WO2020155301A1 - 耐低温高压的柔性冷冻消融针装置 - Google Patents

耐低温高压的柔性冷冻消融针装置 Download PDF

Info

Publication number
WO2020155301A1
WO2020155301A1 PCT/CN2019/077262 CN2019077262W WO2020155301A1 WO 2020155301 A1 WO2020155301 A1 WO 2020155301A1 CN 2019077262 W CN2019077262 W CN 2019077262W WO 2020155301 A1 WO2020155301 A1 WO 2020155301A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutter head
flexible
pressure relief
pressure
tube
Prior art date
Application number
PCT/CN2019/077262
Other languages
English (en)
French (fr)
Inventor
杨迟
徐彬凯
吴银龙
张瑞
Original Assignee
上海导向医疗系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海导向医疗系统有限公司 filed Critical 上海导向医疗系统有限公司
Priority to EP19914095.5A priority Critical patent/EP3881786B1/en
Priority to ES19914095T priority patent/ES2931468T3/es
Priority to JP2021534350A priority patent/JP7145333B2/ja
Priority to US17/311,802 priority patent/US11986230B2/en
Priority to KR1020217008155A priority patent/KR102548744B1/ko
Publication of WO2020155301A1 publication Critical patent/WO2020155301A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00172Connectors and adapters therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00601Cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/0063Sealing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0212Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument inserted into a body lumen, e.g. catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0231Characteristics of handpieces or probes
    • A61B2018/0262Characteristics of handpieces or probes using a circulating cryogenic fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0293Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument interstitially inserted into the body, e.g. needle

