WO2020157270A1 - Procédé de chauffage d'un réservoir - Google Patents

Procédé de chauffage d'un réservoir Download PDF

Info

Publication number
WO2020157270A1
WO2020157270A1 PCT/EP2020/052412 EP2020052412W WO2020157270A1 WO 2020157270 A1 WO2020157270 A1 WO 2020157270A1 EP 2020052412 W EP2020052412 W EP 2020052412W WO 2020157270 A1 WO2020157270 A1 WO 2020157270A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
temperature
duty cycle
heating
measured
Prior art date
Application number
PCT/EP2020/052412
Other languages
English (en)
Inventor
Sony BORSOI
Sorour BAHJA
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Priority to US17/427,558 priority Critical patent/US20230189400A1/en
Priority to CN202080011983.2A priority patent/CN113330818B/zh
Publication of WO2020157270A1 publication Critical patent/WO2020157270A1/fr

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0236Industrial applications for vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/12Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating electrically
    • F02M31/125Fuel
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0244Heating of fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • F01N2610/105Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1486Means to prevent the substance from freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1811Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1814Tank level
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/02Heaters using heating elements having a positive temperature coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a method for heating a tank, in particular a tank on board a vehicle and more particularly a motor vehicle (car, truck, etc.).
  • liquid tank other than fuel. It can be water or a urea solution. These liquids can freeze in winter, so they need to be warmed up before they can be used.
  • the conditions for heating a liquid are quite different from those for heating an air stream.
  • the heating element cannot be positioned directly in the liquid as it can be in an air stream.
  • the control temperature of a PTC type heating element can vary from 50 ° C to 120 ° C.
  • the aim of the present invention is therefore to provide a method for heating a liquid in a tank, using a PTC type heating element, which makes it possible to avoid overheating leading to a boiling of the liquid and / or deterioration (or fatigue) of a surrounding material.
  • the method will optimize the heating of the reservoir to limit the time required to obtain a warming up of the heated liquid.
  • this method further comprises the steps:
  • the method proposed here makes it possible to ensure that temperatures which risk vaporizing the liquid and / or damaging the components of the reservoir are not reached.
  • there is no abrupt variation in the heating power delivered and this makes it possible to increase the efficiency of the heating of the liquid in the tank.
  • the PTC type heating elements are preferably mounted in parallel.
  • the same supply voltage is applied to all the heating elements.
  • the electrical management of the system is then simplified.
  • the first threshold temperature is for example predetermined as a function of the nature of the liquid contained in the reservoir.
  • This threshold temperature is, for example, a temperature for which it is certain that there is no risk of solidification in the tank. For example for water, if a temperature measurement at a place in the tank gives + 3 ° C, we can estimate that there is no ice in the tank (if the tank is of course at atmospheric pressure).
  • This first threshold temperature thus depends on the liquid, on its solidification temperature but also on the calorific properties of this liquid.
  • the second threshold temperature can be determined as a function of the liquid level measured and the temperature of the liquid, and that the temperature measured compared to the second threshold temperature is a temperature measured downstream of the reservoir, preferably downstream of a pump taking liquid from the reservoir.
  • the reservoir heating means usually also heat the pump and its environment to thaw all the hydraulic channels and allow proper operation of the tank. pump.
  • the temperature chosen to be compared with the second temperature threshold is therefore a good illustration of the heating provided to the liquid in the tank.
  • the second threshold temperature can for example be determined from a double entry table.
  • a liquid level is measured, and the duty cycle to be achieved can then be determined as a function of the voltage applied to the level of the heating element considered, of the level of liquid measured and of liquid temperature from a table.
  • the duty cycle to be achieved can also be determined from a table which will then be a triple entry table.
  • the duty cycle varies gradually. It decreases by 100% at the cyclic ratio determined for example according to a gradient of between 0.05 and 0.5% s 1 , for example 0.1% / s.
  • a computer program comprising instructions for the implementation of each of the steps of the method as described above when this program is executed by a processor.
  • the invention further relates to an electronic management device for a motor vehicle engine, characterized in that it comprises a non-transient recording medium on which is recorded a computer program for the implementation. of each of the steps of a method as described above, when this program is executed by a processor.
  • FIG. 1 shows a simplified electrical diagram of a heater for a liquid tank
  • FIG. 2 schematically shows a control unit for a heater of Figure 1;
  • FIG. 3 shows a flowchart of a heating process for a liquid tank
  • FIG. 4 shows an example of a table with two entries which can be used for the implementation of the method illustrated in FIG. 3;
  • FIG. 5 shows an example of another table, this one having three entries, said table also being able to be used for the implementation of the method illustrated in FIG. 3.
  • Figure 1 illustrates a heating element 2 intended to heat a liquid contained in a reservoir.
  • the heating element 2 of the present application can take the place of an element referenced 10 in this document of the prior art.
  • heating element 2 of the PTC type (acronym for Positive Temperature Coefficient or in French positive temperature coefficient).
  • PTC type acronym for Positive Temperature Coefficient or in French positive temperature coefficient
  • Figure 1 illustrates a single heating element 2.
  • several heating elements 2 can be provided, on the one hand, to increase the heating power and, on the other hand, to distribute this heating power in several points . From an electrical point of view, all these heating elements 2 will then be connected in parallel so that they will all have the same voltage V at their terminals.
  • the power supply to all the heating elements 2 is made from a power supply device 4 which incorporates a driver for controlling the power supply or not to the heating elements 2.
  • a pulse width modulation device 6 acts on the power supply to the heating elements 2 via a relay 8.
  • PWM Pulise Width Modulation or modulation by pulse width
  • the pulse width modulation device 6 limits the power transmitted to the heating elements.
  • the power modulation can range from 0 to 1 or from 0% to 100% of the maximum transmitted power. This rate will be called hereafter the duty cycle.
  • the duty cycle When it is 1 (100%), all the power available from the power supply device 4 is transmitted to the heating elements 2. Conversely, when this duty cycle is 0 (0%), the heating elements 2 are not more supplied, even if the driver of the power supply device 4 is “closed”, by analogy with a switch, and therefore controls the power supply to the system.
