WO2020155748A1 - 电力系统的解耦仿真方法及存储介质 - Google Patents

电力系统的解耦仿真方法及存储介质 Download PDF

Info

Publication number
WO2020155748A1
WO2020155748A1 PCT/CN2019/117171 CN2019117171W WO2020155748A1 WO 2020155748 A1 WO2020155748 A1 WO 2020155748A1 CN 2019117171 W CN2019117171 W CN 2019117171W WO 2020155748 A1 WO2020155748 A1 WO 2020155748A1
Authority
WO
WIPO (PCT)
Prior art keywords
subsystem
voltage
subsystems
initial
injected
Prior art date
Application number
PCT/CN2019/117171
Other languages
English (en)
French (fr)
Inventor
纪锋
林畅
高路
彭逸轩
庞辉
Original Assignee
全球能源互联网研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 全球能源互联网研究院有限公司 filed Critical 全球能源互联网研究院有限公司
Publication of WO2020155748A1 publication Critical patent/WO2020155748A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Definitions

  • This application relates to the field of power system simulation technology, for example, to a power system decoupling simulation method and storage medium.
  • Parallel computing with sub-networks is an important means to speed up the simulation of large-scale power systems.
  • a parallel method is adopted to decouple a large power system into several small subsystems and perform calculations separately.
  • the long-distance transmission line decoupling method is a commonly used decoupling method in the electromagnetic transient analysis of power systems.
  • this method is only suitable for the case where two systems are connected by long-distance transmission lines.
  • the long-distance transmission line decoupling method is no longer applicable.
  • Other commonly used methods of dividing the network include node splitting and branch tearing.
  • This application provides a power system decoupling simulation method and storage medium, which solves the problem of inaccurate simulation results due to no consideration of the node voltage jump problem caused by power electronic switching actions in the electromagnetic transient simulation of the power system in the related art .
  • an embodiment of the present application provides a decoupling simulation method of a power system, including: decoupling the power system into at least two subsystems using preset circuit elements in the power system as a boundary; The branch where the preset circuit element is located between the at least two sub-systems is decomposed, and the branch is replaced with a plurality of injected power sources corresponding to the at least two sub-systems and each having an initial value of the power supply at the initial time.
  • the embodiment of the present application provides a computer-readable storage medium, and the computer-readable storage medium stores computer instructions, and the computer instructions are used to make the computer execute the method provided in the foregoing application embodiment.
  • Fig. 1 is a flow chart of a decoupling simulation method for a power system provided by an embodiment of the application
  • Figure 2 is a schematic diagram of a power system connected by an inductive branch provided by an embodiment of the application;
  • FIG. 3 is a schematic diagram of the power system after decoupling by the inductive branch connection provided by the embodiment of the application;
  • FIG. 4 is a schematic diagram of iterative steps for asynchronous calculation of the power system after decoupling by the inductive branch connection provided by the embodiment of the application;
  • Figure 5 is a schematic diagram of a power system connected by a capacitor branch provided by an embodiment of the application
  • FIG. 6 is a schematic diagram of a power system after decoupling by capacitor branch connections provided by an embodiment of the application
  • FIG. 7 is a schematic diagram of iterative steps for asynchronous calculation of the power system after decoupling by the capacitor branch connection provided by the embodiment of the application.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral Connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate medium, or a connection between the two components, which can be a wireless connection or a wired connection.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral Connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate medium, or a connection between the two components, which can be a wireless connection or a wired connection.
  • the embodiment of the present application provides a decoupling simulation method of a power system. As shown in FIG. 1, the decoupling simulation method of the power system includes steps 10 to 40.
  • Step 10 Decouple the power system into at least two subsystems by taking the preset circuit elements in the power system as the boundary.
  • the preset circuit components are inductors or capacitors, and the subsystems that decouple the power system can be divided according to administrative regions. For example, the power system in North China is divided into Beijing, The sub-systems of the five power stations in Tianjin, Hebei, Shanxi, and Inner Mongolia can also be divided into sub-systems in multiple urban areas according to the administrative area of the province. In practical applications, the simulation step lengths of multiple sub-systems may be the same or not. the same.
  • Step 20 Decompose the branch where the preset circuit element is located between the at least two subsystems, and use multiple injected power sources corresponding to the at least two subsystems and having the initial value of the power source at the initial time instead of the The branch road.
  • the corresponding injection power source is determined according to the boundary divided by the preset circuit element as an inductor or a capacitor.
  • the inductor branch is replaced by two injection current sources or the nodes of the two subsystems split by the capacitor node are both Ground via an equivalent voltage source.
  • the injected power includes the initial value of the power at the initial moment.
  • Step 30 Solve the node voltage equation of each subsystem according to the initial values of the power injected into the power source, and obtain the voltage values of all the nodes inside each subsystem.
