Fgr)を、前輪用油圧ブレーキ90と後輪用油圧ブレーキ92との作動による機械的制動力Fmで補う油圧ブレーキ併用制動制御を前記電動機回生制動制御と並行して実行する。その結果として、車両制動実行手段136は、その機械的制動力Fmと上記回生制動力Fgrの合計である車両制動力FVL(=Fm+Fgr)を目標車両制動力FVL*に一致させるようにすることができる。前輪用油圧ブレーキ90の作動による前輪側機械的制動力Fmfと後輪用油圧ブレーキ92の作動による後輪側機械的制動力Fmrとの合計が前記機械的制動力Fmである。上記油圧ブレーキ併用制動制御では、前輪側機械的制動力Fmfと後輪側機械的制動力Fmrとの各々は、車両制動実行手段136のブレーキ油圧制御回路94に対する指令により、車両制動力FVL(=Femf+Femr)のうちの前側駆動輪30の担当分すなわち前側駆動輪30から発揮される前輪制動力Femfと、車両制動力FVLのうちの後側駆動輪32の担当分すなわち後側駆動輪32から発揮される後輪制動力Femrとの関係が所定の理想制動力配分曲線L0BR(図5参照)に近付くように制御される。従って、上記油圧ブレーキ併用制動制御では、前後輪トルク配分制御手段134が制御カップリング装置54の油圧制御により前側駆動輪30及び後側駆動輪32に対する回生制動トルクTgrのトルク配分割合を変更すれば、そのトルク配分割合の変更に応じて前輪側機械的制動力Fmfと後輪側機械的制動力Fmrとのそれぞれが変更される。この制御に関して、図5を用いて一例を示しつつ説明する。なお、理想制動力配分曲線L0BRは、車両制動時に車両挙動が安定するように予め実験的に求められ電子制御装置10に記憶されている。 When the regenerative braking torque determining unit 132 determines the regenerative braking torque Tgr of the second electric motor M2, the vehicle braking execution unit 136 outputs the regenerative braking torque Tgr from the second electric motor M2. The motor regenerative braking control for controlling the motor is executed. Furthermore, when the regenerative braking force Fgr generated by the regenerative braking control of the electric motor (regenerative braking torque Tgr converted into the braking force) is less than the target vehicle braking force FVL * determined by the vehicle braking force determination means 124. The deficiency (= F VL * −Fgr) of the regenerative braking force Fgr with respect to the target vehicle braking force F VL * is compensated by the mechanical braking force Fm generated by the operation of the front wheel hydraulic brake 90 and the rear wheel hydraulic brake 92. Hydraulic brake combined braking control is executed in parallel with the electric motor regenerative braking control. As a result, the vehicle braking execution means 136 makes the vehicle braking force F VL (= Fm + Fgr), which is the sum of the mechanical braking force Fm and the regenerative braking force Fgr, coincide with the target vehicle braking force F VL *. be able to. The total of the front wheel side mechanical braking force Fmf due to the operation of the front wheel hydraulic brake 90 and the rear wheel side mechanical braking force Fmr due to the operation of the rear wheel hydraulic brake 92 is the mechanical braking force Fm. In the hydraulic brake combined braking control, each of the front wheel side mechanical braking force Fmf and the rear wheel side mechanical braking force Fmr is determined by the vehicle braking force F VL ( = Femf + Femr) and the front wheel braking force Femf exerted from charge fraction i.e. front drive wheels 30 of the front drive wheels 30 of the vehicle braking force F representative fraction i.e. the rear drive wheel of the side drive wheels 32 after of VL 32 Is controlled so that the relationship with the rear wheel braking force Femr exerted from the above approaches a predetermined ideal braking force distribution curve L0 BR (see FIG. 5). Therefore, in the hydraulic brake combined braking control, if the front and rear wheel torque distribution control means 134 changes the torque distribution ratio of the regenerative braking torque Tgr to the front drive wheels 30 and the rear drive wheels 32 by the hydraulic control of the control coupling device 54. The front wheel side mechanical braking force Fmf and the rear wheel side mechanical braking force Fmr are changed according to the change in the torque distribution ratio. This control will be described with reference to FIG. Note that the ideal braking force distribution curve L0 BR is experimentally determined in advance so as to stabilize the vehicle behavior during vehicle braking, and is stored in the electronic control unit 10.
 図5は、前記トルク伝達制限時と前記非トルク伝達制限時とのそれぞれにおける前輪制動力Femfと後輪制動力Femrとの関係を例示した図である。図5において横軸は前輪制動力Femfであり、縦軸は後輪制動力Femrであり、前記理想制動力配分曲線L0BRは原点(Femf=0,Femr=0)を通り前輪制動力Femfが大きいほど後輪制動力Femrも大きくなる一定勾配の直線として表されている。 FIG. 5 is a diagram illustrating the relationship between the front wheel braking force Femf and the rear wheel braking force Femr when the torque transmission is restricted and when the non-torque transmission is restricted. In FIG. 5, the horizontal axis represents the front wheel braking force Femf, the vertical axis represents the rear wheel braking force Femr, and the ideal braking force distribution curve L0 BR passes through the origin (Femf = 0, Femr = 0) and the front wheel braking force Femf is It is expressed as a straight line with a constant gradient that increases as the rear wheel braking force Femr increases.
