WO2020156038A1 - 波束检测和调整方法及装置、天线模块选择方法及装置、计算机可读存储介质 - Google Patents

波束检测和调整方法及装置、天线模块选择方法及装置、计算机可读存储介质 Download PDF

Info

Publication number
WO2020156038A1
WO2020156038A1 PCT/CN2020/070388 CN2020070388W WO2020156038A1 WO 2020156038 A1 WO2020156038 A1 WO 2020156038A1 CN 2020070388 W CN2020070388 W CN 2020070388W WO 2020156038 A1 WO2020156038 A1 WO 2020156038A1
Authority
WO
WIPO (PCT)
Prior art keywords
aip
array
characteristic parameter
upa
signal
Prior art date
Application number
PCT/CN2020/070388
Other languages
English (en)
French (fr)
Inventor
郭舒生
赖玠玮
康锴
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910098508.2A external-priority patent/CN111294080B/zh
Priority claimed from CN201910097995.0A external-priority patent/CN111294093B/zh
Priority claimed from CN201910098028.6A external-priority patent/CN111294121B/zh
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Priority to US16/976,597 priority Critical patent/US11664872B2/en
Publication of WO2020156038A1 publication Critical patent/WO2020156038A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection

Definitions

  • the present invention relates to the field of communications, in particular to a beam detection and adjustment method and device, an antenna module selection method and device, and a computer-readable storage medium.
  • the 5G millimeter wave mobile communication system uses array antenna and beamforming technology, and the 5G terminal millimeter wave chip uses package antenna technology, which has significant directional selectivity.
  • Fast and accurate beam alignment and tracking at the transceiver end is an important technology for millimeter wave communication. Because the millimeter wave band signal attenuation is fast, the scattering and diffraction characteristics are poor, and it is easy to be blocked, the signal energy can be concentrated through the narrow beam, and the beam direction change can be dynamically tracked and adjusted through the beam management, so as to better support the millimeter wave frequency channel. Rapid change characteristics.
  • the terminal performs various beam scanning through the radio resource control (Radio Resource Control, RRC) protocol in the network and completes beam management in combination with related alignment strategies.
  • RRC Radio Resource Control
  • this method occupies more network resources, and the terminal side requires more baseband processing and correspondingly generates greater power consumption.
  • antennas or sensing devices dedicated to radio frequency environment detection, as well as corresponding electrical tuning components, signal processing and control circuits are added to the terminal, but these hardware structures are difficult to integrate with the terminal’s main communication system chipset. Ground increases the device, volume and cost of the terminal.
  • the technical problem solved by the present invention is to provide a beam detection and adjustment method and device based on an AiP structure, and an antenna module selection method and device.
  • the embodiment of the present invention provides a beam detection method based on an AiP structure.
  • the AiP structure includes at least a first AiP, and the first AiP includes at least one ULA (Uniform Linear Array) array and at least one corresponding UPA (Uniform Planar Array, uniform plane array) array,
  • the beam detection method includes: the ULA array detects a signal transmitted by the corresponding UPA array; and storing a first set of detection results, the first set of detection results including The detected characteristic parameter value of the signal emitted by the UPA array.
  • the first set of detection results includes any combination of the following parameters: the direction angle of the beam corresponding to the detected signal emitted by the UPA array, the ratio of the main lobe and the side lobe, the side lobe suppression, and the power of the beam .
  • the signal transmitted by the UPA array is a millimeter wave signal.
  • each ULA array includes multiple antenna elements
  • each UPA array includes multiple antenna elements
  • the ULA array detects the signals transmitted by the corresponding UPA array including: multiple antenna elements included in the ULA array Respectively detecting the signals transmitted by the multiple antenna units included in the corresponding UPA array.
  • the AiP structure further includes a second AiP
  • the beam detection method further includes: the ULA array in the second AiP detects the signal transmitted by the UPA array in the first AiP; and storing the second group The detection result, the second set of detection results includes the characteristic parameter value of the signal transmitted by the UPA array in the first AiP detected by the ULA array in the second AiP.
  • the AiP structure further includes a second AiP
  • the beam detection method further includes: the ULA array in the second AiP detects signals transmitted by the UPA array in the second AiP; and storing the third group The detection result, the third set of detection results includes the characteristic parameter value of the signal transmitted by the UPA array in the second AiP detected by the ULA array in the second AiP.
  • the first group of detection results, the second group of detection results, and the third group of detection results are used as the AiP structure. Preset characteristic parameter values during design.
  • the first group of detection results, the second group of detection results, and the third group of detection results are stored in a look-up table (LUT).
  • LUT look-up table
  • the embodiment of the present invention also provides a beam detection device based on an AiP structure.
  • the AiP structure includes at least a first AiP, and the first AiP includes at least one ULA array and at least one corresponding UPA array.
  • the beam detection device It includes: a control unit for controlling the ULA array to detect the signal emitted by the corresponding UPA array; and a storage unit for storing a first set of detection results, the first set of detection results including the detected UPA The characteristic parameter value of the signal emitted by the array.
  • the first set of detection results includes any combination of the following parameters: the direction angle of the beam corresponding to the detected signal emitted by the UPA array, the ratio of the main lobe and the side lobe, the side lobe suppression, and the power of the beam .
  • the signal transmitted by the UPA array is a millimeter wave signal.
  • each ULA array includes multiple antenna elements
  • each UPA array includes multiple antenna elements
  • the control unit is configured to control the multiple antenna elements included in the ULA array to detect that the corresponding UPA array includes Of multiple antenna units transmit signals.
  • the AiP structure further includes a second AiP
  • the control unit is further configured to control the ULA array in the second AiP to detect the signal transmitted by the UPA array in the first AiP
  • the storage unit is also Used to store a second set of detection results, the second set of detection results including the characteristic parameter values of the signals emitted by the UPA array in the first AiP detected by the ULA array in the second AiP.
  • the AiP structure further includes a second AiP
  • the control unit is further configured to control the ULA array in the second AiP to detect the signal transmitted by the UPA array in the second AiP
  • the storage unit is also Used to store a third set of detection results, the third set of detection results including the characteristic parameter values of the signals emitted by the UPA array in the second AiP detected by the ULA array in the second AiP.
  • the first set of detection results, the second set of detection results, and the third set of detection results are used as preset characteristic parameter values when the AiP structure is designed.
  • the storage unit stores the first group of detection results, the second group of detection results, and the third group of detection results in a lookup table.
  • the embodiment of the present invention also provides a computer-readable storage medium having computer instructions stored thereon, and the computer instructions execute any of the steps of the above-mentioned AiP structure-based beam detection method when the computer instructions are run.
  • the embodiment of the present invention also provides a beam adjustment method based on an AiP structure.
  • the AiP structure includes at least a first AiP, and the first AiP includes at least one ULA array and at least one corresponding UPA array.
  • the beam adjustment method includes: the ULA array detects the signal emitted by the corresponding UPA array; compares the characteristic parameter value of the detected signal with a preset first set of characteristic parameter values of the signal; The phase shifter connected to the UPA array until the first optimal beam configuration is reached.
  • the characteristic parameter value of the detected signal includes any combination of the following parameters: the direction angle of the beam corresponding to the detected signal emitted by the UPA array, the ratio of the main lobe and the side lobe, side lobe suppression and The power of the beam.
  • the attaining the first optimal beam configuration includes: the deviation between the detected power of the beam corresponding to the signal transmitted by the UPA array and the preset power is within 10%, and/or sidelobe suppression and pre-setting It is assumed that the deviation of side lobe suppression is within 10%.
  • the sidelobe suppression is 15dB.
  • the AiP structure is set in the terminal device.
  • the preset first set of signal characteristic parameter values includes: when the AiP structure is in an unobstructed state, the characteristic parameter value of the signal transmitted by the UPA array is detected by the ULA array.
  • the beam adjustment method further includes: storing the first optimal beam configuration.
  • the AiP structure further includes a second AiP
  • the second AiP includes at least one ULA array and at least one corresponding UPA array
  • the beam adjustment method further includes: ULA array detection in the second AiP The signal transmitted by the UPA array in the first AiP; the characteristic parameter value of the signal transmitted by the UPA array in the first AiP detected by the ULA array in the second AiP is combined with a preset second set of signals The characteristic parameter values are compared; and the phase shifter connected to the UPA array in the first AiP is adjusted based on the comparison result until the second optimal beam configuration is reached.
  • the characteristic parameter value of the signal transmitted by the UPA array in the first AiP detected by the ULA array in the second AiP includes any combination of the following parameters: the ULA array in the second AiP detects The direction angle of the beam corresponding to the signal emitted by the UPA array in the first AiP, the ratio of the main lobe and the side lobe, side lobe suppression, and the power of the beam.
  • the AiP structure further includes a second AiP
  • the second AiP includes at least one ULA array and at least one corresponding UPA array
  • the beam adjustment method further includes: ULA array detection in the second AiP The signal transmitted by the UPA array in the second AiP; the characteristic parameter value of the signal transmitted by the UPA array in the second AiP detected by the ULA array in the second AiP is combined with a preset third set of signals Comparing the characteristic parameter values; and adjusting the phase shifter connected to the UPA array in the second AiP based on the comparison result until the third optimal beam configuration is reached.
  • the preset second set of signal characteristic parameter values includes: when the AiP structure is in an unobstructed state, the UPA array in the first AiP detected by the ULA array in the second AiP The characteristic parameter value of the transmitted signal.
  • the preset third set of signal characteristic parameter values include: when the AiP structure is in an unobstructed state, the UPA array in the second AiP detected by the ULA array in the second AiP The characteristic parameter value of the transmitted signal.
  • the embodiment of the present invention also provides a beam adjustment device based on an AiP structure, the AiP structure includes at least a first AiP, the first AiP includes at least one ULA array and at least one corresponding UPA array, the beam adjustment device It includes: a control unit for controlling the ULA array to detect the signal emitted by the corresponding UPA array; a comparison unit for comparing the characteristic parameter value of the detected signal with a preset first group of signal characteristic parameter values Comparing; and a processing unit for adjusting the phase shifter connected to the UPA array based on the comparison result until the first optimal beam configuration is reached.
  • the characteristic parameter value of the detected signal includes any combination of the following parameters: the direction angle of the beam corresponding to the detected signal emitted by the UPA array, the ratio of the main lobe and the side lobe, side lobe suppression and The power of the beam.
  • the attaining the first optimal beam configuration includes: the deviation between the detected power of the beam corresponding to the signal transmitted by the UPA array and the preset power is within 10%, and/or sidelobe suppression and pre-setting It is assumed that the deviation of side lobe suppression is within 10%.
  • the sidelobe suppression is 15dB.
  • the AiP structure is set in the terminal device.
  • the preset first set of signal characteristic parameter values includes: when the AiP structure is in an unobstructed state, the characteristic parameter value of the signal transmitted by the UPA array is detected by the ULA array.
  • the beam adjustment device further includes a storage unit configured to store the first optimal beam configuration.
  • the AiP structure further includes a second AiP
  • the second AiP includes at least one ULA array and at least one corresponding UPA array
  • the control unit is further configured to control the ULA array detection in the second AiP
  • the comparison unit is further configured to compare the characteristic parameter value of the signal emitted by the UPA array in the first AiP detected by the ULA array in the second AiP with The preset second set of signal characteristic parameter values are compared
  • the processing unit is further configured to adjust the phase shifter connected to the UPA array in the first AiP based on the comparison result until the second optimal beam configuration is reached.
  • the characteristic parameter value of the signal transmitted by the UPA array in the first AiP detected by the ULA array in the second AiP includes any combination of the following parameters: the ULA array in the second AiP detects The direction angle of the beam corresponding to the signal emitted by the UPA array in the first AiP, the ratio of the main lobe and the side lobe, side lobe suppression, and the power of the beam.
  • the AiP structure further includes a second AiP
  • the second AiP includes at least one ULA array and at least one corresponding UPA array
  • the control unit is further configured to control the ULA array detection in the second AiP
  • the comparison unit is further configured to compare the characteristic parameter value of the signal transmitted by the UPA array in the second AiP detected by the ULA array in the second AiP with The preset third set of signal characteristic parameter values are compared
  • the processing unit is further configured to adjust the phase shifter connected to the UPA array in the second AiP based on the comparison result until the third optimal beam configuration is reached.
  • the preset second set of signal characteristic parameter values includes: when the AiP structure is in an unobstructed state, the UPA array in the first AiP detected by the ULA array in the second AiP The characteristic parameter value of the transmitted signal.
  • the preset third set of signal characteristic parameter values include: when the AiP structure is in an unobstructed state, the UPA array in the second AiP detected by the ULA array in the second AiP The characteristic parameter value of the transmitted signal.
  • the embodiment of the present invention also provides a computer-readable storage medium on which computer instructions are stored, and the computer instructions execute any of the steps of the above-mentioned AiP structure-based beam adjustment method when the computer instructions are run.
  • the embodiment of the present invention also provides an antenna module selection method, the method is applied to a terminal device, the terminal device includes at least a first AiP and a second AiP, each AiP includes at least one ULA array and at least one corresponding UPA Array, the antenna module selection method includes: the ULA array in the first AiP detects the signal transmitted by the corresponding UPA array in the first AiP, and transmits the detected signal from the corresponding UPA array in the first AiP The characteristic parameter value of the signal is compared with the preset first set of characteristic parameter values to obtain the first comparison result; the ULA array in the second AiP detects the signal emitted by the corresponding UPA array in the second AiP, and will detect Compare the characteristic parameter values of the signals emitted by the corresponding UPA array in the second AiP with the preset second set of characteristic parameter values to obtain a second comparison result; and based on the first comparison result and the second comparison As a result, it is determined that the first AiP or the second A
  • the characteristic parameter value includes the power and/or sidelobe size of the beam corresponding to the signal.
  • the comparing the detected characteristic parameter values of the signals emitted by the corresponding UPA array in the first AiP with a preset first set of characteristic parameter values, and obtaining the first comparison result includes: calculating the The first difference between the characteristic parameter value of the detected signal and the preset first set of characteristic parameter values; and calculating the first difference between the first difference and the preset first set of characteristic parameter values A ratio is used as the first comparison result.
  • the comparing the detected characteristic parameter values of the signals emitted by the corresponding UPA array in the second AiP with a preset second set of characteristic parameter values, and obtaining the second comparison result includes: calculating the A second difference between the characteristic parameter value of the detected signal and the preset second set of characteristic parameter values; and calculating the second difference between the second difference and the preset second set of characteristic parameter values The two ratio is used as the second comparison result.
  • the determining to use the first AiP or the second AiP for the signal transmission and reception of the terminal device based on the first comparison result and the second comparison result includes: comparing the first ratio with the The second ratio; and the AiP corresponding to the smallest ratio is selected for the signal transceiving of the terminal device.
  • the using the first AiP or the second AiP for signal transceiving of the terminal device includes: using the UPA array in the first AiP for signal transceiving of the terminal device , Or use the UPA array in the second AiP for signal transceiving of the terminal device.
  • the ULA array in the first AiP is used for the signal transmission and reception of the terminal device, or the The ULA array in the second AiP is used for signal transceiving of the terminal device.
  • the antenna module selection method further includes: if the first comparison result and the second comparison result both exceed a predetermined threshold, performing beam scanning management through the RRC protocol.
  • the embodiment of the present invention also provides an antenna module selection device.
  • the antenna module selection device is applied to a terminal device.
  • the terminal device includes at least a first AiP and a second AiP.
  • Each AiP includes at least one ULA array and a corresponding At least one UPA array
  • the antenna module selection device includes: a control unit for controlling the ULA array in the first AiP to detect signals transmitted by the corresponding UPA array in the first AiP, and to control the second AiP
  • the ULA array in the second AiP detects the signal emitted by the corresponding UPA array in the second AiP; the comparing unit is used to compare the detected characteristic parameter value of the signal emitted by the corresponding UPA array in the first AiP with the preset first AiP.
  • a set of characteristic parameter values are compared to obtain a first comparison result, and the detected characteristic parameter values of the signals emitted by the corresponding UPA array in the second AiP are compared with the preset second set of characteristic parameter values to obtain A second comparison result; and a judgment unit configured to determine, based on the first comparison result and the second comparison result, to use the first AiP or the second AiP for signal transmission and reception of the terminal device.
  • the characteristic parameter value includes the power and/or sidelobe size of the beam corresponding to the signal.
  • the comparison unit is further configured to: calculate the first value between the detected characteristic parameter value of the signal emitted by the corresponding UPA array in the first AiP and the preset first set of characteristic parameter values. Difference; and calculating a first ratio of the first difference and the preset first set of characteristic parameter values as the first comparison result.
  • the comparison unit is further configured to calculate the second difference between the detected characteristic parameter value of the signal emitted by the corresponding UPA array in the second AiP and the preset second set of characteristic parameter values. Difference; and calculating a second ratio of the second difference and the preset second set of characteristic parameter values as the second comparison result.
  • the judging unit is further configured to: compare the first ratio and the second ratio; and select the AiP corresponding to the smallest ratio for the signal transmission and reception of the terminal device.
  • the judgment unit is further configured to: determine to use the UPA array in the first AiP for signal transceiving of the terminal device, or determine to use the UPA array in the second AiP for Signal transmission and reception at the terminal device.
  • the judgment unit is further configured to: if the first comparison result and the second comparison result both exceed a predetermined threshold, determine to use the ULA array in the first AiP for the terminal Signal transceiving of the device, or using the ULA array in the second AiP for signal transceiving of the terminal device.
  • the judging unit is further configured to: if the first comparison result and the second comparison result both exceed a predetermined threshold, determine to perform beam scanning management through the RRC protocol.
  • the embodiment of the present invention also provides a computer-readable storage medium on which computer instructions are stored, and when the computer instructions are run, the steps of any one of the antenna module selection methods described above are executed.
  • the ULA array in the AiP structure detects the signal emitted by the UPA array corresponding to the ULA array, and stores the detection result.
  • the method can be applied to the AiP structure when the design is finalized. At this time, a fixed physical channel is formed between the UPA array and the ULA array. When the UPA array emits a specific signal, a relatively fixed signal can be detected through the corresponding ULA array . At this time, there is no unnecessary occlusion around the AiP structure, that is, in a more ideal environment, the detected result is the preset threshold value during the design of the AiP structure.
  • the significance of storing the detection result is: when there is obstruction around the AiP structure, the parameter value of the detected signal can be compared with the stored preset threshold, and based on the comparison result, it can be judged that the actual beam transmitted is compared with the design Existing deviation, and then adjust the beam accordingly.
  • the ULA array in the AiP structure detects the signal transmitted by the UPA array corresponding to the ULA array, and compares the characteristic parameter value of the detected signal with the pre- The set signal characteristic parameter values are compared, the phase shifter connected to the UPA array is adjusted based on the comparison result until the optimal beam configuration is reached, and the optimal beam configuration is stored.
  • the method can be applied to when the AiP structure is installed in the terminal equipment. At this time, the circuit devices and housings around the AiP become a certain physical environment. When the UPA array emits a specific signal, the corresponding ULA array can detect the relatively fixed signal. Because there is a certain shielding around the AiP structure (ie surrounding circuit components and housing, etc.), the detected signal characteristic parameter values are different from the preset signal characteristic parameter values, and the AiP is optimized by adjusting the corresponding phase shifter Beam configuration.
  • the significance of storing the optimal beam configuration is that when the terminal device including the AiP structure is put into practical application, there will be more occlusions around it, and the parameter value of the detected signal can be compared with the parameter value of the The stored optimal beam configurations are compared, and based on the comparison result, the AiP with the best performance in the AiP structure can be selected for signal transmission and reception.
  • the ULA array in the AiP detects the signal transmitted by the corresponding UPA array, and the characteristic parameter values of the multiple AiP detected signals in the terminal device are compared with the corresponding The preset characteristic parameter values are compared, and the AiP with the best beam performance is selected based on the comparison result for the signal transmission and reception of the terminal device. Therefore, the local detection and management of the beam by the terminal is realized without adding additional hardware, which saves network resources and reduces the cost and power consumption of the terminal.
  • the UPA array in AiP is used for signal transmission and reception by default. If the beam performance of the detected signal transmitted by the UPA array is not satisfactory, the ULA array in AiP can be used for signal transmission and reception.
  • the UPA array in AiP is used for signal transmission and reception by default. If the beam performance of the detected signal transmitted by the UPA array is not ideal, the RRC protocol can also be used for beam scanning and management.
  • the degree of occlusion of each AiP is different at different moments. Using the method provided by the embodiment of the present invention to detect and compare in real time, dynamic switching between AiPs can be realized to ensure better communication quality.
  • FIG. 1 is a schematic diagram of AiP provided by an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a beam detection method based on an AiP structure provided by an embodiment of the present invention
  • FIG. 3 is a structural block diagram of a beam detection device based on the AiP structure in an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a beam adjustment method based on an AiP structure provided by an embodiment of the present invention
  • FIG. 5 is a structural block diagram of a beam adjusting device based on the AiP structure in an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of an antenna module selection method provided by an embodiment of the present invention.
  • Fig. 7 is a structural block diagram of an antenna module selection device in an embodiment of the present invention.
  • the existing beam management method includes that the terminal completes the beam management in the network based on the RRC protocol, but this method not only takes up more network resources, but also generates greater power consumption on the terminal side.
  • the existing beam management method also includes adding an antenna or sensing device dedicated to radio frequency environment detection in the terminal, as well as corresponding electrical tuning elements, signal processing and control circuits, but this method increases the difficulty of hardware structure integration and increases The volume and cost of the terminal are reduced.
  • the factor has a low correlation with the network status. If the antenna RF module or the terminal directly perceives the nearby RF environment, the antenna RF module can locally detect and adjust the beam, and the terminal can select the optimal configuration of the beam, which will improve the efficiency of beam adjustment and save power consumption.
  • the embodiment of the present invention provides a beam detection method based on the AiP structure.
  • the signal emitted by the UPA array corresponding to the ULA array is detected by the ULA array in the AiP structure, and the detection result is stored.
  • the method can be applied to the AiP structure when the design is finalized.
  • a fixed physical channel is formed between the UPA array and the ULA array.
  • the UPA array emits a specific signal
  • a relatively fixed signal can be detected through the corresponding ULA array .
  • the detected result is the preset threshold value during the design of the AiP structure.
  • the significance of storing the detection result is: when there is obstruction around the AiP structure, the parameter value of the detected signal can be compared with the stored preset threshold, and based on the comparison result, it can be judged that the actual beam transmitted is compared with the design There is a certain deviation, and then adjust the beam accordingly.
  • the embodiment of the present invention also provides a beam adjustment method based on the AiP structure.
  • the ULA array in the AiP structure detects the signal emitted by the UPA array corresponding to the ULA array, compares the characteristic parameter value of the detected signal with the preset signal characteristic parameter value, and adjusts the signal connected to the UPA array based on the comparison result.
  • the phase shifter until the optimal beam configuration is reached, and the optimal beam configuration is stored.
  • the method can be applied to when the AiP structure is installed in the terminal equipment. At this time, the circuit devices and housings around the AiP become a certain physical environment. When the UPA array emits a specific signal, the corresponding ULA array can detect the relatively fixed signal. Because there is a certain shielding around the AiP structure (ie surrounding circuit components and housing, etc.), the detected signal characteristic parameter values are different from the preset signal characteristic parameter values, and the AiP is optimized by adjusting the corresponding phase shifter Beam configuration.
  • the embodiment of the present invention also provides an antenna module selection method and device.
  • the ULA array in the AiP detects the signals transmitted by the corresponding UPA array, and the characteristic parameter values of the signals detected by multiple AiPs in the terminal equipment are compared with the corresponding presets.
  • the characteristic parameter values are set for comparison, and the AiP with the best beam performance is selected based on the comparison result for signal transmission and reception of the terminal device. Therefore, the local detection and management of the beam by the terminal is realized without adding additional hardware, which saves network resources and reduces the cost and power consumption of the terminal.
  • Fig. 1 shows an AiP provided by an embodiment of the present invention.
  • the AiP includes a set of ULA antenna arrays composed of multiple antenna elements 101 and a set of UPA antenna arrays composed of multiple antenna elements 102.
  • FIG. 1 takes an example of eight antenna elements in each antenna array.
  • an AiP may also include multiple sets of ULA antenna arrays and multiple sets of UPA antenna arrays, the number of ULA antenna arrays and UPA antenna arrays is the same, and the number of antenna elements included in the ULA antenna array and the UPA antenna array is the same, Form a one-to-one correspondence.
  • UPA array is the main array of AiP. Since the phased array has the problem that the main lobe gain decreases and the side lobe gain increases after the beam points to the side for a certain angle, the main array UPA is generally set to no longer work outside a certain maximum working angle Channel, and this space area is covered by the ULA array. Therefore, at least two arrays of UPA and ULA are designed in AiP at the same time, and corresponding independent circuits and control processing channels are configured for them.
  • FIG. 2 shows a flow chart of a beam detection method based on the AiP structure provided by an embodiment of the present invention. The specific steps are described in detail below.
  • the AiP structure includes at least a first AiP, and the first AiP includes at least one ULA array and at least one corresponding UPA array.
  • step S201 the ULA array in the first AiP detects the signal transmitted by the corresponding UPA array.
  • a fixed physical channel is formed between the ULA array and the UPA array.
  • the UPA array emits a specific signal, due to the coupling relationship between the UPA array and the ULA array, the channels of the ULA array can detect relatively fixed signals.
  • the signal emitted by the UPA array is a millimeter wave signal.
  • each ULA array includes multiple antenna elements, each UPA array also includes multiple antenna elements, and the number of multiple antenna elements included in the ULA array is the same as the multiple antenna elements included in the UPA array. The number of units is equal.
  • the ULA array detecting the millimeter wave signal transmitted by the corresponding UPA array may include: multiple antenna units included in the ULA array respectively detecting the transmission of multiple antenna units included in the corresponding UPA array signal of.
  • step S203 a first set of detection results is stored, and the first set of detection results includes characteristic parameter values of signals transmitted by the UPA array in the first AiP detected by the ULA array in the first AiP.
  • the first set of detection results includes any combination of the following parameters: the direction angle of the beam corresponding to the signal transmitted by the UPA array in the first AiP detected by the ULA array in the first AiP , The ratio of main lobe to side lobe, side lobe suppression and beam power.
  • the first set of detection results are stored in a lookup table.
  • the look-up table is set in a baseband processor, and the baseband processor and the AiP structure are connected by a radio frequency front-end circuit.
  • the AiP structure After the detection method is applied to the AiP structure design and finalization, the AiP structure is in an unobstructed state, and the detected characteristic parameter values of the signal emitted by the UPA array are the preset characteristics when the AiP structure is designed
  • the parameter value is the ideal value.
  • the detected characteristic parameter value of the signal emitted by the UPA array can be compared with the stored preset characteristic parameter value, and based on the comparison result, it can be judged that the actual transmitted beam is present in the original design. A certain deviation, and then adjust the beam accordingly to optimize the beam setting.
  • the AiP structure may include multiple AiPs, which are arranged in various directions for coordination jobs. At this time, a fixed physical channel is also formed between multiple AiPs.
  • the UPA array in a certain AiP transmits a signal
  • the ULA array in other AiPs can also detect a relatively fixed signal.
  • the beam detection method further includes: the ULA array in the second AiP detects the signal transmitted by the UPA array in the first AiP; and storing a second set of detection results, the second The group detection result includes the parameter value of the signal transmitted by the UPA array in the first AiP detected by the ULA array in the second AiP.
  • the millimeter wave signals emitted by the corresponding UPA array can be detected through the ULA array of the same AiP, or the ULA array emitted by different AiPs can be detected. Millimeter wave signal.
  • the ULA array in each AiP can detect the signal emitted by the corresponding UPA array and store the detection result.
  • the beam detection method further includes: the ULA array in the second AiP detects a signal transmitted by the UPA array in the second AiP; and storing a third set of detection results, the third set of detection results including all The parameter value of the signal transmitted by the UPA array in the second AiP detected by the ULA array in the second AiP.
  • the embodiment of the present invention also provides a beam detection device based on the AiP structure.
  • FIG. 3 shows the beam detection device 30 based on the AiP structure, which includes a control unit 301 and a storage unit 303.
  • the AiP structure includes at least a first AiP, and the first AiP includes at least one ULA array and at least one corresponding UPA array.
  • the control unit 301 is configured to control the ULA array in the first AiP to detect the signal transmitted by the corresponding UPA array.
  • the signal emitted by the UPA array is a millimeter wave signal.
  • each ULA array includes multiple antenna elements, each UPA array also includes multiple antenna elements, and the number of multiple antenna elements included in the ULA array is the same as the multiple antenna elements included in the UPA array. The number of units is equal.
  • the control unit 301 is configured to control the multiple antenna units included in the ULA array to respectively detect the signals transmitted by the corresponding multiple antenna units included in the UPA array.
  • the storage unit 303 is configured to store a first set of detection results, the first set of detection results including the characteristic parameter values of the signals emitted by the UPA array in the first AiP detected by the ULA array in the first AiP .
  • the first set of detection results includes any combination of the following parameters: the direction angle of the beam corresponding to the signal transmitted by the UPA array in the first AiP detected by the ULA array in the first AiP , The ratio of main lobe to side lobe, side lobe suppression and beam power.
  • the storage unit 303 stores the first set of detection results in a lookup table.
  • the AiP structure may include multiple AiPs, such as a first AiP and a second AiP.
  • the control unit 301 is further configured to control the ULA array in the second AiP to detect the signal transmitted by the UPA array in the first AiP.
  • the storage unit 303 is further configured to store a second set of detection results, the second set of detection results including the characteristic parameters of the signal transmitted by the UPA array in the first AiP detected by the ULA array in the second AiP value.
  • the ULA array in each AiP can detect the signal emitted by the corresponding UPA array and store the detection result.
  • the AiP structure may include multiple AiPs, such as a first AiP and a second AiP.
  • the control unit 301 is also used to control the ULA array in the second AiP to detect the signal transmitted by the UPA array in the second AiP.
  • the storage unit 303 is further configured to store a third set of detection results, the third set of detection results including the characteristic parameters of the signal transmitted by the UPA array in the second AiP detected by the ULA array in the second AiP value.
  • control unit may be a processor, such as a CPU, MCU, DSP, etc.
  • the storage unit may be ROM, RAM, magnetic disk or optical disk, etc.
  • the millimeter wave signal emitted by the UPA array corresponding to the ULA array is detected by the ULA array in the AiP structure, and the detection result is stored.
  • the method can be applied to the AiP structure when the design is finalized. At this time, a fixed physical channel is formed between the UPA array and the ULA array.
  • the UPA array emits a specific millimeter wave signal
  • the corresponding ULA array can detect the relatively fixed signal of.
  • the detected result is the preset threshold value during the design of the AiP structure.
  • the significance of storing the detection result is that when there is obstruction around the AiP structure, the parameter value of the detected signal can be compared with the stored preset threshold, and based on the comparison result, it can be judged that the actual beam transmitted is compared with the design There is a certain deviation, and then adjust the beam accordingly.
  • FIG. 4 shows a flowchart of a beam adjustment method based on the AiP structure provided by an embodiment of the present invention, and the beam adjustment method is performed based on the detection result stored in the above beam detection method. The specific steps are described in detail below.
  • the AiP structure includes at least a first AiP, and the first AiP includes at least one ULA array and at least one corresponding UPA array.
  • step S401 the ULA array in the first AiP detects the signal transmitted by the corresponding UPA array.
  • the AiP structure When the AiP structure is installed in the terminal equipment, not only a fixed physical channel is formed between the ULA array and the UPA array, but also the circuit components around the AiP and the housing of the terminal equipment become a definite physical environment.
  • the UPA array emits a specific signal, the ULA array can detect a relatively fixed signal. Compared with before being installed in the terminal equipment, the beam corresponding to the signal emitted by the antenna array will be affected due to a certain degree of obstruction.
  • the signal emitted by the UPA array is a millimeter wave signal.
  • each ULA array includes multiple antenna elements, each UPA array also includes multiple antenna elements, and the number of multiple antenna elements included in the ULA array is the same as the multiple antenna elements included in the UPA array. The number of units is equal.
  • the ULA array detecting signals transmitted by the corresponding UPA array may include: multiple antenna units included in the ULA array respectively detecting signals transmitted by multiple antenna units included in the corresponding UPA array .
  • step S403 the characteristic parameter value of the detected signal is compared with a preset first set of signal characteristic parameter values.
  • the circuit components around the AiP and the shell of the terminal device will form a certain shielding of the AiP structure.
  • the beam corresponding to the signal emitted by the antenna array has a certain deviation compared with the AiP structure when the design is finalized, which affects performance. Therefore, it is necessary to make certain adjustments to the antenna array based on this deviation so that the corresponding beam is close to the preset threshold in the initial design.
  • the characteristic parameter value of the detected signal includes any combination of the following parameters: the direction angle of the beam corresponding to the signal transmitted by the UPA array detected by the ULA array in the first AiP, and the main The ratio of lobe to side lobe, side lobe suppression and beam power.
  • the preset first set of signal characteristic parameter values includes: when the AiP structure is in an unobstructed state, the ULA array detects the corresponding characteristic parameter value of the signal emitted by the UPA array , That is, the first set of detection results stored in step S203 of the above beam detection method.
  • step S405 the phase shifter connected to the UPA array in the first AiP is adjusted based on the comparison result until the first optimal beam configuration is reached.
  • the antenna module is connected to a radio frequency front-end circuit.
  • the radio frequency front-end circuit includes a low noise amplifier, a power amplifier, a phase shifter, a transmitting variable gain amplifier, a receiving variable gain amplifier, a combiner, and a power splitter. , Phase-locked loop, frequency converter and oscillator, etc. Based on the comparison result in step S403, the phase shifter connected to the corresponding UPA array can be adjusted so that the beam corresponding to the transmitted signal reaches the optimal configuration.
  • the reaching the first optimal beam configuration includes: the difference between the power of the beam corresponding to the signal transmitted by the UPA array and the preset power detected by the ULA array in the first AiP is 10 % Or less, and/or the deviation of the sidelobe suppression from the preset sidelobe suppression is within 10%.
  • the sidelobe suppression is 15dB.
  • the beam adjustment method further includes: storing the first optimal beam configuration.
  • the beam adjustment method is applied after the AiP structure is installed on the terminal device. At this time, the AiP structure is shielded from the surrounding circuit devices and the shell of the terminal device. After the adjustment in step S405, the UPA array in the AiP structure transmits The beam corresponding to the signal reached the optimal configuration.
  • the ULA array in an AiP can be used to detect the signal emitted by the corresponding UPA array in the AiP.
  • the AiP structure may include multiple AiPs, and the multiple AiPs are arranged in various directions to work together. At this time, a fixed physical channel is also formed between multiple AiPs.
  • the ULA array in another AiP can also detect a relatively fixed signal, thereby adjusting the beam.
  • the beam adjustment method further includes: the ULA array in the second AiP detects the data transmitted by the UPA array in the first AiP Signal; compare the characteristic parameter values of the signal emitted by the UPA array in the first AiP detected by the ULA array in the second AiP with the preset second set of signal characteristic parameter values; adjust and The phase shifters connected to the UPA array in the first AiP until reaching the second optimal beam configuration.
  • the characteristic parameter value of the signal transmitted by the UPA array in the first AiP detected by the ULA array in the second AiP includes any combination of the following parameters: the direction of the beam corresponding to the detected signal transmitted by the UPA array Angle, ratio of main lobe to side lobe, side lobe suppression and beam power.
  • the preset second set of signal characteristic parameter values include: when the AiP structure is in an unobstructed state, the ULA array in the second AiP detects that the UPA array in the first AiP emits
  • the characteristic parameter value of the signal is the second set of detection results stored in the above beam detection method.
  • the reaching the second optimal beam configuration includes: the difference between the power of the beam corresponding to the signal transmitted by the UPA array in the first AiP and the preset power detected by the ULA array in the second AiP Located within 10%, and/or the deviation of the side lobe suppression from the preset side lobe suppression is within 10%.
  • the detection result of the same AiP and the detection result between different AiPs may be considered to adjust the phase shifter and adjust the beam.
  • the ULA array in each AiP can detect the signal emitted by the corresponding UPA array in the AiP, and compare the characteristic parameter value of the detected signal with the set of The signal characteristic parameter values preset by the UPA array are compared, and the phase shifters connected to the UPA array are adjusted based on the comparison result until the corresponding optimal beam configurations are respectively achieved.
  • the beam adjustment method further includes: the ULA array in the second AiP detects a signal transmitted by the UPA array in the second AiP; and the ULA array in the second AiP detects Comparing the characteristic parameter values of the signal emitted by the UPA array in the second AiP with the preset third set of signal characteristic parameter values; and adjusting the phase shifter connected to the UPA array in the second AiP based on the comparison result , Until reaching the third optimal beam configuration.
  • the preset third set of signal characteristic parameter values include: when the AiP structure is in an unobstructed state, the ULA array in the second AiP detects that the UPA array in the second AiP emits The characteristic parameter value of the signal.
  • the reaching the third optimal beam configuration includes: the deviation of the power of the beam corresponding to the signal transmitted by the UPA array in the second AiP detected by the ULA array in the second AiP and the preset power Located within 10%, and/or the deviation of the side lobe suppression from the preset side lobe suppression is within 10%.
  • the beam adjustment method further includes: storing the second and/or third optimal beam configuration.
  • the ULA array in the AiP structure detects the signal emitted by the corresponding UPA array, and the characteristic parameter value of the detected signal is compared with the preset signal characteristic parameter value. Compare, adjust the phase shifter connected to the UPA array based on the comparison result until the optimal beam configuration is reached, and store the optimal beam configuration.
  • the method can be applied to when the AiP structure is installed in the terminal equipment. At this time, the circuit components and housings around the AiP become a certain physical environment.
  • the UPA array emits a specific millimeter wave signal
  • the corresponding ULA array can detect the relative Fixed signal.
  • the detected signal characteristic parameter values are different from the preset signal characteristic parameter values, and the AiP is optimized by adjusting the corresponding phase shifter Beam configuration. That is, the detection result stored in the foregoing embodiment is used to realize beam adjustment.
  • the significance of storing the optimal beam configuration for each AiP in the waveform adjustment method provided by the foregoing embodiment is that when the terminal device including the AiP structure is put into practical application, there will be more occlusions around it, and the The parameter value of the detected signal is compared with the stored optimal beam configuration, and based on the comparison result, the AiP with the best performance can be selected for signal transmission and reception.
  • FIG. 5 shows the beam adjustment device 50 based on the AiP structure, which includes a control unit 501, a comparison unit 503, and a processing unit 505.
  • the AiP structure includes at least a first AiP, and the first AiP includes at least one ULA array and at least one corresponding UPA array.
  • the control unit 501 is used to control the ULA array in the first AiP to detect the signal emitted by the corresponding UPA array; the comparison unit 503 is used to compare the characteristic parameter value of the detected signal with a preset The first set of signal characteristic parameter values are compared; the processing unit 505 is configured to adjust the phase shifter connected to the UPA array based on the comparison result until the first optimal beam configuration is reached.
  • the characteristic parameter value of the detected signal includes any combination of the following parameters: the beam corresponding to the signal transmitted by the UPA array in the first AiP detected by the ULA array in the first AiP The direction angle, the ratio of main lobe and side lobe, side lobe suppression and beam power.
  • the reaching the first optimal beam configuration includes: the deviation of the detected power of the beam corresponding to the signal transmitted by the UPA array from the preset power is within 10%, and/or sidelobe suppression The deviation from the preset sidelobe suppression is within 10%.
  • the sidelobe suppression is 15dB.
  • the AiP structure is provided in a terminal device.
  • the preset first set of signal characteristic parameter values includes: when the AiP structure is in an unobstructed state, the first AiP detected by the ULA array in the first AiP The characteristic parameter value of the signal emitted by the UPA array.
  • the beam adjustment device further includes a storage unit for storing the first optimal beam configuration.
  • the AiP structure further includes a second AiP
  • the second AiP includes at least one ULA array and at least one corresponding UPA array
  • the control unit 301 is also configured to control the second AiP in the second AiP.
  • the ULA array detects the signal emitted by the UPA array in the first AiP
  • the comparing unit 303 is further configured to compare the signal emitted by the UPA array in the first AiP detected by the ULA array in the second AiP
  • the characteristic parameter values are compared with the preset second set of signal characteristic parameter values
  • the processing unit 305 is further configured to adjust the phase shifter connected to the UPA array in the first AiP based on the comparison result until the second maximum is reached.
  • Optimal beam configuration is provided.
  • the characteristic parameter value of the signal transmitted by the UPA array in the first AiP detected by the ULA array in the second AiP includes any combination of the following parameters: ULA array in the second AiP The direction angle of the beam corresponding to the detected signal transmitted by the UPA array in the first AiP, the ratio of the main lobe and the side lobe, the side lobe suppression, and the power of the beam.
  • the preset second set of signal characteristic parameter values include: when the AiP structure is in an unobstructed state, the ULA array in the second AiP detects that the UPA array in the first AiP emits
  • the characteristic parameter value of the signal is the second set of detection results stored in the above beam detection method.
  • the reaching the second optimal beam configuration includes: the difference between the power of the beam corresponding to the signal transmitted by the UPA array in the first AiP and the preset power detected by the ULA array in the second AiP Located within 10%, and/or the deviation of the side lobe suppression from the preset side lobe suppression is within 10%.
  • the AiP structure further includes a second AiP
  • the second AiP includes at least one ULA array and at least one corresponding UPA array
  • the control unit 501 is further configured to control the second AiP in the second AiP.
  • the ULA array detects the signal emitted by the UPA array in the second AiP;
  • the comparison unit 503 is also used to compare the signal emitted by the UPA array in the second AiP detected by the ULA array in the second AiP
  • the characteristic parameter values are compared with the preset third group of signal characteristic parameter values;
  • the processing unit 505 is further configured to adjust the phase shifter connected to the UPA array in the second AiP based on the comparison result until the third maximum is reached.
  • Optimal beam configuration is provided.
  • the preset third set of signal characteristic parameter values include: when the AiP structure is in an unobstructed state, the ULA array in the second AiP detects that the UPA array in the second AiP emits The characteristic parameter value of the signal.
  • the reaching the third optimal beam configuration includes: the deviation of the power of the beam corresponding to the signal transmitted by the UPA array in the second AiP detected by the ULA array in the second AiP and the preset power Located within 10%, and/or the deviation of the side lobe suppression from the preset side lobe suppression is within 10%.
  • the storage unit is further configured to store the second and/or third optimal beam configuration.
  • control unit 501, the comparison unit 503, and/or the processing unit 505 may be processors, such as CPUs, MCUs, DSPs, and so on.
  • the storage unit may be ROM, RAM, magnetic disk or optical disk, etc.
  • the preset first, second, and third signal characteristic parameter values include: when the AiP structure is in an unobstructed state, the ULA array detects the related UPA The characteristic parameter value of the signal emitted by the array. That is, when the AiP structure has just been designed and finalized and has not been installed in a terminal device, the ULA array detects the relevant characteristic parameter value of the signal transmitted by the UPA array.
  • FIG. 6 shows a flowchart of an antenna module selection method provided by an embodiment of the present invention.
  • the antenna module selection method is applied to a terminal device and is performed based on the optimal beam configuration stored in the above beam adjustment method.
  • the terminal device includes a plurality of AiPs, such as a first AiP and a second AiP, and each AiP includes at least one ULA array and at least one corresponding UPA array.
  • the multiple AiPs are placed in different positions in the terminal device.
  • the channels of the ULA array can detect relatively fixed signals.
  • step S601 the ULA array in the first AiP detects the signal transmitted by the corresponding UPA array in the first AiP, and compares the detected characteristic parameter value of the signal transmitted by the corresponding UPA array in the first AiP with The preset first set of characteristic parameter values are compared to obtain the first comparison result.
  • step S603 the ULA array in the second AiP detects the signal transmitted by the corresponding UPA array in the second AiP, and compares the detected characteristic parameter value of the signal transmitted by the corresponding UPA array in the second AiP with The preset second set of characteristic parameter values are compared to obtain a second comparison result.
  • step S605 it is determined to use the first AiP or the second AiP for signal transmission and reception of the terminal device based on the first comparison result and the second comparison result.
  • the signal emitted by the UPA array is a millimeter wave signal.
  • each ULA array includes multiple antenna elements, each UPA array also includes multiple antenna elements, and the number of multiple antenna elements included in the ULA array is equal to the number of multiple antenna elements included in the UPA array. The number of units is equal.
  • the ULA array detecting signals transmitted by the corresponding UPA array may include: multiple antenna units included in the ULA array respectively detecting signals transmitted by multiple antenna units included in the corresponding UPA array .
  • the characteristic parameter value includes the power and/or sidelobe size of the beam corresponding to the signal.
  • the preset first set of characteristic parameter values are characteristic parameter values about the first AiP pre-stored in the terminal device
  • the preset second set of characteristic parameter values are the The characteristic parameter value about the second AiP pre-stored in the terminal device.
  • the so-called pre-storage may be, for example, pre-stored in the lookup table of the baseband processor of the terminal device at the factory, that is, the optimal beam configuration stored in the beam adjustment method of the foregoing embodiment.
  • the preset first set of characteristic parameter values may be the first optimal beam configuration stored in the foregoing beam adjustment method
  • the preset second set of characteristic parameter values may be the foregoing beam adjustment method The third optimal beam configuration stored in.
  • AiP When AiP is applied to terminal equipment, in addition to the circuit components around AiP and the housing of the terminal equipment, AiP will also be shielded by hand-held and other human bodies, and other objects near the terminal equipment that reflect or refract radio frequency propagation. Due to these occlusions, the beam corresponding to the signal emitted by the antenna array at this time has a certain deviation from that before the AiP is applied to the terminal device, that is, the performance of the beam is different from the preset. Multiple AiPs in the terminal device are placed in different positions in the terminal device, so each AiP receives different degrees of occlusion at the same time. In order to ensure the communication quality, it is necessary to select the AiP with the smallest performance gap from the preset. Signal transmission and reception of terminal equipment.
  • the comparing the detected characteristic parameter values of the signals emitted by the corresponding UPA array in the first AiP with the preset first set of characteristic parameter values, and obtaining the first comparison result includes: calculating The first difference between the characteristic parameter value of the detected signal and the preset first set of characteristic parameter values; calculating the difference between the first difference and the preset first set of characteristic parameter values The first ratio is used as the first comparison result. That is, through the comparison in step S601, the difference between the performance of the signal transmitted by the corresponding UPA array in the first AiP and the preset performance is known.
  • the comparing the detected characteristic parameter values of the signals emitted by the corresponding UPA array in the second AiP with the preset second set of characteristic parameter values, and obtaining the second comparison result includes: calculating The second difference between the characteristic parameter value of the detected signal and the preset second set of characteristic parameter values; calculating the difference between the second difference and the preset second set of characteristic parameter values The second ratio is used as the second comparison result. That is, through the comparison in step S603, the difference between the performance of the signal transmitted by the corresponding UPA array in the second AiP and the preset performance is known.
  • the first ratio and the second ratio reflect the degree to which the first AiP and the second AiP are blocked. The larger the ratio, the more severe the occlusion.
  • the determining to use the first AiP or the second AiP for signal transmission and reception of the terminal device based on the first comparison result and the second comparison result includes: comparing the first ratio And the second ratio; the AiP corresponding to the smallest ratio is selected for the signal transmission and reception of the terminal device. That is, in step S605, based on the comparison result in step S601 and step S603, an AiP with a small gap between the preset performance is selected for signal transmission and reception.
  • the using the first AiP or the second AiP for signal transceiving of the terminal device includes: using the UPA array in the first AiP for the terminal device Signal transceiving, or using the UPA array in the second AiP for signal transceiving of the terminal device.
  • the UPA array is used to transmit and receive signals from the terminal equipment.
  • the antenna module selection method further includes: if the first comparison result and the second comparison result both exceed a predetermined threshold (that is, it indicates that if the corresponding UPA array is used to transmit signals, the corresponding beam parameters will be There are more deviations from the original design), then use the ULA array in the first AiP for the signal transceiving of the terminal device, or use the ULA array in the second AiP for the Signal transmission and reception of terminal equipment.
  • beam scanning management can also be performed through the RRC protocol.
  • first AiP and the second AiP are taken as examples to represent multiple AiPs.
  • the method can perform the operations in steps S601 to S605 on all AiPs included in the terminal device. In order to find the AiP with the optimal beam configuration for signal transmission and reception of terminal equipment.
  • each AiP is placed in a different position of the terminal device, the degree of occlusion of each AiP is different at different times, that is, the beam quality corresponding to the signal transmitted by each AiP is not the same.
  • the method provided in the above embodiment can be used Real-time detection, comparison, and dynamic switching between AiPs to ensure better communication quality.
  • an embodiment of the present invention also provides an antenna module selection device.
  • 7 shows the antenna module selection device 70, the antenna module selection device 70 is applied to a terminal device, the terminal device includes at least a first AiP and a second AiP, each AiP includes at least one ULA array and corresponding At least one UPA array.
  • the antenna module selection device 70 includes a control unit 701, a comparison unit 703 and a judgment unit 705.
  • the control unit 701 is configured to control the ULA array in the first AiP to detect the signal transmitted by the corresponding UPA array in the first AiP, and to control the ULA array in the second AiP to detect the signal in the second AiP The signal emitted by the corresponding UPA array.
  • the comparing unit 703 is configured to compare the detected characteristic parameter values of the signals emitted by the corresponding UPA array in the first AiP with the preset first set of characteristic parameter values to obtain a first comparison result.
  • the comparing unit 703 is further configured to compare the detected characteristic parameter values of the signals emitted by the corresponding UPA array in the second AiP with a preset second set of characteristic parameter values to obtain a second comparison result.
  • the judgment unit 705 is configured to: based on the first comparison result and the second comparison result, determine to use the first AiP or the second AiP for signal transmission and reception of the terminal device.
  • the characteristic parameter value includes the power and/or sidelobe size of the beam corresponding to the signal.
  • the comparing unit 703 is further configured to: calculate the difference between the detected characteristic parameter value of the signal emitted by the corresponding UPA array in the first AiP and the preset first set of characteristic parameter values And calculating a first ratio of the first difference and the preset first set of characteristic parameter values as the first comparison result.
  • the comparing unit 703 is further configured to: calculate the difference between the detected characteristic parameter value of the signal emitted by the corresponding UPA array in the second AiP and the preset second set of characteristic parameter values And calculating a second ratio of the second difference and the preset second set of characteristic parameter values as the second comparison result.
  • the judging unit 705 is further configured to: compare the first ratio and the second ratio; and select the AiP corresponding to the smallest ratio for the signal transmission and reception of the terminal device.
  • the judging unit 705 is further configured to: determine to use the UPA array in the first AiP for signal transceiving of the terminal device, or determine to use the UPA array in the second AiP The UPA array is used for signal transmission and reception of the terminal equipment.
  • the judgment unit 705 is further configured to: if the first comparison result and the second comparison result both exceed a predetermined threshold, determine to use the ULA array in the first AiP for The signal transceiving of the terminal device, or the ULA array in the second AiP is used for the signal transceiving of the terminal device.
  • the judging unit 705 is further configured to: if the first comparison result and the second comparison result both exceed a predetermined threshold, determine to perform beam scanning management through the RRC protocol.
  • control unit 701, the comparison unit 703, and/or the judgment unit 705 may be processors, such as CPU, MCU, DSP, and so on.
  • the ULA array in the AiP detects the signal transmitted by the corresponding UPA array, and the characteristic parameter values of the signals detected by the multiple AiPs in the terminal equipment are compared with the corresponding preset The characteristic parameter values are compared, and the AiP with the best beam performance is selected based on the comparison result for signal transmission and reception of the terminal device. Therefore, the local detection and management of the beam by the terminal is realized without adding additional hardware, which saves network resources and reduces the cost and power consumption of the terminal.
  • the UPA array in AiP is used for signal transmission and reception by default. If the beam performance of the detected signal transmitted by the UPA array is not satisfactory, the ULA array in AiP can be used for signal transmission and reception.
  • the UPA array in AiP is used for signal transmission and reception by default. If the beam performance of the detected signal transmitted by the UPA array is not ideal, the RRC protocol can also be used for beam scanning and management.
  • the degree of occlusion of each AiP is different at different moments. Using the method provided by the embodiment of the present invention to detect and compare in real time, dynamic switching between AiPs can be realized to ensure better communication quality.
  • the embodiment of the present invention also provides a computer-readable storage medium having computer instructions stored thereon, and the computer instructions execute the steps of any of the foregoing methods when the computer instructions are executed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)

Abstract

波束检测和调整方法及装置、天线模块选择方法及装置、及计算机可读存储介质。所述天线模块选择方法应用于终端设备,其至少包括第一和第二AiP,每个AiP包括至少一个ULA阵列和至少一个UPA阵列,所述方法包括:第一AiP中的ULA阵列检测第一AiP中对应的UPA阵列发射的信号,将检测到的第一AiP中对应的UPA阵列发射的信号的特征参数值与预设的第一组特征参数值进行比较,获得第一比较结果;第二AiP中的ULA阵列检测第二AiP中对应的UPA阵列发射的信号,将检测到的第二AiP中对应的UPA阵列发射的信号的特征参数值与预设的第二组特征参数值进行比较,获得第二比较结果;基于第一和第二比较结果确定使用第一或第二AiP用于终端设备的信号收发。实现了终端对波束的本地检测和管理。

Description

波束检测和调整方法及装置、天线模块选择方法及装置、计算机可读存储介质
本申请要求于2019年1月31日提交中国国家知识产权局的、申请号为201910097995.0、发明名称为“基于AiP结构的波束检测方法及装置、计算机可读存储介质”的中国专利申请的优先权、申请号为201910098028.6、发明名称为“基于AiP结构的波束调整方法及装置、计算机可读存储介质”的中国专利申请的优先权、以及申请号为201910098508.2、发明名称为“天线模块选择方法及装置、终端设备、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,具体涉及一种波束检测和调整方法及装置、天线模块选择方法及装置、以及计算机可读存储介质。
背景技术
5G毫米波移动通信系统使用阵列天线与波束赋形技术,5G终端毫米波芯片使用封装天线技术,具有显著的方向选择性。快速准确的收发端波束对齐和跟踪是实现毫米波通信的一项重要技术。由于毫米波频段信号衰减快、散射绕射特性差,容易被遮挡,因此通过细窄波束可将信号能量集中,通过波束管理能够动态跟踪调整波束方向变化,从而较好地支持毫米波频段信道的快变特性。
现有的一些方案中,终端在网络中通过无线资源控制(Radio Resource Control,RRC)协议进行各种波束扫描并结合相关对准策略完成波束管理。然而,这种方法占用较多网络资源,终端侧需要较多的基带处理并相应地产生较大的功耗。
现有的其他方案中,在终端中增设专用于射频环境检测的天线或感应装置,以及相应的电调谐元件、信号处理与控制电路,但这些硬件结构难以与终端主通信系统芯片组集成,显著地增加了终端的器件、体积和成本。
发明内容
本发明解决的技术问题是:提供一种基于AiP结构的波束检测和调整方法及装置、天线模块选择方法及装置。
本发明实施例提供了一种基于AiP结构的波束检测方法,所述AiP结构至少包括第一AiP,所述第一AiP包括至少一个ULA(Uniform Linear Array,均匀线性阵列)阵列和对应的至少一个UPA(Uniform Planar Array,均匀平面阵列)阵列,所述波束检测方法包括:所述ULA阵列检测对应的所述UPA阵列发射的信号;以及存储第一组检测结果,所述第一组检测结果包括检测到的所述UPA阵列发射的信号的特征参数值。
可选的,所述第一组检测结果包括以下参数的任意组合:检测到的所述UPA阵列发射的信号对应的波束的方向角、主瓣和旁瓣的比值、旁瓣抑制和波束的功率。
可选的,所述UPA阵列发射的信号为毫米波信号。
可选的,每个ULA阵列包括多个天线单元,每个UPA阵列包括多个天线单元,所述ULA阵列检测对应的所述UPA阵列发射的信号包括:所述ULA阵列包括的多个天线单元分别检测对应的所述UPA阵列包括的多个天线单元发射的信号。
可选的,所述AiP结构还包括第二AiP,所述波束检测方法还包括:所述第二AiP中的ULA阵列检测所述第一AiP中的UPA阵列发射的信号;以及存储第二组检测结果,所述第二组检测结果包括所述第二AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号的特征参数值。
可选的,所述AiP结构还包括第二AiP,所述波束检测方法还包括:所述第二AiP中的ULA阵列检测所述第二AiP中的UPA阵列发射的信号;以及存储第三组检测结果,所述第三组检测结果包括所述第二AiP中的ULA阵列检测到的所述第二AiP中的UPA阵列发射的信号的特征参数值。
可选的,所述波束检测方法应用于所述AiP结构处于无遮挡状态时,所述第一组检测结果、所述第二组检测结果和所述第三组检测结果作为所述AiP结构被设计时的预设特征参数值。
可选的,所述第一组检测结果、所述第二组检测结果和所述第三组检测结果存储在查找表(Look-UP Table,LUT)中。
本发明实施例还提供了一种基于AiP结构的波束检测装置,所述AiP结构至少包括第一AiP,所述第一AiP包括至少一个ULA阵列和对应的至少一个UPA阵列,所述波束检测装置包括:控制单元,用于控制所述ULA阵列检测对应的所述UPA阵列发射的信号;以及存储单元,用于存储第一组检测结果,所述第一组检测结果包括检测到的所述UPA阵列发射的信号的特征参数值。
可选的,所述第一组检测结果包括以下参数的任意组合:检测到的所述UPA阵列发射的信号对应的波束的方向角、主瓣和旁瓣的比值、旁瓣抑制和波束的功率。
可选的,所述UPA阵列发射的信号为毫米波信号。
可选的,每个ULA阵列包括多个天线单元,每个UPA阵列包括多个天线单元,所述控制单元用于控制所述ULA阵列包括的多个天线单元分别检测对应的所述UPA阵列包括的多个天线单元发射的信号。
可选的,所述AiP结构还包括第二AiP,所述控制单元还用于控制所述第二AiP中的ULA阵列检测所述第一AiP中的UPA阵列发射的信号;所述存储单元还用于存储第二组检测结果,所述第二组检测结果 包括所述第二AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号的特征参数值。
可选的,所述AiP结构还包括第二AiP,所述控制单元还用于控制所述第二AiP中的ULA阵列检测所述第二AiP中的UPA阵列发射的信号;所述存储单元还用于存储第三组检测结果,所述第三组检测结果包括所述第二AiP中的ULA阵列检测到的所述第二AiP中的UPA阵列发射的信号的特征参数值。
可选的,所述第一组检测结果、所述第二组检测结果和所述第三组检测结果作为所述AiP结构被设计时的预设特征参数值。
可选的,所述存储单元将所述第一组检测结果、所述第二组检测结果和所述第三组检测结果存储在查找表中。
本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令运行时执行上述任一基于AiP结构的波束检测方法的步骤。
本发明实施例还提供了一种基于AiP结构的波束调整方法,所述AiP结构至少包括第一AiP,所述第一AiP包括至少一个ULA阵列和对应的至少一个UPA阵列,所述波束调整方法包括:所述ULA阵列检测对应的所述UPA阵列发射的信号;将所述检测到的信号的特征参数值与预设的第一组信号特征参数值进行比较;以及基于比较结果调节与所述UPA阵列相连的相移器,直至达到第一最优波束配置。
可选的,所述检测到的信号的特征参数值包括以下参数的任意组合:检测到的所述UPA阵列发射的信号对应的波束的方向角、主瓣和旁瓣的比值、旁瓣抑制和波束的功率。
可选的,所述达到第一最优波束配置包括:检测到的所述UPA阵列发射的信号对应的波束的功率与预设的功率的偏差位于10%以内、和/或旁瓣抑制与预设的旁瓣抑制的偏差位于10%以内。
可选的,达到第一最优波束配置时,所述旁瓣抑制为15dB。
可选的,所述AiP结构设置于终端设备中。
可选的,所述预设的第一组信号特征参数值包括:当所述AiP结构处于无遮挡状态时,所述ULA阵列检测到的对应的所述UPA阵列发射的信号的特征参数值。
可选的,所述波束调整方法还包括:存储所述第一最优波束配置。
可选的,所述AiP结构还包括第二AiP,所述第二AiP包括至少一个ULA阵列和对应的至少一个UPA阵列,所述波束调整方法还包括:所述第二AiP中的ULA阵列检测所述第一AiP中的UPA阵列发射的信号;将所述第二AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号的特征参数值与预设的第二组信号特征参数值进行比较;以及基于比较结果调节与所述第一AiP中的UPA阵列相连的相移器,直至达到第二最优波束配置。
可选的,所述第二AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号的特征参数值包括以下参数的任意组合:所述第二AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号对应的波束的方向角、主瓣和旁瓣的比值、旁瓣抑制和波束的功率。
可选的,所述AiP结构还包括第二AiP,所述第二AiP包括至少一个ULA阵列和对应的至少一个UPA阵列,所述波束调整方法还包括:所述第二AiP中的ULA阵列检测所述第二AiP中的UPA阵列发射的信号;将所述第二AiP中的ULA阵列检测到的所述第二AiP中的UPA阵列发射的信号的特征参数值与预设的第三组信号特征参数值进行比较;以及基于比较结果调节与所述第二AiP中的UPA阵列相连的相移器,直至达到第三最优波束配置。
可选的,所述预设的第二组信号特征参数值包括:当所述AiP结构处于无遮挡状态时,所述第二AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号的特征参数值。
可选的,所述预设的第三组信号特征参数值包括:当所述AiP结构处于无遮挡状态时,所述第二AiP中的ULA阵列检测到的所述第二AiP中的UPA阵列发射的信号的特征参数值。
本发明实施例还提供了一种基于AiP结构的波束调整装置,所述AiP结构至少包括第一AiP,所述第一AiP包括至少一个ULA阵列和对应的至少一个UPA阵列,所述波束调整装置包括:控制单元,用于控制所述ULA阵列检测对应的所述UPA阵列发射的信号;比较单元,用于将所述检测到的信号的特征参数值与预设的第一组信号特征参数值进行比较;以及处理单元,用于基于比较结果调节与所述UPA阵列相连的相移器,直至达到第一最优波束配置。
可选的,所述检测到的信号的特征参数值包括以下参数的任意组合:检测到的所述UPA阵列发射的信号对应的波束的方向角、主瓣和旁瓣的比值、旁瓣抑制和波束的功率。
可选的,所述达到第一最优波束配置包括:检测到的所述UPA阵列发射的信号对应的波束的功率与预设的功率的偏差位于10%以内、和/或旁瓣抑制与预设的旁瓣抑制的偏差位于10%以内。
可选的,达到第一最优波束配置时,所述旁瓣抑制为15dB。
可选的,所述AiP结构设置于终端设备中。
可选的,所述预设的第一组信号特征参数值包括:当所述AiP结构处于无遮挡状态时,所述ULA阵列检测到的对应的所述UPA阵列发射的信号的特征参数值。
可选的,所述波束调整装置还包括存储单元,用于存储所述第一最优波束配置。
可选的,所述AiP结构还包括第二AiP,所述第二AiP包括至少一个ULA阵列和对应的至少一个UPA阵列,所述控制单元还用于控制所述第二AiP中的ULA阵列检测所述第一AiP中的UPA阵列发射的信号,所述比较单元还用于将所述第二AiP中的ULA阵列检测到的所述第一 AiP中的UPA阵列发射的信号的特征参数值与预设的第二组信号特征参数值进行比较,所述处理单元还用于基于比较结果调节与所述第一AiP中的UPA阵列相连的相移器,直至达到第二最优波束配置。
可选的,所述第二AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号的特征参数值包括以下参数的任意组合:所述第二AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号对应的波束的方向角、主瓣和旁瓣的比值、旁瓣抑制和波束的功率。
可选的,所述AiP结构还包括第二AiP,所述第二AiP包括至少一个ULA阵列和对应的至少一个UPA阵列,所述控制单元还用于控制所述第二AiP中的ULA阵列检测所述第二AiP中的UPA阵列发射的信号;所述比较单元还用于将所述第二AiP中的ULA阵列检测到的所述第二AiP中的UPA阵列发射的信号的特征参数值与预设的第三组信号特征参数值进行比较;以及所述处理单元还用于基于比较结果调节与所述第二AiP中的UPA阵列相连的相移器,直至达到第三最优波束配置。
可选的,所述预设的第二组信号特征参数值包括:当所述AiP结构处于无遮挡状态时,所述第二AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号的特征参数值。
可选的,所述预设的第三组信号特征参数值包括:当所述AiP结构处于无遮挡状态时,所述第二AiP中的ULA阵列检测到的所述第二AiP中的UPA阵列发射的信号的特征参数值。
本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令运行时执行上述任一基于AiP结构的波束调整方法的步骤。
本发明实施例还提供了一种天线模块选择方法,所述方法应用于终端设备,所述终端设备至少包括第一AiP和第二AiP,每个AiP包括至少一个ULA阵列和对应的至少一个UPA阵列,所述天线模块选择方法包括:所述第一AiP中的ULA阵列检测所述第一AiP中对应 的UPA阵列发射的信号,将检测到的所述第一AiP中对应的UPA阵列发射的信号的特征参数值与预设的第一组特征参数值进行比较,获得第一比较结果;所述第二AiP中的ULA阵列检测所述第二AiP中对应的UPA阵列发射的信号,将检测到的所述第二AiP中对应的UPA阵列发射的信号的特征参数值与预设的第二组特征参数值进行比较,获得第二比较结果;以及基于所述第一比较结果和第二比较结果确定使用所述第一AiP或所述第二AiP用于所述终端设备的信号收发。
可选的,所述特征参数值包括信号对应的波束的功率和/或旁瓣大小。
可选的,所述将检测到的所述第一AiP中对应的UPA阵列发射的信号的特征参数值与预设的第一组特征参数值进行比较,获得第一比较结果包括:计算所述检测到的信号的特征参数值与所述预设的第一组特征参数值之间的第一差值;以及计算所述第一差值与所述预设的第一组特征参数值的第一比值,作为所述第一比较结果。
可选的,所述将检测到的所述第二AiP中对应的UPA阵列发射的信号的特征参数值与预设的第二组特征参数值进行比较,获得第二比较结果包括:计算所述检测到的信号的特征参数值与所述预设的第二组特征参数值之间的第二差值;以及计算所述第二差值与所述预设的第二组特征参数值的第二比值,作为所述第二比较结果。
可选的,所述基于所述第一比较结果和第二比较结果确定使用所述第一AiP或所述第二AiP用于所述终端设备的信号收发包括:比较所述第一比值和所述第二比值;以及选择最小的比值对应的AiP用于所述终端设备的信号收发。
可选的,所述使用所述第一AiP或所述第二AiP用于所述终端设备的信号收发包括:使用所述第一AiP中的所述UPA阵列用于所述终端设备的信号收发,或者使用所述第二AiP中的所述UPA阵列用于所述终端设备的信号收发。
可选的,如果所述第一比较结果和所述第二比较结果均超过预定阈值,则使用所述第一AiP中的所述ULA阵列用于所述终端设备的信号收发,或者使用所述第二AiP中的所述ULA阵列用于所述终端设备的信号收发。
可选的,所述天线模块选择方法还包括:如果所述第一比较结果和所述第二比较结果均超过预定阈值,则通过RRC协议进行波束扫描管理。
本发明实施例还提供了一种天线模块选择装置,所述天线模块选择装置应用于终端设备,所述终端设备至少包括第一AiP和第二AiP,每个AiP包括至少一个ULA阵列和对应的至少一个UPA阵列,所述天线模块选择装置包括:控制单元,用于控制所述第一AiP中的ULA阵列检测所述第一AiP中对应的UPA阵列发射的信号,以及控制所述第二AiP中的ULA阵列检测所述第二AiP中对应的UPA阵列发射的信号;比较单元,用于将检测到的所述第一AiP中对应的UPA阵列发射的信号的特征参数值与预设的第一组特征参数值进行比较,获得第一比较结果,以及将检测到的所述第二AiP中对应的UPA阵列发射的信号的特征参数值与预设的第二组特征参数值进行比较,获得第二比较结果;以及判断单元,用于基于所述第一比较结果和所述第二比较结果确定使用所述第一AiP或所述第二AiP用于所述终端设备的信号收发。
可选的,所述特征参数值包括信号对应的波束的功率和/或旁瓣大小。
可选的,所述比较单元还用于:计算检测到的所述第一AiP中对应的UPA阵列发射的信号的特征参数值与所述预设的第一组特征参数值之间的第一差值;以及计算所述第一差值与所述预设的第一组特征参数值的第一比值,作为所述第一比较结果。
可选的,所述比较单元还用于:计算检测到的所述第二AiP中对应的UPA阵列发射的信号的特征参数值与所述预设的第二组特征参 数值之间的第二差值;以及计算所述第二差值与所述预设的第二组特征参数值的第二比值,作为所述第二比较结果。
可选的,所述判断单元还用于:比较所述第一比值和所述第二比值;以及选择最小的比值对应的AiP用于所述终端设备的信号收发。
可选的,所述判断单元还用于:确定使用所述第一AiP中的所述UPA阵列用于所述终端设备的信号收发,或者确定使用所述第二AiP中的所述UPA阵列用于所述终端设备的信号收发。
可选的,所述判断单元还用于:如果所述第一比较结果和所述第二比较结果均超过预定阈值,则确定使用所述第一AiP中的所述ULA阵列用于所述终端设备的信号收发,或者使用所述第二AiP中的所述ULA阵列用于所述终端设备的信号收发。
可选的,所述判断单元还用于:如果所述第一比较结果和所述第二比较结果均超过预定阈值,则确定通过RRC协议进行波束扫描管理。
本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令运行时执行上述任一天线模块选择方法的步骤。
与现有技术相比,本发明实施例的技术方案具有以下有益效果。
本发明实施例提供的基于AiP结构的波束检测方法和装置中,通过AiP结构中的ULA阵列检测该ULA阵列对应的UPA阵列发射的信号,并对检测结果进行存储。所述方法可以应用于AiP结构完成设计定型时,此时UPA阵列与ULA阵列之间形成了固定的物理通道,当UPA阵列发射特定的信号时,通过对应的ULA阵列可以检测到相对固定的信号。此时AiP结构周围不存在多余的遮挡,即处于较理想的环境中,检测到的结果即是AiP结构设计时的预设阈值。存储所述检测结果的意义在于:当AiP结构周围存在遮挡时,可以将检测到的信号的参数值与所述存储的预设阈值进行比较,基于比较结果可以判 断出实际发射的波束与设计中存在的偏离,进而据此去调整波束。
进一步地,本发明实施例提供的基于AiP结构的波束调整方法和装置中,通过AiP结构中的ULA阵列检测该ULA阵列对应的UPA阵列发射的信号,将检测到的信号的特征参数值与预设的信号特征参数值进行比较,基于比较结果调节与所述UPA阵列相连的移相器,直至达到最优波束配置,并存储所述最优波束配置。所述方法可以应用于AiP结构安装于终端设备时,此时AiP周边的电路器件和外壳等成为确定的物理环境,当UPA阵列发射特定的信号时,通过对应的ULA阵列可以检测到相对固定的信号。由于AiP结构周围存在一定的遮挡(即周边的电路器件和外壳等),检测到的信号特征参数值与预设的信号特征参数值存在一定差异,通过调节相应的移相器使得AiP达到最优波束配置。
进一步地,存储所述最优波束配置的意义在于:当包括所述AiP结构的终端设备投入实际应用中时,其周围将存在更多的遮挡,可以将检测到的信号的参数值与所述存储的最优波束配置进行比较,基于比较结果可以选择基于所述AiP结构中性能最好的AiP进行信号收发。
进一步地,本发明实施例提供的天线模块选择方法和装置中,通过AiP中的ULA阵列检测对应的UPA阵列发射的信号,将终端设备中多个AiP检测到的信号的特征参数值与对应的预设特征参数值进行比较,基于比较结果选择波束性能最好的AiP用于终端设备的信号收发。因此,实现了终端对波束的本地检测和管理,并且无需增加额外硬件,节省了网络资源,减小了终端的成本和功耗。
进一步地,默认使用AiP中的UPA阵列进行信号收发,若检测到的UPA阵列发射的信号的波束性能都不理想,可以使用AiP中的ULA阵列进行信号收发。
进一步地,默认使用AiP中的UPA阵列进行信号收发,若检测到的UPA阵列发射的信号的波束性能都不理想,也可以使用RRC协 议进行波束扫描和管理。
进一步地,每个AiP在不同时刻受遮挡的程度不尽相同,利用本发明实施例提供的方法实时检测、比较,可以实现AiP之间的动态切换,以保证更优的通信质量。
附图说明
图1是本发明一实施例提供的AiP的示意图;
图2是本发明一实施例提供的基于AiP结构的波束检测方法的流程示意图;
图3是本发明一实施例中基于AiP结构的波束检测装置的结构框图;
图4是本发明一实施例提供的基于AiP结构的波束调整方法的流程示意图;
图5是本发明一实施例中基于AiP结构的波束调整装置的结构框图;
图6是本发明一实施例提供的天线模块选择方法的流程示意图;以及
图7是本发明一实施例中天线模块选择装置的结构框图。
具体实施方式
如背景技术所述,现有的波束管理方法包括终端在网络中基于RRC协议完成波束管理,但这种方法不仅占用较多网络资源,终端侧还会产生较大的功耗。现有的波束管理方法还包括在终端中增设专用于射频环境检测的天线或感应装置,以及相应的电调谐元件、信号处理与控制电路,但这种方法加大了硬件结构集成的难度,增加了终端的体积和成本。
发明人经研究发现,终端在实际应用中最为常见的遮挡来自于天 线射频模块安装附近的其它器件及外壳、手持及其它人体遮挡、终端附近其它对射频传播产生反射或折射的物体等等,这些因素与网络状态的相关性低。如果天线射频模块或终端直接感知附近的射频环境,天线射频模块可以本地检测并调整波束,终端可以选择波束最优配置,将提高波束调整效率、节约功耗。
本发明实施例提供了一种基于AiP结构的波束检测方法。通过AiP结构中的ULA阵列检测该ULA阵列对应的UPA阵列发射的信号,并对检测结果进行存储。所述方法可以应用于AiP结构完成设计定型时,此时UPA阵列与ULA阵列之间形成了固定的物理通道,当UPA阵列发射特定的信号时,通过对应的ULA阵列可以检测到相对固定的信号。此时AiP结构周围不存在多余的遮挡,即处于较理想的环境中,检测到的结果即是AiP结构设计时的预设阈值。存储所述检测结果的意义在于:当AiP结构周围存在遮挡时,可以将检测到的信号的参数值与所述存储的预设阈值进行比较,基于比较结果可以判断出实际发射的波束与设计中存在一定偏离,进而据此去调整波束。
本发明实施例还提供了一种基于AiP结构的波束调整方法。通过AiP结构中的ULA阵列检测该ULA阵列对应的UPA阵列发射的信号,将检测到的信号的特征参数值与预设的信号特征参数值进行比较,基于比较结果调节与所述UPA阵列相连的移相器,直至达到最优波束配置,并存储所述最优波束配置。所述方法可以应用于AiP结构安装于终端设备时,此时AiP周边的电路器件和外壳等成为确定的物理环境,当UPA阵列发射特定的信号时,通过对应的ULA阵列可以检测到相对固定的信号。由于AiP结构周围存在一定的遮挡(即周边的电路器件和外壳等),检测到的信号特征参数值与预设的信号特征参数值存在一定差异,通过调节相应的移相器使得AiP达到最优波束配置。
本发明实施例还提供了一种天线模块选择方法和装置,通过AiP中的ULA阵列检测对应的UPA阵列发射的信号,将终端设备中多个 AiP检测到的信号的特征参数值与对应的预设特征参数值进行比较,基于比较结果选择波束性能最好的AiP用于终端设备的信号收发。因此,实现了终端对波束的本地检测和管理,并且无需增加额外硬件,节省了网络资源,减小了终端的成本和功耗。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例作详细的说明。
参考图1,图1示出了本发明一实施例提供的AiP。所述AiP包括一组由多个天线单元101构成的ULA天线阵列和一组由多个天线单元102构成的UPA天线阵列,图1以每组天线阵列包括八个天线单元为例。在一些实施例中,一个AiP也可以包括多组ULA天线阵列和多组UPA天线阵列,ULA天线阵列和UPA天线阵列的数量一致,且ULA天线阵列与UPA天线阵列包含的天线单元数一致,形成一一对应的关系。
UPA阵列是AiP的主阵列,由于相控阵列在波束指向侧方一定角度后出现主瓣增益下降同时旁瓣增益上升的问题,一般设定主阵列UPA在某个最大工作角度外不再作为工作通道,而此空间区域由ULA阵列覆盖。因此AiP中同时设计有UPA和ULA至少两组阵列,并为它们配置相应独立的电路与控制处理通道。
参考图2,图2示出了本发明一实施例提供的基于AiP结构的波束检测方法的流程图,以下对具体步骤进行详细说明。
在一些实施例中,所述AiP结构至少包括第一AiP,所述第一AiP包括至少一个ULA阵列和对应的至少一个UPA阵列。
步骤S201中,所述第一AiP中的ULA阵列检测对应的所述UPA阵列发射的信号。
当AiP结构设计定型后,ULA阵列与UPA阵列之间即形成了固定的物理通道。当UPA阵列发射特定的信号时,由于UPA阵列和ULA阵列之间的耦合关系,ULA阵列的通道可以检测到相对固定的 信号。
在一些实施例中,所述UPA阵列发射的信号为毫米波信号。
在一些实施例中,每个ULA阵列包括多个天线单元,每个UPA阵列也包括多个天线单元,并且所述ULA阵列包含的多个天线单元的数量与所述UPA阵列包含的多个天线单元的数量相等。在一些实施例中,所述ULA阵列检测对应的所述UPA阵列发射的毫米波信号可以包括:所述ULA阵列包括的多个天线单元分别检测对应的所述UPA阵列包括的多个天线单元发射的信号。
步骤S203中,存储第一组检测结果,所述第一组检测结果包括所述第一AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号的特征参数值。
在一些实施例中,所述第一组检测结果包括以下参数的任意组合:所述第一AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号对应的波束的方向角、主瓣和旁瓣的比值、旁瓣抑制和波束的功率。
在一些实施例中,所述第一组检测结果存储在查找表中。所述查找表设置于基带处理器中,所述基带处理器和所述AiP结构之间由射频前端电路连接。
所述检测方法应用于所述AiP结构设计定型后,此时AiP结构处于无遮挡状态,检测到的所述UPA阵列发射的信号的特征参数值即为所述AiP结构被设计时的预设特征参数值,即理想值。当AiP结构周围存在遮挡时,可以将检测到的UPA阵列发射的信号的特征参数值与所述存储的预设特征参数值进行比较,基于比较结果可以判断出实际发射的波束与原先设计中存在一定偏离,进而据此去调整波束,优化波束设置。
为进一步提高实际环境中的全向通信能力并实现MIMO(Multiple-Input Multiple-Output,多输入多输出)功能,所述AiP结 构可以包括多个AiP,所述多个AiP被布置于各个方向协同工作。此时多个AiP之间也形成了固定的物理通道。当某个AiP中的UPA阵列发射信号时,其他AiP中的ULA阵列也可以检测到相对固定的信号。
相应地,在一些实施例中,所述波束检测方法还包括:第二AiP中的ULA阵列检测所述第一AiP中的UPA阵列发射的信号;以及存储第二组检测结果,所述第二组检测结果包括所述第二AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号的参数值。
从本发明的上述实施例可以看出,当AiP设计定型后,既可以通过同一AiP的ULA阵列检测对应的UPA阵列发射的毫米波信号,也可以通过不同AiP的ULA阵列来检测UPA阵列发射的毫米波信号。
当所述AiP结构包括多个AiP时,每个AiP中的ULA阵列都可以对相应的UPA阵列发射的信号进行检测,并存储检测结果。在一些实施例中,所述波束检测方法还包括:第二AiP中的ULA阵列检测第二AiP中的UPA阵列发射的信号;以及存储第三组检测结果,所述第三组检测结果包括所述第二AiP中的ULA阵列检测到的所述第二AiP中的UPA阵列发射的信号的参数值。
相应地,本发明实施例还提供一种基于AiP结构的波束检测装置。图3示出了所述基于AiP结构的波束检测装置30,包括控制单元301和存储单元303。
在一些实施例中,所述AiP结构至少包括第一AiP,所述第一AiP包括至少一个ULA阵列和对应的至少一个UPA阵列。
所述控制单元301用于控制所述第一AiP中的ULA阵列检测对应的所述UPA阵列发射的信号。
在一些实施例中,所述UPA阵列发射的信号为毫米波信号。
在一些实施例中,每个ULA阵列包括多个天线单元,每个UPA阵列也包括多个天线单元,并且所述ULA阵列包含的多个天线单元 的数量与所述UPA阵列包含的多个天线单元的数量相等。在一些实施例中,所述控制单元301用于控制所述ULA阵列包括的多个天线单元分别检测对应的所述UPA阵列包括的多个天线单元发射的信号。
所述存储单元303用于存储第一组检测结果,所述第一组检测结果包括所述第一AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号的特征参数值。
在一些实施例中,所述第一组检测结果包括以下参数的任意组合:所述第一AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号对应的波束的方向角、主瓣和旁瓣的比值、旁瓣抑制和波束的功率。在一些实施例中,所述存储单元303将所述第一组检测结果存储在查找表中。
在一些实施例中,所述AiP结构可以包括多个AiP,比如第一AiP和第二AiP。所述控制单元301还用于控制第二AiP中的ULA阵列检测所述第一AiP中的UPA阵列发射的信号。所述存储单元303还用于存储第二组检测结果,所述第二组检测结果包括所述第二AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号的特征参数值。
当所述AiP结构包括多个AiP时,每个AiP中的ULA阵列都可以对相应的UPA阵列发射的信号进行检测,并存储检测结果。
在一些实施例中,所述AiP结构可以包括多个AiP,比如第一AiP和第二AiP。所述控制单元301还用于控制第二AiP中的ULA阵列检测第二AiP中的UPA阵列发射的信号。所述存储单元303还用于存储第三组检测结果,所述第三组检测结果包括所述第二AiP中的ULA阵列检测到的所述第二AiP中的UPA阵列发射的信号的特征参数值。
在一些实施例中,所述控制单元可以是处理器,比如CPU、MCU、DSP等。所述存储单元可以是ROM、RAM、磁盘或光盘等。
本发明上述实施例提供的基于AiP结构的波束检测方法和装置中,通过AiP结构中的ULA阵列检测该ULA阵列对应的UPA阵列发射的毫米波信号,并对检测结果进行存储。所述方法可以应用于AiP结构完成设计定型时,此时UPA阵列与ULA阵列之间形成了固定的物理通道,当UPA阵列发射特定的毫米波信号时,通过对应的ULA阵列可以检测到相对固定的信号。此时AiP结构周围不存在多余的遮挡,即处于较理想的环境中,检测到的结果即是AiP结构设计时的预设阈值。存储所述检测结果的意义在于:当AiP结构周围存在遮挡时,可以将检测到的信号的参数值与所述存储的预设阈值进行比较,基于比较结果可以判断出实际发射的波束与设计中存在一定偏离,进而据此调整波束。
参考图4,图4示出了本发明一实施例提供的基于AiP结构的波束调整方法的流程图,所述波束调整方法基于上述波束检测方法中存储的检测结果来进行。以下对具体步骤进行详细说明。
所述AiP结构至少包括第一AiP,所述第一AiP包括至少一个ULA阵列和对应的至少一个UPA阵列。
步骤S401中,所述第一AiP中的ULA阵列检测对应的所述UPA阵列发射的信号。
当AiP结构安装到终端设备后,不仅ULA阵列与UPA阵列之间形成有固定的物理通道,AiP周边的电路器件和终端设备的外壳等也成为确定的物理环境。当UPA阵列发射特定的信号时,ULA阵列可以检测到相对固定的信号。与安装到终端设备前相比,由于存在一定的遮挡,天线阵列发射的信号对应的波束会受到影响。
在一些实施例中,所述UPA阵列发射的信号为毫米波信号。
在一些实施例中,每个ULA阵列包括多个天线单元,每个UPA阵列也包括多个天线单元,并且所述ULA阵列包含的多个天线单元的数量与所述UPA阵列包含的多个天线单元的数量相等。在一些实 施例中,所述ULA阵列检测对应的所述UPA阵列发射的信号可以包括:所述ULA阵列包括的多个天线单元分别检测对应的所述UPA阵列包括的多个天线单元发射的信号。
步骤S403中,将所述检测到的信号的特征参数值与预设的第一组信号特征参数值进行比较。
当AiP结构安装到终端设备后,AiP周边的电路器件和终端设备的外壳等会对AiP结构形成一定的遮挡。此时天线阵列发射的信号对应的波束与AiP结构完成设计定型时相比存在一定的偏离,影响性能。因此,需要基于此偏离对天线阵列进行一定的调整,使得相应的波束接近最初设计时的预设阈值,
在一些实施例中,所述检测到的信号的特征参数值包括以下参数的任意组合:所述第一AiP中的ULA阵列检测到的所述UPA阵列发射的信号对应的波束的方向角、主瓣和旁瓣的比值、旁瓣抑制和波束的功率。
在一些实施例中,所述预设的第一组信号特征参数值包括:当所述AiP结构处于无遮挡状态时,所述ULA阵列检测到对应的所述UPA阵列发射的信号的特征参数值,即上述波束检测方法的步骤S203中存储的第一组检测结果。
步骤S405中,基于比较结果调节与所述第一AiP中的UPA阵列相连的移相器,直至达到第一最优波束配置。
在一些实施例中,天线模块与射频前端电路相连,所述射频前端电路包括低噪声放大器、功率放大器、移相器、发射可变增益放大器、接收可变增益放大器、合路器、功分器、锁相环、变频器和振荡器等。基于步骤S403中的比较结果,可以调节与对应UPA阵列相连的移相器,使得发射信号对应的波束达到最优配置。
在一些实施例中,所述达到第一最优波束配置包括:所述第一AiP中的ULA阵列检测到的所述UPA阵列发射的信号对应的波束的 功率与预设的功率的偏差位于10%以内、和/或旁瓣抑制与预设的旁瓣抑制的偏差位于10%以内。
在一些实施例中,达到第一最优波束配置时,所述旁瓣抑制为15dB。
在一些实施例中,所述波束调整方法还包括:存储所述第一最优波束配置。
所述波束调整方法应用于所述AiP结构安装于终端设备后,此时AiP结构的遮挡来自于周围的电路器件和终端设备的外壳,通过步骤S405中的调节后,AiP结构中的UPA阵列发射的信号对应的波束达到了最优配置。
如上所述,可以通过一个AiP中的ULA阵列去检测该AiP中对应的UPA阵列发射的信号。为进一步提高实际环境中的全向通信能力并实现MIMO功能,所述AiP结构可以包括多个AiP,所述多个AiP被布置于各个方向协同工作。此时多个AiP之间也形成了固定的物理通道。当某个AiP中的UPA阵列发射信号时,其他AiP中的ULA阵列也可以检测到相对固定的信号,从而调整波束。
具体的,当所述AiP结构包括多个AiP时,比如第一AiP和第二AiP,所述波束调整方法还包括:第二AiP中的ULA阵列检测所述第一AiP中的UPA阵列发射的信号;将所述第二AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号的特征参数值与预设的第二组信号特征参数值进行比较;基于比较结果调节与所述第一AiP中的UPA阵列相连的移相器,直至达到第二最优波束配置。
所述第二AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号的特征参数值包括以下参数的任意组合:检测到的所述UPA阵列发射的信号对应的波束的方向角、主瓣和旁瓣的比值、旁瓣抑制和波束的功率。
类似的,所述预设的第二组信号特征参数值包括:当所述AiP结 构处于无遮挡状态时,所述第二AiP中的ULA阵列检测到所述第一AiP中的UPA阵列发射的信号的特征参数值,即上述波束检测方法中存储的第二组检测结果。
类似的,所述达到第二最优波束配置包括:所述第二AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号对应的波束的功率与预设的功率的偏差位于10%以内、和/或旁瓣抑制与预设的旁瓣抑制的偏差位于10%以内。
在一些实施例中,可以综合考虑同一AiP的检测结果和不同AiP之间的检测结果来调节移相器、调整波束。
当所述AiP结构包括多个AiP时,每个AiP中的ULA阵列均可以检测所述AiP中对应的所述UPA阵列发射的信号,将所述检测到的信号的特征参数值与该组所述UPA阵列预设的信号特征参数值进行比较,并基于比较结果调节与所述UPA阵列相连的相移器,直至分别达到对应的最优波束配置。
在一些实施例中,所述波束调整方法还包括:所述第二AiP中的ULA阵列检测所述第二AiP中的UPA阵列发射的信号;将所述第二AiP中的ULA阵列检测到的所述第二AiP中的UPA阵列发射的信号的特征参数值与预设的第三组信号特征参数值进行比较;以及基于比较结果调节与所述第二AiP中的UPA阵列相连的相移器,直至达到第三最优波束配置。
类似的,所述预设的第三组信号特征参数值包括:当所述AiP结构处于无遮挡状态时,所述第二AiP中的ULA阵列检测到所述第二AiP中的UPA阵列发射的信号的特征参数值。
类似的,所述达到第三最优波束配置包括:所述第二AiP中的ULA阵列检测到的所述第二AiP中的UPA阵列发射的信号对应的波束的功率与预设的功率的偏差位于10%以内、和/或旁瓣抑制与预设的旁瓣抑制的偏差位于10%以内。
在一些实施例中,所述波束调整方法还包括:存储所述第二和/或第三最优波束配置。
本发明上述实施例提供的基于AiP结构的波束调整方法中,通过AiP结构中的ULA阵列检测对应的UPA阵列发射的信号,将检测到的信号的特征参数值与预设的信号特征参数值进行比较,基于比较结果调节与所述UPA阵列相连的移相器,直至达到最优波束配置,并存储所述最优波束配置。所述方法可以应用于AiP结构安装于终端设备时,此时AiP周边的电路器件和外壳等成为确定的物理环境,当UPA阵列发射特定的毫米波信号时,通过对应的ULA阵列可以检测到相对固定的信号。由于AiP结构周围存在一定的遮挡(即周边的电路器件和外壳等),检测到的信号特征参数值与预设的信号特征参数值存在一定差异,通过调节相应的移相器使得AiP达到最优波束配置。即利用了前述实施例中存储的检测结果来实现波束调整。
上述实施例提供的波形调整方法中对每个AiP存储所述最优波束配置的意义在于:当包括所述AiP结构的终端设备投入实际应用中时,其周围将存在更多的遮挡,可以将检测到的信号的参数值与所述存储的最优波束配置进行比较,基于比较结果可以选择基于性能最好的AiP进行信号收发。
相应地,本发明实施例还提供一种基于AiP结构的波束调整装置。图5示出了所述基于AiP结构的波束调整装置50,包括控制单元501,比较单元503和处理单元505。
在一些实施例中,所述AiP结构至少包括第一AiP,所述第一AiP包括至少一个ULA阵列和对应的至少一个UPA阵列。
所述控制单元501用于控制所述第一AiP中的ULA阵列检测对应的所述UPA阵列发射的信号;所述比较单元503用于将所述检测到的信号的特征参数值与预设的第一组信号特征参数值进行比较;所述处理单元505用于基于比较结果调节与所述UPA阵列相连的相移器,直至达到第一最优波束配置。
在一些实施例中,所述检测到的信号的特征参数值包括以下参数的任意组合:所述第一AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号对应的波束的方向角、主瓣和旁瓣的比值、旁瓣抑制和波束的功率。
在一些实施例中,所述达到第一最优波束配置包括:检测到的所述UPA阵列发射的信号对应的波束的功率与预设的功率的偏差位于10%以内、和/或旁瓣抑制与预设的旁瓣抑制的偏差位于10%以内。
在一些实施例中,达到第一最优波束配置时,所述旁瓣抑制为15dB。
在一些实施例中,所述AiP结构设置于终端设备中。
在一些实施例中,所述预设的第一组信号特征参数值包括:当所述AiP结构处于无遮挡状态时,所述第一AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号的特征参数值。
在一些实施例中,所述波束调整装置还包括存储单元,用于存储所述第一最优波束配置。
在一些实施例中,所述AiP结构还包括第二AiP,所述第二AiP包括至少一个ULA阵列和对应的至少一个UPA阵列,所述控制单元301还用于控制所述第二AiP中的ULA阵列检测所述第一AiP中的UPA阵列发射的信号,所述比较单元303还用于将所述第二AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号的特征参数值与预设的第二组信号特征参数值进行比较,所述处理单元305还用于基于比较结果调节与所述第一AiP中的UPA阵列相连的相移器,直至达到第二最优波束配置。
在一些实施例中,所述第二AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号的特征参数值包括以下参数的任意组合:所述第二AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号对应的波束的方向角、主瓣和旁瓣的比值、旁瓣抑制 和波束的功率。
类似的,所述预设的第二组信号特征参数值包括:当所述AiP结构处于无遮挡状态时,所述第二AiP中的ULA阵列检测到所述第一AiP中的UPA阵列发射的信号的特征参数值,即上述波束检测方法中存储的第二组检测结果。
类似的,所述达到第二最优波束配置包括:所述第二AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号对应的波束的功率与预设的功率的偏差位于10%以内、和/或旁瓣抑制与预设的旁瓣抑制的偏差位于10%以内。
在一些实施例中,所述AiP结构还包括第二AiP,所述第二AiP包括至少一个ULA阵列和对应的至少一个UPA阵列,所述控制单元501还用于控制所述第二AiP中的ULA阵列检测所述第二AiP中的UPA阵列发射的信号;所述比较单元503还用于将所述第二AiP中的ULA阵列检测到的所述第二AiP中的UPA阵列发射的信号的特征参数值与预设的第三组信号特征参数值进行比较;所述处理单元505还用于基于比较结果调节与所述第二AiP中的UPA阵列相连的相移器,直至达到第三最优波束配置。
类似的,所述预设的第三组信号特征参数值包括:当所述AiP结构处于无遮挡状态时,所述第二AiP中的ULA阵列检测到所述第二AiP中的UPA阵列发射的信号的特征参数值。
类似的,所述达到第三最优波束配置包括:所述第二AiP中的ULA阵列检测到的所述第二AiP中的UPA阵列发射的信号对应的波束的功率与预设的功率的偏差位于10%以内、和/或旁瓣抑制与预设的旁瓣抑制的偏差位于10%以内。
在一些实施例中,所述存储单元还用于存储所述第二和/或第三最优波束配置。
在一些实施例中,所述控制单元501、所述比较单元503和/或所 述处理单元505可以是处理器,比如CPU、MCU、DSP等。所述存储单元可以是ROM、RAM、磁盘或光盘等。
如上实施例所述,所述预设的第一组、第二组、第三组信号特征参数值包括:当所述AiP结构处于无遮挡状态时,所述ULA阵列检测到相关的所述UPA阵列发射的信号的特征参数值。也就是所述AiP结构刚设计定型好还未装入终端设备时,所述ULA阵列检测到相关的所述UPA阵列发射的信号的特征参数值。
参考图6,图6示出了本发明一实施例提供的天线模块选择方法的流程图,所述天线模块选择方法应用于终端设备,基于上述波束调整方法中存储的最优波束配置来进行。所述终端设备包括多个AiP,比如第一AiP和第二AiP,每个AiP包括至少一个ULA阵列和对应的至少一个UPA阵列。所述多个AiP置于所述终端设备内的不同位置。
当UPA阵列发射特定的信号时,由于UPA阵列和ULA阵列之间的耦合关系,ULA阵列的通道可以检测到相对固定的信号。
步骤S601中,所述第一AiP中的ULA阵列检测所述第一AiP中对应的UPA阵列发射的信号,将检测到的所述第一AiP中对应的UPA阵列发射的信号的特征参数值与预设的第一组特征参数值进行比较,获得第一比较结果。
步骤S603中,所述第二AiP中的ULA阵列检测所述第二AiP中对应的UPA阵列发射的信号,将检测到的所述第二AiP中对应的UPA阵列发射的信号的特征参数值与预设的第二组特征参数值进行比较,获得第二比较结果。
步骤S605中,基于所述第一比较结果和第二比较结果确定使用所述第一AiP或所述第二AiP用于所述终端设备的信号收发。
在一些实施例中,所述UPA阵列发射的信号为毫米波信号。
在一些实施例中,每个ULA阵列包括多个天线单元,每个UPA 阵列也包括多个天线单元,并且所述ULA阵列包含的多个天线单元的数量与所述UPA阵列包含的多个天线单元的数量相等。在一些实施例中,所述ULA阵列检测对应的所述UPA阵列发射的信号可以包括:所述ULA阵列包括的多个天线单元分别检测对应的所述UPA阵列包括的多个天线单元发射的信号。
在一些实施例中,所述特征参数值包括信号对应的波束的功率和/或旁瓣大小。
在一些实施例中,所述预设的第一组特征参数值是所述终端设备中预存的关于所述第一AiP的特征参数值,所述预设的第二组特征参数值是所述终端设备中预存的关于所述第二AiP的特征参数值。所谓预存可以是,比如出厂时预存在终端设备的基带处理器的查找表中,即是前述实施例的波束调整方法中存储的最优波束配置。在一些实施例中,所述预设的第一组特征参数值可以是上述波束调整方法中存储的第一最优波束配置,所述预设的第二组特征参数值可以是上述波束调整方法中存储的第三最优波束配置。
当AiP应用到终端设备后,除了AiP周边的电路器件和终端设备的外壳,AiP还会受到手持及其它人体遮挡、终端设备附近其它对射频传播产生反射或折射的物体等等。由于这些遮挡,此时天线阵列发射的信号对应的波束与AiP应用到终端设备前相比存在一定的偏离,即波束的性能与预设的会存在一定差距。终端设备中的多个AiP置于所述终端设备内的不同位置,因此每个AiP在同一时刻受到的遮挡程度不尽相同,为了保证通信质量,需要选择与预设性能差距最小的AiP来进行终端设备的信号收发。
在一些实施例中,所述将检测到的所述第一AiP中对应的UPA阵列发射的信号的特征参数值与预设的第一组特征参数值进行比较,获得第一比较结果包括:计算所述检测到的信号的特征参数值与所述预设的第一组特征参数值之间的第一差值;计算所述第一差值与所述预设的第一组特征参数值的第一比值,作为所述第一比较结果。即, 通过步骤S601中的比较,从而知晓所述第一AiP中对应的UPA阵列发射的信号的性能与预设中的性能的差距。
在一些实施例中,所述将检测到的所述第二AiP中对应的UPA阵列发射的信号的特征参数值与预设的第二组特征参数值进行比较,获得第二比较结果包括:计算所述检测到的信号的特征参数值与所述预设的第二组特征参数值之间的第二差值;计算所述第二差值与所述预设的第二组特征参数值的第二比值,作为所述第二比较结果。即,通过步骤S603中的比较,从而知晓所述第二AiP中对应的UPA阵列发射的信号的性能与预设中的性能的差距。
所述第一比值和所述第二比值反映了所述第一AiP和所述第二AiP受遮挡的程度。比值越大,受遮挡程度越严重。
在一些实施例中,所述基于所述第一比较结果和第二比较结果确定使用所述第一AiP或所述第二AiP用于所述终端设备的信号收发包括:比较所述第一比值和所述第二比值;选择最小的比值对应的AiP用于所述终端设备的信号收发。也就是说,步骤S605基于步骤S601和步骤S603中的比较结果,选择与预设性能差距小的AiP进行信号的收发。
在一些实施例中,所述使用所述第一AiP或所述第二AiP用于所述终端设备的信号收发包括:使用所述第一AiP中的所述UPA阵列用于所述终端设备的信号收发,或者使用所述第二AiP中的所述UPA阵列用于所述终端设备的信号收发。
在上述实施例中,均由UPA阵列来进行终端设备的信号收发。在一些实施例中,所述天线模块选择方法还包括:如果所述第一比较结果和所述第二比较结果均超过预定阈值(即表明若继续使用对应UPA阵列发射信号,对应的波束参数会与原先设计中的偏离较多),那么使用所述第一AiP中的所述ULA阵列用于所述终端设备的信号收发,或者使用所述第二AiP中的所述ULA阵列用于所述终端设备的信号收发。
在一些实施例中,如果所述第一比较结果和所述第二比较结果均超过预定阈值,还可以通过RRC协议进行波束扫描管理。
需要说明的是,这里以第一AiP和第二AiP为例表示多个AiP,在实际操作中,所述方法对所述终端设备中包括的所有AiP都可以执行步骤S601~S605中的操作,以找到具有最优波束配置的AiP用于终端设备的信号收发。
由于每个AiP会放置在终端设备的不同位置,因此不同时刻每个AiP受遮挡的程度不尽相同,即每个AiP发射的信号对应的波束质量不尽相同,可以利用上述实施例提供的方法实时检测、比较,实现AiP之间的动态切换,以保证更优的通信质量。
相应地,本发明实施例还提供一种天线模块选择装置。图7示出了所述天线模块选择装置70,所述天线模块选择装置70应用于终端设备,所述终端设备至少包括第一AiP和第二AiP,每个AiP包括至少一个ULA阵列和对应的至少一个UPA阵列。
所述天线模块选择装置70包括控制单元701,比较单元703和判断单元705。
所述控制单元701用于控制所述第一AiP中的ULA阵列检测所述第一AiP中对应的UPA阵列发射的信号,以及控制所述第二AiP中的ULA阵列检测所述第二AiP中对应的UPA阵列发射的信号。
所述比较单元703用于将检测到的所述第一AiP中对应的UPA阵列发射的信号的特征参数值与预设的第一组特征参数值进行比较,获得第一比较结果。所述比较单元703还用于将检测到的所述第二AiP中对应的UPA阵列发射的信号的特征参数值与预设的第二组特征参数值进行比较,获得第二比较结果。
所述判断单元705用于:基于所述第一比较结果和所述第二比较结果,确定使用所述第一AiP或所述第二AiP用于所述终端设备的信号收发。
在一些实施例中,所述特征参数值包括信号对应的波束的功率和/或旁瓣大小。
在一些实施例中,所述比较单元703还用于:计算检测到的所述第一AiP中对应的UPA阵列发射的信号的特征参数值与所述预设的第一组特征参数值之间的第一差值;以及计算所述第一差值与所述预设的第一组特征参数值的第一比值,作为所述第一比较结果。
在一些实施例中,所述比较单元703还用于:计算检测到的所述第二AiP中对应的UPA阵列发射的信号的特征参数值与所述预设的第二组特征参数值之间的第二差值;以及计算所述第二差值与所述预设的第二组特征参数值的第二比值,作为所述第二比较结果。
在一些实施例中,所述判断单元705还用于:比较所述第一比值和所述第二比值;以及选择最小的比值对应的AiP用于所述终端设备的信号收发。
在一些实施例中,所述判断单元705还用于:确定使用所述第一AiP中的所述UPA阵列用于所述终端设备的信号收发,或者确定使用所述第二AiP中的所述UPA阵列用于所述终端设备的信号收发。
在一些实施例中,所述判断单元705还用于:如果所述第一比较结果和所述第二比较结果均超过预定阈值,则确定使用所述第一AiP中的所述ULA阵列用于所述终端设备的信号收发,或者使用所述第二AiP中的所述ULA阵列用于所述终端设备的信号收发。
在一些实施例中,所述判断单元705还用于:如果所述第一比较结果和所述第二比较结果均超过预定阈值,则确定通过RRC协议进行波束扫描管理。
在一些实施例中,所述控制单元701、所述比较单元703和/或所述判断单元705可以是处理器,比如CPU、MCU、DSP等。
本发明上述实施例提供的天线模块选择方法和装置中,通过AiP中的ULA阵列检测对应的UPA阵列发射的信号,将终端设备中多个 AiP检测到的信号的特征参数值与对应的预设特征参数值进行比较,基于比较结果选择波束性能最好的AiP用于终端设备的信号收发。因此,实现了终端对波束的本地检测和管理,并且无需增加额外硬件,节省了网络资源,减小了终端的成本和功耗。
进一步地,默认使用AiP中的UPA阵列进行信号收发,若检测到的UPA阵列发射的信号的波束性能都不理想,可以使用AiP中的ULA阵列进行信号收发。
进一步地,默认使用AiP中的UPA阵列进行信号收发,若检测到的UPA阵列发射的信号的波束性能都不理想,也可以使用RRC协议进行波束扫描和管理。
进一步地,每个AiP在不同时刻受遮挡的程度不尽相同,利用本发明实施例提供的方法实时检测、比较,可以实现AiP之间的动态切换,以保证更优的通信质量。
本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令运行时执行上述任一方法的步骤。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (53)

  1. 一种基于AiP结构的波束检测方法,其特征在于,所述AiP结构至少包括第一AiP,所述第一AiP包括至少一个ULA阵列和对应的至少一个UPA阵列,所述波束检测方法包括:
    所述ULA阵列检测对应的所述UPA阵列发射的信号;以及
    存储第一组检测结果,所述第一组检测结果包括检测到的所述UPA阵列发射的信号的特征参数值。
  2. 如权利要求1所述的波束检测方法,其特征在于,所述第一组检测结果包括以下参数的任意组合:检测到的所述UPA阵列发射的信号对应的波束的方向角、主瓣和旁瓣的比值、旁瓣抑制和波束的功率。
  3. 如权利要求1所述的波束检测方法,其特征在于,所述UPA阵列发射的信号为毫米波信号。
  4. 如权利要求1所述的波束检测方法,其特征在于,每个ULA阵列包括多个天线单元,每个UPA阵列包括多个天线单元,所述ULA阵列检测对应的所述UPA阵列发射的信号包括:所述ULA阵列包括的多个天线单元分别检测对应的所述UPA阵列包括的多个天线单元发射的信号。
  5. 如权利要求1所述的波束检测方法,其特征在于,所述AiP结构还包括第二AiP,所述波束检测方法还包括:
    所述第二AiP中的ULA阵列检测所述第一AiP中的UPA阵列发射的信号;以及
    存储第二组检测结果,所述第二组检测结果包括所述第二AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号的特征参数值。
  6. 如权利要求1所述的波束检测方法,其特征在于,所述AiP结构 还包括第二AiP,所述波束检测方法还包括:
    所述第二AiP中的ULA阵列检测所述第二AiP中的UPA阵列发射的信号;以及
    存储第三组检测结果,所述第三组检测结果包括所述第二AiP中的ULA阵列检测到的所述第二AiP中的UPA阵列发射的信号的特征参数值。
  7. 如权利要求1所述的波束检测方法,其特征在于,所述波束检测方法应用于所述AiP结构处于无遮挡状态时,所述检测到的所述UPA阵列发射的信号的特征参数值作为所述AiP结构被设计时的预设特征参数值。
  8. 一种基于AiP结构的波束检测装置,其特征在于,所述AiP结构至少包括第一AiP,所述第一AiP包括至少一个ULA阵列和对应的至少一个UPA阵列,所述波束检测装置包括:
    控制单元,用于控制所述ULA阵列检测对应的所述UPA阵列发射的信号;以及
    存储单元,用于存储第一组检测结果,所述第一组检测结果包括检测到的所述UPA阵列发射的信号的特征参数值。
  9. 如权利要求8所述的波束检测装置,其特征在于,所述第一组检测结果包括以下参数的任意组合:检测到的所述UPA阵列发射的信号对应的波束的方向角、主瓣和旁瓣的比值、旁瓣抑制和波束的功率。
  10. 如权利要求8所述的波束检测装置,其特征在于,所述UPA阵列发射的信号为毫米波信号。
  11. 如权利要求8所述的波束检测装置,其特征在于,每个ULA阵列包括多个天线单元,每个UPA阵列包括多个天线单元,所述控制单元用于控制所述ULA阵列包括的多个天线单元分别检测 对应的所述UPA阵列包括的多个天线单元发射的信号。
  12. 如权利要求8所述的波束检测装置,其特征在于,所述AiP结构还包括第二AiP,
    所述控制单元还用于控制所述第二AiP中的ULA阵列检测所述第一AiP中的UPA阵列发射的信号;
    所述存储单元还用于存储第二组检测结果,所述第二组检测结果包括所述第二AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号的特征参数值。
  13. 如权利要求8所述的波束检测装置,其特征在于,所述AiP结构还包括第二AiP,
    所述控制单元还用于控制所述第二AiP中的ULA阵列检测所述第二AiP中的UPA阵列发射的信号;
    所述存储单元还用于存储第三组检测结果,所述第三组检测结果包括所述第二AiP中的ULA阵列检测到的所述第二AiP中的UPA阵列发射的信号的特征参数值。
  14. 如权利要求8所述的波束检测装置,其特征在于,所述检测到的所述UPA阵列发射的信号的特征参数值作为所述AiP结构被设计时的预设特征参数值。
  15. 一种计算机可读存储介质,其上存储有计算机指令,其特征在于,所述计算机指令运行时执行权利要求1至7中任一项所述波束检测方法的步骤。
  16. 一种基于AiP结构的波束调整方法,其特征在于,所述AiP结构至少包括第一AiP,所述第一AiP包括至少一个ULA阵列和对应的至少一个UPA阵列,所述波束调整方法包括:
    所述ULA阵列检测对应的所述UPA阵列发射的信号;
    将所述检测到的信号的特征参数值与预设的第一组信号特征参数值进行比较;以及
    基于比较结果调节与所述UPA阵列相连的相移器,直至达到第一最优波束配置。
  17. 如权利要求16所述的波束调整方法,其特征在于,所述检测到的信号的特征参数值包括以下参数的任意组合:检测到的所述UPA阵列发射的信号对应的波束的方向角、主瓣和旁瓣的比值、旁瓣抑制和波束的功率。
  18. 如权利要求16所述的波束调整方法,其特征在于,所述达到第一最优波束配置包括:检测到的所述UPA阵列发射的信号对应的波束的功率与预设的功率的偏差位于10%以内、和/或旁瓣抑制与预设的旁瓣抑制的偏差位于10%以内。
  19. 如权利要求18所述的波束调整方法,其特征在于,达到第一最优波束配置时,所述旁瓣抑制为15dB。
  20. 如权利要求16所述的波束调整方法,其特征在于,所述AiP结构设置于终端设备中。
  21. 如权利要求16所述的波束调整方法,其特征在于,所述预设的第一组信号特征参数值包括:当所述AiP结构处于无遮挡状态时,所述ULA阵列检测到的对应的所述UPA阵列发射的信号的特征参数值。
  22. 如权利要求16所述的波束调整方法,其特征在于,还包括:存储所述第一最优波束配置。
  23. 如权利要求16所述的波束调整方法,其特征在于,所述AiP结构还包括第二AiP,所述第二AiP包括至少一个ULA阵列和对应的至少一个UPA阵列,所述波束调整方法还包括:
    所述第二AiP中的ULA阵列检测所述第一AiP中的UPA阵 列发射的信号;
    将所述第二AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号的特征参数值与预设的第二组信号特征参数值进行比较;以及
    基于比较结果调节与所述第一AiP中的UPA阵列相连的相移器,直至达到第二最优波束配置。
  24. 如权利要求23所述的波束调整方法,其特征在于,所述第二AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号的特征参数值包括以下参数的任意组合:所述第二AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号对应的波束的方向角、主瓣和旁瓣的比值、旁瓣抑制和波束的功率。
  25. 如权利要求16所述的波束调整方法,其特征在于,所述AiP结构还包括第二AiP,所述第二AiP包括至少一个ULA阵列和对应的至少一个UPA阵列,所述波束调整方法还包括:
    所述第二AiP中的ULA阵列检测所述第二AiP中的UPA阵列发射的信号;
    将所述第二AiP中的ULA阵列检测到的所述第二AiP中的UPA阵列发射的信号的特征参数值与预设的第三组信号特征参数值进行比较;以及
    基于比较结果调节与所述第二AiP中的UPA阵列相连的相移器,直至达到第三最优波束配置。
  26. 一种基于AiP结构的波束调整装置,其特征在于,所述AiP结构至少包括第一AiP,所述第一AiP包括至少一个ULA阵列和对应的至少一个UPA阵列,所述波束调整装置包括:
    控制单元,用于控制所述ULA阵列检测对应的所述UPA阵列发射的信号;
    比较单元,用于将所述检测到的信号的特征参数值与预设的第一组信号特征参数值进行比较;以及
    处理单元,用于基于比较结果调节与所述UPA阵列相连的相移器,直至达到第一最优波束配置。
  27. 如权利要求26所述的波束调整装置,其特征在于,所述检测到的信号的特征参数值包括以下参数的任意组合:检测到的所述UPA阵列发射的信号对应的波束的方向角、主瓣和旁瓣的比值、旁瓣抑制和波束的功率。
  28. 如权利要求26所述的波束调整装置,其特征在于,所述达到第一最优波束配置包括:检测到的所述UPA阵列发射的信号对应的波束的功率与预设的功率的偏差位于10%以内、和/或旁瓣抑制与预设的旁瓣抑制的偏差位于10%以内。
  29. 如权利要求28所述的波束调整装置,其特征在于,达到第一最优波束配置时,所述旁瓣抑制为15dB。
  30. 如权利要求26所述的波束调整装置,其特征在于,所述AiP结构设置于终端设备中。
  31. 如权利要求26所述的波束调整装置,其特征在于,所述预设的第一组信号特征参数值包括:当所述AiP结构处于无遮挡状态时,所述ULA阵列检测到的对应的所述UPA阵列发射的信号的特征参数值。
  32. 如权利要求26所述的波束调整装置,其特征在于,还包括存储单元,用于存储所述第一最优波束配置。
  33. 如权利要求26所述的波束调整装置,其特征在于,所述AiP结构还包括第二AiP,所述第二AiP包括至少一个ULA阵列和对应的至少一个UPA阵列,
    所述控制单元还用于控制所述第二AiP中的ULA阵列检测 所述第一AiP中的UPA阵列发射的信号,
    所述比较单元还用于将所述第二AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号的特征参数值与预设的第二组信号特征参数值进行比较,
    所述处理单元还用于基于比较结果调节与所述第一AiP中的UPA阵列相连的相移器,直至达到第二最优波束配置。
  34. 如权利要求33所述的波束调整装置,其特征在于,所述第二AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号的特征参数值包括以下参数的任意组合:所述第二AiP中的ULA阵列检测到的所述第一AiP中的UPA阵列发射的信号对应的波束的方向角、主瓣和旁瓣的比值、旁瓣抑制和波束的功率。
  35. 如权利要求26所述的波束调整装置,其特征在于,所述AiP结构还包括第二AiP,所述第二AiP包括至少一个ULA阵列和对应的至少一个UPA阵列,
    所述控制单元还用于控制所述第二AiP中的ULA阵列检测第二AiP中的UPA阵列发射的信号;
    所述比较单元还用于将所述第二AiP中的ULA阵列检测到的第二AiP中的UPA阵列发射的信号的特征参数值与预设的第三组信号特征参数值进行比较;以及
    所述处理单元还用于基于比较结果调节与所述第二AiP中的UPA阵列相连的相移器,直至达到第三最优波束配置。
  36. 一种计算机可读存储介质,其上存储有计算机指令,其特征在于,所述计算机指令运行时执行权利要求16至25中任一项所述波束调整方法的步骤。
  37. 一种天线模块选择方法,应用于终端设备,其特征在于,所述终端设备至少包括第一AiP和第二AiP,每个AiP包括至少一个 ULA阵列和对应的至少一个UPA阵列,所述天线模块选择方法包括:
    所述第一AiP中的ULA阵列检测所述第一AiP中对应的UPA阵列发射的信号,将检测到的所述第一AiP中对应的UPA阵列发射的信号的特征参数值与预设的第一组特征参数值进行比较,获得第一比较结果;
    所述第二AiP中的ULA阵列检测所述第二AiP中对应的UPA阵列发射的信号,将检测到的所述第二AiP中对应的UPA阵列发射的信号的特征参数值与预设的第二组特征参数值进行比较,获得第二比较结果;以及
    基于所述第一比较结果和第二比较结果确定使用所述第一AiP或所述第二AiP用于所述终端设备的信号收发。
  38. 如权利要求37所述的天线模块选择方法,其特征在于,所述特征参数值包括信号对应的波束的功率和/或旁瓣大小。
  39. 如权利要求37所述的天线模块选择方法,其特征在于,所述将检测到的所述第一AiP中对应的UPA阵列发射的信号的特征参数值与预设的第一组特征参数值进行比较,获得第一比较结果包括:
    计算所述检测到的信号的特征参数值与所述预设的第一组特征参数值之间的第一差值;以及
    计算所述第一差值与所述预设的第一组特征参数值的第一比值,作为所述第一比较结果。
  40. 如权利要求39所述的天线模块选择方法,其特征在于,所述将检测到的所述第二AiP中对应的UPA阵列发射的信号的特征参数值与预设的第二组特征参数值进行比较,获得第二比较结果包括:
    计算所述检测到的信号的特征参数值与所述预设的第二组特征参数值之间的第二差值;以及
    计算所述第二差值与所述预设的第二组特征参数值的第二比值,作为所述第二比较结果。
  41. 如权利要求40所述的天线模块选择方法,其特征在于,所述基于所述第一比较结果和第二比较结果确定使用所述第一AiP或所述第二AiP用于所述终端设备的信号收发包括:
    比较所述第一比值和所述第二比值;以及
    选择最小的比值对应的AiP用于所述终端设备的信号收发。
  42. 如权利要求37所述的天线模块选择方法,其特征在于,所述使用所述第一AiP或所述第二AiP用于所述终端设备的信号收发包括:
    使用所述第一AiP中的所述UPA阵列用于所述终端设备的信号收发,或者使用所述第二AiP中的所述UPA阵列用于所述终端设备的信号收发。
  43. 如权利要求37所述的天线模块选择方法,其特征在于,还包括:
    如果所述第一比较结果和所述第二比较结果均超过预定阈值,则使用所述第一AiP中的所述ULA阵列用于所述终端设备的信号收发,或者使用所述第二AiP中的所述ULA阵列用于所述终端设备的信号收发。
  44. 如权利要求37所述的天线模块选择方法,其特征在于,还包括:
    如果所述第一比较结果和所述第二比较结果均超过预定阈值,则通过RRC协议进行波束扫描管理。
  45. 一种天线模块选择装置,应用于终端设备,其特征在于,所述终端设备至少包括第一AiP和第二AiP,每个AiP包括至少一个 ULA阵列和对应的至少一个UPA阵列,所述天线模块选择装置包括:
    控制单元,用于控制所述第一AiP中的ULA阵列检测所述第一AiP中对应的UPA阵列发射的信号,以及控制所述第二AiP中的ULA阵列检测所述第二AiP中对应的UPA阵列发射的信号;
    比较单元,用于将检测到的所述第一AiP中对应的UPA阵列发射的信号的特征参数值与预设的第一组特征参数值进行比较,获得第一比较结果,以及将检测到的所述第二AiP中对应的UPA阵列发射的信号的特征参数值与预设的第二组特征参数值进行比较,获得第二比较结果;以及
    判断单元,用于基于所述第一比较结果和所述第二比较结果确定使用所述第一AiP或所述第二AiP用于所述终端设备的信号收发。
  46. 如权利要求45所述的天线模块选择装置,其特征在于,所述特征参数值包括信号对应的波束的功率和/或旁瓣大小。
  47. 如权利要求45所述的天线模块选择装置,其特征在于,所述比较单元还用于:
    计算检测到的所述第一AiP中对应的UPA阵列发射的信号的特征参数值与所述预设的第一组特征参数值之间的第一差值;以及
    计算所述第一差值与所述预设的第一组特征参数值的第一比值,作为所述第一比较结果。
  48. 如权利要求47所述的天线模块选择装置,其特征在于,所述比较单元还用于:
    计算检测到的所述第二AiP中对应的UPA阵列发射的信号的特征参数值与所述预设的第二组特征参数值之间的第二差值; 以及
    计算所述第二差值与所述预设的第二组特征参数值的第二比值,作为所述第二比较结果。
  49. 如权利要求48所述的天线模块选择装置,其特征在于,所述判断单元还用于:
    比较所述第一比值和所述第二比值;以及
    选择最小的比值对应的AiP用于所述终端设备的信号收发。
  50. 如权利要求45所述的天线模块选择装置,其特征在于,所述判断单元还用于:
    确定使用所述第一AiP中的所述UPA阵列用于所述终端设备的信号收发,或者确定使用所述第二AiP中的所述UPA阵列用于所述终端设备的信号收发。
  51. 如权利要求45所述的天线模块选择装置,其特征在于,所述判断单元还用于:
    如果所述第一比较结果和所述第二比较结果均超过预定阈值,则确定使用所述第一AiP中的所述ULA阵列用于所述终端设备的信号收发,或者使用所述第二AiP中的所述ULA阵列用于所述终端设备的信号收发。
  52. 如权利要求45所述的天线模块选择装置,其特征在于,所述判断单元还用于:
    如果所述第一比较结果和所述第二比较结果均超过预定阈值,则确定通过RRC协议进行波束扫描管理。
  53. 一种计算机可读存储介质,其上存储有计算机指令,其特征在于,所述计算机指令运行时执行权利要求37至44中任一项所述天线模块选择方法的步骤。
PCT/CN2020/070388 2019-01-31 2020-01-06 波束检测和调整方法及装置、天线模块选择方法及装置、计算机可读存储介质 WO2020156038A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/976,597 US11664872B2 (en) 2019-01-31 2020-01-06 Beam detection method and device, beam adjusting method and device, antenna module selection method and device, and computer readable storage media

