WO2020155906A1 - 一种通信系统切换方法、网络侧设备、装置和介质 - Google Patents

一种通信系统切换方法、网络侧设备、装置和介质 Download PDF

Info

Publication number
WO2020155906A1
WO2020155906A1 PCT/CN2019/126356 CN2019126356W WO2020155906A1 WO 2020155906 A1 WO2020155906 A1 WO 2020155906A1 CN 2019126356 W CN2019126356 W CN 2019126356W WO 2020155906 A1 WO2020155906 A1 WO 2020155906A1
Authority
WO
WIPO (PCT)
Prior art keywords
data forwarding
indication information
pdu session
ran node
node
Prior art date
Application number
PCT/CN2019/126356
Other languages
English (en)
French (fr)
Inventor
刘爱娟
王胡成
邓强
孙建成
汪颖
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to KR1020217026885A priority Critical patent/KR102574671B1/ko
Priority to EP19913349.7A priority patent/EP3920585B1/en
Priority to US17/426,618 priority patent/US20220141746A1/en
Publication of WO2020155906A1 publication Critical patent/WO2020155906A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0016Hand-off preparation specially adapted for end-to-end data sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/38Reselection control by fixed network equipment
    • H04W36/385Reselection control by fixed network equipment of the core network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0022Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies
    • H04W36/00222Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies between different packet switched [PS] network technologies, e.g. transferring data sessions between LTE and WLAN or LTE and 5G
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0066Transmission or use of information for re-establishing the radio link of control information between different types of networks in order to establish a new radio link in the target network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers

Definitions

  • This application relates to the field of communication technology, and in particular to a communication system switching method, network side equipment, device and medium.
  • the 5G system can provide UE (User Equipment) with larger bandwidth and higher transmission rate.
  • UE User Equipment
  • EPS Evolution Packet System, evolved packet core network
  • embodiments of the present application provide a communication system switching method, network-side equipment, device, and medium.
  • the nodes of the 5G system and the nodes under the EPS system can make consistent decisions on the data forwarding mode, and ensure the normal operation of the data bank.
  • the embodiment of the application provides a communication system switching method applied to the authentication management function node AMF of the 5G system.
  • a switching request sent by the EPS core network side is received, and the switching request carries an active node Whether to support the first indication information of direct data forwarding and the target NG-RAN node identifier;
  • the handover request carrying the first indication information is sent to the NG-RAN node corresponding to the target NG-RAN node identifier, so that the NG-RAN node determines the address of the data forwarding according to the first indication information.
  • the first indication information is located in the newly added IE of the handover request.
  • the first indication information is located in the original IE of the handover request.
  • the method further includes:
  • the PDU session establishment request carries the first indication information, the EPS context, the target NG-RAN node identifier, and the source node identifier of the source node;
  • the first indication information is located in the newly added IE of the PDU session establishment request; or,
  • the first indication information is stored in the original IE of the PDU session establishment request.
  • sending the handover request carrying the first indication information to the NG-RAN node corresponding to the target NG-RAN node identifier specifically includes:
  • the method further includes:
  • the intermediate node address used for indirect data forwarding is sent to the core network of the EPS system.
  • the method further includes:
  • an embodiment of the present application also provides a communication system handover method of NG-RAN applied to a 5G system.
  • the method includes: receiving a handover request sent by AMF, and the handover request carries whether the active node supports direct The first instruction information of data forwarding;
  • the handover request also includes the PDU session, the mapping relationship between the EPS context and the QOS flow of the PDU session, and the second indication information of whether the destination NG-RAN node and the source node support indirect data forwarding, so
  • the method also includes:
  • mapping relationship determine the PDU session that requires data forwarding
  • Determining the address of data forwarding according to the first indication information specifically includes:
  • an embodiment of the present application also provides a communication system switching method applied to a session management function node SMF of a 5G system, the method includes:
  • the PDU session establishment request carrying the first indication information of whether the active node supports direct data forwarding, the EPS context, the target NG-RAN node identifier, and the source node identifier;
  • the response includes the PDU session and the mapping relationship between the EPS context and the PDU session, and the second indication of whether the destination NG-RAN node and the source node support indirect data forwarding Information, so that the AMF sends the PDU session, the mapping relationship and the second indication information to the NG-RAN node.
  • the method further includes:
  • the EPS context is mapped to the QOS flow of the PDU session.
  • the method further includes: receiving a PDU session that requires data forwarding and a determined data forwarding address sent by AMF; and,
  • the first indication information indicates that the source node does not support direct data forwarding
  • the second indication information indicates that the source node and the destination NG-RAN node support indirect data forwarding
  • the node address is given to AMF.
  • the embodiments of the present application also provide a communication system switching method applied to the core network MME of the EPS system, the method including:
  • the handover request carries the first indication information and the target NG-RAN node identifier, so that the AMF sends a handover request carrying the first indication information to the target NG-RAN.
  • the RAN node identifies the corresponding NG-RAN node.
  • the method further includes:
  • an address used for indirect data forwarding on the EPS system side is provided.
  • the method further includes:
  • an embodiment of the present application also provides a network-side device for switching a communication system.
  • the network-side device includes a processor, a memory, and a transceiver;
  • the processor is used to read and execute the program in the memory:
  • the handover request carries first indication information of whether the active node supports direct data forwarding and the target NG-RAN node identifier
  • the handover request carrying the first indication information is sent to the NG-RAN node corresponding to the target NG-RAN node identifier, so that the NG-RAN node determines the address of the data forwarding according to the first indication information.
  • the first indication information is located in the newly added IE of the handover request.
  • the first indication information is located in the original IE of the handover request.
  • the processor is further configured to obtain the EPS context of the terminal that needs to perform system handover; send a PDU session establishment request to the SMF, and the PDU session establishment request carries the first indication information, the EPS context, The destination NG-RAN node identifier, the source node identifier of the source node; receiving a response to the PDU session establishment request returned by the SMF, the response including the PDU session and the mapping relationship between the EPS context and the PDU session, the The second indication information of whether the destination NG-RAN node and the source node support indirect data forwarding.
  • the first indication information is located in the newly added IE of the PDU session establishment request; or,
  • the first indication information is stored in the original IE of the PDU session establishment request.
  • the processor is specifically configured to send a handover request carrying the PDU session and the mapping relationship, first indication information and second indication information to the NG-RAN corresponding to the NG-RAN node identifier Node, so that the NG-RAN node determines the PDU session that needs data forwarding according to the PDU session and the mapping relationship, and determines the data forwarding address according to the first indication information and the second indication information;
  • the first indication information indicates that the source node does not support direct data forwarding
  • the second indication information indicates that when the source node and the destination NG-RAN node support indirect data forwarding, the first processor It is also used to receive the intermediate node address sent by SMF for indirect data forwarding
  • the intermediate node address used for indirect data forwarding is sent to the core network of the EPS system.
  • the processor is further configured to send the E-RAB address allocated by the NG-RAN node to the core network of the EPS system.
  • embodiments of the present application also provide a second type of network-side device for communication system switching, where the network-side device includes: a processor, a memory, and a transceiver;
  • the processor is used to read and execute the program in the memory:
  • the handover request carrying first indication information of whether the active node supports direct data forwarding
  • the processor is further configured to determine an address for data forwarding according to the first indication information.
  • the handover request also includes the PDU session, the mapping relationship between the EPS context and the QOS flow of the PDU session, and the second indication information of whether the destination NG-RAN node and the source node support indirect data forwarding, so
  • the processor is further configured to determine the PDU session that needs to perform data forwarding according to the mapping relationship and the PDU session;
  • the processor is specifically configured to determine an address for data forwarding according to the first instruction information and the second instruction information;
  • the embodiments of the present application also provide a third network-side device for communication system switching, the device including: a processor, a memory, and a transceiver;
  • the processor is used to read and execute the program in the memory:
  • the processor is configured to receive a PDU session establishment request sent by AMF, where the PDU session establishment request carries first indication information of whether the active node supports direct data forwarding, the target NG-RAN node identifier, and the source node Source node ID;
  • the response includes the PDU session and the mapping relationship between the EPS context and the PDU session, and the second indication of whether the destination NG-RAN node and the source node support indirect data forwarding Information, so that the AMF sends the PDU session, the mapping relationship and the second indication information to the NG-RAN node.
  • the processor is further configured to determine whether the NG-RAN node and the source node support indirect data forwarding according to the target NG-RAN node identifier and the source node identifier; and,
  • the EPS context is mapped to the QOS flow of the PDU session.
  • the processor is further configured to receive a PDU session that requires data forwarding and a determined data forwarding address sent by AMF; and,
  • the first indication information indicates that the source node does not support direct data forwarding
  • the second indication information indicates that the source node and the destination NG-RAN node support indirect data forwarding
  • the node address is given to AMF.
  • an embodiment of the present application provides a fourth network-side device for communication system switching, the device including: a processor, a memory, and a transceiver;
  • the processor is used to read and execute the program in the memory:
  • the handover request carries the first indication information and the target NG-RAN node identifier, so that the AMF sends a handover request carrying the first indication information to the target NG-RAN.
  • the RAN node identifies the corresponding NG-RAN node.
  • the processor is further configured to receive an intermediate node address for indirect data forwarding sent by the AMF;
  • an address used for indirect data forwarding on the EPS system side is provided.
  • the processor is further configured to receive an E-RAB address of an address used to support direct data forwarding sent by the AMF.
  • an embodiment of the present application also provides a communication system switching device, which includes:
  • the first receiving module is configured to receive a handover request sent by the EPS core network side, where the handover request carries first indication information of whether the active node supports direct data forwarding and the target NG-RAN node identifier;
  • the first sending module is configured to send a handover request carrying the first indication information to the NG-RAN node corresponding to the target NG-RAN node identifier, so that the NG-RAN node determines data according to the first indication information Forwarding address.
  • an embodiment of the present application also provides a second communication system switching device, and the device includes:
  • the second receiving module is configured to receive a handover request sent by the AMF, where the handover request carries first indication information of whether the active node supports direct data forwarding;
  • the processing module is configured to determine the address of the data forwarding according to the first indication information.
  • an embodiment of the present application provides a third communication system switching device, and the device includes:
  • the third receiving module is configured to receive a PDU session establishment request sent by AMF, the PDU session establishment request carrying first indication information whether the active node supports direct data forwarding, EPS context, target NG-RAN node identifier, and source node Logo
  • the second processing module is used to return a response to the PDU session establishment request to the AMF.
  • the response includes the PDU session and the mapping relationship between the EPS context and the PDU session, and whether the target NG-RAN node and the source node support indirect
  • the second indication information for data forwarding so that the AMF sends the PDU session, the mapping relationship and the second indication information to the NG-RAN node.
  • an embodiment of the present application further provides a fourth communication system switching device, and the device includes:
  • a fourth receiving module configured to receive a handover message sent by a source node, where the handover message includes a target NG-RAN node identifier and first indication information whether the source node supports direct data forwarding;
  • the third sending module is configured to send a handover request to AMF, the handover request carries the first indication information and the target NG-RAN node identifier, so that the AMF sends the first indication information
  • the handover request for the target NG-RAN node identifies the corresponding NG-RAN node.
  • Another embodiment of the present application further provides a computer storage medium, wherein the computer storage medium stores computer-executable instructions, and the computer-executable instructions are used to make a computer execute any communication system in the embodiments of the present application Switch method.
  • the handover request carrying the first indication information is sent to the NG-RAN node corresponding to the target NG-RAN node identifier and the transmission carries some information.
  • the PDU session establishment request of the first indication information and the data forwarding address determined by the NG-RAN node is sent to the SMF, so that the nodes of the 5G system and the EPS system have a consistent decision on the data forwarding mode, ensuring that the data is forwarded. Turn to normal.
  • FIG. 1 is a schematic diagram of an application scenario of a communication system switching method in an embodiment of this application
  • FIG. 2 is a flowchart of a communication system switching method in an embodiment of the application
  • Figure 3 is a schematic diagram of a handover request in an embodiment of the application.
  • FIG. 4 is another flowchart of a communication system switching method in an embodiment of this application.
  • FIG. 5 is another flowchart of a communication system switching method in an embodiment of this application.
  • FIG. 6 is another flowchart of a communication system switching method in an embodiment of this application.
  • FIG. 7 is a sequence diagram of a communication system switching method in an embodiment of this application.
  • FIG. 8 is a schematic diagram of another application scenario of a communication system switching method in an embodiment of this application.
  • FIG. 9 is a schematic diagram of a network side device for the first communication system handover in an embodiment of this application.
  • FIG. 10 is a schematic diagram of a network side device for a second communication system handover in an embodiment of this application.
  • FIG. 11 is a schematic diagram of a network side device for a third communication system handover in an embodiment of this application.
  • FIG. 12 is a schematic diagram of a network side device for a fourth communication system handover in an embodiment of this application.
  • FIG. 13 is a schematic diagram of a first communication system switching device according to an embodiment of this application.
  • FIG. 14 is a schematic diagram of a second communication system switching device according to an embodiment of the application.
  • FIG. 15 is a schematic diagram of a third communication system switching device according to an embodiment of this application.
  • FIG. 16 is a schematic diagram of a fourth communication system switching device according to an embodiment of the application.
  • Data forwarding data forwarding, that is, data forwarding.
  • the CPU copies the output value of one unit to the input value of another unit in one clock cycle.
  • Direct data forwarding means that the source node and the destination NG-RAN node can directly transfer data from the source node to the destination NG-RAN node without passing through the core network.
  • Indirect data forwarding means that the source node and the destination NG-RAN node need to pass through the core network to transfer data from the source node to the core network on the EPS system side, then to the core network on the 5G system side, and finally forward To the destination NG-RAN node.
  • IE Information element, refers to the information element in the signaling.
  • E-RAB E-UTRAN Radio Access Bearer, evolved radio access bearer.
  • E-RAB refers to the bearer of the user plane, which is used to transmit voice, data and multimedia services between UE (User Equipment) and CN (Core Network).
  • EPS Evolved Packet System
  • UE User Equipment
  • LTE Long Term Evolution
  • EPC Evolved Packet Core, evolved packet core network
  • MME Mobility Management Entity
  • MME Mobility Management Entity
  • UE User Equipment
  • MME Mobility Management Entity
  • UE User Equipment
  • MME is responsible for the signaling processing part . That is, the MME can be regarded as the core network node on the EPS system side.
  • AMF AMF (Authentication Management Function), authentication management function, is the core network on the 5G system side.
  • NG-RAN Next Generation-Radio Access Network
  • the next-generation cooperative radio access network is a node on the 5G system side.
  • SMF Session Management Function, a session management function node, which is a node on the 5G system side.
  • the 5G system can provide the UE with larger bandwidth and higher transmission rate.
  • the 5G network is not yet mature, and the existing EPS network is very mature.
  • 5G PDU (Protocal Data Unit) session and EPS system PDN (Public Data Network, public data network) connection form is different
  • 5G uses PDU session to manage multiple Qos (Quality of Service, quality of service) flow
  • EPS system uses PDN connection to manage multiple EPS bearers.
  • the bearer conversion is planned during the process of switching between different systems, and the function of bearer conversion is completed in the CN.
  • the present application provides a communication system switching method, network side equipment, device, and medium for the foregoing scenarios.
  • an embodiment of the present application provides a communication system switching method.
  • the source node of the EPS system decides to switch the terminal to 5G based on the measurement information of the terminal.
  • the source node sends a handover message to the MME, and the handover message carries the target NG-RAN node identifier and the first indication information whether the source node supports direct data forwarding.
  • the MME sends a handover request to the AMF, and the handover request carries the first indication information and the target NG-RAN node identifier.
  • the AMF sends the handover request carrying the first indication information to the NG-RAN node corresponding to the target NG-RAN node identifier.
  • the NG-RAN node determines the address of the data forwarding according to the first indication information.
  • the NG-RAN node can know whether the source node supports direct data forwarding, thereby reaching the nodes of the EPS system.
  • the purpose is consistent with the decision of the 5G system nodes on the data forwarding method.
  • FIG. 1 it is a schematic diagram of an application scenario for completing a communication system switching through an embodiment of the present application.
  • the terminal 11 of the user 10 is included in this scenario.
  • the terminal 11 works in an EPS system.
  • the source node decides to switch the terminal 11 of the user 10 from the EPS system to the 5G system, and sends a handover message to the core network of the EPS system.
  • the message carries the first indication information that the active node supports direct data forwarding and the destination NG-RAN Node ID.
  • the core network of the EPS system sends a handover request to the AMF node.
  • the request includes the first indication information and the target NG-RAN node identifier.
  • the AMF destination NG-RAN node sends a handover request, and an IE is added to the handover request.
  • the IE carries the first indication information that the active node supports direct data forwarding.
  • the NG-RAN node provides an E-RAB address for direct data forwarding.
  • the source node and the NG-RAN node can use this address to directly forward data and switch the terminal 11 to the 5G system.
  • the terminal is a device with wireless communication function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (such as Airplanes, balloons and satellites etc.).
  • the terminal may be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiving function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, an industrial control
  • the UE in FIG. 1 is a specific example of the terminal in this application.
  • FIG. 2 it is a flowchart of a communication system handover method in an embodiment of the application, and the process includes the following steps:
  • Step 201 The AMF receives a handover request sent by the EPS core network side, and the handover request carries first indication information of whether the active node supports direct data forwarding and the target NG-RAN node identifier.
  • Step 202 The AMF sends a handover request carrying the first indication information to the NG-RAN node corresponding to the target NG-RAN node identifier.
  • the target NG-RAN node can determine the address of the data forwarding according to the first indication information.
  • the nodes of the EPS system and the nodes of the 5G system have consistent decisions on the data forwarding mode, and ensure the normal data forwarding.
  • the first indication information is located in the original IE of the handover request; or, the first indication information is located in the newly added IE of the handover request.
  • FIG. 3 it is a schematic diagram of adding first indication information to a handover request in an embodiment of the application.
  • the handover request includes multiple IEs, for example, Source to target Container (transparent transmission container from source node to target). Therefore, the first indication information can be placed in the Source to Target Container, or the first indication information can be added to other idle IEs.
  • a new IE can be added to the handover request, and the first indication information can be placed in the newly added IE.
  • step 201 the handover request sent by the EPS system core network is obtained through steps A1-A2 as shown in Fig. 4:
  • Step A1 The MME receives a handover message sent by a source node.
  • the handover message includes the target NG-RAN node identifier and the first indication information whether the source node supports direct data forwarding.
  • Step A2 The MME sends a handover request to the AMF, and the handover request carries the first indication information and the target NG-RAN node identifier.
  • the AMF can send the handover request carrying the first indication information to the target NG-RAN node according to the first indication information in the handover requirement, so that the NG-RAN node can know whether the source node supports direct data Forwarding, so that the source node of the EPS system and the NG-RAN node have a consistent decision on the way of data forwarding.
  • the target NG-RAN node performs the steps shown in FIG. 5:
  • Step 501 Receive a handover request sent by AMF, where the handover request carries first indication information of whether the active node supports direct data forwarding.
  • Step 502 Determine the address of the data forwarding according to the first indication information.
  • the destination NG-RAN node can know whether the source node supports direct data forwarding, so that the nodes of the 5G system and the nodes of the EPS system have a consistent decision on the data forwarding method.
  • the NG-RAN node determines the address of the data forwarding according to the first indication information, so that the data forwarding can be performed normally.
  • the AMF obtains the EPS context of the terminal that needs to perform system switching, and sends a PDU session establishment request to the SMF.
  • the PDU session establishment request carries the first indication information, the EPS context, and the target NG- The RAN node identifier and the source node identifier of the source node.
  • the SMF can determine whether the source node supports direct data forwarding, so that the nodes on the 5G system side and the EPS system side have a consistent decision on the data forwarding mode.
  • a new IE can be added to the PDU session establishment request, and the first indication information can be placed in the new IE.
  • the first indication information may be placed in the original IE in the PDU session establishment request.
  • Step 601 Receive a PDU session establishment request sent by AMF.
  • the PDU session establishment request carries first indication information of whether the active node supports direct data forwarding, EPS context, target NG-RAN node identifier, and source node identifier.
  • the SMF determines whether the target NG-RAN node and the source node support indirect data forwarding according to the target NG-RAN node identifier and the source node identifier. And mapping the EPS context to the QOS flow of the PDU session.
  • Step 602 Return a response to the PDU session establishment request to AMF.
  • the response includes the PDU session and the mapping relationship between the EPS context and the PDU session, and whether the target NG-RAN node and the source node support indirect data forwarding Second indication information, so that the AMF sends the PDU session, the mapping relationship, and second indication information to the NG-RAN node.
  • the SMF can know whether the source node supports direct data forwarding and send the second indication information whether the source node and the destination NG-RAN node support indirect data forwarding to the NG-RAN node, so that the nodes of the 5G system
  • the nodes of the EPS system have consistent decisions on the data forwarding method.
  • the EPS system uses PDN connections to manage multiple EPS bearers.
  • the EPS context can also be converted into the QOS flow of the 5G PDU session.
  • step 202 can be specifically executed as steps B1-B3:
  • Step B1 Send a handover request carrying the PDU session and the mapping relationship, first indication information and second indication information to the NG-RAN node corresponding to the NG-RAN node identifier.
  • the NG-RAN node determines the PDU session that requires data forwarding according to the PDU session and the mapping relationship, and determines the address of the data forwarding according to the first indication information and the second indication information.
  • Step B2 Receive the PDU session that determines the need for data forwarding and the determined data forwarding address sent by the NG-RAN node.
  • Step B3 Forward the PDU session that requires data forwarding and the determined data forwarding address to the SMF.
  • the NG-RAN node can know whether the source node supports direct data forwarding, and whether the source node and the NG-RAN node support indirect data forwarding. This makes the nodes of the 5G system and the nodes of the EPS system have consistent decisions on the data forwarding method.
  • SMF sends the intermediate node address used to support profile data forwarding to AMF.
  • AMF receives the intermediate node address for indirect data forwarding sent by SMF, and sends the intermediate node address for indirect data forwarding to the core network of the EPS system, and the core network of the EPS system is receiving the AMF After the intermediate node address is sent, an address used by the EPS system side for indirect data forwarding is provided according to the intermediate node address.
  • the intermediate node address provided by SMF and the EPS system side provided by MME The address can enable the core network of the EPS system to perform indirect data forwarding with the core network of 5G.
  • the AMF sends the E-RAB address allocated by the NG-RAN node to the core network of the EPS system; the core network of the EPS system receives the E-RAB address.
  • the NG-RAN node can allocate the E-RAB address and send the E-RAB address to the MME of the EPS system, so that the nodes of the EPS system and the nodes of the 5G system can be There is a consistent decision on the transfer method.
  • the E-RAB address is used for the direct data forwarding between the source node and the NG-RAN, and the direct data forwarding can reduce the time delay of the system switching.
  • FIG. 7 is a sequence diagram of a communication system switching method in an embodiment of this application.
  • the figure includes terminal UE, source node E-UTRAN, destination NG-RAN node, EPS core network MME, 5G core network AMF, and 5G core network SMF.
  • Step 1 E-UTRAN decides to switch the UE to 5G.
  • Step 2 E-UTRAN sends Handover Required (handover message) to MME.
  • Handover Required carries first indication information that the active node supports direct data forwarding and the target NG-RAN node identifier.
  • Step 3 MME sends Forward Relocation Request (handover request) to AMF.
  • the Forward Relocation Request carries the first indication information that the active node supports direct data forwarding and the target NG-RAN node identifier.
  • Step 4 AMF sends Nsmf_PDUSession_CreateSMContext Request signaling (PDU session establishment request) to SMF.
  • the signaling carries the EPS context of the UE, the first indication information that the source node supports direct data forwarding, the EPS context, the target NG-RAN node identifier, and the source node identifier.
  • Step 5 SMF maps the EPS context to the QOS flow of the PDU session, and determines that the destination NG-RAN node and the source node do not support indirect data forwarding according to the source node identifier and the destination NG-RAN node identifier.
  • Step 6 SMF sends Nsmf_PDUSession_CreateSMContext Response signaling (response for PDU session establishment) to AMF.
  • the signaling includes the PDU session, the mapping relationship between the EPS context and the PDU session, and the second indication information that the destination NG-RAN node and the source node do not support indirect data forwarding.
  • Step 7 The AMF sends a Handover Request to the aforementioned target NG-RAN node to identify the corresponding NG-RAN.
  • the Handover Request carries the first indication information, the second indication information, the PDU session, and the mapping relationship.
  • Step 8 The NG-RAN determines the E-RAB address for direct data forwarding according to the first indication information and the second indication information. Determine the PDU session that requires data forwarding according to the mapping relationship between the PDU session and the foregoing.
  • Step 9 NG-RAN sends Handover Request ACK (Handover Request Acknowledgement) to AMF.
  • the ACK includes the E-RAB address and the PDU session that requires data forwarding.
  • Step 10 The AMF sends Nsmf_PDUSession_UpdateSMContext Requst (PDU session update request) signaling to the SMF, where the signaling includes the PDU session that requires data forwarding.
  • Nsmf_PDUSession_UpdateSMContext Requst PDU session update request
  • Step 11 SMF sends a response Nsmf_PDUSession_UpdateSMContext Response (response for PDU session update) to AMF. This response indicates that the preparation for data forwarding has been completed.
  • Step 12 The AMF sends a Forward Relocation Response to the MME.
  • the E-RAB address is included in the response.
  • the first indication information is carried in the Handover Request sent by AMF to the NG-RAN node and the PDU session establishment request sent by AMF to the SMF, so that the nodes of the EPS system and the nodes of the 5G system have the same data forwarding method. Decision-making.
  • FIG. 8 is a schematic diagram of an application scenario for completing a communication system handover through an embodiment of the present application.
  • This scenario includes: UE, E-UTRAN, NG-RAN, MME, AMF, SMF.
  • the UE works in an EPS system, and three EPS bearers are built. Only bearer 1 and bearer 2 have data to forward.
  • E-UTRAN decided to switch the UE to 5G.
  • E-UTRAN sends a handover message to the MME.
  • the handover message carries the first indication information that the active node does not support direct data forwarding, the EPS bearer, and the corresponding EPS bearer 1 and bearer 2 have data forwarding information, Destination NG-RAN node identifier.
  • the MME sends the information carried in the handover message to the AMF through the handover requirement.
  • AMF sends to SMF the first indication information that the EPS bearer, corresponding EPS bearer 1 and bearer 2 have data to be forwarded, the source node does not support direct data forwarding, and the destination NG-RAN node identifier and source node identifier.
  • SMF maps bearer 1 and bearer 2 to PDU session 1. For example, bearer 1 is mapped to QOS flow 1 and 2 of PDU session 1, and bearer 2 is mapped to QOS flow 3 of PDU session 1. Map bearer 3 to QOS flow 1 of PDU session 2.
  • the SMF determines the second indication information according to the target NG-RAN node identifier and the source node identifier, that is, the target NG-RAN node and the source node support indirect data forwarding.
  • the SMF sends the PDU session 1 and PDU session 2, the mapping relationship, and the second indication information to the AMF.
  • AMF sends a handover request to NG-RAN.
  • the handover request carries PDU session 1 and PDU session 2, the mapping relationship, and second indication information.
  • the NG-RAN determines that PDU session 1 needs to perform data forwarding according to the mapping relationship. Provide an address for indirect data forwarding according to the second instruction information. And send the information that the PDU session 1 needs to perform data forwarding and the address used for indirect data forwarding to the AMF, so that the AMF is forwarded to the SMF.
  • the SMF determines according to the first indication information that the source node does not support direct data forwarding. It is also determined that the source node and the destination NG-RAN node support indirect data forwarding, so according to the indirect data forwarding address provided by the NG-RAN node, the intermediate node address for indirect data forwarding is provided, and the intermediate The node address is sent to AMF.
  • the AMF sends the intermediate node address to the MME, so that the MME provides an address for indirect data forwarding on the EPS system side according to the intermediate node address.
  • the UE may be a mobile phone, a personal computer, a notebook computer, a tablet computer, etc.
  • the source node supports direct data forwarding using FIG. 8.
  • the UE works in an EPS system, and three EPS bearers are built, and only bearer 1 and bearer 2 have data to be forwarded.
  • the E-UTRAN decided to switch the UE to 5G.
  • the E-UTRAN sends a handover message to the MME.
  • the handover message carries the first indication information that the active node supports direct data forwarding, the EPS bearer, and the corresponding EPS bearer 1 and bearer 2 have data forwarding information and purpose NG-RAN node identification.
  • the MME sends the information carried in the handover message to the AMF through the handover requirement.
  • the AMF sends to the SMF a PDU session establishment request that carries the EPS bearer, the corresponding EPS bearer 1 and bearer 2 have data to forward information, and the source node supports direct data forwarding.
  • SMF maps bearer 1 and bearer 2 to PDU session 1. For example, bearer 1 is mapped to QOS flow 1 and 2 of PDU session 1, and bearer 2 is mapped to QOS flow 3 of PDU session 1. Map bearer 3 to QOS flow 1 of PDU session 2.
  • the PDU session establishment request also includes the target NG-RAN node identifier and the source node identifier, and the SMF determines that indirect data can be performed between the target NG-RAN node and the source node according to the source node identifier and the target NG-RAN node identifier. Forward.
  • the SMF sends the second indication information that can perform indirect data forwarding between the NG-RAN node and the source node, the PDU session 1 and the PDU session 2, and the mapping relationship to the AMF.
  • AMF sends a handover request to NG-RAN.
  • the handover request carries PDU session 1 and PDU session 2 and the mapping relationship, first indication information and second indication information.
  • the NG-RAN determines that PDU session 1 needs to perform data forwarding according to the mapping relationship.
  • the first instruction information and the second instruction information it is determined to use direct data forwarding, and an E-RAB address for direct data forwarding is provided.
  • the information and the E-RAB address of the PDU session 1 that need to be forwarded are sent to the AMF, so that the AMF is forwarded to the SMF.
  • the SMF feeds back a response to the AMF in response to the information forwarded by the AMF.
  • AMF sends the information that the E-RAB address and PDU session 1 have data to be forwarded to the MME.
  • E-UTRAN and NG-RAN nodes can directly forward data through the E-RAB address.
  • an embodiment of the present application also provides a network side device for switching a communication system.
  • the network side device is a device that provides wireless communication functions for the terminal, including but not limited to: gNB in 5G, radio network controller (RNC), and node B (NB) , Base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (BaseBand Unit, BBU), transmission Point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), mobile switching center, etc.
  • the base station in this application may also be a device that provides wireless communication functions for the terminal in other communication systems that may appear in the future.
  • the network side device includes a processor 900, a memory 901, and a transceiver 902;
  • the processor 900 is responsible for managing the bus architecture and general processing, and the memory 901 can store data used by the processor 900 when performing operations.
  • the transceiver 902 is used to receive and transmit data under the control of the processor 900.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 900 and various circuits of the memory represented by the memory 901 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further description will be given herein.
  • the bus interface provides the interface.
  • the processor 900 is responsible for managing the bus architecture and general processing, and the memory 901 can store data used by the processor 900 when performing operations.
  • the process disclosed in the embodiment of the present invention may be applied to the processor 900 or implemented by the processor 900.
  • each step of the signal processing flow can be completed by an integrated logic circuit of hardware in the processor 900 or instructions in the form of software.
  • the processor 900 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and may implement or execute the embodiments of the present invention.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in the embodiments of the present invention may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 801, and the processor 900 reads the information in the memory 901 and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 900 is configured to read a program in the memory 901 and execute:
  • the handover request carries first indication information of whether the active node supports direct data forwarding and the target NG-RAN node identifier
  • the handover request carrying the first indication information is sent to the NG-RAN node corresponding to the target NG-RAN node identifier, so that the NG-RAN node determines the address of the data forwarding according to the first indication information.
  • the first indication information is located in the newly added IE of the handover request.
  • the first indication information is located in the original IE of the handover request.
  • the processor is further configured to obtain the EPS context of the terminal that needs to perform system switching; and send a PDU session establishment request to the SMF, where the PDU session establishment request carries the first indication information, the EPS context, The destination NG-RAN node identifier, the source node identifier of the source node; receiving a response to the PDU session establishment request returned by the SMF, the response including the PDU session and the mapping relationship between the EPS context and the PDU session, the The second indication information of whether the destination NG-RAN node and the source node support indirect data forwarding.
  • the first indication information is located in the newly added IE of the PDU session establishment request; or,
  • the first indication information is stored in the original IE of the PDU session establishment request.
  • the processor is specifically configured to send a handover request carrying the PDU session and the mapping relationship, first indication information and second indication information to the NG-RAN corresponding to the NG-RAN node identifier Node, so that the NG-RAN node determines the PDU session that needs data forwarding according to the PDU session and the mapping relationship, and determines the data forwarding address according to the first indication information and the second indication information;
  • the first indication information indicates that the source node does not support direct data forwarding
  • the second indication information indicates that when the source node and the destination NG-RAN node support indirect data forwarding
  • the first processor It is also used to receive the intermediate node address sent by SMF for indirect data forwarding
  • the intermediate node address used for indirect data forwarding is sent to the core network of the EPS system.
  • the processor is further configured to send the E-RAB address allocated by the NG-RAN node to the core network of the EPS system.
  • the second type of network-side device for communication system switching in the embodiment of the present invention includes a processor 1000, a memory 1001, and a transceiver 1002;
  • the processor 1000 is responsible for managing the bus architecture and general processing, and the memory 1001 can store data used by the processor 1000 when performing operations.
  • the transceiver 1002 is used to receive and transmit data under the control of the processor 1000.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1000 and various circuits of the memory represented by the memory 1001 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further description will be given herein.
  • the bus interface provides the interface.
  • the processor 1000 is responsible for managing the bus architecture and general processing, and the memory 1001 can store data used by the processor 1000 when performing operations.
  • the process disclosed in the embodiment of the present invention may be applied to the processor 1000 or implemented by the processor 1000.
  • each step of the signal processing flow can be completed by an integrated logic circuit of hardware in the processor 1000 or instructions in the form of software.
  • the processor 1000 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can implement or execute the embodiments of the present invention The disclosed methods, steps and logic block diagrams.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in the embodiments of the present invention may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 1001, and the processor 1000 reads the information in the memory 1001, and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 1000 is configured to read a program in the memory 1001 and execute:
  • the handover request carrying first indication information of whether the active node supports direct data forwarding
  • the processor is further configured to determine an address for data forwarding according to the first indication information.
  • the handover request also includes the PDU session, the mapping relationship between the EPS context and the QOS flow of the PDU session, and the second indication information of whether the destination NG-RAN node and the source node support indirect data forwarding, so
  • the processor is further configured to determine the PDU session that needs to perform data forwarding according to the mapping relationship and the PDU session;
  • the processor is specifically configured to determine an address for data forwarding according to the first instruction information and the second instruction information;
  • the network side device includes a processor 1100, a memory 1101, and a transceiver 1102;
  • the processor 1100 is responsible for managing the bus architecture and general processing, and the memory 1101 may store data used by the processor 1100 when performing operations.
  • the transceiver 1102 is used to receive and send data under the control of the processor 1100.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1100 and various circuits of the memory represented by the memory 1101 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further description will be given herein.
  • the bus interface provides the interface.
  • the processor 1100 is responsible for managing the bus architecture and general processing, and the memory 1101 may store data used by the processor 1100 when performing operations.
  • the process disclosed in the embodiment of the present invention may be applied to the processor 1100 or implemented by the processor 1100.
  • each step of the signal processing flow can be completed by an integrated logic circuit of hardware in the processor 1100 or instructions in the form of software.
  • the processor 1100 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can implement or execute the embodiments of the present invention The disclosed methods, steps and logic block diagrams.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in the embodiments of the present invention may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 801, and the processor 1100 reads the information in the memory 1101 and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 1100 is configured to read and execute the program in the memory 1101:
  • the processor is configured to receive a PDU session establishment request sent by AMF, where the PDU session establishment request carries first indication information of whether the active node supports direct data forwarding, the target NG-RAN node identifier, and the source node Source node ID;
  • the response includes the PDU session and the mapping relationship between the EPS context and the PDU session, and the second indication of whether the destination NG-RAN node and the source node support indirect data forwarding Information so that the AMF sends the PDU session, the mapping relationship, and second indication information to the NG-RAN node.
  • the processor is further configured to determine whether the NG-RAN node and the source node support indirect data forwarding according to the target NG-RAN node identifier and the source node identifier; and,
  • the EPS context is mapped to the QOS flow of the PDU session.
  • the processor is further configured to: when the first indication information indicates that the source node does not support direct data forwarding, and the second indication information indicates that the source node and the destination NG-RAN node support indirect data forwarding, Send the intermediate node address used to support indirect data forwarding to AMF.
  • the network side device includes a processor 1200, a memory 1201, and a transceiver 1202;
  • the processor 1200 is responsible for managing the bus architecture and general processing, and the memory 1201 can store data used by the processor 1200 when performing operations.
  • the transceiver 1202 is used to receive and transmit data under the control of the processor 1200.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1200 and various circuits of the memory represented by the memory 1201 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further description will be given here.
  • the bus interface provides the interface.
  • the processor 1200 is responsible for managing the bus architecture and general processing, and the memory 1201 can store data used by the processor 1200 when performing operations.
  • the process disclosed in the embodiment of the present invention may be applied to the processor 1200 or implemented by the processor 1200.
  • each step of the signal processing flow can be completed by hardware integrated logic circuits in the processor 1200 or instructions in the form of software.
  • the processor 1200 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can implement or execute the embodiments of the present invention The disclosed methods, steps and logic block diagrams.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in the embodiments of the present invention may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 801, and the processor 1200 reads the information in the memory 1201 and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 1200 is configured to read a program in the memory 1201 and execute:
  • the handover request carries the first indication information and the target NG-RAN node identifier, so that the AMF sends a handover request carrying the first indication information to the target NG-RAN.
  • the RAN node identifies the corresponding NG-RAN node.
  • the processor is further configured to receive an intermediate node address for indirect data forwarding sent by the AMF;
  • an address used for indirect data forwarding on the EPS system side is provided.
  • the processor is further configured to receive an E-RAB address of an address used to support direct data forwarding sent by the AMF.
  • an embodiment of the present application also provides a communication system switching device.
  • the first communication system switching device includes:
  • the first receiving module 1301 is configured to receive a handover request sent by the EPS core network side, where the handover request carries first indication information of whether the active node supports direct data forwarding and the target NG-RAN node identifier;
  • the first sending module 1302 is configured to send a handover request carrying the first indication information to the NG-RAN node corresponding to the target NG-RAN node identifier, so that the NG-RAN node determines according to the first indication information The address where the data is forwarded.
  • the first indication information is located in the newly added IE of the handover request.
  • the first indication information is located in the original IE of the handover request.
  • the first sending module 1302 is further configured to: obtain the EPS context of the terminal that needs to perform system switching;
  • the PDU session establishment request carries the first indication information, the EPS context, the target NG-RAN node identifier, and the source node identifier of the source node;
  • the first receiving module 1301 is further configured to receive a response to the PDU session establishment request returned by the SMF, the response including the PDU session and the mapping relationship between the EPS context and the PDU session, the target NG-RAN node and the source node The second indication information whether to support indirect data forwarding.
  • the first indication information is located in the newly added IE of the PDU session establishment request; or,
  • the first indication information is stored in the original IE of the PDU session establishment request.
  • the first sending module 1302 is specifically configured to send a handover request carrying the PDU session and the mapping relationship, first indication information and second indication information to the NG-RAN corresponding to the NG-RAN node identifier Node, so that the NG-RAN node determines the PDU session that needs data forwarding according to the PDU session and the mapping relationship, and determines the data forwarding address according to the first indication information and the second indication information;
  • the first receiving module 1301 is further configured to receive a PDU session that is determined to require data forwarding and a determined data forwarding address sent by the NG-RAN node;
  • the first sending module 1302 is further configured to forward the PDU session that requires data forwarding and the determined data forwarding address to the SMF.
  • the first indication information indicates that the source node does not support direct data forwarding
  • the second indication information indicates that when the source node and the destination NG-RAN node support indirect data forwarding
  • the first receiving module 1301 also Used for: receiving the intermediate node address sent by SMF to support indirect data forwarding
  • the first sending module 1302 is further configured to send the intermediate node address for supporting indirect data forwarding to the core network of the EPS system.
  • the first sending module 1302 is further configured to send the E-RAB address allocated by the NG-RAN node to the core network of the EPS system.
  • the second communication system switching device includes:
  • the second receiving module 1401 is configured to receive a handover request sent by the AMF, where the handover request carries first indication information of whether the active node supports direct data forwarding;
  • the processing module 1402 is configured to determine an address for data forwarding according to the first indication information.
  • the handover request also includes the PDU session, the mapping relationship between the EPS context and the QOS flow of the PDU session, and the second indication information of whether the destination NG-RAN node and the source node support indirect data forwarding, processing Module 1402 is also used to:
  • mapping relationship determine the PDU session that requires data forwarding
  • the processing module 1402 is specifically configured to determine an address for data forwarding according to the first instruction information and the second instruction information;
  • the third communication system switching device in the embodiment of the present application includes:
  • the third receiving module 1501 is configured to receive a PDU session establishment request sent by AMF.
  • the PDU session establishment request carries first indication information of whether the active node supports direct data forwarding, EPS context, target NG-RAN node identification and source Node ID;
  • the second processing module 1502 is configured to return a response to the PDU session establishment request to the AMF.
  • the response includes the PDU session and the mapping relationship between the EPS context and the PDU session, and whether the target NG-RAN node and the source node support indirect
  • the second indication information of the data forwarding of the AMF so that the AMF sends the PDU session, the mapping relationship, and the second indication information to the NG-RAN node.
  • the third receiving module 1501 is further configured to determine whether the NG-RAN node and the source node support the NG-RAN node identifier and the source node identifier according to the target NG-RAN node identifier and source node identifier. Indirect data forwarding; and, mapping the EPS context to the QOS flow of the PDU session.
  • the second processing module 1502 is further configured to: when the first indication information indicates that the source node does not support direct data forwarding, and the second indication information indicates that the source node and the destination NG-RAN node support indirect data forwarding , Send the intermediate node address used to support indirect data forwarding to AMF.
  • the fourth communication system switching device includes:
  • the fourth receiving module 1601 is configured to receive a handover message sent by a source node, where the handover message includes a destination NG-RAN node identifier and first indication information whether the source node supports direct data forwarding;
  • the second sending module 1602 is configured to send a handover request to AMF, the handover request carries the first indication information and the target NG-RAN node identifier, so that the AMF sends the first indication
  • the information switching request identifies the corresponding NG-RAN node to the target NG-RAN node.
  • the method further includes:
  • the fourth receiving module 1601 is also configured to receive an intermediate node address for indirect data forwarding sent by the AMF;
  • an address used for indirect data forwarding on the EPS system side is provided.
  • the fourth receiving module 1601 is further configured to receive the E-RAB address of the address used to support direct data forwarding sent by the AMF. .
  • a computer storage medium with a computer program stored thereon which, when executed by a processor, realizes the steps of the method described in FIG. 2, or realizes the steps of the method described in FIG. 4, or realizes the steps shown in FIG.
  • this application may take the form of a computer program product on a computer-usable or computer-readable storage medium, which has computer-usable or computer-readable program code implemented in the medium to be used or used by the instruction execution system. Used in conjunction with the instruction execution system.
  • a computer-usable or computer-readable medium can be any medium that can contain, store, communicate, transmit, or transmit a program for use by an instruction execution system, device, or device, or in combination with an instruction execution system, Device or equipment use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信系统切换方法、网络侧设备、装置和介质,涉及通信技术领域,用以对终端的通信系统进行切换。该方法中,AMF发送携带有所述第一指示信息的切换请求给目的NG-RAN节点标识对应的NG-RAN节点。NG-RAN节点根据所述第一指示信息确定数据前转的地址。这样,通过将源节点是否支持直接的数据前转的第一指示信息发送给目的NG-RAN节点,能够使NG-RAN节点得知源节点是否支持直接的数据前转,从而达到EPS系统的节点与5G系统的节点对数据前转方式的决策一致的目的。

Description

一种通信系统切换方法、网络侧设备、装置和介质
相关申请的交叉引用
本申请要求在2019年01月29日提交中国专利局、申请号为201910087223.9、申请名称为“一种通信系统切换方法、网络侧设备、装置和介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信系统切换方法、网络侧设备、装置和介质。
背景技术
随着移动通信的发展,5G的发展日新月异,5G系统可以为UE(User Equipment,用户设备)提供更大的带宽,更高的传输速率。但是5G在前期的布网不太成熟,而EPS(Evolved Packet System,演进型分组核心网)网络覆盖面和技术都很成熟。为了给UE提供更好的服务,保证业务的连续性,需要支持UE在5G系统和目前主流的EPS系统间的无缝切换的解决方案。
发明内容
为了将UE在5G系统和EPS系统间进行切换,本申请实施例提供一种通信系统切换方法、网络侧设备、装置和介质。通过本申请实施例提供的技术方案,使得5G系统的节点与EPS系统下的节点对于数据前转方式能够有一致的决策,保证数据钱庄正常的进行。
第一方面,本申请实施例提供一种应用于5G系统的认证管理功能节点AMF的通信系统切换方法,该方法中:接收EPS核心网侧发送的切换需求,所述切换需求中携带有源节点是否支持直接的数据前转的第一指示信息以及目的NG-RAN节点标识;
发送携带有所述第一指示信息的切换请求给目的NG-RAN节点标识对应的NG-RAN节点,以使所述NG-RAN节点根据所述第一指示信息确定数据前转的地址。
可选地,所述第一指示信息位于所述切换请求的新增IE中;或者,
所述第一指示信息位于所述切换请求的原有IE中。
可选地,所述方法还包括:
获取需要进行系统切换的终端的EPS上下文;
发送PDU会话建立请求给SMF,所述PDU会话建立请求携带有所述第一指示信息、所述EPS上下文、目的NG-RAN节点标识、所述源节点的源节点标识;
接收所述SMF返回的针对所述PDU会话建立请求的响应,该响应中包括PDU会话和EPS上下文与PDU会话的映射关系,所述目的NG-RAN节点和源节点是否支持间接的数据前转的第二指示信息。
可选地,所述第一指示信息位于所述PDU会话建立请求的新增IE中;或者,
所述第一指示信息存位于所述PDU会话建立请求的原有IE中。
可选地,发送携带有所述第一指示信息的切换请求给目的NG-RAN节点标识对应的NG-RAN节点具体包括:
发送携带有所述PDU会话和所述映射关系、第一指示信息和第二指示信息的切换请求给所述NG-RAN节点标识对应的NG-RAN节点,以使所述NG-RAN节点根据所述PDU会话和所述映射关系确定需要进行数据前转的PDU会话,以及根据所述第一指示信息和第二指示信息确定数据前转的地址;
接收所述NG-RAN节点发送的确定需要进行数据前转的PDU会话和确定的数据前转的地址;
将所述需要进行数据前转的PDU会话和确定的数据前转的地址转发至SMF。
可选地,所述第一指示信息表示源节点不支持直接的数据前转时,所述 方法还包括:
接收SMF发送的用于间接的数据前转的中间节点地址;
将所述用于间接的数据前转的中间节点地址发送给EPS系统的核心网。
可选地,所述第一指示信息表示源节点支持直接的数据前转时,所述方法还包括:
将NG-RAN节点分配的E-RAB地址发送给EPS系统的核心网。
另一方面,本申请实施例还提供一种应用于5G系统的NG-RAN的通信系统切换方法,该方法包括:接收AMF发送的切换请求,所述切换请求中携带有源节点是否支持直接的数据前转的第一指示信息;
根据所述第一指示信息确定数据前转的地址。
可选地,所述切换请求中还包括PDU会话、EPS上下文与PDU会话的QOS流之间的映射关系和目的NG-RAN节点和源节点是否支持间接的数据前转的第二指示信息,所述方法还包括:
根据所述映射关系和PDU会话,确定需要进行数据前转的PDU会话;
根据所述第一指示信息确定数据前转的地址具体包括:
根据所述第一指示信息和第二指示信息,确定数据前转的地址;
将所述需要进行数据前转的PDU会话和确定的数据前转的地址发送给AMF,以使所述AMF将所述需要进行数据前转的PDU会话和确定的数据前转的地址转发至SMF。
第三方面,本申请实施例还提供一种应用于5G系统的会话管理功能节点SMF的通信系统切换方法,所述方法包括:
接收AMF发送的PDU会话建立请求,所述PDU会话建立请求携带有源节点是否支持直接的数据前传的第一指示信息、EPS上下文、目的NG-RAN节点标识和源节点标识;
返回针对所述PDU会话建立请求的响应给AMF,该响应中包括PDU会话和EPS上下文与PDU会话的映射关系,所述目的NG-RAN节点和源节点是否支持间接的数据前转的第二指示信息,以使所述AMF将所述PDU会话、 所述映射关系和第二指示信息发送给NG-RAN节点。
进一步的接收AMF发送的PDU会话建立请求之后,所述方法还包括:
根据所述目的NG-RAN节点标识和源节点标识,确定所述NG-RAN节点和所述源节点是否支持间接的数据前转;以及,
将所述EPS上下文映射到PDU会话的QOS流。
可选地,该方法还包括:接收AMF发送的需要进行数据前转的PDU会话和确定的数据前转的地址;以及,
在所述第一指示信息表示源节点不支持直接的数据前转,第二指示信息表示源节点和目的NG-RAN节点支持间接的数据前转时,发送用于支持间接的数据前转的中间节点地址给AMF。
第四方面,本申请实施例还提供一种应用于EPS系统的核心网MME的通信系统切换方法,所述方法包括:
接收源节点发送的切换消息,所述切换消息中包括目的NG-RAN节点标识,和所述源节点是否支持直接的数据前转的第一指示信息;
发送切换需求给AMF,所述切换需求中携带有所述第一指示信息以及所述目的NG-RAN节点标识,以使所述AMF发送携带有所述第一指示信息的切换请求给目的NG-RAN节点标识对应的NG-RAN节点。
可选地,所述第一指示信息表示源节点不支持直接的数据前转时,所述方法还包括:
接收所述AMF发送的用于间接的数据前转的中间节点地址;
根据所述中间节点地址,提供EPS系统侧用于间接的数据前转的地址。
可选地,所述第一指示信息表示源节点支持直接的数据前转时,所述方法还包括:
接收所述AMF发送的用于支持直接的数据前转的地址的E-RAB地址。
第五方面,本申请实施例还提供一种通信系统切换的网络侧设备,该网络侧设备包括:处理器、存储器和收发机;
其中,所述处理器,用于读取存储器中的程序并执行:
接收EPS核心网侧发送的切换需求,所述切换需求中携带有源节点是否支持直接的数据前转的第一指示信息以及目的NG-RAN节点标识;
发送携带有所述第一指示信息的切换请求给目的NG-RAN节点标识对应的NG-RAN节点,以使所述NG-RAN节点根据所述第一指示信息确定数据前转的地址。
可选地,所述第一指示信息位于所述切换请求的新增IE中;或者,
所述第一指示信息位于所述切换请求的原有IE中。
可选地,所述处理器还用于获取需要进行系统切换的终端的EPS上下文;发送PDU会话建立请求给SMF,所述PDU会话建立请求携带有所述第一指示信息、所述EPS上下文、目的NG-RAN节点标识、所述源节点的源节点标识;接收所述SMF返回的针对所述PDU会话建立请求的响应,该响应中包括PDU会话和EPS上下文与PDU会话的映射关系,所述目的NG-RAN节点和源节点是否支持间接的数据前转的第二指示信息。
可选地,所述第一指示信息位于所述PDU会话建立请求的新增IE中;或者,
所述第一指示信息存位于所述PDU会话建立请求的原有IE中。
可选地,所述处理器具体用于,发送携带有所述PDU会话和所述映射关系、第一指示信息和第二指示信息的切换请求给所述NG-RAN节点标识对应的NG-RAN节点,以使所述NG-RAN节点根据所述PDU会话和所述映射关系确定需要进行数据前转的PDU会话,以及根据所述第一指示信息和第二指示信息确定数据前转的地址;
接收所述NG-RAN节点发送的确定需要进行数据前转的PDU会话和确定的数据前转的地址;
将所述需要进行数据前转的PDU会话和确定的数据前转的地址转发至SMF。可选地,所述第一指示信息表示源节点不支持直接的数据前转,所述第二指示信息标识源节点和目的NG-RAN节点支持间接的数据前转时,所述第一处理器还用于接收SMF发送的用于间接的数据前转的中间节点地址;
将所述用于间接的数据前转的中间节点地址发送给EPS系统的核心网。
可选地,所述第一指示信息表示源节点支持直接的数据前转时,所述处理器还用于将NG-RAN节点分配的E-RAB地址发送给EPS系统的核心网。
第六方面,本申请实施例还提供第二种通信系统切换的网络侧设备,该网络侧设备包括:处理器、存储器和收发机;
其中,所述处理器,用于读取存储器中的程序并执行:
接收AMF发送的切换请求,所述切换请求中携带有源节点是否支持直接的数据前转的第一指示信息;
所述处理器,还用于根据所述第一指示信息确定数据前转的地址。
可选地,所述切换请求中还包括PDU会话、EPS上下文与PDU会话的QOS流之间的映射关系和目的NG-RAN节点和源节点是否支持间接的数据前转的第二指示信息,所述处理器还用于根据所述映射关系和PDU会话,确定需要进行数据前转的PDU会话;
所述处理器具体用于,根据所述第一指示信息和第二指示信息,确定数据前转的地址;
将所述需要进行数据前转的PDU会话和确定的数据前转的地址发送给AMF,以使所述AMF将所述需要进行数据前转的PDU会话和确定的数据前转的地址转发至SMF。
第七方面本申请实施例还提供第三种通信系统切换的网络侧设备,该设备包括:处理器、存储器和收发机;
其中,所述处理器,用于读取存储器中的程序并执行:
所述处理器,用于接收AMF发送的PDU会话建立请求,所述PDU会话建立请求携带有源节点是否支持直接的数据前传的第一指示信息和目的NG-RAN节点标识、所述源节点的源节点标识;
返回针对所述PDU会话建立请求的响应给AMF,该响应中包括PDU会话和EPS上下文与PDU会话的映射关系,所述目的NG-RAN节点和源节点是否支持间接的数据前转的第二指示信息,以使所述AMF将所述PDU会话、 所述映射关系和第二指示信息发送给NG-RAN节点。
可选地,所述处理器还用于根据所述目的NG-RAN节点标识和源节点标识,确定所述NG-RAN节点和所述源节点是否支持间接的数据前转;以及,
将所述EPS上下文映射到PDU会话的QOS流。
可选地,所述处理器还用于接收AMF发送的需要进行数据前转的PDU会话和确定的数据前转的地址;以及,
在所述第一指示信息表示源节点不支持直接的数据前转,第二指示信息表示源节点和目的NG-RAN节点支持间接的数据前转时,发送用于支持间接的数据前转的中间节点地址给AMF。
第八方面,本申请实施例提供第四种通信系统切换的网络侧设备,该设备包括:处理器、存储器和收发机;
其中,所述处理器,用于读取存储器中的程序并执行:
接收源节点发送的切换消息,所述切换消息中包括目的NG-RAN节点标识,和所述源节点是否支持直接的数据前转的第一指示信息;
发送切换需求给AMF,所述切换需求中携带有所述第一指示信息以及所述目的NG-RAN节点标识,以使所述AMF发送携带有所述第一指示信息的切换请求给目的NG-RAN节点标识对应的NG-RAN节点。
可选地,所述第一指示信息表示源节点不支持直接的数据前转时,所述处理器还用于接收所述AMF发送的用于间接的数据前转的中间节点地址;
根据所述中间节点地址,提供EPS系统侧用于间接的数据前转的地址。
可选地,所述第一指示信息表示源节点支持直接的数据前转时,所述处理器还用于接收所述AMF发送的用于支持直接的数据前转的地址的E-RAB地址。
第九方面,本申请实施例还提供一种通信系统切换装置,该装置包括:
第一接收模块,用于接收EPS核心网侧发送的切换需求,所述切换需求中携带有源节点是否支持直接的数据前转的第一指示信息以及目的NG-RAN节点标识;
第一发送模块,用于发送携带有所述第一指示信息的切换请求给目的NG-RAN节点标识对应的NG-RAN节点,以使所述NG-RAN节点根据所述第一指示信息确定数据前转的地址。
第十方面,本申请实施例还提供第二种通信系统切换装置,所述装置包括:
第二接收模块,用于接收AMF发送的切换请求,所述切换请求中携带有源节点是否支持直接的数据前转的第一指示信息;
处理模块,用于根据所述第一指示信息确定数据前转的地址。
第十一方面,本申请实施例提供第三种通信系统切换装置,所述装置包括:
第三接收模块,用于接收AMF发送的PDU会话建立请求,所述PDU会话建立请求携带有源节点是否支持直接的数据前传的第一指示信息、EPS上下文、目的NG-RAN节点标识和源节点标识;
第二处理模块,用于返回针对所述PDU会话建立请求的响应给AMF,该响应中包括PDU会话和EPS上下文与PDU会话的映射关系,所述目的NG-RAN节点和源节点是否支持间接的数据前转的第二指示信息,以使所述AMF将所述PDU会话、所述映射关系和第二指示信息发送给NG-RAN节点。
第十二方面,本申请实施例还提供第四种一种通信系统切换装置,所述装置包括:
第四接收模块,用于接收源节点发送的切换消息,所述切换消息中包括目的NG-RAN节点标识,和所述源节点是否支持直接的数据前转的第一指示信息;
第三发送模块,用于发送切换需求给AMF,所述切换需求中携带有所述第一指示信息以及所述目的NG-RAN节点标识,以使所述AMF发送携带有所述第一指示信息的切换请求给目的NG-RAN节点标识对应的NG-RAN节点。
本申请另一实施例还提供了一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行 本申请实施例中的任一通信系统切换方法。
本申请实施例提供的通信系统切换方法、网络侧设备、装置和介质,由于发送携带有所述第一指示信息的切换请求给目的NG-RAN节点标识对应的NG-RAN节点和发送携带有所述第一指示信息和所述NG-RAN节点确定的数据前转的地址的PDU会话建立请求给SMF,使得5G系统的节点与EPS系统的节点对于数据前转方式有一致的决策,保证数据前转正常的进行。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所介绍的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例中一种通信系统切换方法应用场景示意图;
图2为本申请实施例中一种通信系统切换方法流程图;
图3为本申请实施例中切换请求示意图;
图4为本申请实施例中一种通信系统切换方法另一流程图;
图5为本申请实施例中一种通信系统切换方法另一流程图;
图6为本申请实施例中一种通信系统切换方法另一流程图;
图7为本申请实施例中一种通信系统切换方法时序图;
图8为本申请实施例中一种通信系统切换方法另一应用场景示意图;
图9为本申请实施例中第一种通信系统切换的网络侧设备示意图;
图10为本申请实施例中第二种通信系统切换的网络侧设备示意图;
图11为本申请实施例中第三种通信系统切换的网络侧设备示意图;
图12为本申请实施例中第四种通信系统切换的网络侧设备示意图;
图13为本申请实施例第一种通信系统切换装置示意图;
图14为本申请实施例第二种通信系统切换装置示意图;
图15为本申请实施例第三种通信系统切换装置示意图;
图16为本申请实施例第四种通信系统切换装置示意图。
具体实施方式
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
数据前转:data forwarding,即数据前送。CPU在一个时钟周期内,把一个单元的输出值内容拷贝到另一个单元的输入值中。
直接的数据前转:direct data forwarding,指源节点和目的NG-RAN节点不通过核心网,可以直接将数据从源节点转到目的NG-RAN节点。
间接的数据前转:indirect data forwarding,指源节点和目的NG-RAN节点需要通过核心网,将数据从源节点转到EPS系统侧的核心网,再转到5G系统侧的核心网,最后转到目的NG-RAN节点。
IE:Information element,指信令中的信息元素。
E-RAB:E-UTRAN Radio Access Bearer,演进的无线接入承载。E-RAB是指用户平面的承载,用于UE(User Equipment,用户设备)和CN(Core Network,核心网)之间传送语音、数据及多媒体业务。
EPS:EPS(Evolved Packet System,演进的分组系统)是3GPP标准委员会在第4代移动通信中出现的概念。可以认为EPS=UE(User Equipment,用户设备)+LTE(4G接入网部分)+EPC(Evolved Packet Core,演进的分组核心网)。
MME:MME(Mobility Management Entity)是3GPP协议LTE接入网络的关键控制节点,它负责空闲模式的UE(User Equipment)的定位,传呼过程,包括中继,简单的说MME是负责信令处理部分。即可以将MME视作EPS 系统侧的核心网节点。
AMF:AMF(Authentication Management Function),认证管理功能,是5G系统侧的核心网。
NG-RAN:Next Generation-Radio Access Network,下一代协作式无线接入网,是5G系统侧的节点。
SMF:Session Management Function,会话管理功能节点,是5G系统侧的节点。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
5G系统可以为UE提供更大的带宽和更高的传输速率。目前,5G的布网尚不成熟,而现有的EPS布网都非常的成熟。为了给UE提供更好的服务器,支持UE在5G系统与EPS系统间的切换是非常重要的。5G的PDU(Protocal Data Unit,协议数据单元)会话和EPS系统的PDN(Public Data Network,公用数据网)连接形式不一样,5G使用PDU会话来管理多个Qos(Quality of Service,服务质量)流,EPS系统使用PDN连接来管理多个EPS承载。异系统切换过程中规进行承载转换,承载转换的功能是在CN完成的。对于数据前转功能,之前的异系统切换不能进行直接的数据前转,即数据的前传都必须经过核心网,导致数据前转的延迟。在EPS和5G之间的切换过程中,为了减少切换的时延,在EPS系统下的RAN节点和5G系统下的RAN节点连接可达的情况下,考虑可以采用直接的数据前转。但是,目前的标准可能导致EPS系统下的各个节点和5G系统下的各个节点对于是否采用直接的数据前转有不同的决策,导致数据前转出现问题。
本申请针对上述场景,提供了一种通信系统切换方法、网络侧设备、装置和介质。为了清楚的了解本申请实施例提供的技术方案,首先对本申请实施例提供的技术方案的基本原理做一下简单的说明:
为了使5G系统的各个节点与EPS系统的各个节点对数据前转的方式有一致的决策,本申请实施例提供一种通信系统切换方法。该方法中,EPS系统的源节点基于对终端的测量信息,决定将终端切换到5G。源节点发送切换消息给MME,该切换消息中携带有目的NG-RAN节点标识和源节点是否支持直接的数据前转的第一指示信息。MME发送切换需求给AMF,切换需求中携带有所述第一指示信息以及目的NG-RAN节点标识。AMF发送携带有所述第一指示信息的切换请求给目的NG-RAN节点标识对应的NG-RAN节点。NG-RAN节点根据所述第一指示信息确定数据前转的地址。
这样,通过将源节点是否支持直接的数据前转的第一指示信息发送给目的NG-RAN节点,能够使NG-RAN节点得知源节点是否支持直接的数据前转,从而达到EPS系统的节点与5G系统的节点对数据前转方式的决策一致的目的。
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部份实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
如图1所示,其为通过本申请实施例完成通信系统切换的应用场景示意图。该场景中包括用户10的终端11。源节点,EPS系统的核心网,5G系统的AMF节点,目的NG-RAN节点。该场景中终端11工作于EPS系统。
源节点决定将用户10的终端11从EPS系统切换至5G系统,向EPS系统的核心网发送切换消息,该消息中携带有源节点支持直接的数据前转的第一指示信息和目的NG-RAN节点标识。EPS系统的核心网向AMF节点发送切换需求,该需求中有第一指示信息与目的NG-RAN节点标识。AMF目的NG-RAN节点发送切换请求,该切换请求中新增了一个IE,该IE携带有源节点支持直接的数据前转的第一指示信息。NG-RAN节点提供用于直接的数据前转的E-RAB地址。源节点与NG-RAN节点则可以通过该地址,进行直接的 数据前转,将终端11切换至5G系统。
其中,所述终端,是一种具有无线通信功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)所述终端、增强现实(augmented reality,AR)所述终端、工业控制(industrial control)中的无线所述终端、无人驾驶(self driving)中的无线所述终端、远程医疗(remote medical)中的无线所述终端、智能电网(smart grid)中的无线所述终端、运输安全(transportation safety)中的无线所述终端、智慧城市(smart city)中的无线所述终端、智慧家庭(smart home)中的无线所述终端等;还可以是各种形式的UE,移动台(mobile station,MS),所述终端设备(terminal device)。图1中的UE为本申请的所述终端的一种具体示例。
如图2所示,其为本申请实施例中一种通信系统切换方法流程图,该流程包括以下步骤:
步骤201:AMF接收EPS核心网侧发送的切换需求,所述切换需求中携带有源节点是否支持直接的数据前转的第一指示信息以及目的NG-RAN节点标识。
步骤202:AMF发送携带有所述第一指示信息的切换请求给目的NG-RAN节点标识对应的NG-RAN节点。
这样,通过在切换请求中携带源节点是否支持直接的数据前转的第一指示信息,可以使目标NG-RAN节点根据第一指示信息确定数据前转的地址。从而使得EPS系统的节点与5G系统的节点对于数据前转的方式有一致的决策,保证正常的进行数据前转。
具体实施时,所述第一指示信息位于所述切换请求的原有IE中;或者,所述第一指示信息位于所述切换请求的新增IE中。如图3所示,其为本申请实施例中在切换请求中添加第一指示信息的示意图。如图3中的a,切换请求中包含有多个IE,例如,Sourcetotarget Container(源节点到目标的透传容器) 等。所以,可以将第一指示信息置于所述Sourcetotarget Container中,或者可以将所述第一指示信息添加在其他空闲的IE中。较佳的,还可以如图3中的b所示,在切换请求中增加新的IE,将所述第一指示信息置于该新增加的IE中。
上述步骤201中,EPS系统核心网发送的切换需求是通过如图4所示的步骤A1-A2得到的:
步骤A1:MME接收源节点发送的切换消息,所述切换消息中包括目的NG-RAN节点标识,和所述源节点是否支持直接的数据前转的第一指示信息。
步骤A2:MME发送切换需求给AMF,所述切换需求中携带有所述第一指示信息以及所述目的NG-RAN节点标识。
通过上述方法,可以使得AMF根据切换需求中的第一指示信息,发送携带有所述第一指示信息的切换请求给目的NG-RAN节点,使得NG-RAN节点得知源节点是否支持直接的数据前转,从而达到EPS系统的源节点与NG-RAN节点对于数据前转的方式具有一致的决策。
一种可能的实施方式中,在上述步骤202AMF发送携切换请求给目的NG-RAN节点标识对应的NG-RAN节点之后,目的NG-RAN节点执行如图5所示的步骤:
步骤501:接收AMF发送的切换请求,所述切换请求中携带有源节点是否支持直接的数据前转的第一指示信息。
步骤502:根据所述第一指示信息确定数据前转的地址。
这样,可以使得目的NG-RAN节点得知源节点是否支持直接的数据前转,使5G系统的节点与EPS系统的节点对于数据前转的方式有一致的决策。NG-RAN节点根据第一指示信息确定数据前转的地址,可以使数据前转正常的进行。
AMF在上述步骤201之后,获取需要进行系统切换的终端的EPS上下文,并发送PDU会话建立请求给SMF,所述PDU会话建立请求携带有所述第一指示信息、所述EPS上下文、目的NG-RAN节点标识、所述源节点的源节点 标识。
这样,可以使得SMF确定源节点是否支持直接的数据前转,从而使5G系统侧的节点和EPS系统侧的节点对于数据前转方式有一致的决策。
具体实施时,可以在PDU会话建立请求中增加一个新的IE,将所述第一指示信息置于新的IE中。或者,可以将第一指示信息置于PDU会话建立请求中的原有的IE中。
在AMF发送PDU会话建立请求给SMF之后,SMF执行如图6所示的步骤:
步骤601:接收AMF发送的PDU会话建立请求,所述PDU会话建立请求携带有源节点是否支持直接的数据前传的第一指示信息、EPS上下文、目的NG-RAN节点标识和源节点标识。
具体实施时,SMF接收到AMF发送的PDU建立请求之后,根据目的NG-RAN节点标识和源节点标识,确定所述目的NG-RAN节点和源节点是否支持间接的数据前转。以及将所述EPS上下文映射到PDU会话的QOS流。
步骤602:返回针对所述PDU会话建立请求的响应给AMF,该响应中包括PDU会话和EPS上下文与PDU会话的映射关系,所述目的NG-RAN节点和源节点是否支持间接的数据前转的第二指示信息,以使所述AMF将所述PDU会话、所述映射关系和第二指示信息发送给NG-RAN节点。
这样,可以使得SMF得知源节点是否支持直接的数据前转以及将源节点和目的NG-RAN节点是否支持间接的数据前转的第二指示信息发送给NG-RAN节点,使得5G系统的节点和EPS系统的节点对于数据前转方式有一致的决策。
此外,由于5G使用PDU会话来管理多个QOS流,EPS系统使用PDN连接来管理多个EPS承载。通过上述方法,还可以将EPS上下文转换为5G的PDU会话的QOS流。
上述步骤202可以具体执行为步骤B1-B3:
步骤B1:发送携带有所述PDU会话和所述映射关系、第一指示信息和 第二指示信息的切换请求给所述NG-RAN节点标识对应的NG-RAN节点。
具体的,NG-RAN节点根据所述PDU会话和所述映射关系确定需要进行数据前转的PDU会话,根据第一指示信息和第二指示信息确定数据前转的地址。
步骤B2:接收所述NG-RAN节点发送的确定需要进行数据前转的PDU会话和确定的数据前转的地址。
步骤B3:将所述需要进行数据前转的PDU会话和确定的数据前转的地址转发至SMF。
这样,可以使得NG-RAN节点得知源节点是否支持直接的数据前转,以及源节点和NG-RAN节点是否支持间接的数据前转。使得5G系统的节点和EPS系统的节点对于数据前转方式有一致的决策。
在源节点不支持直接的数据前转,源节点和目的NG-RAN节点支持间接的数据前转时,SMF发送用于支持简介的数据前转的中间节点地址给AMF。AMF接收SMF发送的用于间接的数据前转的中间节点地址,并将所述用于间接的数据前转的中间节点地址发送给EPS系统的核心网,EPS系统的核心网在接收所述AMF发送的所述中间节点地址后,根据所述中间节点地址提供EPS系统侧用于间接的数据前转的地址。
通过上述方法,在源节点不支持直接的数据前转,源节点和目的NG-RAN节点支持间接的数据前转时,根据SMF提供的5G系统侧的中间节点地址和MME提供的EPS系统侧的地址,可以使得EPS系统的核心网与5G的核心网进行间接的数据前转。
在源节点支持直接的数据前转时,AMF将NG-RAN节点分配的E-RAB地址发送给EPS系统的核心网;EPS系统的核心网接收所述E-RAB地址。
这样,源节点支持直接的数据前转时,NG-RAN节点可以分配E-RAB地址,并将E-RAB地址发送给EPS系统的MME,可以使EPS系统的节点与5G系统的节点对于数据前转方式有一致的决策。并且该E-RAB地址用于源节点与NG-RAN进行直接的数据前转,直接的数据前转可以减少系统切换的时延。
为了更加清楚的理解本申请实施例提供的方案,以源节点支持直接的数据前转为例,结合图7对本申请实施例提供的技术方案作详细的说明。图7为本申请实施例中一种通信系统切换方法的时序图。图中包括终端UE,源节点E-UTRAN,目的NG-RAN节点,EPS核心网MME,5G核心网AMF,5G核心网SMF。
步骤1:E-UTRAN决定将UE切换至5G。
步骤2:E-UTRAN发送Handover Required(切换消息)给MME。其中,Handover Required中携带有源节点支持直接的数据前转的第一指示信息以及目的NG-RAN节点标识。
步骤3:MME发送Forward Relocation Request(切换请求)给AMF。所述Forward Relocation Request携带有源节点支持直接的数据前转的第一指示信息以及目的NG-RAN节点标识。
步骤4:AMF发送Nsmf_PDUSession_CreateSMContext Request信令(PDU会话建立请求)给SMF。其中,该信令携带有UE的EPS上下文、源节点支持直接的数据前转的第一指示信息、EPS上下文、目的NG-RAN节点标识和源节点标识。
步骤5:SMF将EPS上下文映射到PDU会话的QOS流中,以及根据源节点标识和目的NG-RAN节点标识确定目的NG-RAN节点与源节点不支持间接的数据前转。
步骤6:SMF发送Nsmf_PDUSession_CreateSMContext Response信令(针对PDU会话建立的响应)给AMF。该信令中包括PDU会话、EPS上下文与PDU会话的映射关系和目的NG-RAN节点和源节点不支持间接的数据前转的第二指示信息。
步骤7:AMF发送Handover Request(切换请求)给前述目的NG-RAN节点标识对应的NG-RAN。其中,Handover Request中携带有所述第一指示信息、第二指示信息、PDU会话和所述映射关系。
步骤8:NG-RAN根据第一指示信息和第二指示信息,确定用于进行直接 的数据前转的E-RAB地址。根据PDU会话与所述映射关系确定需要进行数据前转的PDU会话。
步骤9:NG-RAN发送Handover Request ACK(切换请求确认)给AMF。其中,ACK中包括E-RAB地址与需要进行数据前转的PDU会话。
步骤10:AMF发送Nsmf_PDUSession_UpdateSMContext Requst(PDU会话更新请求)信令给SMF,其中该信令包括需要进行数据前转的PDU会话。
步骤11:SMF发送响应Nsmf_PDUSession_UpdateSMContext Response(针对PDU会话更新的响应)给AMF。该响应表示用于数据前转的准备已完成。
步骤12:AMF发送响应Forward Relocation Response给MME。该响应中包括E-RAB地址。
通过上述方法,在AMF给NG-RAN节点发送的Handover Request与AMF给SMF发送的PDU会话建立请求中携带第一指示信息,可以使得EPS系统的节点与5G系统的节点对于数据前转方式具有一致的决策。
下面以源节点不支持直接的数据前转为例,结合图8对本申请实施例提供的技术方案做进一步说明。图8为通过本申请实施例完成通信系统切换的应用场景示意图。该场景包括:UE,E-UTRAN,NG-RAN,MME,AMF,SMF。该场景中UE工作在EPS系统,建有三个EPS承载。只有承载1和承载2有数据要前转。
E-UTRAN决定将UE切换到5G。E-UTRAN向MME发送切换消息,该切换消息中携带有源节点不支持直接的数据前转的第一指示信息、EPS承载,以及对应的EPS承载1和承载2有数据要前转的信息、目的NG-RAN节点标识。
MME将上述切换消息中携带的信息通过切换需求发送给AMF。AMF向SMF发送携带有EPS承载、对应的EPS承载1和承载2有数据要前转的信息、源节点不支持直接的数据前转的第一指示信息和目的NG-RAN节点标识和源节点标识的PDU会话建立请求。SMF将承载1和承载2映射到PDU会话1,例如将承载1映射到PDU会话1的QOS流1和2,承载2映射到PDU会话 1的QOS流3。将承载3映射到PDU会话2的QOS流1。SMF根据目的NG-RAN节点标识和源节点标识,确定第二指示信息,即目的NG-RAN节点和源节点支持间接的数据前转。
SMF将PDU会话1和PDU会话2以及映射关系、第二指示信息发送给AMF。
AMF发送切换请求给NG-RAN。切换请求中携带有PDU会话1和PDU会话2以及映射关系、第二指示信息。NG-RAN根据映射关系确定PDU会话1需要进行数据前转。根据第二指示信息提供用于间接的数据前转的地址。并将所述PDU会话1需要进行数据前转的信息与用于间接的数据前转的地址发送给AMF,使AMF转发给SMF。
SMF根据第一指示信息确定源节点不支持直接的数据前转。又确定源节点和目的NG-RAN节点支持间接的数据前转,所以根据NG-RAN节点提供的间接的数据前转的地址,提供用于间接的数据前转的中间节点地址,并将该中间节点地址发送给AMF。AMF将所述中间节点地址发送给MME,使MME根据所述中间节点地址,提供EPS系统侧的用于间接的数据前转的地址。
其中,UE可以为手机、个人计算机、笔记本电脑、平板电脑等。
下面继续沿用图8以源节点支持直接的数据前转的情况下,对本申请实施例提供的技术方案做进一步说明。该场景中,UE工作在EPS系统,建有三个EPS承载,只有承载1和承载2上有数据要前转。
E-UTRAN决定将UE切换至5G。E-UTRAN向MME发送切换消息,该切换消息中携带有源节点支持直接的数据前转的第一指示信息、EPS承载,以及对应的EPS承载1和承载2有数据要前转的信息、目的NG-RAN节点标识。
MME将上述切换消息中携带的信息通过切换需求发送给AMF。AMF向SMF发送携带有EPS承载、对应的EPS承载1和承载2有数据要前转的信息、源节点支持直接的数据前转的第一指示信息的PDU会话建立请求。SMF将承载1和承载2映射到PDU会话1,例如将承载1映射到PDU会话1的QOS 流1和2,承载2映射到PDU会话1的QOS流3。将承载3映射到PDU会话2的QOS流1。所述PDU会话建立请求中还包括目的NG-RAN节点标识和源节点标识,SMF根据源节点标识和目的NG-RAN节点标识确定所述目的NG-RAN节点与源节点之间可以进行间接的数据前转。SMF将所述NG-RAN节点与源节点之间可以进行间接的数据前转的第二指示信息和PDU会话1和PDU会话2以及映射关系发送给AMF。
AMF发送切换请求给NG-RAN。切换请求中携带有PDU会话1和PDU会话2以及映射关系、第一指示信息和第二指示信息。NG-RAN根据映射关系确定PDU会话1需要进行数据前转。根据第一指示信息和第二指示信息,确定采用直接的数据前转,并提供用于直接的数据前转的E-RAB地址。并将所述PDU会话1需要进行数据前转的信息与E-RAB地址发送给AMF,使AMF转发给SMF。
SMF针对上述AMF转发的信息反馈一个响应给AMF。AMF则将E-RAB地址与PDU会话1有数据需要前转的信息发送给MME。
通过上述方法,E-UTRAN与NG-RAN节点可以通过E-RAB地址进行直接的数据前转。
基于相同的发明构思,本申请实施例还提供一种通信系统切换的网络侧设备。所述网络侧设备,是一种为所述终端提供无线通信功能的设备,包括但不限于:5G中的gNB、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(BaseBand Unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。本申请中的基站还可以是未来可能出现的其他通信系统中为所述终端提供无线通信功能的设备。
如图9所示,其为本发明实施例第一种通信系统切换的网络侧设备。该网络侧设备包括处理器900、存储器901和收发机902;
处理器900负责管理总线架构和通常的处理,存储器901可以存储处理器900在执行操作时所使用的数据。收发机902用于在处理器900的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器900代表的一个或多个处理器和存储器901代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器900负责管理总线架构和通常的处理,存储器901可以存储处理器900在执行操作时所使用的数据。
本发明实施例揭示的流程,可以应用于处理器900中,或者由处理器900实现。在实现过程中,信号处理流程的各步骤可以通过处理器900中的硬件的集成逻辑电路或者软件形式的指令完成。处理器900可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器801,处理器900读取存储器901中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器900,用于读取存储器901中的程序并执行:
接收EPS核心网侧发送的切换需求,所述切换需求中携带有源节点是否支持直接的数据前转的第一指示信息以及目的NG-RAN节点标识;
发送携带有所述第一指示信息的切换请求给目的NG-RAN节点标识对应的NG-RAN节点,以使所述NG-RAN节点根据所述第一指示信息确定数据前转的地址。
可选的,所述第一指示信息位于所述切换请求的新增IE中;或者,
所述第一指示信息位于所述切换请求的原有IE中。
可选的,所述处理器还用于获取需要进行系统切换的终端的EPS上下文;发送PDU会话建立请求给SMF,所述PDU会话建立请求携带有所述第一指示信息、所述EPS上下文、目的NG-RAN节点标识、所述源节点的源节点标识;接收所述SMF返回的针对所述PDU会话建立请求的响应,该响应中包括PDU会话和EPS上下文与PDU会话的映射关系,所述目的NG-RAN节点和源节点是否支持间接的数据前转的第二指示信息。
可选的,所述第一指示信息位于所述PDU会话建立请求的新增IE中;或者,
所述第一指示信息存位于所述PDU会话建立请求的原有IE中。
可选的,所述处理器具体用于,发送携带有所述PDU会话和所述映射关系、第一指示信息和第二指示信息的切换请求给所述NG-RAN节点标识对应的NG-RAN节点,以使所述NG-RAN节点根据所述PDU会话和所述映射关系确定需要进行数据前转的PDU会话,以及根据所述第一指示信息和第二指示信息确定数据前转的地址;
接收所述NG-RAN节点发送的确定需要进行数据前转的PDU会话和确定的数据前转的地址;
将所述需要进行数据前转的PDU会话和确定的数据前转的地址转发至SMF。
可选的,所述第一指示信息表示源节点不支持直接的数据前转,所述第二指示信息标识源节点和目的NG-RAN节点支持间接的数据前转时,所述第一处理器还用于接收SMF发送的用于间接的数据前转的中间节点地址;
将所述用于间接的数据前转的中间节点地址发送给EPS系统的核心网。
可选的,所述第一指示信息表示源节点支持直接的数据前转时,所述处理器还用于将NG-RAN节点分配的E-RAB地址发送给EPS系统的核心网。
如图10所示,本发明实施例第二种通信系统切换的网络侧设备,该网络 侧设备包括处理器1000、存储器1001和收发机1002;
处理器1000负责管理总线架构和通常的处理,存储器1001可以存储处理器1000在执行操作时所使用的数据。收发机1002用于在处理器1000的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器1000代表的一个或多个处理器和存储器1001代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器1000负责管理总线架构和通常的处理,存储器1001可以存储处理器1000在执行操作时所使用的数据。
本发明实施例揭示的流程,可以应用于处理器1000中,或者由处理器1000实现。在实现过程中,信号处理流程的各步骤可以通过处理器1000中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1000可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1001,处理器1000读取存储器1001中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器1000,用于读取存储器1001中的程序并执行:
接收AMF发送的切换请求,所述切换请求中携带有源节点是否支持直接的数据前转的第一指示信息;
所述处理器,还用于根据所述第一指示信息确定数据前转的地址。
可选的,所述切换请求中还包括PDU会话、EPS上下文与PDU会话的 QOS流之间的映射关系和目的NG-RAN节点和源节点是否支持间接的数据前转的第二指示信息,所述处理器还用于根据所述映射关系和PDU会话,确定需要进行数据前转的PDU会话;
所述处理器具体用于,根据所述第一指示信息和第二指示信息,确定数据前转的地址;
将所述需要进行数据前转的PDU会话和确定的数据前转的地址发送给AMF,以使所述AMF将所述需要进行数据前转的PDU会话和确定的数据前转的地址转发至SMF。
如图11所示,其为本发明实施例第三种通信系统切换的网络侧设备。该网络侧设备包括处理器1100、存储器1101和收发机1102;
处理器1100负责管理总线架构和通常的处理,存储器1101可以存储处理器1100在执行操作时所使用的数据。收发机1102用于在处理器1100的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器1100代表的一个或多个处理器和存储器1101代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器1100负责管理总线架构和通常的处理,存储器1101可以存储处理器1100在执行操作时所使用的数据。
本发明实施例揭示的流程,可以应用于处理器1100中,或者由处理器1100实现。在实现过程中,信号处理流程的各步骤可以通过处理器1100中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1100可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。 软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器801,处理器1100读取存储器1101中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器1100,用于读取存储器1101中的程序并执行:
所述处理器,用于接收AMF发送的PDU会话建立请求,所述PDU会话建立请求携带有源节点是否支持直接的数据前传的第一指示信息和目的NG-RAN节点标识、所述源节点的源节点标识;
返回针对所述PDU会话建立请求的响应给AMF,该响应中包括PDU会话和EPS上下文与PDU会话的映射关系,所述目的NG-RAN节点和源节点是否支持间接的数据前转的第二指示信息,以使所述AMF将所述PDU会话、所述映射关系和第二指示信息发送给NG-RAN节点。
可选的,所述处理器还用于根据所述目的NG-RAN节点标识和源节点标识,确定所述NG-RAN节点和所述源节点是否支持间接的数据前转;以及,
将所述EPS上下文映射到PDU会话的QOS流。
可选的,所述处理器还用于在所述第一指示信息表示源节点不支持直接的数据前转,第二指示信息表示源节点和目的NG-RAN节点支持间接的数据前转时,发送用于支持间接的数据前转的中间节点地址给AMF。
如图12所示,其为本发明实施例第三种通信系统切换的网络侧设备。该网络侧设备包括处理器1200、存储器1201和收发机1202;
处理器1200负责管理总线架构和通常的处理,存储器1201可以存储处理器1200在执行操作时所使用的数据。收发机1202用于在处理器1200的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器1200代表的一个或多个处理器和存储器1201代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步 描述。总线接口提供接口。处理器1200负责管理总线架构和通常的处理,存储器1201可以存储处理器1200在执行操作时所使用的数据。
本发明实施例揭示的流程,可以应用于处理器1200中,或者由处理器1200实现。在实现过程中,信号处理流程的各步骤可以通过处理器1200中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1200可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器801,处理器1200读取存储器1201中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器1200,用于读取存储器1201中的程序并执行:
接收源节点发送的切换消息,所述切换消息中包括目的NG-RAN节点标识,和所述源节点是否支持直接的数据前转的第一指示信息;
发送切换需求给AMF,所述切换需求中携带有所述第一指示信息以及所述目的NG-RAN节点标识,以使所述AMF发送携带有所述第一指示信息的切换请求给目的NG-RAN节点标识对应的NG-RAN节点。
可选的,所述第一指示信息表示源节点不支持直接的数据前转时,所述处理器还用于接收所述AMF发送的用于间接的数据前转的中间节点地址;
根据所述中间节点地址,提供EPS系统侧用于间接的数据前转的地址。
可选的,所述第一指示信息表示源节点支持直接的数据前转时,所述处理器还用于接收所述AMF发送的用于支持直接的数据前转的地址的E-RAB地址。
基于相同的发明构思,本申请实施例还提供一种通信系统切换装置。如 图13所示,本申请实施例第一种通信系统切换装置,所述装置包括:
第一接收模块1301,用于接收EPS核心网侧发送的切换需求,所述切换需求中携带有源节点是否支持直接的数据前转的第一指示信息以及目的NG-RAN节点标识;
第一发送模块1302,用于发送携带有所述第一指示信息的切换请求给目的NG-RAN节点标识对应的NG-RAN节点,以使所述NG-RAN节点根据所述第一指示信息确定数据前转的地址。
可选的,所述第一指示信息位于所述切换请求的新增IE中;或者,
所述第一指示信息位于所述切换请求的原有IE中。
可选的,第一发送模块1302还用于:获取需要进行系统切换的终端的EPS上下文;
发送PDU会话建立请求给SMF,所述PDU会话建立请求携带有所述第一指示信息、所述EPS上下文、目的NG-RAN节点标识、所述源节点的源节点标识;
第一接收模块1301还用于接收所述SMF返回的针对所述PDU会话建立请求的响应,该响应中包括PDU会话和EPS上下文与PDU会话的映射关系,所述目的NG-RAN节点和源节点是否支持间接的数据前转的第二指示信息。
可选的,所述第一指示信息位于所述PDU会话建立请求的新增IE中;或者,
所述第一指示信息存位于所述PDU会话建立请求的原有IE中。
可选的,第一发送模块1302具体用于发送携带有所述PDU会话和所述映射关系、第一指示信息和第二指示信息的切换请求给所述NG-RAN节点标识对应的NG-RAN节点,以使所述NG-RAN节点根据所述PDU会话和所述映射关系确定需要进行数据前转的PDU会话,以及根据所述第一指示信息和第二指示信息确定数据前转的地址;
第一接收模块1301还用于接收所述NG-RAN节点发送的确定需要进行数据前转的PDU会话和确定的数据前转的地址;
第一发送模块1302还用于将所述需要进行数据前转的PDU会话和确定的数据前转的地址转发至SMF。
可选的,所述第一指示信息表示源节点不支持直接的数据前转,所述第二指示信息标识源节点和目的NG-RAN节点支持间接的数据前转时,第一接收模块1301还用于:接收SMF发送的用于支持间接的数据前转的中间节点地址;
第一发送模块1302还用于将所述用于支持间接的数据前转的中间节点地址发送给EPS系统的核心网。
可选的,所述第一指示信息表示源节点不支持直接的数据前转时,第一发送模块1302还用于:将NG-RAN节点分配的E-RAB地址发送给EPS系统的核心网。
如图14所示,本申请实施例第二种通信系统切换装置,所述装置包括:
第二接收模块1401,用于接收AMF发送的切换请求,所述切换请求中携带有源节点是否支持直接的数据前转的第一指示信息;
处理模块1402,用于根据所述第一指示信息确定数据前转的地址。
可选的,所述切换请求中还包括PDU会话、EPS上下文与PDU会话的QOS流之间的映射关系和目的NG-RAN节点和源节点是否支持间接的数据前转的第二指示信息,处理模块1402还用于:
根据所述映射关系和PDU会话,确定需要进行数据前转的PDU会话;
处理模块1402具体用于根据所述第一指示信息和第二指示信息,确定数据前转的地址;
将所述需要进行数据前转的PDU会话和确定的数据前转的地址发送给AMF,以使所述AMF将所述需要进行数据前转的PDU会话和确定的数据前转的地址转发至SMF。
如图15所示,本申请实施例第三种通信系统切换装置,所述装置包括:
第三接收模块1501,用于接收AMF发送的PDU会话建立请求,所述PDU会话建立请求携带有源节点是否支持直接的数据前传的第一指示信息、EPS 上下文、目的NG-RAN节点标识和源节点标识;
第二处理模块1502,用于返回针对所述PDU会话建立请求的响应给AMF,该响应中包括PDU会话和EPS上下文与PDU会话的映射关系,所述目的NG-RAN节点和源节点是否支持间接的数据前转的第二指示信息,以使所述AMF将所述PDU会话、所述映射关系和第二指示信息发送给NG-RAN节点。
可选的,第三接收模块1501接收AMF发送的PDU会话建立请求之后,还用于根据所述目的NG-RAN节点标识和源节点标识,确定所述NG-RAN节点和所述源节点是否支持间接的数据前转;以及,将所述EPS上下文映射到PDU会话的QOS流。
可选的,第二处理模块1502还用于在所述第一指示信息表示源节点不支持直接的数据前转,第二指示信息表示源节点和目的NG-RAN节点支持间接的数据前转时,发送用于支持间接的数据前转的中间节点地址给AMF。
如图16所示,本申请实施例第四种通信系统切换装置,所述装置包括:
第四接收模块1601,用于接收源节点发送的切换消息,所述切换消息中包括目的NG-RAN节点标识,和所述源节点是否支持直接的数据前转的第一指示信息;
第二发送模块1602,用于发送切换需求给AMF,所述切换需求中携带有所述第一指示信息以及所述目的NG-RAN节点标识,以使所述AMF发送携带有所述第一指示信息的切换请求给目的NG-RAN节点标识对应的NG-RAN节点。
可选的,所述第一指示信息表示源节点不支持直接的数据前转时,所述方法还包括:
第四接收模块1601还用于接收所述AMF发送的用于间接的数据前转的中间节点地址;
根据所述中间节点地址,提供EPS系统侧用于间接的数据前转的地址。
可选的,所述第一指示信息表示源节点支持直接的数据前转时,第四接收模块1601还用于接收所述AMF发送的用于支持直接的数据前转的地址的 E-RAB地址。
一种计算机可存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述图2所述的方法的步骤,或实现上述图4所述的方法的步骤,或实现上述图5所述的方法的步骤,或实现上述图6所述的方法的步骤,或实现上述图7所述的方法的步骤。
以上参照示出根据本申请实施例的方法、装置(系统)和/或计算机程序产品的框图和/或流程图描述本申请。应理解,可以通过计算机程序指令来实现框图和/或流程图示图的一个块以及框图和/或流程图示图的块的组合。可以将这些计算机程序指令提供给通用计算机、专用计算机的处理器和/或其它可编程数据处理装置,以产生机器,使得经由计算机处理器和/或其它可编程数据处理装置执行的指令创建用于实现框图和/或流程图块中所指定的功能/动作的方法。
相应地,还可以用硬件和/或软件(包括固件、驻留软件、微码等)来实施本申请。更进一步地,本申请可以采取计算机可使用或计算机可读存储介质上的计算机程序产品的形式,其具有在介质中实现的计算机可使用或计算机可读程序代码,以由指令执行系统来使用或结合指令执行系统而使用。在本申请上下文中,计算机可使用或计算机可读介质可以是任意介质,其可以包含、存储、通信、传输、或传送程序,以由指令执行系统、装置或设备使用,或结合指令执行系统、装置或设备使用。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (35)

  1. 一种通信系统切换方法,其特征在于,应用于5G系统的认证管理功能节点AMF,所述方法包括:
    接收EPS核心网侧发送的切换需求,所述切换需求中携带有源节点是否支持直接的数据前转的第一指示信息以及目的NG-RAN节点标识;
    发送携带有所述第一指示信息的切换请求给目的NG-RAN节点标识对应的NG-RAN节点,以使所述NG-RAN节点根据所述第一指示信息确定数据前转的地址。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息位于所述切换请求的新增IE中;或者,
    所述第一指示信息位于所述切换请求的原有IE中。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取需要进行系统切换的终端的EPS上下文;
    发送PDU会话建立请求给SMF,所述PDU会话建立请求携带有所述第一指示信息、所述EPS上下文、目的NG-RAN节点标识、所述源节点的源节点标识;
    接收所述SMF返回的针对所述PDU会话建立请求的响应,该响应中包括PDU会话和EPS上下文与PDU会话的映射关系,所述目的NG-RAN节点和源节点是否支持间接的数据前转的第二指示信息。
  4. 根据权利要求3所述的方法,其特征在于,所述第一指示信息位于所述PDU会话建立请求的新增IE中;或者,
    所述第一指示信息存位于所述PDU会话建立请求的原有IE中。
  5. 根据权利要求3所述的方法,其特征在于,发送携带有所述第一指示信息的切换请求给目的NG-RAN节点标识对应的NG-RAN节点具体包括:
    发送携带有所述PDU会话和所述映射关系、第一指示信息和第二指示信息的切换请求给所述NG-RAN节点标识对应的NG-RAN节点,以使所述 NG-RAN节点根据所述PDU会话和所述映射关系确定需要进行数据前转的PDU会话,以及根据所述第一指示信息和第二指示信息确定数据前转的地址;
    接收所述NG-RAN节点发送的确定需要进行数据前转的PDU会话和确定的数据前转的地址;
    将所述需要进行数据前转的PDU会话和确定的数据前转的地址转发至SMF。
  6. 根据权利要求1所述的方法,其特征在于,所述第一指示信息表示源节点不支持直接的数据前转,所述第二指示信息标识源节点和目的NG-RAN节点支持间接的数据前转时,所述方法还包括:
    接收SMF发送的用于支持间接的数据前转的中间节点地址;
    将所述用于支持间接的数据前转的中间节点地址发送给EPS系统的核心网。
  7. 根据权利要求1所述的方法,其特征在于,所述第一指示信息表示源节点支持直接的数据前转时,所述方法还包括:
    将NG-RAN节点分配的E-RAB地址发送给EPS系统的核心网。
  8. 一种通信系统切换方法,其特征在于,应用于5G系统的NG-RAN,所述方法包括:
    接收AMF发送的切换请求,所述切换请求中携带有源节点是否支持直接的数据前转的第一指示信息;
    根据所述第一指示信息确定数据前转的地址。
  9. 根据权利要求8所述的方法,其特征在于,所述切换请求中还包括PDU会话、EPS上下文与PDU会话的QOS流之间的映射关系和目的NG-RAN节点和源节点是否支持间接的数据前转的第二指示信息,所述方法还包括:
    根据所述映射关系和PDU会话,确定需要进行数据前转的PDU会话;
    根据所述第一指示信息确定数据前转的地址具体包括:
    根据所述第一指示信息和第二指示信息,确定数据前转的地址;
    将所述需要进行数据前转的PDU会话和确定的数据前转的地址发送给 AMF,以使所述AMF将所述需要进行数据前转的PDU会话和确定的数据前转的地址转发至SMF。
  10. 一种通信系统切换方法,其特征在于,应用于5G系统的会话管理功能节点SMF,所述方法包括:
    接收AMF发送的PDU会话建立请求,所述PDU会话建立请求携带有源节点是否支持直接的数据前传的第一指示信息、EPS上下文、目的NG-RAN节点标识和源节点标识;
    返回针对所述PDU会话建立请求的响应给AMF,该响应中包括PDU会话和EPS上下文与PDU会话的映射关系,所述目的NG-RAN节点和源节点是否支持间接的数据前转的第二指示信息,以使所述AMF将所述PDU会话、所述映射关系和第二指示信息发送给NG-RAN节点。
  11. 根据权利要求10所述的方法,其特征在于,接收AMF发送的PDU会话建立请求之后,所述方法还包括:
    根据所述目的NG-RAN节点标识和源节点标识,确定所述NG-RAN节点和所述源节点是否支持间接的数据前转;以及,
    将所述EPS上下文映射到PDU会话的QOS流。
  12. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    在所述第一指示信息表示源节点不支持直接的数据前转,第二指示信息表示源节点和目的NG-RAN节点支持间接的数据前转时,发送用于支持间接的数据前转的中间节点地址给AMF。
  13. 一种通信系统切换方法,其特征在于,应用于EPS系统的核心网MME,所述方法包括:
    接收源节点发送的切换消息,所述切换消息中包括目的NG-RAN节点标识,和所述源节点是否支持直接的数据前转的第一指示信息;
    发送切换需求给AMF,所述切换需求中携带有所述第一指示信息以及所述目的NG-RAN节点标识,以使所述AMF发送携带有所述第一指示信息的切换请求给目的NG-RAN节点标识对应的NG-RAN节点。
  14. 根据权利要求13所述的方法,其特征在于,所述第一指示信息表示源节点不支持直接的数据前转时,所述方法还包括:
    接收所述AMF发送的用于间接的数据前转的中间节点地址;
    根据所述中间节点地址,提供EPS系统侧用于间接的数据前转的地址。
  15. 根据权利要求14所述的方法,其特征在于,所述第一指示信息表示源节点支持直接的数据前转时,所述方法还包括:
    接收所述AMF发送的用于支持直接的数据前转的地址的E-RAB地址。
  16. 一种通信系统切换的网络侧设备,其特征在于,该网络侧设备包括:处理器、存储器和收发机;
    其中,所述处理器,用于读取存储器中的程序并执行:
    接收EPS核心网侧发送的切换需求,所述切换需求中携带有源节点是否支持直接的数据前转的第一指示信息以及目的NG-RAN节点标识;
    发送携带有所述第一指示信息的切换请求给目的NG-RAN节点标识对应的NG-RAN节点,以使所述NG-RAN节点根据所述第一指示信息确定数据前转的地址。
  17. 根据权利要求16所述的设备,其特征在于,所述第一指示信息位于所述切换请求的新增IE中;或者,
    所述第一指示信息位于所述切换请求的原有IE中。
  18. 根据权利要求17所述的设备,其特征在于,所述处理器还用于获取需要进行系统切换的终端的EPS上下文;发送PDU会话建立请求给SMF,所述PDU会话建立请求携带有所述第一指示信息、所述EPS上下文、目的NG-RAN节点标识、所述源节点的源节点标识;接收所述SMF返回的针对所述PDU会话建立请求的响应,该响应中包括PDU会话和EPS上下文与PDU会话的映射关系,所述目的NG-RAN节点和源节点是否支持间接的数据前转的第二指示信息。
  19. 根据权利要求18所述的设备,其特征在于,所述第一指示信息位于所述PDU会话建立请求的新增IE中;或者,
    所述第一指示信息存位于所述PDU会话建立请求的原有IE中。
  20. 根据权利要求18所述的设备,其特征在于,所述处理器具体用于,发送携带有所述PDU会话和所述映射关系、第一指示信息和第二指示信息的切换请求给所述NG-RAN节点标识对应的NG-RAN节点,以使所述NG-RAN节点根据所述PDU会话和所述映射关系确定需要进行数据前转的PDU会话,以及根据所述第一指示信息和第二指示信息确定数据前转的地址;
    接收所述NG-RAN节点发送的确定需要进行数据前转的PDU会话和确定的数据前转的地址;
    将所述需要进行数据前转的PDU会话和确定的数据前转的地址转发至SMF。
  21. 根据权利要求16所述的设备,其特征在于,所述第一指示信息表示源节点不支持直接的数据前转,所述第二指示信息标识源节点和目的NG-RAN节点支持间接的数据前转时,所述第一处理器还用于接收SMF发送的用于支持间接的数据前转的中间节点地址;
    将所述用于支持间接的数据前转的中间节点地址发送给EPS系统的核心网。
  22. 根据权利要求16所述的设备,其特征在于,所述第一指示信息表示源节点支持直接的数据前转时,所述处理器还用于将NG-RAN节点分配的E-RAB地址发送给EPS系统的核心网。
  23. 一种通信系统切换的网络侧设备,其特征在于,该网络侧设备包括:处理器、存储器和收发机;
    其中,所述处理器,用于读取存储器中的程序并执行:
    接收AMF发送的切换请求,所述切换请求中携带有源节点是否支持直接的数据前转的第一指示信息;
    所述处理器,还用于根据所述第一指示信息确定数据前转的地址。
  24. 根据权利要求23所述的设备,其特征在于,所述切换请求中还包括PDU会话、EPS上下文与PDU会话的QOS流之间的映射关系和目的NG-RAN 节点和源节点是否支持间接的数据前转的第二指示信息,所述处理器还用于根据所述映射关系和PDU会话,确定需要进行数据前转的PDU会话;
    所述处理器具体用于,根据所述第一指示信息和第二指示信息,确定数据前转的地址;
    将所述需要进行数据前转的PDU会话和确定的数据前转的地址发送给AMF,以使所述AMF将所述需要进行数据前转的PDU会话和确定的数据前转的地址转发至SMF。
  25. 一种通信系统切换的网络侧设备,其特征在于,该设备包括:处理器、存储器和收发机;
    其中,所述处理器,用于读取存储器中的程序并执行:
    所述处理器,用于接收AMF发送的PDU会话建立请求,所述PDU会话建立请求携带有源节点是否支持直接的数据前传的第一指示信息和目的NG-RAN节点标识、所述源节点的源节点标识;
    返回针对所述PDU会话建立请求的响应给AMF,该响应中包括PDU会话和EPS上下文与PDU会话的映射关系,所述目的NG-RAN节点和源节点是否支持间接的数据前转的第二指示信息,以使所述AMF将所述PDU会话、所述映射关系和第二指示信息发送给NG-RAN节点。
  26. 根据权利要求25所述的设备,其特征在于,所述处理器还用于根据所述目的NG-RAN节点标识和源节点标识,确定所述NG-RAN节点和所述源节点是否支持间接的数据前转;以及,
    将所述EPS上下文映射到PDU会话的QOS流。
  27. 根据权利要求25所述的设备,其特征在于,所述处理器还用于在所述第一指示信息表示源节点不支持直接的数据前转,第二指示信息表示源节点和目的NG-RAN节点支持间接的数据前转时,发送用于支持间接的数据前转的中间节点地址给AMF。
  28. 一种通信系统切换的网络侧设备,其特征在于,该设备包括:处理器、存储器和收发机;
    其中,所述处理器,用于读取存储器中的程序并执行:
    接收源节点发送的切换消息,所述切换消息中包括目的NG-RAN节点标识,和所述源节点是否支持直接的数据前转的第一指示信息;
    发送切换需求给AMF,所述切换需求中携带有所述第一指示信息以及所述目的NG-RAN节点标识,以使所述AMF发送携带有所述第一指示信息的切换请求给目的NG-RAN节点标识对应的NG-RAN节点。
  29. 根据权利要求28所述的设备,其特征在于,所述第一指示信息表示源节点不支持直接的数据前转时,所述处理器还用于接收所述AMF发送的用于间接的数据前转的中间节点地址;
    根据所述中间节点地址,提供EPS系统侧用于间接的数据前转的地址。
  30. 根据权利要求29所述的设备,其特征在于,所述第一指示信息表示源节点支持直接的数据前转时,所述处理器还用于接收所述AMF发送的用于支持直接的数据前转的地址的E-RAB地址。
  31. 一种通信系统切换装置,其特征在于,所述装置包括:
    第一接收模块,用于接收EPS核心网侧发送的切换需求,所述切换需求中携带有源节点是否支持直接的数据前转的第一指示信息以及目的NG-RAN节点标识;
    第一发送模块,用于发送携带有所述第一指示信息的切换请求给目的NG-RAN节点标识对应的NG-RAN节点,以使所述NG-RAN节点根据所述第一指示信息确定数据前转的地址。
  32. 一种通信系统切换装置,其特征在于,所述装置包括:
    第二接收模块,用于接收AMF发送的切换请求,所述切换请求中携带有源节点是否支持直接的数据前转的第一指示信息;
    处理模块,用于根据所述第一指示信息确定数据前转的地址。
  33. 一种通信系统切换装置,其特征在于,所述装置包括:
    第三接收模块,用于接收AMF发送的PDU会话建立请求,所述PDU会话建立请求携带有源节点是否支持直接的数据前传的第一指示信息、EPS上 下文、目的NG-RAN节点标识和源节点标识;
    第二处理模块,用于返回针对所述PDU会话建立请求的响应给AMF,该响应中包括PDU会话和EPS上下文与PDU会话的映射关系,所述目的NG-RAN节点和源节点是否支持间接的数据前转的第二指示信息,以使所述AMF将所述PDU会话、所述映射关系和第二指示信息发送给NG-RAN节点。
  34. 一种通信系统切换装置,其特征在于,所述装置包括:
    第四接收模块,用于接收源节点发送的切换消息,所述切换消息中包括目的NG-RAN节点标识,和所述源节点是否支持直接的数据前转的第一指示信息;
    第二发送模块,用于发送切换需求给AMF,所述切换需求中携带有所述第一指示信息以及所述目的NG-RAN节点标识,以使所述AMF发送携带有所述第一指示信息的切换请求给目的NG-RAN节点标识对应的NG-RAN节点。
  35. 一种计算机可读介质,存储有计算机可执行指令,其特征在于,所述计算机可执行指令用于执行如权利要求1-15中任一权利要求所述的方法。
PCT/CN2019/126356 2019-01-29 2019-12-18 一种通信系统切换方法、网络侧设备、装置和介质 WO2020155906A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217026885A KR102574671B1 (ko) 2019-01-29 2019-12-18 통신 시스템 전환을 위한 방법, 네트워크 측 디바이스, 장치 및 매체
EP19913349.7A EP3920585B1 (en) 2019-01-29 2019-12-18 Communication system handover method, network device, apparatus and medium
US17/426,618 US20220141746A1 (en) 2019-01-29 2019-12-18 Method, network device, and apparatus communication system handover, and medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910087223.9A CN111491340B (zh) 2019-01-29 2019-01-29 一种通信系统切换方法、网络侧设备、装置和介质
CN201910087223.9 2019-01-29

Publications (1)

Publication Number Publication Date
WO2020155906A1 true WO2020155906A1 (zh) 2020-08-06

Family

ID=71811465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126356 WO2020155906A1 (zh) 2019-01-29 2019-12-18 一种通信系统切换方法、网络侧设备、装置和介质

Country Status (5)

Country Link
US (1) US20220141746A1 (zh)
EP (1) EP3920585B1 (zh)
KR (1) KR102574671B1 (zh)
CN (1) CN111491340B (zh)
WO (1) WO2020155906A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113259769A (zh) * 2021-04-07 2021-08-13 苏州华兴源创科技股份有限公司 视频源切换方法、装置、电子设备及计算机可读存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114760664A (zh) * 2021-01-08 2022-07-15 大唐移动通信设备有限公司 多连接下的切换方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282832A (zh) * 2017-01-06 2018-07-13 北京三星通信技术研究有限公司 无线接入网切换方法、基站和基站的通信方法
CN109151929A (zh) * 2017-06-19 2019-01-04 中兴通讯股份有限公司 网络系统的切换处理方法、装置及系统、存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101600238A (zh) * 2008-06-06 2009-12-09 三星电子株式会社 寻找目标核心网络节点的方法
CN102076054A (zh) * 2011-02-18 2011-05-25 电信科学技术研究院 直接转发隧道的建立及使用方法、系统和设备
CN105848222B (zh) * 2015-01-16 2021-05-28 北京三星通信技术研究有限公司 用于切换的方法和基站设备
EP4114065A1 (en) * 2017-01-09 2023-01-04 LG Electronics, Inc. Method for interworking between networks in wireless communication system and apparatus therefor
CN108811016B (zh) * 2017-05-05 2022-02-25 北京三星通信技术研究有限公司 一种支持切换的方法
CN108934052B (zh) * 2017-05-25 2021-06-15 华为技术有限公司 接入网类型选择方法、设备及系统
EP3675557B1 (en) * 2017-09-28 2022-06-08 LG Electronics Inc. Method for transmitting and receiving signal related to handover from 5gs to eps in wireless communication system and device therefor
US20210410027A1 (en) * 2018-11-01 2021-12-30 Telefonaktiebolaget Lm Ericsson (Publ) Access node, user equipment and methods in a wireless communications network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282832A (zh) * 2017-01-06 2018-07-13 北京三星通信技术研究有限公司 无线接入网切换方法、基站和基站的通信方法
CN109151929A (zh) * 2017-06-19 2019-01-04 中兴通讯股份有限公司 网络系统的切换处理方法、装置及系统、存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MICHAEL, S. ET AL.: "Direct Forwarding Flag for Handover from EPS to 5GS", 3GPP TSG-SA WG2 MEETING #126, no. S2-181514, 2 March 2018 (2018-03-02), XP051408045, DOI: 20200307113452X *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113259769A (zh) * 2021-04-07 2021-08-13 苏州华兴源创科技股份有限公司 视频源切换方法、装置、电子设备及计算机可读存储介质

Also Published As

Publication number Publication date
EP3920585A4 (en) 2022-03-16
EP3920585A1 (en) 2021-12-08
KR102574671B1 (ko) 2023-09-04
CN111491340A (zh) 2020-08-04
EP3920585B1 (en) 2024-02-07
US20220141746A1 (en) 2022-05-05
CN111491340B (zh) 2021-11-02
KR20210118898A (ko) 2021-10-01

Similar Documents

Publication Publication Date Title
US11917450B2 (en) Data transmission method and data transmission apparatus
CN111436087B (zh) 一种pdu会话切换方法及其装置
US20200383035A1 (en) Communications method and apparatus
US10959133B2 (en) Method and device for processing quality of service parameter in handover scenario
JP6945658B2 (ja) データ中継方法、装置、ネットワーク機能エンティティおよびsmfエンティティ
US11357077B2 (en) Data forwarding method, apparatus, and system
WO2020156116A1 (zh) 上下文存储方法及装置
CN110351194B (zh) 一种组播组创建、组播组加入方法及装置
WO2020098334A1 (zh) 下行数据的乱序控制方法及装置
WO2020155906A1 (zh) 一种通信系统切换方法、网络侧设备、装置和介质
WO2020035056A1 (zh) 服务节点更新方法、终端设备和网络侧设备
WO2021226967A1 (zh) 切换的方法和设备
US20230362748A1 (en) Wireless communication method, communication apparatus, and communication system
JP7206390B2 (ja) データの送信方法およびデバイス
WO2022142373A1 (zh) 一种通信传输的方法、设备及系统
CN111194092B (zh) 一种数据传输的方法和设备
WO2023125723A1 (zh) 协作通信方法及装置、计算机可读存储介质
WO2023165292A1 (zh) 一种通信方法及装置
WO2022067795A1 (zh) 一种通信方法及装置
WO2023227090A1 (zh) 用于辅小区组的小区更新方法及装置、存储介质
WO2023274004A1 (zh) 信息传输方法、装置、网络设备和终端
CN118055457A (zh) 通信方法、计算机可读存储介质及通信装置
CN117678270A (zh) 感知服务的切换方法和装置、电子设备和存储介质
CN115913904A (zh) 基于流控制传输协议的数据通信方法、装置及设备
WO2019028920A1 (zh) 一种数据传输方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217026885

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019913349

Country of ref document: EP

Effective date: 20210830