WO2020156314A1 - 一种海上安全航行智能诱导装置 - Google Patents

一种海上安全航行智能诱导装置 Download PDF

Info

Publication number
WO2020156314A1
WO2020156314A1 PCT/CN2020/073164 CN2020073164W WO2020156314A1 WO 2020156314 A1 WO2020156314 A1 WO 2020156314A1 CN 2020073164 W CN2020073164 W CN 2020073164W WO 2020156314 A1 WO2020156314 A1 WO 2020156314A1
Authority
WO
WIPO (PCT)
Prior art keywords
ship
navigation
induced
passing
ships
Prior art date
Application number
PCT/CN2020/073164
Other languages
English (en)
French (fr)
Inventor
谢新连
李猛
潘伟
何平
何傲
汤国瑞
Original Assignee
大连海事大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连海事大学 filed Critical 大连海事大学
Publication of WO2020156314A1 publication Critical patent/WO2020156314A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G3/00Traffic control systems for marine craft
    • G08G3/02Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G3/00Traffic control systems for marine craft

Definitions

  • the invention relates to the field of ship route planning and design, in particular to an intelligent guidance device for maritime safe navigation.
  • GPS Global Positioning System
  • BDS BeiDou Navigation Satellite System
  • the shortcomings of the existing technology include: First, it is not yet possible to automatically generate safe and efficient routes under the general circumstances of a given port of origin and destination, especially when the navigation of the ship is restricted in waters; Second, in busy waterways, ports or construction In the area, there may be many passing ships, which may interfere with ships sailing on planned routes. In an urgent situation, it is impossible to quickly and accurately indicate the correct route selection or avoidance decision. It also needs to be calculated manually or based on experience based on radar and AIS information. Based on the judgment, the existing technology is difficult to provide the pilot with intelligent and safe navigation support; third, the existing radar warning device has low accuracy.
  • the ARPA radar has the functions of setting the alarm range, forecasting the minimum encounter distance to other ships (DCPA), and the time to the nearest encounter point (TCPA), it often cannot accurately predict the degree of risk.
  • DCPA minimum encounter distance to other ships
  • TCPA time to the nearest encounter point
  • an intelligent guidance device for safe navigation at sea which specifically includes:
  • the electronic chart display system ECDIS is used as a platform to obtain static information and dynamic information collection units of the ship and other nearby ships through radar, ship automatic identification system AIS, compass navigation instrument, log, and hydrometeorological instrument.
  • the static information includes Ship identification, ship size, ship draft and ship type information.
  • Dynamic information includes ship’s position, heading, course, speed and wind and current information;
  • the static obstacle avoidance planning unit automatically calculates and generates on the ECDIS according to the position of the induced ship OS at any time, and displays at least one of the shortest distance, the shortest time, or the smallest cost from this position to the end of the voyage planning A safe navigation route.
  • the safe navigation route indicated above can be the shortest distance, the shortest time or the least cost, or the shortest distance and the shortest time or a combination of the shortest distance, the shortest time and the least cost;
  • the dynamic obstruction danger prediction unit is based on the speed, direction and direction of each ship.
  • the hydrometeorological information of wind, waves, and currents uses vector calculation methods and speed synthesis methods to determine the minimum encounter distance between the induced ship OS and each passing ship TS, and the time and time when the induced ship OS and each passing ship TS arrive at the nearest meeting point.
  • the cautious navigation angle that induces the ship OS to contact or collide with each TS; the dynamic obstruction danger forecast unit indicates the safety of the induced ship OS based on the azimuth relationship of the cautious navigation angle between the induced ship OS and each passing ship TS
  • the navigation direction, and the minimum encounter distance and the time value of the closest encounter point to judge the collision risk degree of the induced ship OS with the nearby passing ships TS according to the induced ship OS and the track point coordinates of each passing ship TS before passing
  • the curve fitting method extrapolates and predicts the trajectory of the induced ship OS and each passing ship TS in the next period of time;
  • the safe navigation knowledge unit outputs navigation suggestions for avoiding risks through situation judgment;
  • It also includes a chart display unit that receives prediction information and advice information transmitted by the dynamic obstruction danger forecast unit and the safe navigation knowledge unit, and the chart display unit dynamically displays at least the position coordinates, course, and speed information of the induced ship OS , At the same time, it displays the dynamic information of the location coordinates, course and speed of a passing ship TS.
  • the dynamic obstruction danger forecasting unit specifically uses the following method to determine whether the passing ship TS can collide with the induced ship OS: the distance between the induced ship OS and the passing ship TS is greater than the set threshold, then the area It is defined as a safe area; when the distance between the induced ship OS and the passing ship TS is less than or equal to the set threshold, and the passing ship TS is outside the oval ship area of the induced ship OS, the cautious navigation angle monitoring process is started.
  • the passing ship TS touches or enters the oval ship area that induces the ship OS, an early warning will be issued, and the cautious navigation angle display function will be turned off; when the passing ship TS has touched or is close to the induced ship OS, the collision warning will be issued immediately.
  • the chart display unit dynamically displays the minimum encounter distance between the induced ship OS and each passing ship TS, and the time value for the two ships to reach the closest encounter point.
  • the dynamic obstruction danger forecast unit superimposes the cautious navigation angle of the induced ship OS relative to different passing ships TS, and uses different colors to indicate the cautious navigation angle of the induced ship OS relative to different passing ships TS, and adopts the cautious navigation angle at the same time.
  • the side length of the angle further distinguishes the cautious angle of the induced ship OS relative to different passing ships TS and indicates the minimum speed of the induced ship OS that has collided, and uses this to mark the time sequence of the induced ship OS contacting or colliding with different passing ships TS And the maximum speed of the OS to avoid collision, so as to obtain the safe course angle range of the induced ship OS, the angle range that needs to be cautiously navigated relative to different passing ships TS, and the range of speed reduction required to ensure safe OS when navigating within the cautious angle range .
  • the danger forecasting unit sends out an early warning signal, and at the same time outputs information about the distance and orientation information of the induced ship OS approaching the corresponding obstructed or restricted navigation area.
  • the danger forecast unit will issue an alarm.
  • the device can output relevant risk avoidance suggestions in the safe navigation knowledge base in the form of text based on the dynamics of the risk of contact with obstructions or obstruction areas and other ships during OS navigation, and provide drivers with reference for safe driving decisions.
  • the present invention provides an intelligent guidance device for safe navigation at sea, which can automatically generate the induced ship from the current position to the destination (or destination port) under the general circumstances of a given starting and ending point (port).
  • Safe and efficient routes are especially suitable for the situation where obstructions or obstruction areas are distributed on the waters of ships passing by.
  • the meaning of safe and efficient routes between origin and destination points is: the obstruction or obstruction areas can be safely avoided between the origin and destination points.
  • an intelligent guidance device for safe navigation of ships which provides dynamic optimal planning path and avoidance decision support information for ship drivers, provides real-time safe navigation reference programs, and reduces the labor intensity of the pilots.
  • Figure 1 is a schematic diagram of the structure of the system of the present invention.
  • Figure 2 is a schematic diagram illustrating the function of the system of the present invention
  • Figure 3 (a) is the working interface of the simulation system of the present invention.
  • Figure 3(b) is the working interface of the actual system of the present invention.
  • Figure 4 is a simulation diagram of the system work of the present invention.
  • Figure 5 is a simulation diagram of the system work of the present invention.
  • Figure 6 is a simulation diagram of the system work of the present invention.
  • Figure 7 is a schematic diagram of the tangent line of the oval ship field and its position with other ships.
  • An intelligent guidance device for safe navigation at sea at least includes a collection unit, an editing unit, a static obstacle avoidance planning unit, a dynamic obstacle forecast unit, a safe navigation knowledge unit, and a chart Display unit.
  • the acquisition unit uses the electronic chart display system ECDIS as the platform, and establishes data interfaces and information channels connecting AIS, radar, BDS or GPS, VHF, meteorological and hydrological measuring instruments, compasses and other navigational instruments according to the configuration requirements, and transmits the required information To ECDIS, for use when planning routes.
  • static information such as ship identification, ship size, ship draft and other dynamic information such as position, speed, heading, and course of other nearby ships through AIS (that is, information and data that should be provided by standard AIS), and dynamically display each ship on ECDIS position.
