WO2020156234A1 - 用于窄边框电子设备的触控屏和电子设备 - Google Patents

用于窄边框电子设备的触控屏和电子设备 Download PDF

Info

Publication number
WO2020156234A1
WO2020156234A1 PCT/CN2020/072703 CN2020072703W WO2020156234A1 WO 2020156234 A1 WO2020156234 A1 WO 2020156234A1 CN 2020072703 W CN2020072703 W CN 2020072703W WO 2020156234 A1 WO2020156234 A1 WO 2020156234A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
leads
touch screen
lead
touch
Prior art date
Application number
PCT/CN2020/072703
Other languages
English (en)
French (fr)
Inventor
梁艳峰
魏山山
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20748974.1A priority Critical patent/EP3896557A4/en
Priority to US17/422,899 priority patent/US11550417B2/en
Publication of WO2020156234A1 publication Critical patent/WO2020156234A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1626Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1643Details related to the display arrangement, including those related to the mounting of the display in the housing the display being associated to a digitizer, e.g. laptops that can be used as penpads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1656Details related to functional adaptations of the enclosure, e.g. to provide protection against EMI, shock, water, or to host detachable peripherals like a mouse or removable expansions units like PCMCIA cards, or to provide access to internal components for maintenance or to removable storage supports like CDs or DVDs, or to mechanically mount accessories
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly

Definitions

  • This application relates to the field of electronic technology, and in particular to a touch screen and an electronic device for a narrow-frame electronic device.
  • touch screens are increasingly used in electronic devices such as mobile phones and tablets.
  • the touch screen can detect the user's finger or other objects placed on its surface, and can identify the location of the finger or object.
  • the touch screen may include a flexible printed circuit (FPC) 101, a substrate (SUB) 104, a display layer (display layer) 103, and a thin film encapsulation layer (TFE). ) 105 and conductive layer 106.
  • the conductive layer 106 of the touch screen can be disposed on the thin film encapsulation layer 105.
  • the conductive layer 106 includes a touch sensing electrode (TS) 1061 and a trace 1062.
  • the touch sensor electrode 1061 is coupled to a touch driving integrated circuit (TIC) 1011 on the FPC through a lead 1062, a via 1063 on the TFE, and outputs a touch signal to the TIC 1011.
  • TIC touch driving integrated circuit
  • the multiple leads 1062 of the conductive layer 106 can be summarized in the corresponding area 1051 of the lower frame of the touch screen on the TFE, and a through hole is provided in a specific area Z of the area 1051 to lead the leads 1062 out.
  • two specific areas (specific area Z1 and specific area Z2) on the corresponding area 1051 on the TFE105 can be used to provide through holes 1063 for the leads 1062, passing through this
  • the through holes 1063 on the two specific areas respectively lead out two parts of leads and are routed on the FPC101 to the TIC1011.
  • the traces on the FPC101 used to couple the two parts of the leads will cross with other traces on the FPC101, causing signal interference.
  • the present application discloses a touch screen and an electronic device for a narrow-frame electronic device, which can reduce the width of the frame of the touch screen, thereby increasing the screen-to-body ratio. In addition, the number of layers of the circuit board is reduced, thereby reducing process difficulty and cost.
  • embodiments of the present application provide a touch screen, the touch screen includes a conductive layer, a display module, a first circuit board and a second circuit board; the conductive layer includes touch sensing electrodes and N The first lead, N is greater than or equal to 2, the first circuit board includes a touch drive integrated circuit; the second circuit board includes at least one trace; wherein: the touch sensing electrode and the N first The first end of each first lead in the leads is coupled, and the second end of each first lead in the M first leads runs through one of the display module and the second circuit board.
  • the first end of the wire is coupled, and the second end of each of the traces in the second circuit board is coupled to the touch drive integrated circuit, where M is less than or equal to N, and the N first
  • the lead includes the M first leads; the display module is used for displaying; the touch sensing electrode is used for generating a detection signal when the touch screen is applied with a touch operation; the second The at least one trace of the circuit board is used to couple the second end of each of the M first leads to the touch drive integrated circuit; the touch drive integrated circuit uses To drive the touch sensor electrode and receive the detection signal generated by the touch sensor electrode.
  • the leads of the conductive layer are coupled to the touch drive integrated circuit through the traces on the second circuit board through the traces on the second circuit board to realize the driving and detection of the conductive layer without Adding traces on the first circuit board to couple the leads of the conductive layer reduces the crossing of the traces on the first circuit board, thereby reducing the interference caused by the crossing of the traces.
  • the number of layers of the first circuit board can be reduced, thereby reducing process difficulty and cost.
  • the first circuit board further includes a first window
  • the second circuit board further includes a second window, the first window and the second window
  • An anisotropic conductive film is contained therebetween; the second end of each of the traces in the second circuit board is coupled via the second opening, the anisotropic conductive film and the first opening Connected to the touch drive integrated circuit.
  • the display module includes a thin film encapsulation layer, a display layer, and a substrate; wherein: the thin film encapsulation layer and the substrate are used to encapsulate the display layer;
  • the display layer is used for displaying;
  • the thin film packaging layer includes at least two through holes, each of the N first leads corresponds to one through hole on the thin film packaging layer, and the at least Two through holes are scatteredly arranged in a specific area on the thin film packaging layer, and the specific area is a corresponding area of the touch screen frame on the thin film packaging layer; each of the M first leads
  • the second end of the first lead is coupled to the first end of a trace of the second circuit board through a corresponding through hole.
  • the number of the first leads may be multiple, and the first leads and the through holes may have a one-to-one correspondence, that is, one first lead corresponds to one through hole.
  • the through holes and the contact points also have a one-to-one correspondence, that is, one through hole corresponds to one contact point.
  • some or all of the through holes may not have corresponding contact points.
  • the second end of the first lead is directly coupled to the first end of a trace of the second circuit board via a corresponding through hole.
  • the contact point and the second lead may have a one-to-one correspondence, that is, one contact point corresponds to one second lead.
  • the specific area and the specific area can be arranged as close as possible to the edge of the film packaging layer (for example, the corresponding edge of the lower frame of the touch screen on the film packaging layer).
  • the above touch screen at least two through holes are dispersedly arranged in specific areas Z1 and Z2 on the film packaging layer, and the specific areas Z1 and Z2 are set to correspond to the lower frame of the touch screen on the film packaging layer
  • the width of the frame of the touch screen can be reduced, thereby increasing the screen-to-body ratio.
  • the substrate further includes at least two contact points, and each of the N first leads corresponds to one contact point on the substrate; At least two second leads are arranged on the substrate; each of the at least two contact points is used for coupling with the second end of one of the first leads, and is connected to one of the first leads. The first end of the two leads are coupled, and the second end of each second lead is coupled to the first end of one of the traces of the second circuit board.
  • each first lead of the N first leads is directly coupled to the first of a trace of the second circuit board via a corresponding through hole. end.
  • each of the at least two contact points corresponds to one of the second leads on the substrate; the second end of each second lead passes through the The substrate is coupled to the first end of a trace of the second circuit board; or the second end of each second lead is sequentially coupled to the substrate and the first circuit board The first end of the trace of the second circuit board.
  • the substrate further includes at least two contact points, and each of the N first leads corresponds to one contact point on the substrate; At least two second leads are arranged on the substrate; each of the at least two contact points corresponds to one second lead on the substrate; among the at least two second leads, The second end of a part of the second lead is coupled to the first end of a trace of the second circuit board, and the second end of the other part of the second lead passes through the substrate and the first end in sequence.
  • a circuit board and the first window are coupled to the touch driving integrated circuit.
  • the substrate further includes contact points, and the number of the contact points is less than N; each of the contact points corresponds to a second lead on the substrate ; The second end of each first lead of the M first leads is directly coupled to the first end of a trace of the second circuit board via a corresponding through hole, the M first The second end of each of the (NM) first leads other than the lead passes through the through hole, the contact point, the second lead corresponding to the contact point, and the first lead The circuit board and the first window are coupled to the touch drive integrated circuit.
  • the M first leads include S first leads, and S is less than or equal to M; the second end of each first lead of the S first leads passes through a corresponding The through hole is directly coupled to the first end of a trace of the second circuit board; among the M first leads, excluding the S first leads, the (MS) The second end of each of the first leads is coupled to one of the second circuit board via the through hole, the contact point, and the second lead corresponding to the contact point.
  • the first end of the trace; among the N first leads, the second end of each of the (NM) first leads except the M first leads passes through the through The hole, the contact point, the second lead corresponding to the contact point, the first circuit board and the first window are coupled to the touch drive integrated circuit.
  • the second lead when the second lead is laid on the first circuit board, it can be laid along the edge of the first circuit board so as not to cross the wires on the first circuit board.
  • the second lead is bonded to the substrate or the first circuit board through an anisotropic conductive film.
  • the first circuit board and the display module are bonded through an anisotropic conductive film or soldered; the second circuit board and the display module are Between, the second circuit board and the first circuit board are bonded by an anisotropic conductive film, or soldered by solder.
  • the surface of the first circuit board and the surface of the second circuit board include a protective film; the protective film is used to shield the first circuit board and the second circuit Signal interference caused by cross-wiring between boards.
  • the surfaces of the first circuit board and the second circuit board both include a protective film, that is, the wiring between the first circuit board and the second circuit board will not interfere with each other. Therefore, in the embodiment of the present application, simply adding a second circuit board can realize the coupling of the multiple first leads on the conductive layer with the touch driving integrated circuit on the first circuit board. Therefore, there is no need to add multiple layers of wiring on the first circuit board. Compared with the high-cost multilayer wiring circuit board, the cost of the second circuit board newly added in the embodiment of the present application is very low.
  • the embodiment of the present application does not limit the shape of the second circuit board and its position on the first circuit board.
  • the manufacturing process of the touch screen may include: fabricating a conductive layer on the display module; connecting the first circuit board to the display module; and connecting the second circuit board to the first circuit board.
  • Fabricating the conductive layer may include fabricating touch sensing electrodes and leads, and may be fabricating the above-mentioned conductive layer through a printing process.
  • fabricating a conductive layer on the display module further includes coupling the leads of the conductive layer to the contact points on the substrate through the through holes; and then laying the leads on the substrate to couple the contact points.
  • the first circuit board can be connected to the display module by bonding or soldering.
  • Connecting the second circuit board to the first circuit board can also be achieved by bonding or soldering.
  • the substrate in the above-mentioned touch screen structure can be flexible, and can be bent, folded or folded, so as to realize an extremely narrow lower frame of the touch screen. It is not limited to the lower frame, and the bent part can also be located at other positions of the touch screen.
  • the upper frame can achieve a very narrow upper frame.
  • an embodiment of the present application provides an electronic device that includes a processor and a touch screen, wherein: the processor is coupled to the touch screen, and the processor is configured to communicate with the touch screen
  • the input signal is also used to receive the signal output by the touch drive integrated circuit in the touch screen; the touch screen is the touch screen described in the first aspect or any one of the possible implementations of the first aspect.
  • FIG. 1A is a schematic structural diagram of a touch screen provided by the prior art
  • FIG. 1B is a schematic structural diagram of a touch screen in the prior art
  • FIG. 2 is a schematic diagram of a layered structure of a circuit board provided by the prior art
  • FIG. 3 is a schematic structural diagram of a touch screen provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a connection structure between a first circuit board 101 and a second circuit board 102 provided by an embodiment of the present application;
  • FIG. 5 is a flowchart of a process flow of a touch screen provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a structure in a process flow of a touch screen provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a touch screen structure provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a touch screen provided by an embodiment of the present application.
  • FIG. 9A is a schematic structural diagram of a touch screen provided by an embodiment of the present application.
  • 9B is a schematic diagram of a touch screen structure provided by an embodiment of the present application.
  • 10A is a schematic structural diagram of a touch screen provided by an embodiment of the present application.
  • 10B is a schematic diagram of a touch screen structure provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a touch screen provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a touch screen provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the specific area Z1 and the specific area Z2 on the corresponding area 1051 on the TFE105 can be used to provide through holes 1063 for the leads 1062, and two through holes 1063 on the two specific areas are respectively led out.
  • Part of the leads are summarized on FPC101 to TIC1011 through traces.
  • the traces on the FPC101 used to couple the two parts of the leads will cross with other traces on the FPC101, causing signal interference.
  • the number of FPC layers can be increased to couple the lead 1062 of the conductive layer 106 to the TIC.
  • “coupled” can be understood as direct electrical connection or indirect electrical connection.
  • the lead 1062 of the conductive layer 106 is coupled to the TIC, which can mean that the lead 1062 of the conductive layer 106 and the TIC are electrically connected by a wire, or it can mean that the lead 1062 of the conductive layer 106 and the TIC are connected via an electronic component or a circuit.
  • FPC101 can include six copper layers to complete the wiring.
  • a polyimide film (PI) is provided between any two copper layers for insulation.
  • PI polyimide film
  • a copper layer needs to be provided as a shielding layer between the two layers of copper where the traces are crossed to shield interference.
  • the first layer of copper can realize power supply wiring.
  • the second layer of copper can be used for driving traces
  • the fourth layer of copper can be used for sensing traces. If the traces of the second layer of copper and the fourth layer of copper will cross, set the third layer of copper to realize the ground trace to realize the signal shielding between the fourth layer and the second layer to reduce the signal generated by the trace cross interference.
  • Layer 6 copper can realize communication interface wiring, such as mobile industry processor interface (mobile industry processor interface, MIPI) wiring, which is used to transmit touch screen display content. If there is a trace crossing between the 4th layer of copper and the 6th layer of copper, the 5th layer of copper should be grounded to realize the signal shielding generated by the 6th and 4th crossing to reduce the signal interference caused by the crossing of traces .
  • the power trace is used to couple the power supply.
  • the sensing trace is used to couple the lead 1062 of the conductive layer 106 to the touch driving integrated circuit 1011.
  • the driving wiring is used to transmit the driving signal output by the touch driving integrated circuit (DIC) to the conductive layer 106.
  • the driving signal output by the DIC is used to make the touch sensing electrode 1061 of the conductive layer 106 form a capacitance with a certain capacitance value.
  • the communication trace may include a trace for coupling the touch drive integrated circuit and the communication interface.
  • the communication interface is, for example, an interface for communicating with the CPU.
  • FPC 101 also includes two protective films formed on both surfaces of the circuit board to protect the FPC from the outside.
  • the manufacturing process of the 6-layer FPC shown in FIG. 2 is very complicated and the cost is high.
  • the embodiments of the present application provide a circuit board, a touch screen and an electronic device with a small number of layers and a high screen-to-body ratio.
  • the circuit board and touch screen provided in the embodiments of the present application can be used in electronic devices.