 先ず、前記非トルク伝達制限時に関して説明する。図5では、前記非トルク伝達制限時において、最大許容回生制動トルクT1grを制動力に換算した最大許容回生制動力F1grがG4WDに設定されたものとされている。そうすると、図5の横軸上のG4WDと縦軸上のG4WDとを結ぶ直線L04WDが前記非トルク伝達制限時の最大許容回生制動力F1grを表す回生制動限界線となる。その回生制動限界線とは、最大許容回生制動力F1grに対応した境界線であって第2電動機M2による回生制動の許容限度を示す線であり、具体的に説明すれば、その回生制動限界線L04WDを境界とした図5の前記原点側の回生制動可能領域A04WD内で回生制動力Fgrが決定されれば、回生制動トルクTgrは最大許容回生制動トルクT1gr以下の範囲内で決定されることになる。図5において、例えば、前記非トルク伝達制限時に回生制動トルクTgrが最大許容回生制動トルクT1grと同一値に決定されたときの回生制動力Fgrを示す回生制動点が、点P04WDとして示されている。その回生制動点P04WDが示す前輪制動力Femf(横軸)と後輪制動力Femr(縦軸)の合計が回生制動力Fgrであり、その回生制動点P04WDが示す前輪制動力Femf(横軸)と後輪制動力Femr(縦軸)との比率は、前後輪トルク配分制御手段134により制御される制御カップリング装置54のトルク容量に応じて定まる。また、回生制動点P04WDが示す回生制動力Fgrが目標車両制動力FVL*に満たない場合には、前記油圧ブレーキ併用制動制御の実行により、前輪制動力Femfと後輪制動力Femrとの関係が理想制動力配分曲線L0BRに近付くように機械的制動力Fmが発生させられる。図5には、前記非トルク伝達制限時の油圧ブレーキ併用制動制御における前輪制動力Femfと後輪制動力Femrとの関係の一例が点P14WDとして示されている。その油圧ブレーキ併用制動制御では、図5において点P14WDと回生制動点P04WDとの差が前輪側機械的制動力Fmfと後輪側機械的制動力Fmrとをそれぞれ示すことになり、具体的には、図5において、点P14WDと回生制動点P04WDとの縦軸方向の差は零であるので後輪側機械的制動力Fmrは零であり、点P14WDと回生制動点P04WDとの横軸方向の差DF014WDが前輪側機械的制動力Fmfを表している。 First, the non-torque transmission restriction will be described. In Figure 5, when the non-torque transmission limited, the maximum allowable regenerative braking force F1gr obtained by converting the maximum permissible regenerative braking torque T1gr the braking force is the one configured to G 4WD. Then, the regenerative braking limit line which is a straight line L0 4WD connecting the G 4WD on G 4WD and the vertical axis on the horizontal axis in FIG. 5 represents the maximum allowable regenerative braking force F1gr during the non-torque transmission limited. The regenerative braking limit line is a boundary line corresponding to the maximum allowable regenerative braking force F1gr and indicating the allowable limit of regenerative braking by the second electric motor M2. Specifically, the regenerative braking limit line will be described. If the regenerative braking force Fgr is determined in the regenerative braking possible region A0 4WD on the origin side in FIG. 5 with L0 4WD as a boundary, the regenerative braking torque Tgr is determined within the range of the maximum allowable regenerative braking torque T1gr or less. It will be. In FIG. 5, for example, the regenerative braking point indicating the regenerative braking force Fgr when the regenerative braking torque Tgr is determined to be the same value as the maximum allowable regenerative braking torque T1gr when the non-torque transmission is limited is indicated as a point P0 4WD. Yes. The sum of the front wheel braking force Femf (horizontal axis) indicated by the regenerative braking point P0 4WD and the rear wheel braking force Femr (vertical axis) is the regenerative braking force Fgr, and the front wheel braking force Femf (lateral) indicated by the regenerative braking point P0 4WD. The ratio between the shaft) and the rear wheel braking force Femr (vertical axis) is determined according to the torque capacity of the control coupling device 54 controlled by the front and rear wheel torque distribution control means 134. Further, when the regenerative braking force Fgr showing the regenerative braking point P0 4WD is less than the target vehicle braking force F VL * is the execution of the hydraulic brake combination brake control, the front wheel braking force Femf and a rear wheel braking force Femr The mechanical braking force Fm is generated so that the relationship approaches the ideal braking force distribution curve L0 BR . FIG. 5 shows an example of a relationship between the front wheel braking force Femf and the rear wheel braking force Femr in the hydraulic brake combined braking control when the non-torque transmission is limited as a point P1 4WD . In the hydraulic brake combined braking control, the difference between the point P1 4WD and the regenerative braking point P0 4WD in FIG. 5 indicates the front wheel side mechanical braking force Fmf and the rear wheel side mechanical braking force Fmr. In FIG. 5, since the difference in the vertical axis direction between the point P1 4WD and the regenerative braking point P0 4WD is zero, the rear wheel side mechanical braking force Fmr is zero, and the point P1 4WD and the regenerative braking point P0 4WD The difference DF01 4WD in the horizontal axis direction represents the front wheel side mechanical braking force Fmf.
 次に、前記トルク伝達制限時に関して説明する。図5では、前記トルク伝達制限時において、最大許容回生制動力F1grがGFRに設定されたものとされている。そのトルク伝達制限時には、制御カップリング装置54はトルク伝達を殆ど行えないので、車両6の走行状態は専ら後側駆動輪32による二輪駆動状態すなわちFR走行状態またはそれと同等の走行状態である。前述したように前記トルク伝達制限時の最大許容回生制動トルクT1grは前記非トルク伝達制限時よりも小さく設定されるので、図5ではGFRはG4WDよりも小さく設定されている。そして、図5の横軸上のGFRと縦軸上のGFRとを結ぶ直線L0FRが前記トルク伝達制限時の最大許容回生制動力F1grを表す回生制動限界線となる。具体的には、その回生制動限界線L0FRを境界とした図5の前記原点側の回生制動可能領域A0FR内で回生制動力Fgrが決定されれば、回生制動トルクTgrは最大許容回生制動トルクT1gr以下の範囲内で決定されることになる。図5において、例えば、前記トルク伝達制限時に回生制動トルクTgrが最大許容回生制動トルクT1grと同一値に決定されたときの回生制動力Fgrを示す回生制動点が、点P0FRとして示されている。前記トルク伝達制限時の車両6の走行状態は前記FR走行状態またはそれと同等の走行状態であるので、その回生制動点P0FRが示す前輪制動力Femf(横軸)は零または略零である。言い換えれば、その回生制動点P0FRは縦軸上または略縦軸上にくることになる。また、前記回生制動点P0FRが示す回生制動力Fgrが目標車両制動力FVL*に満たない場合には、前記非トルク伝達制限時と同様に、前記油圧ブレーキ併用制動制御の実行により、前輪制動力Femfと後輪制動力Femrとの関係が理想制動力配分曲線L0BRに近付くように機械的制動力Fmが発生させられる。図5には、前記トルク伝達制限時の油圧ブレーキ併用制動制御における前輪制動力Femfと後輪制動力Femrとの関係の一例が点P1FRとして示されている。その油圧ブレーキ併用制動制御では、前記非トルク伝達制限時と同様にして、図5において、点P1FRと回生制動点P0FRとの横軸方向の差DF01FRが前輪側機械的制動力Fmfを表すと共に、点P1FRと回生制動点P0FRとの縦軸方向の差DF02FRが後輪側機械的制動力Fmrを表している。 