  • AIS that is, information and data that should be provided by standard AIS
  • the position of each ship can be corrected by radar.
  • ECDIS should clearly mark the location information of the obstructive area or restricted area, referred to as static obstructive object.
  • the editing unit uses the method of identifying coordinate area coordinates (Graphical input from mouse or cursor) on the ECDIS display of the electronic chart display system to select any ship in the monitored water area as the guiding ship OS, and select the nearby or monitored water area.
  • the other ships of this group are regarded as passing ships TS.
  • the induced ship OS is No. 1
  • TS is No. 2, No. 3, No. 4, etc., according to the number of past ships TS according to a certain custom rule. Number, each ship number corresponds to its ship name or ship identification one-to-one.
  • the static obstacle avoidance planning unit automatically calculates the starting and ending points of the voyage, the position distribution information of the static obstacles on the water area, and the hydrometeorological information (using optimization algorithms, such as ant colony algorithm, Dijkstra algorithm, Maklink diagram, etc.) Method, find the shortest distance or shortest time path) route turning point and the shortest distance, shortest time or least cost safe navigation route, and draw the safe route on ECDIS.
  • optimization algorithms such as ant colony algorithm, Dijkstra algorithm, Maklink diagram, etc.
  • Method find the shortest distance or shortest time path route turning point and the shortest distance, shortest time or least cost safe navigation route, and draw the safe route on ECDIS.
  • different safe routes with the shortest distance, shortest time, and minimum cost can also be calculated and drawn on ECDIS at the same time. If you have special requirements for safe route trends, you can also manually modify the waypoint positions directly on ECDIS.
  • the static obstacle avoidance planning unit automatically calculates and generates on the ECDIS the shortest distance
  • the dynamic obstruction danger forecast unit determines whether the nearby ship TS can collide with the induced ship OS by delimiting the ship area and monitoring distance (or monitoring range) near the induced ship OS (according to the calculation of the ship domain, DCPA, TCPA) Analyze and determine the risk of collision between TS and any OS).
  • the dynamic obstruction danger forecast unit is realized by compiling calculation software to determine the minimum encounter distance between the induced ship OS and each passing ship TS according to the speed and direction of each ship, using vector calculation methods and speed synthesis methods, The time at which the passing ship TS arrives at the nearest meeting point and the cautious sailing angle that induces the ship’s OS to contact or collide with each TS; the dynamic obstruction risk forecast unit is based on the minimum meeting distance and the time of the nearest meeting point The value judges the degree of collision risk between the induced ship OS and the nearby passing ships TS.
  • the curve fitting method (primary curve fitting, quadratic curve fitting or other curve fitting methods) is used to extrapolate and predict the induced ship OS and each The trajectory of a passing ship TS in the next period of time.
  • the ship domain is delineated near the induced ship OS. Any TS entering the ship field that induces the ship's OS is considered to be likely to collide.
  • the plane shape of the ship area of the induced ship OS is set to an ellipse or similar to an ellipse as required, and the major axis of the ellipse is consistent with the ship length direction.
  • the OS of the induced ship does not have to be in the center of the ellipse.
  • the position of the farthest point of the ellipse before, after, left and right of the induced ship OS can be set according to the height of safety requirements, or according to the influence factors such as the scale and speed of the two ships. Judgment adjustment. As a result, more accurate danger forecasts are achieved.
  • the dynamic obstruction danger forecasting unit determines the DCPA, TCPA and DCPA of the induced ship OS and the TS of each passing ship through vector calculation and speed synthesis according to the speed, direction and hydrological and meteorological information of each ship, such as wind, wave and current.
  • the heading angle at which the induced ship OS may contact or collide with each TS is referred to as the sect angle for short, and the apex of the induced ship’s OS position on the ECDIS is clearly displayed. Flight angle.
  • the cautious sailing angle of the induced ship OS relative to different TS can be superimposed and can be distinguished by different colors, and different colors can also be used to indicate that the induced ship OS is in contact with different passing ships TS (under all speed and direction conditions).
  • the time sequence of the collision clearly shows the safe heading angle range that induces the ship's OS and the angle range that needs to be cautiously navigated relative to different passing ships TS.
  • the dynamic obstruction danger forecast unit sets the option of whether to draw the historical trajectory of the induced ship OS and TS, and select which ship TS draws the trajectory of which ship has sailed; dynamic display of the induced ship OS on ECDIS The position coordinates, course and speed of the passing ship can be selected at the same time to display the dynamic information of its position coordinates, course and speed; the minimum encounter distance DCPA between the induced ship OS and each passing ship TS can be dynamically displayed, and the two ships arrive The TCPA value at the time of the recent encounter will help to accurately determine the degree of collision risk between the induced ship OS and the nearby ships TS.
  • the dynamic obstruction danger forecast unit superimposes the cautious navigation angle of the induced ship OS relative to different passing ships TS, and uses different colors to indicate the cautious navigation angle of the induced ship OS relative to different passing ships TS, and uses the edge of the cautious navigation angle. Long further distinguish the cautious navigation angle of the induced ship OS relative to different passing ships TS and the minimum speed of the induced ship OS indicating a collision, and use this to mark the time sequence of the induced ship OS to contact or collide with different passing ships TS and avoid collision In order to obtain the safe heading angle range of the induced ship OS, the angle range that needs to be cautiously navigated relative to different passing ships TS, and the range of speed reduction required to ensure safe OS when navigating within the cautious angle range.
  • the side length of the OS for a certain TS is fixed, and the OS has different side lengths for different TSs, thus distinguishing the OS for different TSs. The side length can be determined according to the relative speed of OS and TS.
  • the safe navigation knowledge unit including the safe navigation knowledge base and reasoning mechanism (IF...THEN... etc.) gives the international maritime avoidance based on the obstruction or the distribution of the obstruction area, the situation of other ships and the pilot’s experience in handling ships. Hedging advice against the rules.
  • the safe navigation knowledge unit outputs navigation suggestions for avoiding the risk through situation judgment.
  • the induced ship is facing the risk of collision, it can give navigation suggestions to avoid the risk through the judgment of the situation, and output the prompt text in the lower left corner of the control panel.
  • the navigation advice prompt box is first displayed in the lower left corner of the control panel. If the driver wants to see more content, he can click to enlarge the display in the entire lower end of the control panel, and he can scroll to read more information. ; When you click again, the enlarged prompt box shrinks back to its original position again.
  • the device also includes a chart display unit (ie, an electronic chart display system ECDIS) that receives the forecast information and advice information transmitted by the dynamic obstruction and danger forecast unit and the safe navigation knowledge unit, and the chart display unit At least dynamically display the position coordinates, heading, and speed information of the induced ship OS, and at the same time display the position coordinates, heading, and speed information of a passing ship TS.
  • a chart display unit ie, an electronic chart display system ECDIS
  • ECDIS electronic chart display system
  • the chart display unit dynamically displays the minimum encounter distance between the induced ship OS and each passing ship TS, and the time value for the two ships to reach the closest encounter point.
  • the dynamic obstruction danger forecasting unit specifically uses the following method to determine whether the passing ship TS can collide with the induced ship OS: the distance between the induced ship OS and the passing ship TS is greater than a set threshold (or monitoring distance) ) Defines the area as a safe area; when the distance between the induced ship OS and the passing ship TS is less than or equal to the set threshold, that is, the monitoring distance, and the passing ship TS is outside the oval ship area of the induced ship OS, then Turn on the cautious sailing angle monitoring function.
  • a set threshold or monitoring distance
  • the dangerous situation forecasting unit When the passing ship TS touches or enters the oval ship area that induces the ship's OS, an early warning will be issued, and the cautious sailing angle display function is turned off; when the passing ship TS has touched or is close to the induced ship OS A collision warning is issued immediately.
