WO2013078613A1 - 天馈设备的拓扑信息处理方法、天馈设备和系统 - Google Patents

天馈设备的拓扑信息处理方法、天馈设备和系统 Download PDF

Info

Publication number
WO2013078613A1
WO2013078613A1 PCT/CN2011/083142 CN2011083142W WO2013078613A1 WO 2013078613 A1 WO2013078613 A1 WO 2013078613A1 CN 2011083142 W CN2011083142 W CN 2011083142W WO 2013078613 A1 WO2013078613 A1 WO 2013078613A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
antenna
topology information
antenna feeder
level
Prior art date
Application number
PCT/CN2011/083142
Other languages
English (en)
French (fr)
Other versions
WO2013078613A9 (zh
Inventor
谷明旭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN2011800026932A priority Critical patent/CN102511180A/zh
Priority to PCT/CN2011/083142 priority patent/WO2013078613A1/zh
Publication of WO2013078613A1 publication Critical patent/WO2013078613A1/zh
Publication of WO2013078613A9 publication Critical patent/WO2013078613A9/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a topology information processing method, an antenna feeder device, and a system for an antenna feeder device. Background technique
  • the antenna feeder is an important part of the mobile communication base station.
  • the common antenna feeders are TMA (Tower Mounted Amplifier), RET (Remote Electrical Tilt Unit), etc.
  • the base station usually includes multiple antennas. Equipment, and multiple antenna feeders are connected to the RF module of the base station via the same half-duplex RS-485 (Half Duplex-485, Half-duplex 485) or OOK (On-Off Keying) bus. .
  • RS-485 Half-duplex-485, Half-duplex 485) or OOK (On-Off Keying) bus.
  • the serial number of all devices is obtained when the device is scanned.
  • the physical topology of the antenna device on the physical connection is unknown.
  • the installer needs to record the serial number of the antenna device and the corresponding RF module.
  • the relationship that is, the RF service attribution of the antenna feeder device, ensures that the "sector-RF module-antenna feeder device" correspondence is correct when the antenna feeder device is configured,
  • the embodiment of the invention provides a topology information processing method, an antenna feeder device and a system for the antenna feeder device.
  • the technical solution is as follows:
  • a topology information processing method for an antenna feeder device comprising a base station processing device and at least two antenna feeder devices, wherein the bus structure of the base station processing device and the at least two antenna feeder devices is a serial bus, At least two antenna feeder devices include a first antenna feeder device, and the method includes:
  • the first day feed device receives topology information
  • the first antenna device performs an incremental operation on the received topology information to generate a next-level topology information.
  • An antenna feeder device the antenna feeder system includes a base station processing device and at least the two antenna feeder devices, and the bus structure of the base station processing device and the at least the two antenna feeder devices is a serial bus, the day Feeding equipment includes:
  • a receiving module configured to receive topology information
  • a generating module configured to perform an incremental operation on the received topology information to generate a next-level topology information
  • a sending module configured to send the next-level topology information to the next-level antenna device.
  • An antenna feeder system comprising:
  • a base station processing device and at least two of the above-mentioned antenna feeder devices wherein the bus structure of the base station processing device and the at least the two antenna feeder devices is a serial bus;
  • the base station processing device is configured to send topology information to a next-stage antenna feeder device of the base station processing device on the bus structure.
  • the antenna feeder device can receive the topology information of the upper-level device in the bus structure, process the received topology information, and then send the processed topology information to the next
  • the first-level antenna feeder device enables the device on the serial bus to obtain the topology information on the link step by step, thereby determining the physical topological position thereof, and solving the confusion of the information obtained by scanning in the prior art, and the device connection topology is unclear.
  • the location problem brings convenience for subsequent network construction and maintenance.
  • FIG. 1 is a schematic diagram of a conventional antenna feeder networking in the prior art
  • FIG. 2 is a schematic diagram of a complex antenna feeder network in the prior art
  • FIG. 3 is another schematic diagram of a complex antenna feed network in the prior art
  • FIG. 4 is a schematic diagram of a bus structure of an antenna feeder system according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for processing topology information of an antenna feeder device according to an embodiment of the present invention
  • FIG. 6 is a flowchart of a method for processing topology information of an antenna feeder device according to an embodiment of the present invention
  • FIG. 7 is a data mapping example of topology information and device information according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of connection of an antenna feeder system according to an embodiment of the present invention
  • FIG. 10 is a schematic structural diagram of an antenna feeder device according to an embodiment of the present invention
  • FIG. 11 is a schematic structural diagram of an antenna feeder system according to an embodiment of the present invention. detailed description
  • the supported antenna feeder networking is as follows:
  • FIG. 1 is a schematic diagram of a conventional antenna feeder networking in the prior art. See Figure 1.
  • Antenna system includes RET, RF (Radio
  • the Frequency, RF module and BBU Building Base Band Unit
  • the BBU is connected to the RF module through an optical fiber.
  • the RF module can be connected to the ESC antenna in at least two ways, such as: (1) directly transmitting the RS-485 control signal to the RET through a multicore cable; (2) passing the RF feeder Connect SBT (Smart Bias-Tee), SBT and connect RET through Multicore Cable.
  • the OOK signal is transmitted in the RF feeder, and the SBT is responsible for converting this signal into an RS-485 signal and then delivering it to RET, which accepts the RS-485 signal.
  • FIG. 2 is a schematic diagram of a complex antenna feeder network in the prior art.
  • the antenna feeder in the antenna feeder system is connected by an antenna cascade.
  • RET can serially connect multiple RETs via a Multicore Cable. This type of antenna cascading is often used in scenarios where multi-antenna co-towers are installed at close range, which reduces installation costs.
  • FIG. 3 is another schematic diagram of a complex antenna feeder network in the prior art.
  • the antenna feeder connection method in the antenna feeder system is sector splitting.
  • the BBU is connected to the RF module through the optical fiber.
  • the RF module is connected to the one-to-many RF splitter antenna feeder through the feeder.
  • Each output branch of the RF combiner is connected to the SBT through the RF feeder, and the SBT completes the OOK signal.
  • the RET is connected through the multi-core wire.
  • This type of sector splitting is mostly used in rare areas of suburban users, achieving the same sector coverage in multiple physical directions. It can be understood that the OOK signal and the RS-485 signal and the like enumerated in the embodiments of the present invention are only a specific example, and other kinds of signals may be used in the product implementation.
  • the antenna feeder system includes a base station processing device and a plurality of antenna feeder devices SS1, SS2 SSSN, wherein the base station processing device is a master device in a bus structure, and the plurality of antenna feeder devices SS1, SS2 SSSN are The slave device in the bus structure, the master device and the slave device have a control and controlled relationship, and the relationship between the master device and the slave device is determined by the bus structure.
  • the base station processing device can An antenna federation device as defined in the Interface Standardization Organization or 3GPP Iuant Interface Protocol, such as RET, TMA or RF splitter.
  • FIG. 5 is a flowchart of a method for processing topology information of an antenna feeder device according to an embodiment of the present invention.
  • the execution body of this embodiment may be an antenna feeder.
  • the antenna feeder device has an information processing function.
  • the uplink control port of each level of ALD is designed to receive the CPU processing operation before receiving the upper-level message, and then send out from the downlink control port.
  • the uplink control port is a physical port for receiving topology information from a higher-level device in the bus structure
  • the downlink control port is a physical port for transmitting topology information to a lower-level device in the bus structure, as shown in FIG. 5 .
  • the method includes:
  • the first day feeding device receives topology information
  • the topology information may be sent by a base station processing device that is a master device in a serial bus structure, or may be sent by an upper-level antenna device of the antenna feeder device in a serial bus structure.
  • the topology information includes at least: first node information and topological level information.
  • the first node information refers to information used in the topology information to describe a source node that issues topology information, and the first node information uniquely identifies a module in an antenna feeder system that manages all antenna feeder devices on a branch.
  • the cabinet, the frame, the slot information of the RF module in the base station processing device, and the port number information used to connect the antenna feeder device on the RF module jointly form the first node information.
  • the remote radio frequency module (RRU) and the radio frequency module (RFU) in the cabinet are collectively referred to as a radio frequency module (ie, RF).
  • the RF module may be either an RRU or an RFU.
  • the information of the topology level is used to describe the location of the antenna feeder device on the branch of the antenna feeder network relative to the first node.
  • the topology level information is used to describe that the antenna feeder device that receives the topology information is on the ALD chain, and is at the first level of the chain with respect to the source node of the lower topology information.
  • the scenarios involved in the antenna feeder field are classified as follows: Cascade of antenna feed and sector splitting of antenna feed, where the cascade of antenna feed belongs to the chain topology, and the sector split of the antenna feed belongs to the star topology.
  • Different topologies have different topological information.
  • the feed system is a chain topology, and the topology information includes at least the first node information and the topology level information.
  • the topology information includes at least the first node information, the topology level information, and the branch information.
  • the embodiment of the present invention does not involve a ring structure. Compared with the chain structure, the ring structure also needs to identify the end node, that is, the topology information also includes the tail node information, and the first node and the tail node. A pre-established mutual transfer mechanism between points is used to ensure that a complete ring structure can be drawn.
  • the first day feeding device receives the topology information, and then includes: the first day feeding device binds the received topology information to the antenna feeder device information of the first antenna feeding device. Specifically, when the topology information is received, the first day feeding device records the received topology information, and establishes a day with the first antenna device. The device is processed to the base station.
  • the first day feeding device binds the received topology information to the antenna feeder device information of the first antenna feeder device, and further includes:
  • the antenna feed device information and the topology information are sent to the base station processing device.
  • the antenna feed device information and the received topology information are sent to the base station processing device, and After the topology information of the antenna feeder device on the serial bus has been determined, when the device scan message from the base station processing device is received, the bound antenna feeder device information and the received topology information are sent to the base station for processing. device.
  • the topology information is transparently transmitted at the first level by the bus structure, and is received by the base station processing device, so that the base station processing device learns the location of each antenna device in the topology, and the base station processes Based on the return information, the device can automatically draw and refresh the node topology map, and support the device to add, delete, modify, and search directly on the topology map.