Next, the torque transmission restriction time will be described. In Figure 5, when the torque transfer limit, maximum allowable regenerative braking force F1gr is the one configured to G FR. When the torque transmission is limited, the control coupling device 54 can hardly transmit torque, so the traveling state of the vehicle 6 is exclusively the two-wheel drive state by the rear drive wheels 32, that is, the FR traveling state or a traveling state equivalent thereto. The maximum allowable regenerative braking torque T1gr during the torque transmission limited as described above is set to be smaller than when the non-torque transmission limited, G FR in FIG. 5 is set to be smaller than G 4WD. Then, the regenerative braking limit line of the straight line L0 FR connecting the G FR on G FR and the vertical axis on the horizontal axis in FIG. 5 represents the maximum allowable regenerative braking force F1gr when the torque transfer limit. Specifically, if the regenerative braking force Fgr is determined within the regenerative braking possible region A0 FR on the origin side in FIG. 5 with the regenerative braking limit line L0 FR as a boundary, the regenerative braking torque Tgr is the maximum allowable regenerative braking. It is determined within the range of torque T1gr or less. In FIG. 5, for example, the regenerative braking point indicating the regenerative braking force Fgr when the regenerative braking torque Tgr is determined to be the same value as the maximum allowable regenerative braking torque T1gr when the torque transmission is limited is shown as a point P0 FR . . Since the traveling state of the vehicle 6 when the torque transmission is limited is the FR traveling state or a traveling state equivalent thereto, the front wheel braking force Femf (horizontal axis) indicated by the regenerative braking point P0 FR is zero or substantially zero. In other words, the regenerative braking point P0 FR is on the vertical axis or substantially on the vertical axis. When the regenerative braking force Fgr indicated by the regenerative braking point P0 FR is less than the target vehicle braking force F VL *, the front wheel is controlled by executing the hydraulic brake combined braking control as in the non-torque transmission restriction. The mechanical braking force Fm is generated so that the relationship between the braking force Femf and the rear wheel braking force Femr approaches the ideal braking force distribution curve L0 BR . FIG. 5 shows an example of the relationship between the front wheel braking force Femf and the rear wheel braking force Femr in the hydraulic brake combined braking control when the torque transmission is limited as a point P1 FR . In the hydraulic brake combination brake control, in the same manner as when the non-torque transmission limited, in FIG. 5, the horizontal axis direction of the difference DF01 FR between the point P1 FR regenerative braking point P0 FR is a front-wheel-side mechanical braking force Fmf In addition, the difference DF02 FR in the vertical axis direction between the point P1 FR and the regenerative braking point P0 FR represents the rear wheel side mechanical braking force Fmr.
 図6および図7は、電子制御装置10の制御作動の要部、すなわち、車両6が回生制動走行を行う場合に車両制動力FVLを発生させる制御作動を説明するためのフローチャートである。図6のフローチャートは、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行され、図7のフローチャートは、図6のステップ(以下、「ステップ」を省略する)SA3にて実行されるサブルーチンである。 FIGS. 6 and 7 are flowcharts for explaining a main part of the control operation of the electronic control unit 10, that is, a control operation for generating the vehicle braking force FVL when the vehicle 6 performs regenerative braking traveling. The flowchart of FIG. 6 is repeatedly executed with an extremely short cycle time of, for example, about several milliseconds to several tens of milliseconds, and the flowchart of FIG. 7 is executed at step (hereinafter, “step” is omitted) SA3 of FIG. It is a subroutine.
 図6において、回生制動走行判断手段122に対応するSA1においては、前記回生制動走行を行うべきか否かが判断される。その判断は、例えば、車速V及びアクセル開度Accなどに基づいてなされる。このSA1の判断が肯定された場合、すなわち、前記回生制動走行を行うべき場合には、SA2に移る。一方、このSA1の判断が否定された場合には、図6のフローチャートは終了する。 In FIG. 6, in SA1 corresponding to the regenerative braking traveling determination means 122, it is determined whether or not the regenerative braking traveling should be performed. The determination is made based on, for example, the vehicle speed V and the accelerator opening Acc. If the determination of SA1 is affirmative, that is, if the regenerative braking travel is to be performed, the process proceeds to SA2. On the other hand, if the determination of SA1 is negative, the flowchart of FIG. 6 ends.
 車両制動力決定手段124に対応するSA2においては、前記回生制動走行における目標車両制動力FVL*が決定される。SA2の次はSA3に移る。 In SA2 corresponding to the vehicle braking force determining means 124, the target vehicle braking force FVL * in the regenerative braking traveling is determined. After SA2, the process proceeds to SA3.
 SA3においては、前記回生制動走行が行われる。すなわち、車両走行において第2電動機M2の回生作動を伴いつつ、車両制動力FVLが目標車両制動力FVL*に一致するように制御される。具体的には、図7のフローチャートが実行される。その図7のフローチャートが終了すればSA3が終了するので、図6のフローチャートは終了し、再びSA1から実行される。 In SA3, the regenerative braking travel is performed. In other words, the vehicle braking force F VL is controlled to coincide with the target vehicle braking force F VL * while the regenerative operation of the second electric motor M2 is performed during vehicle travel. Specifically, the flowchart of FIG. 7 is executed. When the flowchart of FIG. 7 ends, SA3 ends. Therefore, the flowchart of FIG. 6 ends and is executed again from SA1.