  • a control unit 10 illustrated in Figure 2 is used for the management of the device of Figure 1 and in particular the management of the driver of the device power supply 4 and the pulse width modulation device. It has four inputs and three outputs.
  • a first inlet 12 corresponds for example to the temperature of a liquid to be heated Tliq.
  • a liquid reservoir in a motor vehicle either for example water, or for example a solution based on urea (that is to say as in document WO2016 / 096712 ), or another liquid, it is common to measure the temperature of this liquid.
  • the information provided by this temperature sensor (not shown in the drawing) is provided on this first input 12.
  • a second input 14 supplies the control unit 10 with the supply voltage V which prevails at the terminals of each heating element 2 (the same voltage for each of these elements since they are connected in parallel).
  • This supply voltage is known at the level of a digital control unit present on any modern motor vehicle to allow good engine management and it is made available on the second input 14.
  • a third input 16 allows the control unit to know the level of liquid L in the tank. Like the temperature of the Tliq liquid, a sensor is already provided to determine this data. All of this data is accessible from the digital engine control unit.
  • a fourth input 18 is intended to receive a binary signal from a comparator 20.
  • the latter compares the temperature of the liquid Tliq with a predetermined temperature Ths which is a temperature stored for example in the digital control unit. Ths depends on the liquid contained in the tank. For example, if water is contained in the tank, Ths will for example be fixed at + 3 ° C. It is estimated here that if the temperature of the liquid is greater than Ths, there is no risk of the liquid being frozen. If the reservoir contains a urea-based solution which freezes at -1 1 ° C, then Ths will be adjusted accordingly. This value is anyway defined once and for all because it is generally not provided that the same tank is intended to contain several types of liquids.
  • a first output 22 provides a control signal called PWM_DC for the pulse width modulation device 6 to indicate to this device the duty cycle according to which it must operate.
  • a second output 24 provides a signal corresponding to a temperature called TPSe_TH which is a temperature varying as a function of system parameters.
  • This temperature is a set point temperature. It is usual for a pump to be provided to draw the liquid from the tank and send it to its destination. At least one pressure sensor associated with a temperature sensor for managing the pump is then found at the level of this pump. When the temperature measured at the level of these sensors reaches the set point temperature, then the power modulation is activated.
  • the third output 26 provides for its part a rate of change called PWM_DC_grad giving the speed of change of the duty cycle. This rate of change is expressed for example as a percentage per second.
  • the output data is sent to a communication network 28, for example of CAN (or other) type, which transmits data packets 30 to receivers such as the heating system of liquid referred to here.
  • a communication network 28 for example of CAN (or other) type, which transmits data packets 30 to receivers such as the heating system of liquid referred to here.
  • Figure 3 gives an example of a flowchart allowing from the data provided on the first input 12, the second input 14, the third input 16 and the fourth input 18 to determine the values to be provided on the first output 22, the second exit 24 and third exit 26.
  • TEMPO box After a time delay (TEMPO box), for example of the order of 30 seconds counted from the power on or even from the start of the engine, measurements are taken.
  • a box in the figure indicates as an example steps that can be done
  • - V the voltage at the terminals of the heating elements 2. This voltage depends on the charge of the battery supplying these elements. It generally varies around 12 V, for example between 9 and 16 V.
  • this temperature is measured at the level of the pump which takes liquid from the tank. Most often, this pump is also heated by the 2 heating elements.
  • the temperature of the liquid Tliq in the reservoir is compared (using comparator 20) with the temperature Ths stored and depending on the liquid stored in the reservoir. If the liquid is not too cold, then there is no risk of freezing (option N) and the system is not activated (OFF box). Measurements are then carried out regularly to monitor that there is no risk of freezing.
  • the liquid is cold and its temperature is lower than Ths (option Y), the liquid may have frozen or risk of freezing.
  • the heating system is switched on (box ON).
  • the operating heating system it is necessary to determine the operating conditions.
  • the duty cycle at the pulse width modulator is 100%.
  • the first check made after starting up the heating device is to check the supply voltage V of the heating elements 2. If this voltage is less than 9 V, the power available for the heating elements 2 is low and (option N) the PWM_DC duty cycle is maintained at 100% to have maximum heating with the available power.
  • modulation of the pulse width can be considered.
  • the modulation begins when a temperature parameter exceeds a dynamic threshold, that is to say determined as a function of updated parameters, and, on the other hand, the modulation is carried out gradually.
  • TPSe the threshold to be determined
  • the TPSe_TH temperature threshold is thus determined as a function of L and of Tliq.
  • FIG. 4 gives an example of a double entry table making it possible to determine TPSe_TH as a function of these two parameters. Intermediate values can be obtained by extrapolation, for example linear extrapolation. Temperatures above Ths are also mentioned for the operating modes where it is expected that the heating is blocked in the on position in order to avoid overheating here too.
  • FIG. 5 gives an example of a triple entry table making it possible to determine the duty cycle to be achieved.
  • This example like that of FIG. 4, is of course simplified by way of illustration.
  • the system preferably includes a table with a much larger number of values.
  • intermediate values can be deduced by interpolation.
  • PWM_DC_grad The rate of change of the duty cycle, PWM_DC_grad, is here set at 0.1% / s. This value gives good results and makes it possible to optimize the time to obtain the heating of the liquid in the tank.
  • PWM_DC_grad is a constant. This rate of change could also depend on parameters. It could for example depend on the filling of the reservoir. The less full the tank, the greater this rate could be. Other parameters could be chosen. However, the variations in this rate (around the preferred value given above) do not make it possible to significantly modify the heating time to obtain the desired liquid temperature.
  • the method indicated above corresponds to a preferred embodiment of heating a liquid in a tank in the automotive field. It can be applied to liquids other than the water and urea solution mentioned in this description. This process is not limited to the automotive field. It is more particularly intended for vehicles and could also be used on motorcycles, boats, etc.
  • the invention is not limited to the preferred embodiment described above by way of illustrative and non-limiting example. It also relates to the variant embodiments within the reach of a person skilled in the art.
  • the parameters given are indicative and are of course to be adapted according to the sensors already present, preferably. Parameters can be added or removed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Control Of Resistance Heating (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Control Of Temperature (AREA)