  • the first day feeding device performs an incremental operation on the received topology information to generate the next level topology information.
  • the topology information received by the antenna device is that the antenna device is currently in the antenna feeder system.
  • the physical topological location in the physical connection is that the antenna device is currently in the antenna feeder system.
  • the incremental operation includes: adding the topology level information in the topology information to the increment N to obtain the next level of topology level information, where N is a natural number greater than 0.
  • the increment may be set at the time of development, and may be adjusted according to actual conditions, which is not specifically limited in the embodiment of the present invention.
  • the first day feed device sends the next-level topology information to the next-level antenna feed device.
  • the antenna feeder device implements the processing of the received topology information, and after being processed by the antenna feeder device, The device sends the processed topology information.
  • the embodiments of the present invention relate to a base station in a mobile communication system, including but not limited to: a 2G system, a 3G system, or an LTE (Long Term Evolution) system, etc.
  • the base station may be a GSM (Global System for Mobile) Communications, global mobile cloud communication system) or BTS (Base Transceiver Station) in CDMA (Code Division Multiple Access), or WCDMA (Wideband Code Division Multiple Access Wireless)
  • GSM Global System for Mobile
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access Wireless
  • the NodeB (Node base station) in the multiple access) may also be an eNodeB (evolved Node B) in LTE, and the present invention is not limited thereto.
  • the antenna feeder device can receive the topology information of the upper-level device in the bus structure, and process the received topology information, and then After processing The information is used to determine the physical topological position, which solves the problem that the information obtained by scanning in the prior art is confusing and the location of the device connection topology is unclear, which brings convenience for subsequent network construction and maintenance.
  • FIG. 6 is a flowchart of a method for processing topology information of an antenna feeder device according to an embodiment of the present invention.
  • the interaction subject of this embodiment is a base station processing device and a plurality of antenna feeder devices.
  • the bus structure of the base station processing device and the plurality of antenna feeders is the serial bus shown in FIG. See Figure 6, which includes:
  • the base station processing device sends the topology information to the antenna feeder device SS1.
  • the base station processing device configures the topology information to the antenna feeder SS1 as the first-level node in the ALD link, and the topology information is the topology information of the antenna device SS1, and the topology information may include: Branch information, topology level information, and tail node information. See Table 1, which is an example of the specific format of the topology information.
  • the topology information may be included in the above format, and in the antenna system of the chain topology and the star topology, the tail node information in the topology information may be pre- Set value or preset format to indicate the node has no tail node information.
  • 22#RRU_RET Port refers to the RET port of the topology information sent from the "RF module of the 22# slot".
  • the RRU is logically defined as a 0# cabinet, the frame number can be configured by the customer, and the slot number defaults to 0.
  • the first node information should be uniquely described with this information and is not ambiguous.
  • both the RET port and the OA port can output an antenna feed control signal, wherein the RET port outputs an RS485 signal, the port is connected with a multi-core wire, and the RS485 signal is directly sent to the RET, and the OA port is an RF of the RRU.
  • the port outputs the OOK control signal to the SBT through the ordinary feeder, and the OBT signal is converted into the RAS485 by the SBT, and then sent to the RET through the multi-core line.
  • the antenna device SSI receives the topology information from the base station processing device, and records the topology information.
  • the topology information received by each level of the antenna device of the ALD link is sent by the upper-level antenna. Local topology information configured by the device.
  • the topology information needs to be recorded for use in subsequent backhaul and configuration for the next-stage antenna device.
  • the topology information is configured between the antenna feeders, since only the topology level changes are involved, in the subsequent configuration, only the topology level information is incrementally calculated.
  • the establishment of the data mapping is a specific method of the binding according to the present invention. It can be known by those skilled in the art that the binding of the topology information and the antenna feeder device information can also be implemented in other manners.
  • the topology information is mapped to the antenna feed device information.
  • the bound topology information may be compared according to the established data mapping.
  • the antenna feed device information is transmitted back, and the base station processing device records the topology information of each antenna feeder device and its device information in a one-to-one correspondence when receiving the topology information and device information returned by the antenna feeder device, so that the base station processes
  • the device can achieve orderly management and analysis of device information.
  • FIG. 7 is a data mapping example of topology information and device information according to an embodiment of the present invention. Referring to Figure 7, SSm is the mth-level antenna feeder, SSn is the n-th antenna feeder, and each antenna feeder can generate a message including serial number, manufacturer, device type and topology information.
  • the information of the antenna device includes at least a unique identification information, that is, a serial number, and may include other device information such as a device manufacturer and a device type.
  • the antenna feeder device SS1 returns the topology information and the antenna feeder device information to the base station processing device.
  • the antenna feeder SS1 completes the data mapping of the topology information and the antenna feeder device information before configuring the topology information for the next-stage antenna feeder device, and then returns the data to the base station processing device, thereby avoiding Congestion on the data bus ensures the speed and quality of the return.
  • the antenna feeder device SS1 is a first-level node in the ALD link
  • the antenna feeder system further includes an antenna feeder device SS2, an antenna feeder device SS3, and the like, and therefore, when receiving the upper-level antenna feeder
  • the method may further include: determining whether the antenna feeder device is a tail node on the ALD link, and if yes, ending; if not, executing step 606;
  • determining whether the antenna feeder device is a tail node includes any one of the following methods:
  • the SS that is, the antenna feeder device has the function of detecting the current state of the uplink and downlink control port.
  • the downlink control port has a current
  • the downlink connection can be detected. Control the current of the port to determine whether the antenna feeder is connected to the next level of the local antenna feeder.
  • the port status includes the master port master and the slave port slave state, and the state is included in the topology information allocated by the upper level.
  • the port receiving the topology information defaults to the slave state, and the other port is the master state.
  • the ports have the Maste Slave attribute, which can be transmitted along with the topology information.
  • the port on the processing device of the base station is fixed as the master port. In the initial state, the uplink and downlink control ports of the antenna feeder are defaulted to the slave port. The port accepts the topology information of the superior allocation only when it is in the Slave state.
  • the upper-layer port of the local device is the slave port and the downlink control port is the master port.
  • the port status setting of each device is determined only by the upper device.
  • the lower device has no effect on the port attributes of the device.
  • the device at each level supports the detection of the status of the uplink port of the lower-level device. When the status of the port of the lower-level device is not detected, or the status of the device is detected as the Mater state (the ring scene will be encountered), it is determined that it is the tail node. Allocate topology information downwards. The determination of the primary port and the secondary port is prior art and will not be described again.
  • the antenna feeder device SS1 adds the topological level information in the received topology information to increment 1, and generates the next level of topology level information.
  • the local antenna feeder device and the upper-level antenna feeder device are from the same port and belong to the same branch. Therefore, only the topology-level information of the received topology information is replaced with the next-level topology-level information, and generated. The next level of topology information.
  • the increment can be set by a technician.
  • the antenna feeder device SS1 sends the next-level topology information to the antenna feeder device SS2;
  • step 601 the base station processing device allocates topology information to the antenna feeder device SS1, and in this step, the antenna device SS1 distributes topology information to the next-stage antenna feeder device SS2, and the specific process is similar. No longer.
  • the port that sends the topology information to the antenna feeder SS1 is the master state.
  • the antenna feeder device SS2 receives topology information sent by the antenna device SS1.
  • the steps of the antenna feeders SS2 and SS3 SSn after receiving the topology information are the same as those of the antenna feeder device SS1, and the present invention does not describe them.
  • the antenna device SSn which is the tail node of the ALD link
  • receives the topology information sent by the antenna device of the previous stage the incremental operation is not performed, and the topology information and the antenna feeder device information are fed back to the base station processing device.
  • the topology information of the entire link is configured.
  • the message of layer 7 (application layer) defined by the original antenna feed protocol and after scanning
  • the layer 2 (link layer) message (without scanning) adopts a weakly decision-through approach, and the so-called weak decision refers to whether the node judges whether the message is layer 7 or the layer 2 message after scanning. Including scan), if it is, then release directly, if not, then according to the above scheme for information recording, incremental calculation, topology information backhaul and other processing.
  • the antenna feeder device can receive the device scan message from the base station processing device, where the device scan message is the information of the scan antenna device.
  • the instruction when the day-end device receives the device scan message from the base station processing device, the device scan message carries the base station.
  • the antenna feed device information and the bundled topology information are carried in the scan response message and sent to the base station processing device, and the device scan message is sent to the next-stage antenna feed device.
  • the device scan message is sent to the next-stage antenna feeder device.
  • the topology information and the antenna feeder device information are filled in the scan response message and reported to the base station processing device. This scanning condition can be set by a technician.
  • the scanning condition can carry the serial number and the mask
  • the day-end device receives the device scanning message, and takes out the mask, which is matched with the actual serial number of the antenna feeder device, and the obtained result and the serial number carried by the scanning condition. If the result is the same as the scan condition, the antenna feed device does not meet the scan condition, and the device scan message is sent to the next-stage antenna feeder device for the next time.
  • the level antenna device determines whether to return the transmission according to the scanning conditions.
  • the day-to-day device is specifically a radio frequency splitter, and the radio frequency combiner is configured by multiple branches.
  • the radio frequency splitter receives the device scan message, according to a preset sequence.
  • the device scan message is sent separately to different branches.
  • the radio frequency combiner sends a device scan message to one of the preset sequences, and when the scan response from the branch is received within the preset time period, the scan response is sent back to the base station.