  • the dangerous situation forecasting unit When the induced ship OS is approaching the navigable area or restricted navigation area, the dangerous situation forecasting unit will send out an early warning signal, and output information about the distance and azimuth of the induced ship OS approaching the corresponding obstructed or restricted navigation area. If the induced ship OS enters or touches The dangerous situation forecasting unit will issue an alarm in the area obstructing navigation. For example, according to the distance and azimuth, the water area where the OS is induced is divided into three different levels of monitoring areas.
  • the warning prompt When the induced ship OS is approaching the navigable area or restricted navigation zone, the warning prompt will be given by discoloration (such as the shape of the ship turning yellow) and sound; at the same time, output the induced ship OS and which obstructed or restricted navigation area in the background or on ECDIS Proximity, as well as distance and orientation information. If the ship’s OS is induced to enter or touch the navigable area, further discoloration (such as the shape of the ship turning red) and sound an alarm, and at the same time induce the system to stop working.
  • discoloration such as the shape of the ship turning yellow
  • restricted segments or restricted navigation areas When there are segments in the waters that restrict the speed or navigation time of ships, such as equal tides and non-night sailing segments, referred to as restricted segments or restricted navigation areas, the restricted navigation can be taken into account in the initial automatic design of safe routes. The impact of the segment, through the comparison of multiple plans to form an optimized safe route
  • the navigation suggestion prompt box is first reduced and displayed in the lower left corner of the control panel, as shown in Figure 5. If the driver wants to see more content, he can click to enlarge the display on the entire lower end of the control panel, as shown in Figure 6, and he can scroll to read more information; when he clicks again, the enlarged prompt box shrinks back to its original position again.
  • the number of information stored in the prompt box is set according to needs, such as 10, 50, 100, etc.
  • the main functions of the safe navigation intelligent guidance device include information input and output functions, as well as: ship motion law simulation, judgment of the position of obstructive objects, risk identification, generation of guidance routes, generation of guidance programs and other functions.
  • FIG 3-6 is a schematic diagram of the monitoring panel of the induction device.
  • the middle area of the monitoring panel of the guidance device is the monitoring area, which displays the nautical chart.
  • the size of the area is first determined by the program according to the OS and the distribution of TS, obstruction and restricted navigation areas within the monitoring distance, and then you can also click below
  • the monitoring panel displays the monitoring area adjustment frame, see Figure 4. You can enter the range of water coordinates you want to see through this box, where the x value corresponds to the longitude and the y value corresponds to the latitude.
  • the left side of the monitoring panel shows the real-time data of the OS position, heading, speed, ship type and the option button of whether to draw the historical track of the ship (this button can choose to keep the track of the OS or not), see the attached picture 3 or Figure 4.
  • the start, pause, stop buttons on the left as well as the transmission and rudder combination button board are only used to simulate the operation of the OS on the ship. For the guidance device on the actual ship, these buttons may not be provided, and their positions can also be saved or used for display other information.
  • you can choose to display real-time data such as the location, heading, speed, and ship type of a TS, as well as the option button for drawing the ship’s track.
  • the functions of the other buttons or combination button board correspond to the left side, and are the ship steering device for the selected TS.
  • the lower side of the monitoring panel is the display area of alarm and safe navigation prompt information, date, time, simulation step number (or tracking step number for real ship system) display box, update monitoring area button, TS number, OS and this
  • the size of the monitoring area is automatically calculated according to the initial position of the OS, the destination position and the distribution of the obstructed or restricted navigation area, and the location information of the monitoring area is shown in Figure 4
  • the dialog box in is displayed for the user to confirm whether it is appropriate or modify. After confirming the suitability or modification, click OK and the system starts to run.
  • the built-in ship motion model such as the MMG model, which can calculate the ship sailing parameters
  • the ECDIS can clearly display the relative position of the OS and TS, the obstructed area, the restricted area, and the guidance route of the OS from the current position to the destination. Without affecting the accuracy of the pilot's judgment, the guidance route can be updated at regular intervals or after the ship has sailed for several steps in order to reduce the calculation workload.
  • the exact position, heading, speed and other data of the OS are displayed at the same time; on the right side of the monitoring panel, the exact position, heading, and speed of a TS can be displayed at the same time according to the selection.
  • optimization methods are used to generate route turning points and form guidance routes.
  • the route consider the influence of wind, waves and currents.
  • the goal can be the shortest route, the shortest time or the lowest cost.
  • One, two or three induced routes based on different objective functions can be displayed on the ECDIS. After starting the device, after a few steps or a short period of adaptive adjustment, the system is induced to enter the OS safe course prompt mode.
  • the possible DCPA, TCPA, and Shenhang angle with each TS are obtained by calculation, and DCPA and TCPA are displayed in the frame, and the Shenhang angle is centered on OS and fan-shaped.
  • the method is directly drawn on the ECDIS screen, which intuitively reminds the driver which angles can be safely navigated, which angles may cause collisions and need to be cautiously navigated.
  • 7-It is a navigable area on the water area. This area represents areas that are not allowed to be touched by ships, such as shallows, mountains, and buildings, and is represented by a convex polygon with a color.
  • the present invention discloses an intelligent guidance device for safe navigation at sea. When there is a passing ship in the monitoring distance around the guiding ship, it can automatically judge the risk and generate a cautious navigation angle. Different colors indicate the caution of the guiding ship OS relative to different passing ships TS.
  • the side length of the cautious angle can be used to further distinguish the cautious angle of the OS relative to different TSs and the minimum speed of the OS that indicates the collision, and use this to mark the order of inducing the ship's OS to contact or collide with different passing ships TS And the maximum speed of the OS to avoid collisions, so as to obtain the safe heading angle range that induces the ship’s OS and the angle range that needs to be cautiously navigated with respect to different TSs, as well as the amount of speed reduction required to ensure safe OS when navigating within the cautious angle range.
  • the driver provides intelligent and safe navigation support; when the ship is induced to approach obstructions or obstruction areas and other ships, it can send out audible and visual warnings and dangerous information; the device improves the prediction accuracy of the risk of collision between the induced ship and the passing ship.
  • the device By adopting an elliptical or similar elliptical OS ship domain shape, and dynamically determining the position of the ellipse at the farthest point in the front, back, left, and right directions of the OS according to parameters such as ship length and speed, and the OS does not have to be in the center of the ellipse to achieve OS More accurate danger forecasts during the induction process; in addition, this device can output relevant risk avoidance suggestions in the safe navigation knowledge base in text according to the dynamics of the risk of contact with obstructions or obstruction areas and other ships during the OS navigation process. Provide reference for safe driving decision-making.
  • the plane shape of the ship field of the induced ship OS is an asymmetric ellipse or similar ellipse (hereinafter referred to as ellipse), and the major axis of the ellipse is consistent with the ship's length direction.
  • the position of the farthest point of the ellipse in the front, back, left, and right directions of the induced ship's OS can be set according to the height of the safety requirements, and can also be adjusted according to the judgment of the scale and speed of the two ships.
  • Figure 7 shows the induced ship OS with the origin of the coordinate system at (0,0).
  • the front (top), back (bottom), left and right farthest points of the asymmetric elliptical ship area are located on the y-axis and On the x-axis, the distances from the origin are 35, 25, 5, and 15.
  • the target ship TS is located at (150,50); in (b), the target ship TS is located at (-10,250) Place.
  • both OS and TS maintain speed and direction, as long as the relative speed vectors of the two ships do not point to OS and are not between the two tangents, there is no risk of collision between the two ships, or TS will not enter the OS ship field.
  • Elliptic curve calculation formula can be used The form, segmented expression.
  • the device By adopting an asymmetric ellipse or similar elliptical ship field, a more accurate risk forecast is realized.
  • the device When it is recognized that the induced ship is facing risks such as collision, the device outputs navigation suggestions to avoid the risk through situation judgment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种海上安全航行智能诱导装置,该装置中能够根据诱导船舶OS在任意时刻的位置自动计算生成并在ECDIS上显示从该位置到本航次规划终点的安全航行最佳线路;当诱导船舶周围监视距离内存在过往船舶时,能够自动判断风险并生成慎航角,用不同颜色表示诱导船舶OS相对于不同过往船舶TS的慎航角,同时可以用慎航角的边长进一步区分OS相对于不同TS的慎航角以及表示发生碰撞的OS最小速度,并以此标示诱导船舶OS与不同过往船舶TS接触或碰撞的先后顺序和避免碰撞的OS最大速度,从而获取诱导船舶OS的安全航向角度范围和相对于不同TS需要谨慎航行的角度范围,以及在慎航角范围内航行时为保证安全OS需要降速的幅度,为驾驶员提供智能化安全航行支持。