  • Electronic devices can be implemented as any of the following devices that include touch screens: mobile phones, tablet computers (pad), portable game consoles, handheld computers (personal digital assistant, PDA), notebook computers, ultra mobile personal computers (ultra mobile personal computers) , UMPC), handheld computers, netbooks, vehicle-mounted media players, digital cameras, wearable electronic devices, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, printers and other digital display products.
  • touch screens mobile phones, tablet computers (pad), portable game consoles, handheld computers (personal digital assistant, PDA), notebook computers, ultra mobile personal computers (ultra mobile personal computers) , UMPC), handheld computers, netbooks, vehicle-mounted media players, digital cameras, wearable electronic devices, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, printers and other digital display products.
  • VR virtual reality
  • AR augmented reality
  • FIG. 3 is a schematic structural diagram of a touch screen for a narrow-frame electronic device according to an embodiment of the present application.
  • the touch screen includes a first circuit board 101 and a second circuit board 102, a display layer 103, a substrate 104, a thin film packaging layer 105 and a conductive layer 106.
  • a display layer 103 is provided above the substrate 104, a thin film encapsulation layer 105 is provided above the display layer 103, and a conductive layer 106 is provided above the thin film encapsulation layer 105. among them:
  • the display layer 103 may include a display area 1031 and a non-display area 1032.
  • the display area 1031 of the display layer 103 includes a display unit, and the display unit is, for example, an organic light emitting diode (OLED) display unit for realizing display on a touch screen.
  • a display driving integrated circuit 10321 can be provided on the non-display area 1032 of the display layer 103.
  • the display driving integrated circuit 10311 is coupled to the display area 1031 through a wire 10322.
  • the display unit is not limited to an OLED display unit, but may also be other types of display units, such as a micro light emitting diode (Micro LED) display unit, which is not limited in the embodiment of the present application.
  • the non-display area 1032 is also a part of the substrate.
  • the display driving integrated circuit 10321 may also be disposed in other positions, for example, disposed on the first circuit board 101, which is not limited in the embodiment of the present application.
  • the display layer 103 may be deposited on the substrate 104.
  • the substrate 104 may be a flexible substrate, such as a flexible polymer material, so that the substrate can be bent to realize a flexible touch screen.
  • the substrate 104 may also be a glass substrate, and the material of the substrate is not limited in the embodiment of the present application.
  • Thin film encapsulation layer 105 It is formed by alternately stacking at least one organic material layer and at least one inorganic material layer through thin film encapsulation technology. The thin film encapsulation layer 105 and the substrate 104 encapsulate the display layer 103 together.
  • the film encapsulation layer 105, the substrate 104 and the display layer 103 constitute a display module.
  • Through holes 1063 may be provided in specific areas Z1 and Z2 of the thin film encapsulation layer 105.
  • a contact point 1033 is provided on the non-display area 1032 of the display layer 103, for example, a silver paste point, to reduce impedance caused by contact.
  • the touch sensing electrode 1061 is coupled to the lead 1062, and the lead 1062 is coupled to the contact point 1033 on the non-display area 1032 of the display layer through the through hole 1063.
  • the contact point 1033 may be coupled to the touch driving integrated circuit 1011 through the lead 1034 and the second circuit board 102.
  • the electrical signals detected by the touch sensing electrode 1011 can be sequentially transmitted to the touch driving integrated circuit 1011 through the lead 1062, the through hole 1063, the contact point 1033 and the lead 1034, and the second circuit board 102.
  • the touch drive signal output by the touch drive integrated circuit 1011 can also be transmitted to the touch sensing electrode 1061 through the second circuit board 102, the lead 1034, the contact point 1033, the through hole 1063, and the lead 1062 in sequence.
  • Conductive layer 106 includes touch sensing electrode 1061 and its lead 1062.
  • the touch sensing electrode 1061 is suitable for mutual capacitance touch sensing technology and or self-capacitance touch sensing technology.
  • the touch sensing electrode 1061 is used to detect touch operations on the touch screen.
  • the first circuit board 101 may be a flexible printed circuit.
  • the first circuit board 101 may include a touch drive integrated circuit 1011 for processing electrical signals corresponding to touch operations detected by the touch sensing electrodes 1061, including analog front-end processing (such as signal amplification, level adjustment and control, etc.), Analog to digital conversion (ADC) and digital signal processing (digital signal process, DSP), etc.
  • the touch drive integrated circuit 1011 may also include a drive circuit for the touch sensing electrode 1061, and output a touch drive signal for driving the touch sensing electrode 1061 so that the touch sensing electrode 1061 forms a capacitance with a fixed capacitance.
  • the capacitance value of the capacitor changes. The change in the capacitance value of the capacitor can be used to determine the touched position on the touch screen.
  • the first circuit board 101 also includes solder joints 1012 and windows 1013.
  • the solder joint 1012 is used to couple the touch drive integrated circuit 1011 to the trace on the first circuit board 101.
  • For the solder joint 1012 refer to the example shown in FIG. 4.
  • the second circuit board 102 includes an opening 1021 and a wiring 1022.
  • the trace 1022 on the second circuit board 102 couples the lead 1034 drawn from the contact point 1033 to the touch driving integrated circuit 1011 of the first circuit board 101.
  • the lead 1034 drawn from the contact point 1033 is coupled to the trace 1022 on the second circuit board 102.
  • the end position of the trace 1022 on the second circuit board 102 includes an opening 1021 of the protective film.
  • a window 1013 is also provided on the first circuit board 101 at a position corresponding to the position of the window 1021.
  • the traces on the second circuit board 102 are coupled to the touch driving integrated circuit 1011 through the opening 1021 on the second circuit board 102 and the opening 1013 on the first circuit board 101.
  • the lead 1034 drawn from the contact point 1033 is coupled to the lead 1062 of the conductive layer 106 through the contact point 1033 and the through hole 1063.
  • the electrical signals detected by the touch sensing electrode 1061 of the conductive layer 106 are sequentially transmitted to the touch drive integrated circuit 1011 through the lead 1062, the through hole 1063, the contact point 1033, the lead 1034, the wiring 1022, the window 1021, and the window 1013.
  • the touch drive signal output by the touch drive integrated circuit 1011 can also be transmitted to the touch sensing electrode 1061 through the window 1013, the window 1021, the wiring 1022, the lead 1034, the contact point 1033, the through hole 1063, and the lead 1062 in order to drive the touch. Sensing electrode.
  • FIG. 4 is a schematic diagram of a connection structure between a first circuit board 101 and a second circuit board 102 provided by an embodiment of the present application.
  • the first circuit board 101 includes a touch driver integrated circuit 1011.
  • the touch driver integrated circuit 1011 is soldered on the first circuit board 101 through one or more solder joints 1012, and the touch driver integrated circuit 1011 is soldered on the first circuit board 101 through these solder joints 1012. It is coupled to the traces on the first circuit board 101.
  • the touch driving integrated circuit 1011 may also be bonded to the first circuit board 101 through an anisotropic conductive film (ACF), and coupled to the traces on the first circuit board 101.
  • ACF anisotropic conductive film
  • the first circuit board 101 includes wiring, which can be implemented by a copper layer, and the surface of the first circuit board 101 also includes a protective film.
  • the second circuit board 102 also includes traces 1022, which can be implemented by a copper layer, and the surface of the second circuit board 102 also includes a protective film.
  • the protective film of the first circuit board 101 may include an opening 1013, and the protective film of the second circuit board 102 may also include an opening 1021.
  • An ACF 107 can be included between the window opening 1013 and the window opening 1021 to realize that the wiring of the first circuit board 101 and the wiring 1022 of the second circuit board 102 are coupled through the ACF 107 to realize the wiring of the second circuit board 102 1022 is coupled to the solder joint 1012 of the first circuit board.
  • the protective films on the first circuit board 101 and the second circuit board 102 can be used to shield the signal interference caused by the crossing of the wires on the first circuit board 101 and the wires on the second circuit board 102.
  • the trace 1022 on the second circuit board 102 shown in FIG. 4 may be any trace on the second circuit board 102, and other traces are connected in a similar manner to the touch drive integrated circuit 1011.
  • the number of through holes 1063 may be at least two.
  • Each of the leads 1062 corresponds to a through hole 1063 on the film packaging layer 105.
  • the at least two through holes 1063 can be dispersedly arranged in a specific area on the thin film encapsulation layer 105, for example, in a specific area Z1 and a specific area Z2.
  • the specific area Z1 and the specific area Z2 may be the borders of the touch screen.
  • the corresponding area on the thin-film encapsulation layer 105 for example, the corresponding area on the thin-film encapsulation layer 105 on the bottom border of the touch screen.
  • the specific area Z1 and the specific area Z2 may be arranged as close as possible to the edge of the thin film packaging layer 105 (for example, the corresponding edge of the bottom frame of the touch screen on the thin film packaging layer 105).
  • connection structure of the first circuit board 101 and the second circuit board 102 shown in FIGS. 3 and 4 is provided with a second circuit board 102.
  • the lead 1062 of the conductive layer 106 is coupled to the touch driver integrated circuit 1011 through the trace 1022 on the second circuit board 102 to realize the driving and detection of the conductive layer 106.
  • the number of layers of the first circuit board 101 can be reduced, thereby reducing process difficulty and cost.
  • FIG. 5 is a flowchart of a process flow of a touch screen provided by an embodiment of the present application.
  • the process flow includes steps S101 to S103.
  • the display unit in the display module may be an active matrix organic light-emitting diode (AMOLED) display unit, or an OLED display unit, or a micro LED display unit, It may also be other display modules or display units newly appearing in the future, which is not limited in the embodiment of the present application.
  • AMOLED active matrix organic light-emitting diode
  • OLED organic light-emitting diode
  • micro LED micro LED display unit
  • the embodiment of the application does not limit the process flow of manufacturing the display module, and the process flow of manufacturing the display module in the prior art can be referred to.
  • the display module includes a thin film packaging layer 105, a substrate 104 and a display layer 103.
  • FIG. 6 is a schematic diagram of a structure in a process flow of a touch screen provided by an embodiment of the present application.
  • a conductive layer 106 can be fabricated on the thin film packaging layer 105, including the fabrication of touch sensing electrodes 1061 and leads 1062, which can be fabricated by a printing process The conductive layer 106 described above.
  • the conductive layer 106 may also be implemented using out-cell touch technology, that is, the conductive layer 106 is a separate layer, and the conductive layer 106 is bonded to the display module.
  • the conductive layer 106 can also be implemented by using in-cell touch technology, that is, the conductive layer 106 is embedded in the display module.
  • fabricating a conductive layer 106 on the display module also includes coupling the leads 1062 of the conductive layer 106 to the contact points 1033 of the non-display area on the display layer 103 through the through holes 1063; Then, wires 1034 are laid on the substrate 104 to couple with the contact points 1033.
  • the first circuit board 101 can be connected to the display module by bonding or soldering.
  • the first circuit board 101 is connected to the substrate 104.
  • Bonding can be performed using ACF, for example, and the solder can be solder or silver paste.
  • the chip on the first circuit board 101 is connected to the display module.
  • the embodiment of the application does not limit the process flow of connecting the first circuit board 101 to the display module, and the process flow of connecting the FPC to the display module in the prior art can be referred to.
  • the second circuit board 102 can also be connected to the first circuit board 101 by bonding or soldering.
  • the wiring 1022 in the second circuit board 102 can pass through the ACF107, the wiring of the first circuit board 101 and The touch driving integrated circuit 1011 is coupled.
  • the lead 1034 drawn from the contact point 1033 is coupled to the trace 1022 of the second circuit board 102, so that the lead 1062 of the conductive layer 106 passes through the through hole 1063 in turn ,
  • the contact point 1033, the lead 1034, the trace 1022 of the second circuit board 102, the ACF107, and the trace of the first circuit board 101 are coupled to the touch driver integrated circuit 1011.
  • the substrate 104 may be flexible.
  • FIG. 7 is a schematic diagram of a touch screen structure provided by an embodiment of the present application.
  • the substrate 104 when the touch screen is installed on an electronic device, the substrate 104 can be bent, folded, or folded, so as to realize an extremely narrow lower frame of the touch screen. It is not limited to the lower frame, and the bent part can also be located at other positions of the touch screen.
  • the upper frame can achieve a very narrow upper frame.
  • the flowchart of the process flow of the touch screen shown in FIG. 5 may also include other steps, which are not limited in the embodiment of the present application.
  • the embodiment of the present application does not limit the shape of the second circuit board 102 and its position on the first circuit board 101.
  • the shape of the second circuit board 102 and the second circuit board 102 on the first circuit board can be determined The position set on 101.
  • the shape and position of the second circuit board 102 can be such that the lead 1034 drawn from the contact point 1033 is coupled to the second circuit board 102 via the first circuit board 101, and then via the trace 1022 on the second circuit board 102 It is then coupled to the touch driving integrated circuit 1011.
  • the lead 1034 drawn from the contact point 1033 does not need to pass through the first circuit board 101, but is directly coupled to the second circuit board 102, and then passes on the second circuit board 102.
  • the trace 1022 is then coupled to the touch driving integrated circuit 1011. The following are introduced separately.
  • FIG. 8 is a schematic structural diagram of a touch screen provided by an embodiment of the present application.
  • the lead 1034 drawn from the contact point 1033 can be coupled to the second circuit board 102 via the first circuit board 101.
  • the lead 1034 drawn from the contact point 1033 can be bonded to the substrate 104 using ACF, and then the lead 1034 can also be bonded to the first circuit board 101 using ACF, and is coupled to the second circuit board 101 via the first circuit board 101. 102 on the circuit board.
  • the lead 1034 is coupled to the second circuit board 102 by ACF bonding.
  • the first circuit board 101 includes wiring and a touch drive integrated circuit 1011. If the wiring from the lead 1034 drawn from the contact point 1033 to the touch driver integrated circuit 1011 is directly laid on the first circuit board 101, it will cross other wiring on the first circuit board 101. In order to reduce the crossing of the wires on the first circuit board 101, as shown in FIG. 8, the leads 1034 drawn from the contact points 1033 are coupled to the wires 1022 on the second circuit board 102.
  • the end position of the trace 1022 on the second circuit board 102 includes an opening 1021 of the protective film.
  • a window 1013 is also provided on the first circuit board 101 at a position corresponding to the position of the window 1021.
  • the trace 1022 on the second circuit board 102 is coupled to the touch driver integrated circuit 1011 through the window 1021 on the second circuit board 102. After the first circuit board 101 and the second circuit board 102 are bonded together using ACF, the trace 1022 on the second circuit board 102 passes through the opening 1021, ACF 107, the opening 1013 and the trace of the first circuit board 101 It is coupled to the touch driving integrated circuit 1011. Furthermore, it is realized that the lead 1062 of the conductive layer 106 is coupled to the touch driving integrated circuit 1011 through the through hole 1063, the contact point 1033 and the lead 1034, the trace 1022 of the second circuit board 102 and the trace on the first circuit board 101.
  • the leads 1034 drawn from the contact points 1033 are laid on the first circuit board 101, they can be laid along the edge of the first circuit board 101 so as not to cross the wires on the first circuit board 101.