  • the device is processed, and when a scan response from any antenna device on the branch is not received within a preset duration, a device scan message is sent to the next branch in the preset sequence.
  • an ordered device can scan the message, and the scan response from different branches can be reported to the base station processing device in an orderly manner, which significantly improves the sector splitting star.
  • the scanning efficiency under the connection avoids the situation of missing the antenna feeder.
  • the antenna feeder device can receive the topology information of the upper-level device in the bus structure, and process the received topology information, and then The processed topology information is sent to the next-stage antenna feeder device, so that the device on the serial bus can obtain the topology information on the link step by step, thereby determining the physical topological position thereof, and solving the scanning obtained in the prior art.
  • the information is confusing and the location of the device connection topology is unclear, which brings convenience for subsequent network construction and maintenance.
  • the antenna feeder device determines whether the local antenna feeder device meets the scanning condition of the device scan message, and if not, not only scans the response message.
  • the device serial number, vendor code, and device type of the backhaul are also filled in the scan response message by the topology information and the bound antenna feeder device information, and are transmitted back to the base station processing device, thereby avoiding receiving the antenna device from different antenna feeders.
  • the response message is susceptible to a crash resulting in a situation in which the base station processing device presents the corresponding data as an error.
  • FIG. 8 is a schematic diagram of connection of an antenna feeder system according to an embodiment of the present invention.
  • the base station processing device and the RF splitter Splitter 1 and the RF splitter Splitter2 are connected by a radio frequency feeder, and the RF splitter Splitter 1 and TMA1, TMA2, and TMA3 are connected by a radio frequency feeder, and the RF splitter is connected.
  • the frequency feed line is connected to RET1, RET2 and RET3, TMA1 and B RET1 are connected by a multi-core wire, TMA2 and RET2 are connected by a multi-core wire, and TMA3 and RET3 are connected by a multi-core wire.
  • TMA1, TMA2 and TMA3 can complete the conversion of OOK signal and RS485 signal and connect RET 1, RET2 and RET3 through multi-core wires.
  • the base station processing device sends the topology information to the RF splitter Splitter 1 according to the structure diagram shown in FIG. 8.
  • the first node information of the topology information may be 21#RRU_OA port, and the topology level information is level 0, and the radio frequency combining branch
  • Splitterl adds 1 to the topology level information, and adds branch information, such as branch 1, branch 2, or branch 3, to the topology information according to the exit of the splitter splitter, to generate the first level topology.
  • the information M1, M2, and M3, the first node information of the first-level topology information M1 is 21#RRU_OA, the topology level information is level 1, the branch information is branch 1, and the first-level topology information M1 is sent to TMA1, TMA1.
  • Receiving the first-level topology information adding 1 to the topology-level information of the first-level topology information M1, generating second-level topology information M12, and sending the second-level topology information M12 to RET1, where RET1 is the tail of the current branch 1. Therefore, the topology information of the other branches is not the same as that of the above process. It should be noted that the above embodiment is based on the RF splitter.
  • the topology level information may not be incrementally calculated.
  • the branch information is added to the topology information received, and the topology information to which the branch information is added is sent to each branch.
  • FIG. 9 is a schematic structural diagram of an antenna feeder device according to an embodiment of the present invention.
  • the antenna feeder system comprises a base station processing device and at least two antenna feeder devices, and the bus structure of the base station processing device and the at least two antenna feeder devices is a serial bus.
  • the antenna feeder device comprises:
  • the receiving module 901 is configured to receive topology information.
  • the topology information may be sent by a base station processing device that is a master device in a serial bus structure, or may be sent by an upper-level antenna device of the antenna feeder device in a serial bus structure.
  • the topology information includes at least: first node information and topological level information.
  • the first node information refers to information used in the topology information to describe a source node that issues topology information, and the first node information uniquely identifies a module in an antenna feeder system that manages all antenna feeder devices on a branch.
  • the generating module 902 is configured to perform the incremental operation on the received topology information to generate the next-level topology information. In the embodiment of the present invention, the generating module 902 replaces the topology-level information of the received topology information with the next one. Level-level information, generating the next-level topology information.
  • the sending module 903 is configured to send the next-level topology information to the next-level antenna feeder.
  • FIG. 10 is a schematic structural diagram of an antenna feeder device according to an embodiment of the present invention.
  • the antenna feeder device further includes a binding module 904, configured to use the received topology information and the Binding device information of the feed device on the first day is bound;
  • the sending module 903 is configured to send the bound antenna feed device information and the received topology information to the base station processing device.
  • the sending module 903 returns the bound topology information and the antenna feeder device information, and the base station processing device, when receiving the topology information and the device information returned by the antenna device, the topology information of each antenna device and The device information is recorded one by one, so that the base station processing device can achieve orderly management and analysis of the device information.
  • the antenna feeder device further includes at least one module described below:
  • the first determining module 905 is configured to determine whether the downlink control port has a current. If the downlink control port has a current, the generating module 902 is triggered to perform incremental operation on the received topology information to generate the next-level topology information. When the next stage of the NE is connected to the antenna feeder, if there is current in the downlink control port, the current of the downlink control port can be detected to determine whether the antenna feeder is connected to the next level of the antenna feeder.
  • the second determining module 906 is configured to determine whether the port attribute of the next-level antenna feeder device is a slave port, and if the port attribute of the next-stage antenna feeder device is a slave port, triggering the generating module 902 to receive the received
  • the topology information is incrementally generated to generate the next-level topology information.
  • the port status includes the master port master and the slave port slave state, and the state is included in the topology information allocated by the upper level.
  • the port that receives the topology information defaults to the slave state, and the other port is in the master state.
  • the port is in the slave state, the topology information of the superior is accepted.
  • the ports of each device including the base station processing device have a Maste Slave attribute, and the attribute can be transmitted along with the topology information.
  • the port on the processing device of the base station is fixed as the master port. In the initial state, the uplink and downlink control ports of the antenna feeder are defaulted to the slave port.
  • the topology information of the superior is accepted only when the port is in the Slave state.
  • the generating module 902 is specifically configured to add the topology level information in the received topology information to the N, to obtain the next level of the topology level information, and generate the next level according to the next level of the topology level information.
  • Topology information, N is a natural number greater than 0.
  • the antenna feeder device also includes:
  • the third determining module 907 is configured to determine, when the device scan message is received, whether the antenna feeder device meets the scan
  • the scanning condition can carry the serial number and the mask
  • the day-end device receives the device scanning message, and takes out the mask, which is matched with the actual serial number of the antenna feeder device, and the obtained result and the serial number carried by the scanning condition. If the result is the same as the scan condition, the antenna feed device does not meet the scan condition, and the device scan message is sent to the next-stage antenna feeder device for the next time.
  • the level antenna device determines whether to return the transmission according to the scanning conditions.
  • the sending module 903 is configured to: when the third determining module 907 determines that the scanning condition is met, report the antenna feeder device information of the antenna feeder device and the received topology information to a Decoding the device by the base station, and sending the device scan message to the next-stage antenna feeder device; and/or,
  • the sending module 903 is configured to send the device scan message to the next-stage antenna feeder device when the third determining module 907 determines that the scanning condition is not met.
  • the topology information and the antenna feeder device information are filled in the scan response message and reported to the base station processing device.
  • This scanning condition can be set by a technician.
  • the topology information includes at least first node information and topological level information; and/or,
  • the topology information includes at least first node information, topology level information, and branch information.
  • the antenna feeder device provided by the embodiment of the present invention can change the bus structure of the antenna feeder system to the serial bus, and the antenna feeder device can receive the topology information of the upper-level device in the bus structure, and process the received topology information.
  • the processed topology information is sent to the next-stage antenna feeder device, so that the device on the serial bus can obtain the topology information on the link step by step, thereby determining the physical topological position thereof, and solving the scanning in the prior art.
  • the obtained information is confusing and the problem of the location of the device connection topology is unclear, which brings convenience for subsequent network construction and maintenance.
  • FIG. 11 is a schematic structural diagram of an antenna feeder system according to an embodiment of the present invention.
  • the antenna feed system includes: a base station processing device PS and at least two antenna feeder devices SS shown in the foregoing embodiment, and a bus structure of the base station processing device PS and the at least two antenna feeder devices SS is a serial bus;
  • the base station processing device PS is configured to send the topology information to the next-stage antenna feeder device of the base station processing device PS on the bus structure.
  • the base station processing device PS is further configured to send a device scan message to the next-stage antenna feeder device of the base station processing device PS on the bus structure;
  • the base station processing device PS is further configured to receive a device scan response, and the device scan response is sent by an antenna feeder device that conforms to a scan condition carried by the device scan message.
  • the device can receive the topology information of the upper-level device in the bus structure, process the received topology information, and then send the processed topology information to the next-stage antenna feeder device, so that the devices on the serial bus can be stepped up.
  • the topology information on the link is obtained, thereby determining the physical topological position thereof, which solves the problem that the information obtained by scanning in the prior art is confusing and the location of the device connection topology is unclear, which brings convenience for subsequent network construction and maintenance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种天馈设备的拓扑信息处理方法、天馈设备和系统,属于移动通信技术领域。天馈系统包括基站处理设备和至少两个天馈设备,该基站处理设备和该至少两个天馈设备的总线结构为串行总线,该至少两个天馈设备包括第一天馈设备,该方法包括:第一天馈设备接收拓扑信息;该第一天馈设备对接收到的该拓扑信息进行增量运算,生成下一级拓扑信息,将该下一级拓扑信息发送给下一级天馈设备。该天馈设备包括:接收模块、生成模块和发送模块。本发明解决了现有技术中进行扫描获得的信息混乱、不清楚设备连接拓扑位置的问题,为后续网络建设和维护带来方便。

