WO2020155162A1 - 一种led倒装显示屏及其制造方法 - Google Patents

一种led倒装显示屏及其制造方法 Download PDF

Info

Publication number
WO2020155162A1
WO2020155162A1 PCT/CN2019/074639 CN2019074639W WO2020155162A1 WO 2020155162 A1 WO2020155162 A1 WO 2020155162A1 CN 2019074639 W CN2019074639 W CN 2019074639W WO 2020155162 A1 WO2020155162 A1 WO 2020155162A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
led chips
chip
chips
grab
Prior art date
Application number
PCT/CN2019/074639
Other languages
English (en)
French (fr)
Inventor
吴霁圃
林宗民
邓有财
曾合加
Original Assignee
厦门三安光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门三安光电有限公司 filed Critical 厦门三安光电有限公司
Priority to JP2020560348A priority Critical patent/JP2021520520A/ja
Priority to EP19912701.0A priority patent/EP3919970A4/en
Priority to KR1020207034607A priority patent/KR20210003257A/ko
Priority to CN201980003970.8A priority patent/CN111357095B/zh
Priority to PCT/CN2019/074639 priority patent/WO2020155162A1/zh
Priority to TW108115084A priority patent/TWI694620B/zh
Publication of WO2020155162A1 publication Critical patent/WO2020155162A1/zh
Priority to US17/090,907 priority patent/US20210057396A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/90Devices for picking-up and depositing articles or materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67271Sorting devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Definitions

  • the present invention relates to the technical field of LED display screens for LED chip sorting machines, and in particular to an LED flip-chip display screen and a manufacturing method thereof.
  • a first aspect of the present invention provides a method for manufacturing an LED display screen, including:
  • the LED chips in a certain area of the LED display screen are not all adjacent LED chips of the same specification, and the specifications of the LED chips include one of color and brightness, and A certain area includes one or several LED chips.
  • performing logicless grabbing of the LED chips according to a random sampling method and arranging the grabbed LED chips on a substrate includes the following steps:
  • n is an integer greater than 2, the LED chip at the nth grabbing point and the nth number of LED chips, ..., the LED chip at the second grabbing point, and The second number of LED chips are continuously arranged with the LED chips at the first grab point and the first number of LED chips.
  • the predetermined grasping direction includes a counterclockwise direction or a clockwise direction, and the predetermined arrangement manner and the arrangement shape are determined by the requirements of the LED display screen.
  • the first grab point, the second grab point, ..., and the nth grab point include points that are randomly selected by a random sampling method
  • the first number of LED chips, the second number of LED chips,... And the nth number of LED chips include 0 to 8 of the LED chips.
  • the batches of LED chips of the same or different specifications are from a single-specification wafer or a multi-specification wafer; and the LED chips include flip-chip Mini LED or Micro LED chips.
  • the random sampling method comprising random number table, wherein said table comprises one nonce Fisher Ya Si station random number table, random number table and the first Bet Candal Smith nonce table.
  • preparing batches of LED chips of the same or different specifications includes the following steps: sequentially placing the LED chips of the same specifications from different wafers on multiple blue films.
  • performing logicless grabbing of the LED chips by a random sampling method and sequentially arranging the grabbed LED chips includes sequentially arranging the grabbed LED chips on a substrate.
  • the steps of packaging and assembling the sequentially arranged LED chips to form the LED display screen include:
  • the manner of transferring the packaged LED chips to the circuit board includes the sequential transfer of the single packaged LED chips or the batch transfer of several packaged LED chips.
  • the LED chip is captured without logic by a random sampling method, and the captured LE
  • the sequence of D chip also includes the following steps:
  • the captured LED chips are arranged on the carrier film.
  • the step of packaging and assembling the sequentially arranged LED chips to form the LED display screen includes:
  • the second aspect of the present invention provides an LED display screen, including:
  • a display unit including a circuit substrate and an LED chip soldered on the circuit substrate
  • the LED chips include LED chips from the same wafer and/or LED chips from different wafers, and the LED chips are soldered on the circuit substrate after being grabbed and arranged without logic, and are similar to each other.
  • the adjacent LED chips do not include adjacent LED chips of the same specifications, and the specifications of the LED chips include at least one of the chromaticity and brightness of the LED chips.
  • the above-mentioned LED display screen further includes: a control system, and the control system is electrically connected to the display unit to control the display unit to display according to different requirements.
  • the LED chip includes a flip-chip Mini LED chip or a Micro LED chip.
  • the LED display screen and the manufacturing method thereof of the present invention have the following beneficial effects:
  • a single-specification or multi-specification chip is captured and arranged without logic once, and the chips after the above-mentioned capture and arrangement will not have differences in brightness and color after subsequent packaging and assembly of the screen.
  • the method of the present invention can be realized by inserting a random number table method into the operation of the existing equipment, the realization process is simple, no equipment or manufacturing process changes or design are required, and the operating cost is low and easy to realize
  • the method of the present invention can directly perform logicless grabbing and then arranging LED chips of the same or different specifications from the same wafer. Therefore, the method can directly grab the LED chips without binning, and realize the dispersion and uniformity of the LED chips. Distribution. In addition, this method can also perform logicless grabbing and arranging LED chips of the same specification and different bins from different wafers. That is to realize the scattered and uniform distribution of LED chips in different bins.
  • the above method makes the LED chips in the final LED screen dispersed and evenly distributed, and will not cause striped or blocky color difference/brightness difference between the screen and the screen.
  • the method of the present invention performs random arrangement of the chips on the source side, and randomly arranges the chips on the source side on the product, which is easy to realize mass production, and the chips in the package module or the screen are arranged in random numbers. There are no streaks or blocky chromatic aberration/brightness, and when the module and module or screen and screen are further assembled, there will be no streaks or blocky chromatic aberration/brightness and darkness.
  • FIG. 1 shows a schematic diagram of the arrangement of LED chips after sorting/arraying in the prior art.
  • FIG. 2 shows a schematic flow chart of a method for manufacturing an LED package device provided in the first embodiment.