  • the number of contact points 1033 is at least two, and each lead 1062 of the at least two leads 1062 corresponds to a contact point 1033 on the substrate 104. Each of the at least two contact points 1033 corresponds to a lead 1034 on the substrate.
  • the number of leads 1034 is at least two.
  • a second circuit board 102 is provided to couple the leads 1062 of the conductive layer 106 to the touch drive integrated circuit 1011 through the traces 1022 on the second circuit board 102
  • the leads 1062 of the conductive layer 106 there is no need to add traces on the first circuit board 101 to couple the leads 1062 of the conductive layer 106, which reduces the crossing of the traces on the first circuit board 101, thereby reducing the number of traces. Interference caused by crossover.
  • the number of layers of the first circuit board 101 can be reduced, thereby reducing process difficulty and cost.
  • the embodiment of the present application does not limit the shapes of the window 1013, the window 1021, and the second circuit board 102.
  • the touch screen structure shown in FIG. 8 can be folded in the manner shown in FIG. 7 when it is installed on an electronic device.
  • FIG. 9A is a schematic structural diagram of a touch screen provided by an embodiment of the present application.
  • the lead 1034 drawn from the contact point 1033 can also be directly coupled to the second circuit board 102 without passing through the first circuit board 101.
  • the lead 1034 drawn from the contact point 1033 can be bonded to the substrate 104 by ACF, and then the lead 1034 is coupled to the second circuit board 102.
  • the lead 1034 is coupled to the second circuit board 102 by ACF bonding.
  • the lead 1034 drawn from the contact point 1033 is coupled to the trace 1022 on the second circuit board 102.
  • the end position of the trace 1022 on the second circuit board 102 includes an opening 1021 of the protective film.
  • a window 1013 is also provided at a position on the first circuit board 101 corresponding to the position of the window 1021.
  • the trace 1022 on the second circuit board 102 is coupled to the touch driving integrated circuit 1011 through the window 1013 on the second circuit board 102.
  • the second circuit board 102 can be bonded to the first circuit board 101 using ACF, and the second circuit board 102 can be bonded to the substrate 104 using ACF.
  • the trace 1022 on the second circuit board 102 passes through the window 1021, ACF 107, the window on the first circuit board 101, and the first circuit board.
  • the traces of the circuit board 101 are coupled to the touch driving integrated circuit 1011.
  • the leads 1062 of the conductive layer 106 are coupled to the traces 1022 on the second circuit board 102 through the through holes 1063, the contact points 1033, and the leads 1034.
  • the lead 1062 of the conductive layer 106 is coupled to the touch drive integrated circuit 1011 through the through hole 1063, the contact point 1033 and the lead 1034, the trace 1022 of the second circuit board 102 and the trace on the first circuit board 101.
  • FIG. 9A can be bent, folded or folded when installed on an electronic device.
  • FIG. 9B is a schematic diagram of a touch screen structure provided by an embodiment of the present application.
  • the substrate 104 can be bent, folded or turned over, so as to realize a very narrow lower frame of the touch screen. It is not limited to the lower frame, and the bent part can also be located at other positions of the touch screen.
  • the upper frame can achieve a very narrow upper frame.
  • FIG. 10A is a schematic structural diagram of a touch screen provided by an embodiment of the present application.
  • the lead 1062 is directly coupled to the first end of a trace of the second circuit board 102 via the through hole 1063.
  • the lead 1062 can also be directly coupled to the second circuit board 102 without passing through the substrate 104.
  • the lead 1062 can be bonded to the second circuit board 102 by ACF, and then the lead 1062 is coupled to the first circuit board 101 via the trace 1022 on the second circuit board 102 through the window 1021 on the second circuit board ,
  • the wiring on the first circuit board 101 is coupled to the touch driving integrated circuit 1011.
  • the lead 1062 may be coupled to the second circuit board 102 by ACF bonding.
  • the second circuit board 102 can be bonded to the first circuit board 101 using ACF. After the first circuit board 101 and the second circuit board 102 are bonded together using ACF, the trace 1022 on the second circuit board 102 passes through the window 1021, ACF 107, the window on the first circuit board 101, and the first circuit board.
  • the traces of the circuit board 101 are coupled to the touch driving integrated circuit 1011. Furthermore, it is realized that the lead 1062 of the conductive layer 106 is coupled to the touch driving integrated circuit 1011 through the through hole 1063, the trace 1022 of the second circuit board 102 and the trace on the first circuit board 101.
  • FIG. 10A is a schematic diagram of a touch screen structure provided by an embodiment of the present application.
  • the substrate 104 and the second circuit board 102 can be bent, folded or turned over, thereby realizing a very narrow lower frame of the touch screen. It is not limited to the lower frame, and the bent part can also be located at other positions of the touch screen.
  • the upper frame can achieve a very narrow upper frame.
  • FIG. 11 is a schematic structural diagram of a touch screen provided by an embodiment of the present application.
  • the lead 1034 drawn from the contact point 1033 can also be divided into two parts, and a part of the lead 1034 drawn from the contact point 1033 is coupled to the second circuit board 102 via the substrate 104.
  • the traces on the first circuit board 101 are coupled to the traces on the first circuit board 101 through the traces on the second circuit board 102 and the opening 1021 on the second circuit board, and the traces on the first circuit board 101 are then coupled to the touch driver integrated circuit 1011 on.
  • the other part of the lead 1034 drawn from the contact point 1033 is coupled to the trace on the first circuit board 101 via the substrate 104, the first circuit board 101, and the opening 1021 on the first circuit board 101.
  • the traces are then coupled to the touch driver integrated circuit 1011.
  • the touch screen structure shown in FIG. 11 can be folded or bent when installed on an electronic device, and can be referred to as shown in FIG. 9B after being folded or bent.
  • FIG. 12 is a schematic structural diagram of a touch screen provided by an embodiment of the present application.
  • the lead 1062 is divided into two parts. A part of the lead 1062 is directly coupled to the first end of a trace of the second circuit board 102 through the through hole 1063, that is, the part of the lead 1062 is directly coupled to the first end of a trace of the second circuit board 102 through the through hole 1063.
  • the wiring on the second circuit board 102, the opening on the second circuit board 1021 is coupled to the wiring on the first circuit board 101, the wiring on the first circuit board 101 is then coupled to the touch driver integrated circuit 1011 on.
  • Another part of the lead 1062 is coupled to the trace on the first circuit board 101 via the through hole 1063, the contact point 1033, the lead 1034, the first circuit board 101, and the opening 1021 on the first circuit board 101.
  • the above traces are then coupled to the touch drive integrated circuit 1011.
  • the touch screen structure shown in FIG. 12 can be folded or bent when installed on an electronic device, and can be referred to as shown in FIG. 10B after being folded or bent.
  • the number of contact points 1033 is smaller than the number of leads 1062.
  • Each contact point 1033 corresponds to a lead 1034 on the substrate 104.
  • the lead 1062 of the conductive layer 106 shown in FIGS. 11 and 12 may be led out from the through hole 1063 in two parts, and may be divided into more parts. As shown in FIG. 11, among the multiple parts of the leads 1062 of the conductive layer 106 are divided, one or more parts may pass through the through holes 1063, the contact points 1033, the leads 1034, and the tracks 1022 on the second circuit board 102.
  • the opening 1021 on the second circuit board is coupled to the trace on the first circuit board 101, and the trace on the first circuit board 101 is then coupled to the touch driver integrated circuit 1011; the other one or more parts of the lead 1062 is coupled to the traces on the first circuit board 101 through the through holes 1063, the contact points 1033, the leads 1034, the first circuit board 101, and the opening 1021 on the first circuit board 101, and the traces on the first circuit board 101
  • the wire is then coupled to the touch drive integrated circuit 1011.
  • one or more parts may be coupled to the first via 1063 through holes 1063, traces on the second circuit board 102, and openings 1021 on the second circuit board.
  • a trace on the circuit board 101, the trace on the first circuit board 101 is then coupled to the touch drive integrated circuit 1011; the other one or more parts of the lead 1062 pass through the through hole 1063, the contact point 1033, the lead 1034, The first circuit board 101 and the opening 1021 on the first circuit board 101 are coupled to the wires on the first circuit board 101, and the wires on the first circuit board 101 are then coupled to the touch drive integrated circuit 1011.
  • the lead 1062 of the conductive layer 106 is divided into multiple parts, in addition to the distribution shown in FIG. 11 and FIG. 12, there may also be a third or fourth part of the lead wire arranged in other ways.
  • the lead 1062 of the conductive layer 106 is divided into three parts, of which two parts are arranged in the two types shown in FIG. 11, and the third part of the lead 1062 (as shown in FIG. 12) passes through the through hole 1063 and the second circuit board
  • the traces on the upper 102, the opening 1021 on the second circuit board, and the traces on the first circuit board 101 are coupled to the touch driver integrated circuit 1011.
  • FIGS. 3, 6, and 8 to 12 are all described by taking as an example the conductive layer 106 includes 4 leads 1062 and the TFE 105 includes 4 through holes. Each lead 1062 corresponds to a through hole 1063 on the TFE105. The lead 1062 is coupled to the lead 1034 through the corresponding through hole 1063, or is coupled to the trace 1022 on the second circuit board 102 through the corresponding through hole 1063. It can be understood that the conductive layer 106 is not limited to include four leads 1062, and can also include more or less leads, and the corresponding number of through holes can also be greater or less.
  • the number of leads 1062 is N, and N is greater than or equal to two.
  • the second end of each lead of the M leads 1062 is coupled to the first end of a trace 1022 of the second circuit board 102 via the display module. Therefore, the number of wires 1022 on the second circuit board 102 is also M.
  • the number of the first leads may be multiple, and the first leads and the through holes may have a one-to-one correspondence, that is, one first lead corresponds to one through hole.
  • the through holes and the contact points also have a one-to-one correspondence, that is, one through hole corresponds to one contact point.
  • Figure 3, Figure 6, Figure 8, Figure 9A and Figure 11 show examples.
  • some or all of the through holes may not have corresponding contact points.
  • all through holes have no corresponding contact points.
  • some of the through holes have no corresponding contact points.
  • the contact point and the second lead may have a one-to-one correspondence, that is, one contact point corresponds to one second lead.
  • the number of leads 1062 can be the same as the number of through holes 1063, and the number of contact points 1033 on the substrate 104 is the same as that of leads 1034.
  • the number of leads 1062 is also the same as the number of wires 1022 on the second circuit board 102, which is N.
  • the number of leads 1062 can be the same as the number of through holes 1063, and the number of leads 1022 is the same, which is N.
  • the number of leads 1062 and the number of wires 1022 on the second circuit board 102 is not limited to the four shown in the figure, and may be more or less, which is not limited in the embodiment of the present application. In the examples shown in FIGS. 11 and 12, the number of wires 1022 on the second circuit board 102 is not limited to the four shown in the figure, and may be more or less.
  • the number of leads 1062 is still the same as the number of through holes 1063, the number of contact points 1033 on the substrate 104, and the number of leads 1034, for example, N, such as 4.
  • the second end of each of the M (eg, 2) leads 1062 is coupled to the first end of one trace 1022 of the second circuit board 102 via the display module.
  • the second end of each first lead of the remaining (NM) leads 1062 is coupled via the through hole 1063, the contact point 1033, the second lead 1034 corresponding to the contact point 1033, the first circuit board 101 and the first window 1013. Connect to the touch drive integrated circuit 1011.
  • the number of leads 1062 is still the same as the number of through holes 1063, for example, both are N, such as 4.
  • the second end of each of the M (eg, 2) leads 1062 is directly coupled to the first end of one trace 1022 of the second circuit board 102 via the corresponding through hole 1063.
  • the second end of each first lead of the remaining (NM) leads 1062 (for example, the remaining 2) leads 1062 via the through hole 1063, the contact point 1033, the second lead 1034 corresponding to the contact point 1033, the first circuit board 101 and
  • the first window 1013 is coupled to the touch driving integrated circuit 1011.
  • the number of leads 1062 is still the same as the number of through holes 1063, for example, both are N, such as 4.
  • N such as 4.
  • the second end of each of the S (such as 2, ie 2 out of 3) leads 1062 is directly coupled to the second circuit through the corresponding through hole 1063
  • the first end of one trace 1022 of the board 102 and the second end of one lead 1063 other than the S leads 1062 are coupled to the second circuit board 102 via through holes 1063, contact points 1033, and leads 1034 corresponding to the contact points.
  • the first end of a trace 1022 is the same as the number of through holes 1063, for example, both are N, such as 4.
  • the second end of each of the S (such as 2, ie 2 out of 3) leads 1062 is directly coupled to the second circuit through the corresponding through hole 1063
  • the first end of one trace 1022 of the board 102 and the second end of one lead 1063 other than the S leads 1062 are coupled to the second circuit board 102 via through holes 10
  • the second end of the (NM) (such as 1) lead 1062 other than the above-mentioned M (such as 3) leads 1062 of the N (such as 4) leads 1062 passes through the through hole 1063, the contact point 1033, and the corresponding contact point
  • the lead 1034, the first circuit board 101 and the opening 1013 are coupled to the touch driving integrated circuit 1011.
  • the lead 1062 is the first lead.
  • the lead 1034 is the second lead.
  • Window opening 1021 is the second window opening.
  • Window opening 1013 is the first window opening.
  • the end coupled to the touch sensing electrode 1061 is the first end, and the end coupled to the contact point 1033 or the first end of the trace 1022 on the second circuit board 102 is the second end. end.
  • the end coupled to the contact point 1033 or the second end of the first lead 1062 is the first end, which is connected to the first end of the line 1022 on the second circuit board 102 or the first circuit
  • the end coupled to the window 1013 on the board 101 is the second end.
  • the end coupled to the second end of the second lead 1034 or the second end of the first lead 1062 is the first end, which is connected to the second end of the second circuit board 102
  • the end coupled to the second window 1021 is the second end.
  • an embodiment of the present application also provides an electronic device, which includes the touch screen described in any one of FIGS. 3 and 7 to 12.
  • FIG. 13 is a schematic structural diagram of an electronic device provided by an embodiment of the present application. As shown in Figure 13, the electronic device includes a processor 1301 and a touch screen 1302, where:
  • the processor 1301 may be one or more central processing units (CPU).
  • CPU central processing units
  • the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 1301 is coupled to the touch screen 1302, and the processor 1301 is used to input signals to the touch screen 1302, and is also used to receive signals output by the touch driving integrated circuit in the touch screen.
  • the touch screen 1302 is used for receiving a detection signal generated when a touch operation is applied, and is also used for displaying.
  • the touch screen 1302 may be an OLED screen, a Micro LED screen, or an AMOLED screen.
  • the touch screen 1302 may be the touch screen described in any one of FIGS. 3 and 7-12.
  • the touch screen of the electronic device is provided with a second circuit board.
  • the leads of the conductive layer are coupled to the touch drive integrated circuit through the traces on the second circuit board to realize the driving and detection of the conductive layer without adding on the first circuit board
  • the wiring is used to couple the leads of the conductive layer, reducing the crossing of the wiring on the first circuit board, thereby reducing the interference caused by the crossing of the wiring.
  • the number of layers of the first circuit board can be reduced, thereby reducing process difficulty and cost.
  • the electronic device shown in FIG. 13 is only an implementation manner of the embodiment of the present application. In practical applications, the electronic device shown in FIG. 13 may further include more or fewer components, which is not limited here.