Definitions

  • the invention relates to the medical field, in particular to a flexible cryoablation needle device resistant to low temperature and high pressure.
  • the flexible cold knife is used for biopsy, foreign body extraction, freezing, ablation and inactivation in the natural cavity of the human body (such as the bronchus). It generally contains five major parts, blade head, flexible conduit, handle, extension tube and quick connector.
  • the conventional flexible cold knife can be used for biopsy, foreign body extraction, and frozen cutting. It uses carbon dioxide or nitrous oxide as the gas source. Its inlet working pressure is up to 900psi, and the temperature of the knife tip is -40 ⁇ -80°C. Under normal working conditions, the knife head The internal back pressure is generally less than 100 psi.
  • the flexible pipe is a single-layer pipe, and since the temperature is not low, heat insulation is not required.
  • the flexible cold knife for tumor ablation is a high-pressure and low-temperature treatment device.
  • the working pressure of the air inlet is about 1500psi, and the temperature of the knife head can reach -140 ⁇ -170°C. Under normal working conditions, the back pressure in the knife head It is 300 ⁇ 500psi.
  • Such a low temperature and high pressure environment requires extremely high connection strength and tightness between the metal cutter head and the plastic flexible pipe. If the connection between the knife head and the flexible tube is broken, the knife head will rush out, pierce human tissues, and cause air leakage, causing additional frostbite or gas embolism.
  • the flexible cold knife used for tumor ablation may cause frostbite to the normal cavity wall of the human body because of its low temperature.
  • the flexible cold knife in the existing related technology has the following defects: the connection strength and air tightness of the knife head and the flexible pipe are not good, and the pipe burst is prone to occur when the pressure inside the knife head is too high.
  • the present invention provides a flexible cryoablation needle device resistant to low temperature and high pressure, to solve the problem that the tube bursts easily when the pressure in the cutter head is too high through automatic pressure relief, and also through the threaded part, the annular protrusion and the first extrusion
  • the pressure tube effectively improves the connection strength and air tightness of the flexible conduit and the cutter head.
  • a low temperature and high pressure resistant flexible cryoablation needle device comprising: a knife head structure and a flexible tube structure connected to the rear end of the knife head structure, the knife head structure is provided with an inner
  • the cutter head structure includes a front section of the cutter head and a rear section of the cutter head.
  • the front end of the rear section of the cutter head is connected to the rear end of the front section of the cutter head.
  • the outer diameter of the rear section of the cutter head is smaller than that of the cutter head.
  • the outer diameter of the front section, the flexible cryoablation needle device further includes: an inner lining tube, a flexible tube structure, a pressure relief component, a pressure relief intermediate cavity, and a first extrusion tube;
  • the flexible tube structure is provided with a pressure relief gap And flexible pipe vents, the rear end of the front section of the cutter head is provided with cutter head vents, and the liner pipe is provided with lining vents;
  • the front end of the liner tube is connected to the rear end surface of the front section of the cutter head, and the pressure relief intermediate cavity is formed on the inner side of the liner tube and the outer side of the rear section of the cutter head along the radial direction of the cutter head structure In between, the pressure relief intermediate cavity is formed between the rear end surface of the front section of the cutter head and a fixing part along the axial direction of the cutter head structure, and the fixing part is connected to the outer side of the rear section of the cutter head and the Between the inner side of the inner liner tube; the flexible tube structure is arranged on the outer side of the inner liner tube along the radial direction of the cutter head structure, and the pressure relief intermediate cavity is connected to the flexible tube through the inner liner vent hole The vent hole is connected to the pressure relief gap; the inner cavity is connected to one side of the cutter head vent hole, and the pressure relief middle cavity is connected to the other side of the cutter head vent hole;
  • At least part of the outer wall of the inner liner tube is attached to the inner wall of the flexible tube structure, and the outer wall of the inner liner tube that is attached to the flexible tube structure is provided with a concave-convex structure;
  • the first extruded tube is sleeved Outside the flexible tube structure and on the outside of part of the concave-convex structure;
  • the concave-convex structure includes a threaded portion and/or an annular protrusion;
  • the pressure relief component is arranged in the pressure relief intermediate cavity, and is used to close the vent hole of the cutter head when the pressure in the cavity is lower than a pressure threshold, and when the pressure in the cavity is higher than or equal to the pressure
  • the pressure threshold is set, the cutter head vent hole, the flexible pipe vent hole, and the liner vent hole are all connected, so that the gas in the cutter head structure can sequentially pass through the cutter head vent hole and relieve pressure
  • the intermediate cavity, the lining vent hole, the flexible pipe vent hole and the pressure relief gap are exhausted and pressure released.
  • the pressure relief assembly includes a slider and a spring located in the pressure relief intermediate cavity, and the spring connects the slider and the fixed portion along the axial direction of the cutter head structure;
  • a first sealing component is provided on one side of the rear end of the front section of the head;
  • the spring is configured to be able to drive the first sealing member to be clamped by the sliding block and the rear end surface of the front section of the cutter head by elastic force when the pressure of the inner cavity is lower than the pressure threshold to close
  • the cutter head vent hole and: when the pressure of the inner cavity is higher than or equal to the pressure threshold, it can be compressed under the drive of the pressure of the inner cavity, so that the cutter head vent hole is no longer Closed
  • the closure mentioned above includes both direct closure and indirect closure.
  • the indirect closure can be understood as a situation where it is not in circulation but not in direct contact.
  • the first sealing component is connected to the front end of the slider; when the first sealing component is clamped by the slider and the rear end surface of the front section of the cutter head, the first sealing component can directly Closed at the vent hole of the cutter head;
  • the first sealing component is connected to the rear end surface of the front section of the cutter head, and the first side of the slider along the radial direction of the cutter head structure is provided with an intermediate gap;
  • the pressure relief intermediate cavity includes A first pressure relief sub-cavity located on the side of the front end of the slider and a second pressure relief sub-cavity located on the side of the back end of the slider;
  • the first sealing member When the first sealing member is clamped by the sliding block and the rear end surface of the front section of the cutter head, the first sealing member can close the front end of the intermediate gap, so that the first pressure relief sub-cavity and The second pressure relief sub-cavity is blocked;
  • a second sealing member is provided on the second side of the slider along the radial direction of the cutter head structure, and the second sealing member is used to block the first side of the slider.
  • a pressure relief sub-cavity and the second pressure relief sub-cavity are provided on the second side of the slider along the radial direction of the cutter head structure, and the second sealing member is used to block the first side of the slider.
  • a groove is provided on the second side of the slider, and the second sealing member is installed in the groove.
  • first sealing component and the second sealing component are both sealing rings.
  • the flexible pipe structure includes a flexible inner pipe and a flexible outer pipe provided outside the flexible inner pipe
  • the flexible outer pipe includes a first outer pipe section connected to the cutter head structure and The second outer pipe section at the rear end of the first outer pipe section, the inner wall of the first outer pipe section is attached to the outer wall of the flexible inner pipe, and the pressure relief gap is formed between the second outer pipe section and the flexible inner pipe
  • the flexible tube vent is provided in the flexible inner tube, and the pressure relief gap is connected to the pressure pumping component.
  • the flexible inner tube and the flexible outer tube are made of polytetrafluoroethylene.
  • the flexible cryoablation needle device further includes a second squeeze tube, and the second squeeze tube is sleeved on the outer side of the flexible inner catheter and located on the outer side of a part of the concave-convex structure.
  • the device further includes a pipeline structure, the pipeline structure penetrates the rear section of the cutter head along the axial direction of the cutter head structure, and the pipeline structure is provided with gas to enter the plant.
  • a return air passage for the gas in the inner cavity to be discharged to the rear end side of the rear section of the cutter head is formed between the inner side of the rear section of the cutter head and the outer side of the passage structure.
  • the low-temperature and high-pressure resistant flexible cryoablation needle device provided by the present invention because the outer wall of the liner tube is provided with a threaded part, can improve the connection strength between the liner tube and the flexible tube structure, because the outer wall of the liner tube
  • the annular convex part is provided to ensure that the gas coming over when the pressure is relieved will not leak further outwards, and the connection strength can also be improved.
  • the invention can further ensure the air tightness and connection strength through the radial extrusion of the extrusion tube.
  • the present invention utilizes the cutter head vent, pressure relief intermediate cavity, lined vent, flexible pipe vent and pressure relief gap to directly relieve the pressure in the inner cavity of the cutter head, wherein the pressure in the inner cavity is higher than When it is equal to the pressure threshold, the realization of pressure relief can be automatically controlled to avoid the occurrence of excessive pressure in the cutter head, thereby avoiding the tube burst.
  • the present invention is also different from the solution of directly setting pressure relief related components in the return air passage. If directly set in the return air passage, it can only realize automatic pressure relief when the return air passage is blocked. If blockage occurs in the air channel, it cannot play a positive pressure relief effect. However, based on actual experiments and studies on the clogging phenomenon during use, the present invention found that in actual situations, clogging may occur at any other position, such as the flexible duct of the flexible cold knife, the extension pipe section, etc.; therefore, the present invention Relieve the pressure of the cutter head directly, which can effectively deal with a variety of blockages and can easily deal with the excessive pressure in the cutter head caused by various reasons.
  • a double-layered tube structure of a flexible inner tube and a flexible outer tube is used, which can facilitate the realization of heat insulation and prevent the flexible cold knife from damaging the human body due to the low temperature.
  • the heat insulation effect can be further improved while the pressure is relieved.
  • the optional solution of the present invention adopts tetrafluoroethylene material. Because tetrafluoroethylene material has good mechanical toughness, even The temperature drops to -196°C and the elongation rate of 5% can be maintained. Therefore, polytetrafluoroethylene is used as the material of the inner and outer flexible conduits to achieve safe sealing at low temperatures.