Abstract

Procédé de chauffage de liquide dans un réservoir, comportant les étapes suivantes : - fournir au moins un élément chauffant de type PTC, - fournir des moyens de régulation par modulation de largeur d'impulsion, - mesure de paramètres parmi lesquels la température du liquide et la tension appliquée aux bornes de chaque élément chauffants, - chauffage du liquide sans régulation dans la mesure où la température du liquide est inférieure à une première température seuil, - régulation par modulation de largeur d'impulsion de l'alimentation électrique de chaque élément chauffant pour lequel la tension d'alimentation dépasse un seuil prédéterminé dans la mesure où une température mesurée est supérieure à une seconde température seuil déterminée en fonction de paramètres mesurés, - détermination d'un rapport cyclique pour la modulation de l'alimentation électrique de chaque élément chauffant et passage progressif d'un rapport cyclique de 1 au rapport cyclique déterminé.

Description

Description
Titre : Procédé de chauffage d’un réservoir
Domaine technique
[0001] L’invention concerne un procédé de chauffage d’un réservoir, notamment d’un réservoir embarqué dans un véhicule et plus particulièrement un véhicule automobile (voiture, camion, ... ).
[0002] Pour répondre aux normes en matière de dépollution, certains véhicules embarquent un réservoir de liquide additionnel, autre que du carburant. Il peut s’agir d’eau ou bien d’une solution à base d’urée. Ces liquides peuvent geler en hiver et il convient donc de les réchauffer pour pouvoir s’en servir.
Technique antérieure
[0003] Il est connu de munir un réservoir risquant de geler de moyens de chauffage se présentant le plus souvent sous la forme de résistances électriques. Dans l’exemple donné dans le domaine automobile d’un réservoir destiné à contenir une solution aqueuse avec de l’urée (ou bien de l’eau), le plus souvent la paroi inférieure du réservoir comporte un logement formant un bossage vers l’intérieur du réservoir et ce logement reçoit, à l’intérieur du bossage (c’est-à-dire à l’extérieur du réservoir), d'une part, une pompe pour gérer la délivrance de la solution vers par exemple un système de réduction catalytique sélective (plus connu sous le sigle anglais SCR) et, d'autre part, des résistances électriques pour chauffer la paroi inférieure du réservoir au niveau du logement et ainsi dégeler le liquide.
[0004] Par ailleurs, il est connu d’utiliser des éléments chauffants de type PTC (sigle anglais Positive Température Coefficient soit en français coefficient de température positif) avec lesquels la résistance des éléments augmente avec la température. Puisque la résistance augmente, l’intensité traversant l’élément diminue et on obtient ainsi une autorégulation de la température de cet élément chauffant.
[0005] Il est en outre connu de réguler la température d’un élément chauffant PTC par modulation de largeur d’impulsion (ou PWM du sigle anglais Puise Width Modulation). Toutefois, une telle régulation n’est utilisée dans le domaine automobile a priori que pour réguler la température d’un flux d’air.
[0006] Les conditions pour le chauffage d’un liquide sont tout à fait différentes de celles du chauffage d’un flux d’air. Tout d’abord, l’élément chauffant ne peut pas être positionné directement dans le liquide comme il peut l’être dans un flux d’air. Ensuite, pour le chauffage d’un liquide dans un réservoir, il convient de tenir compte de paramètres comme le niveau de liquide dans le réservoir, la température de ce liquide, la surface de chauffage en contact avec le liquide mais aussi comme la tension d’alimentation de l’élément chauffant. En fonction de ces paramètres, la température de régulation d’un élément chauffant de type PTC peut varier de 50°C à 120°C.
[0007] Il convient donc d’éviter d’atteindre des températures trop élevées qui, d'une part, pourrait amener à une ébullition du liquide chauffé et, d'autre part, à une détérioration de certains matériaux environnants (par exemple pièces en matière synthétique destinées à réaliser une étanchéité).
[0008] Le but de la présente invention est donc de fournir un procédé de chauffage d’un liquide dans un réservoir, à l’aide d’un élément chauffant de type PTC, qui permet d’éviter une surchauffe conduisant à une ébullition du liquide et/ou à une détérioration (ou fatigue) d’un matériau environnant.
[0009] De préférence, le procédé permettra d’optimiser le chauffage du réservoir pour limiter le temps nécessaire à l’obtention d’une mise à température du liquide réchauffé.
Exposé de l’invention
[0010] Il est proposé un procédé de chauffage de liquide dans un réservoir, comportant les étapes suivantes :
- fournir au moins un élément chauffant de type PTC,
- fournir des moyens de régulation par modulation de largeur d’impulsion.
[0011] Selon la présente invention, ce procédé comporte en outre les étapes :
- mesure de paramètres parmi lesquels la température du liquide et la tension appliquée aux bornes de chaque élément chauffant, - chauffage du liquide sans régulation, c’est-à-dire avec un rapport cyclique de 1 ou 100 % de la régulation par modulation de largeur d’impulsion, dans la mesure où la température du liquide est inférieure à une première température seuil,
- régulation par modulation de largeur d’impulsion de l’alimentation électrique de chaque élément chauffant pour lequel la tension d’alimentation dépasse un seuil prédéterminé dans la mesure où une température mesurée est supérieure à une seconde température seuil, ladite seconde température seuil étant déterminée en fonction de paramètres mesurés,
- détermination d’un rapport cyclique pour la modulation de l’alimentation électrique de chaque élément chauffant et passage progressif d’un rapport cyclique de 1 au rapport cyclique déterminé.