Abstract

本申请实施例提供一种用于窄边框电子设备的触控屏和电子设备。该触控屏包含:导电层、显示模组、第一电路板和第二电路板;导电层包含触摸传感电极和N根第一引线,第一电路板包含触摸驱动集成电路;第二电路板包含至少一根走线;其中:触摸传感电极与N根第一引线中的每根第一引线的第一端耦接,M根第一引线中的每根第一引线的第二端经由显示模组与第二电路板的一根走线的第一端耦接,第二电路板中的每根走线的第二端与触摸驱动集成电路耦接,M小于或等于N;第二电路板的至少一根走线,用于将M根第一引线中的每根第一引线的第二端耦接到触摸驱动集成电路。本申请实施例的触控屏可以降低工艺难度和成本。

Description

用于窄边框电子设备的触控屏和电子设备
本申请要求在2019年2月1日提交中国国家知识产权局、申请号为201910105116.4、发明名称为“用于窄边框电子设备的触控屏和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,尤其涉及一种用于窄边框电子设备的触控屏和电子设备。
背景技术
随着电子设备功能的不断发展,触控屏在手机、平板等电子设备中应用越来越广。触控屏能够检测放置在其表面的用户手指或者其他物体,并能够识别手指或物体放置的位置。
目前,触控屏上的导电层(conductive layer,CL)106用来检测触控操作。如图1A所示,触控屏可以包括柔性印刷电路(flexible printed circuit,FPC)101、衬底(substrate,SUB)104、显示层(display layer)103、薄膜封装层(thin film encapsulation layer,TFE)105和导电层106。触控屏的导电层106可以设置在薄膜封装层105上。导电层106包括触摸传感电极(touch sensing electrode,TS)1061和引线(trace)1062。触摸传感电极1061通过引线1062、TFE上的通孔(via)1063与FPC上的触摸驱动集成电路(touch driving integrated circuit,TIC)1011耦接,来向TIC1011输出触摸信号。导电层106的多条引线1062可以汇总到触控屏的下边框在TFE上对应的区域1051,在该区域1051上的一个特定区域Z设置通孔将引线1062引出。
然而,当引线1062较多时,为避免引线1062交叉,需要较宽的触控屏下边框来实现在TFE105上对应的区域上布设引线,从而导致触控屏下边框较宽区域无法用于显示和触控,减小电子设备的屏占比。
如图1B所示,为减小触控屏下边框的宽度,TFE105上对应区域1051上的两个特定区域(特定区域Z1和特定区域Z2)均可用来为引线1062设置通孔1063,经过这两个特定区域上的通孔1063分别引出两部分引线并在FPC101上通过走线汇总到TIC1011。然而,FPC101上用来耦接两部分引线的走线会与FPC101上的其他走线交叉,带来信号干扰。为减少干扰,需要增加FPC101的层数,从而增大了FPC101的工艺复杂度和成本。
因此,如何降低下边框较窄的触控屏的工艺复杂度和成本,是亟待解决的问题。
发明内容
本申请公开了一种用于窄边框电子设备的触控屏和电子设备,可减小触控屏的边框的宽度,从而提高屏占比。另外,减少电路板的层数,从而降低工艺难度和成本。
第一方面,本申请实施例提供一种触控屏,所述触控屏包括导电层、显示模组、第一电路板和第二电路板;所述导电层包含触摸传感电极和N根第一引线,N大于或等于2,所述第一电路板包含触摸驱动集成电路;所述第二电路板包含至少一根走线;其中:所述触摸传感电极与所述N根第一引线中的每根第一引线的第一端耦接,M根所述第一引线中的每根第 一引线的第二端经由所述显示模组与所述第二电路板的一根走线的第一端耦接,所述第二电路板中的每根所述走线的第二端与所述触摸驱动集成电路耦接,其中,M小于或等于N,所述N根第一引线包含所述M根第一引线;所述显示模组,用于进行显示;所述触摸传感电极,用于当所述触控屏被作用有触摸操作时产生检测信号;所述第二电路板的所述至少一根走线,用于将所述M根第一引线中的每根第一引线的第二端耦接到所述触摸驱动集成电路;所述触摸驱动集成电路,用于驱动所述触摸传感电极,并接收所述触摸传感电极产生的所述检测信号。
上述的触控屏中,通过第二电路板中的走线,将导电层的引线通过第二电路板上的走线耦接在触摸驱动集成电路上,以实现导电层的驱动和检测,无需在第一电路板上增加走线来耦接导电层的引线,减少了第一电路板上走线的交叉,从而减少各走线交叉产生的干扰。另一方面,可以减少第一电路板的层数,从而降低工艺难度和成本。
在一种可能的实施方式中,所述第一电路板上还包含第一开窗,所述第二电路板上还包含第二开窗,所述第一开窗和所述第二开窗之间包含各项异性导电膜;所述第二电路板中的每根所述走线的第二端经由所述第二开窗、所述各项异性导电膜和所述第一开窗耦接到所述触摸驱动集成电路。
在一种可能的实施方式中,所述显示模组包含薄膜封装层、显示层和衬底;其中:所述薄膜封装层与所述衬底,用于将所述显示层进行封装;所述显示层,用于进行显示;所述薄膜封装层上包含至少两个通孔,所述N根第一引线中的每根第一引线在所述薄膜封装层上对应一个通孔,所述至少两个通孔分散布设在所述薄膜封装层上的特定区域,所述特定区域为所述触控屏边框在所述薄膜封装层上对应的区域;所述M根第一引线中的每根第一引线的第二端经由对应的通孔与所述第二电路板的一根走线的第一端耦接。
本申请实施例中,第一引线的数量可为多根,第一引线与通孔可以是一一对应,即一根第一引线对应一个通孔。
在一些实施例中,通孔和接触点也是一一对应,即一个通孔对应一个接触点。
在另一些实施例中,部分通孔或全部通孔可没有对应的接触点。例如第一引线的第二端经由对应的通孔直接耦接到第二电路板的一根走线的第一端的场景。
其中,接触点与第二引线可以是一一对应的,即一个接触点对应一根第二引线。
可选的,可将该特定区域和特定区域尽量靠近薄膜封装层的边缘(例如触控屏下边框在薄膜封装层上对应的边缘)布设。
上述的触控屏中,将至少两个通孔分散布设在薄膜封装层上的特定区域Z1和Z2,并将该特定区域Z1和Z2设定为触控屏下边框在薄膜封装层上对应的边缘,可以使得上述分散设置通孔的薄膜封装层在组装到触控屏上时,减小触控屏的边框的宽度,从而提高屏占比。
在一种可能的实施方式中,所述衬底上还包含至少两个接触点,所述N根第一引线中的每根第一引线在所述衬底上对应一个所述接触点;所述衬底上布设至少两根第二引线;所述至少两个接触点中的每个接触点,用于与一根所述第一引线的第二端耦接,并与一根所述第二引线的第一端耦接,每根所述第二引线的第二端与所述第二电路板的一根所述走线的第一端耦接。
在一种可能的实施方式中,所述N根第一引线中的每根第一引线的第二端经由对应的通孔直接耦接到所述第二电路板的一根走线的第一端。
在一种可能的实施方式中,所述至少两个接触点中的每个接触点在所述衬底上对应一根 所述第二引线;每根所述第二引线的第二端经由所述衬底耦接到所述第二电路板的一根走线的第一端;或者每根所述第二引线的第二端依次经由所述衬底和所述第一电路板耦接到所述第二电路板的走线的第一端。
在一种可能的实施方式中,所述衬底上还包含至少两个接触点,所述N根第一引线中的每根第一引线在所述衬底上对应一个所述接触点;所述衬底上布设至少两根第二引线;所述至少两个接触点中的每个接触点在所述衬底上对应一根所述第二引线;至少两根所述第二引线中,一部分所述第二引线的第二端与所述第二电路板的一根走线的第一端耦接,另一部分所述第二引线的第二端依次经由所述衬底、所述第一电路板和所述第一开窗耦接到所述触摸驱动集成电路。
在一种可能的实施方式中,所述衬底上还包含接触点,所述接触点的数量小于N;所述接触点中的每个接触点在所述衬底上对应一根第二引线;所述M根第一引线中的每根第一引线的第二端经由对应的通孔直接耦接到所述第二电路板的一根走线的第一端,所述M根第一引线以外的(N-M)根所述第一引线中的每根第一引线的第二端经由所述通孔、所述接触点、所述接触点对应的所述第二引线、所述第一电路板和所述第一开窗耦接到所述触摸驱动集成电路。
在另一种可能的实施方式中,所述M根第一引线包含S根第一引线,S小于或等于M;所述S根第一引线中的每根第一引线的第二端经由对应的通孔直接耦接到所述第二电路板的一根走线的第一端;所述M根第一引线中,除所述S根所述第一引线以外的(M-S)根所述第一引线中的每根第一引线的第二端经由所述通孔、所述接触点、所述接触点对应的所述第二引线耦接到所述第二电路板的一根所述走线的第一端;所述N根第一引线中,除所述M根第一引线以外的(N-M)根所述第一引线中的每根第一引线的第二端经由所述通孔、所述接触点、所述接触点对应的所述第二引线、所述第一电路板和所述第一开窗耦接到所述触摸驱动集成电路。
可选的,第二引线在第一电路板上布设时,可沿第一电路板的边缘布设,从而不会与第一电路板上的走线产生交叉。
在一种可能的实施方式中,所述第二引线通过各项异性导电膜粘接在所述衬底或者所述第一电路板上。
在一种可能的实施方式中,所述第一电路板和所述显示模组之间通过各项异性导电膜粘接,或者通过焊料焊接;所述第二电路板与所述显示模组之间、所述第二电路板与所述第一电路板之间通过各项异性导电膜粘接,或者通过焊料焊接。
在一种可能的实施方式中,所述第一电路板的表面和所述第二电路板的表面包含保护膜;所述保护膜,用于屏蔽所述第一电路板和所述第二电路板之间走线交叉产生的信号干扰。本申请实施例中,第一电路板和第二电路板的表面均包含保护膜,即第一电路板和第二电路板之间的走线不会相互有信号干扰。由此,在本申请实施例中,只是简单的增加一个第二电路板,即可实现将导电层上的多条第一引线与第一电路板上的触摸驱动集成电路耦接。从而无需在第一电路板上增加多层走线。相比于高成本的多层走线电路板,本申请实施例新增的第二电路板成本很低。
其中,本申请实施例对第二电路板的形状和其在第一电路板上设置的位置不作限制。
其中,该触控屏的制作工艺流程可包括:在显示模组上制作导电层;将第一电路板连接在显示模组上;将第二电路板连接在第一电路板上。
制作导电层可包括制作触摸传感电极和引线,可以是通过印刷工艺来制作上述导电层。
可选的,在显示模组上制作导电层,还包括将导电层的引线通过通孔耦接在衬底上的接触点上;然后在衬底上布设引线与接触点耦接。
可选的,可以使用粘接或者通过焊料焊接的方式将第一电路板连接在显示模组上。将第二电路板连接在第一电路板上也可以使用粘接或者通过焊料焊接的方式实现。
可选的,上述触控屏的结构中衬底可以是柔性的,可弯折、折叠或翻折,从而实现触控屏极窄的下边框。不限于下边框,弯折部分也可位于触控屏的其他位置,如上边框,则可实现极窄的上边框。
第二方面,本申请实施例提供一种电子设备,所述电子设备包括处理器和触控屏,其中:所述处理器与所述触控屏耦接,所述处理器用于向触控屏输入信号,还用于接收触控屏中触摸驱动集成电路输出的信号;所述触控屏是第一方面或第一方面任一种可能的实施方式所描述的触控屏。
附图说明
下面对本申请实施例用到的附图进行介绍。
图1A是现有技术提供的一种触控屏的结构示意图;
图1B是现有技术的一种触控屏的结构示意图;
图2是现有技术提供的一种电路板的分层结构示意图;
图3是本申请实施例提供的一种触控屏的结构示意图;
图4是本申请实施例提供的一种第一电路板101和第二电路板102的连接结构示意图;
图5是本申请实施例提供的一种触控屏的工艺流程的流程图;
图6是本申请实施例提供的一种触控屏的工艺流程中的结构示意图;
图7是本申请实施例提供的一种触控屏结构的示意图;
图8是本申请实施例提供的一种触控屏的结构示意图;
图9A是本申请实施例提供的一种触控屏的结构示意图;
图9B是本申请实施例提供的一种触控屏结构的示意图;
图10A是本申请实施例提供的一种触控屏的结构示意图;
图10B是本申请实施例提供的一种触控屏结构的示意图;
图11是本申请实施例提供的一种触控屏的结构示意图;
图12是本申请实施例提供的一种触控屏的结构示意图;
图13是本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。本申请实施例的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
如图1B所示,现有技术中,TFE105上对应区域1051上的特定区域Z1和特定区域Z2均可用来为引线1062设置通孔1063,经过这两个特定区域上的通孔1063分别引出两部分引线并在FPC101上通过走线汇总到TIC1011。然而,FPC101上用来耦接两部分引线的走线会与FPC101上的其他走线交叉,带来信号干扰。现有技术中为减小走线交叉带来的干扰,需要增加FPC101的层数,从而增大了FPC101的工艺复杂度和成本。具体的,请参阅图2,图 2是现有技术的一种多层电路板的结构示意图。结合图1B和图2,为减少走线交叉产生信号干扰,可增加FPC层数来将导电层106的引线1062耦接到TIC。其中,“耦接”可以理解为直接电连接或者间接电连接。导电层106的引线1062耦接到TIC,可以表示导电层106的引线1062和TIC通过走线电连接,也可以表示导电层106的引线1062和TIC经由电子元件或者经由电路连接。
如图2所示,FPC101可以包含六层铜层来完成走线。任意两层铜层之间设置有聚酰亚胺薄膜(polyimide film,PI)进行绝缘。且在FPC101中,产生走线交叉的两层铜之间需要设置一层铜层作为屏蔽层,来屏蔽干扰。
示例性的,如图2所示,第1层铜可实现电源走线。第2层铜可实现驱动走线,第4层铜可实现感应走线。如果第2层铜和第4层铜会出现走线交叉,则设置第3层铜实现接地走线,来实现第4层和第2层之间的信号屏蔽,以减少走线交叉产生的信号干扰。第6层铜可实现通信接口走线,具体如移动行业处理器接口(mobile industry processor interface,MIPI)走线,该MIPI接口用于传输触控屏显示内容。如果第4层铜和第6层铜会出现走线交叉,则第5层铜实现接地走线,来实现第6层和第4层交叉产生的信号屏蔽,以减少走线交叉产生的信号干扰。
其中,电源走线用于耦接供电电源。感应走线用于耦接导电层106的引线1062到触摸驱动集成电路1011。驱动走线用于将触摸驱动集成电路(display driving integrated circuit,DIC)输出的驱动信号发送给导电层106。DIC输出的驱动信号用于使得导电层106的触摸传感电极1061形成一定电容值的电容。当用户手指或者其他物体放置在触控屏上时,该电容的电容值改变。该电容的电容值变化量可用来确定触控屏上被触摸的位置。通信走线可包含触摸驱动集成电路与通信接口耦接的走线。该通信接口例如是用于与CPU进行通信的接口。
如图2所示,FPC 101还包含两层保护膜,形成在电路板的两个表面,从外部保护FPC。
与层数少(例如2层或3层)的FPC相比,图2所示的6层的FPC的制作工艺非常复杂度,且成本很高。为降低触控屏的工艺难度和成本,本申请实施例提供一种层数少,且屏占比高的电路板、触控屏和电子设备。
其中,本申请实施例提供的电路板和触控屏可用于电子设备。电子设备可以实现为以下任意一种包含触控屏的设备:手机、平板电脑(pad)、便携式游戏机、掌上电脑(personal digital assistant,PDA)、笔记本电脑、超级移动个人计算机(ultra mobile personal computer,UMPC)、手持计算机、上网本、车载媒体播放设备、数码相机、可穿戴电子设备、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、打印机等数显产品。
请参阅图3,图3是本申请实施例提供的一种用于窄边框电子设备的触控屏的结构示意图。如图3所示,该触控屏包含第一电路板101和第二电路板102、显示层103、衬底104、薄膜封装层105和导电层106。
衬底104上方设置有显示层103,在显示层103上方设置有薄膜封装层105,在薄膜封装层105上方设置有导电层106。其中:
显示层103:可包括显示区域1031和非显示区域1032。显示层103的显示区域1031包含显示单元,该显示单元例如是有机发光二极管(organic light emitting diode,OLED)显示单元,用于实现触控屏的显示。显示层103的非显示区域1032上可以设置显示驱动集成电路10321。显示驱动集成电路10311通过引线10322耦接到显示区域1031。本申请实施例中,不限于显示单元为OLED显示单元,还可以是其他类型的显示单元,例如微发光二极管(micro  light emitting diode,Micro LED)显示单元,本申请实施例对此不作限定。其中,非显示区域1032也即是衬底的一部分区域。
另外,本申请实施例中,显示驱动集成电路10321还可以设置在其他位置,例如设置在第一电路板101上,本申请实施例对此不作限定。
衬底104:显示层103可以沉积在衬底104上。衬底104可以是柔性衬底,例如柔性聚合物材料,从而衬底可以弯折,实现柔性触控屏。另外,衬底104还可以是玻璃衬底,本申请实施例对衬底的材质不作限制。
薄膜封装层105:通过薄膜封装技术来交替堆叠至少一个有机材料层和至少一个无机材料层而形成的。薄膜封装层105与衬底104一起将显示层103封装起来。
其中,薄膜封装层105、衬底104和显示层103组成显示模组。
薄膜封装层105的特定区域Z1和Z2上可设置通孔1063。在显示层103的非显示区域1032上设置接触点1033,例如可以是银浆点来减小接触带来的阻抗。导电层106上,触摸传感电极1061耦接到引线1062上,并且引线1062通过通孔1063耦接到显示层非显示区域1032上的接触点1033。接触点1033可以通过引线1034、第二电路板102耦接到触摸驱动集成电路1011。因此,触摸传感电极1011检测到的电信号可以通过引线1062、通孔1063、接触点1033和引线1034、第二电路板102依次传输到触摸驱动集成电路1011。触摸驱动集成电路1011输出的触摸驱动信号也可以依次通过第二电路板102、引线1034、接触点1033、通孔1063和引线1062传输到触摸传感电极1061。
导电层106:包括触摸传感电极1061及其引线1062,该触摸传感电极1061适用于互电容式触摸传感技术和或自电容式触摸传感技术。触摸传感电极1061用于检测触控屏上的触摸操作。
第一电路板101:可以为柔性印刷电路。第一电路板101可以包含触摸驱动集成电路1011,用于对触摸传感电极1061检测到的触摸操作对应的电信号进行处理,包括模拟前端处理(例如信号放大、电平调整与控制等)、模数转换(analog to digital convert,ADC)和数字信号处理(digital signal process,DSP)等。另外,触摸驱动集成电路1011还可以包括触摸传感电极1061的驱动电路,输出触摸驱动信号,用于驱动触摸传感电极1061,使得触摸传感电极1061形成固定电容值的电容。当用户手指或者其他物体放置在触控屏上时,该电容的电容值改变。该电容的电容值变化量可用来确定触控屏上被触摸的位置。
第一电路板101上还包括焊点1012和开窗1013。焊点1012用于将触摸驱动集成电路1011耦接在第一电路板101上的走线上。关于焊点1012可参考图4所示示例。
第二电路板102包含开窗1021和走线1022。
第二电路板102上的走线1022将从接触点1033引出的引线1034耦接到第一电路板101的触摸驱动集成电路1011上。具体的,如图3所示,从接触点1033引出的引线1034与第二电路板上102的走线1022耦接。第二电路板上102的走线1022的末端位置包含保护膜的开窗1021。第一电路板101上与该开窗1021位置对应的位置也设置有开窗1013。第二电路板102上的走线经由第二电路板上102上开窗1021、第一电路板101上的开窗1013与触摸驱动集成电路1011耦接。从接触点1033引出的引线1034通过接触点1033、通孔1063与导电层106的引线1062耦接。进而实现导电层106的触摸传感电极1061检测到的电信号通过引线1062、通孔1063、接触点1033、引线1034、走线1022、开窗1021和开窗1013依次传输到触摸驱动集成电路1011。触摸驱动集成电路1011输出的触摸驱动信号也可以依次通过开窗 1013、开窗1021、走线1022、引线1034、接触点1033、通孔1063和引线1062传输到触摸传感电极1061,以驱动触摸传感电极。下面介绍本申请实施例中,第一电路板101和第二电路板102的连接结构。请参阅图4,图4是本申请实施例提供的一种第一电路板101和第二电路板102的连接结构示意图。如图4所示,第一电路板101包含触摸驱动集成电路1011,触摸驱动集成电路1011通过一个或多个焊点1012焊接在第一电路板101上,触摸驱动集成电路1011通过这些焊点1012与第一电路板上101的走线耦接。触摸驱动集成电路1011也可以通过各项异性导电膜(anisotropic conductive film,ACF)粘接(bonding)在第一电路板101上,与第一电路板101上的走线耦接。
其中,第一电路板101包含走线,可以通过铜层实现,第一电路板101的表面还包括保护膜。第二电路板102也包含走线1022,可以通过铜层实现,第二电路板102的表面也包括保护膜。第一电路板101的保护膜可以包含开窗1013,第二电路板102的保护膜也可以包含开窗1021。开窗1013和开窗1021之间可以包含ACF 107,以实现第一电路板101的走线和第二电路板102的走线1022通过ACF 107耦接,进而实现第二电路板102的走线1022和第一电路板的焊点1012耦接。
其中,第一电路板101和第二电路板102上的保护膜可用于屏蔽第一电路板101上的走线与第二电路板102上的走线交叉产生的信号干扰。
本申请实施例中,不限于第一电路板101和第二电路板102通过ACF107粘接,还可以是通过焊料焊接。本申请实施例中,图4示出的第二电路板102上的走线1022可以是第二电路板102上的任一条走线,其他走线与触摸驱动集成电路1011的连接方式类似。
如图3和图4所示,通孔1063的数量可以是至少两个。引线1062中的每根引线1062在薄膜封装层105上对应一个通孔1063。这至少两个通孔1063可分散布设在薄膜封装层105上的特定区域,例如分散布设在特定区域Z1和特定区域Z2上,该特定区域Z1和特定区域Z2可以是触控屏边框在薄膜封装层105上对应的区域,例如触控屏下边框在薄膜封装层105上对应的区域。
可选的,可将该特定区域Z1和特定区域Z2尽量靠近薄膜封装层105的边缘(例如触控屏下边框在薄膜封装层105上对应的边缘)布设。
将至少两个通孔1063分散布设在薄膜封装层105上的特定区域Z1和Z2,并将该特定区域Z1和Z2设定为触控屏下边框在薄膜封装层105上对应的边缘,可以使得上述分散设置通孔1063的薄膜封装层105在组装到触控屏上时,减小触控屏的边框的宽度,从而提高屏占比。
图3和图4示出的第一电路板101和第二电路板102的连接结构中设置第二电路板102。通过第二电路板102中的走线1022,将导电层106的引线1062通过第二电路板102上的走线1022耦接在触摸驱动集成电路1011上,以实现导电层106的驱动和检测,无需在第一电路板101上增加走线来耦接导电层106的引线1062,减少了第一电路板101上走线的交叉,从而减少各走线交叉产生的干扰。另一方面,可以减少第一电路板101的层数,从而降低工艺难度和成本。
下面介绍本申请实施例中,包含第一电路板101和第二电路板102的触控屏的工艺流程。请参阅图5,图5是本申请实施例提供的一种触控屏的工艺流程的流程图。该工艺流程包含步骤S101~S103。
S101、在显示模组上制作导电层106。
本申请实施例中,显示模组中的显示单元可以是有源矩阵有机发光二极体(active matrix organic light-emitting diode,AMOLED)显示单元,或者OLED显示单元,还可以是micro LED显示单元,还可以是其他显示模组或者未来新出现的显示单元,本申请实施例对此不作限定。本申请实施例对制作显示模组的工艺流程不作限制,可参考现有技术中制作显示模组的工艺流程。
显示模组包含薄膜封装层105、衬底104和显示层103。请参阅图6,图6是本申请实施例提供的一种触控屏的工艺流程中的结构示意图。如图6中的(a)所示,在完成显示模组的制作后,可以在薄膜封装层105上制作导电层106,包括制作触摸传感电极1061和引线1062,可以是通过印刷工艺来制作上述导电层106。或者,在其它实施方式中,导电层106还可以是利用外挂式触控技术(out cell)实现,即导电层106是单独的一层,将该导电层106粘接在显示模组上。再或者,导电层106还可以是利用内嵌式触控技术实现,即导电层106嵌入在显示模组中实现。
如图6中的(a)所示,在显示模组上制作导电层106,还包括将导电层106的引线1062通过通孔1063耦接在显示层103上非显示区域的接触点1033上;然后在衬底104上布设引线1034与接触点1033耦接。
S102、将第一电路板101连接在显示模组上。
本申请实施例中,可以使用粘接(bonding)或者通过焊料焊接的方式将第一电路板101连接在显示模组上。例如:将第一电路板101连接在衬底104上。粘接(bonding)例如可以使用ACF进行,焊料可以是焊锡或者银浆。如图6中的(b)所示,将第一电路板101连接在显示模组上后,第一电路板101上的芯片与显示模组完成连接。本申请实施例对将第一电路板101连接在显示模组上的工艺流程不作限制,可参考现有技术中将FPC连接在显示模组上的工艺流程。
S103、将第二电路板102连接在第一电路板101上。
本申请实施例中,将第二电路板102连接在第一电路板101上也可以使用粘接(bonding)或者通过焊料焊接的方式。
如图6中的(c)所示,将第二电路板102连接在第一电路板101上后,第二电路板102中的走线1022可通过ACF107、第一电路板101的走线与触摸驱动集成电路1011耦接。将第二电路板102连接在第一电路板101上后,从接触点1033引出的引线1034耦接在第二电路板102的走线1022上,使得导电层106的引线1062依次通过通孔1063、接触点1033、引线1034、第二电路板102的走线1022、ACF107和第一电路板101的走线耦接到触摸驱动集成电路1011。
可选的,图6所示的触控屏结构中,衬底104可以是柔性的。请参阅图7,图7是本申请实施例提供的一种触控屏结构的示意图。如图7所示,在触控屏安装在电子设备上时,衬底104可弯折、折叠或翻折,从而实现触控屏极窄的下边框。不限于下边框,弯折部分也可位于触控屏的其他位置,如上边框,则可实现极窄的上边框。
本申请实施例中,图5示出的触控屏的工艺流程的流程图还可以包含其他步骤,本申请实施例对此不作限制。
本申请实施例对第二电路板102的形状和其在第一电路板101上设置的位置不作限制。在触摸驱动集成电路1011在第一电路板101上的位置和其在第一电路板101上的走线确定后, 可以确定第二电路板102的形状和第二电路板102在第一电路板101上设置的位置。其中,第二电路板102设置的形状和位置可以使得从接触点1033引出的引线1034经由第一电路板101耦接到第二电路板102上,然后经由第二电路板102上的走线1022再与触摸驱动集成电路1011耦接。也可以是设置第二电路板102的形状和位置,使得从接触点1033引出的引线1034无需经由第一电路板101,直接耦接到第二电路板102上,然后经由第二电路板102上的走线1022再与触摸驱动集成电路1011耦接。以下分别进行介绍。
请参阅图8,图8是本申请实施例提供的一种触控屏的结构示意图。如图8所示,从接触点1033引出的引线1034可经由第一电路板101耦接到第二电路板102上。从接触点1033引出的引线1034可以使用ACF粘接在衬底104上,然后该引线1034在第一电路板101上也可使用ACF进行粘接,并经由第一电路板101耦接在第二电路板上102。该引线1034耦接在第二电路板102也可以是通过ACF粘接的方式。
如图8所示,第一电路板101上包含走线和触摸驱动集成电路1011。如果在第一电路板101上直接布设从接触点1033引出的引线1034到触摸驱动集成电路1011之间的走线,会与第一电路板101上的其他走线交叉。为减少第一电路板101上走线的交叉,如图8所示,从接触点1033引出的引线1034与第二电路板上102的走线1022耦接。第二电路板上102的走线1022的末端位置包含保护膜的开窗1021。第一电路板101上与该开窗1021位置对应的位置也设置有开窗1013。第二电路板102上的走线1022经由第二电路板上102上开窗1021与触摸驱动集成电路1011耦接。在使用ACF将第一电路板101和第二电路板102粘接起来后,第二电路板102上的走线1022经由开窗1021、ACF 107、开窗1013和第一电路板101的走线耦接在触摸驱动集成电路1011上。进而实现导电层106的引线1062通过通孔1063、接触点1033和引线1034、第二电路板102的走线1022和第一电路板101上的走线耦接到触摸驱动集成电路1011。
从接触点1033引出的引线1034在第一电路板101上布设时,可沿第一电路板101的边缘布设,从而不会与第一电路板101上的走线产生交叉。
如图8所示,接触点1033的数量为至少两个,至少两根引线1062中的每根引线1062在衬底104上对应一个接触点1033。至少两个接触点1033中的每个接触点在衬底上对应一根引线1034。引线1034的数量为至少两个。
图8所示出的触控屏的结构示意图中,设置第二电路板102,用来将导电层106的引线1062通过第二电路板102上的走线1022耦接在触摸驱动集成电路1011上,以实现导电层106的驱动和检测,无需在第一电路板101上增加走线来耦接导电层106的引线1062,减少了第一电路板101上走线的交叉,从而减少各走线交叉产生的干扰。另一方面,可以减少第一电路板101的层数,从而降低工艺难度和成本。
另外,本申请实施例对开窗1013、开窗1021和第二电路板102的形状不做限制。
本申请实施例中,图8所示的触控屏结构在安装在电子设备上时,可按照图7所示方式折叠。
可选的,请参阅图9A,图9A是本申请实施例提供的一种触控屏的结构示意图。如图9A所示,从接触点1033引出的引线1034还可以无需经由第一电路板101,直接耦接到第二电路板102。从接触点1033引出的引线1034可以通过ACF粘接在衬底104上,然后该引线1034耦接在第二电路板102上。该引线1034耦接在第二电路板102也可以是通过ACF粘接的方式。从接触点1033引出的引线1034与第二电路板102上的走线1022耦接。第二电路板上 102的走线1022的末端位置包含保护膜的开窗1021。第一电路板上101上与该开窗1021位置对应的位置也设置有开窗1013。第二电路板102上的走线1022经由第二电路板上102上开窗1013与触摸驱动集成电路1011耦接。
第二电路板102可以使用ACF和第一电路板101粘接,第二电路板102可使用ACF和衬底104粘接。在使用ACF将第一电路板101和第二电路板102粘接起来后,第二电路板102上的走线1022经由开窗1021、ACF 107、第一电路板101上的开窗和第一电路板101的走线耦接在触摸驱动集成电路1011上。在使用ACF将第一电路板101和衬底104粘接起来后,导电层106的引线1062通过通孔1063、接触点1033、引线1034与第二电路板102上的走线1022耦接。进而实现导电层106的引线1062通过通孔1063、接触点1033和引线1034、第二电路板102的走线1022和第一电路板101上的走线耦接到触摸驱动集成电路1011。
关于第一电路板101上的开窗1013、走线等结构,可参考图8所示示例的具体描述,这里不再赘述。
本申请实施例中,图9A所示的触控屏结构在安装在电子设备上时,可弯折、折叠或翻折。请参阅图9B,图9B是本申请实施例提供的一种触控屏结构的示意图。如图9B所示,衬底104可弯折、折叠或翻折,从而实现触控屏极窄的下边框。不限于下边框,弯折部分也可位于触控屏的其他位置,如上边框,则可实现极窄的上边框。
可选的,请参阅图10A,图10A是本申请实施例提供的一种触控屏的结构示意图。如图10A所示,引线1062经由通孔1063直接耦接到第二电路板102的一根走线的第一端。具体的,引线1062还可以无需经由衬底104,直接耦接到第二电路板102。引线1062可以通过ACF粘接在第二电路板102上,然后引线1062经由第二电路板上102的走线1022、第二电路板上开窗1021耦接在第一电路板101上的走线,第一电路板101上的走线再耦接在触摸驱动集成电路1011上。引线1062耦接在第二电路板102也可以是通过ACF粘接的方式。
第二电路板102可以使用ACF和第一电路板101粘接。在使用ACF将第一电路板101和第二电路板102粘接起来后,第二电路板102上的走线1022经由开窗1021、ACF 107、第一电路板101上的开窗和第一电路板101的走线耦接在触摸驱动集成电路1011上。进而实现导电层106的引线1062通过通孔1063、第二电路板102的走线1022和第一电路板101上的走线耦接到触摸驱动集成电路1011。
关于第一电路板101上的开窗1013、走线等结构,可参考图8所示示例的具体描述,这里不再赘述。
本申请实施例中,图10A所示的触控屏结构在安装在电子设备上时,可弯折、折叠或翻折。请参阅图10B,图10B是本申请实施例提供的一种触控屏结构的示意图。如图10B所示,衬底104和第二电路板102可弯折、折叠或翻折,从而实现触控屏极窄的下边框。不限于下边框,弯折部分也可位于触控屏的其他位置,如上边框,则可实现极窄的上边框。
可选的,请参阅图11,图11是本申请实施例提供的一种触控屏的结构示意图。如图11所示,从接触点1033引出的引线1034还可以被分为两部分,其中一部分从接触点1033引出的引线1034经由衬底104,耦接到第二电路板102。然后经由第二电路板上102的走线、第二电路板上开窗1021耦接在第一电路板101上的走线,第一电路板101上的走线再耦接在触摸驱动集成电路1011上。另一部分从接触点1033引出的引线1034经由衬底104、第一电路 板101、第一电路板101上的开窗1021耦接在第一电路板101上的走线,第一电路板101上的走线再耦接在触摸驱动集成电路1011上。
本申请实施例中,图11所示的触控屏结构在安装在电子设备上时可折叠或弯折,折叠或弯折后可参照图9B所示。
可选的,请参阅图12,图12是本申请实施例提供的一种触控屏的结构示意图。如图12所示,引线1062被分为两部分,其中一部分引线1062经由通孔1063直接耦接到第二电路板102的一根走线的第一端,即该一部分引线1062经由通孔1063、第二电路板上102的走线、第二电路板上开窗1021耦接在第一电路板101上的走线,第一电路板101上的走线再耦接在触摸驱动集成电路1011上。另一部分引线1062经由通孔1063、接触点1033、引线1034、第一电路板101、第一电路板101上的开窗1021耦接在第一电路板101上的走线,第一电路板101上的走线再耦接在触摸驱动集成电路1011上。
本申请实施例中,图12所示的触控屏结构在安装在电子设备上时可折叠或弯折,折叠或弯折后可参照图10B所示。
如图12所示,接触点1033的数量小于引线1062的数量。每个接触点1033在衬底104上对应一根引线1034。
其中,图11和图12所示出的与引线1062耦接的引线1034在第一电路板101上走线时,不会与第一电路板101上其他走线交叉,无需为引线1034增加第一电路板101的层数。
本申请实施例中,不限于图11、12所示出的将导电层106的引线1062分两部分从通孔1063引出,还可以分为更多部分。如图11所示,导电层106的引线1062分成的这多个部分引线中,可以有一个或多个部分经由通孔1063、接触点1033、引线1034、第二电路板上102的走线1022、第二电路板上开窗1021耦接在第一电路板101上的走线,第一电路板101上的走线再耦接在触摸驱动集成电路1011上;其它一个或多个部分的引线1062经由通孔1063、接触点1033、引线1034、第一电路板101、第一电路板101上的开窗1021耦接在第一电路板101上的走线,第一电路板101上的走线再耦接在触摸驱动集成电路1011上。如图12所示,分成的这多个部分引线1062中,可以有一个或多个部分经由通孔1063、第二电路板上102的走线、第二电路板上开窗1021耦接在第一电路板101上的走线,第一电路板101上的走线再耦接在触摸驱动集成电路1011上;其它一个或多个部分的引线1062经由通孔1063、接触点1033、引线1034、第一电路板101、第一电路板101上的开窗1021耦接在第一电路板101上的走线,第一电路板101上的走线再耦接在触摸驱动集成电路1011上。此外,当导电层106的引线1062分为多个部分时,除了图11、图12所示的分布之外,还可以有第三或第四部分的引线以其他方式进行布设。例如:导电层106的引线1062分为三部分,其中有两部分以图11中所示的两种进行布设,第三部分引线1062(如图12所示)经由通孔1063、第二电路板上102的走线、第二电路板上开窗1021、第一电路板101上的走线耦接在触摸驱动集成电路1011上。
本申请实施例中,图3、图6、图8~图12均以导电层106上包含4根引线1062、TFE105上包含4个通孔为例进行介绍。每根引线1062在TFE105上对应一个通孔1063。引线1062经由对应的通孔1063与引线1034耦接,或者经由对应的通孔1063与第二电路板102上的走线1022耦接。可以理解的,导电层106上不限于包含4根引线1062,还可以包含更多或更少的引线数量,对应的通孔数量也对应可以是更多或更少。
本申请实施例中,引线1062的数量为N,N大于或等于2。这N根引线1062中,M根 引线1062中的每根引线的第二端经由显示模组与第二电路板102的一根走线1022的第一端耦接。则第二电路板102的走线1022也为M根。
本申请实施例中,第一引线的数量可为多根,第一引线与通孔可以是一一对应,即一根第一引线对应一个通孔。
在一些实施例中,通孔和接触点也是一一对应,即一个通孔对应一个接触点。例如图3、图6、图8、图9A和图11所示出示例。
在另一些实施例中,部分通孔或全部通孔可没有对应的接触点。例如第一引线的第二端经由对应的通孔直接耦接到第二电路板的一根走线的第一端的场景,如图10A所示示例即全部的通孔没有对应接触点。如图12所示示例即部分通孔没有对应接触点。
其中,接触点与第二引线可以是一一对应的,即一个接触点对应一根第二引线。
对于图3、图6、图8和图9A所示出的示例中,引线1062的数量可以和通孔1063的数量相同,且和衬底104上的接触点1033的数量相同,且和引线1034的数量相同,例如均为N,即M=N。图3、图6、图8和图9A所示出示例中,引线1062的数量还和第二电路板102上走线1022的根数相同,为N。图10A所述示例中,引线1062的数量可以和通孔1063的数量相同,且和走线1022的根数相同,为N。引线1062和第二电路板102上走线1022的数量不限于图示的4根,还可以是更多或更少数量,本申请实施例对此不作限定。图11和图12所示出的示例中,第二电路板102上走线1022的数量不限于图示的4根,还可以是更多或更少数量。
对于图11所示出的示例中,引线1062的数量仍然和通孔1063的数量、衬底104上的接触点1033的数量、引线1034的数量相同,例如均为N,如4。然而,仅有M(例如2根)根引线1062中的每根引线的第二端经由显示模组与第二电路板102的一根走线1022的第一端耦接。其余的(N-M)根引线1062中的每根第一引线的第二端经由通孔1063、接触点1033、接触点1033对应的第二引线1034、第一电路板101和第一开窗1013耦接到触摸驱动集成电路1011。
对于图12所示出的示例中,引线1062的数量仍然和通孔1063的数量相同,例如均为N,如4。然而,仅有M(例如2根)根引线1062中的每根引线的第二端经由对应的通孔1063直接耦接到第二电路板102的一根走线1022的第一端。其余的(N-M)根(例如其余2根)引线1062中的每根第一引线的第二端经由通孔1063、接触点1033、接触点1033对应的第二引线1034、第一电路板101和第一开窗1013耦接到触摸驱动集成电路1011。
在另一种实施例中,引线1062的数量仍然和通孔1063的数量相同,例如均为N,如4。M根(如3根)引线1062中,S根(如2根,即3根中的2根)引线1062中的每根引线的第二端经由对应的通孔1063直接耦接到第二电路板102的一根走线1022的第一端,S根引线1062以外的1根引线1063的第二端经由通孔1063、接触点1033、接触点对应的引线1034耦接到第二电路板102的一根走线1022的第一端。N根(如4根)引线1062中的上述M根(如3根)引线以外的(N-M)根(如1根)引线1062的第二端经由通孔1063、接触点1033、接触点对应的所述引线1034、第一电路板101和开窗1013耦接到所述触摸驱动集成电路1011。
在本申请实施例中,引线1062即为第一引线。引线1034即为第二引线。开窗1021即为第二开窗。开窗1013即为第一开窗。对于每根第一引线1062来说,与触摸传感电极1061耦接的端为第一端,与接触点1033或者第二电路板102上走线1022的第一端耦接的端为第二端。对于每根第二引线1034来说,与接触点1033或者第一引线1062的第二端耦接的端为第 一端,与第二电路板102上走线1022的第一端或者第一电路板101上的开窗1013耦接的端为第二端。对于第二电路板102上的走线1022来说,与第二引线1034的第二端或者第一引线1062的第二端耦接的端为第一端,与第二电路板102上的第二开窗1021耦接的端为第二端。
另外本申请实施例还提供一种电子设备,该电子设备包含图3、图7~图12任一项所描述的触控屏。请参阅图13,图13是本申请实施例提供的一种电子设备的结构示意图。如图13所示,该电子设备包含处理器1301和触控屏1302,其中:
处理器1301可以是一个或多个中央处理器(central processing unit,CPU),在处理器1301是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
处理器1301与触控屏1302耦接,处理器1301用于向触控屏1302输入信号,还用于接收触控屏中触摸驱动集成电路输出的信号。
触控屏1302,用于接收被作用有触摸操作时产生检测信号,还用于进行显示。该触控屏1302可以是OLED屏,也可以是Micro LED屏,还可以是AMOLED屏。
其中,触控屏1302可以是图3、图7~图12任一项所描述的触控屏。
该电子设备的触控屏中设置第二电路板。通过第二电路板中的走线,将导电层的引线通过第二电路板上的走线耦接在触摸驱动集成电路上,以实现导电层的驱动和检测,无需在第一电路板上增加走线来耦接导电层的引线,减少了第一电路板上走线的交叉,从而减少各走线交叉产生的干扰。另一方面,可以减少第一电路板的层数,从而降低工艺难度和成本。
需要说明的,图13所示的电子设备仅仅是本申请实施例的一种实现方式,实际应用中,图13所示的电子设备还可以包括更多或更少的部件,这里不作限制。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何在本申请实施例揭露的技术范围内的变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种触控屏,其特征在于,所述触控屏包括导电层、显示模组、第一电路板和第二电路板;所述导电层包含触摸传感电极和N根第一引线,N大于或等于2,所述第一电路板包含触摸驱动集成电路;所述第二电路板包含至少一根走线;其中:
    所述触摸传感电极与所述N根第一引线中的每根第一引线的第一端耦接,M根所述第一引线中的每根第一引线的第二端经由所述显示模组与所述第二电路板的一根走线的第一端耦接,所述第二电路板中的每根所述走线的第二端与所述触摸驱动集成电路耦接,其中,M小于或等于N,所述N根第一引线包含所述M根第一引线;
    所述显示模组,用于进行显示;
    所述触摸传感电极,用于当所述触控屏被作用有触摸操作时产生检测信号;
    所述第二电路板的所述至少一根走线,用于将所述M根第一引线中的每根第一引线的第二端耦接到所述触摸驱动集成电路;
    所述触摸驱动集成电路,用于驱动所述触摸传感电极,并接收所述触摸传感电极产生的所述检测信号。
  2. 根据权利要求1所述的触控屏,其特征在于,所述第一电路板上还包含第一开窗,所述第二电路板上还包含第二开窗,所述第一开窗和所述第二开窗之间包含各项异性导电膜;
    所述第二电路板中的每根所述走线的第二端经由所述第二开窗、所述各项异性导电膜和所述第一开窗耦接到所述触摸驱动集成电路。
  3. 根据权利要求1或2所述的触控屏,其特征在于,所述显示模组包含薄膜封装层、显示层和衬底;其中:
    所述薄膜封装层与所述衬底,用于将所述显示层进行封装;
    所述显示层,用于进行显示;
    所述薄膜封装层上包含至少两个通孔,所述N根第一引线中的每根第一引线在所述薄膜封装层上对应一个通孔,所述至少两个通孔分散布设在所述薄膜封装层上的特定区域,所述特定区域为所述触控屏边框在所述薄膜封装层上对应的区域;
    所述M根第一引线中的每根第一引线的第二端经由对应的通孔与所述第二电路板的一根走线的第一端耦接。
  4. 根据权利要求3所述的触控屏,其特征在于,所述衬底上还包含至少两个接触点,所述N根第一引线中的每根第一引线在所述衬底上对应一个所述接触点;所述衬底上布设至少两根第二引线;
    所述至少两个接触点中的每个接触点,用于与一根所述第一引线的第二端耦接,并与一根所述第二引线的第一端耦接,每根所述第二引线的第二端与所述第二电路板的一根所述走线的第一端耦接。
  5. 根据权利要求3所述的触控屏,其特征在于,所述N根第一引线中每根第一引线的 第二端经由对应的通孔直接耦接到所述第二电路板的一根走线的第一端。
  6. 根据权利要求4所述的触控屏,其特征在于,所述至少两个接触点中的每个接触点在所述衬底上对应一根所述第二引线;
    每根所述第二引线的第二端经由所述衬底耦接到所述第二电路板的一根走线的第一端;或者
    每根所述第二引线的第二端依次经由所述衬底和所述第一电路板耦接到所述第二电路板的走线的第一端。
  7. 根据权利要求3所述的触控屏,其特征在于,所述衬底上还包含至少两个接触点,所述N根第一引线中的每根第一引线在所述衬底上对应一个所述接触点;所述衬底上布设至少两根第二引线;所述至少两个接触点中的每个接触点在所述衬底上对应一根所述第二引线;
    至少两根所述第二引线中,一部分所述第二引线的第二端与所述第二电路板的一根走线的第一端耦接,另一部分所述第二引线的第二端依次经由所述衬底、所述第一电路板和所述第一开窗耦接到所述触摸驱动集成电路。
  8. 根据权利要求3所述的触控屏,其特征在于,所述衬底上还包含接触点,所述接触点的数量小于N;所述接触点中的每个接触点在所述衬底上对应一根第二引线;
    所述M根第一引线中的每根第一引线的第二端经由对应的通孔直接耦接到所述第二电路板的一根走线的第一端,所述M根第一引线以外的(N-M)根所述第一引线中的每根第一引线的第二端经由所述通孔、所述接触点、所述接触点对应的所述第二引线、所述第一电路板和所述第一开窗耦接到所述触摸驱动集成电路;或者
    所述M根第一引线包含S根第一引线,S小于或等于M;所述S根第一引线中的每根第一引线的第二端经由对应的通孔直接耦接到所述第二电路板的一根走线的第一端;所述M根第一引线中,除所述S根所述第一引线以外的(M-S)根所述第一引线中的每根第一引线的第二端经由所述通孔、所述接触点、所述接触点对应的所述第二引线耦接到所述第二电路板的一根所述走线的第一端;所述N根第一引线中,除所述M根第一引线以外的(N-M)根所述第一引线中的每根第一引线的第二端经由所述通孔、所述接触点、所述接触点对应的所述第二引线、所述第一电路板和所述第一开窗耦接到所述触摸驱动集成电路。
  9. 根据权利要求4、6至8任一项所述的触控屏,其特征在于,所述第二引线通过各项异性导电膜粘接在所述衬底或者所述第一电路板上。
  10. 根据权利要求1至9任一项所述的触控屏,其特征在于,
    所述第一电路板和所述显示模组之间通过各项异性导电膜粘接,或者通过焊料焊接;
    所述第二电路板与所述显示模组之间、所述第二电路板与所述第一电路板之间通过各项异性导电膜粘接,或者通过焊料焊接。
  11. 根据权利要求1至10任一项所述的触控屏,其特征在于,所述第一电路板的表面和 所述第二电路板的表面包含保护膜;
    所述保护膜,用于屏蔽所述第一电路板和所述第二电路板之间走线交叉产生的信号干扰。
  12. 一种电子设备,其特征在于,所述电子设备包括处理器和触控屏,其中:
    所述处理器用于接收所述触控屏中触摸驱动集成电路输出的信号;
    所述触控屏是如权利要求1至11任一项所述的触控屏。
PCT/CN2020/072703 2019-02-01 2020-01-17 用于窄边框电子设备的触控屏和电子设备 WO2020156234A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20748974.1A EP3896557A4 (en) 2019-02-01 2020-01-17 TOUCH SCREEN FOR NARROW BEzel ELECTRONIC DEVICE AND ELECTRONIC DEVICE
US17/422,899 US11550417B2 (en) 2019-02-01 2020-01-17 Touchscreen for narrow-frame electronic device, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910105116.4 2019-02-01
CN201910105116.4A CN109828691B (zh) 2019-02-01 2019-02-01 用于窄边框电子设备的触控屏和电子设备

Publications (1)

Publication Number Publication Date
WO2020156234A1 true WO2020156234A1 (zh) 2020-08-06

Family

ID=66863222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072703 WO2020156234A1 (zh) 2019-02-01 2020-01-17 用于窄边框电子设备的触控屏和电子设备

Country Status (4)

Country Link
US (1) US11550417B2 (zh)
EP (1) EP3896557A4 (zh)
CN (2) CN112684939B (zh)
WO (1) WO2020156234A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112684939B (zh) * 2019-02-01 2021-12-03 华为技术有限公司 用于窄边框电子设备的触控屏和电子设备
CN113539058B (zh) * 2020-04-15 2022-09-23 华为技术有限公司 显示模组和终端
CN112104351A (zh) * 2020-09-03 2020-12-18 Oppo(重庆)智能科技有限公司 电容按键、电容按键模组和电子装置
CN215679319U (zh) * 2020-12-30 2022-01-28 京东方科技集团股份有限公司 一种触控显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106951125A (zh) * 2017-03-30 2017-07-14 上海天马微电子有限公司 一种触控显示面板及触控显示装置
US20180203555A1 (en) * 2017-01-13 2018-07-19 Japan Display Inc. Display device
CN108762562A (zh) * 2018-05-25 2018-11-06 京东方科技集团股份有限公司 一种显示基板、显示面板、触控显示装置及其制作方法
CN109828691A (zh) * 2019-02-01 2019-05-31 华为技术有限公司 用于窄边框电子设备的触控屏和电子设备

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186336A (ja) 1994-12-28 1996-07-16 Mitsubishi Electric Corp 回路基板、駆動回路モジュール及びそれを用いた液晶表示装置並びにそれらの製造方法
KR101913258B1 (ko) * 2012-05-23 2018-10-30 엘지전자 주식회사 터치 패널 및 이를 포함한 디스플레이 장치
US9504124B2 (en) 2013-01-03 2016-11-22 Apple Inc. Narrow border displays for electronic devices
CN203588244U (zh) * 2013-11-15 2014-05-07 敦泰科技有限公司 投射式电容触摸屏的走线结构及投射式电容触摸屏
KR102253530B1 (ko) * 2014-11-21 2021-05-18 삼성디스플레이 주식회사 터치 스크린 패널을 구비한 표시 장치
CN204360347U (zh) * 2014-12-19 2015-05-27 宸鸿科技(厦门)有限公司 触控面板
CN104536610B (zh) 2014-12-31 2018-02-02 上海天马有机发光显示技术有限公司 一种触控面板、触控显示装置及其制作方法
TWI610205B (zh) * 2015-06-12 2018-01-01 瑞鼎科技股份有限公司 內嵌式觸控面板
JP6694247B2 (ja) * 2015-07-09 2020-05-13 株式会社ジャパンディスプレイ タッチ検出機能付き表示装置
KR102241680B1 (ko) * 2015-09-02 2021-04-16 한국전기연구원 배선전극을 가지는 투명전극의 제조방법
CN105807992A (zh) 2016-03-03 2016-07-27 京东方科技集团股份有限公司 一种触控显示面板和触控显示装置
CN106406612B (zh) 2016-09-14 2019-07-26 厦门天马微电子有限公司 阵列基板、包含其的显示面板及显示装置
CN106505089B (zh) * 2016-10-31 2019-11-05 上海天马微电子有限公司 显示器件
CN106527823A (zh) * 2017-01-03 2017-03-22 京东方科技集团股份有限公司 一种触控基板和触控显示装置
CN106803514B (zh) * 2017-02-22 2020-06-30 上海天马微电子有限公司 一种集成触控的有机发光二极管显示装置
US20180321765A1 (en) 2017-05-03 2018-11-08 Raydium Semiconductor Corporation Capacitive touch panel
CN107393422B (zh) * 2017-09-04 2019-09-27 武汉华星光电半导体显示技术有限公司 显示面板及显示设备
CN107797708A (zh) * 2017-11-20 2018-03-13 深圳市盛迪瑞科技有限公司 具有较少外围电路的电容式触摸屏
CN108012458B (zh) 2017-12-12 2019-10-25 东莞市奕东电子有限公司 一种柔性电路桥接工艺
CN108762558B (zh) * 2018-05-23 2021-06-04 Oppo广东移动通信有限公司 一种触摸屏、具有该触摸屏的显示模组以及电子装置
CN109240533A (zh) * 2018-08-06 2019-01-18 武汉华星光电半导体显示技术有限公司 一种触摸屏及oled显示面板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180203555A1 (en) * 2017-01-13 2018-07-19 Japan Display Inc. Display device
CN106951125A (zh) * 2017-03-30 2017-07-14 上海天马微电子有限公司 一种触控显示面板及触控显示装置
CN108762562A (zh) * 2018-05-25 2018-11-06 京东方科技集团股份有限公司 一种显示基板、显示面板、触控显示装置及其制作方法
CN109828691A (zh) * 2019-02-01 2019-05-31 华为技术有限公司 用于窄边框电子设备的触控屏和电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3896557A4

Also Published As

Publication number Publication date
CN109828691B (zh) 2023-06-20
CN112684939A (zh) 2021-04-20
CN109828691A (zh) 2019-05-31
US11550417B2 (en) 2023-01-10
CN112684939B (zh) 2021-12-03
US20220075472A1 (en) 2022-03-10
EP3896557A4 (en) 2022-02-23
EP3896557A1 (en) 2021-10-20

Similar Documents

Publication Publication Date Title
WO2020156234A1 (zh) 用于窄边框电子设备的触控屏和电子设备
US10162445B2 (en) Electrode sheet for pressure detection and pressure detecting module including the same
CN205750747U (zh) 触摸输入装置
KR102538829B1 (ko) 전자 장치
US9626062B2 (en) Touch sensing apparatus and method for manufacturing the same
TWI595388B (zh) 觸控顯示裝置
TWM464736U (zh) 觸控面板
TWI452612B (zh) 觸控面板及觸控顯示面板
US20140001018A1 (en) Touch window having improved electrode pattern structure
TW201426447A (zh) 觸控面板
US20210212207A1 (en) Flexible printed circuit and manufacture method thereof, electronic device module and electronic device
US11589461B2 (en) Flexible printed circuit and manufacturing method thereof, electronic device module and electronic device
EP3920671A2 (en) Flexible circuit board and manufacturing method, display device, circuit board structure and display panel thereof
KR20180136031A (ko) 표시 장치
TW201530400A (zh) 觸控裝置
TWI467440B (zh) 觸摸屏及觸控顯示裝置
KR20150033415A (ko) 터치센서 모듈
WO2020156595A9 (zh) 柔性电路板及制作方法、显示装置、电路板结构及其显示面板
JP2012064211A (ja) 静電容量方式タッチスクリーンの製造方法
JP2018085090A (ja) タッチ入力装置
TWI514221B (zh) 觸控顯示裝置
TWM481448U (zh) 觸控裝置
US11360623B2 (en) Touch sensor and electronic device
CN212009538U (zh) 触控面板及电子设备
CN215499741U (zh) 电路板、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748974

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020748974

Country of ref document: EP

Effective date: 20210712

NENP Non-entry into the national phase

Ref country code: DE