  • FIG. 1 is a schematic diagram of the structure of a flexible cryoablation needle device capable of withstanding low temperature and high pressure in an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram 1 of a flexible cryoablation needle device resistant to low temperature and high pressure in another embodiment of the present invention
  • Fig. 3 is a partial structural diagram 1 of a flexible cryoablation needle device resistant to low temperature and high pressure in another embodiment of the present invention
  • Figure 4 is a schematic structural view of the A-A section in Figure 3;
  • Fig. 5 is a second partial structural diagram of a flexible cryoablation needle device resistant to low temperature and high pressure in another embodiment of the present invention.
  • Fig. 1 is a schematic structural diagram of a flexible cryoablation needle device resistant to low temperature and high pressure in an embodiment of the present invention.
  • a flexible cryoablation needle device resistant to low temperature and high pressure comprising: a cutter head structure 1 and a flexible tube structure 2 connected to the rear end of the cutter head structure 1, and the cutter head structure 1 is provided with an inner cavity 14.
  • the cutter head structure 1 includes a cutter head front section 11 and a cutter head rear section 12.
  • the front end of the cutter head rear section 12 is connected to the rear end of the cutter head front section 11, and the outer diameter of the cutter head rear section 12 is smaller than The outer diameter of the front section 11 of the cutter head
  • the flexible cryoablation needle device further includes: an inner lining tube 5, a pressure relief component 4, a pressure relief middle cavity 3 and a first extrusion tube 6.
  • the flexible pipe structure 2 is provided with a pressure relief gap 22 and a flexible pipe vent 21, the rear end of the front section 11 of the cutter head is provided with a cutter head vent 13, and the liner tube 5 is provided with an lining vent 51 .
  • the front end of the liner tube 5 is connected to the rear end surface of the front section 11 of the cutter head, and the pressure relief intermediate cavity 3 is formed on the inner side of the liner tube 5 and the cutter head along the radial direction of the cutter head structure 1.
  • the pressure relief intermediate cavity 3 is formed along the axial direction of the cutter head structure 1 between the rear end surface of the front section 11 of the cutter head and the fixing part 9, and the fixing part 9 is connected
  • the flexible pipe structure 2 is arranged on the outer side of the inner liner tube 5 along the radial direction of the cutter head structure 1, the The pressure relief intermediate cavity 3 is connected to the pressure relief gap 22 via the liner vent hole 51 and the flexible pipe vent hole 21;
  • the inner cavity 14 is connected to one side of the cutter head vent hole 13, which can It is understood as the left side of the cutter head vent 13 as shown in the figure, and the pressure relief intermediate cavity 3 is connected to the other side of the cutter
  • the pressure relief intermediate cavity 3 can be connected to one side of the flexible pipe vent 21 through the lining vent 51, which can be understood as the flexible pipe vent 21 shown in FIG.
  • the pressure relief gap 22 is connected to the other side of the flexible pipe vent 21, which can be understood as the upper side of the flexible pipe vent 21 as shown in FIG. 1.
  • the flexible pipe vent 21 It can also be understood as being arranged along the radial direction of the cutter head structure 1.
  • the two sides of the cutter head vent 13 and the flexible tube vent 21 may not be limited to the radial and axial directions shown in FIG. 1.
  • the cutter head vent 13 may be axially or axially.
  • the flexible pipe vent 21 and the inner liner vent 51 can be along the radial direction as well as along the axial direction.
  • the number of cutter head vents 13, flexible vents 21, and liner vents 51 can be single or multiple. If there are more than one, the plurality of cutter head vents 13 can be structured around the cutter head. 1, the multiple flexible vent holes 21 and the multiple liner vent holes 51 may be distributed around the axial direction of the cutter head structure 1.
  • the pressure relief gap 22 may be a ring-shaped gap, or may include a plurality of gap portions, and the gap portions may be distributed around the axial direction of the cutter head structure 1.
  • each gap portion can be connected to at least one flexible pipe vent 21.
  • the shapes of the vent holes mentioned above can be various, and are not limited to cylindrical hole structures.
  • the hole structure can be a shape with a larger end and a smaller end.
  • the cross-section of the hole structure is not only circular , It can also be a polygon.
  • the pressure relief component 4 is arranged in the pressure relief intermediate cavity 3, and is used to close the cutter head vent 13 when the pressure of the internal cavity 14 is lower than a pressure threshold, and the pressure in the internal cavity 14 is high At or equal to the pressure threshold, the cutter head vent 13 and the flexible pipe vent 21 are controlled to communicate with the liner vent 51, so that the gas in the cutter head structure 1 can pass through sequentially
  • the cutter head vent 13, the pressure relief intermediate cavity 3, the liner vent 51, the flexible pipe vent 21 and the pressure relief gap 22 are discharged and relieved of pressure.
  • closure can be understood as any means that prevents circulation on both sides of the vent.
  • the realized automatic control process can also be adaptively changed, for example: if only the knife is closed when closing If the head vent 13 is not closed, the flexible pipe vent 21 and the liner vent 51 are not closed, the automatic control implemented can be to control the cutter head vent 13 to no longer be closed; another example: if only the flexible pipe vent is closed when closing If the air hole 21 and the lining vent hole 51 are not closed, the automatic control implemented can be to control the flexible pipe vent hole 21 and the lining vent hole not to be closed; for example: If the cutter head vent 13 and the flexible pipe vent 21 are automatically controlled, the automatic control can be to control that the cutter head vent 13 and the flexible pipe vent 21 are no longer closed.
  • the above mentioned closures include direct closures and indirect closures. The indirect closures can be understood as making them non-circulating, but not in direct contact.
  • the low-temperature and high-pressure resistant flexible cryoablation needle device utilizes the knife head vent, pressure relief intermediate cavity, flexible tube vent and pressure relief gap to directly relieve pressure on the inner cavity of the knife head.
  • the pressure of the inner cavity is higher than or equal to the pressure threshold, the realization of pressure relief can be automatically controlled to avoid the occurrence of excessive pressure in the cutter head, thereby avoiding the burst of the catheter.
  • this embodiment is also different from the solution of directly setting pressure relief related components in the return air passage. If directly set in the return air passage, it can only realize automatic pressure relief when the return air passage is blocked. If there is a blockage in the air return channel of the knife, it cannot play a positive pressure relief effect.
  • this example found that in actual situations, clogging may occur in any other position, such as the flexible duct of the flexible cold knife, the extension pipe section, etc.; therefore, this The embodiment directly relieves the pressure of the cutter head, which can effectively cope with various clogging conditions, and can easily deal with the excessive pressure in the cutter head caused by various reasons.
  • FIG. 2 is a schematic diagram 1 of the structure of a flexible cryoablation needle device resistant to low temperature and high pressure in another embodiment of the present invention
  • FIG. 3 is a partial structure diagram 1 of a flexible cryoablation needle device resistant to low temperature and high pressure in another embodiment of the present invention
  • 4 is a schematic structural diagram of the AA section in FIG. 3
  • FIG. 5 is a partial structural schematic diagram 2 of a flexible cryoablation needle device resistant to low temperature and high pressure in another embodiment of the present invention.
  • the cutter head structure 1 includes a cutter head front section 11 and a cutter head rear section 12, the front end of the cutter head rear section 12 is connected to the rear end of the cutter head front section 11, the knife
  • the outer diameter of the rear section 12 is smaller than the outer diameter of the front section 11 of the cutter head.
  • the cutter head vent hole 13 is provided on the rear end surface of the front section 11 of the cutter head and located outside the rear section 12 of the cutter head.
  • the pressure relief intermediate cavity 3 is located on the side of the rear end of the front section 11 of the cutter head.
  • the size change in the cutter head structure 1 can be adapted to realize the connection with the flexible pipe structure 2 to ensure uniform matching of the overall size.
  • the pressure relief assembly 4 includes a slider 41 and a spring 42 located in the pressure relief intermediate cavity 3, and the fixed portion 9 may be a part of the inner liner 5, or can be understood as a fixed portion 9 is integral with the liner tube 5, and the spring 42 connects the slider 41 and the fixing portion 9 along the axial direction of the cutter head structure 1;
  • the first sealing member 43 may be formed by being wound around the rear section 12 of the cutter head, and connected to the fixing part 9 and the sliding block 41.
  • the spring 42 can be configured to be able to drive the first sealing member 43 by the slider 41 and the rear of the front section 11 of the cutter head through elastic force when the pressure of the inner cavity 14 is lower than the pressure threshold.
  • the end faces are clamped to close the air hole 13 of the cutter head.
  • the spring 42 can be understood as being compressed, thereby generating the elastic force mentioned above.
  • the spring 42 can also be configured to be compressed by the pressure of the inner cavity 14 when the pressure of the inner cavity 14 is higher than or equal to the pressure threshold, so that the cutter head vent 13 No longer being closed. Specifically, when the pressure is lower than the pressure threshold, the spring 42 may be compressed to a certain extent, and when the pressure is higher than or equal to the pressure threshold, the spring 42 may be further compressed.
  • the configuration mentioned above can be understood as the adaptation of the deformation capacity and length of the spring 42 and the pressure relief intermediate cavity 3 to meet the above functions.
  • the pressure threshold can be understood as any value that can be adjusted according to specific situations, and the value can be adjusted and determined by the selection of the spring 42 and the process of manufacturing, molding, and installation.
  • the first sealing member 43 is connected to the front end of the slider 41; when the first sealing member 43 is clamped by the slider 41 and the rear end surface of the front section 11 of the cutter head, The first sealing member 43 can be sealed to the cutter head vent 13; that is, the first sealing member 43 can directly close the cutter head vent 13; the spring 42 is driven by the pressure of the inner cavity 14 When compressed, the first sealing member 43 is separated from the cutter head vent 13 so that the cutter head vent 13 is no longer closed.
  • the first sealing member 43 is connected to the rear end surface of the front section 11 of the cutter head, and the first side of the slider 41 along the radial direction of the cutter head structure 1 is provided with an intermediate gap
  • the side close to the axis shown in Figures 2 and 3 is provided with an intermediate gap
  • the pressure relief intermediate cavity 3 includes a first pressure relief sub-cavity located on the side of the front end of the slider 41 and The second pressure relief sub-cavity on one side of the rear end of the slider 41.
  • the sliding block 41 divides the pressure relief intermediate cavity 3 into sub-cavities on both ends in the axial direction.