[0012] Le procédé proposé ici permet de s’assurer que des températures risquant de vaporiser le liquide et/ou de détériorer des composants du réservoir ne sont pas atteintes. En outre, grâce à la variation progressive du rapport cyclique, il n’y a pas de variation brusque dans la puissance de chauffage délivrée et ceci permet d’augmenter l’efficacité du chauffage du liquide dans le réservoir.
[0013] Dans le procédé décrit ci-dessus, les éléments chauffants de type PTC sont montés de préférence en parallèle. Ainsi, une même tension d’alimentation est appliquée à tous les éléments chauffants. La gestion électrique du système est alors simplifiée.
[0014] La première température seuil est par exemple prédéterminée en fonction de la nature du liquide contenu dans le réservoir. Cette température seuil est par exemple une température pour laquelle on est sûr qu’il n’y a pas de risque de solidification dans le réservoir. Par exemple pour de l’eau, si une mesure de température à un endroit dans le réservoir donne +3°C, on peut estimer qu’il n’y a pas de glace dans le réservoir (si le réservoir est bien entendu à la pression atmosphérique). Cette première température seuil dépend ainsi du liquide, de sa température de solidification mais aussi des propriétés calorifiques de ce liquide.
[0015] Pour la mise en œuvre de ce procédé, on peut prévoir qu’un niveau de liquide est mesuré, que la seconde température seuil est déterminée en fonction du niveau de liquide mesuré et de la température du liquide, et que la température mesurée comparée à la seconde température seuil est une température mesurée en aval du réservoir, de préférence en aval d’une pompe prélevant du liquide dans le réservoir. Quand une pompe est utilisée pour retirer du liquide hors d’un réservoir et que ce réservoir est chauffé, les moyens de chauffage du réservoir chauffent habituellement aussi la pompe et son environnement pour dégeler l’ensemble des canaux hydrauliques et permettre un bon fonctionnement de la pompe. Ici la température choisie pour être comparée au second seuil de température est donc une bonne illustration du chauffage apporté au liquide dans le réservoir. Dans cette variante du procédé, la seconde température seuil peut être par exemple déterminée à partir d’une table à double entrée.
[0016] Selon une variante du procédé décrit plus haut, un niveau de liquide est mesuré, et le rapport cyclique à atteindre peut alors être déterminé en fonction de la tension appliquée au niveau de l’élément chauffant considéré, du niveau de liquide mesuré et de la température du liquide à partir d’une table. Dans cette variante, le rapport cyclique à atteindre peut lui aussi être déterminé à partir d’une table qui sera ici alors une table à triple entrée.
[0017] Comme indiqué, le rapport cyclique varie progressivement. Il décroît de 100% au rapport cyclique déterminé par exemple selon un gradient compris entre 0,05 et 0,5 %s 1, par exemple 0,1 %/s.
[0018] Selon un autre aspect, il est proposé un programme informatique comportant des instructions pour la mise en œuvre de chacune des étapes du procédé tel que décrit plus haut lorsque ce programme est exécuté par un processeur.
[0019] Enfin, l’invention concerne en outre un dispositif de gestion électronique d’un moteur de véhicule automobile, caractérisé en ce qu’il comporte un support d’enregistrement non transitoire sur lequel est enregistré un programme informatique pour la mise en œuvre de chacune des étapes d’un procédé tel que décrit plus haut, lorsque ce programme est exécuté par un processeur.
Brève description des dessins [0020] D’autres caractéristiques, détails et avantages de l’invention apparaîtront à la lecture de la description détaillée ci-après, et à l’analyse des dessins annexés, sur lesquels :
Fig. 1
[0021] [Fig. 1 ] montre un schéma électrique simplifié d’un dispositif de chauffage d’un réservoir de liquide ;
Fig. 2
[0022] [Fig. 2] montre schématiquement une unité de commande pour un dispositif de chauffage de la figure 1 ;
Fig. 3
[0023] [Fig. 3] montre un logigramme d’un procédé de chauffage pour un réservoir de liquide ;
Fig. 4
[0024] [Fig. 4] montre un exemple de table à deux entrées pouvant être utilisée pour la mise en œuvre du procédé illustré à la figure 3 ; et
Fig. 5
[0025] [Fig. 5] montre un exemple d’une autre table, celle-ci étant à trois entrées, ladite table pouvant être elle aussi utilisée pour la mise en œuvre du procédé illustré sur la figure 3.
Description des modes de réalisation
[0026] Le dessin ci-joint et la description ci-après contiennent, pour l’essentiel, des éléments de caractère certain. Ils pourront donc non seulement servir à mieux faire comprendre la présente invention mais aussi contribuer à sa définition, le cas échéant.
[0027] La figure 1 illustre un élément chauffant 2 destiné à réchauffer un liquide contenu dans un réservoir. Il est fait référence au document WO2016/096712 pour un exemple d’implémentation d’un tel élément chauffant au niveau d’un réservoir. L’élément chauffant 2 de la présente demande peut venir prendre la place d’un élément référencé 10 dans ce document de l’art antérieur.
[0028] Il est choisi ici de prendre au moins un élément chauffant 2 de type PTC (sigle anglais pour Positive Température Coefficient soit en français coefficient de température positif). Avec un tel élément, la température de l’élément chauffant est automatiquement limitée car la résistance de l’élément augmente avec la température si bien que le courant traversant l’élément diminue et vient ainsi limiter la puissance dissipée dans l’élément chauffant.
[0029] La figure 1 illustre un seul élément chauffant 2. Toutefois, plusieurs éléments chauffants 2 peuvent être prévus, d'une part, pour augmenter la puissance de chauffage et, d'autre part, pour répartir cette puissance de chauffage en plusieurs points. D’un point de vue électrique, tous ces éléments chauffants 2 seront alors montés en parallèle si bien qu’ils présenteront tous la même tension V à leurs bornes.