  • the node voltage equation of each subsystem is solved according to the initial values of current injected into the current sources by the two subsystems according to the inductance branch to obtain the voltage values of all nodes inside the subsystem; for capacitive components, according to The initial value of the decoupling equivalent voltage source at the capacitor node is solved, the node voltage equation of each subsystem is solved, and the voltage value of all nodes inside the subsystem is obtained.
  • Step 40 Update the current state of the injected power corresponding to each subsystem according to the voltage value of the boundary node of each subsystem, and calculate the injected power corresponding to each subsystem at the next time based on the updated state of the injected power State quantity until the end of the simulation cycle.
  • the decoupling simulation method of the power system includes: taking the inductance or capacitance in the power system as a boundary, the power system can be decoupled into at least two subsystems; Suppose that the branch where the circuit element is located is decomposed, and the branch is replaced with multiple injected power sources corresponding to the at least two subsystems and the initial values of the power supply respectively at the initial moments; the solutions are respectively solved according to the initial power values of the multiple injected power sources
  • the node voltage equation of each subsystem obtains the voltage values of all nodes inside each subsystem, and updates the state of the injected power at the current moment according to the voltage values of the boundary nodes of each subsystem, and according to the updated state of the injected power Calculate the state of the injected power corresponding to each subsystem at the next moment until the end of the simulation cycle.
  • the decoupling simulation method provided by the embodiment of the application uses the stable characteristics of the integral quantity of voltage and current to perform decoupling of the sub-network.
  • the calculation is simple, the numerical stability is high, and the voltage jump of nodes in multiple subnets is allowed.
  • the predetermined circuit element includes an inductance element.
  • the branch where the preset circuit element is located between the at least two subsystems is decomposed, and the power source initial values corresponding to the at least two subsystems and having initial moments respectively are used.
  • Multiple injection power sources to replace the branch including:
  • the inductive branch between the at least two subsystems is decomposed, and the inductive branch is replaced by an injection current source having an initial current value corresponding to each of the at least two subsystems.
  • the step of separately solving the node voltage equation of each subsystem according to the initial power values of the multiple injected power sources to obtain the voltage values of all nodes inside each subsystem includes:
  • the node voltage equation of each subsystem is solved to obtain the voltage values of all nodes inside each subsystem.
  • the state quantity of the injected power supply corresponding to each subsystem at the current time is updated according to the voltage value of the boundary node of each subsystem, and each subsystem at the next time is calculated according to the updated state quantity of the injected power supply The corresponding state quantity of the injected power supply until the end of the simulation cycle, including:
  • the voltages of the boundary nodes of the at least two subsystems at the next time after the initial time are respectively integrated, and the current value of the injection current source corresponding to each subsystem at the next time after the initial time is updated, and the next The time as the current time, and according to the current value of the boundary node of each subsystem at the current time, iteratively update the current value of the injected current source corresponding to each subsystem at the next time after the current time until the end of the simulation period .
  • the predetermined circuit element includes a capacitive element.
  • the branch where the preset circuit element is located between the at least two subsystems is decomposed, and the power source initial values corresponding to the at least two subsystems and having initial moments respectively are used.
  • Multiple injection power sources to replace the branch including:
  • the capacitance nodes between the at least two subsystems are decomposed, and the capacitance nodes are replaced by injection voltage sources with initial voltage values corresponding to the at least two subsystems.
  • the step of separately solving the node voltage equation of each subsystem according to the initial power values of the multiple injected power sources to obtain the voltage values of all nodes inside each subsystem includes:
  • the node voltage equation of each subsystem is solved to obtain the voltage values of all nodes inside each subsystem.
  • the state quantity of the injected power supply corresponding to each subsystem at the current time is updated according to the voltage value of the boundary node of each subsystem, and each subsystem at the next time is calculated according to the updated state quantity of the injected power supply
  • the state quantity injected into the power supply until the end of the simulation cycle including:
  • the currents of the boundary nodes of the at least two subsystems at the next time after the initial time are respectively integrated, and the voltage value of the injection voltage source corresponding to each subsystem at the next time after the initial time is updated, and the lower One moment is regarded as the current moment, and the voltage value of the current step is calculated according to the voltage value of the boundary node of each subsystem at the current moment, and the voltage value of the injection voltage source corresponding to each subsystem is updated iteratively at the next moment after the current moment Until the end of the simulation cycle.
  • the power system as shown in Figure 2 is composed of two subsystems (this is only an example, not limited to this, and in other embodiments can also be composed of more than three subsystems), two sub-systems