  • FIG. 3 is a schematic diagram showing the structure of the LED chip divided into different bins in the method shown in FIG. 2.
  • FIG. 4 is a schematic diagram showing the structure of the classified LED chips after random arrangement in the method shown in FIG. 2.
  • FIG. 5 shows a schematic diagram of a grabbing process for random arrangement of LED chips.
  • FIG. 6 shows a schematic diagram of arranging captured LED chips.
  • Figures 7a-8b show the prior art sorting method and the method shown in Figure 2 encapsulating the random number of LED chips to form a schematic diagram of the display effect of the LED flip-chip display screen, wherein Figure 7a shows the current A schematic diagram of the display effect of a technically formed LED flip-chip display with a brightness of 0.5 mW; Figure 7b shows a schematic diagram of the display effect of an LED flip-chip display with a brightness of 0.5 mW formed by the method shown in Figure 2; Figure 8a shows that Wavelength division rule formed by the prior art 0.5
  • Figure 8b shows the schematic diagram of the display effect of the 0.5 nm LED flip-chip display formed by the method shown in Figure 2.
  • the sorting of LED chips is a very important step.
  • the conventional sorting/arraying technology usually logically arranges the LED chips, and arranges LED chips 101 of the same bin specification in sequence to form a display module 10, as shown in FIG. 1.
  • this sorting/arraying after the display module 10 is assembled into an LED screen after subsequent packaging, there will be brightness differences and color differences between the screen and the screen, and there will be bands or blocky color differences/bright and dark. As shown in Figures 7a and 8a.
  • this embodiment provides a method for manufacturing an LED flip-chip display screen, as shown in FIG. 2-6 , Including the following steps:
  • the above-mentioned LED chips of the same or different specifications can be from the same wafer or from different wafers.
  • LED chips 301 of the same specification from different wafers are divided into different bins.
  • the LED chips can also be divided into LED chips with the same bin but different brightness or wavelength.
  • the specifications of the LED chip 301 include at least one of color or brightness.
  • the above-mentioned batch of LED chips are captured without logic by a random sampling method and the captured LED chips are arranged on a substrate;
  • the display module 30 presented after being captured and arranged without logic is shown. It can be seen from FIG. 4 that the LED chips 301 in the display module 30 formed after the above-mentioned capture and arrangement are uniform And they are distributed in the display module 30.
  • the LED chips placed on the substrate are packaged and transferred to a circuit substrate to form the LED display screen.
  • the single packaged LED chips can be transferred to the circuit board in sequence, or several packaged LED chips can be transferred to the circuit board in batches.
  • the LED chips in a certain area of the LED display screen are not all adjacent LED chips of the same specification, and the certain area includes one Or a number of said LED chips.
  • the certain area may be, for example, 3x4, 6x8, 2x5, etc. areas.
  • Figures 7b and 8b no matter the same brightness and different wavelengths (colors) are binned or the same wavelength and different brightness are binned, after the above-mentioned non-logic capture and arrangement, each LED chip 301 is in each display module 30. Evenly and dispersedly Therefore, after the display module 30 is assembled into a display screen, there will be no stripes or blocky color difference/brightness and darkness between the screen and the screen.
  • FIGS. 5 and 6 the process of grabbing and arranging LED chips of the same specification from different wafers is shown.
  • the LED chips of the same specification from different wafers are sequentially placed on one or more carrier films, which can be any of blue film, white film, PVC film, etc. Adhesive carrier film.
  • a random sampling method of the LED chip logic without gripping the preferred embodiment in the present embodiment comprising random number table method, the number of table method chaos random number table comprises table Fisher Ya Si random number table, random number table and the first Beit Candal Smith, a random number table.
  • the random number table method is used to perform logicless grabbing of the above-mentioned LED chips.
  • the first grabbing point is randomly selected, and the LED chip 1 at the first grabbing point is grabbed or the first grabbing At the same time, the LED chip 1 at the point and simultaneously grab the LED chips around the first grab point in sequence along the predetermined grab direction 01, for example, 1-8 LED chips around the first grab point can be grabbed, preferably, In this embodiment, grab 8 L around the first grab point
  • the grasping direction 01 may be a counterclockwise direction or a clockwise direction. In a preferred embodiment of this embodiment, as shown in FIG. 5, the grasping direction 01 is a counterclockwise direction.
  • the LED chip 1 at the first grabbing point to be grabbed and the LED chips 2-9 around it are sequentially arranged on the substrate in a predetermined arrangement pattern.
  • the predetermined arrangement can be determined according to the requirements of the final product of the LED display. For example, as shown in FIG. 6, the predetermined arrangement includes a vertical turn-back arrangement, of course, it may also be a horizontal turn-back arrangement.
  • the LED chip at the n-th grab point and the n-th number of the LED chips are The predetermined arrangement is arranged on the substrate sequentially.
  • the above-mentioned random grasping and arranging steps are repeated in sequence until all the LED chips are grasped and arranged, and the desired arrangement shape is formed.
  • the arrangement shape can also be determined according to the final product requirements of the LED display.
  • the first grab point, the second grab point, ..., and the nth grab point include points that are randomly selected by random sampling methods without logic;
  • the first number of LED chips, the second number of LED chips, ... and the nth number of LED chips include 0-8 LED chips.
  • n is an integer greater than 2.
  • the LED chips placed on the substrate are packaged and transferred to the circuit substrate to form the display module shown in FIG. 4, and the display module is assembled to form an LED display screen.
  • the LED chips in each display module are evenly and dispersedly distributed, so after forming the LED display, there will be no striped or blocky color difference/brightness between the screen and the screen. The dark difference.
  • This embodiment provides a method for manufacturing an LED flip-chip display screen.
  • the same parts as those in the first embodiment will not be repeated, and the differences are:
  • the LED chips can be grabbed directly from the wafer where the LED chips are cut out without logic by a random sampling method; and then the grabbed LED chips are arranged on a carrier film, which can also be Blue film, white film, PVC film and any other adhesive carrier film; then batch transfer the LED chips on the carrier film to the circuit substrate; package and assemble the LED chips transferred to the circuit substrate to form an LED display screen.