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201910098028.6 2019-01-31
CN201910097995.0 2019-01-31
CN201910098508.2 2019-01-31
CN201910098508.2A CN111294080B (zh) 2019-01-31 2019-01-31 天线模块选择方法及装置、终端设备、计算机可读存储介质
CN201910097995.0A CN111294093B (zh) 2019-01-31 2019-01-31 基于AiP结构的波束检测方法及装置、计算机可读存储介质
CN201910098028.6A CN111294121B (zh) 2019-01-31 2019-01-31 基于AiP结构的波束调整方法及装置、计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2020156038A1 true WO2020156038A1 (zh) 2020-08-06

Family

ID=71840638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070388 WO2020156038A1 (zh) 2019-01-31 2020-01-06 波束检测和调整方法及装置、天线模块选择方法及装置、计算机可读存储介质

Country Status (2)

Country Link
US (1) US11664872B2 (zh)
WO (1) WO2020156038A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107040296A (zh) * 2017-02-28 2017-08-11 北京航空航天大学 毫米波通信中的信道估计方法
WO2018124950A1 (en) * 2016-12-28 2018-07-05 Telefonaktiebolaget Lm Ericsson (Publ) Channel correlation feedback in a wireless communication system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1771919A1 (en) 2004-07-23 2007-04-11 Fractus, S.A. Antenna in package with reduced electromagnetic interaction with on chip elements
US8855554B2 (en) 2008-03-05 2014-10-07 Qualcomm Incorporated Packaging and details of a wireless power device
US20120295539A1 (en) 2008-12-23 2012-11-22 Waveconnex, Inc. Ehf communication with electrical isolation and with dielectric transmission medium
DE102011075552A1 (de) 2011-05-10 2012-11-15 Robert Bosch Gmbh Schaltungsanordnung für Radaranwendungen
EP2839541A1 (en) 2012-04-17 2015-02-25 Keyssa, Inc. Dielectric lens structures for interchip communication
CN105210306B (zh) 2013-05-10 2018-11-30 三星电子株式会社 无线通信系统中用于选择发送和接收波束的设备和方法
CN104656055B (zh) 2015-01-15 2017-08-01 华中科技大学 一种基于大规模多天线系统的单一信号到达角估计方法
US11569146B2 (en) 2016-06-24 2023-01-31 Agency For Science, Technology And Research Semiconductor package and method of forming the same
CN110731032B (zh) 2017-05-02 2021-10-29 阿莫技术有限公司 天线模块
CN108879114A (zh) 2017-05-16 2018-11-23 华为技术有限公司 集成天线封装结构和终端
CN108963443A (zh) 2017-05-26 2018-12-07 惠州硕贝德无线科技股份有限公司 一种天线及封装天线结构
CN107682038B (zh) 2017-08-30 2020-05-22 努比亚技术有限公司 一种天线切换方法、多天线终端及计算机可读存储介质
CN109660284A (zh) * 2017-10-11 2019-04-19 索尼公司 无线通信系统中的电子设备、通信方法和存储介质
CN109149068B (zh) 2018-08-12 2021-04-02 瑞声科技(南京)有限公司 封装天线系统及移动终端
CN109088180B (zh) 2018-08-12 2020-11-20 瑞声科技(南京)有限公司 Aog天线系统及移动终端
WO2020122775A1 (en) * 2018-12-11 2020-06-18 Telefonaktiebolaget Lm Ericsson (Publ) Reciprocity-based transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018124950A1 (en) * 2016-12-28 2018-07-05 Telefonaktiebolaget Lm Ericsson (Publ) Channel correlation feedback in a wireless communication system
CN107040296A (zh) * 2017-02-28 2017-08-11 北京航空航天大学 毫米波通信中的信道估计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Antenna structure: impact on MIMO transmission and remaining modeling issues", R1-166109, 3GPP TSG RAN WG1 MEETING #86, 26 August 2016 (2016-08-26), XP051140064, DOI: 20200325170156A *
WEI, LILI ET AL.: "Direction of Arrival Estimation with Uniform Planar Array", IEEE, 31 December 2017 (2017-12-31), XP033319486, DOI: 20200325170618A *

Also Published As

Publication number Publication date
US11664872B2 (en) 2023-05-30
US20210050899A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
CA2866294C (en) Antenna system
US9270355B2 (en) Control method of radio communication system, radio communication system, and radio communication apparatus
US8630596B2 (en) System and method for adaptive beamforming for specific absorption rate control
US8933840B2 (en) Control method of wireless communication system, wireless communication system, wireless communication apparatus, and adjustment method of array weight vector
US9184821B2 (en) Control method of radio communication system, radio communication system, and radio communication apparatus
US10622713B2 (en) Beam signal tracking method, device and system
WO2019179305A1 (zh) 信号接收方法及信号接收装置
US10469183B1 (en) Antenna device and method for calibrating antenna device
US20180123239A1 (en) Phased Array System and Beam Scanning Method
WO2020156038A1 (zh) 波束检测和调整方法及装置、天线模块选择方法及装置、计算机可读存储介质
CN111294121B (zh) 基于AiP结构的波束调整方法及装置、计算机可读存储介质
CN111294080B (zh) 天线模块选择方法及装置、终端设备、计算机可读存储介质
CN111294093B (zh) 基于AiP结构的波束检测方法及装置、计算机可读存储介质
CN109286705A (zh) 一种终端设备
CN114976637A (zh) 天线控制方法、天线模组和通信设备
US20190363776A1 (en) Control device, electronic device, and control method
US20190237880A1 (en) Antenna system and antenna module
CN115395989B (zh) 高动态自适应控制方法、装置、系统和处理设备
WO2023273163A1 (zh) 最优波束的确定方法及装置
Zhang et al. Research on modeling and principle verification of full-duplex technology based on phased array
US20230089744A1 (en) Antenna assembly and wireless access device
KR20130073609A (ko) 무선 통신 시스템의 전송 전력 제어 장치 및 방법
WO2023142241A1 (zh) 一种天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748595

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20748595

Country of ref document: EP

Kind code of ref document: A1