  • the first sealing member 43 When the first sealing member 43 is clamped by the slider 41 and the rear end surface of the front section 11 of the cutter head, the first sealing member 43 can simultaneously close the front end of the intermediate gap, so that the first The pressure relief sub-cavity is separated from the second pressure relief sub-cavity; at this time, the first pressure relief sub-cavity can be understood as the space between the cutter head vent 13 and the front end of the slider 41, which can communicate with the cutter head The air hole 13 communicates with the second pressure relief chamber to form a whole.
  • the second side of the slider 41 along the radial direction of the cutter head structure 1 is provided with a second sealing member 44, and the second sealing member 44 is used in the slider 41
  • the second side partitions the first pressure relief sub-cavity and the second pressure relief sub-cavity.
  • the second side refers to the second side in the radial direction.
  • the second side of the slider 41 may be provided with a groove, and the second sealing member 44 may be installed in the groove.
  • first sealing member 43 and the second sealing member 44 may be sealing rings.
  • the gas in the front section 11 of the cutter head can be prevented from entering the pressure relief gap 22. If the return air is blocked, the internal pressure of the cutter head structure 1 will increase. If the gas pressure is higher than the thrust provided by the spring 42, it will cause the slider 41 to move backward, and the gas will pass through the cutter head vent 13 to the middle of the pressure relief. The cavity 3 enters the pressure relief gap 22. Excessive gas will be discharged quickly by the vacuum suction effect generated by components such as the pressure pumping component to achieve the purpose of pressure relief.
  • the rear section 12 of the cutter head can be sequentially sleeved with the first sealing member 43 such as the sealing ring, the slider 41 with the sealing ring 2, and the spring 42, and the partition between the front and rear sections of the cutter head, namely the knife Four cutter head vent holes 13 are opened along the axial direction on the rear end of the front head section 11 for ventilation when pressure is relieved.
  • the first sealing member 43 of the seal ring is used for the gap between the rear section 12 of the cutter head and the slider 41.
  • Axial sealing for example, the second sealing member 44 of the sealing ring is used for the radial piston seal between the inner liner tube 5 and the slider 41.
  • the inner liner tube 5 is sleeved on the rear section 12 of the cutter head.
  • the welding point 54 at the front end ensures that the gas in the cutter head structure 1 does not It will leak out of the cutter head structure 1, and the welding point 54 at the rear end ensures that the gas in the inner flexible conduit 23 will not enter the pressure relief gap 22.
  • the flexible cryoablation needle device of the present invention further includes an inner liner 5, the front end of the inner liner 5 is connected to the rear end of the front section 11 of the cutter head, and the pressure relief middle cavity 3 is along the cutter head structure 1 is formed in the radial direction between the inner liner tube 5 and the rear section 12 of the cutter head, the inner liner tube 5 is provided with an inner liner vent 51, and the pressure relief intermediate cavity 3 passes through the inner liner
  • the air hole 51 communicates with the flexible pipe vent 21 to the pressure relief gap 22, the flexible pipe structure 2 is provided on the outer side of the inner liner 5 along the radial direction of the cutter head structure 1, and the inner At least part of the outer wall of the liner 5 is attached to the inner wall of the flexible pipe structure 2.
  • the inner liner 5 can facilitate the formation of the pressure relief intermediate cavity 3.
  • the outer wall of the inner liner tube 5 that is attached to the flexible tube structure 2 may be provided with a concave-convex structure, and the concave-convex structure may include a threaded portion 52. Through the threaded portion 52, the connection strength between the inner liner pipe and the flexible pipe structure can be improved.
  • the concave-convex structure may further include an annular protrusion 53, that is, the outer wall of the inner liner tube 5 that is attached to the flexible pipe structure 2 may also be provided with an annular protrusion 53.
  • the annular protrusion 53 can ensure leakage. The compressed gas will not leak further outward, and the connection strength can also be improved.
  • the number of the annular protrusions 53 can be two groups, which are located on both sides of the lining vent 51 along the axial direction of the cutter head structure 1.
  • the flexible cryoablation needle device involved in this embodiment further includes a first squeeze tube 6 that is sleeved outside the flexible tube structure 2 and is located outside part of the concave-convex structure.
  • the concave-convex structure may include an annular protrusion 53 and a threaded portion 52, for example.
  • the concave-convex structure may include, for example, an annular protrusion 53.
  • the extruded tube located outside the flexible tube structure 2 can be understood as the first extruded tube 6, and the extruded tube on the inner wall of the pressure relief gap 22 can be understood as the second extruded tube 8.
  • the first extruded tube 6 and the second extruded tube 8 are respectively located on both sides of the lining vent 51 and the flexible tube vent 21 along the axial direction of the cutter head structure 1.
  • the flexible tube structure 2 includes a flexible inner tube 23 and a flexible outer tube 24 provided outside the flexible inner tube 23, and the flexible outer tube 24 includes a flexible tube connected to the cutter head structure 1.
  • the flexible inner tube 23 and the flexible outer tube 24 may be made of polytetrafluoroethylene.
  • the catheter made of PTFE material has good toughness even at low temperatures.
  • the threaded part, the annular convex part, and the extrusion of the metal cutter head structure and the polytetrafluoroethylene pipe are adopted.
  • the threaded part provides the connection strength
  • the annular convex part ensures the air tightness
  • the metal The cutting head structure and the extrusion of PTFE further strengthen the connection strength and air tightness, while also improving the good toughness.
  • the flexible pipe structure 2 is screwed into the threaded portion 52, and the teeth of the threaded portion 52 in the radial direction will be embedded in the wall of the flexible pipe structure 2.
  • the wall thickness of the flexible inner conduit 23 in the flexible tube structure 2 is at least not less than 2 times the tooth height, which can be used to prevent the axial pressure from separating the cutter head structure 1 and the flexible tube structure 2 and the embedding of multi-ring teeth
  • the axial pressure will be evenly distributed to each ring of teeth, but the embedding of the teeth is not enough, because the flexible tube structure 2 also has a tendency to expand radially outwards, by adding an extruded tube on its outer side.
  • the flexible inner tube 23 can be prevented from expanding outward, and the teeth and the flexible tube structure 2 can be fully fitted and contacted. Therefore, the combination of the threaded part and the extruded tube can also ensure the cutter head Structure 1 has sufficient compressive strength.
  • the annular protrusion 53 plus the extrusion of the squeeze tube ensures that the gas coming over when the pressure is relieved will not leak to the outside of the cutter head structure 1, and also provides a certain axial connection strength; the annular protrusion 53 adds the extrusion
  • the squeezing of the pressure tube ensures that the gas in the flexible inner duct 23 will not enter the pressure relief gap 22.
  • the joint action of the two sets of annular protrusions can also prevent the gas in the flexible inner duct 23 from leaking to the outside of the cutter head structure 1.
  • the flexible inner duct 23 and the flexible outer duct 24 are squeezed by the squeeze tube to ensure that the gas outside the cutter head structure 1 will not be sucked into the pressure relief gap 22.
  • the flexible inner duct 23 has an inner duct air hole in the radial direction
  • the flexible outer duct 24 has an outer duct air hole in the radial direction.
  • the inner duct air hole and the outer duct air hole can be concentrically aligned to form the aforementioned flexibility. Tube vent.
  • threaded connection sealing or thread + glue connection sealing and other means can not meet the requirements of low temperature resistance and high pressure resistance at the same time, because the air tightness of the thread (especially pipe thread) is not high, and a small amount of gas will Leak from the mating clearance of male and female threads. If thread glue is filled in the gap, the air tightness can only be guaranteed at room temperature or appropriate low temperature, because most glues will be brittle and cracked at low temperatures of -140 ⁇ -170 °C, and air tightness cannot be guaranteed.
  • the flexible cryoablation needle device further includes a pipeline structure 7 which penetrates the rear section 12 of the cutter head along the axial direction of the cutter head structure 1, and
  • the pipeline structure 7 is provided with an inlet channel for gas to enter the inner cavity, and the pipeline structure 7 may be, for example, a JT tank.
  • the gas can enter the inner cavity 14 of the front section 11 of the cutter head from the inside of the pipeline structure 7 such as the JT groove, and then pass through the gap between the rear section 12 of the cutter head and the outer side of the pipeline structure 7 such as the JT groove, which is referred to above
  • the return air channel returns, and then returns through the inner side of the flexible inner duct 23.
  • the low temperature and high pressure resistant flexible cryoablation needle device provided by the present invention, because the outer wall of the liner tube is provided with a threaded part, can improve the connection strength between the liner tube and the flexible tube structure.
  • the outer wall of the inner lining pipe is provided with an annular protrusion to ensure that the gas coming over when the pressure is released will not leak further outwards, and at the same time, the connection strength can be improved.
  • the present invention can further ensure air tightness and connection strength through the radial extrusion of the extrusion tube.
  • the present invention utilizes the cutter head vent, pressure relief intermediate cavity, lined vent, flexible pipe vent and pressure relief gap to directly relieve the pressure in the inner cavity of the cutter head, wherein the pressure in the inner cavity is higher than When it is equal to the pressure threshold, the realization of pressure relief can be automatically controlled to avoid the occurrence of excessive pressure in the cutter head, thereby avoiding the tube burst.
  • the present invention is also different from the solution of directly setting pressure relief related components in the return air passage. If directly set in the return air passage, it can only realize automatic pressure relief when the return air passage is blocked. If blockage occurs in the air channel, it cannot play a positive pressure relief effect. However, based on actual experiments and studies on the clogging phenomenon during use, the present invention finds that in actual situations, clogging may occur at any other position, such as the flexible duct of the flexible cold knife, the extension pipe section, etc.; therefore, the present invention Relieve the pressure of the cutter head directly, which can effectively deal with a variety of blockages and can easily deal with the excessive pressure in the cutter head caused by various reasons.
  • a double-layered tube structure of a flexible inner tube and a flexible outer tube is used, which can facilitate the realization of heat insulation and prevent the flexible cold knife from damaging the human body due to the low temperature.
  • the heat insulation effect can be further improved while the pressure is relieved.
  • the optional solution of the present invention adopts tetrafluoroethylene material. Because tetrafluoroethylene material has good mechanical toughness, even The temperature drops to -196°C and the elongation rate of 5% can be maintained. Therefore, polytetrafluoroethylene is used as the material of the inner and outer flexible conduits to achieve safe sealing at low temperatures.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