[0030] L’alimentation électrique de tous les éléments chauffants 2 est faite à partir d’un dispositif d’alimentation 4 qui intègre un pilote permettant de commander l’alimentation électrique ou non des éléments chauffants 2.
[0031] Un dispositif de modulation de largeur d’impulsion 6 vient agir sur l’alimentation des éléments chauffants 2 par l’intermédiaire d’un relais 8. Un tel dispositif est également connu sous le sigle anglais PWM (Puise Width Modulation soit modulation par largeur d’impulsion). Le dispositif de modulation de largeur d’impulsion 6 permet de limiter la puissance transmise aux éléments chauffants. La modulation de puissance peut aller de 0 à 1 ou de 0% à 100% de la puissance maximale transmise. Ce taux sera appelé par la suite rapport cyclique. Quand il vaut 1 (100%), toute la puissance disponible à partir du dispositif d’alimentation 4 est transmise aux éléments chauffants 2. À l’opposé, quand ce rapport cyclique vaut 0 (0%), les éléments chauffants 2 ne sont plus alimentés, même si le pilote du dispositif d’alimentation 4 est « fermé », par analogie avec un interrupteur, et commande donc l’alimentation électrique du système.
[0032] Une unité de commande 10 illustrée sur la figure 2 est utilisée pour la gestion du dispositif de la figure 1 et notamment la gestion du pilote du dispositif d’alimentation 4 et du dispositif de modulation de largeur d’impulsion. Elle présente quatre entrées et trois sorties.
[0033] Une première entrée 12 correspond par exemple à la température d’un liquide à réchauffer Tliq. Dans le cas d’application d’un réservoir de liquide dans un véhicule automobile, soit par exemple de l’eau, soit par exemple une solution à base d’urée (c’est-à-dire comme dans le document WO2016/096712), soit un autre liquide, il est courant de mesurer la température de ce liquide. L’information fournie par ce capteur de température (non illustré au dessin) est fournie sur cette première entrée 12.
[0034] Une deuxième entrée 14 fournit à l’unité de commande 10 la tension d’alimentation V qui règne aux bornes de chaque élément chauffant 2 (une même tension pour chacun de ces éléments puisqu’ils sont montés en parallèle). Cette tension d’alimentation est connue au niveau d’une unité de contrôle numérique présente sur tout véhicule automobile moderne pour permettre une bonne gestion du moteur et elle est rendue disponible sur la deuxième entrée 14.
[0035] Une troisième entrée 16 permet à l’unité de commande de connaître le niveau de liquide L dans le réservoir. Tout comme la température du liquide Tliq, un capteur est déjà prévu pour déterminer cette donnée. Toutes ces données sont accessibles au niveau de l’unité de contrôle numérique du moteur.
[0036] Une quatrième entrée 18 est destinée à recevoir un signal binaire issu d’un comparateur 20. Ce dernier compare la température du liquide Tliq à une température prédéterminée Ths qui est une température mémorisée par exemple dans l’unité de contrôle numérique. Ths dépend du liquide contenue dans le réservoir. Par exemple, si de l’eau est contenue dans le réservoir, Ths sera par exemple fixée à +3°C. On estime ici que si la température du liquide est supérieure à Ths, il n’y a pas de risque que le liquide soit gelé. Si le réservoir contient une solution à base d’urée qui gèle à -1 1 °C, alors Ths sera adaptée en conséquence. Cette valeur est de toute façon définie une fois pour toute car il n’est généralement pas prévu qu’un même réservoir soit destiné à contenir plusieurs types de liquides. [0037] Une première sortie 22 fournit un signal de commande appelé PWM_DC pour le dispositif de modulation de largeur d’impulsion 6 pour indiquer à ce dispositif le rapport cyclique selon lequel il doit fonctionner.
[0038] Une deuxième sortie 24 fournit un signal correspondant à une température appelée TPSe_TH qui est une température variant en fonction de paramètres du système. Cette température est une température de consigne. Il est habituel qu’une pompe soit prévue pour puiser le liquide dans le réservoir et l’envoyer à sa destination. On trouve alors au niveau de cette pompe au moins un capteur de pression associé à un capteur de température pour la gestion de la pompe. Lorsque la température mesurée au niveau de ces capteurs atteint la température de consigne, alors la modulation de puissance est activée.
[0039] La troisième sortie 26 fournit quant à elle un taux de variation appelé PWM_DC_grad donnant la vitesse de variation du rapport cyclique. Ce taux de variation est exprimé par exemple en pourcentage par seconde.
[0040] Comme illustré sur la figure 2, les données en sortie sont envoyées vers un réseau de communication 28, par exemple de type CAN (ou autre), qui transmets des paquets de données 30 à destination de récepteurs tel le système de chauffage de liquide dont il est question ici.
[0041] La figure 3 donne un exemple de logigramme permettant à partir des données fournies sur la première entrée 12, la deuxième entrée 14, la troisième entrée 16 et la quatrième entrée 18 de déterminer les valeurs à fournir sur la première sortie 22, la deuxième sortie 24 et la troisième sortie 26.
[0042] Le logigramme de la figure 3 est expliqué ci-après.
[0043] Lors de la mise sous tension des moyens de commande et de gestion du moteur (case 0/1 ), autrement dit : lorsque l’utilisateur met le contact, le système de chauffage reste éteint (case OFF) pour ne pas consommer d’électricité, les besoins en électricité étant généralement importants lors de la mise en route du moteur.
[0044] Après une temporisation (case TEMPO), par exemple de l’ordre de 30 secondes comptées à partir de la mise sous tension ou bien du démarrage du moteur, des mesures sont réalisées. Une case sur la figure indique à titre d’exemple des mesures qui peuvent être faites