 図7のSB1においては、蓄電装置50の充電残量SOCが検出され、その充電残量SOCの状態が判定される。具体的には、前記回生制動走行において第2電動機M2が発電すべき発電電力が、その蓄電装置50の充電残量SOCに基づいて決定される。例えば、その発電電力は、蓄電装置50の充電残量SOCが低いほど大きく決定される。また、その発電電力が大きいほど、後述のSB4又はSB8で決定される第2電動機M2の回生制動トルクTgrは大きくなる。すなわち、蓄電装置50の充電残量SOCが低いほどその回生制動トルクTgrは大きくなる。SB1の次はSB2に移る。なお、SB1は充電要求量決定手段126に対応する。 7, the remaining charge SOC of the power storage device 50 is detected, and the state of the remaining charge SOC is determined. Specifically, the generated power to be generated by the second electric motor M2 in the regenerative braking traveling is determined based on the remaining charge SOC of the power storage device 50. For example, the generated power is determined to be larger as the remaining charge SOC of the power storage device 50 is lower. Moreover, the regenerative braking torque Tgr of the second electric motor M2 determined in SB4 or SB8 described later increases as the generated power increases. That is, the regenerative braking torque Tgr increases as the remaining charge SOC of the power storage device 50 decreases. After SB1, the process proceeds to SB2. Note that SB1 corresponds to the charge request amount determination unit 126.
 トルク伝達制限判断手段128に対応するSB2においては、四輪駆動走行を行うための4WDシステムが特に制限無く正常に作動するかという状態判定がなされる。具体的には、制御カップリング装置54が正常であるか否か、言い換えれば、制御カップリング装置54の前記非トルク伝達制限時であるか否かが判断される。その判断はカップリング温度TEMPCPに基づいてなされる。すなわち、カップリング温度TEMPCPが前記カップリング温度判定値TEMP1未満である場合には、制御カップリング装置54の前記非トルク伝達制限時であると判断される。その一方で、カップリング温度TEMPCPが前記カップリング温度判定値TEMP1以上である場合には、制御カップリング装置54の前記トルク伝達制限時であると判断される。このSB2の判断が肯定された場合、すなわち、カップリング温度TEMPCPがカップリング温度判定値TEMP1未満である場合には、制御カップリング装置54の前記非トルク伝達制限時であると判断され、SB3に移る。一方、このSB2の判断が否定された場合、すなわち、カップリング温度TEMPCPがカップリング温度判定値TEMP1以上である場合には、制御カップリング装置54の前記トルク伝達制限時であると判断され、SB7に移る。 In SB2 corresponding to the torque transmission restriction determination means 128, a state determination is made as to whether the 4WD system for performing the four-wheel drive traveling normally operates without any restriction. Specifically, it is determined whether or not the control coupling device 54 is normal, in other words, whether or not the non-torque transmission limit of the control coupling device 54 is in effect. The determination is made based on the coupling temperature TEMP CP . That is, when the coupling temperature TEMP CP is lower than the coupling temperature determination value TEMP1, it is determined that the non-torque transmission limit of the control coupling device 54 is being reached. On the other hand, when the coupling temperature TEMP CP is equal to or higher than the coupling temperature determination value TEMP1, it is determined that the torque transmission of the control coupling device 54 is limited. If the determination of SB2 is affirmative, that is, if the coupling temperature TEMP CP is less than the coupling temperature determination value TEMP1, it is determined that the non-torque transmission limit of the control coupling device 54 is present, and SB3 Move on. On the other hand, when the determination of SB2 is negative, that is, when the coupling temperature TEMP CP is equal to or higher than the coupling temperature determination value TEMP1, it is determined that the torque transmission of the control coupling device 54 is limited, Move on to SB7.
 最大許容回生制動トルク設定手段130に対応するSB3においては、回生制動トルクTgrが前側駆動輪30及び後側駆動輪32のそれぞれに所定のトルク配分割合で伝達されるものとして、言い換えれば、回生制動トルクTgrが前側駆動輪30及び後側駆動輪32のそれぞれに伝達される四輪回生制動が実施されるものとして、最大許容回生制動トルクT1grが、前側駆動輪30及び後側駆動輪32の各々のスリップが発生しないように設定される。但し、SB3では、最大許容回生制動トルクT1grは、図6のSA2にて決定された目標車両制動力FVL*に対応する前記目標車両制動力換算トルク以下の範囲内で設定される。SB3の次はSB4に移る。 In SB3 corresponding to the maximum allowable regenerative braking torque setting means 130, the regenerative braking torque Tgr is transmitted to each of the front drive wheels 30 and the rear drive wheels 32 at a predetermined torque distribution ratio, in other words, regenerative braking. Assuming that four-wheel regenerative braking is performed in which torque Tgr is transmitted to each of the front drive wheel 30 and the rear drive wheel 32, the maximum allowable regenerative braking torque T1gr is set to each of the front drive wheel 30 and the rear drive wheel 32. Is set so that no slip occurs. However, in SB3, the maximum allowable regenerative braking torque T1gr is set within the range of the target vehicle braking force conversion torque below corresponding to SA2 target vehicle braking force F VL * determined in the FIG. After SB3, the process proceeds to SB4.
 回生制動トルク決定手段132に対応するSB4においては、第2電動機M2の回生制動トルクTgrが、SB1にて決定された前記発電電力が得られるように決定(設定)される。但し、その回生制動トルクTgrは、SB3にて設定された最大許容回生制動トルクT1gr以下に制限される。SB4の次はSB5に移る。 In SB4 corresponding to the regenerative braking torque determining means 132, the regenerative braking torque Tgr of the second electric motor M2 is determined (set) so as to obtain the generated power determined in SB1. However, the regenerative braking torque Tgr is limited to the maximum allowable regenerative braking torque T1gr set in SB3. After SB4, the process proceeds to SB5.
 SB5においては、後側駆動輪32のスリップ率などで表される車両状態が判定される。言い換えれば、そのような車両状態が検出または推定される。例えば、路面状況など車輪30,32のスリップのし易さなどが判定される。SB5の次はSB6に移る。 In SB5, the vehicle state represented by the slip ratio of the rear drive wheel 32 is determined. In other words, such a vehicle state is detected or estimated. For example, the ease of slipping of the wheels 30 and 32 such as road surface conditions is determined. After SB5, the process proceeds to SB6.
 SB6においては、前側駆動輪30と後側駆動輪32とのそれぞれへ伝達される回生制動トルクTgrのトルク配分割合が、SB5にて判定された車両状態に基づいて決定される。そして、その決定されたトルク配分割合が達成されるように、制御カップリング装置54のトルク容量を制御する油圧制御が行われる。これにより、上記回生制動トルクTgrが前側駆動輪30にも配分されるようになる。なお、SB5およびSB6は前後輪トルク配分制御手段134に対応する。 In SB6, the torque distribution ratio of the regenerative braking torque Tgr transmitted to each of the front drive wheels 30 and the rear drive wheels 32 is determined based on the vehicle state determined in SB5. Then, hydraulic control for controlling the torque capacity of the control coupling device 54 is performed so that the determined torque distribution ratio is achieved. As a result, the regenerative braking torque Tgr is also distributed to the front drive wheels 30. SB5 and SB6 correspond to the front and rear wheel torque distribution control means 134.
 最大許容回生制動トルク設定手段130に対応するSB7においては、回生制動トルクTgrが後側駆動輪32にだけ伝達され前側駆動輪30には伝達されないものとして、言い換えれば、回生制動トルクTgrが後側駆動輪32にだけ伝達される二輪回生制動(FR回生制動)が実施されるものとして、最大許容回生制動トルクT1grが、後側駆動輪32のスリップが発生しないように設定される。そのため、図5にて「GFR<G4WD」の関係で例示されているように、最大許容回生制動トルクT1grは、SB7にて設定される場合の方がSB3にて設定される場合よりも小さく設定されることになる。但し、SB7では前記SB3と同様に、最大許容回生制動トルクT1grは、図6のSA2にて決定された目標車両制動力FVL*に対応する前記目標車両制動力換算トルク以下の範囲内で設定される。SB7の次はSB8に移る。 In SB7 corresponding to the maximum allowable regenerative braking torque setting means 130, it is assumed that the regenerative braking torque Tgr is transmitted only to the rear drive wheel 32 and not to the front drive wheel 30, in other words, the regenerative braking torque Tgr is rear side. Assuming that two-wheel regenerative braking (FR regenerative braking) transmitted only to the drive wheels 32 is performed, the maximum allowable regenerative braking torque T1gr is set so that the rear drive wheels 32 do not slip. Therefore, as illustrated in the relationship of “G FR <G 4WD ” in FIG. 5, the maximum allowable regenerative braking torque T1gr is set when set at SB7 than when set at SB3. It will be set smaller. However, as with the SB3 At SB7, the maximum allowable regenerative braking torque T1gr is set within a range of the target vehicle braking force conversion torque corresponding to the target vehicle braking force F VL * determined at SA2 of FIG. 6 Is done. After SB7, the process proceeds to SB8.
 回生制動トルク決定手段132に対応するSB8においては、第2電動機M2の回生制動トルクTgrが、SB1にて決定された前記発電電力が得られるように決定(設定)される。但し、その回生制動トルクTgrは、SB7にて設定された最大許容回生制動トルクT1gr以下に制限される。SB8の次はSB9に移る。 In SB8 corresponding to the regenerative braking torque determining means 132, the regenerative braking torque Tgr of the second electric motor M2 is determined (set) so as to obtain the generated power determined in SB1. However, the regenerative braking torque Tgr is limited to the maximum allowable regenerative braking torque T1gr set in SB7. After SB8, the process proceeds to SB9.
 SB9においては、SB4またはSB8にて決定された回生制動トルクTgrを制動力に換算した回生制動力Fgrが、図6のSA2にて決定された目標車両制動力FVL*に満たないか否かが判断される。このSB9の判断が肯定された場合、すなわち、回生制動力Fgrが目標車両制動力FVL*に満たない場合には、SB10に移る。一方、このSB9の判断が否定された場合には、SB11に移る。 In SB9, the regenerative braking force Fgr obtained by converting the regenerative braking torque Tgr determined at SB4 or SB8 in braking force, whether less than SA2 the target vehicle braking force F VL * determined in the FIG. 6 Is judged. If the determination in SB9 is affirmative, i.e., when the regenerative braking force Fgr is less than the target vehicle braking force F VL * proceeds to SB 10. On the other hand, if the determination at SB9 is negative, the operation proceeds to SB11.
 SB10においては、SB4またはSB8にて決定された回生制動トルクTgrが第2電動機M2から出力されるように第2電動機M2を制御する前記電動機回生制動制御が実行される。それと共に前記油圧ブレーキ併用制動制御がブレーキ油圧制御回路94に対する指令によって実行され、その油圧ブレーキ併用制動制御において、前輪用油圧ブレーキ90と後輪用油圧ブレーキ92との一方又は両方が、前記回生制動力Fgrの目標車両制動力FVL*に対する不足分を補うように作動させられる。 In SB10, the electric motor regenerative braking control for controlling the second electric motor M2 is executed such that the regenerative braking torque Tgr determined in SB4 or SB8 is output from the second electric motor M2. At the same time, the brake control combined with the hydraulic brake is executed by a command to the brake hydraulic control circuit 94. In the brake control combined with hydraulic brake 94, one or both of the front-wheel hydraulic brake 90 and the rear-wheel hydraulic brake 92 It is actuated so as to compensate for the shortage of the power Fgr with respect to the target vehicle braking force F VL *.
 SB11においては、SB4またはSB8にて決定された回生制動トルクTgrが第2電動機M2から出力されるように前記電動機回生制動制御が実行される。しかし、前記油圧ブレーキ併用制動制御は実行されない。なお、SB9~SB11は車両制動実行手段136に対応する。 In SB11, the electric motor regenerative braking control is executed so that the regenerative braking torque Tgr determined in SB4 or SB8 is output from the second electric motor M2. However, the hydraulic brake combined braking control is not executed. SB9 to SB11 correspond to the vehicle braking execution means 136.
 上述のように、本実施例によれば、回生制動トルク決定手段132は、制御カップリング装置54の前記トルク伝達制限時には、第2電動機M2の回生制動トルクTgrを前記非トルク伝達制限時よりも小さく設定する。また、上記トルク伝達制限時に、第2電動機M2の回生制動トルクTgrが上記非トルク伝達制限時と変わらないとすれば、その非トルク伝達制限時と比較して後側駆動輪32がスリップし車両挙動が不安定になり易い。従って、制御カップリング装置54のトルク伝達制限時が加味されずに第2電動機M2の回生制動トルクTgrが発生させられる場合と比較して、車両6の回生制動時において車両挙動の安定性を向上させることができる。特に、このような本実施例の効果は、例えば氷結路など路面に対する車輪30,32の摩擦係数が小さい低μ路にて顕著なものになる。 As described above, according to the present embodiment, the regenerative braking torque determination means 132 sets the regenerative braking torque Tgr of the second electric motor M2 when the torque transmission limit of the control coupling device 54 is less than when the non-torque transmission is limited. Set smaller. Further, if the regenerative braking torque Tgr of the second electric motor M2 is not different from that at the non-torque transmission limit when the torque transmission is restricted, the rear drive wheels 32 slip and the vehicle compared with the non-torque transmission restriction. The behavior tends to be unstable. Accordingly, the stability of the vehicle behavior is improved during the regenerative braking of the vehicle 6 as compared with the case where the regenerative braking torque Tgr of the second electric motor M2 is generated without taking into account the torque transmission limitation of the control coupling device 54. Can be made. In particular, such an effect of the present embodiment becomes remarkable on a low μ road where the friction coefficient of the wheels 30 and 32 against the road surface is small, such as an icy road.
 また、本実施例によれば、制御カップリング装置54の前記トルク伝達制限時とは、カップリング温度TEMPCPが予め定められた前記カップリング温度判定値TEMP1以上である場合である。従って、カップリング温度TEMPCPを検出することにより、制御カップリング装置54の上記トルク伝達制限時であるか否かを容易に判断することが可能である。 Further, according to the present embodiment, the time when the torque transmission of the control coupling device 54 is limited is a case where the coupling temperature TEMP CP is equal to or higher than the predetermined coupling temperature determination value TEMP1. Therefore, by detecting the coupling temperature TEMP CP , it is possible to easily determine whether or not the torque transmission of the control coupling device 54 is limited.
 また、本実施例によれば、第2電動機M2の回生制動トルクTgrは最大許容回生制動トルクT1gr以下に制限されており、制御カップリング装置54の前記トルク伝達制限時に最大許容回生制動トルクT1grが前記非トルク伝達制限時よりも小さく設定されることで、そのトルク伝達制限時に上記回生制動トルクTgrがその非トルク伝達制限時よりも小さく決定される。従って、その最大許容回生制動トルクT1grの設定変更により容易に、前記電動機の回生制動トルクを小さくすることができる。 Further, according to the present embodiment, the regenerative braking torque Tgr of the second electric motor M2 is limited to the maximum allowable regenerative braking torque T1gr or less, and the maximum allowable regenerative braking torque T1gr is set when the torque transmission is limited by the control coupling device 54. The regenerative braking torque Tgr is determined to be smaller than that when the non-torque transmission is restricted by setting the torque smaller than when the non-torque transmission is restricted. Therefore, the regenerative braking torque of the electric motor can be easily reduced by changing the setting of the maximum allowable regenerative braking torque T1gr.
 また、本実施例によれば、最大許容回生制動トルク設定手段130は、トルク伝達制限判断手段128により制御カップリング装置54の前記トルク伝達制限時であると判断された場合には、前記回生制動トルクTgrが後側駆動輪32にだけ伝達され前側駆動輪30には伝達されないものとして、後側駆動輪32のスリップが発生しないように、第2電動機M2の最大許容回生制動トルクT1grを設定する。従って、第2電動機M2の回生制動トルクTgrが、後側駆動輪32のみの駆動により走行する二輪駆動車両すなわち後輪駆動車両と同等の大きさにまで制限され、その後輪駆動車両と同等である前後輪のトルク配分割合は後側駆動輪32が最もスリップし易いトルク配分割合であるので、後側駆動輪32のスリップが十分に抑制されて、車両挙動の安定性を十分に確保できる。 Further, according to the present embodiment, when the maximum allowable regenerative braking torque setting unit 130 determines that the torque transmission limit of the control coupling device 54 is determined by the torque transmission limit determination unit 128, the regenerative braking is performed. Assuming that the torque Tgr is transmitted only to the rear drive wheel 32 and not to the front drive wheel 30, the maximum allowable regenerative braking torque T1gr of the second electric motor M2 is set so that the rear drive wheel 32 does not slip. . Accordingly, the regenerative braking torque Tgr of the second electric motor M2 is limited to a size equivalent to that of a two-wheel drive vehicle that travels by driving only the rear drive wheels 32, that is, a rear wheel drive vehicle, and is equivalent to that of a rear wheel drive vehicle. Since the torque distribution ratio of the front and rear wheels is the torque distribution ratio at which the rear drive wheels 32 are most likely to slip, the slip of the rear drive wheels 32 is sufficiently suppressed, and the stability of the vehicle behavior can be sufficiently ensured.
 以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。 As mentioned above, although the Example of this invention was described in detail based on drawing, this is an embodiment to the last, and this invention is implemented in the aspect which added various change and improvement based on the knowledge of those skilled in the art. Can do.
 例えば、前述の実施例において、制御カップリング装置54は、湿式多板型の油圧式摩擦係合装置により構成されているが、回転するドラムの外周面に巻き付けられた1本又は2本のバンドの一端が油圧アクチュエータによって引き締められるバンドブレーキなどであっても差し支えないし、或いは、電磁式クラッチや磁粉式クラッチなどで構成された制御カップリング装置であっても差し支えない。 For example, in the above-described embodiment, the control coupling device 54 is constituted by a wet multi-plate hydraulic friction engagement device, but one or two bands wound around the outer peripheral surface of the rotating drum. It may be a band brake or the like whose one end is tightened by a hydraulic actuator, or may be a control coupling device constituted by an electromagnetic clutch or a magnetic powder clutch.