Description

天馈设备的拓扑信息处理方法、 天馈设备和系统 技术领域
本发明涉及移动通信领域, 特别涉及一种天馈设备的拓扑信息处理方法、 天馈设备和 系统。 背景技术
天馈设备是移动通信基站的重要组成部分, 常见的天馈设备有 TMA (Tower Mounted Amplifier, 塔顶放大器)、 RET (Remote Electrical Tilt Unit, 远程电调单元) 等, 基站通常 包括多个天馈设备, 且多个天馈设备通过同一条半双工 RS-485 (Half Duplex-485, 半双工 485 ) 或 OOK (On-Off Keying, 二进制启闭键控) 总线与基站的射频模块相连接。 依据现 有协议, 进行设备扫描时会得到所有设备的序列号, 但不清楚天馈设备在物理连接上的物 理拓扑位置, 安装人员需要详细记录天馈设备序列号及与其连接的射频模块的对应关系, 即天馈设备的射频服务归属, 以确保配置天馈设备时 "扇区-射频模块 -天馈设备"对应关系 正确, 网络覆盖调整不出差错。
在实现本发明的过程中, 发明人发现现有技术至少存在以下问题:
现有协议框架下, 对复杂天馈组网, 主设备在总线上发送消息时, 总线上所有的从设 备都可以同时收到 (如果不考虑线缆延时的话), 所有从设备直接响应主设备的命令, 当多 个从设备同时对主设备的消息做出响应时, 主设备无法识别出从设备, 也无法获知从设备 的物理拓扑位置, 也就无法识别 ALD (Antenna Line Device, 天馈设备)在整个天馈物理组 网所处的结点位置, 不方便工程记录。 发明内容
为了准确获知天馈设备的物理拓扑位置, 以便工程记录, 本发明实施例提供了一种天 馈设备的拓扑信息处理方法、 天馈设备和系统。 所述技术方案如下:
一种天馈设备的拓扑信息处理方法, 天馈系统包括基站处理设备和至少两个天馈设备, 所述基站处理设备和所述至少两个天馈设备的总线结构为串行总线, 所述至少两个天馈设 备包括第一天馈设备, 所述方法包括:
第一天馈设备接收拓扑信息;
所述第一天馈设备对接收到的所述拓扑信息进行增量运算, 生成下一级拓扑信息; 一种天馈设备, 天馈系统包括基站处理设备和至少所述两个天馈设备, 所述基站处理 设备和所述至少所述两个天馈设备的总线结构为串行总线, 所述天馈设备包括:
接收模块, 用于接收拓扑信息;
生成模块, 用于对接收到的所述拓扑信息进行增量运算, 生成下一级拓扑信息; 发送模块, 用于将所述下一级拓扑信息发送给下一级天馈设备。
一种天馈系统, 所述天馈系统包括:
基站处理设备和至少两个上述任一项天馈设备, 所述基站处理设备和所述至少所述两 个天馈设备的总线结构为串行总线;
其中, 所述基站处理设备用于向所述总线结构上所述基站处理设备的下一级天馈设备 发送拓扑信息。
本发明实施例提供的技术方案带来的有益效果是:
通过将天馈系统的总线结构改为了串行总线, 天馈设备能够接收总线结构中上一级设 备的拓扑信息, 并对接收到的拓扑信息进行处理, 再将处理后的拓扑信息发送给下一级天 馈设备, 使得串行总线上的设备能够逐级获得在链路上的拓扑信息, 从而确定其物理拓扑 位置, 解决了现有技术中进行扫描获得的信息混乱、 不清楚设备连接拓扑位置的问题, 为 后续网络建设和维护带来方便。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所需要使用的 附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本 领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的 附图。
图 1是现有技术中的常规天馈组网示意图;
图 2是现有技术中的复杂天馈组网的一种示意图;
图 3是现有技术中的复杂天馈组网的另一种示意图;
图 4是本发明实施例提供的天馈系统的总线结构的示意图;
图 5是本发明实施例提供的一种天馈设备的拓扑信息处理方法的流程图;
图 6是本发明实施例提供的一种天馈设备的拓扑信息处理方法的流程图;
图 7是本发明实施例提供的一种拓扑信息与设备信息的数据映射示例;
图 8是本发明实施例提供的一种天馈系统的连接示意图; 图 10是本发明实施例提供的一种天馈设备的结构示意图;
图 11是本发明实施例提供的一种天馈系统的结构示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方式作 进一步地详细描述。
在实际工程实现时, 厂家实现了包括级联在内的多种复杂天馈组网方式, 支持的天馈 组网如下:
图 1是现有技术中的常规天馈组网示意图。参见图 1,天馈系统中包括 RET、 RF (Radio
Frequency, 射频) 模块和 BBU (Building Base band Unit, 室内基带处理单元)。 BBU通过 光纤连接 RF模块, RF模块可以通过至少两种方式连接电调天线, 比如: (1 ) 通过多芯线 (Multicore Cable)直接将 RS-485控制信号输送给 RET; (2)通过射频馈线连接 SBT( Smart Bias-Tee, 调制解调器), SBT再通过多芯线 (Multicore Cable)连接 RET。 其中, 射频馈线 中输送的是 OOK信号, SBT负责将此信号转换为 RS-485信号后输送给 RET, RET接受 RS-485信号的控制。
图 2是现有技术中的复杂天馈组网的一种示意图。参见图 2, 该天馈系统中的天馈设备 连接方式为天线级联。 在图 1所述的连接基础上, RET可以通过多芯线 (Multicore Cable) 串行连接多台 RET。 这种天线级联的方式多用于多天线共塔近距离安装的场景, 可降低安 装成本。
图 3是现有技术中的复杂天馈组网的另一种示意图。参见图 3, 该天馈系统中的天馈设 备连接方式为扇区分裂。 其中, BBU通过光纤连接 RF模块, RF模块通过馈线连接到一 分多的射频合分路器天馈设备, 射频合分路器的每一个输出分支, 通过射频馈线连接到 SBT, SBT完成 OOK信号与 RS-485信号的转换后通过多芯线连接 RET。 这种扇区分裂的 方式多用于郊区用户稀少区域, 实现多个物理方向上的同扇区覆盖。 可以理解的是, 本发 明实施例中所列举的 OOK信号与 RS-485信号等, 只是一种具体的举例而已, 产品实现中 可能使用其他种类的信号。
图 4是本发明实施例提供的天馈系统的总线结构的示意图。参见图 4, 天馈系统中包括 基站处理设备和多个天馈设备 SS1、 SS2〜SSn, 其中, 该基站处理设备为总线结构中的主 设备, 该多个天馈设备 SS1、 SS2〜SSn为总线结构中的从设备, 主设备与从设备之间为控 制与被控制的关系, 该主设备与从设备的关系由总线结构确定。 其中, 该基站处理设备可 接口标准化组织)或 3GPP Iuant接口协议中定义的天馈设备, 例如 RET、 TMA或射频合分 路器等。
图 5是本发明实施例提供的一种天馈设备的拓扑信息处理方法的流程图。 基于图 4所 示的串行总线结构, 该实施例的执行主体可以为天馈设备。 在本发明实施例中, 天馈设备 具备信息处理功能,在天馈系统中,每级 ALD的上联控制端口被设计为接收到上级消息时, 先进行 CPU处理运算, 再从下联控制端口发出。 其中, 上联控制端口为用于接收来自总线 结构中上一级设备的拓扑信息的物理端口, 下联控制端口为用于向总线结构中下一级设备 发送拓扑信息的物理端口, 参见图 5, 该方法包括:
501、 第一天馈设备接收拓扑信息;
在本实施例中, 该拓扑信息可以是由串行总线结构中作为主设备的基站处理设备发送, 也可以是由串行总线结构中该天馈设备的上一级天馈设备发送。
其中, 该拓扑信息至少包括: 首结点信息和拓扑级信息。 其中, 首结点信息是指拓扑 信息中用于描述发出拓扑信息的源头结点的信息, 该首结点信息唯一识别一个天馈系统中 管理一个分支上所有天馈设备的模块。 以基站系统为例, 基站处理设备中的 RF模块的柜、 框、槽信息, 以及该 RF模块上用于连接天馈设备的端口编号信息,共同组成了首结点信息。 本实施例中, 把拉远的射频模块 (RRU) 和柜内的射频模块 (RFU) 统称为射频模块 (即 RF), 换句话说, RF模块既可能是 RRU, 也可能是 RFU。
其中, 拓扑级信息是指拓扑信息中用于描述天馈设备在此天馈组网分支上相对于首结 点的位置的信息。 以级联场景的基站天馈系统为例, 拓扑级信息用于描述接收到拓扑信息 的天馈设备在该条 ALD链上, 相对于下拓扑信息的源头结点, 处于链的第几级。
天馈领域涉及的场景归类如下: 天馈的级联和天馈的扇区分裂, 其中, 天馈的级联属 于链型拓扑, 天馈的扇区分裂属于星型拓扑结构。 不同的拓扑结构, 其拓扑信息所包括的 内容不同。 当天馈系统为链型拓扑结构, 拓扑信息至少包括首结点信息和拓扑级信息; 当 该天馈系统为星型拓扑结构, 该拓扑信息至少包括首结点信息、 拓扑级信息和分支信息。 本发明实施例不涉及环型结构, 相比于链型结构, 环形结构还需要给出结束结点的识别, 也即其拓扑信息中还包括尾结点信息, 并且在首结点与尾结点之间由预建立的互传机制, 用以保障一个完整的环形结构可被绘出。
进一步地, 第一天馈设备接收拓扑信息, 之后包括- 第一天馈设备将该接收到的拓扑信息与第一天馈设备的天馈设备信息绑定。 具体地, 当接收到拓扑信息时, 第一天馈设备记录接收到的拓扑信息, 并建立与第一天馈设备的天 给基站处理设备。
更进一步地, 第一天馈设备将该接收到的拓扑信息与第一天馈设备的天馈设备信息绑 定, 之后还包括:
将天馈设备信息和拓扑信息发送给基站处理设备。
需要说明的是, 第一天馈设备可以在将接收到拓扑信息与第一天馈设备的天馈设备信 息绑定后, 将天馈设备信息和接收到的拓扑信息发送给基站处理设备, 还可以在串行总线 上的天馈设备的拓扑信息都已经确定后, 当接收到来自基站处理设备的设备扫描消息的时 候, 将绑定的天馈设备信息和接收到的拓扑信息发送给基站处理设备。
在将拓扑信息发送给基站处理设备时, 通过总线结构将拓扑信息一级一级的透传, 并 由基站处理设备接收, 使得基站处理设备获知各个天馈设备在拓扑结构中的位置, 基站处 理设备可依据回传信息, 支持自动绘制、 刷新结点拓扑图, 支持直接在拓扑图上进行设备 增加、 删除、 修改、 查找等操作。