  • a carrier film which can also be Blue film, white film, PVC film and any other adhesive carrier film
  • the method shown in the above embodiment of the present invention can directly perform logicless grabbing and then arranging LED chips of the same or different specifications from the same wafer. Therefore, the method can directly grab the LED chips without binning them. Achieve scattered and even distribution of LED chips. In addition, this method can also perform logicless grabbing and arranging LED chips of the same specification and different bins from different wafers. That is to realize the scattered and uniform distribution of LED chips of different bins.
  • the above method makes the LED chips in the final LED screen dispersed And evenly distributed, will not cause stripes or block color difference/brightness difference between screen and screen.
  • the above method can realize the scattered and uniform distribution of LED chips by only one non-logic grabbing, the realization process is simple, and the sorting cost is low.
  • the above-mentioned LED chip includes a flip-chip Mini
  • This embodiment provides an LED display screen, the LED display screen includes a display unit, and the display unit includes a circuit substrate and an LED chip soldered on the circuit substrate;
  • the LED chips include LED chips from the same wafer and/or LED chips from different wafers, and the LED chips are randomly arranged and then soldered on the circuit substrate, and the adjacent ones
  • the LED chip does not include adjacent LED chips of the same specification, and the specification of the LED chip includes at least one of chromaticity and brightness of the LED chip.
  • the LED chip includes a flip-chip Mini
  • the LED display screen further includes a control system that is electrically connected to the display unit to control the display unit to display according to different requirements.
  • the LED chips are arranged by the method described in the first embodiment, so the LED chips are dispersed and evenly distributed in the LED display screen. Therefore, the LED display screen does not need to rely on the control system drive circuit To distribute the current to make the brightness and color of the screen uniform, there is no need to use PWM (Pulse Width Modulation, pulse width modulation) to adjust the duty cycle to achieve uniform brightness.
  • PWM Pulse Width Modulation, pulse width modulation
  • the LED display has a separate R/G/B three-color light. Function, using the same drive current to turn on R/G/B, the LED display will not show stripes or block color/brightness differences.
  • the LED display screen and the manufacturing method thereof of the present invention have the following beneficial effects:
  • a single-specification or multi-specification chip is captured and arranged without logic once, and the chips after the above-mentioned capture and arrangement will not have differences in brightness and color after subsequent packaging and assembly of the screen.
  • the method of the present invention can be realized by inserting a random number table method into the operation of the existing equipment, the realization process is simple, no equipment or manufacturing process changes or design are required, and the operating cost is low and easy to realize [0091]
  • This method can directly perform logicless grabbing and then arranging LED chips of the same or different specifications from the same wafer. Therefore, the method can directly grab the LED chips without binning the LED chips to achieve a dispersed and uniform distribution of LED chips. .
  • this method can also perform logicless grabbing and arranging of L ED chips of the same specification and different bins from different wafers. That is to realize the scattered and uniform distribution of LH) chips of different bins.
  • the above method enables the LED chips in the final LED screen to be dispersed and evenly distributed, without causing striped or blocky color difference/brightness difference between the screen and the screen.
  • the method of the present invention performs random arrangement of the chips on the source side, and randomly arranges the chips on the source side on the product, which is easy to realize mass production, and the chips in the package module or the screen are arranged in random numbers without stripes Or block chromatic aberration/bright and dark, when the module and module or screen and screen are further assembled, there will be no stripes or block chromatic aberration/bright and dark phenomenon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Led Device Packages (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本发明提供一种LED显示屏及其制造方法,该方法包括:制备相同或不同规格的批量LED芯片;通过随机抽样方法对LED芯片进行无逻辑抓取并将抓取的LED芯片进行顺序排列;对顺序排列的LED芯片进行封装并组装形成LED显示屏;其中,LED显示屏中相邻的一定区域内的LED芯片不全部为同规格的相邻的LED芯片,LED芯片的规格包括颜色、亮度中的一种。本发明的方法通过对单一规格或多规格的芯片进行一次或多次无逻辑性抓取并排列,经上述抓取并排列后的芯片在后续封装并组装屏幕之后不会出现亮度和颜色的差异。并且本发明的方法可以通过在现有设备的操作中套入乱数表法便可实现,实现过程简单,无需进行设备或制程上的改动或设计,运行成本低易于实现。

Description

说明书 发明名称:一种 LED倒装显示屏及其制造方法 技术领域
[0001] 本发明涉及 LED芯片分选机 LED显示屏技术领域, 特别涉及一种 LED倒装显示 屏及其制造方法。
背景技术
[0002] 在 LED显示屏领域中, 用户希望能够获得清晰的显示效果, 也逐渐看重整屏效 果的一致性。 在芯片制备点测分选阶段, 依据现有技术的分选 /排片逻辑, 同 bin 规格的芯片将被依序排列。 后续封装厂家依序对上述芯片封装后组装屏幕时, 整屏显示效果中的色度差异性问题也逐渐显示出来, 屏幕与屏幕间就会出现亮 度差异及颜色差异。 因此如何消除屏幕之间的亮度和颜色差异就成为整个 LED显 示屏制造领域的关键问题。
[0003] 为了解决上述屏幕之间的亮度和颜色问题, 在表面贴装 (SMD) 封装领域, 主 要通过三次芯片混合来达到消除色差的现象: (1) 不同批次蓝膜混合; (2) S MD封装后灯珠的混合; (3) SMD编带混合。 在 SMD封装中通过三次混合达到 消除模块色差问题, 但由于需要进行三个阶段工序, 同时在第一阶段不同批次 蓝膜混合中, 由于每次蓝膜混合需要保留一部分上一批次蓝膜, 其存在生产效 率低下, 芯片混合不均匀, 不彻底等问题。 在板上芯片 (COB) 封装领域, 为 了解决模块色度问题, 目前各封装厂家主流的解决的办法是整屏进行色度校正 , 但由于校正设备成本、 校正技术待完善性、 封装产品的差异性, 其无法从根 本上解决模块色度差异问题。 发明概述
技术问题
问题的解决方案
技术解决方案
[0004] 鉴于以上所述现有技术的缺点, 本发明的目的在于提供一种 LED倒装显示屏及 其制造方法, 用于更加方便可靠地解决屏幕之间的亮度和颜色差异。 [0005] 为实现上述目的及其他相关目的, 本发明的第一方面提供了一种 LED显示屏的 制造方法, 包括:
[0006] 制备相同或不同规格的批量 LED芯片;
[0007] 通过随机抽样方法对所述 LED芯片进行无逻辑抓取并将抓取的所述 LED芯片进 行顺序排列;
[0008] 对顺序排列的所述 LED芯片进行封装并组装形成所述 LED显示屏;
[0009] 其中, 所述 LED显示屏中一定区域内的所述 LED芯片不全部为同规格的相邻的 所述 LED芯片, 所述 LED芯片的规格包括颜色、 亮度中的一种, 所述一定区域包 括一个或若干个所述 LED芯片。
[0010] 可选地, 按照随机抽样方法对所述 LED芯片进行无逻辑抓取并将抓取的所述 LE D芯片排列在基板上包括以下步骤:
[0011] 随机选取第一抓取点, 并沿预定的抓取方向分别抓取所述第一抓取点处的所述
LED芯片及所述第一抓取点周围第一数量的所述 LED芯片;
[0012] 将抓取的所述第一抓取点处的所述 LED芯片及所述第一数量的所述 LED芯片按 照预定的排列方式顺序排列;
[0013] 随机跳至第二抓取点, 并沿所述预定的抓取方向抓取所述第二抓取点处的所述 LED芯片及所述第二抓取点周围第二数量的所述 LED芯片;
[0014] 将抓取的所述第二抓取点处的所述 LED芯片及所述第二数量的所述 LED芯片按 照所述的预定的排列方式顺序排列;
[0015] .
[0016] 随机跳至第 n抓取点, 并沿所述预定的抓取方向抓取所述第 n抓取点处的所述 LE D芯片及所述第 n抓取点周围第 n数量的所述 LED芯片;
[0017] 将抓取的所述第 n抓取点处的所述 LED芯片及所述第 n数量的所述 LED芯片按照 所述的预定的排列方式顺序排列;
[0018] 直至完成所有 LED芯片的抓取及排列, 形成所需的排列形状;
[0019] 其中, n为大于 2的整数, 所述第 n抓取点处的 LED芯片及所述第 n数量的 LED芯 片、 ......、 第二抓取点处的 LED芯片及所述第二数量的 LED芯片与所述第一抓取 点处的 LED芯片及所述第一数量的 LED芯片连续排列。 [0020] 可选地, 所述预定的抓取方向包括逆时针方向或顺时针方向, 所述预定的排列 方式以及所述排列形状由所述 LED显示屏的要求决定。
[0021] 可选地, 所述第一抓取点、 所述第二抓取点、 ......及第 n抓取点包括通过随机 抽样方法随机选取的无逻辑的点;
[0022] 所述第一数量的 LED芯片、 所述第二数量的 LED芯片、 ......及第 n数量的 LED 芯片包括 0~8颗所述 LED芯片。
[0023] 可选地, 所述相同或不同规格的批量 LED芯片来自单一规格的晶圆或多规格的 晶圆; 并且所述 LED芯片包括倒装的 Mini LED或 Micro LED芯片。
[0024] 可选地, 所述随机抽样方法包括乱数表法, 其中所述乱数表包括费舍尔 ·雅台斯 乱数表、 第贝特乱数表及康达尔 ·史密斯乱数表中的一种。
[0025] 可选地, 制备相同或不同规格的批量 LED芯片包括以下步骤: 将来自不同晶圆 的相同规格的所述 LED芯片依次放置在多个蓝膜上。
[0026] 可选地, 通过随机抽样方法对所述 LED芯片进行无逻辑抓取并将抓取的所述 LE D芯片进行顺序排列包括将抓取的所述 LED芯片顺序排列到基板上。
[0027] 可选地, 对顺序排列的所述 LED芯片进行封装并组装形成所述 LED显示屏的步 骤包括:
[0028] 将排列在所述基板上的所述 LED芯片进行封装;
[0029] 将封装后的所述 LED芯片转移至电路基板上并组装形成所述 LED显示屏;
[0030] 其中, 将封装后的所述 LED芯片转移至电路板的方式包括单个封装后的所述 LE D芯片依次转移或者若干个封装后的所述 LED芯片批量转移。
[0031] 可选地, 通过随机抽样方法对所述 LED芯片进行无逻辑抓取并将抓取的所述 LE
D芯片进行顺序排列还包括以下步骤:
[0032] 通过随机抽样方法直接从切割出所述 LED芯片的晶圆上无逻辑抓取所述 LED芯 片;
[0033] 将抓取的所述 LED芯片排列在承载膜上。
[0034] 进一步可选地, 对顺序排列的所述 LED芯片进行封装并组装形成所述 LED显示 屏的步骤包括:
[0035] 将排列在所述承载膜上的所述 LED芯片批量转移至电路基板上; [0036] 将转移至所述电路基板上的所述 LED芯片进行封装并组装形成所述 LED显示屏
[0037] 本发明的第二方面提供了一种 LED显示屏, 包括:
[0038] 显示单元, 所述显示单元包括电路基板以及焊接在所述电路基板上的 LED芯片
[0039] 其中, 所述 LED芯片包括来自相同晶圆的 LED芯片和 /或来自不同晶圆的 LED芯 片, 所述 LED芯片经无逻辑抓取并排列后焊接在所述电路基板上, 并且相邻的所 述 LED芯片不包括同规格的相邻的所述 LED芯片, 所述 LED芯片的规格包括所述 LED芯片的色度、 亮度中的至少一种。
[0040] 可选地, 上述 LED显示屏还包括: 控制系统, 所述控制系统与所述显示单元电 连接以控制所述显示单元根据不同的要求进行显示。
[0041] 可选地, 所述 LED芯片包括倒装的 Mini LED芯片或 Micro LED芯片。
发明的有益效果
有益效果
[0042] 如上所述, 本发明的 LED显示屏及其制造方法, 具有以下有益效果:
[0043] 本发明的方法通过对单一规格或多规格的芯片进行一次无逻辑性抓取并排列, 经上述抓取并排列后的芯片在后续封装并组装屏幕之后不会出现亮度和颜色的 差异。 并且本发明的方法可以通过在现有设备的操作中套入乱数表法便可实现 , 实现过程简单, 无需进行设备或制程上的改动或设计, 运行成本低易于实现
[0044] 本发明的方法可以对来自相同晶圆的相同或不同规格的 LED芯片直接进行无逻 辑抓取然后进行排列, 因此该方法可以不对 LED芯片分 bin直接抓取, 实现 LED 芯片分散且均匀的分布。 另外, 该方法也可以对来向不同晶圆的相同规格不同 bi n的的 LED芯片进行无逻辑抓取并进行排列。 即实现不同 bin的 LED芯片的分散且 均匀的分布。 以上方法使得最终的 LED屏幕中的 LED芯片分散且均匀地分布, 不 会造成屏幕与屏幕之间条纹或块状的色差 /亮暗差异。
[0045] 另外, 本发明的方法对来源端的芯片进行乱数排列, 将来源端的芯片打乱随机 排列到产品上, 易于实现量产, 并且封装模块或屏幕内的芯片均是乱数排列, 不存在条纹或块状色差 /亮暗, 模块与模块或屏幕与屏幕进行进一步组装时, 也 不会出现条纹或块状色差 /亮暗现象。
对附图的简要说明
附图说明
[0046] 图 1显示为现有技术中经分选 /排片之后的 LED芯片排列示意图。
[0047] 图 2显示为实施例一提供的 LED封装器件制造方法的流程示意图。
[0048] 图 3显示为图 2所示方法中将 LED芯片划分成不同 Bin的 LED芯片所呈现的结构 示意图。
[0049] 图 4显示为图 2所示方法中对分类后的所述 LED芯片进行乱数排列后所呈现的结 构示意图。
[0050] 图 5显示为对 LED芯片进行乱数排列的抓取过程的示意图。
[0051] 图 6显示为对抓取的 LED芯片进行排列的示意图。
[0052] 图 7a-图 8b显示为现有技术的分选方法和图 2所示方法将乱数排列后的 LED芯片 封装后形成的 LED倒装显示屏的显示效果示意图, 其中图 7a显示为现有技术形成 的亮度分规 0.5 mW的 LED倒装显示屏的显示效果示意图; 图 7b显示为图 2所示方 法形成亮度分规 0.5 mW的 LED倒装显示屏的显示效果示意图; 图 8a显示为现有 技术形成的波长分规 0.5
nm的 LED倒装显示屏的显示效果示意图; 图 8b显示为图 2所示方法形成的波长分 规 0.5 nm的 LED倒装显示屏的显示效果示意图。
[0053] 元件标号说明:
[0054] 10: 显示模块; 101 : LED芯片; 30: 显示模块; 301: LED芯片
发明实施例
本发明的实施方式
[0055] 以下通过特定的具体实例说明本发明的实施方式, 本领域技术人员可由本说明 书所揭露的内容轻易地了解本发明的其他优点与功效。 本发明还可以通过另外 不同的具体实施方式加以实施或应用, 本说明书中的各项细节也可以基于不同 观点与应用, 在没有背离本发明的精神下进行各种修饰或改变。
[0056] 在 LED显示屏的制造过程中, LED芯片的分选是非常重要的一个步骤, 5见有技 术的分选 /排片技术通常对 LED芯片进行逻辑排列, 将同 bin规格的 LED芯片 101依 序排列, 形成显示模块 10, 如图 1所示。 按照这样的分选 /排片后, 后续依序封装 后将上述显示模块 10组装成 LED屏幕后, 屏幕与屏幕之间就会出现亮度差异及颜 色差异, 出现条带或块状色差 /亮暗, 如图 7a和 8a所示。
[0057] 实施例一
[0058] 为了解决上述现有技术中因 LED分选造成的屏幕之间出现的亮度差异及颜色差 异的问题, 本实施例提供一种 LED倒装显示屏制造方法, 如图 2-6所示, 包括如 下步骤:
[0059] 制备相同或不同规格的批量 LED芯片;
[0060] 上述相同或不同规格的 LED芯片可以来自相同的晶圆, 也可以来自不同的晶圆 。 在本实施例的一优选实施例中, 如图 3所示, 显示了来自不同晶圆的相同规格 的 LED芯片 301被划分成不同 bin。 在本实施例的有选实施例中, LED芯片也可以 划分成相同 bin但是不同亮度或波长的 LED芯片。 在本实施例中, LED芯片 301的 规格包括颜色或亮度中的至少一种。
[0061] 通过随机抽样方法对上述批量 LED芯片进行无逻辑抓取并将抓取的所述 LED芯 片排列在基板上;
[0062] 如图 4所示, 显示了经无逻辑抓取并排列后所呈现的显示模块 30, 由图 4可以看 出, 经上述抓取并排列后形成的显示模块 30中 LED芯片 301均匀且分散地分布在 显示模块 30中。
[0063] 对放置在所述基板上的所述 LED芯片进行封装并转移至电路基板组装形成所述 LED显示屏。 可以将单个封装后的所述 LED芯片依次转移至电路板, 或者可以将 若干个封装后的所述 LED芯片批量转移至电路板。
[0064] 如图 4所示的显示模块 30组成 LED显示后, LED显示屏中一定区域内的所述 LE D芯片不全部为同规格的相邻的所述 LED芯片, 所述一定区域包括一个或若干个 所述 LED芯片。 所述一定区域例如可以是 3个 x4个、 6个 x8个、 2个 x5个等这样的 区域。 屏幕与屏幕之间就不会出现条纹或块状色差及亮暗现象。 如图 7b和 8b所 示, 无论是对相同亮度不同波长 (颜色) 分 bin还是相同波长不同亮度分 bin, 经 上述无逻辑抓取及排列后, 各 LED芯片 301在各显示模块 30中均是均匀且分散地 分布的, 因此, 显示模块 30组装成显示屏之后, 屏幕与屏幕之间就不会出现条 纹或块状色差 /亮暗。
[0065] 在本实施例的一优选实施例中, 如图 5和 6所示, 显示了来自不同晶圆的同规格 的 LED芯片的抓取及排列过程。
[0066] 如图 5所示, 首先将来自不同晶圆的相同规格的所述 LED芯片依次放置在一个 或多个承载膜膜上, 该承载膜可以是蓝膜、 白膜、 PVC膜等任何具有粘性的承载 膜。 然后按照随机抽样方法对上述 LED芯片进行无逻辑抓取, 在本实施例的优选 实施例中, 随机抽样方法包括乱数表法, 所述乱数表法中的乱数表包括费舍尔 · 雅台斯乱数表、 第贝特乱数表及康达尔 ·史密斯乱数表中的一种。 在本实施例中 采用乱数表法对上述 LED芯片进行无逻辑抓取, 首先随机选取第一抓取点, 并抓 取该第一抓取点处的 LED芯片 1或者抓取该第一抓取点处的 LED芯片 1并同时沿预 定的抓取方向 01依次抓取该第一抓取点周围的 LED芯片, 例如可以抓取第一抓 取点周围的 1-8颗 LED芯片, 优选地, 在本实施例中抓取第一抓取点周围的 8颗 L
Figure imgf000009_0001
抓取方向 01可以是逆时针方向或顺时针方向, 在本实施例的优选实 施例中, 如图 5所示, 抓取方向 01是逆时针方向。
[0067] 将抓取的第一抓取点处的 LED芯片 1及其周围的 LED芯片 2-9按照预定的排列方 式顺序排列在基板上。 可以根据 LED显示屏的最终产品要求确定预定的排列方式 。 例如图 6所示, 该预定的排列方式包括竖向折返排列方式, 当然也可以是横向 折返排列方式等。
[0068] 抓取并排列完第一抓取点处的 LED芯片后, 随机随机跳至第二抓取点, 并抓取 该第二抓取点处的 LED芯片 A或者抓取该第二抓取点处的 LED芯片 A并同时沿预 定的抓取方向 01依次抓取该第二抓取点周围的 LED芯片, 例如同样抓取第二抓 取点周围的 8颗 LED芯片 B-I 然后将抓取的第二抓取点处的 LED芯片 A及其周围 的 LED芯片 B-I按照预定的排列方式顺序排列在基板上。
[0069] .
[0070] 随机跳至第 n抓取点, 并沿所述预定的抓取方向抓取所述第 n抓取点处的所述 LE D芯片及所述第 n抓取点周围第 n数量的所述 LED芯片;
[0071] 将抓取的所述第 n抓取点处的所述 LED芯片及所述第 n数量的所述 LED芯片按照 所述的预定的排列方式顺序排列在所述基板上。
[0072] 依次重复上述随机抓取及排列步骤, 直至完成所有 LED芯片的抓取及排列, 并 形成所需的排列形状。 该排列形状同样可以根据 LED显示屏的最终产品要求来确 定。
[0073] 如图 5和 6所示, 第一抓取点、 所述第二抓取点、 ......及第 n抓取点包括通过随 机抽样方法随机选取的无逻辑的点; 所述第一数量的 LED芯片、 所述第二数量的 LED芯片、 ......及第 n数量的 LED芯片包括 0~8颗所述 LED芯片。 其中, n为大于 2 的整数。
[0074] 然后对上述放置基板上的 LED芯片进行封装并转移至电路基板形成图 4所示的 显示模块, 将该显示模块组装形成 LED显示屏。
[0075] 如图 4所示, 每一个显示模块中的 LED芯片都是均匀且分散地分布, 因此组成 L ED显示屏之后, 屏幕与屏幕之间不会出现条带状或块状色差 /亮暗差异。
[0076] 为了获得更加分散且均匀的 LED芯片分布, 尽可能完全消除屏幕与屏幕之间可 能会出现的条带状或块状色差 /亮暗差异, 可以重复多次上述无逻辑抓取以及有 序排列的步骤, 直至达到理想的显示效果。
[0077] 实施例二
[0078] 本实施例提供一种 LED倒装显示屏制造方法, 与实施例一的相同之处不再赘述 , 不同之处在于:
[0079] 在本实施例中, 可以通过随机抽样方法直接从切割出 LED芯片的晶圆上无逻辑 抓取 LED芯片; 然后将抓取的 LED芯片排列在承载膜上, 该承载膜同样可以是蓝 膜、 白膜、 PVC膜等任何具有粘性的承载膜; 然后将承载膜上的 LED芯片批量转 移至电路基板上; 将转移至电路基板上的 LED芯片进行封装并组装形成 LED显示 屏。
[0080] 本发明上述实施例所示的方法, 可以对来自相同晶圆的相同或不同规格的 LED 芯片直接进行无逻辑抓取然后进行排列, 因此该方法可以不对 LED芯片分 bin直 接抓取, 实现 LED芯片分散且均匀的分布。 另外, 该方法也可以对来向不同晶圆 的相同规格不同 bin的的 LED芯片进行无逻辑抓取并进行排列。 即实现不同 bin的 LED芯片的分散且均匀的分布。 以上方法使得最终的 LED屏幕中的 LED芯片分散 且均匀地分布, 不会造成屏幕与屏幕之间条纹或块状的色差 /亮暗差异。
[0081] 另外, 上述方法仅通过一次无逻辑抓取便可实现 LED芯片的分散且均匀的分布 , 实现过程简单, 分选成本低。
[0082] 在本实施例的另一优选实施例中, 上述 LED芯片包括倒装的倒装的 Mini
LED或 Micro LED芯片。
[0083] 实施例三
[0084] 本实施例提供一种 LED显示屏, 该 LED显示屏包括显示单元, 所述显示单元包 括电路基板以及焊接在所述电路基板上的 LED芯片;
[0085] 其中, 所述 LED芯片包括来自相同晶圆的 LED芯片和 /或来自不同晶圆的 LED芯 片, 所述 LED芯片经乱数排列后焊接在所述电路基板上, 并且相邻的所述 LED芯 片不包括同规格的相邻的所述 LED芯片, 所述 LED芯片的规格包括所述 LED芯片 的色度、 亮度中的至少一种。
[0086] 在本实施例的一优选实施例中, 所述 LED芯片包括倒装的 Mini
LED芯片或 Micro LED芯片。
[0087] 在本实施例的另一优选实施例中, 该 LED显示屏还包括控制系统, 该控制系统 与所述显示单元电连接以控制所述显示单元根据不同的要求进行显示。
[0088] 本实施例的 LED显示屏中, LED芯片经实施例一所述的方法排列, 因此在 LED 显示屏中 LED芯片分散且均匀地分布因此, 该 LED显示屏不需要依靠控制系统驱 动电路来分配电流大小使得屏幕的亮度及颜色均匀, 也不需要使用 PWM (Pulse Width Modulation, 脉冲宽度调制) 方式调整占空比来实现亮度均匀, LED显示 屏有单独开启 R/G/B三色光的功能, 使用相同的驱动电流开启 R/G/B, LED显示 屏也不会出现条纹或块状色差 /亮暗差异。
[0089] 如上所述, 本发明的 LED显示屏及其制造方法, 具有以下有益效果:
[0090] 本发明的方法通过对单一规格或多规格的芯片进行一次无逻辑性抓取并排列, 经上述抓取并排列后的芯片在后续封装并组装屏幕之后不会出现亮度和颜色的 差异。 并且本发明的方法可以通过在现有设备的操作中套入乱数表法便可实现 , 实现过程简单, 无需进行设备或制程上的改动或设计, 运行成本低易于实现 [0091] 该方法可以对来自相同晶圆的相同或不同规格的 LED芯片直接进行无逻辑抓取 然后进行排列, 因此该方法可以不对 LED芯片分 bin直接抓取, 实现 LED芯片分 散且均匀的分布。 另外, 该方法也可以对来向不同晶圆的相同规格不同 bin的的 L ED芯片进行无逻辑抓取并进行排列。 即实现不同 bin的 LH)芯片的分散且均匀的 分布。 以上方法使得最终的 LED屏幕中的 LED芯片分散且均匀地分布, 不会造成 屏幕与屏幕之间条纹或块状的色差 /亮暗差异。
[0092] 另外, 本发明的方法对来源端的芯片进行乱数排列, 将来源端的芯片打乱随机 排列到产品上, 易于实现量产, 并且封装模块或屏幕内的芯片均是乱数排列, 不存在条纹或块状色差 /亮暗, 模块与模块或屏幕与屏幕进行进一步组装时, 也 不会出现条纹或块状色差 /亮暗现象。
[0093] 上述实施例仅例示性说明本发明的原理及其功效, 而非用于限制本发明。 任何 熟悉此技术的人士皆可在不违背本发明的精神及范畴下, 对上述实施例进行修 饰或改变。 因此, 举凡所属技术领域中具有通常知识者在未脱离本发明所揭示 的精神与技术思想下所完成的一切等效修饰或改变, 仍应由本发明的权利要求 所涵盖。

Claims

权利要求书
[权利要求 1] 一种 LED显示屏的制造方法, 其特征在于, 包括:
制备相同或不同规格的批量 LED芯片;
通过随机抽样方法对所述 LED芯片进行无逻辑抓取并将抓取的所述 L ED芯片进行顺序排列;
对顺序排列的所述 LED芯片进行封装并组装形成所述 LED显示屏; 其中, 所述 LED显示屏中相邻的一定区域内的所述 LED芯片不全部为 同规格的相邻的所述 LED芯片, 所述 LED芯片的规格包括颜色、 亮度 中的一种, 所述一定区域包括一个或若干个所述 LED芯片。
[权利要求 2] 根据权利要求 1所述的制造方法, 其特征在于, 按照随机抽样方法对 所述 LED芯片进行无逻辑抓取并将抓取的所述 LED芯片进行顺序排列 包括以下步骤:
随机选取第一抓取点, 并沿预定的抓取方向分别抓取所述第一抓取点 处的所述 LED芯片及所述第一抓取点周围第一数量的所述 LED芯片; 将抓取的所述第一抓取点处的所述 LED芯片及所述第一数量的所述 L ED芯片按照预定的排列方式顺序排列;
随机跳至第二抓取点, 并沿所述预定的抓取方向抓取所述第二抓取点 处的所述 LED芯片及所述第二抓取点周围第二数量的所述 LED芯片; 将抓取的所述第二抓取点处的所述 LED芯片及所述第二数量的所述 L ED芯片按照所述的预定的排列方式顺序排列; 随机跳至第 n抓取点, 并沿所述预定的抓取方向抓取所述第 n抓取点处 的所述 LED芯片及所述第 n抓取点周围第 n数量的所述 LED芯片; 将抓取的所述第 n抓取点处的所述 LED芯片及所述第 n数量的所述 LED 芯片按照所述的预定的排列方式顺序排列;
直至完成所有 LED芯片的抓取及排列, 形成所需的排列形状; 其中, n为大于 2的整数, 所述第 n抓取点处的 LED芯片及所述第 n数量 的 LED芯片、 ......、 第二抓取点处的 LED芯片及所述第二数量的 LED 芯片与所述第一抓取点处的 LED芯片及所述第一数量的 LED芯片连续 排列。
[权利要求 3] 根据权利要求 2所述的制造方法, 其特征在于, 所述预定的抓取方向 包括逆时针方向或顺时针方向, 所述预定的排列方式以及所述排列形 状由所述 LED显示屏的要求决定。
[权利要求 4] 根据权利要求 2所述的制造方法, 其特征在于,
所述第一抓取点、 所述第二抓取点、 ......及第 n抓取点包括通过随机 抽样方法随机选取的无逻辑的点;
所述第一数量的 LED芯片、 所述第二数量的 LED芯片、 ......及第 n数 量的 LED芯片包括 0~8颗所述 LED芯片。