一种耐低温高压的柔性冷冻消融针装置,由于内衬管(5)的外壁设有螺纹部(52),可提高内衬管(5)与柔性管结构(2)之间的连接强度,由于内衬管(5)的外壁设有环形凸起部(53),保证了泄压时过来的气体不会进一步向外泄露,同时也可提高连接强度。还可通过挤压管(6,8)的径向挤压,进一步保障气密性与连接强度。同时,利用刀头通气孔(13)、泄压中间腔(3)、内衬通气孔(51)、柔性管通气孔(21)与泄压缝隙(22),直接对刀头结构(1)中的内腔(14)进行泄压,其中,在内腔(14)的压力高于或等于压力阈值时,可自动控制泄压的实现,避免刀头内压力过高这种情况的发生,进而避免了导管的爆裂。

Description

耐低温高压的柔性冷冻消融针装置 技术领域
本发明涉及医疗领域,尤其涉及一种耐低温高压的柔性冷冻消融针装置。
背景技术
柔性冷刀用于人体自然腔道(如支气管)中的活检、异物提取、冻切、消融灭活等。一般包含五大部件,刀头、柔性导管、手柄、延长管和快速接头。
常规柔性冷刀可用于活检、异物提取、冻切,采用二氧化碳或一氧化二氮作为气源,其进气工作压力最高900psi,刀头温度-40~-80℃,正常工作条件下,刀头内的背压一般都低于100psi。柔性导管为单层管,由于温度不低,无需做隔热处理。
以用于肿瘤消融的柔性冷刀为例,其为高压低温治疗器械,进气工作压力为1500psi左右,刀头温度可达-140~-170℃,正常工作条件下,刀头内的背压为300~500psi,如此的低温高压环境对金属刀头和塑料柔性导管之间的连接强度和密封性要求极高。若刀头和柔性导管之间的连接断开,则会造成刀头冲出,刺穿人体组织,也会导致漏气,造成额外冻伤或气体栓塞。若刀头和柔性导管的连接气密性不够,漏气则同样会造成额外冻伤或气体栓塞。此外,用于肿瘤消融的柔性冷刀因为温度很低,可能会对人体正常腔道壁造成冻伤。
同样以用于肿瘤消融的柔性冷刀为例,其回气管路发生堵塞(如冰堵),刀头内背压最高可达1500psi,如此高的压力,塑料柔性导管本身无法承受,会造成导管爆裂,若手术中发生导管爆裂,会导致大量气体泄露至自然腔道,有可能对患者造成生命危险。
可见,现有的相关技术中的柔性冷刀具有以下缺陷:刀头与柔性导管的连接强度与气密性不佳,以及刀头内压力过高时易于发生导管爆裂。
发明内容
本发明提供了一种耐低温高压的柔性冷冻消融针装置,以通过自动的泄压解决刀头内压力过高时易于发生导管爆裂的问题,还通过螺纹部、环形凸起部与第一挤压管,有效提高了柔性导管与刀头的连接强度与气密性。
根据本发明的第一方面,提供了一种耐低温高压的柔性冷冻消融针装置,包括:刀头结构与连接于所述刀头结构后端的柔性管结构,所述刀头结构中设有内腔,所述刀头结构包括刀头前段与刀头后段,所述刀头后段的前端连接于所述刀头前段的后端,所述刀头后段的外径小于所述刀头前段的外径,所述的柔性冷冻消融针装置还包括:内衬管、柔性管 结构、泄压组件、泄压中间腔与第一挤压管;所述柔性管结构中设有泄压缝隙与柔性管通气孔,所述刀头前段的后端面设有刀头通气孔,所述内衬管设有内衬通气孔;
所述内衬管的前端连接所述刀头前段的后端面,所述泄压中间腔沿所述刀头结构的径向形成于所述内衬管的内侧与所述刀头后段的外侧之间,所述泄压中间腔沿所述刀头结构的轴向形成于所述刀头前段的后端面与固定部之间,所述固定部连接于所述刀头后段外侧与所述内衬管的内侧之间;所述柔性管结构沿所述刀头结构的径向设于所述内衬管的外侧,所述泄压中间腔经所述内衬通气孔与所述柔性管通气孔连通至所述泄压缝隙;所述内腔连接于所述刀头通气孔的一侧,所述泄压中间腔连接于所述刀头通气孔的另一侧;
所述内衬管的至少部分外壁与所述柔性管结构的内壁贴合,所述内衬管的与所述柔性管结构贴合的外壁设有凹凸结构;所述第一挤压管套设于所述柔性管结构外,且位于部分所述凹凸结构的外侧;所述凹凸结构包括螺纹部和/或环形凸起部;
所述泄压组件设于所述泄压中间腔,用于在所述内腔的压力低于压力阈值时封闭所述刀头通气孔,并在所述内腔的压力高于或等于所述压力阈值时,控制所述刀头通气孔、所述柔性管通气孔与所述内衬通气孔均连通,以使得所述刀头结构中的气体能够依次经所述刀头通气孔、泄压中间腔、所述内衬通气孔、所述柔性管通气孔与所述泄压缝隙被排出泄压。
可选的,所述泄压组件包括位于所述泄压中间腔内的滑块与弹簧,所述弹簧沿所述刀头结构的轴向连接所述滑块与所述固定部;所述刀头前段的后端面一侧设有第一密封部件;
所述弹簧被配置为在所述内腔的压力低于所述压力阈值时能够通过弹性力驱动所述第一密封部件被所述滑块与所述刀头前段的后端面夹持,以封闭所述刀头通气孔,以及:在所述内腔的压力高于或等于所述压力阈值时能够在所述内腔的压力的驱动下被压缩,以使得所述刀头通气孔不再被封闭;
以上所涉及的封闭,包含了直接封闭,以及间接封闭的情形,该间接封闭可理解为使之不流通,但并非直接接触的情形。
可选的,所述第一密封部件连接所述滑块的前端;所述第一密封部件被所述滑块与所述刀头前段的后端面夹持时,所述第一密封部件能够直接封闭于所述刀头通气孔;
所述弹簧在所述内腔的压力驱动下被压缩时,所述第一密封部件与所述刀头通气孔分离,以使得所述刀头通气孔不再被封闭。
可选的,所述第一密封部件连接所述刀头前段的后端面,所述滑块的沿所述刀头结构 的径向的第一侧设有中间缝隙;所述泄压中间腔包括位于所述滑块的前端一侧的第一泄压分腔与位于所述滑块的后端一侧的第二泄压分腔;
所述第一密封部件被所述滑块与所述刀头前段的后端面夹持时,所述第一密封部件能够封闭所述中间缝隙的前端,以使得所述第一泄压分腔与所述第二泄压分腔被隔断;
所述弹簧在所述内腔的压力驱动下被压缩时,所述刀头通气孔、所述第一泄压分腔、所述中间缝隙、所述第二泄压分腔、所述柔性管通气孔,以及所述泄压缝隙依次连通。
可选的,所述滑块的沿所述刀头结构的径向的第二侧设有第二密封部件,所述第二密封部件用于在所述滑块的第二侧隔断所述第一泄压分腔与所述第二泄压分腔。
可选的,所述滑块的第二侧设有凹槽,所述第二密封部件安装于所述凹槽。
可选的,所述第一密封部件与所述第二密封部件均为密封圈。
可选的,所述柔性管结构包括柔性内导管与设于所述柔性内导管外的柔性外导管,所述柔性外导管包括连接于所述刀头结构的第一外管段与连接于所述第一外管段后端的第二外管段,所述第一外管段的内壁与所述柔性内导管外壁贴合,所述泄压缝隙形成于所述第二外管段与所述柔性内导管之间,所述柔性管通气孔设于所述柔性内导管,所述泄压缝隙连通至抽压组件。
可选的,所述柔性内导管与所述柔性外导管为聚四氟乙烯材料的。
可选的,所述的柔性冷冻消融针装置,还包括第二挤压管,所述第二挤压管套设于所述柔性内导管外侧,且位于部分所述凹凸结构的外侧。
可选的,所述的装置还包括管路结构,所述管路结构沿所述刀头结构的轴向穿设于所述刀头后段,所述管路结构内设有供气体进入所述内腔的进入通道,所述刀头后段内侧与所述通道结构外侧间形成有供所述内腔的气体排出至所述所述刀头后段的后端一侧的回气通道。
本发明提供的耐低温高压的柔性冷冻消融针装置,由于所述内衬管的外壁设有螺纹部,可提高内衬管与柔性管结构之间的连接强度,由于所述内衬管的外壁设有环形凸起部,保证了泄压时过来的气体不会进一步向外泄露,同时也可提高连接强度。本发明还可通过挤压管的径向挤压,进一步保障气密性与连接强度。
同时,本发明利用刀头通气孔、泄压中间腔、内衬通气孔、柔性管通气孔与泄压缝隙,直接对刀头中的内腔进行泄压,其中,在内腔的压力高于或等于压力阈值时,可自动控制泄压的实现,避免刀头内压力过高这种情况的发生,进而避免了导管的爆裂。
本发明也区别于直接在回气通道中直接设置泄压相关部件的方案,若直接在回气通道 中设置,其只能在回气通道发生堵塞时实现自动泄压,若柔性冷刀的回气通道内发生堵塞,则无法起到积极的泄压作用。然而,根据对实际的实验和使用过程中堵塞现象的研究,本发明发现实际情况中,在其他任意位置都有可能发生堵塞,如柔性冷刀的柔性导管、延长管段等等;故而,本发明直接对刀头进行泄压,可有效应对多种堵塞情况,可便于应对各种原因引起的刀头内压力过高。
现有相关技术中,为了实现自动泄压,通常的思路是通过压力传感器与电磁阀的结合来实现,本发明可选方案中,针对于空间受限的特定情况,创造性地将滑块、密封部件、弹簧的运动方式结合到柔性冷刀中,以较为简单的结构、较低的成本,以及较少的空间使用,实现了自动泄压。
本发明可选方案中,使用了柔性内导管与柔性外导管的双层管结构,其可有利于实现隔热,避免柔性冷刀因为温度较低而对人体造成损伤。同时,通过泄压缝隙的产生和/或对泄压缝隙的抽真空,在泄压的同时,可进一步提高隔热效果。
此外,针对于现有相关技术中的橡胶或塑料材料可能会在低温下发生脆化的情况,本发明可选方案中采用了四氟乙烯材料,由于四氟乙烯材料具有良好的机械韧性,即使温度下降到-196℃,也可保持5%的伸长率,因此选用聚四氟乙烯作为内外层柔性导管的材料,可实现低温下的安全密封。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例中耐低温高压的柔性冷冻消融针装置的结构示意图;
图2是本发明另一实施例中耐低温高压的柔性冷冻消融针装置的结构示意图一;
图3是本发明另一实施例中耐低温高压的柔性冷冻消融针装置的局部结构示意图一;
图4是图3中A-A截面的结构示意图;
图5是本发明另一实施例中耐低温高压的柔性冷冻消融针装置的局部结构示意图二。
附图标记说明:
1-刀头结构;
11-刀头前段;
12-刀头后段;
13-刀头通气孔;
14-内腔;
2-柔性管结构;
21-柔性管通气孔;
22-泄压缝隙;
23-柔性内导管;
24-柔性外导管;
241-第一外管段;
242-第二外管段;
3-泄压中间腔;
4-泄压组件;
41-滑块;
42-弹簧;
43-第一密封部件;
44-第二密封部件;
5-内衬管;
51-内衬通气孔;
52-螺纹部;
53-环形凸起部;
54-焊接点;
6-第一挤压管;
7-管路结构;
8-第二挤压管;
9-固定部。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四” 等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图1是本发明一实施例中耐低温高压的柔性冷冻消融针装置的结构示意图。
请参考图1,耐低温高压的柔性冷冻消融针装置,包括:刀头结构1与连接于所述刀头结构1后端的柔性管结构2,所述刀头结构1中设有内腔14,所述刀头结构1包括刀头前段11与刀头后段12,所述刀头后段12的前端连接于所述刀头前段11的后端,所述刀头后段12的外径小于所述刀头前段11的外径,所述的柔性冷冻消融针装置还包括:内衬管5、泄压组件4、泄压中间腔3与第一挤压管6。
所述柔性管结构2中设有泄压缝隙22与柔性管通气孔21,所述刀头前段11的后端面设有刀头通气孔13,所述内衬管5设有内衬通气孔51。
所述内衬管5的前端连接所述刀头前段11的后端面,所述泄压中间腔3沿所述刀头结构1的径向形成于所述内衬管5的内侧与所述刀头后段12的外侧之间,所述泄压中间腔3沿所述刀头结构1的轴向形成于所述刀头前段11的后端面与固定部9之间,所述固定部9连接于所述刀头后段12外侧与所述内衬管5的内侧之间;所述柔性管结构2沿所述刀头结构1的径向设于所述内衬管5的外侧,所述泄压中间腔3经所述内衬通气孔51与所述柔性管通气孔21连通至所述泄压缝隙22;所述内腔14连接于所述刀头通气孔13的一侧,其可理解为如图所示刀头通气孔13的左侧,所述泄压中间腔3连接于所述刀头通气孔13的另一侧,其可理解为如图1所示的刀头通气孔13的右侧,此外,所述泄压中间腔3可经内衬通气孔51连接于所述柔性管通气孔21的一侧,其可理解为如图1所示的柔性管通气孔21的下侧,所述泄压缝隙22连接于所述柔性管通气孔21的另一侧,其可理解为如图1所示的柔性管通气孔21的上侧,同时,该柔性管通气孔21也可理解为沿刀头结构1的径向设置的。