Description

一种海上安全航行智能诱导装置 技术领域
本发明涉及船舶航线规划设计领域,尤其涉及一种海上安全航行智能诱导装置。
背景技术
在设计海洋和内河船舶航线时,现在主要依靠驾驶人员的专业知识和经验手工设计起讫港之间的船舶航行线路。尽管借助于计算机辅助软件,有时已经可以在电子海图系统(ECDIS)上通过手工选定航路点生成一条航线,仍然离不开人工的介入以便以此为基础改进、优化航线,与在起讫港之间的航线自动生成与优化差距较大。当船舶途径水域上存在较多碍航区或航行水域受限,如经过水上施工区时,人工介入工作量更大。不仅如此,当船舶沿预定航线航行而遇到其他航行船舶干扰时,完全需要靠驾驶员判断如何操船避碰。
在现有的导航装置中,自动雷达标绘仪(Automatic Radar Plotting Aids,简称ARPA)、船舶自动识别系统(Automatic Identification System,简称AIS)等技术已经十分成熟。全球卫星定位系统,如美国全球定位系统(Global Positioning System,简称GPS)、中国北斗卫星定位系统(BeiDou Navigation Satellite System,简称BDS)的应用也非常普及,通过这些装置和技术获取船位信息已经十分的方便。这些技术成熟的定位装置能够为驾驶人员或监控者提供更为准确的船舶位置信息。
然而现有技术存在的不足包括:一是尚不能在给定起讫港的一般情况下自动生成安全高效的航线,特别是当船舶途径水域航行受限时;二是在繁忙的航道、港口或施工区,过往船舶可能较多,对按照计划航线航行的船舶干扰较大,在紧迫局面时不能快速、准确地指出正确的路径选择或避让决策,还需要依据雷达、AIS信息人工计算或凭经验做出判断,现有技术难以为驾驶员提供智能化安全航行支持;三是现有雷达报警装置精度较低。例如,虽然ARPA雷达具有设定报警范围、预报与他船的最小会遇距离(DCPA)和到达最近会遇点时间(TCPA)的功能,但常常不能准确预报风险程度。特别当附近或航线(如长江口航道)上船舶较密集时,过度报警会严重影响驾驶员的心情和思绪。因此需要发明一种基于现有技术且能够克服上述不足的船舶安全航行智能诱导装置,为船舶驾 驶员提供动态的最优规划路径和避让决策支持信息、提供实时的安全航行参考方案,减轻驾驶员的劳动强度。
发明内容
根据现有技术存在的问题,本发明公开了一种海上安全航行智能诱导装置,具体包括:
以电子海图显示系统ECDIS为平台,通过雷达、船舶自动识别系统AIS、罗经导航仪器、计程仪、水文气象仪获取本船和附近其他船舶的静态信息和动态信息的采集单元,其中静态信息包括船舶标识、船舶尺度、船舶吃水和船舶类型信息,动态信息包括船舶的位置、艏向、航向、航速和风、流信息;
设置被诱导船舶和过往船舶的编辑单元,其中编辑单元根据控制指令将监控水域上的任意某一船舶设为诱导船舶OS、将附近或监控水域上的其他船舶作为过往船舶TS;
根据诱导船舶OS本航次的起讫点、水域上静态碍航物的位置分布信息以及水文气象信息自动计算航路转向点及最短距离、最短时间或最小成本的安全航行线路的静态碍航物避险规划单元;所述静态碍航物避险规划单元根据诱导船舶OS在任意时刻的位置自动计算生成并在ECDIS上至少显示从该位置到本航次规划终点的最短距离、最短时间或最小成本中的一种安全航行线路,上述所指显示的安全航行路线可为最短距离、最短时间或最小成本,也可为最短距离和最短时间或者最短距离、最短时间和最小成本的组合;
通过在诱导船舶OS附近划定船舶领域、判断附近过往船舶TS能否与诱导船舶OS发生碰撞的动态碍航物险情预报单元;所述动态碍航物险情预报单元根据各船的速度、方向以及风、浪、流的水文气象信息采用矢量计算方法和速度合成方法确定诱导船舶OS与各艘过往船舶TS的最小会遇距离、诱导船舶OS与各艘过往船舶TS到达最近会遇点的时间和诱导船舶OS可能与各艘TS发生接触或碰撞的慎航角;所述动态碍航物险情预报单元根据诱导船舶OS与各艘过往船舶TS之间慎航角的方位关系指示诱导船舶OS的安全航行方向、并根据最小会遇距离和最近会遇点的时间值判断诱导船舶OS与附近各艘过往船舶TS的碰撞风险程度;根据诱导船舶OS和各艘过往船舶TS之前的航迹点坐标通过曲线拟合方法外推预测诱导船舶OS和各艘过往船舶TS在下一段时间的航行轨迹;
根据碍航物或碍航区和与其他船舶会遇局面以及驾驶员操船经验给出符合国际海上避碰规则的避险建议的安全航行知识单元;当识别出被诱导船舶面临 碰撞等风险时,所述安全航行知识单元经过局面判断输出避免风险发生的航行建议;
还包括接收所述动态碍航物险情预报单元和安全航行知识单元传送的预测信息和建议信息的海图显示单元,所述海图显示单元至少动态显示诱导船舶OS的位置坐标、航向、航速信息、并同时显示一艘过往船舶TS的位置坐标、航向、航速的动态信息。
进一步的,所述动态碍航物险情预报单元对过往船舶TS能否与诱导船舶OS发生碰撞的判断具体采用如下方式:诱导船舶OS与过往船舶TS之间的距离大于设定阈值则将该区域定义为安全区域;当诱导船舶OS与过往船舶TS之间的距离小于或等于设定阈值,并且过往船舶TS在诱导船舶OS的椭圆形船舶领域之外时,则开启慎航角监视过程,当过往船舶TS触及或进入诱导船舶OS的椭圆形船舶领域时则发出预警提示,同时关闭慎航角显示功能;当过往船舶TS已经触及或近于触及诱导船舶OS时则立即发出碰撞警报。
进一步的,所述海图显示单元动态显示诱导船舶OS与各艘过往船舶TS的最小会遇距离、两船到达最近会遇点的时间值。
进一步的,所述动态碍航物险情预报单元叠加诱导船舶OS相对于不同过往船舶TS的慎航角,通过采用不同颜色表示诱导船舶OS相对于不同过往船舶TS的慎航角,同时采用慎航角的边长进一步区分诱导船舶OS相对于不同过往船舶TS的慎航角以及表示发生碰撞的诱导船舶OS的最小速度,并以此标示诱导船舶OS与不同过往船舶TS接触或碰撞的时间先后顺序和避免碰撞的OS最大速度,从而获取诱导船舶OS的安全航向角度范围和相对于不同过往船舶TS需要谨慎航行的角度范围、以及在慎航角范围内航行时为保证安全OS需要降速的幅度。
进一步的,当诱导船舶OS接近碍航区或限航区时则险情预报单元发出预警信号,同时输出关于诱导船舶OS与对应碍航区或限航区接近的距离和方位信息,如果诱导船舶OS进入或触及碍航区则险情预报单元发出报警。
该装置能够根据OS航行过程中与碍航物或碍航区和其他船舶接触风险的动态,以文字方式输出安全航行知识库中的相关避险建议,为驾驶员提供安全驾驶决策参考。
由于采用了上述技术方案,本发明提供的一种海上安全航行智能诱导装置,能够在给定起讫点(港)的一般情况下自动生成被诱导船舶从当时位置至终点(或目的港)之间安全高效的航线,尤其适合于船舶途径水域上分布着碍航物 或碍航区的情况,起讫点之间安全高效航线的含义为:在起讫点之间能够安全规避碍航物或碍航区的最短距离、最短时间或最小成本的航线。发明一种船舶安全航行智能诱导装置,为船舶驾驶员提供动态的最优规划路径和避让决策支持信息、提供实时的安全航行参考方案,减轻驾驶员的劳动强度。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明系统的结构示意图;
图2为本发明系统的功能说明示意图;
图3(a)为本发明模拟系统工作界面;
图3(b)为本发明实际系统工作界面;
图4为本发明系统工作模拟图;
图5为本发明系统工作模拟图;
图6为本发明系统工作模拟图;
图7椭圆形船舶领域及其与过他船位置的切线示意图。
具体实施方式
为使本发明的技术方案和优点更加清楚,下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚完整的描述:
如图1-图6所示的一种海上安全航行智能诱导装置,至少包括采集单元、编辑单元、静态碍航物避险规划单元、动态碍航物险情预报单元、安全航行知识单元和海图显示单元。其中采集单元以电子海图显示系统ECDIS为平台,根据配置需要建立连接AIS、雷达、BDS或GPS、VHF以及气象水文测量仪、罗经等航海仪器的数据接口、信息通道,将所需信息传入到ECDIS中,供规划航线时使用。通过AIS获取附近其他船舶的船舶标识、船舶尺度、船舶吃水等静态信息和位置、航速、艏向、航向等动态信息(即标准AIS应提供的信息和数据),并在ECDIS上动态显示各船位置。为了降低船舶位置误差,可以利用雷达校正各船位置。ECDIS上应明确标有碍航区域或限航区的位置信息,简称静态碍航物。
编辑单元根据控制指令在电子海图显示系统ECDIS显示屏上利用标识坐标区坐标方法(Graphical input from mouse or cursor)将监控水域上的任意 某一船舶选中作为诱导船舶OS、将附近或监控水域上的其他船舶作为过往船舶TS。为了便于识别,也可以将各船编号,如诱导船舶OS为1号船,TS为2号船、3号船、4号船等等,根据过往船舶TS的数量依照某一自定规则顺次编号,各船编号与其船名或船舶标识一一对应。
静态碍航物避险规划单元根据诱导船舶OS本航次的起讫点、水域上静态碍航物的位置分布信息以及水文气象信息自动计算(采用优化算法,如蚁群算法、Dijkstra算法、Maklink图等方法,求解距离最短或时间最短路径)航路转向点及最短距离、最短时间或最小成本的安全航行线路,并在ECDIS上绘制该安全航线。需要时,也可以同时计算出并在ECDIS上绘制出最短距离、最短时间和最小成本的不同安全航线。如果对安全航线走势有特殊要求,还可以在ECDIS上直接手动修改航路点位置。所述静态碍航物避险规划单元根据诱导船舶OS在任意时刻的位置自动计算生成并在ECDIS上显示从该位置到本航次规划终点的最短距离、最短时间或最小成本的安全航行线路。
动态碍航物险情预报单元通过在诱导船舶OS附近划定船舶领域、监视距离(或监视范围),判断附近过往船舶TS能否与诱导船舶OS发生碰撞情况(根据船舶领域、DCPA、TCPA的计算分析,判断TS与任意一艘OS的碰撞风险)。其中动态碍航物险情预报单元通过编制计算软件实现根据各船的速度、方向,采用矢量计算方法和速度合成方法确定诱导船舶OS与各艘过往船舶TS的最小会遇距离、诱导船舶OS与各艘过往船舶TS到达最近会遇点的时间和诱导船舶OS可能与各艘TS发生接触或碰撞的慎航角;所述动态碍航物险情预报单元根据最小会遇距离和最近会遇点的时间值判断诱导船舶OS与附近各艘过往船舶TS的碰撞风险程度。
进一步的,根据诱导船舶OS和各艘过往船舶TS之前的航迹点坐标通过曲线拟合方法(一次曲线拟合、二次曲线拟合或者其他曲线拟合方法)外推预测诱导船舶OS和各艘过往船舶TS在下一段时间的航行轨迹。
进一步的,根据船舶领域理论和诱导船舶OS的性能特点,在诱导船舶OS附近划定船舶领域。任一TS进入诱导船舶OS的船舶领域即被认为可能发生碰撞。诱导船舶OS船舶领域的平面形状根据需要设定为椭圆形或类似椭圆形,椭圆的长轴与船长方向一致。诱导船舶OS不必须在椭圆的中心,椭圆在诱导船舶OS前、后、左、右方向最远点的位置可以根据安全要求的高低设置,也可以根据对两船的尺度、航速等影响因素的判断调整。由此实现更加精确的险情预报。
进一步的,动态碍航物险情预报单元根据各船的速度、方向以及风、浪、流等水文气象信息,通过矢量计算和速度合成方法确定诱导船舶OS与各艘过往船舶TS的DCPA、TCPA和诱导船舶OS可能与各艘TS发生接触或碰撞(定义为TS进入OS的船舶领域)的航向角度,简称其为慎航角,并在ECDIS上以诱导船舶OS位置为角的顶点,清晰显示慎航角。在ECDIS上,诱导船舶OS相对于不同TS的慎航角可以叠加、可以用不同颜色区别,进而还可以用不同颜色表示诱导船舶OS与不同过往船舶TS(都保速保向条件下)接触或碰撞的时间先后,从而明确显示诱导船舶OS的安全航向角度范围和相对于不同过往船舶TS需要谨慎航行的角度范围。
进一步的,动态碍航物险情预报单元设置是否绘制诱导船舶OS和TS历史航迹线的选项,选择哪艘船TS则绘制哪艘船已经航行过的轨迹线;在ECDIS上动态显示诱导船舶OS的位置坐标、航向、航速,并可以同时选择一艘过往船舶TS显示其位置坐标、航向、航速的动态信息;动态显示诱导船舶OS与各艘过往船舶TS的最小会遇距离DCPA、两船到达最近会遇点时间TCPA值,从而有助于准确判断诱导船舶OS与附近各艘过往船舶TS的碰撞风险程度。
所述动态碍航物险情预报单元叠加诱导船舶OS相对于不同过往船舶TS的慎航角,通过采用不同颜色表示诱导船舶OS相对于不同过往船舶TS的慎航角,同时采用慎航角的边长进一步区分诱导船舶OS相对于不同过往船舶TS的慎航角以及表示发生碰撞的诱导船舶OS的最小速度,并以此标示诱导船舶OS与不同过往船舶TS接触或碰撞的时间先后顺序和避免碰撞的OS最大速度,从而获取诱导船舶OS的安全航向角度范围和相对于不同过往船舶TS需要谨慎航行的角度范围、以及在慎航角范围内航行时为保证安全OS需要降速的幅度。OS对于某一TS的慎航角边长是一定的,OS对于不同TS的慎航角边长不同,由此区分OS对于不同TS的慎航角。边长可以根据OS与TS的相对航速大小确定。
进一步的,包含安全航行知识库及推理机制(IF…THEN…等形式)的安全航行知识单元根据碍航物或碍航区分布和其他船舶会遇局面以及驾驶员操船经验给出符合国际海上避碰规则的避险建议。当识别出被诱导船舶面临碰撞等风险时所述安全航行知识单元经过局面判断输出避免风险发生的航行建议。当识别出被诱导船舶面临碰撞等风险时,能够经过局面判断给出避免风险发生的航行建议,在控制面板左下角输出提示文字。为了避免妨碍观看监控区域动态,航行建议的提示框首先缩小显示在控制面板左下角,驾驶人员如果想看更多内 容,可以点击放大显示在控制面板整个下端,并可以以滚动方式阅读更多信息;再次点击时,放大了的提示框再次缩小回到原来位置。
进一步的,该装置还包括接收所述动态碍航物险情预报单元和安全航行知识单元传送的预测信息和建议信息的海图显示单元(即电子海图显示系统ECDIS),所述海图显示单元至少动态显示诱导船舶OS的位置坐标、航向、航速信息、并同时显示一艘过往船舶TS的位置坐标、航向、航速的动态信息。
进一步的,所述海图显示单元动态显示诱导船舶OS与各艘过往船舶TS的最小会遇距离、两船到达最近会遇点的时间值。
进一步的,所述动态碍航物险情预报单元对过往船舶TS能否与诱导船舶OS发生碰撞的判断具体采用如下方式:诱导船舶OS与过往船舶TS之间的距离大于设定阈值(或监视距离)则将该区域定义为安全区域;当诱导船舶OS与过往船舶TS之间的距离小于或等于设定阈值即监视距离,并且过往船舶TS在诱导船舶OS的椭圆形船舶领域之外时,则开启慎航角监视功能,当过往船舶TS触及或进入诱导船舶OS的椭圆形船舶领域时则发出预警提示,同时关闭慎航角显示功能;当过往船舶TS已经触及或近于触及诱导船舶OS时则立即发出碰撞警报。当诱导船舶OS接近碍航区或限航区时则险情预报单元发出预警信号,同时输出关于诱导船舶OS与对应碍航区或限航区接近的距离和方位信息,如果诱导船舶OS进入或触及碍航区则险情预报单元发出报警。例如根据距离远近和方位,将诱导船舶OS所在水域划分为三个不同等级的监控区域。当一艘过往船舶TS距离诱导船舶OS某一距离(简称监视距离)以远时,如2海里、3海里或5海里等(可根据具体情况设定),二者不可能立即发生碰撞,因此暂时不需要判断二者是否存在碰撞风险;当一艘过往船舶TS进入诱导船舶OS的监视距离但仍然在其椭圆形船舶领域之外时,开启OS的慎航角显示功能,为驾驶员提供安全航向、安全航行诱导信息;当一艘过往船舶TS触及或进入诱导船舶OS椭圆形船舶领域时,二者发生碰撞的风险剧增,立即发出警报和语言提示,同时关闭慎航角显示功能;当一艘过往船舶TS已经触及或近于触及诱导船舶OS时,立即发出碰撞警报。当诱导船舶OS接近碍航区或限航区时,通过变色(如船形变黄)和发声进行预警提示;同时,在后台或在ECDIS上输出诱导船舶OS与哪一个碍航区或限航区接近,以及距离、方位信息。如果诱导船舶OS进入或触及碍航区,进一步变色(如船形变红)和发声进行报警,同时诱导系统停止工作。
当水域上存在限制船舶航行速度或通航时间的航段时,如等潮、不夜航等 航段,简称受限航段或限航区,在初始自动设计安全航线时能够计及受限航段的影响,通过多方案比较形成优化的安全航线
当识别出被诱导船舶面临碰撞等风险时,能够经过会遇局面判断给出避免风险发生的航行建议,在控制面板左下角输出提示文字。为了避免妨碍观看监控区域动态,航行建议的提示框首先缩小显示在控制面板左下角,见图5。驾驶人员如果想看更多内容,可以点击放大显示在控制面板整个下端,见图6,并可以以滚动方式阅读更多信息;再次点击时,放大了的提示框再次缩小回到原来位置。提示框内存放的信息数量根据需要设定,如10条,50条,100条等。
另外该安全航行智能诱导装置的主要功能除了具有信息输入、输出功能外,还包括:船舶运动规律模拟、碍航物体位置判断、风险识别、生成诱导航线、生成诱导方案等功能。
实施例:
如图3-图6为诱导装置的监控面板的示意图。诱导装置的监控面板中间区域为监控区,显示海图,该区域的大小首先根据OS及其监视距离之内的TS、碍航区和限航区分布由程序自动确定,随后也可以通过点击下方的监视区域按钮进行监视范围调整,以便查看关注水域上的船舶航行动态。点击监视区域按钮后监控面板显示监视区域调整框,见附图4。可以通过此框输入想看的水域坐标范围值,其中x值与经度对应,y值与纬度对应。
监控面板左侧显示OS的位置、艏向、航速、船型等实时数据以及是否要绘制船舶历史航迹的选项按钮(通过该按钮可以选择保留OS的航迹或不保留航迹),见附图3或附图4。左侧的开始、暂停、停止按钮以及变速器、方向舵组合按钮板仅用于模拟系统上对OS的操船之用,对于实船上的诱导装置可以不设这些按钮,其位置也可以节省或用于显示其他信息。监控面板右侧可以选择显示一艘TS的位置、艏向、航速、船型等实时数据以及是否要绘制船舶行径航迹的选项按钮。其他按钮或组合按钮板的功能与左侧对应,是对所选TS的操船装置。
监控面板下侧从左至右依次是报警和安全航行提示信息显示区、日期、时间、仿真步数(或对于实船系统跟踪步数)显示框,更新监视区域按钮,TS编号、OS与该TS的最近会遇距离、到达最近会遇点的时间、OS到达目的地的规划航线距离、OS以最大航速沿着规划航线航行到达目的地需要的时间显示框。
系统启动后(模拟仿真系统按“开始仿真”按钮),首先根据OS初始位置、 目的地位置以及碍航区或限航区分布情况自动测算监控区大小,并将监控区位置信息通过附图4中的对话框显示出来,供用户确认是否合适或修改。确认合适或修改后,点击确定,系统开始运行。通过AIS等导航设备获得诱导船舶OS的船位、航速、航向等动态信息以及通过其他仪器获得水文气象信息;TS的船位、航速、航向等动态信息(可以经雷达进一步校正)以及船舶静态信息通过AIS等导航设备获得(模拟仿真系统首先输入OS和TS的初始位置、航速、航向等信息和TS的航行信息;输入风、浪、流等环境信息;输入碍航区或限航区位置等信息。然后按照内置船舶运动模型(如MMG模型,可以推算船舶航行参数)以及用户控制指令自动产生OS的船位、航速、艏向、航向等数据)。
诱导系统工作时,在ECDIS上可以清晰显示OS与TS以及碍航区、限航区的相对位置和OS从当前位置到目的地的诱导航线。在不影响驾驶员判断准确性的情况下,可以每隔一段时间或在船舶航行若干步之后再更新诱导航线,以便减少计算工作量。在监控面板左侧同时显示OS的准确位置、艏向、航速等数据;在监控面板右侧可以根据选择同时显示一艘TS的准确位置、艏向、航速等数据。在ECDIS上清晰显示OS与监视距离内的每一艘TS的相对位置和慎航角(若有)的同时,在监控面板右下方清晰显示两船的DCPA和TCPA,用以准确判断两船的最近会遇距离和到达最近会遇点的时间。当TCPA为负值时,表示两船已经驶过最近会遇点,即在当时之前的时间到达最近会遇点。
根据OS的初始位置、要到达的目的地以及沿途的障碍区或限航区分布情况,采用优化方法产生航路转向点并形成诱导航线。优化航线时考虑风、浪、流的影响,追求的目标可以是路径最短、时间最短或成本最低,可以在ECDIS上显示一条、两条或三条基于不同目标函数获得的诱导航线。启动装置后,经过若干步或短时间的自适应调整后,诱导系统进入对OS安全航向提示模式。根据周围监视距离内TS的分布情况,经过计算获得与各艘TS可能存在的DCPA、TCPA、慎航角,并将DCPA、TCPA显示在其框内,将慎航角以OS为圆心,以扇形方式直接绘制在ECDIS屏幕上,直观地提示驾驶人员哪些角度可以安全航行,哪些角度可能产生碰撞、需要谨慎航行。由于两船之间最多可能存在两个不同的慎航角,且OS周边可能存在多艘TS,一般对于OS来说,可能没有慎航角、存在一个慎航角、同时存在多个慎航角,为此可以用不同颜色、不同扇形边长来区分相对同一艘TS的慎航角和针对不同TS的各个慎航角。
附图5和图6中:
1——为被诱导船舶OS。
2——为OS周边的某一其他船TS。
3——为OS从当前位置到目的地的诱导航线或规划航线。
4——为预测的船舶航迹线,用虚线表示。
5——为船舶实际已经走过的航迹线,用实线表示,可以选择显示或不显示。
6——为慎航角,表示OS如果以当前航速沿着慎航角指示的方向或慎航角范围内的任意方向航行,则可能会与相应的TS发生碰撞(即TS进入OS的船舶领域)。但并不意味着OS沿着这一方向航行一定会与该TS发生碰撞,例如调整OS的航速可以改变与该TS发生碰撞的可能性或者不发生碰撞。
7——为水域上的碍航区,这种区域表示浅滩、山、建筑物等不允许船舶接触的区域,用一种颜色的凸多边形表示。
8——为水域上的限航区,这种区域表示需要乘潮通过的浅滩、限速航道、不夜航区域等仅允许船舶在一定限制条件通过的区域,用另一种颜色的凸多边形表示。
9——OS计划到达的下一个目的地,或者OS计划首先到达的目的地1。
10——缩小状态的航行建议提示框。
11——放大状态的航行建议提示框。
本发明公开的一种海上安全航行智能诱导装置,当诱导船舶周围监视距离内存在过往船舶时,能够自动判断风险并生成慎航角,用不同颜色表示诱导船舶OS相对于不同过往船舶TS的慎航角,同时可以用慎航角的边长进一步区分OS相对于不同TS的慎航角以及表示发生碰撞的OS最小速度,并以此标示诱导船舶OS与不同过往船舶TS接触或碰撞的先后顺序和避免碰撞的OS最大速度,从而获取诱导船舶OS的安全航向角度范围和相对于不同TS需要谨慎航行的角度范围,以及在慎航角范围内航行时为保证安全OS需要降速的幅度,为驾驶员提供智能化安全航行支持;当诱导船舶接近碍航物或碍航区和其他船舶时,能够发出声光警报和险情信息;该装置提高诱导船舶与过往船舶发生碰撞风险的预报精度。通过采用椭圆形或类似椭圆形OS船舶领域形状,并根据船长、航速等参数动态确定椭圆在OS前、后、左、右方向最远点的位置,并且OS不必须在椭圆的中心,实现OS诱导过程中更加精确的险情预报;另外本装置能够根据OS航行过程中与碍航物或碍航区和其他船舶接触风险的动态以文字方式输出安全航行知识库中的相关避险建议,为驾驶员提供安全驾驶决策参考。
被诱导船舶OS的船舶领域平面形状采用非对称椭圆形或类似椭圆形(以下简称椭圆),椭圆的长轴与船长方向一致。椭圆在被诱导船舶OS前、后、左、右方向最远点的位置可以根据安全要求的高低设置,也可以根据对两船的尺度、航速等影响因素的判断调整。图7所示为一艘坐标系原点位于(0,0)的被诱导船舶OS,其非对称椭圆形船舶领域的前(上)、后(下)、左、右最远点位于y轴和x轴上,距离原点的距离分别为35、25、5、15.在(a)图中,目标船TS位于(150,50)处;在(b)图中目标船TS位于(-10,250)处。在OS与TS都保速、保向的情况下,只要两船的相对速度矢量不指向OS且不在两条切线之间,则两船之间没有碰撞风险,或者说TS不会进入OS的船舶领域。
椭圆曲线计算公式可以采用
Figure PCTCN2020073164-appb-000001
的形式,分段表达。
通过采用非对称椭圆形或类似椭圆形船舶领域,实现更加精确的险情预报。当识别出被诱导船舶面临碰撞等风险时该装置经过局势判断输出避免风险发生的航行建议。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (5)

  1. 一种海上安全航行智能诱导装置,其特征在于:包括
    以电子海图显示系统ECDIS为平台,通过雷达、船舶自动识别系统AIS、罗经导航仪器、计程仪、水文气象仪获取本船和附近其他船舶的静态信息和动态信息的采集单元,其中静态信息包括船舶标识、船舶尺度、船舶吃水和船舶类型信息,动态信息包括船舶的位置、艏向、航向、航速和风、流信息;
    设置被诱导船舶和过往船舶的编辑单元,其中编辑单元根据控制指令将监控水域上的任意某一船舶设为诱导船舶OS、将附近或监控水域上的其他船舶作为过往船舶TS;
    根据诱导船舶OS本航次的起讫点、水域上静态碍航物的位置分布信息以及水文气象信息自动计算航路转向点及最短距离、最短时间或最小成本的安全航行线路的静态碍航物避险规划单元;所述静态碍航物避险规划单元根据诱导船舶OS在任意时刻的位置自动计算生成并在ECDIS上至少显示从该位置到本航次规划终点的最短距离、最短时间或最小成本中的一种安全航行线路;
    通过在诱导船舶OS附近划定船舶领域、判断附近过往船舶TS能否与诱导船舶OS发生碰撞的动态碍航物险情预报单元;所述动态碍航物险情预报单元根据各船的速度、方向以及风、浪、流的水文气象信息采用矢量计算方法和速度合成方法确定诱导船舶OS与各艘过往船舶TS的最小会遇距离、诱导船舶OS与各艘过往船舶TS到达最近会遇点的时间和诱导船舶OS可能与各艘TS发生接触或碰撞的慎航角;所述动态碍航物险情预报单元根据诱导船舶OS与各艘过往船舶TS之间慎航角的方位关系指示诱导船舶OS的安全航行方向、并根据最小会遇距离和最近会遇点的时间值判断诱导船舶OS与附近各艘过往船舶TS的碰撞风险程度;根据诱导船舶OS和各艘过往船舶TS之前的航迹点坐标通过曲线拟合方法外推预测诱导船舶OS和各艘过往船舶TS在下一段时间的航行轨迹;
    根据碍航物或碍航区和与其他船舶会遇局面以及驾驶员操船经验给出符合国际海上避碰规则的避险建议的安全航行知识单元;当识别出被诱导船舶面临碰撞等风险时所述安全航行知识单元经过局面判断输出避免风险发生的航行建议;
    还包括接收所述动态碍航物险情预报单元和安全航行知识单元传送的预测信息和建议信息的海图显示单元,所述海图显示单元至少动态显示诱导船舶OS 的位置坐标、航向、航速信息、并同时显示一艘过往船舶TS的位置坐标、航向、航速的动态信息。
  2. 根据权利要求1所述的一种海上安全航行智能诱导装置,其特征还在于:所述动态碍航物险情预报单元对过往船舶TS能否与诱导船舶OS发生碰撞的判断具体采用如下方式:诱导船舶OS与过往船舶TS之间的距离大于设定阈值则将该区域定义为安全区域;当诱导船舶OS与过往船舶TS之间的距离小于或等于设定阈值,并且过往船舶TS在诱导船舶OS的椭圆形船舶领域之外时,则开启慎航角监视过程,当过往船舶TS触及或进入诱导船舶OS的椭圆形船舶领域时则发出预警提示,同时关闭慎航角显示功能;当过往船舶TS已经触及或近于触及诱导船舶OS时则立即发出碰撞警报。
  3. 根据权利要求1所述的一种海上安全航行智能诱导装置,其特征还在于:所述海图显示单元动态显示诱导船舶OS与各艘过往船舶TS的最小会遇距离、两船到达最近会遇点的时间值。
  4. 根据权利要求2所述的一种海上安全航行智能诱导装置,其特征还在于:所述动态碍航物险情预报单元叠加诱导船舶OS相对于不同过往船舶TS的慎航角,通过采用不同颜色表示诱导船舶OS相对于不同过往船舶TS的慎航角,同时采用慎航角的边长进一步区分诱导船舶OS相对于不同过往船舶TS的慎航角以及表示发生碰撞的诱导船舶OS的最小速度,并以此标示诱导船舶OS与不同过往船舶TS接触或碰撞的时间先后顺序和避免碰撞的OS最大速度,从而获取诱导船舶OS的安全航向角度范围和相对于不同过往船舶TS需要谨慎航行的角度范围、以及在慎航角范围内航行时为保证安全OS需要降速的幅度。
  5. 根据权利要求1-4任意一项权利要求所述的一种海上安全航行智能诱导装置,其特征还在于:当诱导船舶OS接近碍航区或限航区时则险情预报单元发出预警信号,同时输出关于诱导船舶OS与对应碍航区或限航区接近的距离和方位信息,如果诱导船舶OS进入或触及碍航区则险情预报单元发出报警。
PCT/CN2020/073164 2019-02-01 2020-01-20 一种海上安全航行智能诱导装置 WO2020156314A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910104720.5 2019-02-01
CN201910104720.5A CN109637195B (zh) 2019-02-01 2019-02-01 一种海上安全航行智能诱导装置

