WO2020155307A1 - 精准切负荷系统及其通信方法、接入装置 - Google Patents

精准切负荷系统及其通信方法、接入装置 Download PDF

Info

Publication number
WO2020155307A1
WO2020155307A1 PCT/CN2019/077489 CN2019077489W WO2020155307A1 WO 2020155307 A1 WO2020155307 A1 WO 2020155307A1 CN 2019077489 W CN2019077489 W CN 2019077489W WO 2020155307 A1 WO2020155307 A1 WO 2020155307A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
control
data
optical fiber
reset
Prior art date
Application number
PCT/CN2019/077489
Other languages
English (en)
French (fr)
Inventor
尹积军
陈庆
吴争
陆晓
崔恒志
罗建裕
徐春雷
李雪明
陈向东
罗凯明
李碧君
刘林
颜云松
任建锋
夏海峰
Original Assignee
国网江苏省电力有限公司
国电南瑞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网江苏省电力有限公司, 国电南瑞科技股份有限公司 filed Critical 国网江苏省电力有限公司
Publication of WO2020155307A1 publication Critical patent/WO2020155307A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/78Architectures of resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/55Prevention, detection or correction of errors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00019Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using optical means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the embodiments of the present application relate to the technical field of power systems, for example, to a precise load shedding system and its communication method and access device.
  • the precise load shedding system can concentrate the interruptible loads of dispersive power users for millisecond precision control, implement flexible adjustments, and achieve an instantaneous balance of power supply and demand.
  • the related precision load shedding system can usually be divided into three layers, namely the control master station layer, the control substation layer and the end user access layer. However, there is no specific access device that can realize data interaction between the control substation layer and the end user access layer in the related precision load shedding system, and the reliability of the precision load shedding system is not involved.
  • the present application provides a precise load shedding system and its communication method and access device, which can avoid the situation that the communication bandwidth of the conventional security and stability control system scheme is excessively occupied, improve reliability, save investment costs, and reduce maintenance difficulty.
  • an embodiment of the present application provides an access device, including: two European 30-channel pulse code modulation E1 interfaces, eight optical fiber interfaces, a central processing unit CPU, and a field programmable logic gate array FPGA; among them, two The E1 interface is respectively connected to the first control device and the second control device of the control sub-station; the eight optical fiber interfaces are respectively connected to eight control terminals; the FPGA includes eight sets of optical fiber transceiver modules and two sets of E1 transceiver modules, and eight sets of optical fiber transceiver modules Each group of E1 transceiver modules are connected to two E1 interfaces through serial interfaces. Each group of fiber optic transceiver modules are equipped with reset sub-modules, and each group of E1 transceiver modules are equipped with Reset the sub-module; the CPU is connected to the FPGA through the parallel bus.
  • an embodiment of the present application also provides a precise load shedding system, including: an access device having any one of the first aspect of the embodiments of the present application, a control substation, and at least one control terminal.
  • an embodiment of the present application also provides a communication method for a precise load shedding system.
  • the method is suitable for a precise load shedding system as in the second aspect of the embodiment of the present application.
  • the method includes: receiving downlink data sent by a control substation ; Use multiplexing algorithms to process the downlink data; send the processed downlink data to the control terminal; wherein the downlink data meets one of the following (i)-(iii): (i) the downlink data is two frames Data frames and the processed downlink data are two data frames, wherein the two data frames respectively correspond to the first control device and the second control device of the control substation; (ii) the downlink data is two Frame command frame and the processed downlink data is a two frame command frame, wherein the two frame command frames correspond to the first control device and the second control device of the control substation respectively; (iii) The downlink data is a data frame and a command frame, the processed downlink data is a data frame and a command frame, wherein the data frame and the
  • an embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the precise load shedding system as in any one of the third aspect of the embodiments of the present application is realized Communication method.
  • FIG. 1 is a schematic structural diagram of a precise load shedding system provided by an embodiment of the present application
  • Figure 2 is a schematic structural diagram of an access device provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a communication method of a precise load shedding system provided by an embodiment of the present application.
  • Fig. 1 is a schematic structural diagram of a precise load shedding system provided by an embodiment of the application, including: a control master station layer, a control substation layer, and an end user access layer.
  • the control master station layer includes a control master station 10, which is divided into a first control device and a second control device.
  • the main control station 10 is usually a 500kV AC collection station located in the vicinity of the DC drop point converter station with good conditions.
  • the main control station 10 can receive load shedding instructions sent by the upper-level stability control system, and perform load distribution and issue load shedding. instruction.
  • the control substation layer includes a control substation 20, which is divided into a first control device and a second control device.
  • the control sub-station 20 and the control main station 10 are connected through an SDH 2M line.
  • the control substation 20 is usually at least one of a 500kV AC station and a 220kV AC station located in a load concentrated area.
  • the control sub-station 20 can collect the load-shedding capacity information in the region, and send the load-shedding capacity information to the control master station 10, and execute the load shedding instruction sent by the control master station device.
  • the terminal user access layer includes an access device 30 and at least one control terminal 31.
  • the access device 30 and the control sub-station 20 are connected through a synchronous digital hierarchy (SDH) device, and each access device can be connected to a maximum of eight control terminals 31.
  • SDH synchronous digital hierarchy
  • FIG. 2 is a schematic structural diagram of an access device provided by an embodiment of the application, including: two E1 interfaces 300, eight optical fiber interfaces 301, a central processing unit (CPU) 302, and a field programmable logic gate array ( Field Programmable Gate Array, FPGA) 303.
  • CPU central processing unit
  • FPGA Field Programmable Gate Array
  • the two E1 interfaces 300 are respectively connected to the first control device and the second control device of the control substation 20 through the E1 channel.
  • the eight optical fiber interfaces 301 are respectively connected with the eight control terminals 31 through dedicated optical fiber channels.
  • FPGA 303 includes eight groups of fiber optic transceiver modules (labeled fiber-1, fiber-2,..., fiber-8 in Figure 2) and two sets of E1 transceiver modules (labeled E1-1 and E1-2 in Figure 2) , Eight groups of optical fiber transceiver modules are connected to eight optical fiber interfaces 301 through serial interfaces, and two groups of E1 transceiver modules are respectively connected to two E1 interfaces 300 through serial interfaces.
  • Each group of optical fiber transceiver modules is equipped with a reset sub-module, and each group of E1 transceiver modules are equipped with a reset sub-module; the reset sub-module is set to reset separately after confirming that the E1 transceiver module or the optical fiber transceiver module corresponding to the reset sub-module is faulty The E1 transceiver module or optical fiber transceiver module corresponding to the reset submodule.
  • the E1 transceiver module includes an E1 receiving module and an E1 transmitting module
  • the optical fiber transceiver module includes an optical fiber receiving module and an optical fiber transmitting module. Reset the sub-module, set to reset the E1 receiving module and E1 sending module separately after confirming that the E1 transceiver module corresponding to the reset sub-module is faulty; or reset the sub-module, set it to independently reset the fiber transceiver module corresponding to the reset sub-module Reset the optical fiber receiving module and optical fiber transmitting module.
  • the reset sub-module exists independently, it can be controlled by the CPU to realize the independent reset of the module without affecting other communication links, thereby avoiding the interruption of a communication link caused by interference of the FPGA, and improving reliability.
  • the CPU 302 is connected to the FPGA 303 through a parallel bus, and at the same time writes the data to be sent and controls the sending.
  • the access device 30 can receive the downlink data sent by the first control device and the second control device of the control substation 20, and forward the downlink data to all control terminals 31 accessing the access device 30; the access device 30 can also receive All the control terminals 31 that access the access device 30 send uplink data, and forward the uplink data to the first control device and the second control device of the control substation 20.
  • the downlink data may be at least one of a data frame and a command frame; the uplink data may be a data frame.
  • the access device 30 receives the downlink data sent by the first control device and the second control device of the control substation 20, and forwards the downlink data to all control terminals 31 accessing the access device 30.
  • the two E1 interfaces 300 of the access device 30 receive the downlink data sent by the first control device and the second control device of the control sub-station 20, and the two sets of E1 transceiver modules in the FPGA 303 read the downlink data and download The data is sent to the CPU 302 for processing, and the data corresponding to the fiber channel is obtained and then fed back to the FPGA 303.
  • the eight groups of optical fiber transceiver modules in the FPGA 303 send the downlink data to all the controls connected to the access device 30 through the eight optical fiber interface 301 Terminal 31.
  • the access device 30 receives the uplink data sent by all the control terminals 31 that access the access device 30, and forwards the uplink data to the first control device and the second control device of the control substation 20.
  • the working process of the access device 30 is:
  • the eight optical fiber interface 301 receives the uplink data sent by all the control terminals 31 connected to the access device 30, and the eight groups of optical fiber transceiver modules in the FPGA 303 read the uplink data and send the uplink data to the CPU 302 for processing.
  • the data corresponding to the E1 channel is fed back to the FPGA 303, and the two sets of E1 transceiver modules in the FPGA 303 send the uplink data to the first control device and the second control device of the control substation 20 through the two E1 interfaces 300.
  • the physical layer of the optical fiber transceiver module adopts 8b10b encoding, and the communication rate is 32.768Mbits/s.
  • the E1 transceiver module communicates with SDH equipment through the unbalanced 75 ohm coaxial cable.
  • the physical layer of the E1 transceiver module complies with the ITU-T G.703 specification, the communication rate is 2Mbits/s, and the bit error rate is less than 10 -8 .
  • the link layer protocol for the FPGA 303 to communicate with the eight-channel optical fiber interface 301 is its own protocol
  • the link layer protocol for the FPGA 303 to communicate with the two-channel E1 interface 300 is the high-level data link control (HDLC) protocol.
  • FPGA 303 further includes a watchdog module 305 connected to CPU 302.
  • the watchdog module 305 is set to reset the access device 30 after confirming that the CPU 302 is faulty.
  • the CPU 302 regularly feeds the dog according to a fixed cycle.
  • the watchdog module 305 confirms that the CPU 302 is faulty, and the watchdog module 305 resets the access device 30 . In this way, it is possible to effectively prevent the CPU 302 from crashing due to interference or the long-term communication interruption caused by the interference of the bus accessing the FPGA 303 by the CPU 302, thereby improving reliability.
  • the CPU 302 is set to actively reset the access device 30 after confirming that the FPGA 303 is faulty and the number of resets is less than or equal to 3. In one embodiment, taking the initial state as an example, as long as the CPU 302 has received any correct data sent by at least one of the two E1 interfaces 300 and the eight fiber interfaces 301, and it cannot receive one data for Tnr thereafter.
  • the CPU 302 If the frame is correct, at least one of the two E1 interfaces 300 and the eight fiber interfaces 301, the CPU 302 confirms that the FPGA 303 is faulty, the CPU 302 actively resets the access device 30, and records the number of resets once in the non-volatile memory; reset After that, the correct data of at least one of the two-way E1 interface 300 and the eight-way optical fiber interface 301 cannot be received for Tnr. The CPU 302 actively resets the access device 30 again, and records 1 in the non-volatile memory.
  • the number of times of resetting in response to determining that a correct frame of data of at least one of the two-way E1 interface 300 and the eight-way optical interface 301 is not received for a period of Tnr after resetting, perform a reset operation again and record the reset times.
  • the number of resets recorded is 3, even if a correct frame of data of at least one of the two-way E1 interface 300 and the eight-way optical interface 301 is not received for a subsequent period of Tnr, the reset operation will not be performed; After confirming that a correct frame of data of at least one of the two-way E1 interface 300 and the eight-way optical interface 301 is received after the reset, the CPU 302 clears the number of resets recorded in the non-volatile memory to 0.
  • the embodiment of the application provides an access device, including: two E1 interfaces, eight optical fiber interfaces, a central processing unit CPU, and a field programmable logic gate array FPGA; wherein the two E1 interfaces are respectively connected to the first control of the control substation
  • the device is connected to the second control device; the eight optical fiber interfaces are respectively connected to eight control terminals;
  • the FPGA includes eight sets of optical fiber transceiver modules and two sets of E1 transceiver modules.
  • the eight sets of optical fiber transceiver modules are connected to the eight optical fiber interfaces through serial interfaces, and two Group E1 transceiver modules are respectively connected to two E1 interfaces through serial interfaces.
  • Each group of optical fiber transceiver modules is equipped with a reset sub-module, and each group of E1 transceiver modules is equipped with a reset sub-module; the CPU is connected to the FPGA through a parallel bus. Since the access device can transmit and receive data through FPGA, two E1 interfaces and eight optical fiber interfaces, it is suitable for actual projects.
  • each group of FPGA optical fiber transceiver modules is equipped with a reset sub-module, and each group of E1 transceiver modules is The reset sub-module is provided, which improves the reliability of the access device, so that it can avoid the situation that the communication bandwidth of the conventional security and stability control system scheme is too large, save investment costs, and reduce the difficulty of maintenance.
  • An embodiment of the present application also provides a precise load shedding system, including: an access device, a control substation, and at least one control terminal as described in any one of the embodiments of the present application.
  • FIG. 3 is a schematic flowchart of a communication method of a precise load shedding system according to an embodiment of the application. The method is applicable to the precise load shedding system in the foregoing embodiment. As shown in FIG. 3, the method includes steps S101 to S106.
  • step S101 the access device receives downlink data sent by the control sub-station.
  • the downlink data can be a data frame or a command frame.
  • the data frame can be data information such as load shedding information, power information, and status information
  • the command frame can be instruction information such as load shedding instructions and load recovery instructions.
  • step S102 the access device uses a multiplexing algorithm to process the downlink data.
  • step S103 the access device sends the processed downlink data to the control terminal.
  • the processed downlink data is also a data frame; when the downlink data is a command frame, the processed downlink data is also a command frame.
  • the downlink data satisfies one of the following (i)-(iii):
  • the downlink data is two data frames and the processed downlink data is two data frames, wherein the two data frames respectively correspond to the first control device and the second control device of the control substation;
  • the downlink data is a two-frame command frame and the processed downlink data is a two-frame command frame, where the two command frames respectively correspond to the first control device and the second control device of the control substation;
  • the downlink data is a data frame and a command frame
  • the processed downlink data is a data frame and a command frame
  • the data frame corresponds to the first control device of the control substation and the command frame is The second control device of the control substation corresponds; or the data frame corresponds to the second control device of the control substation and the command frame corresponds to the first control device of the control substation.
  • the access device sends processed downlink data to all control terminals that access the access device at the same time.
  • step S104 the access device receives the uplink data sent by the control terminal.
  • the upstream data is a data frame.
  • the access device receives the uplink data sent by all control terminals that access the access device at the same time.
  • step S105 the access device uses a multiplexing algorithm to process the uplink data.
  • step S106 the access device sends the processed uplink data to the control substation.
  • the uplink data and the processed uplink data are a data frame.
  • the processed uplink data is also a data frame.
  • the access device polls the processed uplink data to the first control device and the second control device of the control substation at a certain time interval Tval, and sends it to the first control device of the control substation within the Tval time interval.
  • the data of the control device and the second control device are data received by the same optical fiber interface. In this way, it is possible to prevent the occasional drop of a frame on the channel from causing a problem that the information of a certain control terminal is not sent in time, and the reliability is improved.
  • each command frame is 12 words, and each word includes 16 bits; each command frame includes: a frame header with a length of 1 word, a control command with a length of 8 words, and a length It is the overall information of 1 word, the transmission sequence number of 1 word in length, and the Cyclical Redundancy Check (CRC) check code of 1 word in length, and the control command includes positive and negative codes .
  • CRC Cyclical Redundancy Check
  • each data frame is 12 words, and each word includes 16 bits; each data frame includes: a frame header with a length of 1 word, data information with a length of 8 words, and a length It is the overall information of 1 word, the sending sequence number of 1 word in length, and the CRC check code of 1 word in length.
  • Table 1 is basic information of downlink data, processed downlink data, uplink data, and processed uplink data.
  • K, L, M, N can be specifically agreed according to actual engineering needs, but the following principles must be met:
  • the communication frequency of the control sub-station to send downlink data to the access device is K frames/second, and the first control device and the second control device of the control sub-station respectively send one frame each time they communicate.
  • the length of the frame is 12 words, and each word includes 16 bits.
  • the data transmission and reception involved in the embodiments of the present application adopt a fixed time interval, and the interval time is less than or equal to the inverse of the communication frequency.
  • the embodiment of the present application also defines the frame content of the downlink data, the processed downlink data, the uplink data, and the processed uplink data, respectively.
  • Table 2 is the frame content of the downlink data sent by the control sub-station to the access device.
  • Table 3 shows the frame content of the processed downlink data sent by the access device to the control terminal.
  • Table 4 shows the frame content of the uplink data sent by the control terminal to the access device.
  • Class I load of this control terminal can be cut low word 2 Class I load of this control terminal can be cut high word 3 The Class II load of this control terminal can be cut low word
  • the class II load of this control terminal can be cut high word 5
  • the control terminal's class III load can be cut low word 6
  • the Class III load of this control terminal can be cut high word 7
  • Abnormal information word of this control terminal 8
  • the identification code of this control terminal 9
  • General information 10 Sending serial number (0 ⁇ (M-1))
  • Table 5 shows the frame content of the processed uplink data sent by the access device to the control substation.
  • Fibre channel i (1-8) control terminal connected to the I type load can be cut low word 2 Fibre channel i (1-8) connected to the control terminal's class I load can be cut high word 3 Fibre channel i (1-8) control terminal connected to the II load can be cut low word 4
  • the Class II load of the control terminal connected to the Fibre Channel i (1-8) can be cut high word 5
  • the Class III load of the control terminal connected to the Fibre Channel i (1-8) can be cut low.
  • the Class III load of the control terminal connected to the Fibre Channel i (1-8) can be cut high word 7 Abnormal information word of the control terminal connected to Fibre Channel i (1-8) 8 The identification code of the control terminal connected to the Fibre Channel i (1-8) 9 General information 10 Sending serial number (0 ⁇ (L-1)) 11 Check code (CRC16 of the above 11 words)
  • the low byte represents the positive code
  • the high byte represents the inverse code.
  • the definition of the specific command code varies depending on the project. The access device only needs to verify whether the format is correct, and there is no need to verify the specific content.
  • the sending sequence number is increased by 1 every time a frame is sent, and it is added to the maximum value (for example, the maximum value of the sending sequence number in Table 2 is (K-1), and the maximum value of the sending sequence number in Table 3 is (N-1).
  • the maximum value of the sending sequence number in Table 4 is (M-1), and the maximum value of the sending sequence number in Table 5 is (L-1)) after the next transmission, it becomes 0, and then the cycle is repeated.
  • the device on the receiving side judges whether the transmission sequence number in the frame received this time is consistent with the transmission sequence number in the frame received last time to determine whether the data received this time and the data received last time are duplicate data. Prevent the problem that the receiving side device cannot recognize the repeated data after the hardware problem.
  • the overall information is 1 word, a total of 16 bits, and each bit has a different meaning.
  • Table 6 is the definition of the overall information of the frame transmitted between the access device and the control substation (ie, the corresponding overall information in Table 2 and Table 5).
  • the unsuccessful reception of the E1 channel means that after the receiving side device has not received valid new data sent by the sending side device for Te time, reset the hardware receiving module, and after three resets, it still cannot receive the valid new data sent by the sending side device.
  • the receiving side device no longer resets the hardware receiving module, and informs the sending side device in the overall information of the sent data; after the receiving side device receives valid new data, this bit is immediately cleared to 0.
  • the sending-side device resets the hardware sending module by delaying the T time after resetting.
  • the sending-side device After resetting, the sending-side device again determines whether the receiving E1 channel unsuccessful flag exists, and responds Confirm that the E1 channel unsuccessful sign exists, continue to reset the hardware sending module and reset at most 3 times.
  • the relationship between T 1 and T e should satisfy T 1 >6T e .
  • Table 7 is the definition of the overall information of the frame transmitted between the access device and the control terminal (ie, the corresponding overall information in Table 3 and Table 4).
  • the control substation needs to send load shedding commands to any one of 1 to 8 control terminals
  • the load shedding command needs to be sent to the ath terminal
  • the access device sends a command frame to the ath control terminal .
  • Send data frames to other control terminals except for frame header, overall information, sending sequence number, and check code, all other positions are filled with 0), and at the same time, the position of "E1 channel data valid in data sent to fiber channel" in the overall information Fill in 0.
  • the access device When the access device sends data to the control terminal, it checks the status of the data sent by the last received control substation, and when it receives new valid data, it sets "E1 channel receives new valid data" to 1. ; In the case of not receiving new valid data, set "E1 channel to receive new valid data" to 0. When the data sent by the last receiving control substation is new command data, set “E1 channel received new command” to 1, and when the data sent by the last receiving control substation is not new command data, Set “E1 channel received new command" to 0.
  • the control terminal when it receives the load shedding command from the first control device and the second control device of the control substation via the access device, it can independently confirm the control commands of the first control device or the second control device in multiple frames.
  • the method of frame confirmation is to check whether a valid new command of the Nc frame is received within the Tc time, and whether the valid new command code of the Nc frame is consistent.
  • the control terminal finally checks whether the load shedding commands of the first control device and the second control device of the control substation are the same. If the load shedding commands of the first control device and the second control device are inconsistent, the load shedding with high priority is executed command. It should be noted that the priority of the load shedding command here means that the terminal side will have undesirable consequences due to not executing the load shedding command. The more serious the error, the higher the priority of the load shedding command.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the communication method of the precise load shedding system as described in the foregoing embodiment is implemented.
  • the computer storage medium of the embodiment of the present application may adopt any combination of at least one computer-readable medium.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination of the above.
  • computer-readable storage media include: electrical connections with at least one wire, portable computer disks, hard disks, random access memory (RAM), read-only memory (Read Only Memory, ROM, Erasable Programmable Read Only Memory (EPROM) or flash memory, optical fiber, portable compact disc read-only memory (Compact Disc Read-Only Memory, CD-ROM), optical storage device , Magnetic storage devices, or any suitable combination of the above.
  • the computer-readable storage medium can be any tangible medium that contains or stores a program, and the program can be used by or in combination with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal propagated in baseband or as a part of a carrier wave, and computer-readable program code is carried therein. This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium.
  • the computer-readable medium may send, propagate or transmit the program for use by or in combination with the instruction execution system, apparatus, or device .
  • the program code contained on the computer-readable medium can be transmitted by any suitable medium, including but not limited to wireless, wire, optical cable, radio frequency (RF), etc., or any suitable combination of the above.
  • any suitable medium including but not limited to wireless, wire, optical cable, radio frequency (RF), etc., or any suitable combination of the above.
  • the computer program code used to perform the operations of the application can be written in at least one programming language or a combination thereof.
  • the programming language includes object-oriented programming languages-such as Java, Smalltalk, C++, and also includes conventional procedural programming Language-such as "C" language or similar programming language.
  • the program code can be executed entirely on the user's computer, partly on the user's computer, executed as an independent software package, partly on the user's computer and partly executed on a remote computer, or entirely executed on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network-including Local Area Network (LAN) or Wide Area Network (WAN)-or it can be connected to an external computer ( For example, use an Internet service provider to connect via the Internet).
  • LAN Local Area Network
  • WAN Wide Area Network

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Small-Scale Networks (AREA)
  • Selective Calling Equipment (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

本申请公开了一种精准切负荷系统及其通信方法、接入装置。该接入装置包括:两路E1接口、八路光纤接口、中央处理器CPU和现场可编程逻辑门阵列FPGA;两路E1接口分别与控制子站的第一控制装置和第二控制装置连接;八路光纤接口分别与八个控制终端连接;FPGA包括八组光纤收发模块和两组E1收发模块,八组光纤收发模块分别通过串行接口与八路光纤接口连接,两组E1收发模块分别通过串行接口与两路E1接口连接,每组光纤收发模块中均设置有复位子模块,每组E1收发模块中均设置有复位子模块;CPU通过并行总线与FPGA连接。

Description

精准切负荷系统及其通信方法、接入装置
本申请要求在2019年02月01日提交中国专利局、申请号为201910103475.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电力系统技术领域,例如涉及一种精准切负荷系统及其通信方法、接入装置。
背景技术
常规的安全稳定控制系统中一个控制终端就要占用一个2M通道,在接入的控制终端数量较多且每个控制终端都独占一个2M通道的情况下,需占用大量的通信带宽,不利于节省投资。
精准切负荷系统能够将分散性的电力用户可中断负荷集中起来进行毫秒级精准控制,实施灵活调节,达到电力供需瞬时平衡。相关的精准切负荷系统通常可以分为三层,即控制主站层、控制子站层和终端用户接入层。然而,相关的精准切负荷系统中并没有具体能够实现控制子站层和终端用户接入层数据交互的接入装置,对于精准切负荷系统的可靠性也没有涉及。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请提供一种精准切负荷系统及其通信方法、接入装置,可以避免常规的安全稳定控制系统方案通信带宽占用过多的情况,提高可靠性,节约投资成本,并降低维护难度。
第一方面,本申请实施例提供了一种接入装置,包括:两路欧洲的30路脉冲编码调制E1接口、八路光纤接口、中央处理器CPU和现场可编程逻辑门阵列FPGA;其中,两路E1接口分别与控制子站的第一控制装置和第二控制装置连接;八路光纤接口分别与八个控制终端连接;FPGA包括八组光纤收发模块和两组E1收发模块,八组光纤收发模块分别通过串行接口与八路光纤接口连接, 两组E1收发模块分别通过串行接口与两路E1接口连接,每组光纤收发模块中均设置有复位子模块,每组E1收发模块中均设置有复位子模块;CPU通过并行总线与FPGA连接。
第二方面,本申请实施例还提供了一种精准切负荷系统,包括:具有如本申请实施例第一方面任一项的接入装置、控制子站,以及至少一个控制终端。
第三方面,本申请实施例还提供了一种精准切负荷系统的通信方法,方法适用于具有如本申请实施例第二方面的精准切负荷系统,方法包括:接收控制子站发送的下行数据;采用复用算法对下行数据进行处理;向控制终端发送处理后的下行数据;其中,所述下行数据满足以下(i)-(iii)中之一:(i)所述下行数据为两帧数据帧且所述处理后的下行数据为两帧数据帧,其中所述两帧数据帧分别对应所述控制子站的第一控制装置和第二控制装置;(ii)所述下行数据为两帧命令帧且所述处理后的下行数据为两帧命令帧,其中所述两帧命令帧分别对应所述控制子站的所述第一控制装置和所述第二控制装置;(iii)所述下行数据为一帧数据帧和一帧命令帧,所述处理后的下行数据为一帧数据帧和一帧命令帧,其中,所述数据帧与所述控制子站的所述第一控制装置对应且所述命令帧与所述控制子站的所述第二控制装置对应;或者所述数据帧与所述控制子站的所述第二控制装置对应且所述命令帧与所述控制子站的所述第一控制装置对应。
第四方面,本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如本申请实施例第三方面任一的精准切负荷系统的通信方法。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
图1是本申请实施例提供的一种精准切负荷系统的结构示意图;
图2是本申请实施例提供的一种接入装置的结构示意图;
图3是本申请实施例提供的一种精准切负荷系统的通信方法的流程示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结 构。
需要说明的是,本公开中术语“系统”和“网络”在本文中常被可互换使用。本申请的说明书和权利要求书及附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于限定特定顺序。
还需要说明是,本申请下述多个实施例可以单独执行,多个实施例之间也可以相互结合执行,本申请实施例对此不作具体限制。
图1为本申请实施例提供的一种精准切负荷系统的结构示意图,包括:控制主站层、控制子站层和终端用户接入层。
控制主站层包括控制主站10,控制主站10分为第一控制装置和第二控制装置。控制主站10通常为设在直流落点换流站近区通道条件好的500kV交流汇集站,控制主站10可以接收上级稳控系统发送的切负荷指令,并进行负荷分配,下发切负荷指令。
控制子站层包括控制子站20,控制子站20分为第一控制装置和第二控制装置。控制子站20和控制主站10通过SDH 2M线路连接。控制子站20通常为设在负荷集中区域的500kV交流站和220kV交流站中的至少一种。控制子站20可以收集本地区可切负荷量信息,并将可切负荷量信息发送至控制主站10,并执行控制主站装置发送的切负荷指令。
终端用户接入层包括接入装置30和至少一个控制终端31。接入装置30与控制子站20通过同步数字体系(Synchronous Digital Hierarchy,SDH)设备连接,每个接入装置最多可以与八个控制终端31连接。
图2为本申请实施例提供的一种接入装置的结构示意图,包括:两路E1接口300、八路光纤接口301、中央处理器(Central Processing Unit,CPU)302和现场可编程逻辑门阵列(Field Programmable Gate Array,FPGA)303。
两路E1接口300分别与控制子站20的第一控制装置和第二控制装置通过E1通道连接。
八路光纤接口301分别与八个控制终端31通过专用光纤通道连接。
FPGA 303包括八组光纤收发模块(图2中分别以光纤-1、光纤-2、…、光纤-8标示)和两组E1收发模块(图2中分别以E1-1和E1-2标示),八组光纤收发模块分别通过串行接口与八路光纤接口301连接,两组E1收发模块分别通过串行接口与两路E1接口300连接。每组光纤收发模块中均设置有复位子模块,每组E1收发模块中均设置有复位子模块;复位子模块设置为在确认复位子模块 对应的E1收发模块或者光纤收发模块故障后,单独复位该复位子模块对应的E1收发模块或者光纤收发模块。
E1收发模块包括E1接收模块和E1发送模块,光纤收发模块包括光纤接收模块和光纤发送模块。复位子模块,设置为在确认复位子模块对应的E1收发模块故障后,单独复位E1接收模块和E1发送模块;或者复位子模块,设置为在确认复位子模块对应的光纤收发模块故障后,单独复位光纤接收模块和光纤发送模块。
由于复位子模块独立存在,能够被CPU控制用以实现模块的单独复位,不影响其他通信链路,从而避免由于FPGA受到干扰而导致的某个通信链路中断的情况,提高了可靠性。
CPU 302通过并行总线与FPGA 303连接,同时写入需要发送的数据并控制发送。
接入装置30可以接收控制子站20的第一控制装置和第二控制装置发送的下行数据,并转发下行数据至接入该接入装置30的所有控制终端31;接入装置30还可以接收接入该接入装置30的所有控制终端31发送的上行数据,并转发上行数据至控制子站20的第一控制装置和第二控制装置。其中,下行数据可以为数据帧和命令帧中的至少一种;上行数据可以为数据帧。
在一实施例中,接入装置30接收控制子站20的第一控制装置和第二控制装置发送的下行数据,并转发下行数据至接入该接入装置30的所有控制终端31的工作过程为:接入装置30的两路E1接口300接收控制子站20的第一控制装置和第二控制装置发送的下行数据,FPGA 303中的两组E1收发模块读取该下行数据,并将下行数据发送至CPU 302进行处理,得到对应光纤通道的数据后反馈给FPGA 303,FPGA 303中的八组光纤收发模块通过八路光纤接口301将该下行数据发送至接入该接入装置30的所有控制终端31。
接入装置30接收接入该接入装置30的所有控制终端31发送的上行数据,并转发上行数据至控制子站20的第一控制装置和第二控制装置的工作过程为:接入装置30的八路光纤接口301接收接入该接入装置30的所有控制终端31发送的上行数据,FPGA 303中的八组光纤收发模块读取该上行数据,并将上行数据发送至CPU 302进行处理,得到对应E1通道的数据后反馈给FPGA 303,FPGA303中的两组E1收发模块通过两路E1接口300将该上行数据至控制子站20的第一控制装置和第二控制装置。
其中,光纤收发模块的物理层采用8b10b的编码方式,通讯速率为32.768Mbits/s。
E1收发模块通过75欧姆同轴电缆不平衡方式与SDH设备通讯,E1收发模块的物理层符合ITU-T G.703规范,通讯速率为2Mbits/s,误码率小于10 -8
另外,FPGA 303与八路光纤接口301通讯的链路层协议为自有协议,FPGA303与两路E1接口300通讯的链路层协议为高级数据链路控制(High-Level Data Link Control,HDLC)协议。
在一实施例中,如图2所示,FPGA 303还包括与CPU 302连接的看门狗模块305。
看门狗模块305,设置为在确认CPU 302故障后,复位接入装置30。在一实施例中,CPU 302按照固定的周期定时去喂狗,响应于确定CPU 302超过预设时间未喂狗,看门狗模块305确认CPU 302故障,看门狗模块305复位接入装置30。如此,能够有效防止CPU 302受干扰死机或者CPU 302访问FPGA 303的总线受干扰导致的通信长时间中断,提高了可靠性。
CPU 302,设置为在确认FPGA 303故障后,且复位次数小于或者等于3的情况下,主动复位接入装置30。在一实施例中,以初始状态为例,CPU 302只要曾经收到过两路E1接口300和八路光纤接口301中至少一种发送的任意一路正确数据,且在之后持续Tnr时间收不到一帧正确的两路E1接口300和八路光纤接口301中至少一种数据,CPU 302确认FPGA 303故障,CPU 302主动复位接入装置30,并在非易失存储器中记录下1次复位次数;复位后还是持续Tnr时间收不到一帧正确的两路E1接口300和八路光纤接口301中至少一种的数据,CPU 302再次主动复位接入装置30,并又在非易失存储器中记录下1次复位次数;响应于确定复位后还是持续Tnr时间收不到一帧正确的两路E1接口300和八路光纤接口301中至少一种的数据,再执行一次复位操作并记录复位次数。在记录的复位次数为3的情况下,即使后续仍旧持续Tnr时间收不到一帧正确的两路E1接口300和八路光纤接口301中至少一种的数据,也不再执行复位操作;响应于确定复位后收到一帧正确的两路E1接口300和八路光纤接口301中至少一种的数据,CPU 302将非易失存储器中记录的复位次数清0。
本申请实施例提供一种接入装置,包括:两路E1接口、八路光纤接口、中央处理器CPU和现场可编程逻辑门阵列FPGA;其中,两路E1接口分别与控制子站的第一控制装置和第二控制装置连接;八路光纤接口分别与八个控制终端 连接;FPGA包括八组光纤收发模块和两组E1收发模块,八组光纤收发模块分别通过串行接口与八路光纤接口连接,两组E1收发模块分别通过串行接口与两路E1接口连接,每组光纤收发模块中均设置有复位子模块,每组E1收发模块中均设置有复位子模块;CPU通过并行总线与FPGA连接。由于接入装置能够在通过FPGA、两路E1接口和八路光纤接口实现数据的收发,适用于实际工程,同时FPGA的每组光纤收发模块中均设置有复位子模块、每组E1收发模块中均设置有复位子模块,提升了接入装置的可靠性,因此能够避免常规的安全稳定控制系统方案通信带宽占用过多的情况,节约投资成本,并降低维护难度。
本申请实施例还提供了一种精准切负荷系统,包括:具有如本申请实施例任一项所述的接入装置、控制子站,以及至少一个控制终端。
图3为本申请实施例提供的一种精准切负荷系统的通信方法的流程示意图,该方法适用于上述实施例中的精准切负荷系统,如图3所示,方法包括步骤S101至步骤S106。
在步骤S101中,接入装置接收控制子站发送的下行数据。
下行数据可以为数据帧或者命令帧。其中,数据帧可以为可切负荷量信息、功率信息以及状态信息等数据信息,命令帧可以为切负荷指令和恢复负荷指令等指令信息。
在步骤S102中,接入装置采用复用算法对下行数据进行处理。
在步骤S103中,接入装置向控制终端发送处理后的下行数据。
在下行数据为数据帧的情况下,处理后的下行数据也为数据帧;在下行数据为命令帧的情况下,处理后的下行数据也为命令帧。
其中,下行数据满足以下(i)-(iii)中之一:
(i)下行数据为两帧数据帧且处理后的下行数据为两帧数据帧,其中两帧数据帧分别对应控制子站的第一控制装置和第二控制装置;
(ii)下行数据为两帧命令帧且处理后的下行数据为两帧命令帧,其中两帧命令帧分别对应控制子站的第一控制装置和第二控制装置;
(iii)下行数据为一帧数据帧和一帧命令帧,处理后的下行数据为一帧数据帧和一帧命令帧,其中,数据帧与控制子站的第一控制装置对应且命令帧与控制子站的第二控制装置对应;或者数据帧与控制子站的第二控制装置对应且命令帧与控制子站的第一控制装置对应。在一实施例中,接入装置向接入该接入装置的所有控制终端发送处理后的下行数据均是同一时刻发送的。
在步骤S104中,接入装置接收控制终端发送的上行数据。
上行数据为数据帧。
在一实施例中,接入装置接收接入该接入装置的所有控制终端发送的上行数据均是同一时刻接收的。
在步骤S105中,接入装置采用复用算法对上行数据进行处理。
在步骤S106中,接入装置向控制子站发送处理后的上行数据。
其中,所述上行数据和所述处理后的上行数据为一帧数据帧。
由于上行数据为数据帧,因此处理后的上行数据也为数据帧。
另外,接入装置将处理后的上行数据按一定的时间间隔Tval轮询送给控制子站的第一控制装置和第二控制装置,在Tval时间间隔内,上送给控制子站的第一控制装置和第二控制装置的数据是同一个光纤接口收到的数据。如此,可以防止通道上偶发的丢一帧现象导致某个控制终端的信息上送不及时的问题,提高了可靠性。
在一实施例中,每帧命令帧的长度为12个字,每个字包括16个bit;每帧命令帧包括:长度为1个字的帧头、长度为8个字的控制命令、长度为1个字的总体信息、长度为1个字的发送序号以及长度为1个字的循环冗余校验(Cyclical Redundancy Check,CRC)校验码,所述控制命令中包括正码和反码。
在一实施例中,每帧数据帧的长度为12个字,每个字包括16个bit;每帧数据帧包括:长度为1个字的帧头、长度为8个字的数据信息、长度为1个字的总体信息、长度为1个字的发送序号以及长度为1个字的CRC校验码。
在一实施例中,表1为下行数据、处理后的下行数据、上行数据以及处理后的上行数据的基本信息。
表1
Figure PCTCN2019077489-appb-000001
Figure PCTCN2019077489-appb-000002
其中,K、L、M、N可根据实际工程需要进行具体约定,但需满足下述原则:
Figure PCTCN2019077489-appb-000003
从表1中可以看出,控制子站向接入装置发送下行数据的通信频率为K帧/秒,控制子站的第一控制装置和第二控制装置每次通信时分别发送一帧,每帧的长度为12个字,每个字包括16个比特(bit)。接入装置处理后到控制终端的下行数据每次通信时分别发送两帧,即第1帧为控制子站第一控制装置所发信息,第2帧为第二控制装置所发信息。控制终端向接入装置发送的上行数据同理,为了简洁,此处不再赘述。
同时从表1可以看到,接入装置收发数据的时间间隔固定、且帧长固定,可以有效防止饱和攻击和溢出攻击,提高了可靠性。
另外,本申请实施例所涉及的数据的发送和接收都采用定时间间隔的方式,间隔时间小于或者等于通信频率的倒数。
本申请实施例还对分别对下行数据、处理后的下行数据、上行数据和处理后的上行数据的帧内容进行了定义。
其中,表2为控制子站向接入装置发送的下行数据的帧内容。
表2
Figure PCTCN2019077489-appb-000004
Figure PCTCN2019077489-appb-000005
表3为接入装置向控制终端发送的处理后的下行数据的帧内容。
表3
Figure PCTCN2019077489-appb-000006
Figure PCTCN2019077489-appb-000007
表4为控制终端向接入装置发送的上行数据的帧内容。
表4
按字偏移 数据帧
0 帧头(0x440a)
1 本控制终端的I类负荷可切量低字
2 本控制终端的I类负荷可切量高字
3 本控制终端的II类负荷可切量低字
4 本控制终端的II类负荷可切量高字
5 本控制终端的III类负荷可切量低字
6 本控制终端的III类负荷可切量高字
7 本控制终端的异常信息字
8 本控制终端的识别码
9 总体信息
10 发送序号(0~(M-1))
11 校验码(以上11个字的CRC)
表5为接入装置向控制子站发送的处理后的上行数据的帧内容。
表5
按字偏移 数据帧
0 帧头(第一控制装置0x660a,第二控制装置0x660b)
1 光纤通道i(1-8)所接控制终端的I类负荷可切量低字
2 光纤通道i(1-8)所接控制终端的I类负荷可切量高字
3 光纤通道i(1-8)所接控制终端的II类负荷可切量低字
4 光纤通道i(1-8)所接控制终端的II类负荷可切量高字
5 光纤通道i(1-8)所接控制终端的III类负荷可切量低字
6 光纤通道i(1-8)所接控制终端的III类负荷可切量高字
7 光纤通道i(1-8)所接控制终端的异常信息字
8 光纤通道i(1-8)所接控制终端的识别码
9 总体信息
10 发送序号(0~(L-1))
11 校验码(以上11个字的CRC16)
需要说明的是,
Figure PCTCN2019077489-appb-000008
可以为切负荷类别命令,低字节表示正码,高字节表示反码,具体命令码的定义根据工程的不同而不同,接入装置仅需要校验格式是否正确,无需校核具体内容。
对应表2和表3的内容可知,在控制子站需要向1-8个控制终端的任意一个发送切负荷命令的情况下,示例性的,控制子站需要向第a个控制终端发送切负荷命令,控制子站下发的帧为命令帧,命令帧中按字偏移a的位置所填数据格式为
Figure PCTCN2019077489-appb-000009
其余控制终端命令位置填0。
发送序号每发一帧就加1,加到最大值(例如,在表2中发送序号的值最大为(K-1),在表3中发送序号的值最大为(N-1),在表4中发送序号的值最大为(M-1),在表5中发送序号的值最大为(L-1))后下一次发送时变为0,再依次循环。接收侧的设备判断本次接收到的帧中的发送序号和上一次接收到的帧中的发送序号是否一致,以判断本次接收到的数据与上一次接收到的数据是否为重复的数据,防止硬件出问题后一直发送重复数据而接收侧设备无法识别的问题。
总体信息为1个字,共16个bit,每个bit位表示不同的含义。其中,表6为接入装置与控制子站之间传输的帧的总体信息(即表2和表5中对应的总体信息)定义。
表6
Figure PCTCN2019077489-appb-000010
Figure PCTCN2019077489-appb-000011
其中,收E1通道不成功指的是接收侧设备连续Te时间收不到发送侧设备发送的有效新数据后,复位硬件接收模块,经3次复位后还是收不到发送侧设备发送的有效新数据,接收侧设备不再复位硬件接收模块,并在发送数据的总体信息里告知发送侧设备;在接收侧设备接收到有效的新数据后,该bit位立即清0。发送侧设备响应于确定存在接收侧设备复位3次后仍未收到数据的标志,延时Te时间复位硬件发送模块,复位之后延时T时间再次确定收E1通道不成功标志是否存在,响应于确定收E1通道不成功标志存在,继续复位硬件发送模块且最多复位3次。T 1与T e的关系应满足T 1>6T e
表7为接入装置与控制终端之间传输的帧的总体信息(即表3和表4中对应的总体信息)定义。
表7
Figure PCTCN2019077489-appb-000012
Figure PCTCN2019077489-appb-000013
其中,在控制子站需要向1~8个控制终端的任意一个发送切负荷命令的情况下,假设为需要向第a个终端发送切负荷命令,接入装置给第a个控制终端发送命令帧。给其他控制终端下发数据帧(除帧头、总体信息、发送序号、校验码外其余位置都填0),同时将总体信息中的“发送给光纤通道的数据中E1通道数据有效”位置填0。
接入装置在给控制终端发送数据时,检查上一个接收到的控制子站发送的数据的状态,在收到新的有效数据的情况下,将“E1通道收到新的有效数据”置1;在没有收到新的有效数据的情况下,将“E1通道收到新的有效数据”置0。在上一个接收控制子站发送的数据为新的命令数据的情况下,将“E1通道收到新命令”置1,在上一个接收控制子站发送的数据不是新的命令数据的情况下,将“E1通道收到新命令”置0。
另外,控制终端经接入装置收到控制子站的第一控制装置和第二控制装置发送切负荷命令时,可独立对第一控制装置或第二控制装置的控制命令进行多 帧确认,多帧确认的方法为在Tc时间内检查是否收到Nc帧有效的新命令,且Nc帧有效的新命令码是否一致。控制终端最终检查控制子站的第一控制装置和第二控制装置的切负荷命令是否一致,在第一控制装置和第二控制装置的切负荷命令不一致的情况下,执行优先级高的切负荷命令。需要说明的是,此处切负荷命令的优先级是指,终端侧会因为不执行切负荷命令而产生不良后果,产生的错失越严重,切负荷命令的优先级就越高。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上述实施例描述的精准切负荷系统的通信方法。
本申请实施例的计算机存储介质,可以采用至少一个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有至少一个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)或闪存、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以至少一种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,程序设计语言包括面向对象的程序设计语言-诸如Java、Smalltalk、 C++,还包括常规的过程式程序设计语言-诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN)-连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。

Claims (11)

  1. 一种接入装置,包括:两路E1接口、八路光纤接口、中央处理器CPU以及现场可编程逻辑门阵列FPGA;其中,
    所述两路E1接口分别与控制子站的第一控制装置和第二控制装置连接;
    所述八路光纤接口分别与八个控制终端连接;
    所述FPGA包括八组光纤收发模块和两组E1收发模块,所述八组光纤收发模块分别通过串行接口与所述八路光纤接口连接,所述两组E1收发模块分别通过所述串行接口与所述两路E1接口连接,每组所述光纤收发模块中设置有复位子模块,每组所述E1收发模块中设置有所述复位子模块;
    所述CPU通过并行总线与所述FPGA连接。
  2. 根据权利要求1所述的接入装置,所述FPGA还包括与所述CPU连接的看门狗模块;
    所述看门狗模块,设置为响应于确认所述CPU故障,复位所述接入装置;
    所述CPU,设置为响应于确认所述FPGA故障,且复位次数小于或者等于3,复位所述接入装置。
  3. 根据权利要求1所述的接入装置,其中,所述光纤收发模块的物理层采用8b10b的编码方式,所述光纤收发模块的通讯速率为32.768Mbits/s;
    所述E1收发模块的物理层符合ITU-T G.703规范,所述E1收发模块的通讯速率为2Mbits/s,误码率小于10 -8
  4. 根据权利要求1所述的接入装置,其中,
    所述复位子模块,设置为在确认所述复位子模块对应的所述E1收发模块故障后,复位所述复位子模块对应的E1收发模块;
    或者所述复位子模块,设置为在确认复位子模块对应的所述光纤收发模块故障后,复位所述复位子模块对应的所述光纤收发模块。
  5. 根据权利要求4所述的接入装置,其中,所述E1收发模块包括E1接收模块和E1发送模块,所述光纤收发模块包括光纤接收模块和光纤发送模块;
    所述复位子模块,设置为在确认所述复位子模块对应的所述E1收发模块故障后,单独复位所述E1接收模块和所述E1发送模块;
    或者所述复位子模块,设置为在确认所述复位子模块对应的所述光纤收发模块故障后,单独复位所述光纤接收模块和所述光纤发送模块。
  6. 一种精准切负荷系统,包括:具有如权利要求1-5中任意一项所述的接入装置、控制子站,以及至少一个控制终端。
  7. 一种精准切负荷系统的通信方法,其中,所述方法适用于如权利要求6所述的精准切负荷系统,所述方法包括:
    接收控制子站发送的下行数据;
    采用复用算法对所述下行数据进行处理;
    向控制终端发送处理后的下行数据;
    其中,所述下行数据满足以下(i)-(iii)中之一:
    (i)所述下行数据为两帧数据帧且所述处理后的下行数据为两帧数据帧,其中所述两帧数据帧分别对应所述控制子站的第一控制装置和第二控制装置;
    (ii)所述下行数据为两帧命令帧且所述处理后的下行数据为两帧命令帧,其中所述两帧命令帧分别对应所述控制子站的所述第一控制装置和所述第二控制装置;
    (iii)所述下行数据为一帧数据帧和一帧命令帧,所述处理后的下行数据为一帧数据帧和一帧命令帧,其中,所述数据帧与所述控制子站的所述第一控制装置对应且所述命令帧与所述控制子站的所述第二控制装置对应;或者所述数据帧与所述控制子站的所述第二控制装置对应且所述命令帧与所述控制子站的所述第一控制装置对应。
  8. 根据权利要求7所述的方法,还包括:
    接收所述控制终端发送的上行数据;
    采用所述复用算法对所述上行数据进行处理;
    向所述控制子站发送处理后的上行数据;
    其中,所述上行数据和所述处理后的上行数据为一帧数据帧。
  9. 根据权利要求7所述的方法,其中,每帧所述命令帧的长度为12个字,每个字包括16个比特bit;每帧所述命令帧包括:长度为1个字的帧头、长度为8个字的控制命令、长度为1个字的总体信息、长度为1个字的发送序号以及长度为1个字的循环冗余校验CRC校验码,所述控制命令中包括正码和反码。
  10. 根据权利要求7-8中任一项所述的方法,其中,每帧所述数据帧的长度为12个字,每个字包括16个bit;每帧所述数据帧包括:长度为1个字的帧头、长度为8个字的数据信息、长度为1个字的总体信息、长度为1个字的发送序号以及长度为1个字的CRC校验码。
  11. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求7-10中任一所述的精准切负荷系统的通信方法。
PCT/CN2019/077489 2019-02-01 2019-03-08 精准切负荷系统及其通信方法、接入装置 WO2020155307A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910104886.7 2019-02-01
CN201910104886.7A CN109617834B (zh) 2019-02-01 2019-02-01 一种精准切负荷系统及其通信方法、接入装置

Publications (1)

Publication Number Publication Date
WO2020155307A1 true WO2020155307A1 (zh) 2020-08-06

Family

ID=66019537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077489 WO2020155307A1 (zh) 2019-02-01 2019-03-08 精准切负荷系统及其通信方法、接入装置

Country Status (3)

Country Link
US (1) US10785043B2 (zh)
CN (1) CN109617834B (zh)
WO (1) WO2020155307A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109687471A (zh) * 2019-02-01 2019-04-26 国网江苏省电力有限公司 一种大规模可中断负荷的紧急精准控制方法和系统
CN109617834B (zh) * 2019-02-01 2021-08-24 国网江苏省电力有限公司 一种精准切负荷系统及其通信方法、接入装置
CN113949454B (zh) * 2021-09-08 2023-02-14 国网电力科学研究院有限公司 光纤/e1转换设备、安全稳定控制系统站间通信方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707629A (zh) * 2009-11-13 2010-05-12 国网电力科学研究院 电网安全稳定控制装置信息自组织的镜像同步通信方法
CN106972499A (zh) * 2017-05-09 2017-07-21 许继集团有限公司 一种精准切负荷控制系统

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5673252A (en) * 1990-02-15 1997-09-30 Itron, Inc. Communications protocol for remote data generating stations
US5353413A (en) * 1992-03-19 1994-10-04 Aeg Transportation Systems, Inc. Method and apparatus for christening a trainline monitor system
JP3581377B2 (ja) * 1993-04-06 2004-10-27 ソニー株式会社 ディジタル多重伝送方法と装置
FI95979C (fi) * 1994-03-01 1996-04-10 Nokia Telecommunications Oy Hierarkkinen synkronointimenetelmä
US6988025B2 (en) * 2000-11-28 2006-01-17 Power Measurement Ltd. System and method for implementing XML on an energy management device
US6556583B1 (en) * 1998-02-24 2003-04-29 Yokogawa Electric Corporation Communication system and communication control method
FI106500B (fi) * 1998-05-28 2001-02-15 Nokia Networks Oy Multipleksointi PDH-tietoliikenneverkossa
CN1257356A (zh) * 1998-07-24 2000-06-21 休斯电子公司 多调制无线通信
IT1307016B1 (it) * 1999-01-27 2001-10-11 Cselt Centro Studi Lab Telecom Procedimento e dispositivo per la trasmissione di segnali numerici.
US6430210B1 (en) * 1999-04-05 2002-08-06 General Electric Company Receiver for detecting an amplitude modulated signal insinuated on an GHM signal
US20120296974A1 (en) * 1999-04-27 2012-11-22 Joseph Akwo Tabe Social network for media topics of information relating to the science of positivism
GB9912290D0 (en) * 1999-05-27 1999-07-28 Marconi Comm Ltd Network interconnections
US20040246891A1 (en) * 1999-07-23 2004-12-09 Hughes Electronics Corporation Air interface frame formatting
US6782002B1 (en) * 2000-07-18 2004-08-24 At&T Corp. Apparatus for multiplexing multiple E1 circuits over multiple T1 circuits
US6999446B2 (en) * 2000-10-27 2006-02-14 L-3 Communications Corporation Adaptive, multi-rate waveform and frame structure for a synchronous, DS-CDMA system
US7136725B1 (en) * 2001-06-21 2006-11-14 Paciorek Ronald R Load shed notification method, product, and apparatus
WO2003007518A2 (en) * 2001-07-10 2003-01-23 Salira Optical Network Systems, Inc Allocation of upstream bandwidth in an ethernet passive optical network
US7254140B1 (en) * 2002-01-14 2007-08-07 Xilinx, Inc. Method and apparatus for transceiving data in a micro-area network
US7523215B1 (en) * 2002-01-14 2009-04-21 Xilinx, Inc. Method and apparatus for configuring data transmissions within a micro-area network
WO2003067843A1 (en) * 2002-02-06 2003-08-14 Wuhan Fiberhome Networks Co., Ltd Resilient multiple service ring
FR2841726B1 (fr) * 2002-06-28 2005-04-29 Cit Alcatel Methode de decision securisee d'un etat de donnee d'un canal de communication pour systeme de transmission
FR2842683B1 (fr) * 2002-07-22 2005-01-14 Cit Alcatel Dispositif de multiplexage, dispositif de multiplexage et systeme de multiplexage/demultiplexage
US9860965B2 (en) * 2006-03-28 2018-01-02 Wireless Environment, Llc Cloud connected lighting system
US8994276B2 (en) * 2006-03-28 2015-03-31 Wireless Environment, Llc Grid shifting system for a lighting circuit
US8829799B2 (en) * 2006-03-28 2014-09-09 Wireless Environment, Llc Autonomous grid shifting lighting device
KR100750172B1 (ko) * 2006-03-31 2007-08-21 삼성전자주식회사 전력선 통신 네트워크 및 전력선 통신 방법
US11178050B2 (en) * 2006-04-06 2021-11-16 Samuel Frederick Wood Neural network for secure data transport, system and method
US8773827B2 (en) * 2008-02-19 2014-07-08 Simply Automated Incorporated Intelligent circuit breaker apparatus and methods
US8975778B2 (en) * 2009-07-30 2015-03-10 Lutron Electronics Co., Inc. Load control system providing manual override of an energy savings mode
US9013059B2 (en) * 2009-07-30 2015-04-21 Lutron Electronics Co., Inc. Load control system having an energy savings mode
US8901769B2 (en) * 2009-07-30 2014-12-02 Lutron Electronics Co., Inc. Load control system having an energy savings mode
US8946924B2 (en) * 2009-07-30 2015-02-03 Lutron Electronics Co., Inc. Load control system that operates in an energy-savings mode when an electric vehicle charger is charging a vehicle
US9124130B2 (en) * 2009-07-30 2015-09-01 Lutron Electronics Co., Inc. Wall-mountable temperature control device for a load control system having an energy savings mode
US8866343B2 (en) * 2009-07-30 2014-10-21 Lutron Electronics Co., Inc. Dynamic keypad for controlling energy-savings modes of a load control system
US9602366B1 (en) * 2010-03-03 2017-03-21 Netscout Systems, Inc. System and method for correcting clock discrepancy in simultaneous network traffic captures
CN202004760U (zh) * 2011-01-21 2011-10-05 上海宽岱电讯科技发展有限公司 一种带断电断纤检测功能的光纤收发装置
US8368310B1 (en) * 2012-03-23 2013-02-05 Inncom International, Inc. System and method for distributed lighting device control
KR101357646B1 (ko) * 2012-05-09 2014-02-11 (주)텔리언 통합형 수동광네트워크 맥 처리장치 및 그를 이용한 통합형 수동광네트워크 광라인종단 시스템
US20140059443A1 (en) * 2012-08-26 2014-02-27 Joseph Akwo Tabe Social network for media topics of information relating to the science of positivism
EP3031148B1 (en) * 2013-08-09 2017-10-04 Savox International S.A. A communication apparatus, a communication arrangement and a communication method
US20150271557A1 (en) * 2014-03-24 2015-09-24 Joseph Akwo Tabe Multimedia television system for interactive social media and social network
US9398422B2 (en) * 2014-11-05 2016-07-19 Beco, Inc. Systems, methods and apparatus for light enabled indoor positioning and reporting
KR101710524B1 (ko) * 2014-12-03 2017-03-13 (주)텔리언 시분할 다중화 및 파장분할 다중화 방식의 수동 광 네트워크에서 광가입자망 종단유닛을 등록하는 광 라인 종단장치 및 방법
US20160275294A1 (en) * 2015-03-16 2016-09-22 The MaidSafe Foundation Data system and method
US20190036895A1 (en) * 2015-03-16 2019-01-31 The MaidSafe Foundation Data distribution over nodal elements
CN107872415B (zh) * 2016-09-23 2022-07-15 中兴通讯股份有限公司 一种数据传输方法及装置
US10348415B2 (en) * 2017-05-30 2019-07-09 Honeywell International Inc. Optical wireless communications for vehicle operator personal computing devices
US10951690B2 (en) * 2017-09-22 2021-03-16 Microsoft Technology Licensing, Llc Near real-time computation of scaling unit's load and availability state
US10812390B2 (en) * 2017-09-22 2020-10-20 Microsoft Technology Licensing, Llc Intelligent load shedding of traffic based on current load state of target capacity
US20190132815A1 (en) * 2017-10-27 2019-05-02 Sentry Centers Holdings LLC Systems and methods for beacon integrated with displays
US10530647B2 (en) * 2018-03-26 2020-01-07 At&T Intellectual Property I, L.P. Processing of electromagnetic waves and methods thereof
CN109617834B (zh) * 2019-02-01 2021-08-24 国网江苏省电力有限公司 一种精准切负荷系统及其通信方法、接入装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707629A (zh) * 2009-11-13 2010-05-12 国网电力科学研究院 电网安全稳定控制装置信息自组织的镜像同步通信方法
CN106972499A (zh) * 2017-05-09 2017-07-21 许继集团有限公司 一种精准切负荷控制系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YIN WEI; ,YAN YUNSONG; ,PAN QI; ,WANG LIANG; ,LI XUEMING; ,SI QINGHUA;: "Design of Fast Communication Interface for Precision Load Control System", AUTOMATION OF ELECTRIC POWER SYSTEMS, vol. 42, no. 10, 25 May 2018 (2018-05-25), CN, pages 143 - 149, XP009522440, ISSN: 1000-1026, DOI: 10.7500/AEPS20170501003 *

Also Published As

Publication number Publication date
US10785043B2 (en) 2020-09-22
CN109617834B (zh) 2021-08-24
CN109617834A (zh) 2019-04-12
US20200252226A1 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
WO2020155307A1 (zh) 精准切负荷系统及其通信方法、接入装置
US10341020B2 (en) Flexible ethernet logical lane aggregation
CN104243010B (zh) 一种中转台无线互联方法、系统和中转台
EP2963874A1 (en) Data scheduling and switching method, apparatus, and system
EP3402143B1 (en) Congestion control method and apparatus
US20200252833A1 (en) Accurate load shedding system and method based on a power-dedicated wireless network
CN104427602A (zh) 功率控制方法和装置
KR20200003073A (ko) 데이터 전송 방법, 기지국 및 단말 디바이스
US11146988B2 (en) Voice over long-term evolution (VoLTE) data guarantee method and device
WO2018228457A1 (zh) 发送和接收反馈信息的方法和装置
CN106603506A (zh) 基于多现场总线的数据通信方法、设备及系统
WO2013078613A1 (zh) 天馈设备的拓扑信息处理方法、天馈设备和系统
US20220417104A1 (en) Backhaul method, unit, data allocation method and controller, network system, and medium
CN103178943A (zh) 用于链路自适应的方法、装置和系统
RU2739925C1 (ru) Способ передачи данных путем преобразования и относящийся к нему продукт
EP3667964B1 (en) Data processing method and related apparatus
CN107995315B (zh) 业务板间信息的同步方法、装置、存储介质及计算机设备
DE112019001730T5 (de) Technologien für kooperative verbindungsentzerrung ohne unterbrechung für den verbindungsverkehr
CN114884767B (zh) 一种同步双冗余can总线通信系统、方法、设备及介质
CN113473267B (zh) 数据传输方法、装置及通信装置
WO2019015487A1 (zh) 一种数据重传处理方法、rlc实体和mac实体
US20220279565A1 (en) Method and device for scheduling transmission
WO2021023001A1 (zh) 业务传输方法、装置及计算机可读存储介质
Cisco Message Structure Overview
US20160073295A1 (en) Wireless communication apparatus, wireless communication system, and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913475

Country of ref document: EP

Kind code of ref document: A1