- V : la tension qui règne aux bornes des éléments chauffants 2. Cette tension dépend de la charge de la batterie alimentant ces éléments. Elle varie généralement autour de 12 V, par exemple entre 9 et 16 V.
- L : c’est le niveau de liquide dans le réservoir. Il peut s’agir d’une mesure en millimètres (ou mètres) ou bien d’un pourcentage de remplissage du réservoir.
- Tliq : c’est la température du liquide dans le réservoir.
- Tamb : c’est la température ambiante.
- TPse : cette température est mesurée au niveau de la pompe qui prélève du liquide dans le réservoir. Le plus souvent, cette pompe est également chauffée par les éléments chauffants 2.
[0045] Une fois ces mesures réalisées, la température du liquide Tliq dans le réservoir est comparée (à l’aide du comparateur 20) à la température Ths mémorisée et dépendant du liquide stocké dans le réservoir. Si le liquide n’est pas trop froid, alors il n’y a pas de risque de gel (option N) et le système n’est pas activé (case OFF). Des mesures sont alors régulièrement réalisées pour surveiller qu’il n’y a pas de risque de gel.
[0046] Par contre, si le liquide est froid et que sa température est inférieure à Ths (option Y), le liquide a peut-être gelé ou risque de de geler. Le système de chauffage est mis en marche (case ON).
[0047] Le système de chauffage fonctionnant, il faut déterminer les conditions de fonctionnement. À la première mise en route, le rapport cyclique au niveau du dispositif de modulation de largeur d’impulsion est de 100%.
[0048] La première vérification faite après la mise en route du dispositif de chauffage est de vérifier la tension d’alimentation V des éléments chauffants 2. Si cette tension est inférieure à 9 V, la puissance disponible pour les éléments chauffants 2 est faible et (option N) le rapport cyclique PWM_DC est maintenu à 100% pour avoir un chauffage maximum avec la puissance disponible.
[0049] Par contre, si la tension V est « satisfaisante », c’est-à-dire supérieure à 9 V (option Y), alors une modulation de la largeur d’impulsion peut être envisagée. [0050] De manière originale, d'une part, la modulation commence lorsqu’un paramètre de température dépasse un seuil dynamique, c’est-à-dire déterminé en fonction de paramètres actualisés, et, d'autre part, la modulation est réalisée progressivement.
[0051] Dans la forme de réalisation préférée décrite ici, il a été choisi de commencer la modulation de l’alimentation des éléments chauffants 2 lorsque la température du liquide au niveau de la pompe prélevant du liquide dans le réservoir, de préférence en aval de cette pompe, dépasse un seuil à déterminer. La température mesurée est appelée TPSe tandis que le seuil à déterminer est appelé TPSe_TH.
[0052] Le seuil de température TPSe_TH est ainsi déterminé en fonction de L et de Tliq. La figure 4 donne un exemple de table à double entrée permettant de déterminer TPSe_TH en fonction de ces deux paramètres. Les valeurs intermédiaires peuvent être obtenues par une extrapolation, par exemple une extrapolation linéaire. Des températures supérieures à Ths sont également mentionnées pour les modes de fonctionnement où il est prévu que le chauffage soit bloqué en position allumée afin d’éviter là aussi une surchauffe.
[0053] De même, il est aussi déterminé quelle est le rapport cyclique PWM_DC à atteindre. Ce rapport cyclique est défini ici à l’aide de :
- la tension appliquée aux éléments chauffants 2. Plus cette tension est faible, plus les rapports cycliques seront élevés.
- le niveau de liquide dans le réservoir. Ici aussi, plus le niveau est élevé, plus il y a donc besoin d’énergie pour chauffer le liquide et plus le rapport cyclique est élevé.
- la température du liquide. Pour ce paramètre, plus la température est élevée, moins le liquide a besoin d’être chauffé et donc plus le rapport cyclique est bas.
[0054] La figure 5 donne un exemple de table à triple entrée permettant de déterminer le rapport cyclique à atteindre. Cet exemple, de même que celui de la figure 4, est bien entendu simplifié à titre illustratif. Le système intègre de préférence une table avec un bien plus grand nombre de valeurs. Ici aussi, comme indiqué précédemment, des valeurs intermédiaires peuvent être déduites par interpolation. [0055] Comme indiqué plus haut, de manière originale, la modulation passe progressivement de la valeur 1 à la valeur PWM_DC. Le taux de variation du rapport cyclique, PWM_DC_grad, est ici établi à 0,1 %/s. Cette valeur donne de bons résultats et permet d’optimiser le temps pour obtenir le réchauffage du liquide dans le réservoir.
[0056] Dans la forme de réalisation décrite ici, PWM_DC_grad est une constante. Ce taux de variation pourrait aussi dépendre de paramètres. Il pourrait par exemple dépendre du remplissage du réservoir. Moins le réservoir est plein, plus ce taux pourrait être grand. D’autres paramètres pourraient être choisis. Toutefois, les variations sur ce taux (autour de la valeur préférée donnée ci-dessus) ne permettent pas de modifier sensiblement le temps de chauffe pour obtenir la température du liquide souhaitée.
[0057] Le procédé indiqué ci-dessus correspond à une forme de réalisation préférée de chauffage d’un liquide dans un réservoir dans le domaine automobile. II peut s’appliquer à d’autres liquides que l’eau et une solution d’urée mentionnés dans la présente description. Ce procédé n’est pas limité au domaine automobile. Il est plus particulièrement destiné à des véhicules et pourrait aussi être utilisé sur des motos, bateaux, etc..
[0058] Bien entendu, l’invention ne se limite pas au mode de réalisation préféré décrit ci-dessus à titre d’exemple illustratif et non limitatif. Elle concerne également les variantes de réalisation à la portée de l’homme du métier. Les paramètres donnés sont indicatifs et sont bien entendu à adapter en fonction des capteurs déjà présents de préférence. Des paramètres peuvent être rajoutés ou retirés.