Publications (1)

Publication Number Publication Date
WO2020156314A1 true WO2020156314A1 (zh) 2020-08-06

Family

ID=66064803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073164 WO2020156314A1 (zh) 2019-02-01 2020-01-20 一种海上安全航行智能诱导装置

Country Status (2)

Country Link
CN (1) CN109637195B (zh)
WO (1) WO2020156314A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109637195B (zh) * 2019-02-01 2021-06-08 大连海事大学 一种海上安全航行智能诱导装置
CN110133659A (zh) * 2019-05-15 2019-08-16 中国舰船研究设计中心 一种新型水面舰船辅助离靠泊引航设备及方法
CN110262483A (zh) * 2019-06-10 2019-09-20 华东师范大学 一种无人船航向控制方法及无人船
CN111047911A (zh) * 2020-01-15 2020-04-21 智慧航海(青岛)科技有限公司 一种基于电子海图的海上事故预警导航方法
CN111292558A (zh) * 2020-02-18 2020-06-16 大连海事大学 一种基于船舶宽带自组网的海上智能终端即时通讯app
CN111536962B (zh) * 2020-05-19 2023-06-30 智慧航海(青岛)科技有限公司 智能船舶的航线规划方法及装置、存储介质、计算机设备
CN112085969A (zh) * 2020-09-04 2020-12-15 中国船舶重工集团公司第七0七研究所九江分部 一种本船安全航向区间的确定方法及相关系统
CN112967528A (zh) * 2021-03-17 2021-06-15 广州海事科技有限公司 水位通航管理方法、系统、计算机设备及存储介质
CN113178098B (zh) * 2021-05-20 2022-08-05 大连海事大学 一种无人船事件触发分层协同控制系统
CN113689738B (zh) * 2021-08-20 2022-06-14 大连海事大学 一种长航道大型船舶精细化逐段乘潮进港方法
CN113781841A (zh) * 2021-09-03 2021-12-10 广州海事科技有限公司 Ais船舶信息采集方法、系统、计算机设备、及存储介质
CN115457807B (zh) * 2022-10-25 2023-09-26 安徽慧软智能科技有限公司 基于导航雷达的船舶避碰预警系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102622914A (zh) * 2012-04-20 2012-08-01 浙江省邮电工程建设有限公司 一种通过3g手机实现船舶防碰撞的系统和方法
CN105788370A (zh) * 2016-05-12 2016-07-20 福建北斗星河通信有限公司 一种基于互联网ais的船舶防碰撞方法及系统
US20160217692A1 (en) * 2015-01-22 2016-07-28 Electronics And Telecommunications Research Institute Vessel monitoring system and vessel monitoring method thereof
CN206451365U (zh) * 2017-01-12 2017-08-29 中国水产科学研究院南海水产研究所 一种基于北斗的船舶定位监控系统
CN107945578A (zh) * 2017-12-25 2018-04-20 大连海事大学 通航施工水域中控式船舶安全航行诱导系统
CN108550281A (zh) * 2018-04-13 2018-09-18 武汉理工大学 一种基于视觉ar的船舶辅助驾驶系统与方法
CN108630017A (zh) * 2018-05-04 2018-10-09 上海海洋大学 一种船舶航行避碰方法及系统
CN109243205A (zh) * 2018-08-29 2019-01-18 上海海事大学 一种沿海水上交通安全风险监测与预警系统及方法
CN109637195A (zh) * 2019-02-01 2019-04-16 大连海事大学 一种海上安全航行智能诱导装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100595812C (zh) * 2008-03-20 2010-03-24 上海海事大学 船舶动态监控通知系统及实现方法
KR101069884B1 (ko) * 2009-06-23 2011-10-05 삼성중공업 주식회사 충돌 회피 경로 설정 장치, 경로 제어 시스템 및 충돌 회피 경로 제어 방법
CN102147981B (zh) * 2010-12-20 2014-01-15 成都天奥信息科技有限公司 一种船载自动识别系统警戒区域报警的方法
KR101193081B1 (ko) * 2011-08-11 2012-10-22 제주대학교 산학협력단 감지선을 이용한 선박의 충돌 위험 탐지 방법 및 장치
CN104267723B (zh) * 2014-09-09 2017-05-03 江苏科技大学 远洋船舶导航自动航行系统及导航方法
CN105022270B (zh) * 2015-03-20 2018-02-02 武汉理工大学 基于速度矢量坐标系的船自动避碰方法
CN105185162B (zh) * 2015-10-26 2017-10-17 中国电子科技集团公司第二十八研究所 一种基于ais信息的多目标防撞预警方法
CN107966152B (zh) * 2017-11-22 2021-05-07 大连海事大学 一种具有碰撞风险预测机制的避碰及路径跟踪制导方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102622914A (zh) * 2012-04-20 2012-08-01 浙江省邮电工程建设有限公司 一种通过3g手机实现船舶防碰撞的系统和方法
US20160217692A1 (en) * 2015-01-22 2016-07-28 Electronics And Telecommunications Research Institute Vessel monitoring system and vessel monitoring method thereof
CN105788370A (zh) * 2016-05-12 2016-07-20 福建北斗星河通信有限公司 一种基于互联网ais的船舶防碰撞方法及系统
CN206451365U (zh) * 2017-01-12 2017-08-29 中国水产科学研究院南海水产研究所 一种基于北斗的船舶定位监控系统
CN107945578A (zh) * 2017-12-25 2018-04-20 大连海事大学 通航施工水域中控式船舶安全航行诱导系统
CN108550281A (zh) * 2018-04-13 2018-09-18 武汉理工大学 一种基于视觉ar的船舶辅助驾驶系统与方法
CN108630017A (zh) * 2018-05-04 2018-10-09 上海海洋大学 一种船舶航行避碰方法及系统
CN109243205A (zh) * 2018-08-29 2019-01-18 上海海事大学 一种沿海水上交通安全风险监测与预警系统及方法
CN109637195A (zh) * 2019-02-01 2019-04-16 大连海事大学 一种海上安全航行智能诱导装置

Also Published As

Publication number Publication date
CN109637195B (zh) 2021-06-08
CN109637195A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
WO2020156314A1 (zh) 一种海上安全航行智能诱导装置
EP2504719B1 (en) A method and system of navigational decision support in the process of safe vessel navigation
JP2786809B2 (ja) 船舶用航行支援装置
Szlapczynski et al. A target information display for visualising collision avoidance manoeuvres in various visibility conditions
US20170052029A1 (en) Ship display device
EP3082121B1 (en) Aircraft systems and methods to display moving landing platforms
JPS59159080A (ja) 衝突防止装置
WO2008067151A2 (en) Route-planning interactive navigation system and method
KR101894674B1 (ko) 해양 내비게이션 장치 및 항로 제공 방법
KR101799216B1 (ko) 해양 내비게이션 장치 및 항로 제공 방법
KR101719142B1 (ko) 해양 내비게이션 장치 및 항로 제공 방법
JP2021018484A (ja) 周辺状態表現方法、避航動作学習プログラム、避航動作学習システム、及び船舶
TW202014676A (zh) 船舶導航系統及方法
US20230195118A1 (en) Autonomous marine autopilot system
JPH11272999A (ja) 船舶衝突予防援助装置及び船舶衝突予防援助方法
Zhao et al. Toward an online decision support system to improve collision risk assessment at sea
Procee et al. Using augmented reality to improve collision avoidance and resolution
KR20210123131A (ko) 선박의 충돌 회피방법
Liu et al. Direct perception interface for ship-ship collision avoidance
JP6327899B2 (ja) 被曳航体の曳航管理方法およびシステム
AU2021277598B2 (en) Radar display features
JPS61233316A (ja) 航行警報装置
JP2020027343A (ja) 避航支援装置
NZ782811B2 (en) Radar display features
WO2022239402A1 (ja) 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20749694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20749694

Country of ref document: EP

Kind code of ref document: A1