 また、前述の実施例において、図7のSB2では、制御カップリング装置54のトルク伝達が所定の常用時よりも制限される前記トルク伝達制限時であるか否かが判断され、その判断はカップリング温度TEMPCPに基づいてなされるが、カップリング温度TEMPCP以外の他の状態量に基づいてなされても差し支えない。例えば、そのカップリングのフェール判断は、カップリング温度の他に、異音、振動、入出力の回転数差、アクチュエータのストローク量、油圧カップリングの場合は油圧の異常検知、電気制御カップリングの場合は短絡検知などに基づいてなされてもよい。 Further, in the above-described embodiment, in SB2 of FIG. 7, it is determined whether or not the torque transmission of the control coupling device 54 is limited when the torque transmission is limited more than a predetermined normal use. Although it is made based on the ring temperature TEMP CP , it may be made based on a state quantity other than the coupling temperature TEMP CP . For example, in the case of coupling failure, in addition to the coupling temperature, abnormal noise, vibration, input / output speed difference, actuator stroke amount, in the case of hydraulic coupling, detection of hydraulic abnormality, electrical control coupling The case may be made based on short circuit detection or the like.
 また、前述の実施例において、車両用駆動装置8は差動機構としての動力分配機構46と第1電動機M1とを備えているが、例えば、第1電動機M1及び動力分配機構46を備えてはおらず、エンジン12,クラッチ,第2電動機M2,出力軸44が直列に連結された所謂パラレルハイブリッド車両用の駆動装置であってもよい。なお、エンジン12と第2電動機M2との間の上記クラッチは必要に応じて設けられるものであるので、上記パラレルハイブリッド車両用の駆動装置がそのクラッチを備えていない構成も考え得る。 In the above-described embodiment, the vehicle drive device 8 includes the power distribution mechanism 46 and the first electric motor M1 as a differential mechanism. For example, the vehicle drive device 8 includes the first electric motor M1 and the power distribution mechanism 46. Alternatively, it may be a drive device for a so-called parallel hybrid vehicle in which the engine 12, the clutch, the second electric motor M2, and the output shaft 44 are connected in series. In addition, since the said clutch between the engine 12 and the 2nd electric motor M2 is provided as needed, the structure for which the said drive device for parallel hybrid vehicles is not equipped with the clutch can also be considered.
 また、前述の実施例において、車両6はエンジン12と動力分配機構46と第1電動機M1とを備えているが、例えば図8に示すように、それらエンジン12と動力分配機構46と第1電動機M1とを備えずに第2電動機M2からの動力で走行する所謂電気自動車であっても差し支えない。 In the above-described embodiment, the vehicle 6 includes the engine 12, the power distribution mechanism 46, and the first electric motor M1, but for example, as shown in FIG. 8, the engine 12, the power distribution mechanism 46, and the first electric motor. A so-called electric vehicle that travels with the power from the second electric motor M2 without the M1 may be used.
 また、前述の実施例において、車両6は後輪駆動方式を基本とする四輪駆動車両であるが、前輪駆動方式を基本とする四輪駆動車両であっても差し支えない。例えば、その前輪駆動方式を基本とする四輪駆動車両では、制御カップリング装置54が伝動装置52と前側駆動輪30との間には介装されず伝動装置52と後側駆動輪32との間に介装される。車両6がその前輪駆動方式を基本とする四輪駆動車両である場合には、前側駆動輪30は本発明の一方の車輪に対応し、後側駆動輪32は本発明の他方の車輪に対応する。そして、図7のSB7では、回生制動トルクTgrが前側駆動輪30にだけ伝達され後側駆動輪32には伝達されないものとして、最大許容回生制動トルクT1grが、前側駆動輪30のスリップが発生しないように設定される。 In the above-described embodiment, the vehicle 6 is a four-wheel drive vehicle based on the rear wheel drive system, but may be a four-wheel drive vehicle based on the front wheel drive system. For example, in a four-wheel drive vehicle based on the front wheel drive system, the control coupling device 54 is not interposed between the transmission device 52 and the front drive wheel 30, and the transmission device 52 and the rear drive wheel 32 Intervened in between. When the vehicle 6 is a four-wheel drive vehicle based on the front wheel drive system, the front drive wheel 30 corresponds to one wheel of the present invention, and the rear drive wheel 32 corresponds to the other wheel of the present invention. To do. 7, assuming that the regenerative braking torque Tgr is transmitted only to the front drive wheel 30 and not to the rear drive wheel 32, the maximum allowable regenerative braking torque T1gr does not cause the front drive wheel 30 to slip. Is set as follows.
 また、前述の実施例の図2において、動力分配機構46のリングギヤR0及び第2電動機M2は動力伝達装置14の出力軸44に直結されているが、手動変速機または自動変速機がそのリングギヤR0及び第2電動機M2と出力軸44との間に介装されていても差し支えない。 In FIG. 2 of the above-described embodiment, the ring gear R0 and the second electric motor M2 of the power distribution mechanism 46 are directly connected to the output shaft 44 of the power transmission device 14. However, a manual transmission or an automatic transmission is used for the ring gear R0. In addition, it may be interposed between the second electric motor M2 and the output shaft 44.
6:車両(前後輪駆動車両)
10:電子制御装置(駆動制御装置)
30:前側駆動輪(前輪、他方の車輪)
32:後側駆動輪(後輪、一方の車輪)
54:制御カップリング装置(トルク配分装置)
M2:第2電動機(電動機)
6: Vehicle (front and rear wheel drive vehicle)
10: Electronic control device (drive control device)
30: Front drive wheel (front wheel, other wheel)
32: Rear drive wheel (rear wheel, one wheel)
54: Control coupling device (torque distribution device)
M2: Second electric motor (electric motor)

Claims (4)

  1.  前後輪駆動走行における回生制動時には、電動機の回生制動トルクが前輪および後輪のうちの一方の車輪に伝達され、該前輪および該後輪のうちの他方の車輪にはトルク配分装置を介して該電動機の回生制動トルクが伝達される前後輪駆動車両用の駆動制御装置であって、
     前記トルク配分装置のトルク伝達が制限されるトルク伝達制限時には、前記電動機の回生制動トルクを該トルク配分装置の非トルク伝達制限時よりも小さくする
     ことを特徴とする前後輪駆動車両用の駆動制御装置。
    During regenerative braking in front and rear wheel drive traveling, the regenerative braking torque of the electric motor is transmitted to one of the front wheels and the rear wheels, and the other wheels of the front wheels and the rear wheels are A drive control device for front and rear wheel drive vehicles to which a regenerative braking torque of an electric motor is transmitted,
    Drive control for front and rear wheel drive vehicles characterized in that, when torque transmission is restricted in which torque transmission of the torque distribution device is restricted, the regenerative braking torque of the electric motor is made smaller than that when non-torque transmission of the torque distribution device is restricted. apparatus.
  2.  前記トルク伝達制限時とは、前記トルク配分装置の温度が予め定められたトルク配分装置温度判定値以上である場合である
     ことを特徴とする請求項1に記載の前後輪駆動車両用の駆動制御装置。
    2. The drive control for front and rear wheel drive vehicles according to claim 1, wherein the time when the torque transmission is limited is a case where the temperature of the torque distribution device is equal to or higher than a predetermined torque distribution device temperature determination value. apparatus.
  3.  前記電動機の回生制動トルクを予め定められた最大許容回生制動トルク以下に制限しており、
     前記トルク伝達制限時に該最大許容回生制動トルクを前記非トルク伝達制限時よりも小さく設定することで、該トルク伝達制限時に該電動機の回生制動トルクを該非トルク伝達制限時よりも小さくする
     ことを特徴とする請求項1又は2に記載の前後輪駆動車両用の駆動制御装置。
    The regenerative braking torque of the electric motor is limited to a predetermined maximum allowable regenerative braking torque or less,
    When the torque transmission is limited, the maximum allowable regenerative braking torque is set to be smaller than that when the non-torque transmission is limited, so that the regenerative braking torque of the motor is smaller than when the torque transmission is limited. The drive control device for a front and rear wheel drive vehicle according to claim 1 or 2.
  4.  前記トルク伝達制限時には、前記電動機の回生制動トルクが前記他方の車輪に伝達されないものとして、前記一方の車輪のスリップが発生しないように前記最大許容回生制動トルクを設定する
     ことを特徴とする請求項3に記載の前後輪駆動車両用の駆動制御装置。
     
    The maximum allowable regenerative braking torque is set so that the regenerative braking torque of the electric motor is not transmitted to the other wheel when the torque transmission is limited, so that the slip of the one wheel does not occur. 4. A drive control device for a front and rear wheel drive vehicle according to 3.
PCT/JP2011/052644 2011-02-08 2011-02-08 Drive control device for front and rear wheel drive vehicle WO2012108001A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/052644 WO2012108001A1 (en) 2011-02-08 2011-02-08 Drive control device for front and rear wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/052644 WO2012108001A1 (en) 2011-02-08 2011-02-08 Drive control device for front and rear wheel drive vehicle

Publications (1)

Publication Number Publication Date
WO2012108001A1 true WO2012108001A1 (en) 2012-08-16

Family

ID=46638244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052644 WO2012108001A1 (en) 2011-02-08 2011-02-08 Drive control device for front and rear wheel drive vehicle

Country Status (1)

Country Link
WO (1) WO2012108001A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015085794A (en) * 2013-10-30 2015-05-07 富士重工業株式会社 Control device of four-wheel drive type hybrid vehicle
CN108621804A (en) * 2018-05-14 2018-10-09 浙江吉利控股集团有限公司 Four-wheel independent electric drive vehicle regenerative brakes stable control method, device and vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000166004A (en) * 1998-11-25 2000-06-16 Toyota Motor Corp Regenerative brake controller for vehicle
JP2007276575A (en) * 2006-04-04 2007-10-25 Toyota Motor Corp Controller of vehicle
JP2010241166A (en) * 2009-04-01 2010-10-28 Nissan Motor Co Ltd Four-wheel drive controller and four-wheel drive control method for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000166004A (en) * 1998-11-25 2000-06-16 Toyota Motor Corp Regenerative brake controller for vehicle
JP2007276575A (en) * 2006-04-04 2007-10-25 Toyota Motor Corp Controller of vehicle
JP2010241166A (en) * 2009-04-01 2010-10-28 Nissan Motor Co Ltd Four-wheel drive controller and four-wheel drive control method for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015085794A (en) * 2013-10-30 2015-05-07 富士重工業株式会社 Control device of four-wheel drive type hybrid vehicle
CN108621804A (en) * 2018-05-14 2018-10-09 浙江吉利控股集团有限公司 Four-wheel independent electric drive vehicle regenerative brakes stable control method, device and vehicle

Similar Documents

Publication Publication Date Title
US8700241B2 (en) Drive control device for standby four-wheel drive vehicle
US7216943B2 (en) Hybrid vehicle
JP4228085B2 (en) Vehicle and control method thereof, power output device and control method thereof, and drive device and control method thereof
CN100475596C (en) Vehicle regenerative braking control apparatus and method
JP4325615B2 (en) Engine stop control device for hybrid vehicle
JP5310746B2 (en) Control device for power transmission device for four-wheel drive vehicle
WO2010058470A1 (en) Controller of power transmission device for vehicle
WO2013062124A1 (en) Control device for hybrid vehicle
JP2004268901A (en) Brake control system
US20100211280A1 (en) Regenerative braking control method for hybrid vehicles and/or four-wheel-drive vehicles and arrangement for vehicle using said method
KR101714238B1 (en) Braking control method for eco-friendly vehicle
JP2007060761A (en) Deceleration controller for hybrid car
JP2011011721A (en) Controller for hybrid electric vehicle
JP5348226B2 (en) Brake control device for vehicle
JP2012091573A (en) Device and method for controlling torque
US11590944B2 (en) Braking control device
JP2009214580A (en) Hybrid vehicle and control method therefor
JP5977982B2 (en) Vehicle drive device
JP4285483B2 (en) Vehicle and control method thereof
WO2012108001A1 (en) Drive control device for front and rear wheel drive vehicle
JP2010241166A (en) Four-wheel drive controller and four-wheel drive control method for vehicle
JP2007296933A (en) Vehicle and its control method
JP3906826B2 (en) Control device for hybrid four-wheel drive vehicle
JP4165344B2 (en) Vehicle control device
JP4136978B2 (en) Power transmission device for hybrid vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP