WO2020157853A1 - 光送信モジュール - Google Patents

光送信モジュール Download PDF

Info

Publication number
WO2020157853A1
WO2020157853A1 PCT/JP2019/003122 JP2019003122W WO2020157853A1 WO 2020157853 A1 WO2020157853 A1 WO 2020157853A1 JP 2019003122 W JP2019003122 W JP 2019003122W WO 2020157853 A1 WO2020157853 A1 WO 2020157853A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission module
optical transmission
laser light
temperature
receding
Prior art date
Application number
PCT/JP2019/003122
Other languages
English (en)
French (fr)
Inventor
直 廣重
明洋 松末
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/003122 priority Critical patent/WO2020157853A1/ja
Publication of WO2020157853A1 publication Critical patent/WO2020157853A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management

Definitions

  • the present invention relates to an optical transmission module.
  • Patent Document 1 discloses a semiconductor laser device including a package case, a Peltier element, a heat spreader, a stem, a semiconductor laser chip, and a lens.
  • the semiconductor laser chip is mounted on the stem.
  • the stem and lens are mounted on the heat spreader.
  • the Peltier element is joined to the package case by using the solder provided on the entire bottom surface of the Peltier element. Therefore, when the semiconductor laser device is used, a solder creep phenomenon occurs and the Peltier element gradually warps. The position of the lens with respect to the semiconductor laser chip changes gradually. Thus, the output of the laser light from the semiconductor laser device changes with time while the semiconductor laser device is continuously used.
  • the present invention has been made in view of the above problems, and an object of the present invention is to reduce the change over time in the output of laser light from an optical transmission module during continuous use of the optical transmission module.
  • the optical transmission module of the present invention includes a housing, a temperature adjuster, a joining member, a laser light source, and a lens. Includes housing and bottom plate.
  • the housing houses the temperature controller, the laser light source, and the lens.
  • the temperature controller includes a bottom surface facing the bottom plate and a top surface opposite to the bottom surface. The top surface is separated from the bottom surface in the height direction of the temperature controller.
  • the laser light source is provided on the top surface of the temperature controller.
  • the lens is provided on the top surface of the temperature controller.
  • the lens is configured to transmit the laser light emitted from the laser light source.
  • the bottom surface of the temperature adjuster includes a protrusion and a retreat that is retracted from the protrusion in the height direction of the temperature adjuster.
  • the protrusion is joined to the bottom plate using a joining member.
  • the receding part is separated from the bottom plate.
  • the receding part is exposed from the joining member.
  • the area of the joint member in plan view of the bottom surface of the temperature controller is reduced, and the rigidity of the joint member is reduced. Therefore, the temperature adjuster warps and deforms immediately after the use of the optical transmission module. Then, during continuous use of the optical transmission module, a creep phenomenon occurs in the joining member, and the rigidity of the joining member gradually decreases. However, since the temperature controller has already been warped and deformed immediately after the use of the optical transmission module, the temperature controller does not warp and deform so much while the optical transmission module is continuously used. The change with time of the output of the laser light from the optical transmission module can be reduced while continuing to use the optical transmission module.
  • FIG. 3 is a schematic side view of the optical transmission module according to the first embodiment.
  • FIG. 6 is a schematic bottom view of a temperature adjuster included in the optical transmission module according to the first and fourth embodiments.
  • FIG. 3 is a schematic side view of the structure of the optical transmission module according to the first embodiment (before use of the optical transmission module).
  • 3 is a schematic side view of the structure of the optical transmission module according to Embodiment 1 (while the optical transmission module is in use).
  • FIG. It is a schematic plan view of the optical transmission module which concerns on Embodiment 2 and Embodiment 5.
  • FIG. 6 is a schematic front view of the optical transmission module according to the second embodiment.
  • FIG. 11 is a schematic bottom view of a temperature adjuster included in the optical transmission module according to the second embodiment and the fifth embodiment. It is a schematic plan view of the optical transmission module which concerns on Embodiment 3 and Embodiment 6.
  • FIG. 9 is a schematic perspective view of a first heat transfer plate of a temperature controller included in the optical transmission module according to the third embodiment.
  • FIG. 14 is a schematic perspective view of a first heat transfer plate of a temperature adjuster included in the optical transmission module according to the modification of the third embodiment.
  • FIG. 9 is a schematic side view of the optical transmission module according to the fourth embodiment. It is a schematic front view of the optical transmission module which concerns on Embodiment 5.
  • the optical transmission module 1 includes a housing 4, a temperature adjuster 10, a joining member 7, laser light sources 23a, 23b, 23c and 23d, and lenses 24a, 24b, 24c and 24d.
  • the optical transmission module 1 may further include a carrier 20.
  • the optical transmitter module 1 may further include submounts 22a, 22b, 22c, 22d.
  • the optical transmission module 1 may further include an optical system 27.
  • the housing 4 includes a bottom plate 5.
  • the bottom plate 5 extends in a first direction (x direction) and a second direction (y direction) perpendicular to the first direction (x direction).
  • the housing 4 houses the temperature controller 10, laser light sources 23a, 23b, 23c, 23d, and lenses 24a, 24b, 24c, 24d.
  • the housing 4 may further house the carrier 20.
  • the housing 4 may further house the submounts 22a, 22b, 22c, 22d.
  • the housing 4 may further house the optical system 27.
  • the housing 4 is made of metal, for example.
  • the housing 4 may function as a heat dissipation member that dissipates the heat generated by the laser light sources 23a, 23b, 23c, and 23d.
  • the temperature controller 10 is, for example, a thermoelectric cooler (TEC) such as a Peltier element.
  • TEC thermoelectric cooler
  • the temperature adjuster 10 includes a first heat transfer plate 11, a second heat transfer plate 15, and a thermoelectric element 17.
  • the first heat transfer plate 11 is closer to the bottom plate 5 of the housing 4 than the second heat transfer plate 15.
  • the second heat transfer plate 15 is closer to the laser light sources 23a, 23b, 23c, 23d and the lenses 24a, 24b, 24c, 24d than the first heat transfer plate 11.
  • the first heat transfer plate 11 extends in a first direction (x direction) and a second direction (y direction) perpendicular to the first direction (x direction).
  • the first heat transfer plate 11 is, for example, a ceramic plate.
  • the second heat transfer plate 15 extends in a first direction (x direction) and a second direction (y direction) perpendicular to the first direction (x direction).
  • the second heat transfer plate 15 is, for example, a ceramic plate insulating plate.
  • the thermoelectric element 17 is, for example, a Bi 2 Te 3 based semiconductor element. The thermoelectric element 17 is laminated between the first heat transfer plate 11 and the second heat transfer plate 15.
  • the first heat transfer plate 11, the thermoelectric element 17, and the second heat transfer plate 15 are stacked in a third direction (z direction) perpendicular to the first direction (x direction) and the second direction (y direction). There is.
  • the height direction of the temperature adjuster 10 is the third direction (z direction).
  • the temperature controller 10 maintains the temperature of the laser light sources 23a, 23b, 23c, 23d and prevents the wavelength of the laser light output from the laser light sources 23a, 23b, 23c, 23d from changing with time.
  • the temperature adjuster 10 includes a bottom surface 10a and a top surface 10b opposite to the bottom surface 10a.
  • the top surface 10b of the temperature controller 10 is separated from the bottom surface 10a of the temperature controller 10 in the height direction (third direction (z direction)) of the temperature controller 10.
  • the bottom surface 10 a faces the bottom plate 5.
  • the bottom surface 10 a is the main surface of the first heat transfer plate 11 facing the bottom plate 5.
  • the bottom surface 10a extends in a first direction (x direction) and a second direction (y direction) perpendicular to the first direction (x direction).
  • the first length 2L 1 of bottom surface 10a along the first direction (x direction) is longer than the second length 2L 2 of bottom surface 10a along the second direction (y direction).
  • the top surface 10b is closer to the laser light sources 23a, 23b, 23c, 23d and the lenses 24a, 24b, 24c, 24d than the bottom surface 10a.
  • the top surface 10b is a main surface of the second heat transfer plate 15 that is proximal to the laser light sources 23a, 23b, 23c, 23d and the lenses 24a, 24b, 24c, 24d.
  • the top surface 10b may face the carrier 20.
  • the top surface 10b extends in a first direction (x direction) and a second direction (y direction) perpendicular to the first direction (x direction).
  • the bottom surface 10 a of the temperature controller 10 includes a protruding portion 13 and a retreating portion 14.
  • the retreat portion 14 retreats from the protruding portion 13 in the height direction (third direction (z direction)) of the temperature controller 10.
  • the retreat portion 14 is separated from the bottom plate 5.
  • the recess 14 is adjacent to the protrusion 13.
  • the protrusion 13 and the retreat 14 are formed on the first heat transfer plate 11.
  • a step is formed between the protruding portion 13 and the retreat portion 14.
  • the retreat part 14 has extended along the 2nd direction (y direction).
  • the receding part 14 may extend to at least one of both outer edges 14r and 14s of the bottom surface 10a in the second direction (y direction).
  • the retreat portion 14 may extend to both outer edges 14r and 14s of the bottom surface 10a in the second direction (y direction).
  • the receding part 14 may extend to both outer edges 14p and 14q of the bottom surface 10a that face the boundary lines (the first boundary line 13i and the second boundary line 13j) between the projecting part 13 and the receding part 14.
  • the outer edges 14p and 14q of the bottom surface 10a facing the boundary lines (the first boundary line 13i and the second boundary line 13j) between the protruding portion 13 and the retracted portion 14 are the retracted portions when the temperature adjuster 10 is warped and deformed. It may be 14 free ends.
  • the ratio of the maximum height difference t 2 between the protrusion 13 and the retreat 14 to the thickness t 1 of the first heat transfer plate 11 in the protrusion 13 (t 2 /t 1 ) Is greater than zero.
  • the ratio (t 2 /t 1 ) may be 0.1 or higher, 0.2 or higher, or 0.3 or higher.
  • the ratio (t 2 /t 1 ) is 0.8 or less. Therefore, the thermal resistance of the first heat transfer plate 11 is prevented from significantly increasing.
  • the ratio (t 2 /t 1 ) may be 0.7 or less, and the ratio (t 2 /t 1 ) may be 0.6 or less.
  • the retreat portion 14 may include a first retreat portion 14a and a second retreat portion 14b.
  • the first retracted portion 14a is closer to the lenses 24a, 24b, 24c, 24d than the second retracted portion 14b.
  • the protruding portion 13 is between the first retracted portion 14a and the second retracted portion 14b.
  • the first retreat portion 14a extends along the second direction (y direction).
  • the first recessed portion 14a may extend to at least one of both outer edges 14r and 14s of the bottom surface 10a in the second direction (y direction).
  • the first retracted portion 14a may extend to both outer edges 14r and 14s of the bottom surface 10a in the second direction (y direction).
  • the first receding portion 14a may extend to the outer edge 14p of the bottom surface 10a that faces the first boundary line 13i between the protrusion 13 and the first receding portion 14a.
  • the outer edge 14p of the bottom surface 10a may be the free end of the first retracted portion 14a when the temperature adjuster 10 is warped and deformed.
  • the second retreat portion 14b extends along the second direction (y direction).
  • the second recessed portion 14b may extend to at least one of both outer edges 14r and 14s of the bottom surface 10a in the second direction (y direction).
  • the second receding portion 14b may extend to both outer edges 14r and 14s of the bottom surface 10a in the second direction (y direction).
  • the second retreat portion 14b may extend to the outer edge 14q of the bottom surface 10a that faces the second boundary line 13j between the protrusion 13 and the second retreat portion 14b.
  • the outer edge 14q of the bottom surface 10a may be the free end of the second retracted portion 14b when the temperature adjuster 10 is warped and deformed.
  • the width of receding portion 14 is given by the sum of the width w 2 of width w 1 and the second backward portion 14b of the first retracting portion 14a.
  • the width of the retreat portion 14 is the length of the retreat portion 14 in the first direction (x direction).
  • the width w 1 of the first retracted portion 14a is the length of the first retracted portion 14a in the first direction (x direction).
  • the width w 2 of the second retracted portion 14b is the length of the second retracted portion 14b in the first direction (x direction).
  • the width w 1 of the first recessed portion 14a may be equal to the width w 2 of the second recessed portion 14b.
  • the width w 1 of the first retracted portion 14a may be larger than the width w 2 of the second retracted portion 14b.
  • the width w 1 of the first retracted portion 14a may be smaller than the width w 2 of the second retracted portion 14b.
  • the joining member 7 joins the temperature controller 10 to the bottom plate 5 of the housing 4. Specifically, the joining member 7 joins the protrusion 13 to the bottom plate 5. The protrusion 13 is joined to the bottom plate 5 using the joining member 7. The entire protrusion 13 may be joined to the bottom plate 5 using the joining member 7.
  • the receding portion 14 is exposed from the joining member 7. In the present specification, the fact that the receding portion 14 is exposed from the joining member 7 means that 90% or more of the area of the receding portion 14 is exposed from the joining member 7 in a plan view from the bottom surface 10a of the temperature controller 10. Means that The entire retreat portion 14 may be exposed from the joining member 7.
  • the joining member 7 is formed of, for example, solder or an adhesive (for example, silver paste).
  • the carrier 20 is joined to the top surface 10b of the temperature controller 10.
  • the carrier 20 is made of, for example, a metal material such as a copper-tungsten alloy.
  • the submounts 22a, 22b, 22c, 22d are bonded on the upper surface of the carrier 20.
  • the submounts 22a, 22b, 22c, 22d may be separated from each other.
  • the submounts 22a, 22b, 22c, 22d are formed of a ceramic material having high thermal conductivity, such as alumina or aluminum nitride.
  • the laser light sources 23a, 23b, 23c, 23d are provided on the top surface 10b of the temperature controller 10.
  • the laser light sources 23a, 23b, 23c, 23d may be mounted on the top surface 10b of the temperature controller 10 via the carrier 20.
  • the laser light sources 23a, 23b, 23c, 23d may be mounted on the submounts 22a, 22b, 22c, 22d, and the laser light sources 23a, 23b, 23c, 23d include the carrier 20 and the submounts 22a, 22b, 22c, 22d. It may be provided on the top surface 10b of the temperature controller 10 via 22d. As shown in FIG.
  • the laser light sources 23a, 23b, 23c, 23d are configured to emit laser light in the first direction (x direction).
  • the first direction (x direction) is the direction in which the optical axis 23p of the laser light emitted from the laser light sources 23a, 23b, 23c, 23d extends.
  • the laser light sources 23a, 23b, 23c, 23d are, for example, semiconductor lasers.
  • the optical transmission module 1 includes one or more laser light sources 23a, 23b, 23c, 23d.
  • the optical transmission module 1 includes four laser light sources 23a, 23b, 23c and 23d.
  • the plurality of laser light sources 23a, 23b, 23c, 23d are arranged along the second direction (y direction).
  • the plurality of laser light sources 23a, 23b, 23c and 23d respectively output laser light having different wavelengths.
  • the lenses 24a, 24b, 24c, 24d are provided on the top surface 10b of the temperature controller 10.
  • the lenses 24a, 24b, 24c, 24d may be mounted on the top surface 10b of the temperature controller 10 via the carrier 20.
  • the optical transmission module 1 includes one or more lenses 24a, 24b, 24c, 24d. In the present embodiment, the optical transmission module 1 includes four lenses 24a, 24b, 24c and 24d.
  • the plurality of lenses 24a, 24b, 24c, 24d are arranged along the second direction (y direction).
  • the plurality of lenses 24a, 24b, 24c, 24d correspond to the plurality of laser light sources 23a, 23b, 23c, 23d, respectively.
  • the lenses 24a, 24b, 24c, 24d are configured to transmit the laser light emitted from the laser light sources 23a, 23b, 23c, 23d.
  • the lenses 24a, 24b, 24c, 24d are located on the optical axis 23p of the laser light emitted from the laser light sources 23a, 23b, 23c, 23d.
  • the lenses 24a, 24b, 24c and 24d collimate the laser light emitted from the laser light sources 23a, 23b, 23c and 23d.
  • the distance d between the laser light sources 23a, 23b, 23c, 23d and the lenses 24a, 24b, 24c, 24d is equal to the laser light source 23a, before the use of the optical transmission module 1. It is defined as the distance in the first direction (x direction) between the exit surfaces of 23b, 23c and 23d and the centers of the lenses 24a, 24b, 24c and 24d.
  • the optical transmission module 1 includes a plurality of laser light sources 23a, 23b, 23c, 23d and a plurality of lenses 24a, 24b, 24c, 24d
  • the distance d is equal to that of the plurality of laser light sources 23a, 23b, 23c, 23d. It is defined as the maximum distance in the first direction (x direction) between the exit surface and the center of the corresponding plurality of lenses 24a, 24b, 24c, 24d.
  • the optical system 27 is fixed on the bottom plate 5 of the housing 4.
  • the optical system 27 is separated from the temperature adjuster 10 in the first direction (x direction).
  • the optical system 27 is arranged on the laser light emitting side with respect to the lenses 24a, 24b, 24c, and 24d.
  • the optical system 27 is, for example, a combining optical system that combines a plurality of laser lights emitted from the plurality of laser light sources 23a, 23b, 23c, and 23d.
  • the optical system 27 includes, for example, a dichroic mirror (not shown) and a mirror.
  • the laser light is output from the optical system 27 to the outside of the housing 4.
  • the optical transmission module 1 of this embodiment is often used in a high temperature environment. Further, when the optical transmission module 1 is used, the laser light sources 23a, 23b, 23c and 23d generate heat. In order to prevent the wavelengths output from the laser light sources 23a, 23b, 23c, and 23d from changing with time, the temperature regulator 10 cools the laser light sources 23a, 23b, 23c, and 23d, and the laser light sources 23a and 23b. , 23c, 23d are maintained. When the optical transmission module 1 is used, the first heat transfer plate 11 has a higher temperature than the second heat transfer plate 15. The top surface 10b of the temperature regulator 10 is the low temperature side of the temperature regulator 10, and the bottom surface 10a of the temperature regulator 10 is the high temperature side of the temperature regulator 10.
  • the retreat portion 14 is separated from the bottom plate 5 of the housing 4, and the retreat portion 14 is exposed from the joining member 7.
  • the area of the joining member 7 decreases.
  • the rigidity of the joining member 7 is reduced. Therefore, at the start of use of the optical transmission module 1, the joining member 7 prevents the temperature regulator 10 from starting warp deformation due to the temperature difference between the bottom surface 10a and the top surface 10b of the temperature regulator 10. I can't.
  • the temperature adjuster 10 is warped and deformed.
  • the first heat transfer plate 11 has a higher temperature than the second heat transfer plate 15, so that the bottom surface 10a of the temperature adjuster 10 has a convex curved surface and the top surface 10b of the temperature adjuster 10 has a convex surface.
  • the temperature adjuster 10 is warped and deformed so as to have a concave curved surface. For example, when the first length 2L 1 of the bottom surface 10a along the first direction (x direction) is longer than the second length 2L 2 of the bottom surface 10a along the second direction (y direction), the temperature regulator 10 Mainly warps and deforms in the first direction (x direction).
  • the temperature adjuster 10 since the temperature adjuster 10 has already been warped and deformed immediately after the use of the optical transmitter module 1, the temperature adjuster 10 does not warp and deform so much while the optical transmitter module 1 is continuously used.
  • the change over time in the relative position of the lenses 24a, 24b, 24c, 24d with respect to the laser light sources 23a, 23b, 23c, 23d is small. In this way, the change with time of the output of the laser light from the optical transmission module 1 can be reduced while the optical transmission module 1 is continuously used.
  • the change in the output of the laser light from the optical transmission module 1 due to the warp deformation of the temperature controller 10 immediately after the use of the optical transmission module 1 is caused by the laser light source 23a before or immediately after the use of the optical transmission module 1.
  • 23b, 23c, 23d can be easily canceled by adjusting the output of the laser light.
  • the output of the laser light of the laser light sources 23a, 23b, 23c, 23d can be adjusted by, for example, adjusting the magnitude of the current applied to the laser light sources 23a, 23b, 23c, 23d.
  • the receding part 14 is not provided on the bottom surface 10a of the temperature controller 10, and the joining member provided on the entire bottom surface 10a of the temperature controller 10.
  • the temperature regulator 10 is joined to the bottom plate 5 of the housing 4 by using 7.
  • the area of the joining member 7 is large in a plan view of the bottom surface 10 a of the temperature adjuster 10.
  • the joining member 7 has high rigidity. Therefore, at the start of use of the optical transmission module of the comparative example, the joining member 7 prevents the temperature regulator 10 from warping and deforming.
  • the entire protruding portion 13 is joined to the bottom plate 5 by using the joining member 7, and the entire retreat portion 14 is formed from the joining member 7. Exposed.
  • the receding portion 14 extends to both outer edges of the bottom surface 10a in the second direction (y direction).
  • the width w 1 of the first retracted portion 14a is equal to the width w 2 of the second retracted portion 14b.
  • the width of the receding portion 14 is twice the width w 1 of the first receding portion 14a.
  • the temperature controller 10 and all the members mounted on the temperature controller 10 are regarded as a structure 2 having a rectangular parallelepiped shape.
  • T 0 be the temperature of the structure 2 before the use of the optical transmission module 1. Before the use of the optical transmission module 1, it means that the optical transmission module 1 is not installed in the use environment, and the laser light sources 23a, 23b, 23c, 23d and the temperature controller 10 are not operating.
  • the temperature of the bottom surface 2a of the structure 2 and the temperature of the top surface 2b of the structure 2 are T 0 , respectively.
  • the temperature difference between the bottom surface 2a and the top surface 2b is zero.
  • the temperature of the bottom surface 2 a of the structure 2 is the temperature of the bottom surface 10 a of the temperature controller 10.
  • the temperature of the top surface 2b of the structure 2 can be regarded as the temperature of the top surface 10b of the temperature regulator 10.
  • T 0 is room temperature, such as 20° C., for example.
  • the structure 2 has a first length 2L 1 in the first direction (x direction).
  • the length between AB shown in FIG. 4 is L 1 .
  • the point A is the center of the top surface 10b of the structure 2 in the first direction (x direction) in a side view of the structure 2 (plan view from the second direction (y direction)).
  • the point B is the end of the top surface 10b of the structure 2 in the first direction (x direction), which is proximal to the lenses 24a, 24b, 24c, and 24d in the side view of the structure 2.
  • the length between CDs shown in FIG. 4 is L 1 .
  • the point C is the center of the bottom surface 10a of the structure 2 in the first direction (x direction) in a side view of the structure 2.
  • the point D is the end of the bottom surface 10a of the structure 2 in the first direction (x direction), which is proximal to the lenses 24a, 24b, 24c, and 24d in the side view of the structure 2.
  • the structure 2 has a second length 2L 2 in the second direction (y direction) (see FIG. 1 ).
  • the structure 2 has a height h. As shown in FIG. 2, the height h of the structure 2 is determined by the height 13 of the temperature controller 10 (third direction (z direction)) and the protrusion 13 of the bottom surface 10 a of the temperature controller 10 and the laser light source. It is considered as the distance between the optical axes 23p of 23a, 23b, 23c and 23d.
  • the optical transmission module 1 When the optical transmission module 1 is used, the optical transmission module 1 is installed in the usage environment, and the laser light sources 23a, 23b, 23c, 23d and the temperature controller 10 operate.
  • the optical transmission module 1 is often used in a high temperature environment. Further, when the optical transmission module 1 is used, the laser light sources 23a, 23b, 23c and 23d generate heat.
  • the temperature regulator 10 cools the laser light sources 23a, 23b, 23c, and 23d, and the laser light sources 23a and 23b. , 23c, 23d are maintained.
  • the temperature T c of the bottom surface 2 a of the structure 2 (bottom surface 10 a of the temperature controller 10) is the temperature T h of the top surface 2 b of the structure 2 (top surface 10 b of the temperature controller 10 ). Will be larger than.
  • the difference ⁇ T ( T h ⁇ T c ) between and is a positive value. Due to the temperature difference ( ⁇ T) between the bottom surface 2a and the top surface 2b, the structure 2 warps and deforms so that the bottom surface 2a has a convex curved surface and the top surface 2b has a concave curved surface.
  • the first length 2L 1 of bottom surface 10a along the first direction (x direction) is longer than the second length 2L 2 of bottom surface 10a along the second direction (y direction). Therefore, as shown in FIG. 5, the structure 2 is mainly warped and deformed in the first direction (x direction).
  • a point O is the center of curvature of the warp deformation of the structure 2.
  • the central angle of the warp deformation of the structure 2 is 2 ⁇ (rad).
  • the central angle 2 ⁇ is small and sin ⁇ is substantially equal to ⁇ .
  • the difference b 2 ⁇ b 1 between the length b 2 between the CDs and the length b 1 between the ABs when the optical transmission module 1 is used is given by the equation (1).
  • L 1 ⁇ T/h (4)
  • the height difference ⁇ h between AB when the optical transmission module 1 is used is given by Expression (5) from Expression (3) and Expression (4).
  • ⁇ h is the first direction (x direction) of the top surface 10b of the temperature controller 10 in a side view of the structure 2 (plan view from the second direction (y direction)) when the optical transmission module 1 is used. It can be regarded as a difference in height between the center of the temperature controller 10 and the end of the top surface 10b of the temperature controller 10 in the first direction (x direction).
  • the height difference ⁇ h L between the laser light sources 23a, 23b, 23c, 23d and the lenses 24a, 24b, 24c, 24d when the optical transmission module 1 is used is given by the equation (5) from the equation (6).
  • ⁇ h L is the first direction (x direction) of the top surface 10b of the temperature adjuster 10 in the side view of the structure 2 (plan view from the second direction (y direction)) when the optical transmission module 1 is used.
  • ⁇ h L d 2 ⁇ T/2h (6)
  • the change over time in the height difference between the laser light sources 23a, 23b, 23c, 23d and the lenses 24a, 24b, 24c, 24d that occurs while the optical transmission module 1 is continuously used is w 1 /L 1 . It decreases proportionally and is given by ⁇ h L (1-w 1 /L 1 ).
  • the permissible value ⁇ h 0 of the temporal change in the height difference between the laser light sources 23a, 23b, 23c, 23d and the lenses 24a, 24b, 24c, 24d that occurs during the continuous use of the optical transmission module 1 is It is determined based on the standard or the like that the transmission module 1 should meet. Since ⁇ h L (1-w 1 /L 1 ) must be equal to or less than ⁇ h 0 , the equation (7) holds.
  • the width w 1 of the first retracted portion 14a is given by the equation (8).
  • the lower limit of the width w 1 of the first retracted portion 14a in the optical transmission module 1 according to one aspect of the present embodiment is defined.
  • the joining member 7 has a function of releasing heat from the bottom surface 2a of the structure 2 (bottom surface 10a of the temperature adjuster 10) to the housing 4.
  • the joining member 7 has a thermal conductivity k, a thickness t 3 , a length L S in the first direction (x direction), and a second length 2L 2 in the second direction (y direction). There is.
  • the thermal resistance R T of the joining member 7 is given by the equation (9).
  • Expression (11) is derived from Expression (9) and Expression (10).
  • the width w 1 of the first recessed portion 14a is equal to the width w 2 of the second recessed portion 14b. From the equations (8) and (12), in one aspect of the present embodiment, each of the width w 1 of the first retracted portion 14a and the width w 2 of the second retracted portion 14b satisfies the equation (13).
  • the optical transmission module 1 of the present embodiment includes a housing 4, a temperature controller 10, a joining member 7, laser light sources 23a, 23b, 23c and 23d, and lenses 24a, 24b, 24c and 24d.
  • the housing 4 includes a bottom plate 5.
  • the housing 4 houses the temperature controller 10, laser light sources 23a, 23b, 23c, 23d, and lenses 24a, 24b, 24c, 24d.
  • the temperature adjuster 10 includes a bottom surface 10a facing the bottom plate 5 and a top surface 10b opposite to the bottom surface 10a. The top surface 10b is separated from the bottom surface 10a in the height direction (third direction (z direction)) of the temperature controller 10.
  • the laser light sources 23a, 23b, 23c, 23d and the lenses 24a, 24b, 24c, 24d are provided on the top surface 10b of the temperature controller 10.
  • the lenses 24a, 24b, 24c, 24d are configured to transmit the laser light emitted from the laser light sources 23a, 23b, 23c, 23d.
  • the bottom surface 10 a of the temperature adjuster 10 includes a protrusion 13 and a retreat 14 that is retracted from the protrusion 13 in the height direction (third direction (z direction)) of the temperature adjuster 10.
  • the protrusion 13 is joined to the bottom plate 5 using the joining member 7.
  • the retreat portion 14 is separated from the bottom plate 5.
  • the receding portion 14 is exposed from the joining member 7.
  • the optical transmission module 1 is often used in a high temperature environment. Further, when the optical transmission module 1 is used, the laser light sources 23a, 23b, 23c and 23d generate heat. In order to prevent the wavelengths output from the laser light sources 23a, 23b, 23c, and 23d from changing with time, the temperature regulator 10 cools the laser light sources 23a, 23b, 23c, and 23d, and the laser light sources 23a and 23b. , 23c, 23d are maintained. The bottom surface 10a of the temperature regulator 10 becomes hotter than the top surface 10b of the temperature regulator 10. In the optical transmission module 1, the retreat portion 14 is separated from the bottom plate 5 of the housing 4, and the retreat portion 14 is exposed from the joining member 7.
  • the area of the joining member 7 decreases.
  • the rigidity of the joining member 7 is reduced. Therefore, at the start of use of the optical transmission module 1, the joining member 7 prevents the temperature regulator 10 from starting warp deformation due to the temperature difference between the bottom surface 10a and the top surface 10b of the temperature regulator 10. I can't. Immediately after the use of the optical transmission module 1, the temperature adjuster 10 is warped and deformed.
  • the temperature adjuster 10 since the temperature adjuster 10 has already been warped and deformed immediately after the use of the optical transmitter module 1, the temperature adjuster 10 does not warp and deform so much while the optical transmitter module 1 is continuously used. The change with time of the output of the laser light from the optical transmission module 1 can be reduced while the optical transmission module 1 is continuously used.
  • the bottom surface 10a extends in the first direction (x direction) and the second direction (y direction) perpendicular to the first direction (x direction).
  • the laser light sources 23a, 23b, 23c, 23d are configured to emit laser light in the first direction (x direction).
  • the first length L 1 of the bottom surface 10a along the first direction (x direction) is longer than the second length L 2 of the bottom surface 10a along the second direction (y direction).
  • the receding part 14 may extend along the second direction (y direction) to both outer edges 14r, 14s of the bottom surface 10a in the second direction (y direction).
  • the use of the optical transmission module 1 is started. Immediately after that, the temperature adjuster 10 is mainly warped and deformed in the first direction (x direction). Then, even if a creep phenomenon occurs in the joining member 7 and the rigidity of the joining member 7 gradually decreases while the optical transmission module 1 is continuously used, the temperature controller 10 does not warp and deform so much. The change over time in the relative position of the lenses 24a, 24b, 24c, 24d with respect to the laser light sources 23a, 23b, 23c, 23d is small. It is possible to reduce the change over time in the output of the laser light from the optical transmission module 1 while continuing to use the optical transmission module 1.
  • the retreat portion 14 may include a first retreat portion 14a and a second retreat portion 14b.
  • the first receding portion 14a extends along the second direction (y direction) to both outer edges 14r and 14s of the bottom surface 10a in the second direction (y direction), and the projecting portion 13 and the first receding portion 14a. It extends to the outer edge 14p of the bottom surface 10a in the first direction (x direction) facing the first boundary line 13i between the bottom surface 14a and 14a.
  • the second receding portion 14b extends along the second direction (y direction) to both outer edges 14r and 14s of the bottom surface 10a in the second direction (y direction), and the projecting portion 13 and the second receding portion 14b.
  • the protruding portion 13 is between the first retracted portion 14a and the second retracted portion 14b.
  • the center portion of the temperature adjuster 10 in the first direction (x direction) is joined to the bottom plate 5 using the joining member 7, heat generated from the laser light sources 23a, 23b, 23c, 23d and the temperature adjuster 10 is Through the joining member 7, it can be efficiently released to the housing 4. Since the warp deformation of the temperature adjuster 10 can be shared by the first retreat portion 14a and the second retreat portion 14b, the warp deformation amount of the temperature adjuster 10 immediately after the use of the optical transmission module 1 can be reduced. it can.
  • each of the widths w 2 of width w 1 and a second retraction portion 14b of the first retracting portion 14a satisfies the above expression (13). Therefore, the heat generated from the laser light sources 23a, 23b, 23c, 23d and the temperature adjuster 10 can be efficiently released to the housing 4 through the joining member 7. The warp deformation amount of the temperature controller 10 immediately after the use of the optical transmission module 1 can be reduced.
  • a step is formed between the protrusion 13 and the retreat 14. It is possible to reduce the change over time in the output of the laser light from the optical transmission module 1 while continuing to use the optical transmission module 1.
  • the optical transmission module 1 of the present embodiment at least a part of the laser light sources 23a, 23b, 23c, 23d overlaps the joining member 7 in a plan view of the top surface 10b of the temperature adjuster 10.
  • heat generated from the laser light sources 23a, 23b, 23c, 23d and the temperature controller 10 can be efficiently released to the housing 4 through the joining member 7.
  • Embodiment 2 The optical transmission module 1b according to the second embodiment will be described with reference to FIGS. 6 to 8.
  • the optical transmission module 1b according to the present embodiment has the same configuration as the optical transmission module 1 according to the first embodiment, but mainly differs in the following points.
  • the second length L 2 of the bottom surface 10a of the temperature adjuster 10 along the second direction (y direction) is equal to the first length of the bottom surface 10a of the temperature adjuster 10 along the first direction (x direction). Longer than length L 1 .
  • the retreat portion 14 extends along the first direction (x direction).
  • the receding part 14 may extend to at least one of both outer edges 14p and 14q of the bottom surface 10a in the first direction (x direction).
  • the receding part 14 may extend to both outer edges 14p and 14q of the bottom surface 10a in the first direction (x direction).
  • the outer edges 14r and 14s of the bottom surface 10a facing the boundary lines (the first boundary line 13i and the second boundary line 13j) between the projecting portion 13 and the retreating portion 14 are the retreating portions when the temperature regulator 10 is warped and deformed. It may be 14 free ends.
  • the retreat portion 14 may include a first retreat portion 14a and a second retreat portion 14b. In the second direction (y direction), the protrusion 13 is between the first retracted portion 14a and the second retracted portion 14b.
  • the first retreat portion 14a extends along the first direction (x direction).
  • the first retracted portion 14a may extend to at least one of both outer edges 14p and 14q of the bottom surface 10a in the first direction (x direction).
  • the first recessed portion 14a may extend to both outer edges 14p and 14q of the bottom surface 10a in the first direction (x direction).
  • the first retreat portion 14a may extend to the outer edge 14r of the bottom surface 10a that faces the first boundary line 13i between the protrusion 13 and the first retreat portion 14a.
  • the outer edge 14r of the bottom surface 10a may be a free end of the first retracted portion 14a when the temperature adjuster 10 is warped and deformed.
  • the second retreat portion 14b extends along the first direction (x direction).
  • the second recessed portion 14b may extend to at least one of both outer edges 14p and 14q of the bottom surface 10a in the first direction (x direction).
  • the second retracted portion 14b may extend to both outer edges 14p and 14q of the bottom surface 10a in the first direction (x direction).
  • the second recessed portion 14b may extend to the outer edge 14s of the bottom surface 10a that faces the second boundary line 13j between the protrusion 13 and the second recessed portion 14b.
  • the outer edge 14s of the bottom surface 10a may be a free end of the second retracted portion 14b when the temperature adjuster 10 is warped and deformed.
  • the optical transmission module 1b of the present embodiment has the following effects similar to those of the optical transmission module 1 of the first embodiment.
  • the optical transmission module 1b of the present embodiment further includes an optical system 27 arranged on the laser light emission side with respect to the lenses 24a, 24b, 24c, and 24d.
  • the housing 4 further accommodates the optical system 27.
  • the bottom surface 10a of the temperature adjuster 10 extends in the first direction (x direction) and the second direction (y direction) perpendicular to the first direction (x direction).
  • the laser light sources 23a, 23b, 23c, 23d are configured to emit laser light in the first direction (x direction).
  • the optical system 27 is separated from the temperature adjuster 10 in the first direction (x direction).
  • the second length L 2 of the bottom surface 10a along the second direction (y direction) is longer than the first length L 1 of the bottom surface 10a along the first direction (x direction).
  • the receding portion 14 extends along the first direction (x direction) to both outer edges 14p and 14q of the bottom surface 10a in the first direction (x direction).
  • the joining member 7 may prevent the temperature regulator 10 from starting warp deformation due to the temperature difference between the bottom surface 10a and the top surface 10b of the temperature regulator 10. Can not.
  • the temperature adjuster 10 is mainly warped and deformed in the second direction (y direction). Then, even if a creep phenomenon occurs in the joining member 7 and the rigidity of the joining member 7 gradually decreases while the optical transmission module 1b is continuously used, the temperature controller 10 does not warp and deform so much.
  • the changes over time in the relative positions of the laser light sources 23a, 23b, 23c, 23d and the lenses 24a, 24b, 24c, 24d with respect to the optical system 27 are small. It is possible to reduce the change over time in the output of the laser light from the optical transmission module 1b while continuing to use the optical transmission module 1b.
  • the retreat part 14 may include a first retreat part 14a and a second retreat part 14b.
  • the first receding portion 14a extends along the first direction (x direction) to both outer edges 14p and 14q of the bottom surface 10a in the first direction (x direction), and the projecting portion 13 and the first receding portion 14a. It extends to the outer edge 14r of the bottom surface 10a in the second direction (y direction) that faces the first boundary line 13i between the bottom surface 14a and 14a.
  • the second receding portion 14b extends along the first direction (x direction) to both outer edges 14p and 14q of the bottom surface 10a in the first direction (x direction), and the projecting portion 13 and the second receding portion 14b.
  • the protrusion 13 is between the first retracted portion 14a and the second retracted portion 14b.
  • the central portion of the temperature adjuster 10 in the second direction (y direction) is joined to the bottom plate 5 using the joining member 7, heat generated from the laser light sources 23a, 23b, 23c, 23d and the temperature adjuster 10 is Through the joining member 7, it can be efficiently released to the housing 4. Since the warp deformation amount of the temperature adjuster 10 can be shared by the first retreat portion 14a and the second retreat portion 14b, the warp deformation amount of the temperature adjuster 10 immediately after the use of the optical transmission module 1 is reduced. You can
  • Embodiment 3 The optical transmission module 1c of the third embodiment will be described with reference to FIGS. 9 to 11.
  • the optical transmission module 1c of the present embodiment has the same configuration as the optical transmission module 1 of the first embodiment, but mainly differs in the following points.
  • the protruding portion 13 is surrounded by the receding portion 14.
  • the receding part 14 extends to the outer edges 14p, 14q, 14r, and 14s of the bottom face 10a facing the boundary line 13k between the projecting part 13 and the receding part 14 in a plan view of the bottom face 10a.
  • the protrusion 13 in a plan view of the bottom surface 10a, has a rectangular shape such as a square.
  • the protrusion 13 may have a circular shape.
  • the first length 2L 1 of the bottom surface 10a along the first direction (x direction) may be equal to the second length 2L 2 of the bottom surface 10a along the second direction (y direction).
  • the first length 2L 1 of the bottom surface 10a along the first direction (x direction) is equal to the first length 2L 1 of the bottom surface 10a along the second direction (y direction).
  • 2 Length equal to 2L 2 .
  • the protrusion 13 has a square shape. The entire protruding portion 13 is joined to the bottom plate 5 using the joining member 7, and the entire retreat portion 14 is exposed from the joining member 7.
  • the width w of the receding portion 14 is constant in the circumferential direction of the protruding portion 13. The upper limit and the lower limit of the width w of the first retracted portion 14a in one aspect of the present embodiment will be examined below.
  • the optical transmission module 1c of the present embodiment has the following effects similar to those of the optical transmission modules 1 and 1b of the first and second embodiments.
  • the protruding portion 13 is surrounded by the retreating portion 14.
  • the receding part 14 extends to the outer edges 14p, 14q, 14r, and 14s of the bottom face 10a facing the boundary line 13k between the projecting part 13 and the receding part 14 in a plan view of the bottom face 10a. Therefore, the change with time of the output of the laser light from the optical transmission module 1c can be reduced while the optical transmission module 1c is continuously used.
  • optical transmission module 1d according to a fourth embodiment will be described with reference to FIGS. 1, 3 and 12.
  • the optical transmission module 1d of the present embodiment has the same configuration as the optical transmission module 1 of the first embodiment and has the same effect, but is different mainly in the following points.
  • the retreat portion 14d includes an inclined surface facing the bottom plate 5.
  • the inclined surface is separated from the bottom plate 5 by a larger distance as it is separated from the protrusion 13.
  • the inclined surface is separated from the bottom plate 5 by a larger distance as it approaches the outer edges 14p and 14q of the bottom surface 10a facing the boundary lines (the first boundary line 13i and the second boundary line 13j) between the protruding portion 13 and the receding portion 14d. is seperated.
  • the inclined surface extends to at least one of both outer edges 14p and 14q of the bottom surface 10a facing the boundary line (first boundary line 13i, second boundary line 13j) between the protruding portion 13 and the retreat portion 14d. Good.
  • the inclined surface may extend to both outer edges 14p and 14q of the bottom surface 10a facing the boundary line (first boundary line 13i, second boundary line 13j) between the protruding portion 13 and the retreat portion 14d.
  • the inclined surface is connected to the protruding portion 13 of the bottom surface 10a.
  • the retreat portion 14d may include a first retreat portion 14e and a second retreat portion 14f.
  • the first retreat portion 14e is a first inclined surface portion.
  • the first inclined surface portion is separated from the bottom plate 5 by a larger distance as it is separated from the protrusion 13.
  • the first inclined surface portion is separated from the bottom plate 5 by a larger distance as it approaches the outer edge 14p of the bottom surface 10a facing the first boundary line 13i between the protrusion 13 and the first receding portion 14e.
  • the first inclined surface portion may extend to the outer edge 14p of the bottom surface 10a that faces the first boundary line 13i between the protrusion 13 and the first receding portion 14e.
  • the first inclined surface portion is inclined in the first direction (x direction) with respect to the bottom surface 10a.
  • the first inclined surface portion is connected to the protruding portion 13 of the bottom surface 10a.
  • the second retreat portion 14f is a second inclined surface portion.
  • the second inclined surface portion is separated from the bottom plate 5 by a larger distance as it is separated from the protrusion 13.
  • the second inclined surface portion is separated from the bottom plate 5 by a larger distance as it approaches the outer edge 14q of the bottom surface 10a that faces the second boundary line 13j between the protrusion 13 and the second receding portion 14f.
  • the first inclined surface portion may extend to the outer edge 14q of the bottom surface 10a that faces the second boundary line 13j between the protrusion 13 and the second receding portion 14f.
  • the second inclined surface portion is inclined in the first direction (x direction) with respect to the bottom surface 10a.
  • the second inclined surface portion is connected to the protruding portion 13 of the bottom surface 10a.
  • Embodiment 5 The optical transmission module 1e according to the fifth embodiment will be described with reference to FIGS. 6, 8 and 13.
  • the optical transmission module 1e of the present embodiment has the same configuration as the optical transmission module 1b of the second embodiment and has the same effect, but is different mainly in the following points.
  • the receding part 14d includes an inclined surface facing the bottom plate 5.
  • the inclined surface is separated from the bottom plate 5 by a larger distance as it is separated from the protrusion 13.
  • the inclined surface has a larger distance from the bottom plate 5 as it approaches the outer edges 14r and 14s of the bottom surface 10a facing the boundary lines (the first boundary line 13i and the second boundary line 13j) between the protruding portion 13 and the receding portion 14d. is seperated.
  • the inclined surface extends to at least one of both outer edges 14p and 14q of the bottom surface 10a facing the boundary line (first boundary line 13i, second boundary line 13j) between the protruding portion 13 and the retreat portion 14d. Good.
  • the inclined surface may extend to both outer edges 14p and 14q of the bottom surface 10a facing the boundary line (first boundary line 13i, second boundary line 13j) between the protruding portion 13 and the retreat portion 14d.
  • the inclined surface is connected to the protruding portion 13 of the bottom surface 10a.
  • the retreat portion 14d may include a first retreat portion 14e and a second retreat portion 14f.
  • the first retreat portion 14e is a first inclined surface portion.
  • the first inclined surface portion is separated from the bottom plate 5 by a larger distance as it is separated from the protrusion 13.
  • the first inclined surface portion is separated from the bottom plate 5 by a larger distance as it approaches the outer edge 14r of the bottom surface 10a that faces the first boundary line 13i between the protrusion 13 and the first receding portion 14e.
  • the first inclined surface portion may extend to the outer edge 14r of the bottom surface 10a that faces the first boundary line 13i between the protrusion 13 and the first receding portion 14e.
  • the first inclined surface portion is inclined in the second direction (y direction) with respect to the bottom surface 10a.
  • the first inclined surface portion is connected to the protruding portion 13 of the bottom surface 10a.
  • the second retreat portion 14f is a second inclined surface portion.
  • the second inclined surface portion is separated from the bottom plate 5 by a larger distance as it is separated from the protrusion 13.
  • the second inclined surface portion is separated from the bottom plate 5 by a larger distance as it approaches the outer edge 14s of the bottom surface 10a facing the second boundary line 13j between the protrusion 13 and the second receding portion 14f.
  • the first inclined surface portion may extend to the outer edge 14s of the bottom surface 10a that faces the second boundary line 13j between the protruding portion 13 and the second receding portion 14f.
  • the second inclined surface portion is inclined in the second direction (y direction) with respect to the bottom surface 10a.
  • the second inclined surface portion is connected to the protruding portion 13 of the bottom surface 10a.
  • the optical transmission module 1f of the sixth embodiment will be described with reference to FIGS. 9, 14 and 15.
  • the optical transmission module 1f of the present embodiment has the same configuration as the optical transmission module 1c of the third embodiment, but differs mainly in the following points.
  • the receding part 14d includes an inclined surface facing the bottom plate 5.
  • the inclined surface is separated from the bottom plate 5 by a larger distance as it is separated from the protrusion 13.
  • the inclined surface is separated from the bottom plate 5 by a larger distance as it approaches the outer edges 14p, 14q, 14r, 14s of the bottom surface 10a that face the boundary line 13k between the protruding portion 13 and the receding portion 14d in the plan view of the bottom surface 10a.
  • the inclined surface may extend to at least one of the outer edges 14p, 14q, 14r, and 14s of the bottom surface 10a that faces the boundary line 13k between the protruding portion 13 and the receding portion 14d in the plan view of the bottom surface 10a.
  • the inclined surface may extend to the outer edges 14p, 14q, 14r, 14s of the bottom surface 10a that face the boundary line 13k between the protruding portion 13 and the receding portion 14d in a plan view of the bottom surface 10a.
  • the inclined surface is connected to the protruding portion 13 of the bottom surface 10a.
  • the protrusion 13 has a rectangular shape such as a square in a plan view of the bottom surface 10 a of the temperature adjuster 10. As shown in FIG. 15, the protrusion 13 may have a circular shape in a plan view of the bottom surface 10 a of the temperature adjuster 10.
  • the first length 2L 1 of the bottom surface 10a along the first direction (x direction) may be equal to the second length 2L 2 of the bottom surface 10a along the second direction (y direction).
  • Embodiments 1-6 disclosed this time are to be considered as illustrative in all points and not restrictive. As long as there is no contradiction, at least two actually disclosed may be combined.
  • the scope of the present invention is shown not by the above description but by the claims, and is intended to include meanings equivalent to the claims and all modifications within the scope.
  • thermoelectric element 20 carrier, 22a, 22b, 22c, 22d submount, 23a, 23b, 23c, 23d laser light source, 23p optical axis, 24a, 24b, 24c , 24d lens, 27 optical system.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

光送信モジュール(1)は、筐体(4)と、温度調整器(10)と、接合部材(7)と、レーザ光源(23a-23d)と、レンズ(24a-24d)とを備える。筐体(4)は、底板(5)を含む。温度調整器(10)は、底面(10a)と、頂面(10b)とを含む。底面(10a)は、突出部(13)と、後退部(14)とを含む。突出部(13)は、接合部材(7)を用いて底板(5)に接合されている。後退部(14)は、底板(5)から離間している。後退部(14)は、接合部材(7)から露出している。光送信モジュール(1)からのレーザ光の出力の経時変化が低減され得る。

Description

光送信モジュール
 本発明は、光送信モジュールに関する。
 特開2002-232053号公報(特許文献1)は、パッケージケースと、ペルチェ素子と、ヒートスプレッダと、ステムと、半導体レーザチップと、レンズとを備える半導体レーザ装置を開示している。半導体レーザチップはステム上に搭載されている。ステムとレンズとは、ヒートスプレッダ上に搭載されている。
特開2002-232053号公報
 特許文献1に開示された半導体レーザ装置では、ペルチェ素子の底面全体上に設けられたはんだを用いて、ペルチェ素子は、パッケージケースに接合されている。そのため、半導体レーザ装置の使用時に、はんだのクリープ現象が発生して、ペルチェ素子が徐々に反る。半導体レーザチップに対するレンズの位置が徐々に変化する。こうして、半導体レーザ装置を使用し続けている間に、半導体レーザ装置からのレーザ光の出力が経時変化する。本発明は、上記の課題を鑑みてなされたものであり、その目的は、光送信モジュールを使用し続けている間の光送信モジュールからのレーザ光の出力の経時変化を低減することである。
 本発明の光送信モジュールは、筐体と、温度調整器と、接合部材と、レーザ光源と、レンズとを備える。筐体、底板を含む。筐体は、温度調整器と、レーザ光源と、レンズとを収容している。温度調整器は、底板に面する底面と、底面とは反対側の頂面とを含む。頂面は底面から温度調整器の高さ方向に離れている。レーザ光源は、温度調整器の頂面上に設けられている。レンズは、温度調整器の頂面上に設けられている。レンズは、レーザ光源から出射されたレーザ光を透過させるように構成されている。温度調整器の底面は、突出部と、突出部から温度調整器の高さ方向に後退している後退部とを含む。突出部は、接合部材を用いて底板に接合されている。後退部は、底板から離間している。後退部は、接合部材から露出している。
 本発明の光送信モジュールでは、温度調整器の底面の平面視における接合部材の面積が減少しており、接合部材の剛性が減少している。そのため、光送信モジュールの使用開始直後に、温度調整器は、反り変形する。それから光送信モジュールを使用し続けている間に、接合部材にクリープ現象が発生して、接合部材の剛性が徐々に低下する。しかし、光送信モジュールの使用開始直後に既に温度調整器は反り変形してしまっているため、光送信モジュールを使用し続けている間に、温度調整器はさほどさらに反り変形しない。光送信モジュールを使用し続けている間の光送信モジュールからのレーザ光の出力の経時変化が低減され得る。
実施の形態1及び実施の形態4に係る光送信モジュールの概略平面図である。 実施の形態1に係る光送信モジュールの概略側面図である。 実施の形態1及び実施の形態4に係る光送信モジュールに含まれる温度調整器の概略底面図である。 実施の形態1に係る光送信モジュールの構造体(光送信モジュールの使用前)の概略側面図である。 実施の形態1に係る光送信モジュールの構造体(光送信モジュールの使用中)の概略側面図である。 実施の形態2及び実施の形態5に係る光送信モジュールの概略平面図である。 実施の形態2に係る光送信モジュールの概略正面図である。 実施の形態2及び実施の形態5に係る光送信モジュールに含まれる温度調整器の概略底面図である。 実施の形態3及び実施の形態6に係る光送信モジュールの概略平面図である。 実施の形態3に係る光送信モジュールに含まれる温度調整器の第1伝熱板の概略斜視図である。 実施の形態3の変形例に係る光送信モジュールに含まれる温度調整器の第1伝熱板の概略斜視図である。 実施の形態4に係る光送信モジュールの概略側面図である。 実施の形態5に係る光送信モジュールの概略正面図である。 実施の形態6に係る光送信モジュールに含まれる温度調整器の第1伝熱板の概略斜視図である。 実施の形態6の変形例に係る光送信モジュールに含まれる温度調整器の第1伝熱板の概略斜視図である。
 以下、本発明の実施の形態を説明する。なお、同一の構成には同一の参照番号を付し、その説明は繰り返さない。
 実施の形態1.
 図1から図3を参照して、実施の形態1の光送信モジュール1を説明する。光送信モジュール1は、筐体4と、温度調整器10と、接合部材7と、レーザ光源23a,23b,23c,23dと、レンズ24a,24b,24c,24dとを備える。光送信モジュール1は、キャリア20をさらに備えてもよい。光送信モジュール1は、サブマウント22a,22b,22c,22dをさらに備えてもよい。光送信モジュール1は、光学系27をさらに備えてもよい。
 筐体4は、底板5を含む。底板5は、第1方向(x方向)と、第1方向(x方向)に垂直な第2方向(y方向)とに延在している。筐体4は、温度調整器10と、レーザ光源23a,23b,23c,23dと、レンズ24a,24b,24c,24dとを収容している。筐体4は、キャリア20をさらに収容してもよい。筐体4は、サブマウント22a,22b,22c,22dをさらに収容してもよい。筐体4は、光学系27をさらに収容してもよい。筐体4は、例えば、金属製である。筐体4は、レーザ光源23a,23b,23c,23dで発生した熱を放散させる放熱部材として機能してもよい。
 温度調整器10は、例えば、ペルチェ素子のような熱電冷却器(TEC)である。具体的には、温度調整器10は、第1伝熱板11と、第2伝熱板15と、熱電素子17とを含む。第1伝熱板11は、第2伝熱板15よりも、筐体4の底板5に近位している。第2伝熱板15は、第1伝熱板11よりも、レーザ光源23a,23b,23c,23d及びレンズ24a,24b,24c,24dに近位している。
 第1伝熱板11は、第1方向(x方向)と、第1方向(x方向)に垂直な第2方向(y方向)とに延在している。第1伝熱板11は、例えば、セラミック板である。第2伝熱板15は、第1方向(x方向)と、第1方向(x方向)に垂直な第2方向(y方向)とに延在している。第2伝熱板15は、例えば、セラミック板絶縁板である。熱電素子17は、例えば、Bi2Te3系の半導体素子である。熱電素子17は、第1伝熱板11と第2伝熱板15との間に積層されている。第1伝熱板11と熱電素子17と第2伝熱板15とは、第1方向(x方向)と第2方向(y方向)とに垂直な第3方向(z方向)に積層されている。温度調整器10の高さ方向は、第3方向(z方向)である。
 温度調整器10は、レーザ光源23a,23b,23c,23dの温度を維持して、レーザ光源23a,23b,23c,23dから出力されるレーザ光の波長が経時変化することを防止する。温度調整器10は、底面10aと、底面10aとは反対側の頂面10bとを含む。温度調整器10の頂面10bは、温度調整器10の底面10aから温度調整器10の高さ方向(第3方向(z方向))に離れている。
 底面10aは、底板5に面している。底面10aは、底板5に面する第1伝熱板11の主面である。底面10aは、第1方向(x方向)と、第1方向(x方向)に垂直な第2方向(y方向)とに延在している。本実施の形態では、第1方向(x方向)に沿う底面10aの第1長さ2L1は、第2方向(y方向)に沿う底面10aの第2長さ2L2よりも長い。頂面10bは、底面10aよりも、レーザ光源23a,23b,23c,23d及びレンズ24a,24b,24c,24dに近位している。頂面10bは、レーザ光源23a,23b,23c,23d及びレンズ24a,24b,24c,24dに近位している、第2伝熱板15の主面である。頂面10bは、キャリア20に面してもよい。頂面10bは、第1方向(x方向)と、第1方向(x方向)に垂直な第2方向(y方向)とに延在している。
 温度調整器10の底面10aは、突出部13と、後退部14とを含む。後退部14は、突出部13から温度調整器10の高さ方向(第3方向(z方向))に後退している。後退部14は、底板5から離間している。後退部14は、突出部13に隣接している。突出部13及び後退部14は、第1伝熱板11に形成されている。突出部13と後退部14との間に段差が形成されている。
 後退部14は、第2方向(y方向)に沿って延在している。後退部14は、第2方向(y方向)の底面10aの両外縁14r,14sの少なくとも1つまで延在してもよい。後退部14は、第2方向(y方向)の底面10aの両外縁14r,14sまで延在してもよい。後退部14は、突出部13と後退部14との間の境界線(第1境界線13i、第2境界線13j)に対向する底面10aの両外縁14p,14qまで延在してもよい。突出部13と後退部14との間の境界線(第1境界線13i、第2境界線13j)に対向する底面10aの外縁14p,14qは、温度調整器10が反り変形する際の後退部14の自由端であってもよい。
 図2を参照して、突出部13における第1伝熱板11の厚さt1に対する、突出部13と後退部14のとの間の最大高さ差t2の比(t2/t1)は、ゼロより大きい。比(t2/t1)は、0.1以上であってもよく、0.2以上であってもよく、0.3以上であってもよい。比(t2/t1)は、0.8以下である。そのため、第1伝熱板11の熱抵抗が大幅に上昇することが防止される。比(t2/t1)は、0.7以下であってもよく、比(t2/t1)は、0.6以下であってもよい。
 後退部14は、第1後退部分14aと、第2後退部分14bとを含んでもよい。第1方向(x方向)において、第1後退部分14aは、第2後退部分14bよりもレンズ24a,24b,24c,24dに近位している。第1方向(x方向)において、突出部13は、第1後退部分14aと第2後退部分14bとの間にある。
 第1後退部分14aは、第2方向(y方向)に沿って延在している。第1後退部分14aは、底面10aの第2方向(y方向)の両外縁14r,14sの少なくとも1つまで延在してもよい。第1後退部分14aは、第2方向(y方向)の底面10aの両外縁14r,14sまで延在してもよい。第1後退部分14aは、突出部13と第1後退部分14aとの間の第1境界線13iに対向する底面10aの外縁14pまで延在してもよい。底面10aの外縁14pは、温度調整器10が反り変形する際の第1後退部分14aの自由端であってもよい。
 第2後退部分14bは、第2方向(y方向)に沿って延在している。第2後退部分14bは、底面10aの第2方向(y方向)の両外縁14r,14sの少なくとも1つまで延在してもよい。第2後退部分14bは、第2方向(y方向)の底面10aの両外縁14r,14sまで延在してもよい。第2後退部分14bは、突出部13と第2後退部分14bとの間の第2境界線13jに対向する底面10aの外縁14qまで延在してもよい。底面10aの外縁14qは、温度調整器10が反り変形する際の第2後退部分14bの自由端であってもよい。
 後退部14の幅は、第1後退部分14aの幅w1と第2後退部分14bの幅w2との和で与えられる。後退部14の幅は、第1方向(x方向)における後退部14の長さである。第1後退部分14aの幅w1は、第1方向(x方向)における第1後退部分14aの長さである。第2後退部分14bの幅w2は、第1方向(x方向)における第2後退部分14bの長さである。第1後退部分14aの幅w1は、第2後退部分14bの幅w2に等しくてもよい。第1後退部分14aの幅w1は、第2後退部分14bの幅w2よりも大きくてもよい。第1後退部分14aの幅w1は、第2後退部分14bの幅w2よりも小さくてもよい。
 接合部材7は、温度調整器10を筐体4の底板5に接合している。具体的には、接合部材7は、突出部13を底板5に接合している。突出部13は、接合部材7を用いて底板5に接合されている。突出部13の全体が、接合部材7を用いて底板5に接合されてもよい。後退部14は、接合部材7から露出している。本明細書において、後退部14が接合部材7から露出していることは、温度調整器10の底面10aからの平面視において、後退部14の面積の90%以上が接合部材7から露出していることを意味する。後退部14の全体は、接合部材7から露出してもよい。温度調整器10の底面10aからの平面視において、第1後退部分14aの面積の90%以上は、接合部材7から露出している。第1後退部分14aの全体は、接合部材7から露出してもよい。温度調整器10の底面10aからの平面視において、第2後退部分14bの面積の90%以上は、接合部材7から露出している。第2後退部分14bの全体は、接合部材7から露出してもよい。接合部材7は、例えば、はんだまたは接着剤(例えば、銀ペースト)で形成されている。
 キャリア20は、温度調整器10の頂面10b上に接合されている。キャリア20は、例えば、銅タングステン合金のような金属材料で形成されている。サブマウント22a,22b,22c,22dは、キャリア20の上面上に接合されている。サブマウント22a,22b,22c,22dは、互いに離間してもよい。サブマウント22a,22b,22c,22dは、例えば、アルミナまたは窒化アルミニウムのような、高い熱伝導性を有するセラミック材料で形成されている。
 レーザ光源23a,23b,23c,23dは、温度調整器10の頂面10b上に設けられている。レーザ光源23a,23b,23c,23dは、キャリア20を介して、温度調整器10の頂面10b上に搭載されてもよい。レーザ光源23a,23b,23c,23dは、サブマウント22a,22b,22c,22d上に搭載されてもよく、レーザ光源23a,23b,23c,23dは、キャリア20及びサブマウント22a,22b,22c,22dを介して、温度調整器10の頂面10b上に設けられてもよい。図1に示されるように、温度調整器10の頂面10bの平面視において、レーザ光源23a,23b,23c,23dの少なくとも一部は、接合部材7に重なっている。レーザ光源23a,23b,23c,23dは、レーザ光を第1方向(x方向)に出射するように構成されている。第1方向(x方向)は、レーザ光源23a,23b,23c,23dから出射されるレーザ光の光軸23pが延びる方向である。レーザ光源23a,23b,23c,23dは、例えば、半導体レーザである。
 光送信モジュール1は、1つ以上のレーザ光源23a,23b,23c,23dを含んでいる。本実施の形態では、光送信モジュール1は、4つのレーザ光源23a,23b,23c,23dを含んでいる。複数のレーザ光源23a,23b,23c,23dは、第2方向(y方向)に沿って配列されている。複数のレーザ光源23a,23b,23c,23dは、それぞれ、異なる波長を有するレーザ光を出力している。
 レンズ24a,24b,24c,24dは、温度調整器10の頂面10b上に設けられている。レンズ24a,24b,24c,24dは、キャリア20を介して、温度調整器10の頂面10b上に搭載されてもよい。光送信モジュール1は、1つ以上のレンズ24a,24b,24c,24dを含んでいる。本実施の形態では、光送信モジュール1は、4つのレンズ24a,24b,24c,24dを含んでいる。複数のレンズ24a,24b,24c,24dは、第2方向(y方向)に沿って配列されている。複数のレンズ24a,24b,24c,24dは、複数のレーザ光源23a,23b,23c,23dにそれぞれ対応している。レンズ24a,24b,24c,24dは、レーザ光源23a,23b,23c,23dから出射されたレーザ光を透過させるように構成されている。レンズ24a,24b,24c,24dは、レーザ光源23a,23b,23c,23dから出射されたレーザ光の光軸23p上に位置している。レンズ24a,24b,24c,24dは、レーザ光源23a,23b,23c,23dから出射されたレーザ光をコリメートする。
 図1及び図2に示されるように、レーザ光源23a,23b,23c,23dとレンズ24a,24b,24c,24dとの間の距離dは、光送信モジュール1の使用前における、レーザ光源23a,23b,23c,23dの出射面とレンズ24a,24b,24c,24dの中心との間の第1方向(x方向)の距離として定義される。光送信モジュール1が複数のレーザ光源23a,23b,23c,23dと複数のレンズ24a,24b,24c,24dとを含む場合には、距離dは、複数のレーザ光源23a,23b,23c,23dの出射面と対応する複数のレンズ24a,24b,24c,24dの中心との間の第1方向(x方向)の最大距離として定義される。
 光学系27は、筐体4の底板5上に固定されている。光学系27は、温度調整器10から第1方向(x方向)に離間されている。光学系27は、レンズ24a,24b,24c,24dに対してレーザ光の出射側に配置されている。光学系27は、例えば、複数のレーザ光源23a,23b,23c,23dから出射された複数のレーザ光を合波する合波光学系である。光学系27は、例えば、ダイクロイックミラー(図示せず)及びミラー等を含む。レーザ光は、光学系27から筐体4の外側へ出力される。
 本実施の形態の光送信モジュール1の作用を説明する。
 光送信モジュール1は、高温環境下で使用されることが多い。また、光送信モジュール1の使用時に、レーザ光源23a,23b,23c,23dは発熱する。レーザ光源23a,23b,23c,23dから出力される波長が経時変化することを防止するために、温度調整器10は、レーザ光源23a,23b,23c,23dを冷却して、レーザ光源23a,23b,23c,23dの温度を維持する。光送信モジュール1の使用時に、第1伝熱板11は、第2伝熱板15よりも高温になる。温度調整器10の頂面10bは温度調整器10の低温側となり、温度調整器10の底面10aは温度調整器10の高温側となる。
 光送信モジュール1では、後退部14は筐体4の底板5から離間しており、かつ、後退部14は接合部材7から露出している。温度調整器10の底面10aの平面視において、接合部材7の面積が減少する。接合部材7の剛性が減少する。そのため、光送信モジュール1の使用開始時に、接合部材7は、温度調整器10の底面10aと頂面10bとの間の温度差に起因して温度調整器10が反り変形を開始することを妨げることができない。光送信モジュール1の使用開始直後に、温度調整器10は、反り変形する。光送信モジュール1の使用時に、第1伝熱板11は、第2伝熱板15よりも高温になるため、温度調整器10の底面10aが凸曲面となりかつ温度調整器10の頂面10bが凹曲面となるように、温度調整器10は、反り変形する。例えば、第1方向(x方向)に沿う底面10aの第1長さ2L1が第2方向(y方向)に沿う底面10aの第2長さ2L2よりも長い場合には、温度調整器10は、主に第1方向(x方向)に反り変形する。
 それから光送信モジュール1を使用し続けている間に、接合部材7にクリープ現象が発生して、接合部材7の剛性が徐々に低下する。しかし、光送信モジュール1の使用開始直後に温度調整器10は既に反り変形してしまっているため、光送信モジュール1を使用し続けている間に、温度調整器10はさほどさらに反り変形しない。レーザ光源23a,23b,23c,23dに対するレンズ24a,24b,24c,24dの相対位置の経時変化は小さい。こうして、光送信モジュール1を使用し続けている間の光送信モジュール1からのレーザ光の出力の経時変化が低減され得る。
 なお、光送信モジュール1の使用開始直後の温度調整器10の反り変形に起因する光送信モジュール1からのレーザ光の出力の変化は、光送信モジュール1の使用前または使用開始直後にレーザ光源23a,23b,23c,23dのレーザ光の出力を調整すること等によって、容易に打ち消すことができる。レーザ光源23a,23b,23c,23dのレーザ光の出力は、例えば、レーザ光源23a,23b,23c,23dに印加する電流の大きさを調整することによって、調整され得る。
 これに対し、比較例の光送信モジュール(図示せず)では、温度調整器10の底面10aに後退部14が設けられておらず、温度調整器10の底面10a全体上に設けられた接合部材7を用いて、温度調整器10は、筐体4の底板5に接合されている。温度調整器10の底面10aの平面視において、接合部材7の面積が大きい。接合部材7は、高い剛性を有している。そのため、比較例の光送信モジュールの使用開始時に、接合部材7は、温度調整器10の反り変形を妨げる。
 それから比較例の光送信モジュールを使用し続けている間に、接合部材7にクリープ現象が発生して、接合部材7の剛性が徐々に低下する。接合部材7は、温度調整器10が反り変形を開始することを妨げることができなくなる。比較例の光送信モジュールを使用し続けている間に、温度調整器10の反り変形が徐々に進行する。レーザ光源23a,23b,23c,23dに対するレンズ24a,24b,24c,24dの相対位置の経時変化は大きい。こうして、比較例の光送信モジュールを使用し続けている間に、比較例の光送信モジュールからのレーザ光の出力が大きく変化する。
 本実施の形態の一局面では、図2に示されるように、突出部13の全体が接合部材7を用いて底板5に接合されており、かつ、後退部14の全体は、接合部材7から露出している。後退部14は、第2方向(y方向)の底面10aの両外縁まで延在している。第1後退部分14aの幅w1は、第2後退部分14bの幅w2に等しい。後退部14の幅は、第1後退部分14aの幅w1の2倍である。最初に、本実施の形態の一局面における、第1後退部分14aの幅w1の下限を、以下検討する。
 図4及び図5に示されるように、温度調整器10と温度調整器10上に搭載されている全ての部材(例えば、キャリア20、サブマウント22a,22b,22c,22d、レーザ光源23a,23b,23c,23d及びレンズ24a,24b,24c,24d)とを、直方体の形状を有する構造体2と見なす。光送信モジュール1の使用前の構造体2の温度をT0とする。光送信モジュール1の使用前は、光送信モジュール1が使用環境に設置されておらず、かつ、レーザ光源23a,23b,23c,23d及び温度調整器10が動作していないことを意味する。
 光送信モジュール1の使用前では、構造体2の底面2aの温度及び構造体2の頂面2bの温度は、各々、T0である。底面2aと頂面2bとの間の温度差は、ゼロである。構造体2の底面2aの温度は、温度調整器10の底面10aの温度である。構造体2の頂面2bの温度は、温度調整器10の頂面10bの温度であるとみなすことができる。T0は、例えば、20℃のような室温である。
 図4に示されるように、光送信モジュール1の使用前には、底面2aと頂面2bとの間の温度差はゼロであるため、構造体2(温度調整器10)は反り変形していない。構造体2は、第1方向(x方向)に第1長さ2L1を有している。図4に示されるAB間の長さはL1である。点Aは、構造体2の側面視(第2方向(y方向)からの平面視)における、構造体2の頂面10bの第1方向(x方向)の中心である。点Bは、構造体2の側面視における、レンズ24a,24b,24c,24dに近位する構造体2の頂面10bの第1方向(x方向)の端である。図4に示されるCD間の長さはL1である。点Cは、構造体2の側面視における、構造体2の底面10aの第1方向(x方向)の中心である。点Dは、構造体2の側面視における、レンズ24a,24b,24c,24dに近位する構造体2の底面10aの第1方向(x方向)の端である。
 構造体2は、第2方向(y方向)に第2長さ2L2を有している(図1を参照)。構造体2は、高さhを有している。図2に示されるように、構造体2の高さhは、温度調整器10の高さ方向(第3方向(z方向))における、温度調整器10の底面10aの突出部13とレーザ光源23a,23b,23c,23dの光軸23pとの間の距離とみなす。
 光送信モジュール1の使用時には、光送信モジュール1が使用環境に設置されて、レーザ光源23a,23b,23c,23d及び温度調整器10が動作する。光送信モジュール1は、高温環境下で使用されることが多い。また、光送信モジュール1の使用時に、レーザ光源23a,23b,23c,23dは発熱する。レーザ光源23a,23b,23c,23dから出力される波長が経時変化することを防止するために、温度調整器10は、レーザ光源23a,23b,23c,23dを冷却して、レーザ光源23a,23b,23c,23dの温度を維持する。光送信モジュール1の使用時に、構造体2の底面2a(温度調整器10の底面10a)の温度Tcは、構造体2の頂面2b(温度調整器10の頂面10b)の温度Thよりも大きくなる。
 光送信モジュール1の使用時における、構造体2の底面10a(温度調整器10の底面10a)の温度Thと構造体2の頂面10b(温度調整器10の頂面10b)の温度Tcとの間の差ΔT(=Th-Tc)は、正の値となる。底面2aと頂面2bとの間の温度差(ΔT)に起因して、底面2aが凸曲面となりかつ頂面2bが凹曲面となるように、構造体2は、反り変形する。本実施の形態では、第1方向(x方向)に沿う底面10aの第1長さ2L1は、第2方向(y方向)に沿う底面10aの第2長さ2L2よりも長い。そのため、図5に示されるように、構造体2は、主に第1方向(x方向)に反り変形する。
 構造体2の反り変形の曲率中心を点Oとする。構造体2の反り変形の中心角を2θ(rad)とする。以下、中心角2θは小さく、sinθがθに実質的に等しいとみなすことができるものとする。光送信モジュール1の使用時におけるCD間の長さb2とAB間の長さb1との間の差b2-b1は、式(1)で与えられる。
  b2-b1=hθ  (1)
 構造体2の平均線膨張係数αとすると、b2-b1は、式(2)で与えられる。構造体2の平均線膨張係数αは、温度調整器10及び温度調整器10上に搭載されている全ての部材の各線膨張係数に、温度調整器10及び温度調整器10上に搭載されている全ての部材の各々の体積割合を掛けたものである。
  b2-b1=L1αΔT  (2)
 光送信モジュール1の使用時におけるAB間の長さb1は、式(3)で与えられる。
  b1=(1+(Tc-T0)α)L1=βL1  (3)
 式(1)及び式(2)から、角度θは、式(4)で与えられる。
  θ=L1αΔT/h  (4)
 光送信モジュール1の使用時におけるAB間の高さの差Δhは、式(3)及び式(4)から、式(5)で与えられる。Δhは、光送信モジュール1の使用時における、構造体2の側面視(第2方向(y方向)からの平面視)での、温度調整器10の頂面10bの第1方向(x方向)の中心と温度調整器10の頂面10bの第1方向(x方向)の端との間の高さの差とみなすことができる。
 Δh=b1θ/2=L1 2αβΔT/2h  (5)
 光送信モジュール1の使用時におけるレーザ光源23a,23b,23c,23dとレンズ24a,24b,24c,24dとの間の高さの差ΔhLは、式(5)から、式(6)で与えられる。ΔhLは、光送信モジュール1の使用時における、構造体2の側面視(第2方向(y方向)からの平面視)での、温度調整器10の頂面10bの第1方向(x方向)の中心と温度調整器10の頂面10bのレンズ24a,24b,24c,24dの搭載部との間の高さの差とみなすことができる。
 ΔhL=d2αβΔT/2h  (6)
 第1方向(x方向)に沿う底面2a(底面10a)の第1長さ2L1に対する第1方向(x方向)に沿う接合部材7の長さ(2L1-2w1)の比(1-w1/L1)に応じて、構造体2(温度調整器10)の反り変形に対する接合部材7の剛性は減少する。光送信モジュール1を使用し続けている間に生じるレーザ光源23a,23b,23c,23dとレンズ24a,24b,24c,24dとの間の高さの差の経時変化は、w1/L1に比例して減少し、ΔhL(1-w1/L1)によって与えられる。光送信モジュール1の使用し続けている間に生じるレーザ光源23a,23b,23c,23dとレンズ24a,24b,24c,24dとの間の高さの差の経時変化の許容値Δh0は、光送信モジュール1が満たすべき規格等に基づいて決定される。ΔhL(1-w1/L1)はΔh0以下でなければならないため、式(7)が成り立つ。
  ΔhL(1-w1/L1)≦Δh0  (7)
 式(6)及び式(7)から、第1後退部分14aの幅w1は、式(8)で与えられる。こうして、本実施の形態の一局面の光送信モジュール1における第1後退部分14aの幅w1の下限が規定される。
  w1≧L1-L1Δh0/ΔhL=L1-2L1hΔh0/d2αβΔT  (8)
 次に、本実施の形態の一局面の光送信モジュール1における第1後退部分14aの幅w1の上限を検討する。接合部材7は、構造体2の底面2a(温度調整器10の底面10a)から筐体4に熱を逃がす機能を有している。接合部材7は、熱伝導率kと、厚さt3と、第1方向(x方向)における長さLSと、第2方向(y方向)における第2長さ2L2とを有している。接合部材7の熱抵抗RTは、式(9)で与えられる。
  RT=t3/2kL2S  (9)
 接合部材7が構造体2の底面2a(温度調整器10の底面10a)から筐体4に熱を逃がす機能を有するために要求される、接合部材7の熱抵抗RTの許容上限値をRmaxとすると、式(10)が成り立つ。
  RT≦Rmax  (10)
 式(9)及び式(10)から、式(11)が導かれる。
  LS≧t3/2kL2max  (11)
 式(11)から、第1後退部分14aの幅w1は、式(12)で与えられる。こうして、本実施の形態の一局面の光送信モジュール1における第1後退部分14aの幅w1の上限が規定される。
 w1=L1-LS/2≦L1-t3/4kL2max  (12)
 既に述べたように、本実施の形態の一局面の光送信モジュール1では、第1後退部分14aの幅w1は、第2後退部分14bの幅w2に等しい。式(8)及び式(12)より、本実施の形態の一局面では、第1後退部分14aの幅w1及び第2後退部分14bの幅w2の各々は、式(13)を満たす。
Figure JPOXMLDOC01-appb-M000002
 本実施の形態の光送信モジュール1の効果を説明する。
 本実施の形態の光送信モジュール1は、筐体4と、温度調整器10と、接合部材7と、レーザ光源23a,23b,23c,23dと、レンズ24a,24b,24c,24dとを備える。筐体4は、底板5を含む。筐体4は、温度調整器10と、レーザ光源23a,23b,23c,23dと、レンズ24a,24b,24c,24dとを収容している。温度調整器10は、底板5に面する底面10aと、底面10aとは反対側の頂面10bとを含む。頂面10bは、底面10aから温度調整器10の高さ方向(第3方向(z方向))に離れている。レーザ光源23a,23b,23c,23dとレンズ24a,24b,24c,24dとは、温度調整器10の頂面10b上に設けられている。レンズ24a,24b,24c,24dは、レーザ光源23a,23b,23c,23dから出射されたレーザ光を透過させるように構成されている。温度調整器10の底面10aは、突出部13と、突出部13から温度調整器10の高さ方向(第3方向(z方向))に後退している後退部14とを含む。突出部13は、接合部材7を用いて底板5に接合されている。後退部14は、底板5から離間している。後退部14は、接合部材7から露出している。
 光送信モジュール1は、高温環境下で使用されることが多い。また、光送信モジュール1の使用時に、レーザ光源23a,23b,23c,23dは発熱する。レーザ光源23a,23b,23c,23dから出力される波長が経時変化することを防止するために、温度調整器10は、レーザ光源23a,23b,23c,23dを冷却して、レーザ光源23a,23b,23c,23dの温度を維持する。温度調整器10の底面10aは、温度調整器10の頂面10bよりも高温になる。光送信モジュール1では、後退部14は筐体4の底板5から離間しており、かつ、後退部14は接合部材7から露出している。温度調整器10の底面10aの平面視において、接合部材7の面積が減少する。接合部材7の剛性が減少する。そのため、光送信モジュール1の使用開始時に、接合部材7は、温度調整器10の底面10aと頂面10bとの間の温度差に起因して温度調整器10が反り変形を開始することを妨げることができない。光送信モジュール1の使用開始直後に、温度調整器10は、反り変形する。
 それから光送信モジュール1を使用し続けている間に、接合部材7にクリープ現象が発生して、接合部材7の剛性が徐々に低下する。しかし、光送信モジュール1の使用開始直後に温度調整器10は既に反り変形してしまっているため、光送信モジュール1を使用し続けている間に、温度調整器10はさほどさらに反り変形しない。光送信モジュール1を使用し続けている間の光送信モジュール1からのレーザ光の出力の経時変化が低減され得る。
 本実施の形態の光送信モジュール1では、底面10aは、第1方向(x方向)と、第1方向(x方向)に垂直な第2方向(y方向)とに延在している。レーザ光源23a,23b,23c,23dは、レーザ光を第1方向(x方向)に出射するように構成されている。第1方向(x方向)に沿う底面10aの第1長さL1は、第2方向(y方向)に沿う底面10aの第2長さL2よりも長い。後退部14は、底面10aの第2方向(y方向)の両外縁14r,14sまで第2方向(y方向)に沿って延在してもよい。
 第1方向(x方向)に沿う底面10aの第1長さL1は、第2方向(y方向)に沿う底面10aの第2長さL2よりも長いため、光送信モジュール1の使用開始直後に、温度調整器10は、主に第1方向(x方向)に反り変形する。それから光送信モジュール1を使用し続けている間に、接合部材7にクリープ現象が発生して、接合部材7の剛性が徐々に低下しても、温度調整器10はさほどさらに反り変形しない。レーザ光源23a,23b,23c,23dに対するレンズ24a,24b,24c,24dの相対位置の経時変化は小さい。光送信モジュール1を使用し続けている間の光送信モジュール1からのレーザ光の出力の経時変化が低減され得る。
 本実施の形態の光送信モジュール1では、後退部14は、第1後退部分14aと、第2後退部分14bとを含んでもよい。第1後退部分14aは、底面10aの第2方向(y方向)の両外縁14r,14sまで第2方向(y方向)に沿って延在しており、かつ、突出部13と第1後退部分14aとの間の第1境界線13iに対向する第1方向(x方向)の底面10aの外縁14pまで延在している。第2後退部分14bは、底面10aの第2方向(y方向)の両外縁14r,14sまで第2方向(y方向)に沿って延在しており、かつ、突出部13と第2後退部分14bとの間の第2境界線13jに対向する第1方向(x方向)の底面10aの外縁14qまで延在している。第1方向(x方向)において、突出部13は、第1後退部分14aと第2後退部分14bとの間にある。
 温度調整器10の第1方向(x方向)における中央部が接合部材7を用いて底板5に接合されるため、レーザ光源23a,23b,23c,23d及び温度調整器10から発生する熱を、接合部材7を通して、筐体4に効率的に逃がすことができる。温度調整器10の反り変形を第1後退部分14aと第2後退部分14bとで分担することができるため、光送信モジュール1の使用開始直後の温度調整器10の反り変形量を小さくすることができる。
 本実施の形態の光送信モジュール1では、第1後退部分14aの幅w1及び第2後退部分14bの幅w2の各々は、上記式(13)を満たす。そのため、レーザ光源23a,23b,23c,23d及び温度調整器10から発生する熱を、接合部材7を通して、筐体4に効率的に逃がすことができる。光送信モジュール1の使用開始直後の温度調整器10の反り変形量を小さくすることができる。
 本実施の形態の光送信モジュール1では、突出部13と後退部14との間に段差が形成されている。光送信モジュール1を使用し続けている間の光送信モジュール1からのレーザ光の出力の経時変化が低減され得る。
 本実施の形態の光送信モジュール1では、温度調整器10の頂面10bの平面視において、レーザ光源23a,23b,23c,23dの少なくとも一部は、接合部材7に重なっている。光送信モジュール1では、レーザ光源23a,23b,23c,23d及び温度調整器10から発生する熱を、接合部材7を通して、筐体4に効率的に逃がすことができる。
 実施の形態2.
 図6から図8を参照して、実施の形態2の光送信モジュール1bを説明する。本実施の形態の光送信モジュール1bは、実施の形態1の光送信モジュール1と同様の構成を備えるが、以下の点で主に異なる。
 光送信モジュール1bでは、第2方向(y方向)に沿う温度調整器10の底面10aの第2長さL2は、第1方向(x方向)に沿う温度調整器10の底面10aの第1長さL1よりも長い。後退部14は、第1方向(x方向)に沿って延在している。後退部14は、底面10aの第1方向(x方向)の両外縁14p,14qの少なくとも1つまで延在してもよい。後退部14は、底面10aの第1方向(x方向)の両外縁14p,14qまで延在してもよい。突出部13と後退部14との間の境界線(第1境界線13i、第2境界線13j)に対向する底面10aの外縁14r,14sは、温度調整器10が反り変形する際の後退部14の自由端であってもよい。
 後退部14は、第1後退部分14aと、第2後退部分14bとを含んでもよい。第2方向(y方向)において、突出部13は、第1後退部分14aと第2後退部分14bとの間にある。
 第1後退部分14aは、第1方向(x方向)に沿って延在している。第1後退部分14aは、底面10aの第1方向(x方向)の両外縁14p,14qの少なくとも1つまで延在してもよい。第1後退部分14aは、底面10aの第1方向(x方向)の両外縁14p,14qまで延在してもよい。第1後退部分14aは、突出部13と第1後退部分14aとの間の第1境界線13iに対向する底面10aの外縁14rまで延在してもよい。底面10aの外縁14rは、温度調整器10が反り変形する際の第1後退部分14aの自由端であってもよい。
 第2後退部分14bは、第1方向(x方向)に沿って延在している。第2後退部分14bは、第1方向(x方向)の底面10aの両外縁14p,14qの少なくとも1つまで延在してもよい。第2後退部分14bは、第1方向(x方向)の底面10aの両外縁14p,14qまで延在してもよい。第2後退部分14bは、突出部13と第2後退部分14bとの間の第2境界線13jに対向する底面10aの外縁14sまで延在してもよい。底面10aの外縁14sは、温度調整器10が反り変形する際の第2後退部分14bの自由端であってもよい。
 本実施の形態の光送信モジュール1bは、実施の形態1の光送信モジュール1と同様の以下の効果を奏する。
 本実施の形態の光送信モジュール1bは、レンズ24a,24b,24c,24dに対してレーザ光の出射側に配置されている光学系27をさらに備える。筐体4は、光学系27をさらに収容している。温度調整器10の底面10aは、第1方向(x方向)と、第1方向(x方向)に垂直な第2方向(y方向)とに延在している。レーザ光源23a,23b,23c,23dは、レーザ光を第1方向(x方向)に出射するように構成されている。光学系27は、温度調整器10から第1方向(x方向)に離間されている。第2方向(y方向)に沿う底面10aの第2長さL2は、第1方向(x方向)に沿う底面10aの第1長さL1よりも長い。後退部14は、底面10aの第1方向(x方向)の両外縁14p,14qまで第1方向(x方向)に沿って延在している。
 光送信モジュール1bの使用開始時に、接合部材7は、温度調整器10の底面10aと頂面10bとの間の温度差に起因して温度調整器10が反り変形を開始することを妨げることができない。光送信モジュール1bの使用開始直後に、温度調整器10は、主に第2方向(y方向)に反り変形する。それから光送信モジュール1bを使用し続けている間に、接合部材7にクリープ現象が発生して、接合部材7の剛性が徐々に低下しても、温度調整器10はさほどさらに反り変形しない。光学系27に対するレーザ光源23a,23b,23c,23d及びレンズ24a,24b,24c,24dの相対位置の経時変化は小さい。光送信モジュール1bを使用し続けている間の光送信モジュール1bからのレーザ光の出力の経時変化が低減され得る。
 本実施の形態の光送信モジュール1bでは、後退部14は、第1後退部分14aと、第2後退部分14bとを含んでもよい。第1後退部分14aは、底面10aの第1方向(x方向)の両外縁14p,14qまで第1方向(x方向)に沿って延在しており、かつ、突出部13と第1後退部分14aとの間の第1境界線13iに対向する第2方向(y方向)の底面10aの外縁14rまで延在している。第2後退部分14bは、底面10aの第1方向(x方向)の両外縁14p,14qまで第1方向(x方向)に沿って延在しており、かつ、突出部13と第2後退部分14bとの間の第2境界線13jに対向する第2方向(y方向)の底面10aの外縁14sまで延在している。第2方向(y方向)において、突出部13は、第1後退部分14aと第2後退部分14bとの間にある。
 温度調整器10の第2方向(y方向)における中央部が接合部材7を用いて底板5に接合されるため、レーザ光源23a,23b,23c,23d及び温度調整器10から発生する熱を、接合部材7を通して、筐体4に効率的に逃がすことができる。温度調整器10の反り変形量を第1後退部分14aと第2後退部分14bとで分担することができるため、光送信モジュール1の使用開始直後の温度調整器10の反り変形量を小さくすることができる。
 実施の形態3.
 図9から図11を参照して、実施の形態3の光送信モジュール1cを説明する。本実施の形態の光送信モジュール1cは、実施の形態1の光送信モジュール1と同様の構成を備えるが、以下の点で主に異なる。
 光送信モジュール1cでは、突出部13は後退部14に囲まれている。後退部14は、底面10aの平面視において突出部13と後退部14との間の境界線13kに対向する底面10aの外縁14p,14q,14r,14sまで延在している。図10に示されるように、底面10aの平面視において、突出部13は、正方形のような矩形の形状を有している。図11に示されるように、底面10aの平面視において、突出部13は、円形の形状を有してもよい。第1方向(x方向)に沿う底面10aの第1長さ2L1は、第2方向(y方向)に沿う底面10aの第2長さ2L2に等しくてもよい。
 図10に示されるように、本実施の形態の一局面では、第1方向(x方向)に沿う底面10aの第1長さ2L1は、第2方向(y方向)に沿う底面10aの第2長さ2L2に等しい。底面10aの平面視において、突出部13は、正方形の形状を有している。突出部13の全体が接合部材7を用いて底板5に接合されており、かつ、後退部14の全体は、接合部材7から露出している。突出部13の周方向において、後退部14の幅wは一定である。本実施の形態の一局面における第1後退部分14aの幅wの上限及び下限を、以下検討する。
 本実施の形態の一局面では、式(9)及び式(11)における2L2は、Lsに置き換えられる。そのため、本実施の形態の一局面では、式(14)が成り立つ。
  LS≧(t3/kRmax1/2  (14)
 式(13)及び式(14)より、本実施の形態の一局面では、後退部14の幅wは、式(15)を満たす。
Figure JPOXMLDOC01-appb-M000003
 本実施の形態の光送信モジュール1cは、実施の形態1及び実施の形態2の光送信モジュール1,1bと同様の以下の効果を奏する。本実施の形態の光送信モジュール1cでは、突出部13は後退部14に囲まれている。後退部14は、底面10aの平面視において突出部13と後退部14との間の境界線13kに対向する底面10aの外縁14p,14q,14r,14sまで延在している。そのため、光送信モジュール1cを使用し続けている間の光送信モジュール1cからのレーザ光の出力の経時変化が低減され得る。
 実施の形態4.
 図1、図3及び図12を参照して、実施の形態4の光送信モジュール1dを説明する。本実施の形態の光送信モジュール1dは、実施の形態1の光送信モジュール1と同様の構成を備え、同様の効果を奏するが、以下の点で主に異なる。
 光送信モジュール1dでは、後退部14dは、底板5に面する傾斜面を含む。傾斜面は、突出部13から離れるにつれて底板5からより大きな間隔だけ離れている。傾斜面は、突出部13と後退部14dとの間の境界線(第1境界線13i、第2境界線13j)に対向する底面10aの外縁14p,14qに近づくにつれて底板5からより大きな間隔だけ離れている。傾斜面は、突出部13と後退部14dとの間の境界線(第1境界線13i、第2境界線13j)に対向する底面10aの両外縁14p,14qの少なくとも1つまで延在してもよい。傾斜面は、突出部13と後退部14dとの間の境界線(第1境界線13i、第2境界線13j)に対向する底面10aの両外縁14p,14qまで延在してもよい。傾斜面は、底面10aの突出部13に接続されている。
 後退部14dは、第1後退部分14eと、第2後退部分14fとを含んでもよい。第1後退部分14eは、第1傾斜面部分である。第1傾斜面部分は、突出部13から離れるにつれて底板5からより大きな間隔だけ離れている。第1傾斜面部分は、突出部13と第1後退部分14eとの間の第1境界線13iに対向する底面10aの外縁14pに近づくにつれて底板5からより大きな間隔だけ離れている。第1傾斜面部分は、突出部13と第1後退部分14eとの間の第1境界線13iに対向する底面10aの外縁14pまで延在してもよい。第1傾斜面部分は、底面10aに対して第1方向(x方向)に傾斜している。第1傾斜面部分は、底面10aの突出部13に接続されている。
 第2後退部分14fは、第2傾斜面部分である。第2傾斜面部分は、突出部13から離れるにつれて底板5からより大きな間隔だけ離れている。第2傾斜面部分は、突出部13と第2後退部分14fとの間の第2境界線13jに対向する底面10aの外縁14qに近づくにつれて底板5からより大きな間隔だけ離れている。第1傾斜面部分は、突出部13と第2後退部分14fとの間の第2境界線13jに対向する底面10aの外縁14qまで延在してもよい。第2傾斜面部分は、底面10aに対して第1方向(x方向)に傾斜している。第2傾斜面部分は、底面10aの突出部13に接続されている。
 実施の形態5.
 図6、図8及び図13を参照して、実施の形態5の光送信モジュール1eを説明する。本実施の形態の光送信モジュール1eは、実施の形態2の光送信モジュール1bと同様の構成を備え、同様の効果を奏するが、以下の点で主に異なる。
 光送信モジュール1eでは、後退部14dは、底板5に面する傾斜面を含む。傾斜面は、突出部13から離れるにつれて底板5からより大きな間隔だけ離れている。傾斜面は、突出部13と後退部14dとの間の境界線(第1境界線13i、第2境界線13j)に対向する底面10aの外縁14r,14sに近づくにつれて底板5からより大きな間隔だけ離れている。傾斜面は、突出部13と後退部14dとの間の境界線(第1境界線13i、第2境界線13j)に対向する底面10aの両外縁14p,14qの少なくとも1つまで延在してもよい。傾斜面は、突出部13と後退部14dとの間の境界線(第1境界線13i、第2境界線13j)に対向する底面10aの両外縁14p,14qまで延在してもよい。傾斜面は、底面10aの突出部13に接続されている。
 後退部14dは、第1後退部分14eと、第2後退部分14fとを含んでもよい。第1後退部分14eは、第1傾斜面部分である。第1傾斜面部分は、突出部13から離れるにつれて底板5からより大きな間隔だけ離れている。第1傾斜面部分は、突出部13と第1後退部分14eとの間の第1境界線13iに対向する底面10aの外縁14rに近づくにつれて底板5からより大きな間隔だけ離れている。第1傾斜面部分は、突出部13と第1後退部分14eとの間の第1境界線13iに対向する底面10aの外縁14rまで延在してもよい。第1傾斜面部分は、底面10aに対して第2方向(y方向)に傾斜している。第1傾斜面部分は、底面10aの突出部13に接続されている。
 第2後退部分14fは、第2傾斜面部分である。第2傾斜面部分は、突出部13から離れるにつれて底板5からより大きな間隔だけ離れている。第2傾斜面部分は、突出部13と第2後退部分14fとの間の第2境界線13jに対向する底面10aの外縁14sに近づくにつれて底板5からより大きな間隔だけ離れている。第1傾斜面部分は、突出部13と第2後退部分14fとの間の第2境界線13jに対向する底面10aの外縁14sまで延在してもよい。第2傾斜面部分は、底面10aに対して第2方向(y方向)に傾斜している。第2傾斜面部分は、底面10aの突出部13に接続されている。
 実施の形態6.
 図9、図14及び図15を参照して、実施の形態6の光送信モジュール1fを説明する。本実施の形態の光送信モジュール1fは、実施の形態3の光送信モジュール1cと同様の構成を備えるが、以下の点で主に異なる。
 本実施の形態の光送信モジュール1fでは、後退部14dは、底板5に面する傾斜面を含む。傾斜面は、突出部13から離れるにつれて底板5からより大きな間隔だけ離れている。傾斜面は、底面10aの平面視において突出部13と後退部14dとの間の境界線13kに対向する底面10aの外縁14p,14q,14r,14sに近づくにつれて底板5からより大きな間隔だけ離れている。傾斜面は、底面10aの平面視において突出部13と後退部14dとの間の境界線13kに対向する底面10aの外縁14p,14q,14r,14sの少なくとも1つまで延在してもよい。傾斜面は、底面10aの平面視において突出部13と後退部14dとの間の境界線13kに対向する底面10aの外縁14p,14q,14r,14sまで延在してもよい。傾斜面は、底面10aの突出部13に接続されている。
 図14に示されるように、突出部13は、温度調整器10の底面10aの平面視において、正方形のような矩形の形状を有している。図15に示されるように、突出部13は、温度調整器10の底面10aの平面視において、円形の形状を有してもよい。第1方向(x方向)に沿う底面10aの第1長さ2L1は、第2方向(y方向)に沿う底面10aの第2長さ2L2に等しくてもよい。
 今回開示された実施の形態1-6はすべての点で例示であって制限的なものではないと考えられるべきである。矛盾のない限り、今回開示された実少なくとも2つを組み合わせてもよい。本発明の範囲は、上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。
 1,1b,1c,1d,1e,1f 光送信モジュール、2 構造体、2a 底面、2b 頂面、4 筐体、5 底板、7 接合部材、10 温度調整器、10a 底面、10b 頂面、11 第1伝熱板、13 突出部、13i 第1境界線、13j 第2境界線、13k 境界線、14,14d 後退部、14a,14e 第1後退部分、14b,14f 第2後退部分、14p,14q,14r,14s 外縁、15 第2伝熱板、17 熱電素子、20 キャリア、22a,22b,22c,22d サブマウント、23a,23b,23c,23d レーザ光源、23p 光軸、24a,24b,24c,24d レンズ、27 光学系。

Claims (10)

  1.  底板を含む筐体と、
     前記底板に面する底面と、前記底面とは反対側の頂面とを含む温度調整器とを備え、前記頂面は前記底面から前記温度調整器の高さ方向に離れており、さらに、
     接合部材と、
     前記頂面上に設けられているレーザ光源と、
     前記頂面上に設けられているレンズとを備え、前記レンズは、前記レーザ光源から出射されたレーザ光を透過させるように構成されており、
     前記筐体は、前記温度調整器と前記レーザ光源と前記レンズとを収容しており、
     前記底面は、突出部と、前記突出部から前記温度調整器の前記高さ方向に後退している後退部とを含み、
     前記突出部は前記接合部材を用いて前記底板に接合されており、
     前記後退部は前記底板から離間しており、前記後退部は前記接合部材から露出している、光送信モジュール。
  2.  前記底面は、第1方向と、前記第1方向に垂直な第2方向とに延在しており、
     前記レーザ光源は、前記レーザ光を前記第1方向に出射するように構成されており、
     前記第1方向に沿う前記底面の第1長さは、前記第2方向に沿う前記底面の第2長さよりも長く、
     前記後退部は、前記底面の前記第2方向の両外縁まで前記第2方向に沿って延在している、請求項1に記載の光送信モジュール。
  3.  前記後退部は、第1後退部分と、第2後退部分とを含み、
     前記第1後退部分は、前記底面の前記第2方向の前記両外縁まで前記第2方向に沿って延在しており、かつ、前記突出部と前記第1後退部分との間の第1境界線に対向する前記第1方向の前記底面の外縁まで延在しており、
     前記第2後退部分は、前記底面の前記第2方向の前記両外縁まで前記第2方向に沿って延在しており、かつ、前記突出部と前記第2後退部分との間の第2境界線に対向する前記第1方向の前記底面の外縁まで延在しており、
     前記第1方向において、前記突出部は、前記第1後退部分と前記第2後退部分との間にある、請求項2に記載の光送信モジュール。
  4.  前記第1後退部分の幅w1及び前記第2後退部分の幅w2の各々は、下式を満たす、請求項3に記載の光送信モジュール。
    Figure JPOXMLDOC01-appb-M000001
     ここで、2L1は、前記第1方向に沿う前記底面の長さを表し、hは、前記温度調整器の前記高さ方向における、前記温度調整器の前記突出部と前記レーザ光源の光軸との間の距離を表し、Δh0は、前記光送信モジュールを使用し続けている間に生じる前記レーザ光源と前記レンズとの間の高さの差の経時変化の許容値を表し、dは、前記光送信モジュールの使用前における、前記レーザ光源の出射面と前記レンズの中心との間の前記第1方向の距離を表し、ΔTは、前記光送信モジュールの使用時における、前記温度調整器の前記頂面の温度Thと前記温度調整器の前記底面の温度Tcとの間の差を表し、t3は、前記接合部材の厚さを表し、kは、前記接合部材の熱伝導率を表し、2L2は前記第2方向に沿う前記底面の長さを表し、Rmaxは、前記接合部材の熱抵抗の許容上限値を表し、αは、前記温度調整器及び前記温度調整器上に搭載されている全ての部材の各線膨張係数に、前記温度調整器及び前記温度調整器上に搭載されている前記全ての部材の各々の体積割合を掛けたものを表し、βは、1+(Tc-T0)αを表し、T0は、前記光送信モジュールの使用前の前記温度調整器の前記頂面の温度を表す。
  5.  前記レンズに対して前記レーザ光の出射側に配置されている光学系をさらに備え、
     前記筐体は、前記光学系をさらに収容しており、
     前記底面は、第1方向と、前記第1方向に垂直な第2方向とに延在しており、
     前記レーザ光源は、前記レーザ光を前記第1方向に出射するように構成されており、
     前記光学系は、前記温度調整器から前記第1方向に離間されており、
     前記第2方向に沿う前記底面の第2長さは、前記第1方向に沿う前記底面の第1長さよりも長く、
     前記後退部は、前記底面の前記第1方向の両外縁まで前記第1方向に沿って延在している、請求項1に記載の光送信モジュール。
  6.  前記後退部は、第1後退部分と、第2後退部分とを含み、
     前記第1後退部分は、前記底面の前記第1方向の前記両外縁まで前記第1方向に沿って延在しており、かつ、前記突出部と前記第1後退部分との間の第1境界線に対向する前記第2方向の前記底面の外縁まで延在しており、
     前記第2後退部分は、前記底面の前記第1方向の前記両外縁まで前記第1方向に沿って延在しており、かつ、前記突出部と前記第2後退部分との間の第2境界線に対向する前記第2方向の前記底面の外縁まで延在しており、
     前記第2方向において、前記突出部は、前記第1後退部分と前記第2後退部分との間にある、請求項5に記載の光送信モジュール。
  7.  前記突出部は前記後退部に囲まれており、
     前記後退部は、前記底面の平面視において前記突出部と前記後退部との間の境界線に対向する前記底面の外縁まで延在している、請求項1に記載の光送信モジュール。
  8.  前記突出部と前記後退部との間に段差が形成されている、請求項1から請求項7のいずれか一項に記載の光送信モジュール。
  9.  前記後退部は、前記底板に面する傾斜面を含み、前記傾斜面は、前記突出部から離れるにつれて前記底板からより大きな間隔だけ離れている、請求項1から請求項7のいずれか一項に記載の光送信モジュール。
  10.  前記頂面の平面視において、前記レーザ光源の少なくとも一部は、前記接合部材に重なっている、請求項1から請求項9のいずれか一項に記載の光送信モジュール。
PCT/JP2019/003122 2019-01-30 2019-01-30 光送信モジュール WO2020157853A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/003122 WO2020157853A1 (ja) 2019-01-30 2019-01-30 光送信モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/003122 WO2020157853A1 (ja) 2019-01-30 2019-01-30 光送信モジュール

Publications (1)

Publication Number Publication Date
WO2020157853A1 true WO2020157853A1 (ja) 2020-08-06

Family

ID=71841239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003122 WO2020157853A1 (ja) 2019-01-30 2019-01-30 光送信モジュール

Country Status (1)

Country Link
WO (1) WO2020157853A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333470A (ja) * 1994-06-06 1995-12-22 Sumitomo Electric Ind Ltd 半導体レーザモジュール
JPH1065273A (ja) * 1996-08-13 1998-03-06 Nec Corp ペルチェクーラ及び半導体レーザモジュール
JP2008193003A (ja) * 2007-02-07 2008-08-21 Nec Corp 光モジュール
US20090252188A1 (en) * 2006-07-12 2009-10-08 Pgt Photonics S.P.A. Misalignment Prevention in an External Cavity Laser Having Temperature Stabilisation of the Resonator and the Gain Medium
JP2011243819A (ja) * 2010-05-20 2011-12-01 Opnext Japan Inc 同軸型光モジュール
WO2013191213A1 (ja) * 2012-06-22 2013-12-27 古河電気工業株式会社 光素子モジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333470A (ja) * 1994-06-06 1995-12-22 Sumitomo Electric Ind Ltd 半導体レーザモジュール
JPH1065273A (ja) * 1996-08-13 1998-03-06 Nec Corp ペルチェクーラ及び半導体レーザモジュール
US20090252188A1 (en) * 2006-07-12 2009-10-08 Pgt Photonics S.P.A. Misalignment Prevention in an External Cavity Laser Having Temperature Stabilisation of the Resonator and the Gain Medium
JP2008193003A (ja) * 2007-02-07 2008-08-21 Nec Corp 光モジュール
JP2011243819A (ja) * 2010-05-20 2011-12-01 Opnext Japan Inc 同軸型光モジュール
WO2013191213A1 (ja) * 2012-06-22 2013-12-27 古河電気工業株式会社 光素子モジュール

Similar Documents

Publication Publication Date Title
US9869453B2 (en) Light source, light source unit, and light source module using same
US8259765B2 (en) Passive phase control in an external cavity laser
JP6578976B2 (ja) 光モジュール
US20040114648A1 (en) Laser apparatus in which laser diodes and corresponding collimator lenses are fixed to multiple steps provided in block
US20200185877A1 (en) Optical module
WO2018034055A1 (ja) 光源モジュールおよび光源モジュールの製造方法ならびに投射型表示装置
WO2017138666A1 (ja) サブマウント、半導体素子実装サブマウント、および半導体素子モジュール
CN111712975B (zh) 光模块
JP2019140390A (ja) 光モジュール
WO2020157853A1 (ja) 光送信モジュール
US6963593B2 (en) Semiconductor laser module and optical transmitter
JP6958122B2 (ja) 光モジュール
US20220352685A1 (en) Highly-integrated compact diffraction-grating based semiconductor laser
JP6042083B2 (ja) 半導体レーザモジュール及びその製造方法
WO2023042461A1 (ja) 半導体発光デバイス
JP7016933B2 (ja) レーザ装置
JP5001854B2 (ja) レンズ、レーザ装置およびレーザ装置の製造方法
JP4368563B2 (ja) レーザー装置
EP3875838A1 (en) Lighting device with light guide
JP2004096062A (ja) 半導体発光装置
US20220037851A1 (en) Semiconductor laser device
JP5385674B2 (ja) レーザモジュール
CN113467044A (zh) 反射镜装置以及具有该反射镜装置的光源装置
KR100565077B1 (ko) 히트 싱크를 가진 광학 헤드
US20240178633A1 (en) Laser diode package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP