WO2020155818A1 - 一种耦合光学天线的成像探测芯片及其制备方法 - Google Patents

一种耦合光学天线的成像探测芯片及其制备方法 Download PDF

Info

Publication number
WO2020155818A1
WO2020155818A1 PCT/CN2019/121169 CN2019121169W WO2020155818A1 WO 2020155818 A1 WO2020155818 A1 WO 2020155818A1 CN 2019121169 W CN2019121169 W CN 2019121169W WO 2020155818 A1 WO2020155818 A1 WO 2020155818A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical antenna
nano
antenna
photosensitive
detection chip
Prior art date
Application number
PCT/CN2019/121169
Other languages
English (en)
French (fr)
Inventor
张新宇
张汤安苏
Original Assignee
南京奥谱依电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910081938.3A external-priority patent/CN109781265B/zh
Priority claimed from CN201910082563.2A external-priority patent/CN109781250B/zh
Application filed by 南京奥谱依电子科技有限公司 filed Critical 南京奥谱依电子科技有限公司
Priority to US16/917,867 priority Critical patent/US11322537B2/en
Publication of WO2020155818A1 publication Critical patent/WO2020155818A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J11/00Measuring the characteristics of individual optical pulses or of optical pulse trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems

Definitions

  • the invention belongs to the technical field of optical imaging detection, and more specifically, relates to an imaging detection chip coupled with an optical antenna and a preparation method thereof.
  • the photosensitive imaging array as a photosensitive detector has been extremely widely used in various fields.
  • Common photosensitive imaging arrays include photon detectors and thermal detectors, and photon detectors include visible light detectors (commonly CMOS devices) and infrared detectors (commonly FPAs). Visible light detectors are mainly used in the civilian field, and the minimum detectable optical power has been as low as nanowatts; infrared detectors are mainly used in the military field, and their cost is relatively high; thermal detectors are based on micro heat absorption and photoelectric signal generation This heat detection mode works.
  • the existing photosensitive imaging array has some technical problems that cannot be ignored: first, the existing photosensitive imaging array has insufficient detection capabilities for weak optical signals with power in the picowatt level; second, the photon detector cannot simultaneously detect visible light And infrared light; third, although the thermal detector can detect visible light and infrared light at the same time, its detection sensitivity is at least an order of magnitude lower than that of the photon detector, and the detection speed is slow.
  • the present invention provides an imaging detection chip coupled with an optical antenna and a preparation method thereof. Its purpose is to solve the above technical problems existing in the existing photosensitive imaging array.
  • the detection chip has the advantages of high imaging light wave collection efficiency, and significantly improves the photoelectric sensitivity by integrating an optical antenna and a photosensitive array, and is suitable for visible light and infrared spectrum domains.
  • an imaging detection chip coupled with an optical antenna which includes an optical antenna and a photosensitive array arranged in parallel.
  • the optical antenna is composed of a plurality of antenna elements spaced apart and electrically connected.
  • the photosensitive array is an array structure composed of a plurality of photosensitive elements spaced apart from each other.
  • the array scales of the optical antenna and the photosensitive array are the same.
  • the antenna elements of the optical antenna and the photosensitive elements at corresponding positions in the photosensitive array are mutually in the vertical direction.
  • the antenna element of the optical antenna includes at least one nano-pointed cone whose top surface is electrically connected to each other.
  • the nano-pointed cone adopts a tapered structure with a curved top surface.
  • One end of the optical antenna and one end of the photosensitive array are respectively connected by metal wires Connect to external control signal.
  • the number of nano-tips in each antenna element is more than one, and these nano-tips are uniformly arranged.
  • the lower limit of the number of nano-tips must enable the photosensitive element to generate effective signal output
  • the upper limit of the number of nano-tips must be such that after all the nano-tips in a single antenna element are uniformly arranged, the antenna element’s
  • the overall size cannot be larger than the size of a single photosensitive element.
  • the cross-section of the top surface of the nano-tip cone is circular, elliptical, triangular, or polygonal.
  • the cross-section of the top surface of the nano-tipped cone is circular, its diameter is between 30 nanometers and 600 nanometers.
  • the distance between the tip portion of the nano cone and the top surface of the photosensitive array is between 10 nanometers and 60 nanometers.
  • the imaging detection chip is packaged inside the chip housing, and a light window is provided on one side of the chip housing close to the optical antenna for indicating that the side is provided with the optical antenna, and the other side of the chip housing adjacent to the light window An electronic interface is provided on the side for connecting the imaging detection chip to different optical path structures in a plug-in manner.
  • the photosensitive array adopts a photon detector, and when the imaging detection chip is used to simultaneously detect visible light and infrared light, the photosensitive array adopts a thermal detector.
  • a method for preparing the aforementioned imaging detection chip coupled with an optical antenna including:
  • the process of making an optical antenna includes the following steps:
  • the process of integrating optical antenna and photosensitive array includes the following steps:
  • the distance between the tip portion of the nano cone and the top surface of the photosensitive array is maintained between 10 nanometers and 60 nanometers.
  • the aforementioned imaging detection chip coupled with an optical antenna can achieve the following beneficial effects:
  • the present invention collects surface waves through the electromagnetic excitation of the resonant surface of the optical antenna, it can realize the amplifying collection of picowatt-level weak optical signals, and the detection sensitivity is high;
  • the optical antenna collects visible light and broad-spectrum infrared light, so the detection chip of the present invention can detect visible light and broad-spectrum infrared light at the same time, thereby realizing wide-spectrum detection;
  • the optical antenna collects visible light or infrared light
  • the detection chip of the present invention can detect visible light or infrared light with a fast response speed.
  • the present invention realizes the electronic control adjustment of the electronic distribution density of the "cruising state" on the surface of the optical antenna through the coupling correlation between the surface electromagnetic wave and the surface electron density wave of the optical antenna, thereby being able to adjust the nanofocus intensity of the surface electromagnetic wave;
  • the present invention collects oblique imaging beams through the high gain of the optical antenna, and on the premise that the noise level of the photosensitive structure is basically maintained, based on the light sensitivity at the tip of the optical antenna, the detection sensitivity of visible light and infrared light can be improved with high gain;
  • the present invention can adjust the effective signal output by the photosensitive element by adjusting the amplitude of the external control signal. On the other hand, it can change the closed and working state of the optical antenna by changing the polarity of the external control signal. Therefore, the present invention has intelligent features;
  • the present invention adopts an optical antenna that can be precisely driven and controlled electrically, which has extremely high stability of structure, electrical and electro-optical parameters, the present invention has the characteristics of high control accuracy;
  • the main body of the present invention is an optical antenna and a photosensitive array packaged in a chip housing, through the provided electronic interface, it is convenient to plug in the optical path, and it is easy to match and couple with the conventional optical, photoelectric and mechanical structure.
  • an imaging detection chip coupled with an optical antenna which includes an optical antenna, a fluorescent film layer, and a photosensitive array arranged in parallel.
  • the optical antenna is composed of a plurality of antenna elements spaced apart and electrically connected.
  • the fluorescent film layer is an array structure composed of a plurality of spaced apart and electrically connected fluorescent film elements
  • the photosensitive array is an array structure composed of a plurality of spaced apart photosensitive elements, an optical antenna, a fluorescent film layer, and a photosensitive element The shape and scale of the array are the same.
  • the antenna element of the optical antenna, the fluorescent film element at the corresponding position in the fluorescent film layer, and the photosensitive element at the corresponding position in the photosensitive array are aligned with each other in the vertical direction.
  • the antenna element of the optical antenna includes At least one nano-pointed cone whose top surface is electrically connected to each other, the nano-pointed cone adopts a tapered structure, the top surface of which is a curved structure, the tip of the nano-pointed cone points to the fluorescent film element, and one end of the optical antenna and one end of the fluorescent film layer are respectively Connect to external control signal through metal connecting wire.
  • the number of nano-tips in each antenna element is more than one, and these nano-tips are uniformly arranged.
  • the lower limit of the number of nano-tips must enable the photosensitive element to generate effective signal output
  • the upper limit of the number of nano-tips must be such that after all the nano-tips in a single antenna element are uniformly arranged, the antenna element’s
  • the overall size cannot be larger than the size of a single photosensitive element.
  • the cross-section of the top surface of the nano-tip cone is circular, elliptical, triangular, or polygonal.
  • the cross-section of the top surface of the nano-tipped cone is circular, its diameter is between 30 nanometers and 600 nanometers.
  • the distance between the tip of the nano cone and the top surface of the fluorescent film layer is between 150 nanometers and 700 nanometers, and the distance between the bottom surface of the fluorescent film layer and the top surface of the photosensitive array is between 100 nanometers and 800 nanometers.
  • the interval between adjacent fluorescent film elements is between 50 and 500 nanometers.
  • the imaging detection chip is packaged inside the chip housing, and a light window is provided on one side of the chip housing close to the optical antenna for indicating that the side is provided with the optical antenna, and the other side of the chip housing adjacent to the light window An electronic interface is provided on the side for connecting the imaging detection chip to different optical path structures in a plug-in manner.
  • a method for preparing the aforementioned imaging detection chip coupled with an optical antenna including:
  • the process of making an optical antenna includes the following steps:
  • the process of making a fluorescent film includes the following steps:
  • optical antenna, fluorescent film and photosensitive array includes the following steps:
  • UV glue to seal the upper and lower sides and the left and right sides of the optical antenna, fluorescent film and photosensitive array and dry them, and connect the metal connecting wires from the optical antenna and fluorescent film to the pins inside the chip housing respectively on.
  • the distance between the tip portion of the nano cone and the top surface of the fluorescent film layer is maintained between 150 nanometers and 700 nanometers, so that the distance between the fluorescent film layer and the photosensitive array is maintained Between 100 and 800 nanometers.
  • the aforementioned imaging detection chip coupled with an optical antenna can achieve the following beneficial effects:
  • the detection chip of the present invention can simultaneously detect visible light and broad-spectrum infrared light, thereby realizing wide-spectrum detection;