其中的刀头通气孔13、柔性管通气孔21的两侧,可以不限于如图1所示的径向与轴向,例如:刀头通气孔13除了可以是沿轴向的,还可以是沿径向的;柔性管通气孔21与 内衬通气孔51除了可以是沿径向的,还可以是沿轴向的。此外,刀头通气孔13、柔性通气孔21与内衬通气孔51的数量可以是单个,也可以是多个,若为多个,则该多个刀头通气孔13可以是绕刀头结构1的轴向分布,该多个柔性通气孔21与多个内衬通气孔51可以是绕刀头结构1的轴向分布。
其中的泄压缝隙22可以呈环状的缝隙,也可以为包括多个缝隙部,该缝隙部可环绕刀头结构1的轴向分布的。
若泄压缝隙22包括多个缝隙部,且柔性管通气孔21与内衬通气孔51的数量均为多个,则每个缝隙部可连接至少一个柔性管通气孔21。
此外,以上所涉及通气孔的形状可以是多样的,而不限于圆柱状的孔结构,例如:孔结构可以是一端较大另一端较小的形状,再例如:孔结构的截面除了为圆形,还可以为多边形。
所述泄压组件4设于所述泄压中间腔3,用于在所述内腔14的压力低于压力阈值时封闭所述刀头通气孔13,并在所述内腔14的压力高于或等于所述压力阈值时,控制所述刀头通气孔13、所述柔性管通气孔21与所述内衬通气孔51均连通,以使得所述刀头结构1中的气体能够依次经所述刀头通气孔13、泄压中间腔3、所述内衬通气孔51、所述柔性管通气孔21与所述泄压缝隙22被排出泄压。
以上所涉及的封闭,可理解为使得通气孔两侧无法流通的任意手段。
以上所涉及的控制所述刀头通气孔13、所述柔性管通气孔21与所述内衬通气孔51均连通,可理解为使得控制结果为所述刀头通气孔13、所述内衬通气孔51与所述柔性管通气孔21均连通,具体地,基于所封闭的通气孔的不同,所实现的自动控制的过程也可适应性发生变化,例如:若在封闭时仅封闭了刀头通气孔13,未封闭柔性管通气孔21与内衬通气孔51,则所实施的自动控制可以为控制刀头通气孔13不再封闭;再例如:若在封闭时仅封闭了柔性管通气孔21与内衬通气孔51,未封闭刀头通气孔13,则所实施的自动控制可以为控制柔性管通气孔21与内衬通气孔不再封闭;还例如:若在封闭时同时封闭了刀头通气孔13与柔性管通气孔21,则所实施的自动控制可以为控制刀头通气孔13与柔性管通气孔21均不再封闭。此外,以上所涉及的封闭,包含了直接封闭,以及间接封闭的情形,该间接封闭可理解为使之不流通,但并非直接接触的情形。
本实施例提供的耐低温高压的柔性冷冻消融针装置,利用刀头通气孔、泄压中间腔、柔性管通气孔与泄压缝隙,直接对刀头中的内腔进行泄压,其中,在内腔的压力高于或等于压力阈值时,可自动控制泄压的实现,避免刀头内压力过高这种情况的发生,进而避免 了导管的爆裂。
同时,本实施例也区别于直接在回气通道中直接设置泄压相关部件的方案,若直接在回气通道中设置,其只能在回气通道发生堵塞时实现自动泄压,若柔性冷刀的回气通道内发生堵塞,则无法起到积极的泄压作用。然而,根据对实际的实验和使用过程中堵塞现象的研究,本实施例发现实际情况中,在其他任意位置都有可能发生堵塞,如柔性冷刀的柔性导管、延长管段等等;故而,本实施例直接对刀头进行泄压,可有效应对多种堵塞情况,可便于应对各种原因引起的刀头内压力过高。
图2是本发明另一实施例中耐低温高压的柔性冷冻消融针装置的结构示意图一;图3是本发明另一实施例中耐低温高压的柔性冷冻消融针装置的局部结构示意图一;图4是图3中A-A截面的结构示意图;图5是本发明另一实施例中耐低温高压的柔性冷冻消融针装置的局部结构示意图二。
请参考图2至图5,所述刀头结构1包括刀头前段11与刀头后段12,所述刀头后段12的前端连接于所述刀头前段11的后端,所述刀头后段12的外径小于所述刀头前段11的外径,所述刀头通气孔13设于所述刀头前段11的后端面,且位于所述刀头后段12的外侧,所述泄压中间腔3位于所述刀头前段11的后端一侧。
通过刀头结构1中尺寸的变化,可适于实现与柔性管结构2的连接,保障整体尺寸的均匀匹配。
请参考图2和图3,所述泄压组件4包括位于所述泄压中间腔3内的滑块41与弹簧42,固定部9可以是内衬管5的一部分,或可理解为固定部9与内衬管5是一体的,所述弹簧42沿所述刀头结构1的轴向连接所述滑块41与所述固定部9;所述刀头前段11的后端面一侧设有第一密封部件43。在一种举例中,该弹簧42可以是缠绕于刀头后段12外侧而成型,并与固定部9与滑块41连接的。
所述弹簧42可被配置为在所述内腔14的压力低于所述压力阈值时能够通过弹性力驱动所述第一密封部件43被所述滑块41与所述刀头前段11的后端面夹持,以封闭所述刀头通气孔13。具体地,在压力低于压力阈值时,弹簧42可理解为被压缩,进而产生以上所涉及的弹性力。
所述弹簧42还可被配置为在所述内腔14的压力高于或等于所述压力阈值时能够在所述内腔14的压力的驱动下被压缩,以使得所述刀头通气孔13不再被封闭。具体地,在压力低于压力阈值时,弹簧42可被压缩到一定程度,当压力高于或等于压力阈值时,弹簧42可被进一步压缩。
可见,以上所涉及的配置,可理解为对弹簧42的形变能力、长度,以及泄压中间腔3的适配,满足以上功能的实现。同时,其中的压力阈值可以理解为根据具体情形进行调整的任意数值,该数值可通过对弹簧42的选型,以及制作、成型、安装的工艺等来调整确定。
一种具体实施过程中,所述第一密封部件43连接所述滑块41的前端;所述第一密封部件43被所述滑块41与所述刀头前段11的后端面夹持时,所述第一密封部件43能够封闭于所述刀头通气孔13,即第一密封部件43可实现对刀头通气孔13的直接封闭;所述弹簧42在所述内腔14的压力驱动下被压缩时,所述第一密封部件43与所述刀头通气孔13分离,以使得所述刀头通气孔13不再被封闭。
另一种具体实施过程中,所述第一密封部件43连接所述刀头前段11的后端面,所述滑块41的沿所述刀头结构1的径向的第一侧设有中间缝隙,其可理解为图2和图3所示靠近轴心的一侧设有中间缝隙;所述泄压中间腔3包括位于所述滑块41的前端一侧的第一泄压分腔与位于所述滑块41的后端一侧的第二泄压分腔。其可理解为滑块41沿轴向将泄压中间腔3分为两端侧的分腔。
所述第一密封部件43被所述滑块41与所述刀头前段11的后端面夹持时,所述第一密封部件43能够同时封闭所述中间缝隙的前端,以使得所述第一泄压分腔与所述第二泄压分腔被隔断;此时,第一泄压分腔可理解为刀头通气孔13与滑块41的前端之间的空间,其可与刀头通气孔13连通形成与第二泄压分腔分隔的一个整体。
所述弹簧42在所述内腔14的压力驱动下被压缩时,所述刀头通气孔13、所述第一泄压分腔、所述中间缝隙、所述第二泄压分腔、所述内衬通气孔51、所述柔性管通气孔21,以及所述泄压缝隙22依次连通。
其中一种实施方式中,所述滑块41的沿所述刀头结构1的径向的第二侧设有第二密封部件44,所述第二密封部件44用于在所述滑块41的第二侧隔断所述第一泄压分腔与所述第二泄压分腔。该第二侧指的是沿径向的第二侧。
进一步举例中,该滑块41的第二侧可设有凹槽,第二密封部件44可以安装于所述凹槽。
具体实施过程中,第一密封部件43与第二密封部件44可以为密封圈。
进一步举例中,由于弹簧42的推力向前推动滑块41,并依靠两个密封圈的密封,可防止刀头前段11中的气体进入泄压缝隙22内。若回气发生堵塞,则会造成刀头结构1内部压力升高,若气体压力高于弹簧42提供的推力,则会导致滑块41后移,气体将经刀头 通气孔13、泄压中间腔3,而进入泄压缝隙22内。过量的气体可靠着例如抽压组件的组件产生的真空抽吸作用将会迅速排出,达到泄压的目的。
具体使用过程中,刀头后段12上可依次套入例如密封圈的第一密封部件43、带有密封圈2的滑块41、弹簧42,刀头前后段之间的隔板,即刀头前段11的后端面上沿轴向开有4个刀头通气孔13,用于泄压时通气,例如密封圈的第一密封部件43用于刀头后段12和滑块41之间的轴向密封,例如密封圈的第二密封部件44用于内衬管5和滑块41之间的径向活塞密封,滑块41内侧与刀头后段12外侧之间存在一定的间隙,即前文所涉及的中间间隙,用于泄压时通气,弹簧42的选型要同时考虑期望泄压压力P 、柔性管结构2内即其中柔性内导管23的最高承受压力P 、刀头结构1内的最高正常背压P 、以及泄压缝隙22内的最小真空压力P (均为绝对压力),参考公式可以为:P >P >P -P
内衬管5套在刀头后段12上,内衬管5两端与刀头后段12的接触处有两个焊接点54,前端的焊接点54保证了刀头结构1内的气体不会泄露至刀头结构1以外,后端的焊接点54保证了内层柔性导管23内的气体不会进入泄压缝隙22。
现有相关技术中,为了实现自动泄压,通常的思路是通过压力传感器与电磁阀的结合来实现,本发明并不完全排除该实施方式的应用,同时,针对于空间受限的特定情况,以上实施方式创造性地将滑块、密封部件、弹簧的运动方式结合到柔性冷刀中,以较为简单的结构、较低的成本,以及较少的空间使用,实现了自动泄压。
可见,弹簧42、密封圈,以及泄压缝隙22的抽吸排气,可通过弹簧42的压缩力和密封圈来保证正常工作状态下的气密性,当压力过高时,通过弹簧的压缩来开启排气,通过泄压缝隙22的抽吸能从产品内部将气体快速排出。
本发明所涉及的柔性冷冻消融针装置,还包括内衬管5,所述内衬管5的前端连接所述刀头前段11的后端面,所述泄压中间腔3沿所述刀头结构1的径向形成于所述内衬管5与所述刀头后段12之间,所述内衬管5设有内衬通气孔51,所述泄压中间腔3经所述内衬通气孔51与所述柔性管通气孔21连通至所述泄压缝隙22,所述柔性管结构2沿所述刀头结构1的径向设于所述内衬管5的外侧,且所述内衬管5的至少部分外壁与所述柔性管结构2的内壁贴合。通过内衬管5,可有利于形成泄压中间腔3。
其中,所述内衬管5的与所述柔性管结构2贴合的外壁可设有凹凸结构,该凹凸结构可包括螺纹部52。通过螺纹部52,可提高内衬管与柔性管结构之间的连接强度。凹凸结构还可包括环形凸起部53,即所述内衬管5的与所述柔性管结构2贴合的外壁还可设有环形凸起部53,通过环形凸起部53,可保证泄压时过来的气体不会进一步向外泄露,同 时也可提高连接强度。具体举例中,该环形凸起部53的数量可以为两组,沿刀头结构1的轴向分别位于内衬通气孔51的两侧。
本实施例所涉及的柔性冷冻消融针装置,还包括第一挤压管6,所述第一挤压管6套设于所述柔性管结构2外,且位于部分所述凹凸结构的外侧。具体的,其中的凹凸结构可例如包括一环形凸起部53与螺纹部52。
其中一种实施方式中,还可包括第二挤压管8,所述第二挤压管套设泄压缝隙22的内壁,即套设于柔性管结构2中柔性内导管23外侧,且位于部分所述凹凸结构的外侧。具体的,其中的凹凸结构可例如包括一环形凸起部53。
可见,通过挤压管的径向挤压,进一步保障气密性与连接强度。如图所示,位于柔性管结构2外的挤压管可以理解为第一挤压管6,泄压缝隙22的内壁的挤压管可以理解为第二挤压管8。第一挤压管6与第二挤压管8沿刀头结构1的轴向分别位于内衬通气孔51与柔性管通气孔21的两侧。
可见,以上实施方式针对于塑料的柔性管结构2与金属的刀头结构1之间的连接方式,可同时满足耐高压和耐低温的需求。
其中一种实施方式中,所述柔性管结构2包括柔性内导管23与设于所述柔性内导管23外的柔性外导管24,所述柔性外导管24包括连接于所述刀头结构1的第一外管段241与连接于所述第一外管段241后端的第二外管段242,所述第一外管段241的内壁与所述柔性内导管23外壁贴合,所述泄压缝隙22形成于所述第二外管段242与所述柔性内导管23之间,所述柔性管通气孔21设于所述柔性内导管23,所述泄压缝隙22连通至抽压组件。