Claims

Revendications
[Revendication 1] Procédé de chauffage de liquide dans un réservoir, comportant les étapes suivantes :
- fournir au moins un élément chauffant (2) de type PTC,
- fournir des moyens de régulation par modulation de largeur d’impulsion (6), caractérisé en ce qu’il comporte en outre les étapes :
- mesure de paramètres parmi lesquels la température du liquide (Tliq) et la tension (V) appliquée aux bornes de chaque élément chauffant,
- chauffage du liquide sans régulation, c’est-à-dire avec un rapport cyclique de 1 ou 100 % de la régulation par modulation de largeur d’impulsion, dans la mesure où la température du liquide est inférieure à une première température seuil (Ths),
- régulation par modulation de largeur d’impulsion de l’alimentation électrique de chaque élément chauffant pour lequel la tension d’alimentation dépasse un seuil prédéterminé dans la mesure où une température mesurée (TPSe) est supérieure à une seconde température seuil (TPSe TH), ladite seconde température seuil étant déterminée en fonction de paramètres mesurés,
- détermination d’un rapport cyclique (PWM DC) pour la modulation de l’alimentation électrique de chaque élément chauffant et passage progressif d’un rapport cyclique de 1 au rapport cyclique déterminé.
[Revendication 2] Procédé selon la revendication 1 , caractérisé en ce que les éléments chauffants de type PTC sont montés en parallèle.
[Revendication 3] Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que la première température seuil est prédéterminée en fonction de la nature du liquide contenu dans le réservoir.
[Revendication 4] Procédé selon l'une des revendications 1 à 3, caractérisé en ce qu’un niveau de liquide est mesuré, en ce que la seconde température seuil est déterminée en fonction du niveau de liquide mesuré et de la température du liquide, et en ce que la température mesurée comparée à la seconde température seuil est une température mesurée en aval du réservoir, de préférence en aval d’une pompe prélevant du liquide dans le réservoir.
[Revendication 5] Procédé selon la revendication 4, caractérisé en ce que la seconde température seuil est déterminée à partir d’une table à double entrée.
[Revendication 6] Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu’un niveau de liquide est mesuré, et en ce que le rapport cyclique à atteindre est déterminé en fonction de la tension appliquée au niveau de l’élément chauffant considéré, du niveau de liquide mesuré et de la température du liquide à partir d’une table.
[Revendication 7] Procédé selon la revendication 6, caractérisé en ce que le rapport cyclique à atteindre est déterminé à partir d’une table à triple entrée.
[Revendication 8] Procédé selon l'une des revendications 1 à 7, caractérisé en ce que le rapport cyclique décroît de 100% au rapport cyclique déterminé selon un gradient compris entre 0,05 et 0,5 %s 1.
[Revendication 9] Programme informatique comportant des instructions pour la mise en œuvre de chacune des étapes du procédé selon l’une des revendications 1 à 8 lorsque ce programme est exécuté par un processeur.
[Revendication 10] Dispositif de gestion électronique d’un moteur de véhicule automobile, caractérisé en ce qu’il comporte un support d’enregistrement non transitoire sur lequel est enregistré un programme informatique pour la mise en œuvre de chacune des étapes d’un procédé selon l’une des revendications 1 à 8 lorsque ce programme est exécuté par un processeur.
PCT/EP2020/052412 2019-01-31 2020-01-31 Procédé de chauffage d'un réservoir WO2020157270A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/427,558 US20230189400A1 (en) 2019-01-31 2020-01-31 Method for heating a tank
CN202080011983.2A CN113330818B (zh) 2019-01-31 2020-01-31 用于加热罐的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1900939 2019-01-31
FR1900939A FR3092462B1 (fr) 2019-01-31 2019-01-31 Procédé de chauffage d’un réservoir

Publications (1)

Publication Number Publication Date
WO2020157270A1 true WO2020157270A1 (fr) 2020-08-06

Family

ID=66776580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/052412 WO2020157270A1 (fr) 2019-01-31 2020-01-31 Procédé de chauffage d'un réservoir

Country Status (4)

Country Link
US (1) US20230189400A1 (fr)
CN (1) CN113330818B (fr)
FR (1) FR3092462B1 (fr)
WO (1) WO2020157270A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023025830A1 (fr) * 2021-08-26 2023-03-02 Valeo Systemes Thermiques Procédé de limitation de tension de la tension efficace d'au moins un composant électrique et/ou électronique et système électronique correspondant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008056757A1 (de) * 2007-11-16 2009-06-18 Modine Korea Llc, Asan Elektrisches Zusatzheizsystem für ein Fahrzeug und Verfahren
WO2016096712A1 (fr) 2014-12-16 2016-06-23 Continental Automotive Gmbh Dispositif de production d'un additif liquide
US20170290094A1 (en) * 2016-03-30 2017-10-05 Wuhan China Star Optoelectronics Technology Co., Ltd . Chemical liquid thermostat control device
US20180325182A1 (en) * 2013-10-02 2018-11-15 Fontem Holdings 1 B.V. Electronic smoking device with heater power control