  • the present invention collects surface waves through the electromagnetic excitation of the resonant surface of the optical antenna, it can realize the amplified collection of picowatt-level weak optical signals, and the detection sensitivity is high;
  • the present invention realizes fast response and spectrum conversion by adopting the method of electronically excited fluorescence
  • the present invention realizes the electronic control and adjustment of the electronic distribution density of the "traveling state" on the surface of the optical antenna through the coupling correlation between the surface electromagnetic wave and the surface electron density wave of the optical antenna, thereby being able to adjust the nanofocus intensity of the surface electromagnetic wave.
  • the present invention collects oblique imaging beams through the high gain of the optical antenna. Under the premise that the noise level of the photosensitive structure is basically maintained, based on the strong fluorescence excitation and photosensitivity of the electrons emitted from the tip of the optical antenna, the visible light and infrared are improved with high gain. Light detection sensitivity.
  • the present invention can adjust the effective signal output by the photosensitive element by adjusting the amplitude of the external control signal. On the other hand, it can change the closed and working state of the optical antenna by changing the polarity of the external control signal. Therefore, the present invention has intelligent features.
  • the present invention adopts an optical antenna that can be precisely driven and controlled electrically, it has extremely high structure, electrical and electro-optical parameter stability, so the present invention has the characteristics of high control accuracy.
  • the main body of the present invention is an optical antenna, a fluorescent film layer and a photosensitive array packaged in a chip housing, it is convenient to plug in the optical path through the provided electronic interface, and it is easy to match and couple with the conventional optical opto-mechanical structure.
  • Figure 1 is a schematic diagram of the configuration of an imaging detection chip coupled with an optical antenna in the optical path of the present invention
  • FIG. 2 is a detailed schematic diagram of an imaging detection chip coupled with an optical antenna according to an embodiment of the present invention
  • FIG. 3 is a detailed schematic diagram of an imaging detection chip coupled with an optical antenna according to another implementation of the present invention.
  • FIG. 4 is a schematic diagram of the optical antenna in the imaging detection chip coupled with the optical antenna of the present invention.
  • Fig. 5 is a schematic diagram of an antenna element including four nanometer cones in the optical antenna of the present invention.
  • Fig. 6 (a) to (e) are schematic diagrams of different structures adopted by the nano-tap in the optical antenna of the present invention.
  • FIG. 7 is a schematic diagram of the packaging structure of the imaging detection chip coupled with the optical antenna of the present invention.
  • FIG. 8 is a schematic diagram of the configuration of the photosensitive imaging detection chip based on the cutting-edge electron fluorescence excitation in the optical path of the present invention
  • FIG. 9 is a detailed schematic diagram of a photosensitive imaging detection chip based on cutting-edge electron fluorescence excitation according to an embodiment of the present invention.
  • FIG. 10 is a detailed schematic diagram of a photosensitive imaging detection chip based on cutting-edge electron fluorescence excitation according to another implementation of the present invention.
  • FIG. 11 is a schematic diagram of the optical antenna in the photosensitive imaging detection chip based on cutting-edge electron fluorescence excitation of the present invention.
  • Fig. 12 is a schematic diagram of an antenna element including four nanometer cones in the optical antenna of the present invention.
  • FIG. 14 is a schematic diagram of the package structure of the photosensitive imaging detection chip based on the cutting-edge electron fluorescence excitation of the present invention.
  • 1-optical antenna 2-fluorescent film layer, 3-photosensitive array, 5-light window, 6-electronic interface.
  • the effect of resonant surface waves can be generated by the radiation excitation of visible light or infrared light; surface waves composed of surface electromagnetic waves and surface electron density waves Or surface plasmons, the effective transport distance on the surface of functional materials can reach up to tens of micrometers.
  • the resonant accumulation of light fields on the surface of special structures can achieve light intensity jumps of more than five orders of magnitude.
  • the surface electron distribution density presents a wide range of changes.
  • by applying an external bias electric or magnetic field the surface electron distribution density can be finely adjusted.
  • the invention aims to greatly improve the photoelectric sensitivity of low-cost visible light detectors, expand the light intensity response range to strong or weak optical signals, reduce the size of photosensitive elements, expand the scale of arrays, and improve spatial resolution.
  • the present invention provides an imaging detection chip coupled with an optical antenna, which focuses the imaging light waves through the resonance of the optical antenna, compresses surface "touring state” electrons in the tip part of the nano cone with high density, thereby significantly improving the photoelectric sensitivity.
  • Figure 1 shows a schematic diagram of the configuration of the imaging detection chip coupled with the optical antenna of the present invention in the optical path. It can be seen that the weak optical signal of the target passes through the imaging optical system (which is usually a lens) and then becomes a tilted imaging beam and enters the imaging detection chip. in.
  • the imaging optical system which is usually a lens
  • an imaging detection chip coupled with an optical antenna which includes an optical antenna 1 and a photosensitive array 2 arranged in parallel.
  • the optical antenna 1 is composed of a plurality of antenna elements (Antenna cell) that are spaced apart and electrically connected to each other. ).
  • the photosensitive array 2 is an array structure composed of a plurality of photosensitive elements spaced apart and electrically connected.
  • the shapes of the optical antenna 1 and the photosensitive array 2 are the same.
  • the array size of the two arrays that is, the array included in the array
  • the number of elements is exactly the same, and the antenna elements of the optical antenna 1 and the photosensitive elements at the corresponding positions in the photosensitive array 2 are aligned with each other in the vertical direction.
  • One end of the optical antenna 1 and one end of the photosensitive array 2 are respectively connected to an external control signal Vs through metal connecting wires.
  • the photosensitive array 2 When the present invention is used to detect one of visible light or infrared light, the photosensitive array 2 uses a photon detector, and when the present invention is used to detect visible light and infrared light at the same time, the photosensitive array 2 uses a thermal detector.
  • the optical antenna By setting the optical antenna, it has extremely high stability of structure, electrical and electro-optical parameters, so the present invention has the characteristics of high control accuracy.
  • the interval between adjacent photosensitive elements is between 50 and 500 nanometers.
  • the antenna element of the optical antenna 1 includes at least one nano-tap with top surfaces electrically connected to each other.
  • the nano-tap adopts a tapered structure, and its top surface is a curved structure.
  • the cross section of the curved structure may be circular (as shown in FIG. 6( a)), ellipse, triangle (shown in Figure 6(b)), polygon (shown in Figure 6(c) to (e)).
  • FIG 4 shows the nano-tip included in the optical antenna of the present invention.
  • the tops of the nano-tips are electrically connected to each other through electrical connection lines.
  • the top of the nano-tips is rectangular, but it should be understood that it is only for The purpose of illustration is not to limit the shape of the tip of the nano-cone of the present invention.
  • the distance between the tip portion of the nano cone and the top surface of the photosensitive array is between 10 nanometers and 60 nanometers.
  • the purpose of adopting the tapered structure is that after the incident light beam reaches the antenna element, the excited surface waveguide is directed to the tip of the tapered structure, and resonantly superimposed at the tip, thereby achieving nanofocusing.
  • the antenna element needs to include more than one nano-tip cone, and these nano-tip cones are uniformly arranged ( For example, in equilateral triangles, rectangles, regular polygons, etc.), and the specific number of nano cones at this time is determined by the following two constraints:
  • the upper limit of the number of nano-tips must be such that after all the nano-tips in a single antenna element are uniformly arranged, the overall size of the antenna element cannot be greater than the size of a single photosensitive element.
  • Fig. 5 shows an antenna element including four nano-tap in a uniform arrangement (that is, rectangular).
  • the top of the nano-pointed cone is rectangular, the distance D b between the two adjacent nano-pointed cones in the horizontal direction and the sum of the length b of the two nano-pointed cones (ie D b +2b), and the two adjacent in the vertical direction the distance between nanometers D a cone with a cone height of two nanometers sum (i.e., D a + 2a), can not exceed the corresponding dimensions of the photosensitive element.
  • one antenna element includes two nano-tips. It should be understood that this is only for illustrative purposes and does not limit the number of nano-tips in the present invention.
  • an antenna element only includes a nanometer tip.
  • the imaging detection chip of the coupled optical antenna of the present invention can be used for other optical signals except for weak optical signals (that is, the power of optical signals is picowatts). Signal detection.
  • the target weak light wave signal (which can be visible light or infrared light) passes through the imaging optical system of Fig. 1, and then becomes a tilted imaging beam. When it is projected obliquely to the surface of the antenna element of the optical antenna, it is excited to produce surface waves. The antenna element is guided to the tip of the nano-cone, and nano-focusing is achieved through resonance superposition.
  • the external control signal when the photosensitive array in Figure 2 and Figure 3 is connected to the positive voltage and the upper side is grounded), the electron density wave on the surface of the optical antenna can be adjusted to adjust the nanofocus light wave; when the external control signal is reversed ( That is, when the polarity is reversed, the optical antenna stops working because the surface wave cannot be excited at this time.
  • the detection chip of the present invention can simultaneously detect visible light and broad-spectrum infrared light, thereby realizing wide-spectrum detection.
  • the present invention collects surface waves through the electromagnetic excitation of the resonant surface of the optical antenna, it is possible to realize the amplifying collection of the picowatt-level weak optical signal, and the detection sensitivity is high.
  • the present invention realizes the electronic control adjustment of the electron distribution density of the "cruising state" on the surface of the optical antenna through the coupling correlation between the surface electromagnetic wave and the surface electron density wave of the optical antenna, and can further adjust the nanofocus intensity of the surface electromagnetic wave.
  • the present invention collects oblique imaging beams through the high gain of the optical antenna, and on the premise that the noise level of the photosensitive structure is basically maintained, based on the light sensitivity at the tip of the optical antenna, the detection sensitivity of visible light and infrared light can be improved with high gain.
  • the present invention can adjust the effective signal output by the photosensitive element by adjusting the amplitude of the external control signal, and on the other hand, it can change the closed and working state of the optical antenna by changing the polarity of the external control signal. Therefore, the present invention has intelligent features.
  • Figure 7 shows a schematic diagram of the packaging of the imaging detection chip coupled to the optical antenna of the present invention. It can be seen that the entire imaging detection chip is packaged inside the chip housing.
  • a light window 4 is provided on one side of the chip housing close to the optical antenna 1 for use.
  • the indicating side is provided with an optical antenna 1, and the other side of the chip housing adjacent to the light window 4 is provided with an electronic interface 5 for connecting the imaging detection chip of the present invention to different Light path structure.
  • the present invention is convenient to connect and plug in the optical path, and it is easy to match and couple with the conventional optical, photoelectric and mechanical structure.
  • a method for manufacturing the above-mentioned imaging detection chip coupled with an optical antenna which includes two processes of manufacturing an optical antenna and integrating an optical antenna and a photosensitive array, wherein:
  • the process of making an optical antenna includes the following steps:
  • Electroplating metal such as typical copper or aluminum
  • the process of integrating optical antenna and photosensitive array includes the following steps:
  • the effect of resonant surface waves can be generated by the radiation excitation of visible light or infrared light; surface waves composed of surface electromagnetic waves and surface electron density waves Or surface plasmons, the effective transport distance on the surface of functional materials can reach up to tens of micrometers.
  • the resonant accumulation of light fields on the surface of special structures can achieve light intensity jumps of more than five orders of magnitude.
  • the surface electron distribution density presents a wide range of changes.
  • the present invention also provides an imaging detection chip based on cutting-edge electron fluorescence excitation, which focuses the imaging light waves through the resonance of the optical antenna, compresses the surface "traveling state” electrons at the tip of the nano cone at a high density, and passes from The tip part emits electrons to the fluorescent film layer to excite fluorescence to perform photoelectric conversion.
  • Figure 8 shows the configuration diagram of the imaging detection chip based on the cutting-edge electronic fluorescence excitation of the present invention in the optical path. It can be seen that the weak optical signal of the target passes through the imaging optical system (which is usually a lens) and becomes a tilted imaging beam that enters the imaging Probe in the chip.
  • the imaging optical system which is usually a lens
  • an imaging detection chip based on cutting-edge electron fluorescence excitation which includes an optical antenna 1, a fluorescent film layer 2, and a photosensitive array 3 arranged in parallel.
  • the fluorescent film layer 2 is an array structure composed of a plurality of spaced apart and electrically connected fluorescent film elements
  • the photosensitive array 3 is an array composed of a plurality of spaced apart photosensitive cells
  • the structure, the shape of the optical antenna 1, the fluorescent film layer 2, and the photosensitive array 3 are the same, the dimensions of the fluorescent film layer 2 and the photosensitive array 3 are exactly the same, and the array scales of the three (that is, the number of array elements included in the array) are exactly the same
  • the antenna element of the optical antenna 1, the fluorescent film element at the corresponding position in the fluorescent film layer 2, and the photosensitive element at the corresponding position in the photosensitive array 3 are aligned with each other in the vertical direction.
  • the optical antenna By setting the optical antenna, it has extremely high structure, electrical and electro-optical parameter stability, so the present invention has the characteristics of high control accuracy.
  • the interval between adjacent fluorescent film elements is between 50 and 500 nanometers.
  • the antenna element of the optical antenna 1 includes at least one nano-pointed cone whose top surface is electrically connected to each other.
  • the nano-pointed cone adopts a tapered structure.
  • the top surface of the nano-pointed cone is a curved structure.
  • the cross-section can be circular (as shown in Figure 13 (a)), ellipse, triangle (as shown in Figure 13 (b)), polygonal (as shown in Figure 13 (c) to (e)).
  • Figure 11 shows the nano cones included in the optical antenna of the present invention.
  • the tops of the nano cones are electrically connected to each other through electrical connection lines.
  • the top of the nano cones is circular, but it should be understood that it is only For illustrative purposes, it does not constitute a limitation on the shape of the tip of the nano-cone of the present invention.
  • the distance between the tip of the nano cone and the top surface of the fluorescent film layer is between 150 nanometers and 700 nanometers, and the distance between the bottom surface of the fluorescent film layer and the top surface of the photosensitive array is between 100 nanometers and 800 nanometers.
  • the purpose of adopting the tapered structure is that after the incident light beam reaches the antenna element, the excited surface waveguide is directed to the tip of the tapered structure, and resonantly superimposed at the tip, thereby achieving nanofocusing.
  • the antenna element needs to include more than one nano-tip cone, and these nano-tip cones are uniform Arrangement (for example, equilateral triangle, rectangle, regular polygon, etc.), and the specific number of nano-tip cones at this time is determined by the following two constraints:
  • the upper limit of the number of nano-tips must be such that after all the nano-tips in a single antenna element are uniformly arranged, the overall size of the antenna element cannot be greater than the size of a single photosensitive element.
  • Fig. 12 shows an antenna element including four nano-tap in a uniform arrangement (that is, in a rectangular manner).
  • the top of the nano-pointed cone is round, and its diameter is between 30 nanometers and 600 nanometers.
  • the distance D b between the top centers of two adjacent nano-pointed cones in the horizontal direction and two nanometers that are adjacent in the vertical direction The distance D a between the top centers of the pointed cones cannot exceed the size of the corresponding photosensitive element.
  • one antenna element includes two nano-tips. It should be understood that this is only for illustrative purposes and does not limit the number of nano-tips in the present invention.
  • an antenna element only includes a nano-tip cone.
  • the imaging detection chip based on the cutting-edge electron fluorescence excitation of the present invention can be used for other than weak optical signals (that is, the power of optical signals is picowatts). Detection of other optical signals.
  • the weak optical signal of the target (which can be visible light or infrared light) passes through the imaging optical system of Fig. 8 and becomes an oblique imaging beam.
  • it is projected obliquely to the surface of the antenna element of the optical antenna, it is excited to generate a surface wave, which is The antenna element is guided to the tip of the nano-cone, and nano-focusing is achieved through resonance superposition.
  • the external control signal when the fluorescent film layer in Fig. 9 and Fig. 10 is connected to a positive voltage and the upper side is grounded), electrons overflow from the tip of the nano cone and shoot toward the fluorescent film element, and emit visible light after hitting the fluorescent film element.
  • the fluorescent film element After the visible light emitted from the fluorescent film element irradiates each photosensitive element in the photosensitive array, it outputs an effective photoelectric signal; when the external control signal is reversed (that is, the polarity is reversed), because the surface wave cannot be excited at this time, the optical antenna stop working.
  • the function of the fluorescent film element is to emit visible light (including near-infrared light) on the one hand, and to realize the spectrum conversion from infrared light to visible light on the other hand.
  • the detection chip of the present invention can simultaneously detect visible light and broad-spectrum infrared light, thereby realizing wide-spectrum detection.
  • the present invention collects surface waves through the electromagnetic excitation of the resonant surface of the optical antenna, it is possible to realize the amplifying collection of the picowatt-level weak optical signal, and the detection sensitivity is high.
  • the present invention realizes fast response and spectrum conversion by adopting the method of electronically excited fluorescence.
  • the present invention realizes the electronic control adjustment of the electron distribution density of the "cruising state" on the surface of the optical antenna through the coupling correlation between the surface electromagnetic wave and the surface electron density wave of the optical antenna, and can further adjust the nanofocus intensity of the surface electromagnetic wave.
  • the present invention collects oblique imaging beams through the high gain of the optical antenna, and on the premise of basically maintaining the noise level of the photosensitive structure, based on the strong fluorescence excitation and photosensitivity of the electrons emitted from the tip of the optical antenna, thereby improving the visible light and The detection sensitivity of infrared light.
  • the present invention can adjust the effective signal output by the photosensitive element by adjusting the amplitude of the external control signal, and on the other hand, it can change the closed and working state of the optical antenna by changing the polarity of the external control signal. Therefore, the present invention has intelligent features.
  • Fig. 14 shows the packaging schematic diagram of the imaging detection chip based on cutting-edge electron fluorescence excitation of the present invention. It can be seen that the entire imaging detection chip is packaged inside the chip housing, and a light window 5 is provided on one side of the chip housing close to the optical antenna 1. It is used to indicate that the side is provided with an optical antenna 1, and the other side of the chip housing adjacent to the light window 5 is provided with an electronic interface 6 for plugging in the imaging detection chip of the present invention Different light path structures.
  • the present invention is convenient to connect and plug in the optical path, and it is easy to match and couple with the conventional optical, photoelectric and mechanical structure.
  • a method for preparing the above-mentioned imaging detection chip based on cutting-edge electron fluorescence excitation which includes three processes: manufacturing an optical antenna, manufacturing a fluorescent film layer, and integrating an optical antenna, a fluorescent film layer and a photosensitive array. :
  • the process of making an optical antenna includes the following steps:
  • the metal-plated side of the quartz or zinc selenide substrate is subjected to molecular bonding treatment with another quartz or zinc selenide substrate, and the processed substrate is developed to remove the metal film.
  • the photoresist and its supporting substrate are combined to obtain an optical antenna, and the optical antenna is cleaned.
  • the process of making a fluorescent film includes the following steps:
  • optical antenna The process of integrating optical antenna, fluorescent film layer and photosensitive array includes the following steps:
  • UV glue to seal the upper and lower sides and the left and right sides of the optical antenna, fluorescent film and photosensitive array and dry them, and connect the metal connecting wires from the optical antenna and fluorescent film to the pins inside the chip housing respectively on.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种耦合光学天线的成像探测芯片及其制备方法,成像探测芯片包括平行设置的光学天线(1)和光敏阵列(2),光学天线(1)是由多个彼此间隔且电连接的天线元组成的阵列结构,光敏阵列(2)是由多个彼此间隔且电连接的光敏元组成的阵列结构,光学天线(1)和光敏阵列(2)的阵列规模相同,光学天线(1)的天线元、以及光敏阵列(2)中对应位置处的光敏元在垂直方向上相互对齐,光学天线(1)的天线元包括至少一个顶面彼此电连接的纳米尖锥。成像探测芯片的制备方法包括制作光学天线(1)的过程和集成光学天线(1)与光敏阵列(2)的过程。成像探测芯片还可以包括荧光膜层(2)阵列结构。成像探测芯片具有成像光波收集效能高、光电灵敏度高的优点,且适用于可见光和红外谱域。