  • the systems are connected by an inductance element with an inductance of L.
  • the power system is decoupled at the inductance branch. After being decoupled into two systems, the boundary nodes are divided into i1 and i2, which belong to the subsystems. 1 and Subsystem 2, the two subsystems shown in Figure 3 are obtained without electrical connection.
  • the original inductance branch is replaced by two injection current sources.
  • the two injection current sources are connected between node i1 and ground and node i2 with Between ground potentials; the current directions of the two injected current sources are opposite, equal in magnitude, and the current value is equal to the current value of the inductor branch in Figure 2.
  • the current on the inductor branch can be expressed as:
  • the current of the inductor branch is determined by the integral of the node voltage (the integral of the node voltage with time t, that is, the node flux linkage).
  • the numerical stability of the integral is far better than the derivative.
  • the flux linkage values of the two nodes can be calculated independently, which allows the two subsystems to use different time steps for asynchronous simulation.
  • this application takes the asynchronous simulation of two subsystems as an example. It is assumed that multiple state variables in subsystem 1 change slowly and are a slower system, and the step size used in the simulation is ⁇ t 1 ; The multiple state variables in Subsystem 2 change quickly, and it is a faster system.
  • the calculation process is as follows:
  • Figure 4 shows the current expressions of the current source at time n, n′ and n′′.
  • the above steps assume that the node dynamic equation is used, in which the node voltage and the time integral of the node voltage are both in the node dynamic equation The state quantity provided. If the node analysis method is used, and the node voltage equation is only the node voltage as the state quantity, it is necessary to construct a node flux linkage quantity of the relevant node, and use the node voltage to update the node voltage time integral in each step Quantity.
  • the way to update the status quantity is as follows:
  • ⁇ i (n) represents the node flux linkage value at the current moment
  • ⁇ i (n+1) represents the node flux linkage value at the next moment
  • u i represents the node voltage
  • ⁇ t represents the step size.
  • the power system is decoupled at the inductance branch, and the original inductance branch is replaced by two injection current sources, so that the connection current between different subsystems is determined by the difference of the node voltage integral.
  • the integral value determines the current value of the injected current source, and the node voltage integral value changes slowly. It can be updated in real time according to the status of multiple subnets in each step, and the status of each subnet is calculated independently, so it is not necessary
  • the connecting current is solved serially, and the decoupling method uses an integral function. The calculation is simple, does not cause numerical oscillations, and has high numerical stability. Asynchronous simulation can be carried out between multiple subsystems, which improves the simulation efficiency of electromagnetic transient analysis of power systems.
  • the power system as shown in FIG. 5 is composed of two subsystems (this is only used as an example, not limited to this, in other embodiments, it may be composed of more than three subsystems), two The two subsystems share a capacitor node (a node grounded through the capacitor), and the capacitor value is C.
  • This power system is decoupled at the capacitor node to obtain subsystem 1 and subsystem 2 without electrical connections as shown in Figure 6.
  • the original capacitor node is split into two subsystems, and the two boundary nodes i 1 and i 2 are all grounded via an equivalent voltage source.
  • the voltage on the capacitor node can be expressed as:
  • the voltage on the capacitor is determined by the integral of the current flowing into the capacitor.
  • the numerical stability of the integral is far better than the differential.
  • the amount of charge injected into the capacitors of the two subsystems in formula (3) can be calculated independently. This allows the two subsystems to use different time steps for asynchronous simulation. The calculation process is as follows:
  • This method of decoupling the power system by splitting the capacitor nodes of the two subsystems to equivalently convert the capacitors into a voltage source uses the stable characteristics of the integral quantity of current to decouple the network. The calculation is simple and the numerical stability is high. Since the voltage jump of nodes in multiple subnets is allowed, it is suitable for parallel simulation of power electronic switching circuits.
  • the embodiment of the present application provides a computer-readable storage medium on which computer-executable instructions are stored, and the computer-executable instructions can execute the method in any of the foregoing method embodiments.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), a random access memory (RAM), a flash memory (Flash Memory), a hard disk (Hard Disk Drive (HDD) or Solid-State Drive (SSD), etc.; the storage medium may also include a combination of the foregoing types of memories.
  • the embodiments of the present application may be provided as methods or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application can use one or more computer-usable storage media (including disk storage, compact Disc Read-Only Memory (CD-ROM), optical storage, etc.) containing computer-usable program codes. ) In the form of a computer program product implemented on it.
  • CD-ROM compact Disc Read-Only Memory
  • optical storage etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本申请公开了一种电力系统的解耦仿真方法及存储介质,该方法包括:以电力系统中的预设元件作为边界,将电力系统解耦为至少两个子系统;将至少两个子系统之间的预设电路元件所在的支路进行分解,使用分别与所述至少两个子系统对应的分别具有初始时刻的电源初始值多个注入电源替代所述支路;根据多个注入电源的电源初始值分别求解每个子系统的节点电压方程,获得每个子系统内部的所有节点的电压值;根据每个子系统的边界节点的电压值更新每个子系统对应的注入电源在当前时刻的状态量,根据更新后的注入电源的状态量计算下一时刻每个子系统对应的注入电源的状态量,直至仿真周期结束。

Description

电力系统的解耦仿真方法及存储介质
本申请要求在2019年02月01日提交中国专利局、申请号为201910105814.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电力系统仿真技术领域,例如涉及一种电力系统的解耦仿真方法及存储介质。
背景技术
分网并行计算是加快大型电力系统仿真速度的重要手段。相关技术中为了提高电力系统电磁暂态分析的仿真效率,采用分网并行的方法,将一个大型的电力系统解耦成几个小的子系统,分别进行计算。远距离传输线解耦方法是电力系统电磁暂态分析中常用的解耦方法,然而这种方法仅适用于两个系统使用远距离传输线相连的情况。而随着现代电力电子的发展,在一个变电站或换流站内部就有众多电压节点需要分析,这时远距离传输线解耦法就不再适用。其他常用的分网方法还有节点分裂法、支路撕裂法等。这些方法虽然能够将多个子系统进行并行求解,却仍然在每步迭代过程中串行求解系统间的联络电流,这些方法均并未考虑电力电子开关动作引起的节点电压跳变问题,因此这些方法并不适合包含大量开关元件的大型电力电子装备的仿真。
发明内容
本申请提供一种电力系统的解耦仿真方法及存储介质,解决了相关技术中对电力系统电磁暂态仿真时,未考虑电力电子开关动作引起的节点电压跳变问题导致仿真结果不准确的问题。
在一实施例中,本申请实施例提供一种电力系统的解耦仿真方法,包括:以电力系统中的预设电路元件作为边界,将所述电力系统解耦为至少两个子系统;将所述至少两个子系统之间的所述预设电路元件所在的支路进行分解,使用分别与所述至少两个子系统对应的分别具有初始时刻的电源初始值的多个注入电源替代所述支路;根据所述多个注入电源的电源初始值分别求解每个子系统的节点电压方程,获得每个子系统内部的所有节点的电压值;根据每个子系统的边界节点的电压值更新每个子系统对应的注入电源在当前时刻的状态量,并根据更新后的注入电源的状态量计算下一时刻每个子系统对应的注入电源的状态量,直至仿真周期结束。
在一实施例中,本申请实施例提供一种计算机可读存储介质,所述计算机 可读存储介质存储有计算机指令,所述计算机指令用于使所述计算机执行上述申请实施例提供的方法。
附图说明
图1为本申请实施例提供的一种电力系统的解耦仿真方法流程图;
图2为本申请实施例提供的由电感支路连接的电力系统的示意图;
图3为本申请实施例提供的由电感支路连接进行解耦后的电力系统示意图;
图4为本申请实施例提供的由电感支路连接进行解耦后的电力系统进行异步计算的迭代步骤示意图;
图5为本申请实施例提供的由电容支路连接的电力系统示意图;
图6为本申请实施例提供的由电容支路连接进行解耦后的电力系统示意图;
图7为本申请实施例提供的由电容支路连接进行解耦后的电力系统进行异步计算的迭代步骤示意图。
具体实施方式
下面将结合附图对本申请的技术方案进行描述,所描述的实施例是本申请一部分实施例,而不是全部的实施例。
在本申请的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通,可以是无线连接,也可以是有线连接。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例一
本申请实施例提供一种电力系统的解耦仿真方法,如图1所示,该电力系统的解耦仿真方法包括步骤10至步骤40。
步骤10:以电力系统中的预设电路元件作为边界,将电力系统解耦为至少两个子系统。
在实际应用中,该预设电路元件为电感或者电容,将电力系统解耦的子系统可以根据行政区域进行划分,例如是将华北地区的电力系统根据大支路上的 电感或电容分为北京、天津、河北、山西、内蒙古五个电站的子系统,也可以根据省内的行政区域划分为多个市区的子系统,在实际应用中,多个子系统的仿真步长可以相同,也可以不相同。
步骤20:将至少两个子系统之间的所述预设电路元件所在的支路进行分解,使用分别与所述至少两个子系统对应的分别具有初始时刻的电源初始值的多个注入电源替代所述支路。
本申请实施例中,根据预设电路元件为电感或者电容进行划分的边界,来确定对应的注入电源,例如:电感支路由两个注入电流源替代或者电容节点分裂出来的两个子系统的节点都经等效电压源接地。该注入电源在初始时刻包括电源初始值。
步骤30:根据多个注入电源的电源初始值分别求解每个子系统的节点电压方程,获得每个子系统内部的所有节点的电压值。
本申请实施例中,对于电感元件,根据电感支路由两个子系统注入电流源的电流初始值,求解每个子系统的节点电压方程,获得子系统内部的所有节点的电压值;对于电容元件,根据电容节点处进行解耦等效的电压源的初始值,求解每个子系统的节点电压方程,获得子系统内部的所有节点的电压值。
步骤40:根据每个子系统的边界节点的电压值更新每个子系统对应的注入电源在当前时刻的状态量,并根据更新后的注入电源的状态量计算下一时刻每个子系统对应的注入电源的状态量,直至仿真周期结束。
本申请实施例提供的电力系统的解耦仿真方法,包括:以电力系统中的电感或电容作为边界,可以将电力系统解耦为至少两个子系统;将所述至少两个子系统之间的预设电路元件所在的支路进行分解,使用分别与所述至少两个子系统对应的分别具有初始时刻的电源初始值多个注入电源替代所述支路;根据多个注入电源的电源初始值分别求解每个子系统的节点电压方程,获得每个子系统内部的所有节点的电压值,根据每个子系统的边界节点的电压值更新注入电源在当前时刻的状态量,并根据更新后的注入电源的状态量计算下一时刻每个子系统对应的注入电源的状态量,直至仿真周期结束。本申请实施例提供的解耦仿真方法,利用电压、电流的积分量稳定特性来进行分网解耦,计算简单,数值稳定性高,允许多个子网中的节点电压跳变,适用于包含大量开关元件的电力系统电磁暂态解耦并行仿真。
在一实施例中,所述预设电路元件包括电感元件。
在一实施例中,所述将所述至少两个子系统之间的所述预设电路元件所在的支路进行分解,使用分别与所述至少两个子系统对应的分别具有初始时刻的电源初始值的多个注入电源替代所述支路,包括:
将所述至少两个子系统之间的电感支路进行分解,使用与所述至少两个子系统各自对应的具有电流初始值的注入电流源替代所述电感支路。
在一实施例中,所述根据所述多个注入电源的电源初始值分别求解每个子系统的节点电压方程,获得每个子系统内部的所有节点的电压值,包括:
根据每个子系统对应的注入电流源的电流初始值,求解每个子系统的节点电压方程,获得每个子系统内部的所有节点的电压值。
在一实施例中,所述根据每个子系统的边界节点的电压值更新每个子系统对应的注入电源在当前时刻的状态量,并根据更新后的注入电源的状态量计算下一时刻每个子系统对应的注入电源的状态量,直至仿真周期结束,包括:
分别对所述至少两个子系统的边界节点在初始时刻之后的下一时刻的电压进行积分,更新每个子系统对应的注入电流源在初始时刻之后的下一时刻的电流值,将所述下一时刻作为当前时刻,并根据每个子系统的边界节点在所述当前时刻的电流值,迭代更新每个子系统对应的注入电流源在所述当前时刻之后的下一时刻的电流值,直至仿真周期结束。
在一实施例中,所述预设电路元件包括电容元件。
在一实施例中,所述将所述至少两个子系统之间的所述预设电路元件所在的支路进行分解,使用分别与所述至少两个子系统对应的分别具有初始时刻的电源初始值的多个注入电源替代所述支路,包括:
将所述至少两个子系统之间的电容节点进行分解,使用与所述至少两个子系统各自对应的具有电压初始值的注入电压源替代所述电容节点。
在一实施例中,所述根据所述多个注入电源的电源初始值分别求解每个子系统的节点电压方程,获得每个子系统内部的所有节点的电压值,包括:
根据每个子系统对应的注入电压源的电压初始值,求解每个子系统的节点电压方程,获得每个子系统内部的所有节点的电压值。
在一实施例中,所述根据每个子系统的边界节点的电压值更新每个子系统对应的注入电源在当前时刻的状态量,并根据更新后的注入电源的状态量计算下一时刻每个子系统注入电源的状态量,直至仿真周期结束,包括:
分别对所述至少两个子系统的边界节点在初始时刻之后的下一时刻的电流进行积分,更新每个子系统对应的注入电压源在初始时刻之后的下一时刻的的电压值,将所述下一时刻作为当前时刻,并根据每个子系统的边界节点当前时刻的电压值计算当前步长的电压值,迭代更新每个子系统对应的注入电压源在所述当前时刻之后的下一时刻的电压值,直至仿真周期结束。
在一实施中,如图2所示的电力系统,由两个子系统构成(仅以此作为举例,不以此为限,在其他实施例中也可由三个以上的子系统组成),两个子系统之间由一个电感量为L的电感元件连接在一起,将该电力系统在电感支路处进行解耦,被解耦为两个系统后的边界节点分为i1和i2,分别属于子系统1和子系统2,得到图3所示的没有电气连接的两个子系统,原来的电感支路由两个注入电流源替代,两个注入电流源分别连接在i1节点与地电位之间以及i2节点 与地电位之间;两个注入电流源的电流方向相反,大小相等,电流值等于图2中电感支路的电流值,电感支路上的电流可以表示为:
Figure PCTCN2019117171-appb-000001
根据式(1)电感支路的电流由节点电压的积分量(节点电压随时间t的积分量,即节点磁链)决定。在仿真计算中,积分量的数值稳定性要远远优于微分量。式(1)中两个节点的磁链值可以分别独立计算,因此允许两个子系统采用不同的时间步长,进行异步仿真。为了不失一般性,本申请以进行两个子系统的异步仿真为例,假设子系统1中的多个状态量变化较慢,是一个较慢系统,仿真时使用的步长为△t 1;子系统2中的多个状态量变化较快,是一个较快系统,仿真时使用的步长为△t 2;其中△t 1=3△t 2(仅以此举例,不以此为限)。如图4所示,为该电力系统进行解耦后分网异步计算的迭代步骤,即使用n时刻(t=n△t 1)两个系统的状态量,计算n+1时刻(t=(n+1)△t 1时刻)的系统状态量的过程。由于子系统2中使用了较小步长,因此相较于子系统1而言,子系统2需要多计算两个中间时刻的状态,记为n′时刻和n″时刻,电流源多个时刻的电流值均根据两个子系统的状态量共同决定,计算过程如下:
①利用n时刻子系统1中i1号节点的状态量Ψ i1(n),子系统2中i2号节点的状态量Ψ i2(n)(这里设n时刻为仿真的初始时刻,Ψ i1(n)和Ψ i2(n)为初始状态量)更新电流源的电流值,获得n时刻电流源的电流值Ι(n)。
②使用-Ι(n)作为子系统1的注入电流源,计算子系统1在n+1时刻的状态量。
③使用Ι(n)作为子系统2的注入电流源,计算子系统2在n′时刻的状态量。
④使用子系统2在n′时刻的状态量Ψ i2(n′)和子系统1在n时刻的状态量更新n′时刻的电流值Ι(n′)。
⑤使用Ι(n′)作为子系统2的注入电流源,计算子系统2在n″时刻的状态量。
⑥使用子系统2在n″时刻的状态量和子系统1在n时刻的状态量更新n′时刻的电流值Ι(n″)。
⑦使用Ι(n″)作为子系统2的注入电流源,计算子系统2在n+1时刻的状态量。
如图4所示的为电流源在n时刻、n′时刻以及n″时刻的电流表达式。以上步骤是假定使用了节点动态方程,方程中节点电压和节点电压时间积分均为节点动态方程中提供的状态量。若使用节点分析法,所建立的节点电压方程中仅有节点电压作为状态量,就需要构造一个相关节点的节点磁链量,在每步中使用节点电压更新节点电压时间积分量。更新状态量的方式如下:
Ψ i(0)=0,且Ψ i(n+1)=Ψ i(n)+u i△t     (2)
式(2)中,Ψ i(n)代表当前时刻的节点磁链值,Ψ i(n+1)代表下一时刻的节点磁链值,u i表示节点电压,△t表示步长。
本申请实施例利用电力系统在电感支路处进行解耦,将原来的电感支路由两个注入电流源替代的方法,使得不同子系统间的联络电流由节点电压积分的差值决定,节点电压积分量确定注入电流源电流值,节点电压积分值变换缓慢,在每个步长中根据多个子网的状态量实时更新即可,而每个子网的状态量是分别独立计算的,因此不需要串行求解联络电流,解耦方法采用积分函数,计算简单,不会造成数值振荡,数值稳定性高,多个子系统之间可以进行异步仿真,提高电力系统电磁暂态分析的仿真效率。
在另一实施例中,如图5所示的电力系统,由两个子系统构成(仅以此作为举例,不以此为限,在其他实施例中可由三个以上的子系统组成),两个子系统共用一个电容节点(经由电容接地的节点),电容值为C。将此电力系统在电容节点处进行解耦,得到如图6所示的没有电气连接的子系统1和子系统2,原来的电容节点分裂成两个子系统,分裂出来的两个边界节点i 1和i 2都经等效电压源接地。电容节点上的电压可以表示为:
Figure PCTCN2019117171-appb-000002
根据式(3),电容上的电压由流入电容的电流积分量决定,在仿真计算中,积分量的数值稳定性要远远优于微分量。式(3)中两个子系统注入电容的电荷量可以分别独立计算。这就允许两个子系统采用不同的时间步长,进行异步仿真,计算过程如下:
①根据n时刻电容电压值U c(n)作为电压源,计算n时刻子系统1中所有节点的电压值,并根据节点电压计算电压源支路上的电流值i 1(n)。
②根据n时刻电容电压值U c(n)作为电压源,计算n时刻子系统2中所有节点的电压值,并根据节点电压计算电压源支路上的电流值i 2(n)。
③根据步骤①和步骤②中计算得到的i 1(n)和i 2(n)更新 n′时刻的电容电压值U c(n′)。
④根据U c(n′),计算n′时刻子系统2中所有节点的电压值,并根据节点电压计算电压源支路上的电流值i 2(n′)。
⑤根据i 1(n)和i 2(n′)更新 n″时刻的电容电压值U c(n″)。
⑥根据U c(n″),计算n″时刻子系统2中所有节点的电压值,并根据节点电压计算电压源支路上的电流值i 2(n″)。
⑦根据i 1(n)和i 2(n″)更新 n+1时刻的电容电压值U c(n+1)。
这种通过分裂两个子系统电容节点,将电容等效成电压源,从而将电力系 统解耦的方法,利用电流的积分量稳定特性来进行分网解耦,计算简单,数值稳定性高。由于允许多个子网中的节点电压跳变,适用于电力电子开关电路的分网并行仿真。
实施例二
本申请实施例提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机可执行指令,该计算机可执行指令可执行上述任意方法实施例中的方法。其中,所述存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD)等;所述存储介质还可以包括上述种类的存储器的组合。
本申请的实施例可提供为方法或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括磁盘存储器、便携式紧凑磁盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光学存储器等)上实施的计算机程序产品的形式。

Claims (10)

  1. 一种电力系统的解耦仿真方法,包括:
    以电力系统中的预设电路元件作为边界,将所述电力系统解耦为至少两个子系统;
    将所述至少两个子系统之间的所述预设电路元件所在的支路进行分解,使用分别与所述至少两个子系统对应的分别具有初始时刻的电源初始值的多个注入电源替代所述支路;
    根据所述多个注入电源的电源初始值分别求解每个子系统的节点电压方程,获得每个子系统内部的所有节点的电压值;
    根据每个子系统的边界节点的电压值更新每个子系统对应的注入电源在当前时刻的状态量,并根据更新后的注入电源的状态量计算下一时刻每个子系统对应的注入电源的状态量,直至仿真周期结束。
  2. 根据权利要求1所述的方法,其中,所述预设电路元件包括电感元件。
  3. 根据权利要求2所述的方法,其中,所述将所述至少两个子系统之间的所述预设电路元件所在的支路进行分解,使用分别与所述至少两个子系统对应的分别具有初始时刻的电源初始值的多个注入电源替代所述支路,包括:
    将所述至少两个子系统之间的电感支路进行分解,使用与所述至少两个子系统各自对应的具有电流初始值的注入电流源替代所述电感支路。
  4. 根据权利要求3所述的方法,其中,所述根据所述多个注入电源的电源初始值分别求解每个子系统的节点电压方程,获得每个子系统内部的所有节点的电压值,包括:
    根据每个子系统对应的注入电流源的电流初始值,求解每个子系统的节点电压方程,获得每个子系统内部的所有节点的电压值。
  5. 根据权利要求4所述的方法,其中,所述根据每个子系统的边界节点的电压值更新每个子系统对应的注入电源在当前时刻的状态量,并根据更新后的注入电源的状态量计算下一时刻每个子系统对应的注入电源的状态量,直至仿真周期结束,包括:
    分别对所述至少两个子系统的边界节点在初始时刻之后的下一时刻的电压进行积分,更新每个子系统对应的注入电流源在初始时刻之后的下一时刻的电流值,将所述下一时刻作为当前时刻,并根据每个子系统的边界节点在所述当前时刻的电流值,迭代更新每个子系统对应的注入电流源在所述当前时刻之后的下一时刻的电流值,直至仿真周期结束。
  6. 根据权利要求1所述的方法,其中,所述预设电路元件包括电容元件。
  7. 根据权利要求6所述的方法,其中,所述将所述至少两个子系统之间的所述预设电路元件所在的支路进行分解,使用分别与所述至少两个子系统对应的分别具有初始时刻的电源初始值的多个注入电源替代所述支路,包括:
    将所述至少两个子系统之间的电容节点进行分解,使用与所述至少两个子系统各自对应的具有电压初始值的注入电压源替代所述电容节点。
  8. 根据权利要求7所述的方法,其中,所述根据所述多个注入电源的电源初始值分别求解每个子系统的节点电压方程,获得每个子系统内部的所有节点的电压值,包括:
    根据每个子系统对应的注入电压源的电压初始值,求解每个子系统的节点电压方程,获得每个子系统内部的所有节点的电压值。
  9. 根据权利要求8所述的方法,其中,所述根据每个子系统的边界节点的电压值更新每个子系统对应的注入电源在当前时刻的状态量,并根据更新后的注入电源的状态量计算下一时刻每个子系统注入电源的状态量,直至仿真周期结束,包括:
    分别对所述至少两个子系统的边界节点在初始时刻之后的下一时刻的电流进行积分,更新每个子系统对应的注入电压源在初始时刻之后的下一时刻的的电压值,将所述下一时刻作为当前时刻,并根据每个子系统的边界节点当前时刻的电压值计算当前步长的电压值,迭代更新每个子系统对应的注入电压源在所述当前时刻之后的下一时刻的电压值,直至仿真周期结束。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使所述计算机执行上述权利要求1-9中任一项所述的方法。
PCT/CN2019/117171 2019-02-01 2019-11-11 电力系统的解耦仿真方法及存储介质 WO2020155748A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910105814.4A CN109948185B (zh) 2019-02-01 2019-02-01 一种电力系统的解耦仿真方法
CN201910105814.4 2019-02-01

Publications (1)

Publication Number Publication Date
WO2020155748A1 true WO2020155748A1 (zh) 2020-08-06

Family

ID=67007943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117171 WO2020155748A1 (zh) 2019-02-01 2019-11-11 电力系统的解耦仿真方法及存储介质

Country Status (2)

Country Link
CN (1) CN109948185B (zh)
WO (1) WO2020155748A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109948185B (zh) * 2019-02-01 2020-10-16 全球能源互联网研究院有限公司 一种电力系统的解耦仿真方法
CN113626971B (zh) * 2020-05-09 2024-03-12 清华大学 一种基于交直流解耦的直流变压器仿真建模方法及系统
CN111783279A (zh) * 2020-06-08 2020-10-16 中国电力科学研究院有限公司 系统的联合仿真方法、装置、电子设备及可读存储介质
CN112072668B (zh) * 2020-08-31 2022-07-26 华南理工大学 一种电力系统凸分布式最优潮流求解方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719182A (zh) * 2009-12-11 2010-06-02 中国电力科学研究院 一种交直流电力系统分割并行电磁暂态数字仿真方法
WO2011126732A1 (en) * 2010-04-10 2011-10-13 Schweitzer Engineering Laboratories, Inc. Systems and method for obtaining a load model and related parameters based on load dynamics
CN106886616A (zh) * 2015-12-15 2017-06-23 中国电力科学研究院 一种大规模电磁暂态电网仿真的自动分网方法
CN109948185A (zh) * 2019-02-01 2019-06-28 全球能源互联网研究院有限公司 一种电力系统的解耦仿真方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1275318C (zh) * 2004-03-26 2006-09-13 清华大学 可处理vlsi中树网混合供电结构的瞬态仿真方法
US9024478B2 (en) * 2011-03-03 2015-05-05 Massachusetts Institute Of Technology Photovoltaic energy extraction with multilevel output DC-DC switched capacitor converters
CN102708250A (zh) * 2012-05-10 2012-10-03 天津大学 基于树形分层双向迭代的电力系统数字混合仿真方法
CN102750416B (zh) * 2012-06-19 2014-03-12 中国电力科学研究院 一种含开关特性电路的电磁暂态仿真的拓扑分网方法
TWI475795B (zh) * 2012-08-22 2015-03-01 Univ Nat Cheng Kung 光伏變流器及其控制方法
US9032352B2 (en) * 2013-06-05 2015-05-12 Synopsys, Inc. Method of optimizing capacitive couplings in high-capacitance nets in simulation of post-layout circuits
CN104809593B (zh) * 2015-05-12 2019-01-15 华北电力大学 电力系统分布式并行计算管理方法
CN106598911B (zh) * 2015-10-16 2019-10-15 全球能源互联网研究院 一种电路网络状态方程的列写方法
CN106777430B (zh) * 2015-11-23 2020-04-24 中国电力科学研究院 一种适合不同仿真时间尺度的变压器解耦方法
CN105608256B (zh) * 2015-12-15 2019-08-16 中国电力科学研究院 一种吸纳不同步长接口延时的并行计算分网方法
CN106886617B (zh) * 2015-12-15 2020-11-10 中国电力科学研究院 一种含多vsc的多速率电磁暂态分网方法
CN107679285B (zh) * 2017-09-08 2020-08-21 华北电力大学 特高压直流换流阀二端口电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719182A (zh) * 2009-12-11 2010-06-02 中国电力科学研究院 一种交直流电力系统分割并行电磁暂态数字仿真方法
WO2011126732A1 (en) * 2010-04-10 2011-10-13 Schweitzer Engineering Laboratories, Inc. Systems and method for obtaining a load model and related parameters based on load dynamics
CN106886616A (zh) * 2015-12-15 2017-06-23 中国电力科学研究院 一种大规模电磁暂态电网仿真的自动分网方法
CN109948185A (zh) * 2019-02-01 2019-06-28 全球能源互联网研究院有限公司 一种电力系统的解耦仿真方法

Also Published As

Publication number Publication date
CN109948185A (zh) 2019-06-28
CN109948185B (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
WO2020155748A1 (zh) 电力系统的解耦仿真方法及存储介质
Yan et al. A new optimal reactive power flow model in rectangular form and its solution by predictor corrector primal dual interior point method
CN106886616B (zh) 一种大规模电磁暂态电网仿真的自动分网方法
CN105260516B (zh) 一种含开关特性子网络的电磁暂态仿真方法
Zhen et al. High efficiency FEM calculation of the ionized field under HVDC transmission lines
CN109314390B (zh) 获取直流电力网潮流的等量电导补偿型全局线性对称方法
CN106777636A (zh) 面向微电网电磁暂态实时仿真的分块并行方法
CN103969552A (zh) 一种分布式发电系统的谐波源定位分析方法
CN106886617B (zh) 一种含多vsc的多速率电磁暂态分网方法
Prakash et al. Topological and primitive impedance based load flow method for radial and weakly meshed distribution systems
Mudunkotuwa et al. Co-simulation of electrical networks by interfacing EMT and dynamic-phasor simulators
CN110414118B (zh) 一种基于分离式建模的Boost变换器建模方法及应用
Zheng et al. An event-driven parallel acceleration real-time simulation for power electronic systems without simulation distortion in circuit partitioning
Mu et al. A node splitting interface algorithm for multi-rate parallel simulation of DC grids
Khan et al. Adaptive multi‐resolution framework for fast simulation of power electronic circuits
CN109417295B (zh) 获取直流电力网潮流的无损耗全局线性偏心方法
CN109257948B (zh) 获取直流电力网潮流的功率补偿型全局线性对称方法
CN111758197A (zh) 获取交流电力网中源荷的网损功率分量的对称方法
Konara et al. Interfacing electromagnetic transient simulation to transient stability model using a multi-port dynamic phasor buffer zone
CN109314391B (zh) 获取直流电力网潮流的功率补偿型全局线性偏心方法
CN117217002B (zh) 一种基于多步长的电磁暂态并行仿真方法和系统
CN117272901A (zh) 一种适用于电磁暂态仿真的定拓扑仿真模型构建方法
Babu et al. An efficient power flow method for distribution system studies under various load models
Peng et al. The Modeling of HVDC Circuit Breakers for Small Time-step Real-time Simulation
CN109149616B (zh) 一种超/特高压直流实时仿真换流站内解耦方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914103

Country of ref document: EP

Kind code of ref document: A1