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2375854B1 (fr) * 2010-04-06 2015-12-02 Plastic Omnium Advanced Innovation and Research Chauffage pour réservoir de liquide véhiculaire, véhicule à moteur doté de celui-ci et procédé de chauffage d'un réservoir de liquide véhiculaire
DE102011002902A1 (de) * 2011-01-20 2012-07-26 Robert Bosch Gmbh Steuerung einer Tankheizung
EP2549072A1 (fr) * 2011-07-20 2013-01-23 Inergy Automotive Systems Research (Société Anonyme) Système d'injection de fluide de véhicule, contrôleur et procédé de chauffage de ce système d'injection de fluide
DE202013010565U1 (de) * 2013-11-22 2014-11-24 Seuffer gmbH & Co. KG Tankmodul für einen Flüssigkeitstank
US11805936B2 (en) * 2015-07-02 2023-11-07 Societe Des Produits Nestle S.A. Mobile liquid tank for heating liquids

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008056757A1 (de) * 2007-11-16 2009-06-18 Modine Korea Llc, Asan Elektrisches Zusatzheizsystem für ein Fahrzeug und Verfahren
US20180325182A1 (en) * 2013-10-02 2018-11-15 Fontem Holdings 1 B.V. Electronic smoking device with heater power control
WO2016096712A1 (fr) 2014-12-16 2016-06-23 Continental Automotive Gmbh Dispositif de production d'un additif liquide
US20170290094A1 (en) * 2016-03-30 2017-10-05 Wuhan China Star Optoelectronics Technology Co., Ltd . Chemical liquid thermostat control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023025830A1 (fr) * 2021-08-26 2023-03-02 Valeo Systemes Thermiques Procédé de limitation de tension de la tension efficace d'au moins un composant électrique et/ou électronique et système électronique correspondant
FR3126589A1 (fr) * 2021-08-26 2023-03-03 Valeo Systemes Thermiques Procede de limitation de tension de la tension efficace d’au moins un composant electrique et/ou electronique et systeme electronique correspondant

Also Published As

Publication number Publication date
CN113330818B (zh) 2024-06-07
US20230189400A1 (en) 2023-06-15
FR3092462B1 (fr) 2021-01-15
CN113330818A (zh) 2021-08-31
FR3092462A1 (fr) 2020-08-07

Similar Documents

Publication Publication Date Title
EP0782941B1 (fr) Procédé et dispositif pour régler la répartition de la puissance électrique dans un véhicule automobile, notamment à propulsion hybride
EP2516819B1 (fr) Dispositif de refroidissement pour véhicule automobile
EP3559426B1 (fr) Procédé de pilotage d'un système de refroidissement pour un véhicule hybride comportant un circuit de transfert de liquide de refroidissement
EP0567402B1 (fr) Dispositif de chauffage-ventilation de l'habitacle d'un véhicule automobile propulsé par un moteur à faibles rejets thermiques
EP2719070A2 (fr) Procede de controle d'un couple resistant d'un alternateur de vehicule automobile, et systeme de mise en oeuvre de ce procede
FR2712634A1 (fr) Circuit de distribution de carburant pour moteur à combustion interne.
FR2952133A1 (fr) Procede de regulation ou de commande de la temperature d'une bougie de prechauffage
WO2020157270A1 (fr) Procédé de chauffage d'un réservoir
EP1319812B1 (fr) Procédé de gestion de l'énergie dans un véhicule automobile équipé d'un moteur à combustion interne et d'un filtre à particules
FR3105709A1 (fr) Dispositif de régulation thermique
FR3030124A1 (fr) Procede de gestion d'un groupe motopropulseur hybride d'un vehicule automobile
FR3029847A1 (fr) Procede de regulation de la temperature dans l'habitacle d'un vehicule automobile a traction hybride
FR2925793A1 (fr) Procede de pilotage d'un alternateur de vehicule automobile et systeme de pilotage associe
FR2995839A1 (fr) Systeme de gestion d'un prolongateur d'autonomie d'un vehicule a propulsion electrique
EP2158672A2 (fr) Machine electrique tournante et son procede de commande
FR2682328A1 (fr) Installation de chauffage de l'habitacle d'un vehicule automobile, notamment d'un vehicule a propulsion electrique.
FR3081506A1 (fr) Procede et dispositif de gestion de chauffe dans un systeme scr chauffe electriquement
WO2011030024A1 (fr) Procede de determination d'un etat de fonctionnement de moyens de stockage d'energie electrique constitues d'au moins un supercondensateur
FR2918112A1 (fr) Systeme de regulation thermique pour un moteur a combustion interne.
FR2962495A1 (fr) Procede de regulation de la pression d'un accumulateur haute pression de carburant d'un moteur a combustion interne
WO2023041355A1 (fr) Unite de controle de gestion d'alimentation de systeme de chauffage de catalyseur pour vehicule automobile
FR3040739B1 (fr) Systeme de refroidissement pour un moteur a combustion interne, notamment de vehicule automobile
FR2819760A1 (fr) Procede de regulation de temperature d'un habitacle d'un vehicule equipe d'une pile a combustible
EP2651673A1 (fr) Système et procédé de commande d'un système de climatisation pour véhicule automobile
FR2832550A1 (fr) Procede et dispositif de gestion energetique de trajets courts d'un vehicule a pile a combustible

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20701810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20701810

Country of ref document: EP

Kind code of ref document: A1