Description

一种耦合光学天线的成像探测芯片及其制备方法 技术领域
本发明属于光学成像探测技术领域,更具体地,涉及一种耦合光学天线的成像探测芯片及其制备方法。
背景技术
目前,光敏成像阵列作为光敏探测器,已经在各个领域得到了极为广泛的应用。常见的光敏成像阵列包括光子探测器和热探测器两种,而光子探测器又包括可见光探测器(常见是CMOS器件)和红外探测器(常见是FPAs)两种类型。可见光探测器主要用在民用领域,其可探测的最小光功率也已低至纳瓦级;红外探测器主要用在军用领域,其成本相对高昂;热探测器是基于微热吸收与光电信号生成这一热探测模式工作。
然而,现有的光敏成像阵列存在一些不可忽视的技术问题:第一、现有的光敏成像阵列针对功率在皮瓦级功率的弱光学信号探测能力不足;第二、光子探测器无法同时探测可见光和红外光;第三、热探测器虽然能同时探测可见光和红外光,但其探测灵敏度比光子探测器低至少一个量级,且探测速度慢。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种耦合光学天线的成像探测芯片及其制备方法,其目的在于,解决现有光敏成像阵列中存在的上述技术问题,本发明的成像探测芯片具有成像光波收集效能高的优点,并通过集成光学天线与光敏阵列显著提高光电灵敏度,且适用于可见光和红外谱域。
为实现上述目的,按照本发明的一个方面,提供了一种耦合光学天线 的成像探测芯片,包括平行设置的光学天线和光敏阵列,光学天线是由多个彼此间隔且电连接的天线元组成的阵列结构,光敏阵列是由多个彼此间隔的光敏元组成的阵列结构,光学天线和光敏阵列的阵列规模相同,光学天线的天线元、以及光敏阵列中对应位置处的光敏元在垂直方向上相互对齐,光学天线的天线元包括至少一个顶面彼此电连接的纳米尖锥,该纳米尖锥采用锥形结构,其顶面为曲面结构,光学天线的一端与光敏阵列的一端分别通过金属连接线连接到外部控制信号。
优选地,当所述成像探测芯片被用于探测弱光学信号时,每个天线元中纳米尖锥的数量是大于1个,且这些纳米尖锥为均匀排列。
优选地,该纳米尖锥的数量下限值必须使得光敏元能够产生有效的信号输出,纳米尖锥的数量上限值必须使得单个天线元中的所有纳米尖锥均匀排列后,该天线元的总体尺寸不能大于单个光敏元的尺寸。
优选地,纳米尖锥顶面的横截面是圆形、椭圆形、三角形、或多边形。
优选地,当纳米尖锥顶面的横截面是圆形时,其直径为30纳米到600纳米之间。
优选地,纳米尖锥的尖端部分和光敏阵列顶面之间的距离是10纳米到60纳米之间。
优选地,所述成像探测芯片被封装在芯片外壳内部,芯片外壳靠近光学天线的一个侧面上设置有光窗,用于指示该侧设置有光学天线,芯片外壳上与光窗相邻的另一个侧面上设置有电子学接口,用于以插接的方式将所述成像探测芯片接入不同的光路结构。
优选地,当所述成像探测芯片用于探测可见光或红外光之一时,光敏阵列采用光子探测器,当所述成像探测芯片用于同时探测可见光和红外光时,光敏阵列采用热探测器。
按照本发明的另一方面,提供了一种上述耦合光学天线的成像探测芯片的制备方法,包括:
制作光学天线过程,其包括以下步骤:
(1)依次采用丙酮、酒精和去离子水溶剂对硅基片进行超声清洗并烘干,在烘干后的硅基片的一侧端面上涂覆光刻胶并烘干;
(2)使用聚焦电子束对硅基片上所涂敷的光刻胶进行光刻处理,对光刻处理后的硅基片进行显影处理,并用去离子水冲洗并烘干;
(3)将经过显影处理的硅基片在真空环境下加热至120至150℃并保持10分钟以上,以形成圆形拱面、椭圆形拱面、三角形拱面、或多边形拱面的阵列化光刻胶结构;
(4)用平行离子束倾斜刻蚀经过热处理的阵列化光刻胶结构,以得到纳米尖锥图形,并对其进行清洁处理。
(5)依次采用丙酮、酒精和去离子水溶剂对石英或硒化锌基片进行超声清洗并烘干;
(6)在经过清洁处理的石英或硒化锌基片的一侧端面上涂覆光刻胶并烘干;
(7)将所制备的纳米尖锥图形覆盖和压制在石英或硒化锌基片上涂敷有光刻胶的端面上,从而完成纳米尖锥图形转印;
(8)在石英或硒化锌基片印有纳米尖锥图形的一侧电镀金属,并对其进行进一步的清洁处理;
(9)依次采用丙酮、酒精和去离子水溶剂对石英或硒化锌基片进行超声清洗并烘干;
(10)将石英或硒化锌基片上镀有金属的一侧与另一片石英或硒化锌基片执行分子键合处理,并对处理后的基片进行显影处理,以去除与金属膜贴合的光刻胶及其支撑基片,从而得到光学天线,对该光学天线进行清洁处理;
集成光学天线与光敏阵列的过程包括以下步骤:
(1)分别从光学天线和光敏阵列的同一侧引出金属连接线;
(2)将光学天线中的每个纳米尖锥与光敏阵列中对应位置的光敏元对准;
(3)将光学天线中的天线元与光敏阵列中对应位置的光敏元对准;
(4)用UV胶封住光学天线和光敏阵列的上下和左右两侧并烘干,并将从光学天线和光敏阵列引出的金属连接线分别接入芯片外壳内部的管脚上。
优选地,对准过程中,纳米尖锥的尖端部分和光敏阵列顶面之间的距离被保持在10纳米到60纳米之间。
总体而言,上述耦合光学天线的成像探测芯片能够取得下列有益效果:
1、由于本发明通过光学天线的共振性表面电磁激励收集表面波,从而能够实现皮瓦级弱光学信号的放大性收集,探测灵敏度高;
2、当本发明的光敏阵列采用热探测器时,光学天线收集可见光和宽谱红外光,因此本发明的探测芯片可以同时探测可见光和宽谱红外光,从而实现了宽谱域探测;
3、当本发明的光敏阵列采用光子型探测阵列时,光学天线收集可见光或红外光,本发明的探测芯片能够以快的响应速度探测可见光或红外光。
4、本发明通过光学天线表面电磁波和表面电子密度波的耦合关联性,实现对其表面“巡游态”电子分布密度的电控调节,进而能够调节其表面电磁波的纳聚焦强度;
5、本发明通过光学天线高增益收集倾斜成像波束,在基本保持光敏结构噪声水平这一前提下,基于光学天线的尖端部分处的光敏,能够高增益地提高可见光和红外光的探测灵敏度;
6、本发明一方面可以通过调节外部控制信号的幅度,实现对光敏元输出的有效信号的调节,另一方面,可以通过改变外部控制信号的极性,实现改变光学天线的关闭和工作状态,因此本发明具有智能化特征;
7、由于本发明采用可精密电驱控的光学天线,其具有极高的结构、电 学以及电光参数的稳定性,因此本发明具有控制精度高的特点;
8、由于本发明的主体为封装在芯片外壳内的光学天线及光敏阵列,通过设置的电子学接口,其在光路中接插方便,易与常规光学光电机械结构匹配耦合。
按照本发明的另一方面,提供了一种耦合光学天线的成像探测芯片,包括平行设置的光学天线、荧光膜层、以及光敏阵列,光学天线是由多个彼此间隔且电连接的天线元组成的阵列结构,荧光膜层是由多个彼此间隔且电连接的荧光膜元组成的阵列结构,光敏阵列是由多个彼此间隔的光敏元组成的阵列结构,光学天线、荧光膜层、以及光敏阵列的形状和阵列规模均相同,光学天线的天线元、荧光膜层中对应位置处的荧光膜元、以及光敏阵列中对应位置处的光敏元在垂直方向上相互对齐,光学天线的天线元包括至少一个顶面彼此电连接的纳米尖锥,该纳米尖锥采用锥形结构,其顶面为曲面结构,纳米尖锥的尖端部位指向荧光膜元,光学天线的一端与荧光膜层的一端分别通过金属连接线连接到外部控制信号。
优选地,当所述成像探测芯片被用于探测弱光学信号时,每个天线元中纳米尖锥的数量是大于1个,且这些纳米尖锥为均匀排列。
优选地,该纳米尖锥的数量下限值必须使得光敏元能够产生有效的信号输出,纳米尖锥的数量上限值必须使得单个天线元中的所有纳米尖锥均匀排列后,该天线元的总体尺寸不能大于单个光敏元的尺寸。
优选地,纳米尖锥顶面的横截面是圆形、椭圆形、三角形、或多边形。
优选地,当纳米尖锥顶面的横截面是圆形时,其直径为30纳米到600纳米之间。
优选地,纳米尖锥的尖端部位和荧光膜层的顶面之间的距离是150纳米到700纳米之间,荧光膜层的底面与光敏阵列顶面之间的距离是100纳米到800纳米之间,相邻荧光膜元之间的间隔为50到500纳米之间。
优选地,所述成像探测芯片被封装在芯片外壳内部,芯片外壳靠近光 学天线的一个侧面上设置有光窗,用于指示该侧设置有光学天线,芯片外壳上与光窗相邻的另一个侧面上设置有电子学接口,用于以插接的方式将所述成像探测芯片接入不同的光路结构。
按照本发明的另一方面,提供了一种上述耦合光学天线的成像探测芯片的制备方法,包括:
一、制作光学天线的过程,包括以下步骤:
(1)依次采用丙酮、酒精和去离子水溶剂对硅基片进行超声清洗并烘干;
(2)将聚焦电子束沿圆环形路径、或边缘矩形内圆环路径扫描刻蚀硅基片制成纳米尖锥图形,在基片表面移位并重复上述操作,从而获得硅基光学天线;
(3)依次采用丙酮、酒精和去离子水溶剂对石英或硒化锌基片进行超声清洗并烘干,并在烘干后的石英或硒化锌基片的一侧端面上涂覆光刻胶并烘干;
(4)将硅基光学天线上有纳锥尖图形的一侧压印在石英或硒化锌基片上涂敷有光刻胶的一侧,并在石英或硒化锌基片的该侧上电镀金属(如铜或铝),并对其进行清洁处理;
(5)依次采用丙酮、酒精和去离子水溶剂对石英或硒化锌基片进行超声清洗并烘干;
(6)将石英或硒化锌基片镀有金属的一侧与另一片石英或硒化锌基片进行分子键合处理,并对处理后的基片进行显影处理,以去除与金属膜贴合的光刻胶及其支撑基片,从而得到光学天线,对该光学天线进行清洁处理;
二、制作荧光膜层的过程,包括以下步骤:
(1)依次采用丙酮、酒精和去离子水溶剂对石英或硒化锌基片进行超声清洗并烘干;
(2)在石英或硒化锌基片的一侧端面上涂覆光刻胶,并烘干;
(3)将光刻版覆盖在石英或硒化锌基片涂覆有光刻胶的一侧进行光刻处理;
(4)对石英或硒化锌基片光刻处理后的一侧进行显影处理,并用去离子水冲洗并烘干;
(5)用平行离子束刻蚀石英或硒化锌基片上的光刻胶膜,以得到深度在100微米以上的网状栅格,并对其进行清洁处理;
(6)通过湿法涂敷工艺在石英或硒化锌基片上的网状栅格内填充厚度在5至100微米的荧光膜层,并对其进行烘干和清洁处理;
三、集成光学天线、荧光膜层与光敏阵列的过程,包括以下步骤:
(1)分别从光学天线和荧光膜层的同一侧引出金属连接线;
(2)将光学天线中的每个纳米尖锥与荧光膜层中对应位置的荧光膜元、以及光敏阵列中对应位置的光敏元对准;
(3)将光学天线中的天线元与荧光膜层中对应位置的荧光膜元、以及光敏阵列中对应位置的光敏元对准;
(4)用UV胶封住光学天线、荧光膜层和光敏阵列的上下和左右两侧并烘干,并将从光学天线和荧光膜层引出的金属连接线分别接入芯片外壳内部的管脚上。
优选地,在对准过程中,纳米尖锥的尖端部位和荧光膜层的顶面之间的距离被保持在150纳米到700纳米之间,使荧光膜层与光敏阵列之间的距离被保持在100至800纳米之间。
总体而言,上述耦合光学天线的成像探测芯片能够取得下列有益效果:
1、由于本发明采用了光学天线收集可见光和宽谱红外光,因此本发明的探测芯片可以同时探测可见光和宽谱红外光,从而实现了宽谱域探测;
2、由于本发明通过光学天线的共振性表面电磁激励收集表面波,从而能够实现皮瓦级弱光学信号的放大性收集,探测灵敏度高;
3、本发明通过采用电子激励荧光的方式,实现了快速响应和波谱转换;
4、本发明通过光学天线表面电磁波和表面电子密度波的耦合关联性,实现对其表面“巡游态”电子分布密度的电控调节,进而能够调节其表面电磁波的纳聚焦强度。
5、本发明通过光学天线高增益收集倾斜成像波束,在基本保持光敏结构噪声水平这一前提下,基于光学天线的尖端部位出射电子的较强荧光激励与光敏,从而高增益地提高可见光和红外光的探测灵敏度。
6、本发明一方面可以通过调节外部控制信号的幅度,实现对光敏元输出的有效信号的调节,另一方面,可以通过改变外部控制信号的极性,实现改变光学天线的关闭和工作状态,因此本发明具有智能化特征。
7、由于本发明采用可精密电驱控的光学天线,其具有极高的结构、电学以及电光参数的稳定性,因此本发明具有控制精度高的特点。
8、由于本发明的主体为封装在芯片外壳内的光学天线、荧光膜层及光敏阵列,通过设置的电子学接口,其在光路中接插方便,易与常规光学光电机械结构匹配耦合。
附图说明
图1是本发明耦合光学天线的成像探测芯片在光路中的配置示意图;
图2是根据本发明一种实施方式的耦合光学天线的成像探测芯片的详细示意图;
图3是根据本发明另一种实现方式的耦合光学天线的成像探测芯片的详细示意图;
图4是本发明耦合光学天线的成像探测芯片中光学天线的示意图;
图5是本发明光学天线中包括四个纳米尖锥的天线元的示意图;
图6(a)至(e)是本发明光学天线中纳米尖锥所采用的不同结构的示意图;
图7是本发明耦合光学天线的成像探测芯片的封装结构示意图;
图8是本发明基于尖端电子荧光激励的光敏成像探测芯片在光路中的配置示意图;
图9是根据本发明一种实施方式的基于尖端电子荧光激励的光敏成像探测芯片的详细示意图;
图10是根据本发明另一种实现方式的基于尖端电子荧光激励的光敏成像探测芯片的详细示意图;
图11是本发明基于尖端电子荧光激励的光敏成像探测芯片中光学天线的示意图;
图12是本发明光学天线中包括四个纳米尖锥的天线元的示意图;
图13(a)至(e)是本发明光学天线中纳米尖锥所采用的不同结构的示意图;
图14是本发明基于尖端电子荧光激励的光敏成像探测芯片的封装结构示意图。
在图1至图7中,相同的附图标记用来表示相同的元件或结构,其中:
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:
1-光学天线,2-光敏阵列,4-光窗,5-电子学接口;
在图8至图14中,相同的附图标记用来表示相同的元件或结构,其中:
1-光学天线,2-荧光膜层,3-光敏阵列,5-光窗,6-电子学接口。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
在多种功能材料(如常规金属或半导性锗硅等)表面,通过可见光或红外光的辐射激励,能够产生共振性表面波这一效应;由表面电磁波与表 面电子密度波构成的表面波或表面等离激元,在功能材料表面的有效输运距离最大可达到几十微米尺度,同时,在特殊结构表面所实现的光场共振性积聚能够实现超过五个量级以上的光强度跃变;与上述表面光强度显著变化相呼应的是,表面电子分布密度呈现大范围的变化,此时,通过施加外部偏置电场或磁场,能够实现表面电子分布密度的精细调变。本发明旨在大幅提高低成本的可见光探测器的光电灵敏度,扩展对强光学信号或弱光学信号的光强响应范围,缩小光敏元尺寸,扩大阵列规模,提高空间分辨率。
本发明提供了一种耦合光学天线的成像探测芯片,其通过光学天线的共振性聚焦成像光波,将表面“巡游态”电子高密度地压缩在纳米尖锥的尖端部分,从而显著提高光电灵敏度。
图1示出本发明耦合光学天线的成像探测芯片在光路中的配置示意图,可以看到目标弱光学信号经过成像光学系统(其通常就是透镜)后,变成倾斜的成像光束射入成像探测芯片中。
根据本发明的一个方面,提供了一种耦合光学天线的成像探测芯片,包括平行设置的光学天线1、以及光敏阵列2,光学天线1是由多个彼此间隔且电连接的天线元(Antenna cell)组成的阵列结构,光敏阵列2是由多个彼此间隔且电连接的光敏元组成的阵列结构,光学天线1、以及光敏阵列2的形状相同,二者的阵列规模(即阵列所包括的阵列元数量)完全一样,且光学天线1的天线元、以及光敏阵列2中对应位置处的光敏元在垂直方向上相互对齐。光学天线1的一端与光敏阵列2的一端分别通过金属连接线连接到外部控制信号Vs。
当本发明用于探测可见光或红外光之一时,光敏阵列2采用光子探测器,而当本发明用于同时探测可见光和红外光时,光敏阵列2采用热探测器。
通过设置光学天线,其具有极高的结构、电学以及电光参数的稳定性, 因此本发明具有控制精度高的特点。
相邻光敏元之间的间隔为50到500纳米之间。
光学天线1的天线元包括至少一个顶面彼此电连接的纳米尖锥,该纳米尖锥采用锥形结构,其顶面为曲面结构,该曲面结构的横截面可以是圆形(如图6(a)所示)、椭圆形、三角形(如图6(b)所示)、多边形(如图6(c)至(e)所示)。
图4示出本发明光学天线中所包括的纳米尖锥,纳米尖锥的顶部彼此通过电连接线实现电连接,在图中该纳米尖锥的顶部是矩形,但应该理解其仅仅是出于示意的目的,并不构成对本发明纳米尖锥顶部形状的限制。
纳米尖锥的尖端部分和光敏阵列顶面之间的距离(即近场间距)是10纳米到60纳米之间。
采用锥形结构的目的,是将入射光束到达天线元以后,所激励的表面波导向锥形结构的尖端,并在尖端处共振性叠加,从而实现纳聚焦。
当本发明耦合光学天线的成像探测芯片被用于弱光学信号(即光学信号的功率为皮瓦级)的探测时,此时天线元需要包括大于一个纳米尖锥,这些纳米尖锥均匀排列(例如以等边三角形、矩形、正多边形等方式),且此时该纳米尖锥的具体数量是由以下两个限制条件所决定:
(1)该纳米尖锥的数量下限值必须使得光敏元能够产生有效的信号输出;
(2)该纳米尖锥的数量上限值必须使得单个天线元中的所有纳米尖锥均匀排列后,该天线元的总体尺寸不能大于单个光敏元的尺寸。
在图5中示出包括四个均匀排布(即矩形方式)的纳米尖锥的天线元。该纳米尖锥的顶部是矩形,水平方向相邻的两个纳米尖锥之间的距离D b与两个纳米尖锥长度b之和(即D b+2b)、以及垂直方向相邻的两个纳米尖锥之间的距离D a与两个纳米尖锥高度a之和(即D a+2a),均不能超过其对应的光敏元的尺寸大小。
在图3中,可以看出一个天线元包括2个纳米尖锥,应该理解,其仅仅是出于示意的目的,并不对本发明纳米尖锥的数量构成限定。
图2中,可以看出一个天线元仅仅包括一个纳米尖锥,此时,本发明耦合光学天线的成像探测芯片可用于除弱光学信号(即光学信号的功率为皮瓦级)以外的其他光学信号的探测。
以下结合图2和图3解释本发明的工作原理:
目标弱光波信号(其可以是可见光或者红外光)在经过图1的成像光学系统后,变成倾斜成像光束,其倾斜地射向光学天线的天线元表面时,从而激励产生表面波,表面波被天线元导向纳米尖锥的尖端,通过共振叠加实现纳聚焦。通过调节外部控制信号(当图2和图3中的光敏阵列接正电压,上方接地时),能够调节光学天线表面的电子密度波,进而对纳聚焦光波进行调节;当外部控制信号反接(即极性反转)时,由于此时无法激励产生表面波,光学天线停止工作。
由于本发明采用了上述光学天线收集可见光和宽谱红外光,因此本发明的探测芯片可以同时探测可见光和宽谱红外光,从而实现了宽谱域探测。
进一步地,由于本发明通过光学天线的共振性表面电磁激励收集表面波,从而能够实现皮瓦级弱光学信号的放大性收集,探测灵敏度高。
进一步地,本发明通过光学天线表面电磁波和表面电子密度波的耦合关联性,实现对其表面“巡游态”电子分布密度的电控调节,进而能够调节其表面电磁波的纳聚焦强度。
进一步地,本发明通过光学天线高增益收集倾斜成像波束,在基本保持光敏结构噪声水平这一前提下,基于光学天线的尖端部分处的光敏,能够高增益地提高可见光和红外光的探测灵敏度。
进一步地,本发明一方面可以通过调节外部控制信号的幅度,实现对光敏元输出的有效信号的调节,另一方面,可以通过改变外部控制信号的极性,实现改变光学天线的关闭和工作状态,因此本发明具有智能化特征。
图7示出了本发明耦合光学天线的成像探测芯片的封装示意图,可以看到整个成像探测芯片被封装在芯片外壳内部,芯片外壳靠近光学天线1的一个侧面上设置有光窗4,其用于指示该侧是设置有光学天线1,芯片外壳上与光窗4相邻的另一个侧面上设置有电子学接口5,用于以插接的方式将本发明的成像探测芯片接入不同的光路结构。
通过设置电子学接口,本发明其在光路中接插方便,易与常规光学光电机械结构匹配耦合。
根据本发明的另一个方面,提供了上述耦合光学天线的成像探测芯片的制备方法,包括制作光学天线、以及集成光学天线与光敏阵列两个过程,其中:
制作光学天线过程包括以下步骤:
(1)依次采用丙酮、酒精和去离子水溶剂对硅基片进行超声清洗并烘干,在烘干后的硅基片的一侧端面上用匀胶机涂覆光刻胶,并烘干5至20分钟;
(2)使用聚焦电子束对硅基片上所涂敷的光刻胶进行光刻处理,对光刻处理后的硅基片进行显影处理,并用去离子水冲洗并烘干2至5分钟;
(3)将经过显影处理的硅基片在真空环境下加热至120至150℃并保持10分钟以上,以形成圆形拱面、椭圆形拱面、三角形拱面、或多边形拱面的阵列化光刻胶结构;
(4)用平行离子束倾斜刻蚀经过热处理的阵列化光刻胶结构,以得到纳米尖锥图形,并对其进行清洁处理。
(5)依次采用丙酮、酒精和去离子水溶剂对石英或硒化锌基片进行超声清洗并烘干;
(6)在经过清洁处理的石英或硒化锌基片的一侧端面上涂覆光刻胶,并烘干5至20分钟;
(7)将所制备的纳米尖锥图形覆盖和压制在石英或硒化锌基片上涂敷 有光刻胶的端面上,完成纳米尖锥图形转印;
(8)在石英或硒化锌基片印有纳米尖锥图形的一侧电镀金属(如典型的铜或铝),并对其进行进一步的清洁处理;
(9)依次采用丙酮、酒精和去离子水溶剂对石英或硒化锌基片进行超声清洗并烘干;
(10)将石英或硒化锌基片上镀有金属的一侧与另一片石英或硒化锌基片执行分子键合处理,并对处理后的基片进行显影处理,以去除与金属膜贴合的光刻胶及其支撑基片,从而得到光学天线,对该光学天线进行清洁处理;
集成光学天线与光敏阵列的过程包括以下步骤:
(1)分别从光学天线和光敏阵列的同一侧引出金属连接线;
(2)将光学天线中的每个纳米尖锥与光敏阵列中对应位置的光敏元对准,并使纳米尖锥的尖端部分和光敏阵列顶面之间的距离(即近场间距)为10纳米到60纳米之间;
(3)将光学天线中的天线元(由2个或2个以上纳米尖锥组成)与光敏阵列中对应位置的光敏元对准,并使纳米尖锥的尖端部分和光敏阵列顶面之间的距离(即近场间距)为10纳米到60纳米之间;
(4)用UV胶封住光学天线和光敏阵列的上下和左右两侧并烘干,并将从光学天线和光敏阵列引出的金属连接线分别接入芯片外壳内部的管脚上。
在多种功能材料(如常规金属或半导性锗硅等)表面,通过可见光或红外光的辐射激励,能够产生共振性表面波这一效应;由表面电磁波与表面电子密度波构成的表面波或表面等离激元,在功能材料表面的有效输运距离最大可达到几十微米尺度,同时,在特殊结构表面所实现的光场共振性积聚能够实现超过五个量级以上的光强度跃变;与上述表面光强度显著变化相呼应的是,表面电子分布密度呈现大范围的变化,此时,通过施加 外部偏置电场或磁场,能够实现表面电子分布密度的精细调变、以及表面电子的离体发射,当这些电子撞击荧光材料,激励产生较强的可见光谱域荧光,就能够实现入射光放大、以及红外至可见光间的频谱转换。同时,为了大幅提高低成本的可见光探测器的光电灵敏度,将红外光转换到可见光谱域执行光电探测,能够扩展对强光学信号或弱光学信号的光强响应范围,缩小光敏元尺寸,扩大阵列规模,提高空间分辨率。
本发明还提供了一种基于尖端电子荧光激励的成像探测芯片,其通过光学天线的共振性聚焦成像光波,将表面“巡游态”电子高密度地压缩在纳米尖锥的尖端部位,并通过从尖端部位发射电子到荧光膜层,激励荧光执行光电转换。
图8示出本发明基于尖端电子荧光激励的成像探测芯片在光路中的配置示意图,可以看到目标弱光学信号经过成像光学系统(其通常就是透镜)后,变成倾斜的成像光束射入成像探测芯片中。
根据本发明的一个方面,提供了一种基于尖端电子荧光激励的成像探测芯片,包括平行设置的光学天线1、荧光膜层2、以及光敏阵列3,光学天线1是由多个彼此间隔且电连接的天线元(Antenna cell)组成的阵列结构,荧光膜层2是由多个彼此间隔且电连接的荧光膜元组成的阵列结构,光敏阵列3是由多个彼此间隔的光敏元组成的阵列结构,光学天线1、荧光膜层2、以及光敏阵列3的形状相同,荧光膜层2和光敏阵列3的尺寸完全相同,三者的阵列规模(即阵列所包括的阵列元数量)完全一样,且光学天线1的天线元、荧光膜层2中对应位置处的荧光膜元、以及光敏阵列3中对应位置处的光敏元在垂直方向上相互对齐。光学天线1的一端与荧光膜层2的一端分别通过金属连接线连接到外部控制信号Vs。
通过设置光学天线,其具有极高的结构、电学以及电光参数的稳定性,因此本发明具有控制精度高的特点。
相邻荧光膜元之间的间隔为50到500纳米之间。
光学天线1的天线元包括至少一个顶面彼此电连接的纳米尖锥,该纳米尖锥采用锥形结构,其顶面为曲面结构,纳米尖锥的尖端部位指向荧光膜元,该曲面结构的横截面可以是圆形(如图13(a)所示)、椭圆形、三角形(如图13(b)所示)、多边形(如图13(c)至(e)所示)。
图11示出本发明光学天线中所包括的纳米尖锥,纳米尖锥的顶部彼此通过电连接线实现电连接,在图中该纳米尖锥的顶部是圆形,但应该理解其仅仅是出于示意的目的,并不构成对本发明纳米尖锥顶部形状的限制。
纳米尖锥的尖端部位和荧光膜层的顶面之间的距离是150纳米到700纳米之间,荧光膜层的底面与光敏阵列顶面之间的距离是100纳米到800纳米之间。
采用锥形结构的目的,是将入射光束到达天线元以后,所激励的表面波导向锥形结构的尖端,并在尖端处共振性叠加,从而实现纳聚焦。
当本发明基于尖端电子荧光激励的成像探测芯片被用于弱光学信号(即光学信号的功率为皮瓦级)的探测时,此时天线元需要包括大于一个纳米尖锥,这些纳米尖锥均匀排列(例如以等边三角形、矩形、正多边形等方式),且此时该纳米尖锥的具体数量是由以下两个限制条件所决定:
(1)该纳米尖锥的数量下限值必须使得光敏元能够产生有效的信号输出;
(2)该纳米尖锥的数量上限值必须使得单个天线元中的所有纳米尖锥均匀排列后,该天线元的总体尺寸不能大于单个光敏元的尺寸。
在图12中示出包括四个均匀排布(即矩形方式)的纳米尖锥的天线元。该纳米尖锥的顶部是圆形,其直径为30纳米到600纳米之间,水平方向相邻的两个纳米尖锥的顶部中心之间的距离D b、以及垂直方向相邻的两个纳米尖锥的顶部中心之间的距离D a大小,均不能超过其对应的光敏元的尺寸大小。
在图10中,可以看出一个天线元包括2个纳米尖锥,应该理解,其仅 仅是出于示意的目的,并不对本发明纳米尖锥的数量构成限定。
图9中,可以看出一个天线元仅仅包括一个纳米尖锥,此时,本发明基于尖端电子荧光激励的成像探测芯片可用于除弱光学信号(即光学信号的功率为皮瓦级)以外的其他光学信号的探测。
以下结合图9和图10解释本发明的工作原理:
目标弱光学信号(其可以是可见光或者红外光)在经过图8的成像光学系统后,变成倾斜成像光束,其倾斜地射向光学天线的天线元表面时,激励产生表面波,表面波被天线元导向纳米尖锥的尖端,通过共振叠加实现纳聚焦。通过调节外部控制信号(当图9和图10中的荧光膜层接正电压,上方接地时),电子从纳米尖锥的尖端溢出并射向荧光膜元,在撞击荧光膜元后发出可见光,从荧光膜元出射的可见光照射光敏阵列中的每个光敏元后,输出有效的光电信号;当外部控制信号反接(即极性反转)时,由于此时无法激励产生表面波,光学天线停止工作。在上述工作过程中,荧光膜元的作用,一方面是发出可见光(含近红外光),另一方面是实现从红外光到可见光的波谱转换。
由于本发明采用了上述光学天线收集可见光和宽谱红外光,因此本发明的探测芯片可以同时探测可见光和宽谱红外光,从而实现了宽谱域探测。
进一步地,由于本发明通过光学天线的共振性表面电磁激励收集表面波,从而能够实现皮瓦级弱光学信号的放大性收集,探测灵敏度高。
进一步地,本发明通过采用电子激励荧光的方式,实现了快速响应和波谱转换。
进一步地,本发明通过光学天线表面电磁波和表面电子密度波的耦合关联性,实现对其表面“巡游态”电子分布密度的电控调节,进而能够调节其表面电磁波的纳聚焦强度。
进一步地,本发明通过光学天线高增益收集倾斜成像波束,在基本保持光敏结构噪声水平这一前提下,基于光学天线的尖端部位出射电子的较 强荧光激励与光敏,从而高增益地提高可见光和红外光的探测灵敏度。
进一步地,本发明一方面可以通过调节外部控制信号的幅度,实现对光敏元输出的有效信号的调节,另一方面,可以通过改变外部控制信号的极性,实现改变光学天线的关闭和工作状态,因此本发明具有智能化特征。
图14示出了本发明基于尖端电子荧光激励的成像探测芯片的封装示意图,可以看到整个成像探测芯片被封装在芯片外壳内部,芯片外壳靠近光学天线1的一个侧面上设置有光窗5,其用于指示该侧是设置有光学天线1,芯片外壳上与光窗5相邻的另一个侧面上设置有电子学接口6,用于以插接的方式将本发明的成像探测芯片接入不同的光路结构。
通过设置电子学接口,本发明其在光路中接插方便,易与常规光学光电机械结构匹配耦合。
根据本发明的另一个方面,提供了上述基于尖端电子荧光激励的成像探测芯片的制备方法,包括制作光学天线、制作荧光膜层、以及集成光学天线、荧光膜层与光敏阵列三个过程,其中:
制作光学天线过程包括以下步骤:
(1)依次采用丙酮、酒精和去离子水溶剂对硅基片进行超声清洗并烘干;
(2)将聚焦电子束沿圆环形路径、或边缘矩形内圆环路径扫描刻蚀硅基片制成纳米尖锥图形,在基片表面移位并重复上述操作,从而获得硅基光学天线;
(3)依次采用丙酮、酒精和去离子水溶剂对石英或硒化锌基片进行超声清洗并烘干,并在烘干后的石英或硒化锌基片的一侧端面上涂覆光刻胶,并烘干5至20分钟;
(4)将硅基光学天线上有纳锥尖图形的一侧压印在石英或硒化锌基片上涂敷有光刻胶的一侧,并在石英或硒化锌基片的该侧上电镀金属(如铜或铝),并对其进行清洁处理;
(5)依次采用丙酮、酒精和去离子水溶剂对石英或硒化锌基片进行超声清洗并烘干;
(6)将石英或硒化锌基片镀有金属的一侧与另一片石英或硒化锌基片进行分子键合处理,并对处理后的基片进行显影处理,以去除与金属膜贴合的光刻胶及其支撑基片,从而得到光学天线,对该光学天线进行清洁处理。
制作荧光膜层的过程包括以下步骤:
(1)依次采用丙酮、酒精和去离子水溶剂对石英或硒化锌基片进行超声清洗并烘干;
(2)在石英或硒化锌基片的一侧端面上涂覆光刻胶,并烘干5至20分钟;
(3)将光刻版覆盖在石英或硒化锌基片涂覆有光刻胶的一侧进行光刻处理5至20分钟;
(4)对石英或硒化锌基片光刻处理后的一侧进行显影处理,并用去离子水冲洗,并烘干2至5分钟;
(5)用平行离子束刻蚀石英或硒化锌基片上的光刻胶膜,以得到深度在100微米以上的网状栅格,并对其进行清洁处理;
(6)通过湿法涂敷工艺在石英或硒化锌基片上的网状栅格内填充厚度在5至100微米的荧光膜层,并对其进行烘干和清洁处理;
集成光学天线、荧光膜层与光敏阵列的过程包括以下步骤:
(1)分别从光学天线和荧光膜层的同一侧引出金属连接线;
(2)将光学天线中的每个纳米尖锥与荧光膜层中对应位置的荧光膜元、以及光敏阵列中对应位置的光敏元对准,并使纳米尖锥的尖端部位和荧光膜层的顶面之间的距离保持在150纳米到700纳米之间,使荧光膜层与光敏阵列之间的距离保持在100至800纳米之间;
(3)将光学天线中的天线元(由2个或2个以上纳米尖锥组成)与荧 光膜层中对应位置的荧光膜元、以及光敏阵列中对应位置的光敏元对准,并使纳米尖锥的尖端部位和荧光膜层的顶面之间的距离保持在150纳米到700纳米之间,使荧光膜层与光敏阵列之间的距离保持在100至800纳米之间;
(4)用UV胶封住光学天线、荧光膜层和光敏阵列的上下和左右两侧并烘干,并将从光学天线和荧光膜层引出的金属连接线分别接入芯片外壳内部的管脚上。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (19)

  1. 一种耦合光学天线的成像探测芯片,包括平行设置的光学天线和光敏阵列,其特征在于,
    光学天线是由多个彼此间隔且电连接的天线元组成的阵列结构,光敏阵列是由多个彼此间隔的光敏元组成的阵列结构;
    光学天线和光敏阵列的阵列规模相同;
    光学天线的天线元、以及光敏阵列中对应位置处的光敏元在垂直方向上相互对齐;
    光学天线的天线元包括至少一个顶面彼此电连接的纳米尖锥,该纳米尖锥采用锥形结构,其顶面为曲面结构;
    光学天线的一端与光敏阵列的一端分别通过金属连接线连接到外部控制信号。
  2. 根据权利要求1所述的成像探测芯片,其特征在于,当所述成像探测芯片被用于探测弱光学信号时,每个天线元中纳米尖锥的数量是大于1个,且这些纳米尖锥为均匀排列。
  3. 根据权利要求2所述的成像探测芯片,其特征在于,
    纳米尖锥的数量下限值必须使得光敏元能够产生有效的信号输出;
    纳米尖锥的数量上限值必须使得单个天线元中的所有纳米尖锥均匀排列后,该天线元的总体尺寸不能大于单个光敏元的尺寸。
  4. 根据权利要求1所述的成像探测芯片,其特征在于,纳米尖锥顶面的横截面是圆形、椭圆形、三角形、或多边形。
  5. 根据权利要求4所述的成像探测芯片,其特征在于,当纳米尖锥顶面的横截面是圆形时,其直径为30纳米到600纳米之间。
  6. 根据权利要求1所述的成像探测芯片,其特征在于,纳米尖锥的尖端部分和光敏阵列顶面之间的距离是10纳米到60纳米之间。
  7. 根据权利要求1所述的成像探测芯片,其特征在于,
    所述成像探测芯片被封装在芯片外壳内部;
    芯片外壳靠近光学天线的一个侧面上设置有光窗,用于指示该侧设置有光学天线;
    芯片外壳上与光窗相邻的另一个侧面上设置有电子学接口,用于以插接的方式将所述成像探测芯片接入不同的光路结构。
  8. 根据权利要求1所述的成像探测芯片,其特征在于,
    当所述成像探测芯片用于探测可见光或红外光之一时,光敏阵列采用光子探测器;
    当所述成像探测芯片用于同时探测可见光和红外光时,光敏阵列采用热探测器。
  9. 一种根据权利要求1至8中任意一项所述耦合光学天线的成像探测芯片的制备方法,其特征在于,包括:
    制作光学天线过程,其包括以下步骤:
    (1)依次采用丙酮、酒精和去离子水溶剂对硅基片进行超声清洗并烘干,在烘干后的硅基片的一侧端面上涂覆光刻胶并烘干;
    (2)使用聚焦电子束对硅基片上所涂敷的光刻胶进行光刻处理,对光刻处理后的硅基片进行显影处理,并用去离子水冲洗并烘干;
    (3)将经过显影处理的硅基片在真空环境下加热至120至150℃并保持10分钟以上,以形成圆形拱面、椭圆形拱面、三角形拱面、或多边形拱面的阵列化光刻胶结构;
    (4)用平行离子束倾斜刻蚀经过热处理的阵列化光刻胶结构,以得到纳米尖锥图形,并对其进行清洁处理。
    (5)依次采用丙酮、酒精和去离子水溶剂对石英或硒化锌基片进行超声清洗并烘干;
    (6)在经过清洁处理的石英或硒化锌基片的一侧端面上涂覆光刻胶并 烘干;
    (7)将所制备的纳米尖锥图形覆盖和压制在石英或硒化锌基片上涂敷有光刻胶的端面上,从而完成纳米尖锥图形转印;
    (8)在石英或硒化锌基片印有纳米尖锥图形的一侧电镀金属,并对其进行进一步的清洁处理;
    (9)依次采用丙酮、酒精和去离子水溶剂对石英或硒化锌基片进行超声清洗并烘干;
    (10)将石英或硒化锌基片上镀有金属的一侧与另一片石英或硒化锌基片执行分子键合处理,并对处理后的基片进行显影处理,以去除与金属膜贴合的光刻胶及其支撑基片,从而得到光学天线,对该光学天线进行清洁处理;
    集成光学天线与光敏阵列的过程包括以下步骤:
    (1)分别从光学天线和光敏阵列的同一侧引出金属连接线;
    (2)将光学天线中的每个纳米尖锥与光敏阵列中对应位置的光敏元对准;
    (3)将光学天线中的天线元与光敏阵列中对应位置的光敏元对准;
    (4)用UV胶封住光学天线和光敏阵列的上下和左右两侧并烘干,并将从光学天线和光敏阵列引出的金属连接线分别接入芯片外壳内部的管脚上。
  10. 根据权利要求9所述的制备方法,其特征在于,对准过程中,纳米尖锥的尖端部分和光敏阵列顶面之间的距离被保持在10纳米到60纳米之间。
  11. 一种耦合光学天线的成像探测芯片,包括平行设置的光学天线、荧光膜层、以及光敏阵列,其特征在于,
    光学天线是由多个彼此间隔且电连接的天线元组成的阵列结构,荧光膜层是由多个彼此间隔且电连接的荧光膜元组成的阵列结构,光敏阵列是 由多个彼此间隔的光敏元组成的阵列结构;
    光学天线、荧光膜层、以及光敏阵列的形状和阵列规模均相同;
    光学天线的天线元、荧光膜层中对应位置处的荧光膜元、以及光敏阵列中对应位置处的光敏元在垂直方向上相互对齐;
    光学天线的天线元包括至少一个顶面彼此电连接的纳米尖锥,该纳米尖锥采用锥形结构,其顶面为曲面结构,纳米尖锥的尖端部位指向荧光膜元;
    光学天线的一端与荧光膜层的一端分别通过金属连接线连接到外部控制信号。
  12. 根据权利要求11所述的成像探测芯片,其特征在于,当所述成像探测芯片被用于探测弱光学信号时,每个天线元中纳米尖锥的数量是大于1个,且这些纳米尖锥为均匀排列。
  13. 根据权利要求12所述的成像探测芯片,其特征在于,
    该纳米尖锥的数量下限值必须使得光敏元能够产生有效的信号输出;
    纳米尖锥的数量上限值必须使得单个天线元中的所有纳米尖锥均匀排列后,该天线元的总体尺寸不能大于单个光敏元的尺寸。
  14. 根据权利要求11所述的成像探测芯片,其特征在于,纳米尖锥顶面的横截面是圆形、椭圆形、三角形、或多边形。
  15. 根据权利要求14所述的成像探测芯片,其特征在于,当纳米尖锥顶面的横截面是圆形时,其直径为30纳米到600纳米之间。
  16. 根据权利要求11所述的成像探测芯片,其特征在于,
    纳米尖锥的尖端部位和荧光膜层的顶面之间的距离是150纳米到700纳米之间;
    荧光膜层的底面与光敏阵列顶面之间的距离是100纳米到800纳米之间;
    相邻荧光膜元之间的间隔为50到500纳米之间。
  17. 根据权利要求11所述的成像探测芯片,其特征在于,
    所述成像探测芯片被封装在芯片外壳内部;
    芯片外壳靠近光学天线的一个侧面上设置有光窗,用于指示该侧设置有光学天线;
    芯片外壳上与光窗相邻的另一个侧面上设置有电子学接口,用于以插接的方式将所述成像探测芯片接入不同的光路结构。
  18. 一种根据权利要求11至17中任意一项所述耦合光学天线的成像探测芯片的制备方法,其特征在于,包括:
    一、制作光学天线的过程,包括以下步骤:
    (1)依次采用丙酮、酒精和去离子水溶剂对硅基片进行超声清洗并烘干;
    (2)将聚焦电子束沿圆环形路径、或边缘矩形内圆环路径扫描刻蚀硅基片制成纳米尖锥图形,在基片表面移位并重复上述操作,从而获得硅基光学天线;
    (3)依次采用丙酮、酒精和去离子水溶剂对石英或硒化锌基片进行超声清洗并烘干,并在烘干后的石英或硒化锌基片的一侧端面上涂覆光刻胶并烘干;
    (4)将硅基光学天线上有纳锥尖图形的一侧压印在石英或硒化锌基片上涂敷有光刻胶的一侧,并在石英或硒化锌基片的该侧上电镀金属(如铜或铝),并对其进行清洁处理;
    (5)依次采用丙酮、酒精和去离子水溶剂对石英或硒化锌基片进行超声清洗并烘干;
    (6)将石英或硒化锌基片镀有金属的一侧与另一片石英或硒化锌基片进行分子键合处理,并对处理后的基片进行显影处理,以去除与金属膜贴合的光刻胶及其支撑基片,从而得到光学天线,对该光学天线进行清洁处理;
    二、制作荧光膜层的过程,包括以下步骤:
    (1)依次采用丙酮、酒精和去离子水溶剂对石英或硒化锌基片进行超声清洗并烘干;
    (2)在石英或硒化锌基片的一侧端面上涂覆光刻胶,并烘干;
    (3)将光刻版覆盖在石英或硒化锌基片涂覆有光刻胶的一侧进行光刻处理;
    (4)对石英或硒化锌基片光刻处理后的一侧进行显影处理,并用去离子水冲洗并烘干;
    (5)用平行离子束刻蚀石英或硒化锌基片上的光刻胶膜,以得到深度在100微米以上的网状栅格,并对其进行清洁处理;
    (6)通过湿法涂敷工艺在石英或硒化锌基片上的网状栅格内填充厚度在5至100微米的荧光膜层,并对其进行烘干和清洁处理;
    三、集成光学天线、荧光膜层与光敏阵列的过程,包括以下步骤:
    (1)分别从光学天线和荧光膜层的同一侧引出金属连接线;
    (2)将光学天线中的每个纳米尖锥与荧光膜层中对应位置的荧光膜元、以及光敏阵列中对应位置的光敏元对准;
    (3)将光学天线中的天线元与荧光膜层中对应位置的荧光膜元、以及光敏阵列中对应位置的光敏元对准;
    (4)用UV胶封住光学天线、荧光膜层和光敏阵列的上下和左右两侧并烘干,并将从光学天线和荧光膜层引出的金属连接线分别接入芯片外壳内部的管脚上。
  19. 根据权利要求18所述的制备方法,其特征在于,在对准过程中,纳米尖锥的尖端部位和荧光膜层的顶面之间的距离被保持在150纳米到700纳米之间,使荧光膜层与光敏阵列之间的距离被保持在100至800纳米之间。
PCT/CN2019/121169 2019-01-28 2019-11-27 一种耦合光学天线的成像探测芯片及其制备方法 WO2020155818A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/917,867 US11322537B2 (en) 2019-01-28 2020-06-30 Imaging detection chip with an optical antenna comprising a plurality of antenna cells each comprising one or more nanocones coupled to photosensitive array

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910082563.2 2019-01-28
CN201910081938.3A CN109781265B (zh) 2019-01-28 2019-01-28 一种耦合光学天线的成像探测芯片及其制备方法
CN201910081938.3 2019-01-28
CN201910082563.2A CN109781250B (zh) 2019-01-28 2019-01-28 基于尖端电子荧光激励的光敏成像探测芯片及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/917,867 Continuation-In-Part US11322537B2 (en) 2019-01-28 2020-06-30 Imaging detection chip with an optical antenna comprising a plurality of antenna cells each comprising one or more nanocones coupled to photosensitive array

Publications (1)

Publication Number Publication Date
WO2020155818A1 true WO2020155818A1 (zh) 2020-08-06

Family

ID=71841149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121169 WO2020155818A1 (zh) 2019-01-28 2019-11-27 一种耦合光学天线的成像探测芯片及其制备方法

Country Status (2)

Country Link
US (1) US11322537B2 (zh)
WO (1) WO2020155818A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294077A (ja) * 1997-04-21 1998-11-04 Jeol Ltd 電界放射型光ー電流変換器
CN101449145A (zh) * 2006-05-24 2009-06-03 皇家飞利浦电子股份有限公司 用于对对象进行温度和发光组合空间成像的成像设备
CN105092035A (zh) * 2014-05-09 2015-11-25 三星电子株式会社 光谱传感器、光谱传感器模块和光谱仪以及光谱分析方法
CN105810704A (zh) * 2016-03-15 2016-07-27 华中科技大学 一种广谱成像探测芯片
CN205621733U (zh) * 2016-03-15 2016-10-05 华中科技大学 一种广谱成像探测芯片
CN106707381A (zh) * 2017-03-19 2017-05-24 北京工业大学 一种微透镜阵列制作的工艺方法
CN106716178A (zh) * 2015-07-09 2017-05-24 皇家飞利浦有限公司 直接转换辐射探测器
CN109781250A (zh) * 2019-01-28 2019-05-21 南京奥谱依电子科技有限公司 基于尖端电子荧光激励的光敏成像探测芯片及其制备方法
CN109781265A (zh) * 2019-01-28 2019-05-21 南京奥谱依电子科技有限公司 一种耦合光学天线的成像探测芯片及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070210956A1 (en) * 2005-02-28 2007-09-13 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Optical antenna with phase control
EP2183089A4 (en) * 2007-07-12 2012-10-31 Deese Edward PHOTOVOLTAIC SOLAR STRUCTURE WITH PHOTON-SENSITIVE NANOCELLS
KR101669219B1 (ko) * 2010-12-30 2016-10-26 삼성전자주식회사 광변조기 및 이를 채용한 광학장치
KR102547798B1 (ko) * 2015-12-08 2023-06-26 삼성전자주식회사 방사선 검출기 및 이를 채용한 방사선 촬영 장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294077A (ja) * 1997-04-21 1998-11-04 Jeol Ltd 電界放射型光ー電流変換器
CN101449145A (zh) * 2006-05-24 2009-06-03 皇家飞利浦电子股份有限公司 用于对对象进行温度和发光组合空间成像的成像设备
CN105092035A (zh) * 2014-05-09 2015-11-25 三星电子株式会社 光谱传感器、光谱传感器模块和光谱仪以及光谱分析方法
CN106716178A (zh) * 2015-07-09 2017-05-24 皇家飞利浦有限公司 直接转换辐射探测器
CN105810704A (zh) * 2016-03-15 2016-07-27 华中科技大学 一种广谱成像探测芯片
CN205621733U (zh) * 2016-03-15 2016-10-05 华中科技大学 一种广谱成像探测芯片
CN106707381A (zh) * 2017-03-19 2017-05-24 北京工业大学 一种微透镜阵列制作的工艺方法
CN109781250A (zh) * 2019-01-28 2019-05-21 南京奥谱依电子科技有限公司 基于尖端电子荧光激励的光敏成像探测芯片及其制备方法
CN109781265A (zh) * 2019-01-28 2019-05-21 南京奥谱依电子科技有限公司 一种耦合光学天线的成像探测芯片及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIANG, YU-CHI; LI, YA-QIN; WANG, XIAO-QIU; WU, SHI-FA: "Numerical Simulation of Pyramdal Tip Entirely Coated with Ag Film with Focusing Spot at Nanometer Scale", JOURNAL OF CHINESE ELECTRON MICROSCOPY SOCIETY, vol. 25, no. 4, 31 August 2006 (2006-08-31), CN, pages 333 - 336, XP009522467, ISSN: 1000-6281 *

Also Published As

Publication number Publication date
US20200335882A1 (en) 2020-10-22
US11322537B2 (en) 2022-05-03

Similar Documents

Publication Publication Date Title
CN101023342B (zh) 用于检查试样表面的方法、装置以及荧光物质的应用
US8900890B2 (en) Corner cube enhanced photocathode
JP5497963B2 (ja) 表面増強発光のための自己配列型発光強化装置
Wei et al. Routing of surface plasmons in silver nanowire networks controlled by polarization and coating
CN113140650B (zh) 一种基于表面态吸收原理的垂直耦合透明光电探测器
CN103681897A (zh) 一种红外光电探测器及其制备方法
CN109781250B (zh) 基于尖端电子荧光激励的光敏成像探测芯片及其制备方法
JP6979453B2 (ja) 試料の微小電位を測定する装置、その装置を製造する方法およびその装置の使用方法
JPS5828706B2 (ja) ストリ−クカメラ撮像管
WO2020155818A1 (zh) 一种耦合光学天线的成像探测芯片及其制备方法
US11249017B2 (en) Systems and methods for high frequency nanoscopy
US11898905B2 (en) Plasmonic metamaterial structure
CN109781265B (zh) 一种耦合光学天线的成像探测芯片及其制备方法
CN103288046A (zh) 一种二维周期性v型金属等离子共振结构及其制备方法
Chen et al. Plasmonic-resonant bowtie antenna for carbon nanotube photodetectors
CN110361362B (zh) 一种基于介质纳米天线生物传感器、制备方法及应用
CN108963028B (zh) 一种提高检测精度的光热探测器及其制备方法
CN109781251A (zh) 纳米金属平面尖光学探测器
CN108507991B (zh) 一种双光子荧光的增强方法及其应用
CN219347966U (zh) 一种基于纳尖结构的红外探测器
Knapitsch et al. Large scale production of photonic crystals on scintillators
CN114899275A (zh) 一种贵金属纳米线与二维二硫化钼复合结构的光电探测器及其制备方法
CN203249871U (zh) 一种二维周期性v型金属等离子共振结构
JP5025577B2 (ja) 撮像管
CN116295823A (zh) 一种基于纳尖结构的红外探测器及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913469

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19913469

Country of ref document: EP

Kind code of ref document: A1