502、 第一天馈设备对接收到的拓扑信息进行增量运算, 生成下一级拓扑信息; 在本实施例中, 天馈设备接收到的拓扑信息为该天馈设备当前在该天馈系统的物理连 接中的物理拓扑位置。
优选地, 该增量运算包括: 将该拓扑信息中的拓扑级信息加增量 N, 得到下一级拓扑 级信息, N为大于 0的自然数。 该增量可以在开发时进行设置, 也可以根据实际情况进行 调整, 本发明实施例不做具体限定。
503、 第一天馈设备将该下一级拓扑信息发送给下一级天馈设备。
在本实施例中, 拓扑信息到达天馈设备后, 不同于现行协议的直接透传, 天馈设备实 现对接收到的拓扑信息的处理, 经过天馈设备处理后, 向其下一级天馈设备发送经过处理 的拓扑信息。
本发明实施例涉及移动通信系统中的基站, 该移动通信系统包括但不限于: 2G系统、 3G系统、或 LTE(Long Term Evolution,长期演进)系统等,该基站可以是 GSM(Global System for Mobile communications, 全球移云力通信系统) 或 CDMA ( Code Division Multiple Access, 码分多址)中的 BTS ( Base Transceiver Station,基站收发台),也可以是 WCDMA (Wideband Code Division Multiple Access Wireless, 宽带码分多址) 中的 NodeB (Node base station, 基 站), 还可以是 LTE中的 eNodeB ( evolutional Node B, 演进的基站), 本发明并不限定。
本发明实施例提供的方法, 通过将天馈系统的总线结构改为了串行总线, 天馈设备能 够接收总线结构中上一级设备的拓扑信息, 并对接收到的拓扑信息进行处理, 再将处理后 信息, 从而确定其物理拓扑位置, 解决了现有技术中进行扫描获得的信息混乱、 不清楚设 备连接拓扑位置的问题, 为后续网络建设和维护带来方便。
图 6是本发明实施例提供的一种天馈设备的拓扑信息处理方法的流程图。 该实施例的 交互主体为基站处理设备和多个天馈设备。 该基站处理设备与多个天馈设备的总线结构为 图 4所示的串行总线。 参见图 6, 该方法包括:
601、 基站处理设备将拓扑信息发送给天馈设备 SS1 ;
在本实施例中,基站处理设备向 ALD链路中作为首级节点的天馈设备 SS1配置拓扑信 息, 该拓扑信息为天馈设备 SS1 的拓扑信息, 该拓扑信息可以包括: 首结点信息、 分支信 息、 拓扑级信息和尾结点信息。 参见表 1, 该表 1为拓扑信息的具体格式的示例。
表 1
Figure imgf000008_0001
需要说明的是, 各种拓扑结构的天馈系统中, 拓扑信息均可以包括为上述格式, 而链 型拓扑和星型拓扑结构的天馈系统中, 拓扑信息中的尾结点信息可以为预设值或预设格式, 用以表示节点无尾结点信息。 例如 , 22#RRU_RET Port是指该拓扑信息发自 "22#槽位的 RF模块" 的 RET端口。 一般地, RRU在逻辑上定义为 0#柜, 框号可以由客户配置, 槽号 默认为 0。 首结点信息要能够用此信息唯一描述, 不具有二义性。
在本实施例中, RET端口和 OA口均可输出天馈控制信号,其中 RET口输出的是 RS485 信号, 该口上连接多芯线, 直接把 RS485信号输送到 RET, OA口是 RRU的一个射频口, 通过普通馈线, 输出 OOK控制信号给 SBT, 由 SBT把 OOK信号转换为 RAS485后再通过 多芯线输送给 RET。
602、 天馈设备 SSI接收到来自基站处理设备的拓扑信息, 记录该拓扑信息; 在本发明实施例中, ALD链路每一级天馈设备接收到的拓扑信息均是由上一级天馈设 备配置的本地拓扑信息, 当接收到该拓扑信息时, 需要将该拓扑信息记录, 以便在后续回 传和为下一级天馈设备进行配置时使用。 优选地, 天馈设备之间进行拓扑信息配置时, 由 于仅涉及拓扑级的改变, 所以在后续的配置中, 仅对拓扑级信息进行增量计算。 需要说明的是, 该建立数据映射是本发明所述的绑定的一种具体方法, 本领域技术人 员可以获知, 拓扑信息和天馈设备信息的绑定还可以通过其他方式实现。
在本实施例中, 将拓扑信息与天馈设备信息进行了数据映射, 当接收到扫描设备信息 的指令或需要回传设备信息时, 可以根据该建立的数据映射, 将绑定的拓扑信息与天馈设 备信息回传, 而基站处理设备在接收到由天馈设备回传的拓扑信息和设备信息时, 将各个 天馈设备的拓扑信息及其设备信息一一对应的进行记录, 使得基站处理设备能够达到对设 备信息的有序管理和分析。 图 7是本发明实施例提供的一种拓扑信息与设备信息的数据映 射示例。 参见图 7, SSm为第 m级天馈设备, SSn为第 n级天馈设备, 各个天馈设备都可 以生成一个包括序列号、 厂家、 设备类型和拓扑信息的信息。
本领域技术人员可以获知, 该本天馈设备信息至少包括唯一标识信息即序列号, 还可 以包括设备厂家、 设备类型等其他设备信息。
604、 天馈设备 SS1将拓扑信息与天馈设备信息回传给基站处理设备;
在本实施例中, 天馈设备 SS1 在为下一级天馈设备配置拓扑信息之前, 已经完成了拓 扑信息与天馈设备信息的数据映射, 此时将数据回传给基站处理设备, 避免了数据总线上 的拥挤, 保证了回传的速度和质量。
605、 确定天馈设备 SS1不是当前 ALD链路的尾结点;
在本发明实施例中, 天馈设备 SS1是 ALD链路中的首级节点, 而该天馈系统中还包括 天馈设备 SS2、 天馈设备 SS3等, 因此, 当接收到上一级天馈设备发送的拓扑信息时, 该 方法还可以包括: 判断天馈设备是否为 ALD链路上的尾结点, 如果是, 则结束; 如果否, 则执行步骤 606;
具体地, 判断天馈设备是否为尾结点, 包括以下任一种方法:
( 1 ) 判断下联控制端口是否有电流, 如果是, 则执行步骤 606; 如果否, 结束。
在本发明实施例中, SS即天馈设备具有检测上下联控制端口电流状态的功能, 当本地 天馈设备的下一级连接有天馈设备时, 下联控制端口有电流, 则可以通过检测下联控制端 口的电流来判断本地天馈设备的下一级是否连接有天馈设备。
(2)判断下一级天馈设备的端口状态是否被置为从设备状态,如果是,则执行步骤 606; 如果否, 结束。
在本发明实施例中, 端口状态包括主端口 Master和从端口 Slave状态, 该状态包含在 由上一级配发的拓扑信息中, 当接收到来自上一级天馈设备的拓扑信息时, 将接收拓扑信 息的端口默认为 Slave状态, 则另一端口为 Master状态, 其中, 当端口处于 Slave状态时, 的端口均具有 Maste Slave属性, 该属性可以随同拓扑信息下传。 基站处理设备侧端口固 定为 Master端口, 初始状态下, 天馈设备上下联控制端口均默认为 Slave端口。 端口只有 在处于 Slave状态时, 才接受上级配发的拓扑信息。 本级如果从上级获取的拓扑信息中, 显 示上级设备端口为 Master态,则自动置本级的上联端口为 Slave端口,下联控制端口为 Master 端口。 各设备的端口状态设置, 仅依据上级设备来判决, 下级设备对本级设备的端口属性 无影响。 各级设备支持对下级设备上联端口的状态检测, 当检测不到下级设备端口状态, 或者检测到已经被置为 Mater态时 (环形场景会遇到), 判定自己为尾结点, 不再向下配发 拓扑信息。 该主端口和从端口的确定为现有技术, 不再赘述。
606、 天馈设备 SS1将接收到的拓扑信息中的拓扑级信息加增量 1, 生成下一级拓扑级 信息;
在本发明实施例中, 本地天馈设备和上一级天馈设备为来自同一端口, 属于同一分支, 因此, 仅将接收到的拓扑信息的拓扑级信息替换为下一级拓扑级信息, 生成下一级拓扑信 息。
需要说明的是, 该增量可以由技术人员设置, 上述实施例仅以增量 N=l为例进行说明。
607、 天馈设备 SS1将下一级拓扑信息发送给天馈设备 SS2;
在步骤 601中, 是基站处理设备为天馈设备 SS1配发拓扑信息, 而在本步骤中, 是天 馈设备 SS1向下一级天馈设备 SS2配发拓扑信息, 其具体过程类似, 在此不再赘述。 另外, 当天馈系统中包括预设状态的设置时, 天馈设备 SS1下发拓扑信息的端口为 Master状态。
608、 天馈设备 SS2接收来自天馈设备 SS1发送的拓扑信息;
需要说明的是,天馈设备 SS2、SS3 SSn在接收到拓扑信息之后的步骤与天馈设备 SS1 的操作相同, 本发明不做赘述。 其中, 当作为 ALD链路尾结点的天馈设备 SSn接收到上一 级天馈设备发送的拓扑信息时, 不进行增量运算, 在将拓扑信息和天馈设备信息反馈给基 站处理设备后, 整个链路的拓扑信息配置结束。
本实施例的步骤 601~608 中, 对原天馈协议定义的层七 (应用层) 的消息及扫描之后
(不含扫描) 的层二 (链路层) 消息采取弱判决近乎透传的方式, 所谓弱判决, 是指结点 对往来的信息判断是否为层七消息或扫描之后的层二消息(不含扫描),如果是则直接放行, 如果不是, 再按照上述方案作信息记录、 增量运算、 拓扑信息回传等处理。
在另一实施例中, 当天馈系统中的各个天馈设备完成了对拓扑信息的设置后, 天馈设 备可以接收来自基站处理设备的设备扫描消息, 该设备扫描消息是扫描天馈设备信息的指 令, 则当天馈设备接收到来自基站处理设备的设备扫描消息时, 该设备扫描消息携带基站 备符合该扫描条件时, 将天馈设备信息和绑定的拓扑信息携带在扫描响应消息发送给该基 站处理设备, 并将将该设备扫描消息发送给下一级天馈设备。 当该天馈设备不符合该扫描 条件时, 将该设备扫描消息发送给下一级天馈设备。 优选地, 在扫描响应消息中填入拓扑 信息和天馈设备信息, 上报给基站处理设备。 该扫描条件可以由技术人员设置。
优选地, 该扫描条件中可以携带序列号和掩码, 当天馈设备接收到设备扫描消息, 取 出掩码, 与天馈设备的实际序列号相与, 当得到的结果与扫描条件携带的序列号相同时, 则天馈设备符合扫描条件, 当得到的结果与扫描条件携带的序列号不同时, 天馈设备不符 合扫描条件, 将该设备扫描消息发送给下一级天馈设备, 以便下一级天馈设备根据扫描条 件判定是否回传。
进一步地, 对于扇区分裂的场景, 当天馈设备具体为射频合分路器, 该射频合分路器 由多个分支, 当该射频合分路器接收到设备扫描消息时, 按照预设顺序向不同分支分别发 送该设备扫描消息。 优选地, 射频合分路器向预设顺序中的一个分支发送设备扫描消息后, 而当在预设时长内接收到来自该分支上回传的扫描响应时, 将该扫描响应回传给基站处理 设备, 而当在预设时长内未接收到来自该分支上任何天馈设备的扫描响应时, 向该预设顺 序中的下一个分支发送设备扫描消息。 通过为射频合分路器中加入处理功能, 可以做到有 序的下发设备扫描消息, 并对来自不同分支的扫描响应能够有序地向基站处理设备上报, 明显改善扇区分裂的星形连接下的扫描效率, 避免了漏扫天馈设备的情况。
本发明实施例提供的方法, 通过将天馈系统的总线结构改为了串行总线, 天馈设备能 够接收总线结构中上一级设备的拓扑信息, 并对接收到的拓扑信息进行处理, 再将处理后 的拓扑信息发送给下一级天馈设备, 使得串行总线上的设备能够逐级获得在链路上的拓扑 信息, 从而确定其物理拓扑位置, 解决了现有技术中进行扫描获得的信息混乱、 不清楚设 备连接拓扑位置的问题, 为后续网络建设和维护带来方便。 进一步地, 天馈设备当接收到 基站处理设备或上一级天馈设备发送的设备扫描消息时, 判断本地天馈设备是否符合该设 备扫描消息的扫描条件, 如果符合, 则不仅在扫描响应消息中回传的设备序列号、 厂商编 码和设备类型, 还将拓扑信息和绑定的天馈设备信息填入扫描响应消息中回传给基站处理 设备, 避免了由于接收到来自不同天馈设备的响应消息容易撞车而导致最终在基站处理设 备呈现为错误的相应数据的情况。
图 8是本发明实施例提供的一种天馈系统的连接示意图。
参见图 8, 基站处理设备与射频合分路器 Splitter 1、 射频合分路器 Splitter2通过射频馈 线连接, 射频合分路器 Splitter 1与 TMA1、 TMA2、 TMA3通过射频馈线连接, 射频合分路 频馈线与 RET1、 RET2和 RET3连接, TMA1禾 B RET1通过多芯线连接, TMA2和 RET2 通过多芯线连接, TMA3和 RET3通过多芯线连接。
其中, TMA1、 TMA2和 TMA3可完成 OOK信号与 RS485信号的转换后通过多芯线连 接 RET 1、 RET2和 RET3。 基于图 8所示的结构图, 基站处理设备向射频合分路器 Splitter 1 发送拓扑信息, 该拓扑信息的首结点信息可以为 21#RRU_OA口, 拓扑级信息为 0级, 射 频合分路器 Splitterl接收到该拓扑信息时,将拓扑级信息加 1,并根据射频合分路器 Splitterl 的出口在拓扑信息中分别添加分支信息, 如分支 1, 分支 2或分支 3, 生成第一级拓扑信息 Ml、 M2和 M3, 该第一级拓扑信息 Ml的首结点信息为 21#RRU_OA 口, 拓扑级信息为 1 级, 分支信息为分支 1, 将第一级拓扑信息 Ml发送给 TMA1, TMA1接收到该第一级拓扑 信息, 将第一级拓扑信息 Ml的拓扑级信息加 1, 生成第二级拓扑信息 M12, 并将第二级拓 扑信息 M12发送给 RET1, RETl为当前分支 1的尾结点, 因此不继续下发, 其他分支的拓 扑信息下发与上述过程同理, 需要说明的是, 上述实施例是以射频合分路器进行增量计算 为例进行说明的, 而在实际应用中, 由于射频合分路器不属于可控制设备, 当接收拓扑信 息的天馈设备为射频合分路器时, 也可以不对拓扑级信息进行增量计算, 而仅对其接收到 的拓扑信息添加分支信息, 并将添加了分支信息的拓扑信息相应下发给各个分支。
图 9是本发明实施例提供的一种天馈设备的结构示意图。 天馈系统包括基站处理设备 和至少两个天馈设备,基站处理设备和至少两个天馈设备的总线结构为串行总线,参见图 9, 天馈设备包括:
接收模块 901, 用于接收拓扑信息;
在本实施例中, 该拓扑信息可以是由串行总线结构中作为主设备的基站处理设备发送, 也可以是由串行总线结构中该天馈设备的上一级天馈设备发送。
其中, 该拓扑信息至少包括: 首结点信息和拓扑级信息。 其中, 首结点信息是指拓扑 信息中用于描述发出拓扑信息的源头结点的信息, 该首结点信息唯一识别一个天馈系统中 管理一个分支上所有天馈设备的模块。
生成模块 902, 用于对接收到的所述拓扑信息进行增量运算, 生成下一级拓扑信息; 在本发明实施例中, 生成模块 902将接收到的拓扑信息的拓扑级信息替换为下一级拓 扑级信息, 生成下一级拓扑信息。
发送模块 903, 用于将所述下一级拓扑信息发送给下一级天馈设备。
在本实施例中, 拓扑信息到达天馈设备后, 不同于现行协议的直接透传, 天馈设备实 现对接收到的拓扑信息的处理, 经过天馈设备处理后, 向其下一级天馈设备发送经过处理 进一步地, 图 10是本发明实施例提供的一种天馈设备的结构示意图, 参见图 10, 该天 馈设备还包括- 绑定模块 904,用于将所述接收到的拓扑信息与所述第一天馈设备的天馈设备信息进行 绑定;
相应地, 所述发送模块 903, 用于将绑定后的所述天馈设备信息和所述接收到的拓扑信 息发送给所述基站处理设备。
所述发送模块 903 将绑定的拓扑信息与天馈设备信息回传, 而基站处理设备在接收到 由天馈设备回传的拓扑信息和设备信息时, 将各个天馈设备的拓扑信息及其设备信息一一 对应的进行记录, 使得基站处理设备能够达到对设备信息的有序管理和分析。
可选地, 该天馈设备还包括下述至少一个模块:
第一判断模块 905, 用于判断下联控制端口是否有电流, 如果下联控制端口有电流, 则 触发所述生成模块 902对所述接收到的拓扑信息进行增量运算, 生成下一级拓扑信息; 当天馈设备的下一级连接有天馈设备时, 下联控制端口有电流, 则可以通过检测下联 控制端口的电流来判断天馈设备的下一级是否连接有天馈设备。
第二判断模块 906, 用于判断下一级天馈设备的端口属性是否为从端口, 如果下一级天 馈设备的端口属性是从端口, 则触发所述生成模块 902对所述接收到的拓扑信息进行增量 运算, 生成下一级拓扑信息。
在本发明实施例中, 端口状态包括主端口 Master和从端口 Slave状态, 该状态包含在 由上一级配发的拓扑信息中, 当接收到来自上一级天馈设备的拓扑信息时, 将接收拓扑信 息的端口默认为 Slave状态, 则另一端口为 Master状态, 其中, 当端口处于 Slave状态时, 才接受上级配发的拓扑信息。 在本实施例的天馈系统中, 包括基站处理设备在内的各设备 的端口均具有 Maste Slave属性, 该属性可以随同拓扑信息下传。 基站处理设备侧端口固 定为 Master端口, 初始状态下, 天馈设备上下联控制端口均默认为 Slave端口。 端口只有 在处于 Slave状态时, 才接受上级配发的拓扑信息。
其中, 所述生成模块 902具体用于将所述接收到的拓扑信息中的拓扑级信息加增量N, 得到下一级拓扑级信息, 并根据所述下一级拓扑级信息生成下一级拓扑信息, N 为大于 0 的自然数。
需要说明的是, 该增量可以由技术人员设置, 上述实施例仅以增量 N=l为例进行说明。 该天馈设备还包括:
第三判断模块 907, 用于当接收到设备扫描消息时, 判断所述天馈设备是否符合所述扫 优选地, 该扫描条件中可以携带序列号和掩码, 当天馈设备接收到设备扫描消息, 取 出掩码, 与天馈设备的实际序列号相与, 当得到的结果与扫描条件携带的序列号相同时, 则天馈设备符合扫描条件, 当得到的结果与扫描条件携带的序列号不同时, 天馈设备不符 合扫描条件, 将该设备扫描消息发送给下一级天馈设备, 以便下一级天馈设备根据扫描条 件判定是否回传。
所述发送模块 903, 用于当所述第三判断模块 907确定符合所述扫描条件时, 将所述天 馈设备的天馈设备信息和所述接收到的拓扑信息通过扫描响应消息上报给所述基站处理设 备, 并将所述设备扫描消息发送给下一级天馈设备; 和 /或,
所述发送模块 903, 用于当所述第三判断模块 907确定不符合所述扫描条件时, 将所述 设备扫描消息发送给下一级天馈设备。
优选地, 在扫描响应消息中填入拓扑信息和天馈设备信息, 上报给基站处理设备。 该 扫描条件可以由技术人员设置。
当所述天馈系统为链型拓扑结构, 所述拓扑信息至少包括首结点信息和拓扑级信息; 和 /或,
当所述天馈系统为星型拓扑结构, 所述拓扑信息至少包括首结点信息、 拓扑级信息和 分支信息。
本发明实施例提供的天馈设备, 通过将天馈系统的总线结构改为了串行总线, 天馈设 备能够接收总线结构中上一级设备的拓扑信息, 并对接收到的拓扑信息进行处理, 再将处 理后的拓扑信息发送给下一级天馈设备, 使得串行总线上的设备能够逐级获得在链路上的 拓扑信息, 从而确定其物理拓扑位置, 解决了现有技术中进行扫描获得的信息混乱、 不清 楚设备连接拓扑位置的问题, 为后续网络建设和维护带来方便。
图 11是本发明实施例提供的一种天馈系统的结构示意图。参见图 11,该天馈系统包括: 基站处理设备 PS和至少两个上述实施例所示的天馈设备 SS, 基站处理设备 PS和该至 少两个天馈设备 SS的总线结构为串行总线;
其中, 基站处理设备 PS用于向总线结构上基站处理设备 PS的下一级天馈设备发送拓 扑信息。
基站处理设备 PS还用于向总线结构上基站处理设备 PS的下一级天馈设备发送设备扫 描消息;
该基站处理设备 PS还用于接收设备扫描响应, 该设备扫描响应由符合设备扫描消息携 带的扫描条件的天馈设备发送。 备能够接收总线结构中上一级设备的拓扑信息, 并对接收到的拓扑信息进行处理, 再将处 理后的拓扑信息发送给下一级天馈设备, 使得串行总线上的设备能够逐级获得在链路上的 拓扑信息, 从而确定其物理拓扑位置, 解决了现有技术中进行扫描获得的信息混乱、 不清 楚设备连接拓扑位置的问题, 为后续网络建设和维护带来方便。 本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完 成, 也可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算机可读存储 介质中, 上述提到的存储介质可以是只读存储器, 磁盘或光盘等。 以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

1、 一种天馈设备的拓扑信息处理方法, 其特征在于, 天馈系统包括基站处理设备和至少 两个天馈设备, 所述基站处理设备和所述至少两个天馈设备的总线结构为串行总线, 所述至 少两个天馈设备包括第一天馈设备, 所述方法包括:
第一天馈设备接收拓扑信息;
所述第一天馈设备对接收到的所述拓扑信息进行增量运算, 生成下一级拓扑信息; 所述第一天馈设备将所述下一级拓扑信息发送给下一级天馈设备。
2、 根据权利要求 1所述的方法, 其特征在于, 所述第一天馈设备接收拓扑信息, 之后包 括- 第一天馈设备将所述接收到的拓扑信息与所述第一天馈设备的天馈设备信息进行绑定, 将绑定后的所述天馈设备信息和所述接收到的拓扑信息发送给所述基站处理设备。
3、 根据权利要求 1所述的方法, 其特征在于, 所述第一天馈设备对接收到的所述拓扑信 息进行增量运算, 生成下一级拓扑信息, 具体包括- 判断下联控制端口是否有电流, 如果是, 对所述接收到的拓扑信息进行增量运算, 生成 下一级拓扑信息;
或,
判断下一级天馈设备的端口属性是否为从端口, 如果是, 对所述接收到的拓扑信息进行 增量运算, 生成下一级拓扑信息。
4、 根据权利要求 1-3任一项所述的方法, 其特征在于, 所述增量运算包括: 将所述接收 到的拓扑信息中的拓扑级信息加增量 N, 得到下一级拓扑级信息, 并根据所述下一级拓扑级 信息生成下一级拓扑信息, N为大于 0的自然数。
5、 根据权利要求 1-4任一项所述的方法, 其特征在于, 所述第一天馈设备对接收到的所 述拓扑信息进行增量运算, 生成下一级拓扑信息, 之后包括:
当第一天馈设备接收到设备扫描消息时, 判断所述第一天馈设备是否符合所述扫描消息 携带的扫描条件; 接收到的拓扑信息通过扫描响应消息上报给所述基站处理设备, 并将所述设备扫描消息发送 给下一级天馈设备; 和 /或,
当不符合所述扫描条件时, 所述第一天馈设备将所述设备扫描消息发送给下一级天馈设 备。
6、 根据权利要求 1-5任一项所述的方法, 其特征在于,
当所述天馈系统为链型拓扑结构, 所述拓扑信息至少包括首结点信息和拓扑级信息; 和 / 或,
当所述天馈系统为星型拓扑结构, 所述拓扑信息至少包括首结点信息、 拓扑级信息和分 支信息。
7、 一种天馈设备, 其特征在于, 天馈系统包括基站处理设备和至少所述两个天馈设备, 所述基站处理设备和所述至少所述两个天馈设备的总线结构为串行总线,所述天馈设备包括: 接收模块, 用于接收拓扑信息;
生成模块, 用于对接收到的所述拓扑信息进行增量运算, 生成下一级拓扑信息; 发送模块, 用于将所述下一级拓扑信息发送给下一级天馈设备。
8、 根据权利要求 7所述的天馈设备, 其特征在于, 所述天馈设备还包括:
绑定模块,用于将所述接收到的拓扑信息与所述第一天馈设备的天馈设备信息进行绑定; 相应地, 所述发送模块, 用于将绑定后的所述天馈设备信息和所述接收到的拓扑信息发 送给所述基站处理设备。
9、 根据权利要求 7所述的天馈设备, 其特征在于, 所述天馈设备还包括下述至少一个模 块- 第一判断模块, 用于判断下联控制端口是否有电流, 如果下联控制端口有电流, 则触发 所述生成模块对所述接收到的拓扑信息进行增量运算, 生成下一级拓扑信息;
第二判断模块, 用于判断下一级天馈设备的端口属性是否为从端口, 如果下一级天馈设 备的端口属性是从端口, 则触发所述生成模块对所述接收到的拓扑信息进行增量运算, 生成 下一级拓扑信息。
10、 根据权利要求 7-9任一项所述的天馈设备, 其特征在于, 所述生成模块具体用于将 所述接收到的拓扑信息中的拓扑级信息加增量 N, 得到下一级拓扑级信息, 并根据所述下一 级拓扑级信息生成下一级拓扑信息, N为大于 0的自然数。
11、 根据权利要求 7-10任一项所述的天馈设备, 其特征在于, 所述天馈设备还包括: 第三判断模块, 用于当接收到设备扫描消息时, 判断所述天馈设备是否符合所述扫描消 息携带的扫描条件;
所述发送模块, 用于当所述第三判断模块确定符合所述扫描条件时, 将所述天馈设备的 天馈设备信息和所述接收到的拓扑信息通过扫描响应消息上报给所述基站处理设备, 并将所 述设备扫描消息发送给下一级天馈设备; 和 /或,
所述发送模块, 用于当所述第三判断模块确定不符合所述扫描条件时, 将所述设备扫描 消息发送给下一级天馈设备。
12、 根据权利要求 7-11任一项所述的天馈设备, 其特征在于,
当所述天馈系统为链型拓扑结构, 所述拓扑信息至少包括首结点信息和拓扑级信息; 和 / 或,
当所述天馈系统为星型拓扑结构, 所述拓扑信息至少包括首结点信息、 拓扑级信息和分 支信息。
13、 一种天馈系统, 其特征在于, 所述天馈系统包括:
基站处理设备和至少两个权利要求 7-12所述任一项的天馈设备, 所述基站处理设备和所 述至少所述两个天馈设备的总线结构为串行总线;
其中, 所述基站处理设备用于向所述总线结构上所述基站处理设备的下一级天馈设备发 送拓扑信息。
14、 根据权利要求 13所述的天馈系统, 其特征在于, 所述基站处理设备还用于向所述总 线结构上所述基站处理设备的下一级天馈设备发送设备扫描消息;
所述基站处理设备还用于接收设备扫描响应, 所述设备扫描响应由符合所述设备扫描消 息携带的扫描条件的天馈设备发送。
PCT/CN2011/083142 2011-11-29 2011-11-29 天馈设备的拓扑信息处理方法、天馈设备和系统 WO2013078613A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800026932A CN102511180A (zh) 2011-11-29 2011-11-29 天馈设备的拓扑信息处理方法、天馈设备和系统
PCT/CN2011/083142 WO2013078613A1 (zh) 2011-11-29 2011-11-29 天馈设备的拓扑信息处理方法、天馈设备和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/083142 WO2013078613A1 (zh) 2011-11-29 2011-11-29 天馈设备的拓扑信息处理方法、天馈设备和系统

Publications (2)

Publication Number Publication Date
WO2013078613A1 true WO2013078613A1 (zh) 2013-06-06
WO2013078613A9 WO2013078613A9 (zh) 2013-08-08

Family

ID=46222799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083142 WO2013078613A1 (zh) 2011-11-29 2011-11-29 天馈设备的拓扑信息处理方法、天馈设备和系统

Country Status (2)

Country Link
CN (1) CN102511180A (zh)
WO (1) WO2013078613A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105357755A (zh) * 2013-01-25 2016-02-24 华为技术有限公司 基站天馈口与天线端口连接关系的定位方法和装置
CN104363605A (zh) * 2014-10-22 2015-02-18 电子科技大学中山学院 一种基于二叉树的两阶段ald扫描算法
CN104468290B (zh) * 2014-10-24 2018-07-10 深圳市远望谷信息技术股份有限公司 一种链型通信网络的组网方法及装置
CN104507116B (zh) 2015-01-19 2018-06-26 华为技术有限公司 天线设备管理方法和设备
US10044417B2 (en) 2015-07-07 2018-08-07 Huawei Technologies Co., Ltd. Systems and methods for RRU control messaging architecture for massive MIMO systems
WO2018068212A1 (zh) 2016-10-11 2018-04-19 华为技术有限公司 射频系统
BR112019007300A2 (pt) * 2016-10-11 2019-07-02 Huawei Tech Co Ltd método de transmissão de sinal em rede de radiofrequência, sistema de radiofrequência, e dispositivo de detecção
DE102018103097B3 (de) * 2018-02-12 2019-04-18 Kathrein Se Verfahren zur Topologiebestimmung in einer Mobilfunk-Site, ein Computerprogramm, ein Computerprogramm-Produkt und eine entsprechende Mobilfunk-Site
CN115314111B (zh) * 2021-05-08 2024-07-26 深圳华臻信息技术有限公司 一种拓扑结构生成方法、系统、计算机设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101051865A (zh) * 2007-03-26 2007-10-10 中兴通讯股份有限公司 在基带资源池与远端射频单元组成的网络上广播的方法
CN101316131A (zh) * 2008-06-26 2008-12-03 京信通信系统(中国)有限公司 多系统接入平台
CN101345593A (zh) * 2008-08-29 2009-01-14 京信通信系统(中国)有限公司 集中监控的覆盖系统网络及其多系统接入器
CN101442756A (zh) * 2007-11-22 2009-05-27 大唐移动通信设备有限公司 基带拉远单元逻辑拓扑结构的识别方法与装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101141404B (zh) * 2007-10-16 2011-03-16 中兴通讯股份有限公司 堆叠系统拓扑管理方法及拓扑改变通知方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101051865A (zh) * 2007-03-26 2007-10-10 中兴通讯股份有限公司 在基带资源池与远端射频单元组成的网络上广播的方法
CN101442756A (zh) * 2007-11-22 2009-05-27 大唐移动通信设备有限公司 基带拉远单元逻辑拓扑结构的识别方法与装置
CN101316131A (zh) * 2008-06-26 2008-12-03 京信通信系统(中国)有限公司 多系统接入平台
CN101345593A (zh) * 2008-08-29 2009-01-14 京信通信系统(中国)有限公司 集中监控的覆盖系统网络及其多系统接入器

Also Published As

Publication number Publication date
CN102511180A (zh) 2012-06-20
WO2013078613A9 (zh) 2013-08-08

Similar Documents

Publication Publication Date Title
WO2013078613A1 (zh) 天馈设备的拓扑信息处理方法、天馈设备和系统
JP7544927B2 (ja) マルチリンク通信方法および関連するデバイス
WO2019136724A1 (zh) Srs传输方法及相关设备
WO2019149023A1 (zh) 一种中继传输方法和装置
EP3429289B1 (en) Wireless lan system, wireless lan base station, wireless lan terminal and communication method
EP2418885B1 (en) Uplink signal processing method, base station and user terminal
WO2019161793A1 (zh) 非竞争随机接入的方法和装置
CN103580818A (zh) 一种信道状态信息的反馈方法、基站和终端
JP7349435B2 (ja) 端末、送信方法、通信システム、及び基地局
WO2015090041A1 (zh) 一种信息处理方法、装置和系统
US20190104449A1 (en) Apparatus and method related to radio access network
WO2011147357A1 (zh) 级联远端控制设备链路扫描的方法和电调天线系统
WO2019148396A1 (zh) 数据传输方法、切换方法及相关设备
EP3435733B1 (en) Base station and transmission method
EP3249965B1 (en) Antenna line device management method and device
CN111869278B (zh) 测量传输时延
US20210021534A1 (en) Measuring transmission delay
US20170318621A1 (en) Communication method and communication device
US20230224698A1 (en) Methods, apparatus and systems for address configuration for integrated access and backhaul links
WO2016192508A1 (zh) 一种信息交互方法及装置
EP4090102A1 (en) Base station, terminal, and wireless communication method
WO2012109955A1 (zh) 载频互助方法、基站及无线通信系统
JP2022519090A (ja) 情報伝送方法および通信装置
CN113412582A (zh) 用于波束对应信号通知的方法、相关无线设备和相关网络节点
EP3925258A1 (en) Selecting an operating mode

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002693.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11876513

Country of ref document: EP

Kind code of ref document: A1