其中,所述柔性内导管23与所述柔性外导管24可以为聚四氟乙烯材料的。聚四氟乙烯材料的导管,可在低温下也具有良好的韧性。
以上实施方式中,采用了螺纹部、环形凸起部,以及金属的刀头结构与聚四氟乙烯的导管的挤压,其中,螺纹部提供连接强度,环形凸起部保证气密性,金属的刀头结构与聚四氟乙烯的挤压进一步强化了连接强度和气密性,同时也提高了良好的韧性。
具体举例中,将柔性管结构2旋入螺纹部52,沿径向的螺纹部52的齿牙将会嵌入柔性管结构2的壁内。其中,柔性管结构2中柔性内导管23的壁厚至少不小于齿高的2倍,可用以防止轴向的压力将刀头结构1和柔性管结构2分离开,并且多圈齿牙的嵌入会将轴向的压力均匀分散到每圈齿牙上,但光靠齿牙的嵌入是不够的,因为柔性管结构2还有径向向外扩张的趋势,通过在其外侧再增加挤压管的挤压,这样便可防止其中柔性内导管 23的向外扩张,还使得齿牙和柔性管结构2充分的嵌合和接触,因此,螺纹部与挤压管组合的方案还可保证刀头结构1充分的耐压强度。
环形凸起部53加上挤压管的挤压,保证了泄压时过来的气体不会泄露至刀头结构1外部,同时也提供一定的轴向连接强度;环形凸起部53加上挤压管的挤压,保证了柔性内导管23内的气体不会进入泄压缝隙22。
两组环形凸起部的共同作用也可防止柔性内导管23内的气体不会泄露至刀头结构1外部。
绝大多数的常温密封场合,采用的都是具有一定弹性的橡胶材料在硬质密封槽中的发生变形和挤压来完成,由于柔性冷刀的刀头结构1常处于低温的工作环境中,最低温度可达-170℃,而绝大多数橡胶或塑料材料会在如此的低温下发生脆化,导致密封失效。本实施方式中,聚四氟乙烯材料具有良好的机械韧性,即使温度下降到-196℃,也可保持5%的伸长率,因此选用聚四氟乙烯作为柔性内导管23与柔性外导管24的材料,再加上两组环形凸起部和挤压管的挤压,可实现低温下的安全密封。
柔性内导管23与柔性外导管24通过挤压管的挤压,保证了刀头结构1外的气体不会被吸入泄压缝隙22内。柔性内导管23沿径向开有内导管气孔部,柔性外导管24沿径向开有外导管气孔部,该内导管气孔部与外导管气孔部可同心对齐,以组合形成以上所涉及的柔性管通气孔。
相较而言,仅采用螺纹连接密封,或者螺纹+胶水连接密封等手段均无法同时满足耐低温和耐高压的要求,因为螺纹(尤其是管螺纹)密封的气密性不高,少量气体会从公母螺纹的配合间隙中泄露。若在该间隙中填入螺纹胶,也只能保证常温或适当低温下的气密性,因为大多数胶水在-140~-170℃的低温下会发生脆裂,无法保证气密性。
其中一种实施方式中,所述的柔性冷冻消融针装置,还包括管路结构7,所述管路结构7沿所述刀头结构1的轴向穿设于所述刀头后段12,所述管路结构7内设有供气体进入所述内腔的进入通道,其中的管路结构7可以例如J-T槽。所述刀头后段12内侧与所述管路结构7外侧间形成有供所述内腔的气体排出至所述内衬管5后端一侧的回气通道。
可见,气体可以从例如J-T槽的管路结构7内侧进入刀头前段11的内腔14,后经刀头后段12与例如J-T槽的管路结构7外侧之间的间隙,即前文所涉及的回气通道返回,然后再经柔性内导管23的内侧返回。
综上所述,本发明提供的耐低温高压的柔性冷冻消融针装置,由于所述内衬管的外壁设有螺纹部,可提高内衬管与柔性管结构之间的连接强度,由于所述内衬管的外壁设有环 形凸起部,保证了泄压时过来的气体不会进一步向外泄露,同时也可提高连接强度。同时,本发明还可通过挤压管的径向挤压,进一步保障气密性与连接强度。
同时,本发明利用刀头通气孔、泄压中间腔、内衬通气孔、柔性管通气孔与泄压缝隙,直接对刀头中的内腔进行泄压,其中,在内腔的压力高于或等于压力阈值时,可自动控制泄压的实现,避免刀头内压力过高这种情况的发生,进而避免了导管的爆裂。
本发明也区别于直接在回气通道中直接设置泄压相关部件的方案,若直接在回气通道中设置,其只能在回气通道发生堵塞时实现自动泄压,若柔性冷刀的回气通道内发生堵塞,则无法起到积极的泄压作用。然而,根据对实际的实验和使用过程中堵塞现象的研究,本发明发现实际情况中,在其他任意位置都有可能发生堵塞,如柔性冷刀的柔性导管、延长管段等等;故而,本发明直接对刀头进行泄压,可有效应对多种堵塞情况,可便于应对各种原因引起的刀头内压力过高。
现有相关技术中,为了实现自动泄压,通常的思路是通过压力传感器与电磁阀的结合来实现,本发明可选方案中,针对于空间受限的特定情况,创造性地将滑块、密封部件、弹簧的运动方式结合到柔性冷刀中,以较为简单的结构、较低的成本,以及较少的空间使用,实现了自动泄压。
本发明可选方案中,使用了柔性内导管与柔性外导管的双层管结构,其可有利于实现隔热,避免柔性冷刀因为温度较低而对人体造成损伤。同时,通过泄压缝隙的产生和/或对泄压缝隙的抽真空,在泄压的同时,可进一步提高隔热效果。
此外,针对于现有相关技术中的橡胶或塑料材料可能会在低温下发生脆化的情况,本发明可选方案中采用了四氟乙烯材料,由于四氟乙烯材料具有良好的机械韧性,即使温度下降到-196℃,也可保持5%的伸长率,因此选用聚四氟乙烯作为内外层柔性导管的材料,可实现低温下的安全密封。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种耐低温高压的柔性冷冻消融针装置,包括:刀头结构与连接于所述刀头结构后端的柔性管结构,所述刀头结构中设有内腔,所述刀头结构包括刀头前段与刀头后段,所述刀头后段的前端连接于所述刀头前段的后端,所述刀头后段的外径小于所述刀头前段的外径,其特征在于,所述的柔性冷冻消融针装置还包括:内衬管、泄压组件、泄压中间腔与第一挤压管;所述柔性管结构中设有泄压缝隙与柔性管通气孔,所述刀头前段的后端面设有刀头通气孔,所述内衬管设有内衬通气孔;
    所述内衬管的前端连接所述刀头前段的后端面,所述泄压中间腔沿所述刀头结构的径向形成于所述内衬管的内侧与所述刀头后段的外侧之间,所述泄压中间腔沿所述刀头结构的轴向形成于所述刀头前段的后端面与固定部之间,所述固定部连接于所述刀头后段外侧与所述内衬管的内侧之间;所述柔性管结构沿所述刀头结构的径向设于所述内衬管的外侧,所述泄压中间腔经所述内衬通气孔与所述柔性管通气孔连通至所述泄压缝隙;所述内腔连接于所述刀头通气孔的一侧,所述泄压中间腔连接于所述刀头通气孔的另一侧;
    所述内衬管的至少部分外壁与所述柔性管结构的内壁贴合,所述内衬管的与所述柔性管结构贴合的外壁设有凹凸结构;所述第一挤压管套设于所述柔性管结构外,且位于部分所述凹凸结构的外侧;所述凹凸结构包括螺纹部和环形凸起部;
    所述泄压组件设于所述泄压中间腔,用于在所述内腔的压力低于压力阈值时封闭所述刀头通气孔,并在所述内腔的压力高于或等于所述压力阈值时,控制所述刀头通气孔、所述柔性管通气孔与所述内衬通气孔均连通,以使得所述刀头结构中的气体能够依次经所述刀头通气孔、泄压中间腔、所述内衬通气孔、所述柔性管通气孔与所述泄压缝隙被排出泄压。
  2. 根据权利要求1所述的装置,其特征在于,所述泄压组件包括位于所述泄压中间腔内的滑块与弹簧,所述弹簧沿所述刀头结构的轴向连接所述滑块与所述固定部;所述刀头前段的后端面一侧设有第一密封部件;
    所述弹簧被配置为在所述内腔的压力低于所述压力阈值时能够通过弹性力驱动所述第一密封部件被所述滑块与所述刀头前段的后端面夹持,以封闭所述刀头通气孔,以及:在所述内腔的压力高于或等于所述压力阈值时能够在所述内腔的压力的驱动下被压缩,以使得所述刀头通气孔不再被封闭。
  3. 根据权利要求2所述的装置,其特征在于,所述第一密封部件连接所述滑块的前端;所述第一密封部件被所述滑块与所述刀头前段的后端面夹持时,所述第一密封部件能够封闭于所述刀头通气孔;
    所述弹簧在所述内腔的压力驱动下被压缩时,所述第一密封部件与所述刀头通气孔分离,以使得所述刀头通气孔不再被封闭。
  4. 根据权利要求2所述的装置,其特征在于,所述第一密封部件连接所述刀头前段的后端面,所述滑块的沿所述刀头结构的径向的第一侧设有中间缝隙;所述泄压中间腔包括位于所述滑块的前端一侧的第一泄压分腔与位于所述滑块的后端一侧的第二泄压分腔;
    所述第一密封部件被所述滑块与所述刀头前段的后端面夹持时,所述第一密封部件能够封闭所述中间缝隙的前端,以使得所述第一泄压分腔与所述第二泄压分腔被隔断;
    所述弹簧在所述内腔的压力驱动下被压缩时,所述刀头通气孔、所述第一泄压分腔、所述中间缝隙、所述第二泄压分腔、所述柔性管通气孔,以及所述泄压缝隙依次连通。
  5. 根据权利要求4所述的装置,其特征在于,所述滑块的沿所述刀头结构的径向的第二侧设有第二密封部件,所述第二密封部件用于在所述滑块的第二侧隔断所述第一泄压分腔与所述第二泄压分腔。
  6. 根据权利要求5所述的装置,其特征在于,所述滑块的第二侧设有凹槽,所述第二密封部件安装于所述凹槽。
  7. 根据权利要求1至6任一项所述的装置,其特征在于,所述柔性管结构包括柔性内导管与设于所述柔性内导管外的柔性外导管,所述柔性外导管包括连接于所述刀头结构的第一外管段与连接于所述第一外管段 后端的第二外管段,所述第一外管段的内壁与所述柔性内导管外壁贴合,所述泄压缝隙形成于所述第二外管段与所述柔性内导管之间,所述柔性管通气孔设于所述柔性内导管,所述泄压缝隙连通至抽压组件。
  8. 根据权利要求7所述的装置,其特征在于,所述柔性内导管与所述柔性外导管为聚四氟乙烯材料的。
  9. 根据权利要求7所述的装置,其特征在于,还包括第二挤压管,所述第二挤压管套设于所述柔性内导管外侧,且位于部分所述凹凸结构的外侧。
  10. 根据权利要求1至6任一项所述的装置,其特征在于,还包括管路结构,所述管路结构沿所述刀头结构的轴向穿设于所述刀头后段,所述管路结构内设有供气体进入所述内腔的进入通道,所述刀头后段内侧与所述通道结构外侧间形成有供所述内腔的气体排出至所述刀头后段的后端一侧的回气通道。
PCT/CN2019/077262 2019-01-28 2019-03-07 耐低温高压的柔性冷冻消融针装置 WO2020155301A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19914095.5A EP3881786B1 (en) 2019-01-28 2019-03-07 Flexible cryoablation needle device resistant to low temperature and high pressure
ES19914095T ES2931468T3 (es) 2019-01-28 2019-03-07 Dispositivo de aguja de crioablación flexible resistente a bajas temperaturas y alta presión
JP2021534350A JP7145333B2 (ja) 2019-01-28 2019-03-07 耐低温高圧の可撓性冷凍アブレーションニードル装置
US17/311,802 US11986230B2 (en) 2019-01-28 2019-03-07 Flexible cryoablation needle device resistant to low temperature and high pressure
KR1020217008155A KR102548744B1 (ko) 2019-01-28 2019-03-07 내저온 및 내고압 연성 냉동 절제 니들 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910077358.7 2019-01-28
CN201910077358.7A CN109431595B (zh) 2019-01-28 2019-01-28 耐低温高压的柔性冷冻消融针装置

Publications (1)

Publication Number Publication Date
WO2020155301A1 true WO2020155301A1 (zh) 2020-08-06

Family

ID=65544243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077262 WO2020155301A1 (zh) 2019-01-28 2019-03-07 耐低温高压的柔性冷冻消融针装置

Country Status (7)

Country Link
US (1) US11986230B2 (zh)
EP (1) EP3881786B1 (zh)
JP (1) JP7145333B2 (zh)
KR (1) KR102548744B1 (zh)
CN (1) CN109431595B (zh)
ES (1) ES2931468T3 (zh)
WO (1) WO2020155301A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110478027A (zh) * 2019-08-13 2019-11-22 上海导向医疗系统有限公司 一种可调靶向区的冷冻消融针
US11633224B2 (en) 2020-02-10 2023-04-25 Icecure Medical Ltd. Cryogen pump

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090088735A1 (en) * 2004-03-23 2009-04-02 Cryocath Technologies Inc. Method and apparatus for inflating and deflating balloon catheters
CN105167839A (zh) * 2014-06-06 2015-12-23 乐普(北京)医疗器械股份有限公司 一种可测压力的医用导管头端
CN106725826A (zh) * 2017-01-11 2017-05-31 上海导向医疗系统有限公司 增强刀头安全性且固定j‑t槽位置的柔性冷刀
WO2018081012A1 (en) * 2016-10-24 2018-05-03 Csa Medical, Inc. Method & apparatus for performing cryotherapy of distal lung lesions
CN108498162A (zh) * 2018-04-24 2018-09-07 海杰亚(北京)医疗器械有限公司 分体连接冷冻消融针及其针头组件和针尾组件
CN109199570A (zh) * 2017-06-29 2019-01-15 四川锦江电子科技有限公司 一种极间冷冻消融导管

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5423807A (en) * 1992-04-16 1995-06-13 Implemed, Inc. Cryogenic mapping and ablation catheter
US6014864A (en) * 1998-03-16 2000-01-18 Life Science Holdings, Inc. Cryogenic fluid heat exchanger method and apparatus
US6989009B2 (en) * 2002-04-19 2006-01-24 Scimed Life Systems, Inc. Cryo balloon
US8298219B2 (en) * 2009-09-02 2012-10-30 Medtronic Cryocath Lp Cryotreatment device using a supercritical gas
US9241752B2 (en) * 2012-04-27 2016-01-26 Medtronic Ardian Luxembourg S.A.R.L. Shafts with pressure relief in cryotherapeutic catheters and associated devices, systems, and methods
US9072500B2 (en) * 2013-03-13 2015-07-07 Thach Duong Therapeutic cryoablation system
CN105705108B (zh) 2013-11-01 2017-12-01 C2治疗公司 低温球囊消融系统
US10054262B2 (en) * 2014-04-16 2018-08-21 Cpsi Holdings Llc Pressurized sub-cooled cryogenic system
CN203915066U (zh) * 2014-06-06 2014-11-05 乐普(北京)医疗器械股份有限公司 一种可测压力的医用导管头端
CN107789051A (zh) * 2016-08-30 2018-03-13 四川锦江电子科技有限公司 一种导管压力检测方法,以及对应的导管
WO2018087563A1 (en) * 2016-11-14 2018-05-17 Nitro Medical Limited Cryoablation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090088735A1 (en) * 2004-03-23 2009-04-02 Cryocath Technologies Inc. Method and apparatus for inflating and deflating balloon catheters
CN105167839A (zh) * 2014-06-06 2015-12-23 乐普(北京)医疗器械股份有限公司 一种可测压力的医用导管头端
WO2018081012A1 (en) * 2016-10-24 2018-05-03 Csa Medical, Inc. Method & apparatus for performing cryotherapy of distal lung lesions
CN106725826A (zh) * 2017-01-11 2017-05-31 上海导向医疗系统有限公司 增强刀头安全性且固定j‑t槽位置的柔性冷刀
CN109199570A (zh) * 2017-06-29 2019-01-15 四川锦江电子科技有限公司 一种极间冷冻消融导管
CN108498162A (zh) * 2018-04-24 2018-09-07 海杰亚(北京)医疗器械有限公司 分体连接冷冻消融针及其针头组件和针尾组件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3881786A4 *

Also Published As

Publication number Publication date
KR20210049126A (ko) 2021-05-04
CN109431595A (zh) 2019-03-08
ES2931468T3 (es) 2022-12-29
CN109431595B (zh) 2019-04-26
EP3881786A4 (en) 2022-01-26
EP3881786A1 (en) 2021-09-22
KR102548744B1 (ko) 2023-06-27
US11986230B2 (en) 2024-05-21
US20220015815A1 (en) 2022-01-20
JP7145333B2 (ja) 2022-09-30
JP2022514544A (ja) 2022-02-14
EP3881786B1 (en) 2022-10-19

Similar Documents

Publication Publication Date Title
WO2020155301A1 (zh) 耐低温高压的柔性冷冻消融针装置
JP6453352B2 (ja) トロカール
US3385300A (en) Cervical cannula
US7615035B2 (en) Needleless access port valves
AU2021227084B2 (en) Flow adjusting assembly and flow-adjustable flexible cryoprobe
CN103212148B (zh) 髂股深静脉血栓串珠状偏心球囊溶碎栓导管
CN209847361U (zh) 柔性冷冻消融针装置
CN209847362U (zh) 具有泄压功能的柔性冷刀装置
CN201715136U (zh) 阴阳接头
CN208997373U (zh) 一种闸阀
CN114569182A (zh) 挤压式左心耳封堵器
CN207421600U (zh) 一种软管的筋条式接头
CN109469620A (zh) 一种压缩机增焓补气结构及卧式增焓涡旋压缩机
MX2023010254A (es) Acoplamiento para fluido criogenico.
CN111920489A (zh) 一种用于微创手术可螺旋伸缩的下部外壳组件
CN203253038U (zh) 髂股深静脉血栓串珠状偏心球囊溶碎栓导管
CN218606759U (zh) 一种具有液体通道的超声刀驱动柄
CN206468817U (zh) 一种用于地源热泵空调系统季节切换的单向排渗漏阀
CN214549582U (zh) 一种肿瘤内科局部骤冷装置
CN217338688U (zh) 左心耳封堵器用端盖
CN205401881U (zh) 一种燃气阀
CN209789912U (zh) 一种腔镜吻合器的气密性保持机构
CN220581966U (zh) Ptfe波纹管连接结构及管体组合机构
CN211460446U (zh) 一种穿刺器阻气密封阀
CN219375631U (zh) 罐体连接结构及理疗装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914095

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217008155

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021534350

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019914095

Country of ref document: EP

Effective date: 20210616

NENP Non-entry into the national phase

Ref country code: DE