[权利要求 5] 根据权利要求 1所述的制造方法, 其特征在于, 所述相同或不同规格 的批量 LED芯片来自单一规格的晶圆或多规格的晶圆; 并且所述 LED 芯片包括倒装的 Mini LED或 Micro LED芯片。
[权利要求 6] 根据权利要求 1所述的制造方法, 其特征在于, 所述随机抽样方法包 括乱数表法, 其中所述乱数表包括费舍尔 ·雅台斯乱数表、 第贝特乱 数表及康达尔 ·史密斯乱数表中的一种。
[权利要求 7] 根据权利要求 1所述的制造方法, 其特征在于, 制备相同或不同规格 的批量 LED芯片包括以下步骤: 将来自不同晶圆的相同规格的所述 L ED芯片依次放置在多个承载膜上。
[权利要求 8] 根据权利要求 1所述的制造方法, 其特征在于, 通过随机抽样方法对 所述 LED芯片进行无逻辑抓取并将抓取的所述 LED芯片进行顺序排列 包括将抓取的所述 LED芯片顺序排列到基板上。
[权利要求 9] 根据权利要求 8所述的制造方法, 其特征在于, 对顺序排列的所述 LE
D芯片进行封装并组装形成所述 LED显示屏的步骤包括:
将排列在所述基板上的所述 LED芯片进行封装; 将封装后的所述 LED芯片转移至电路基板上并组装形成所述 LED显示 屏;
其中, 将封装后的所述 LED芯片转移至电路板的方式包括单个封装后 的所述 LED芯片依次转移或者若干个封装后的所述 LED芯片批量转移
[权利要求 10] 根据权利要求 1所述的制造方法, 其特征在于, 通过随机抽样方法对 所述 LED芯片进行无逻辑抓取并将抓取的所述 LED芯片进行顺序排列 还包括以下步骤:
通过随机抽样方法直接从切割出所述 LED芯片的晶圆上无逻辑抓取所 述 LED芯片;
将抓取的所述 LED芯片排列在承载膜上。
[权利要求 11] 根据权利要求 11所述的制造方法, 其特征在于, 对顺序排列的所述 L
ED芯片进行封装并组装形成所述 LED显示屏的步骤包括: 将排列在所述承载膜上的所述 LED芯片批量转移至电路基板上; 将转移至所述电路基板上的所述 LED芯片进行封装并组装形成所述 L ED显示屏。
[权利要求 12] 一种 LED显示屏, 其特征在于, 包括:
显示单元, 所述显示单元包括电路基板以及焊接在所述电路基板上的
LED芯片;
其中, 所述 LED芯片包括来自相同晶圆的 LED芯片和 /或来自不同晶 圆的 LED芯片, 所述 LED芯片经无逻辑抓取并排列后焊接在所述电路 基板上, 并且相邻的所述 LED芯片不包括同规格的相邻的所述 LED芯 片, 所述 LED芯片的规格包括所述 LED芯片的色度、 亮度中的至少一 种。
[权利要求 13] 根据权利要求 12所述的 LED显示屏, 其特征在于, 还包括:
控制系统, 所述控制系统与所述显示单元电连接以控制所述显示单元 根据不同的要求进行显示。
[权利要求 14] 根据权利要求 12所述的 LED倒装显示屏, 其特征在于, 所述 LED芯片 包括倒装的 Mini LED芯片或 Micro LED芯片。
PCT/CN2019/074639 2019-02-02 2019-02-02 一种led倒装显示屏及其制造方法 WO2020155162A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2020560348A JP2021520520A (ja) 2019-02-02 2019-02-02 フリップチップ実装型ledディスプレイスクリーンおよびその製造方法
EP19912701.0A EP3919970A4 (en) 2019-02-02 2019-02-02 LED FLIP CHIP DISPLAY SCREEN AND METHOD OF MANUFACTURE THEREOF
KR1020207034607A KR20210003257A (ko) 2019-02-02 2019-02-02 플립칩 led 디스플레이 스크린 및 그 제조방법
CN201980003970.8A CN111357095B (zh) 2019-02-02 2019-02-02 一种led倒装显示屏及其制造方法
PCT/CN2019/074639 WO2020155162A1 (zh) 2019-02-02 2019-02-02 一种led倒装显示屏及其制造方法
TW108115084A TWI694620B (zh) 2019-02-02 2019-04-30 Led顯示幕及其製造方法
US17/090,907 US20210057396A1 (en) 2019-02-02 2020-11-06 Led display screen and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/074639 WO2020155162A1 (zh) 2019-02-02 2019-02-02 一种led倒装显示屏及其制造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/090,907 Continuation US20210057396A1 (en) 2019-02-02 2020-11-06 Led display screen and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2020155162A1 true WO2020155162A1 (zh) 2020-08-06

Family

ID=71197854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074639 WO2020155162A1 (zh) 2019-02-02 2019-02-02 一种led倒装显示屏及其制造方法

Country Status (7)

Country Link
US (1) US20210057396A1 (zh)
EP (1) EP3919970A4 (zh)
JP (1) JP2021520520A (zh)
KR (1) KR20210003257A (zh)
CN (1) CN111357095B (zh)
TW (1) TWI694620B (zh)
WO (1) WO2020155162A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410368A (zh) * 2021-05-31 2021-09-17 长春希龙显示技术有限公司 高均匀性集成led显示模块芯片混编封装方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864039A (zh) * 2020-08-04 2020-10-30 深圳市隆利科技股份有限公司 一种mini-LED固晶方法及其mini-LED灯板
CN114745863B (zh) * 2021-01-07 2024-06-11 深圳市洲明科技股份有限公司 一种led显示屏墨色印刷方法
CN115458451A (zh) * 2021-06-08 2022-12-09 西安青松光电技术有限公司 Led芯片的转移装置及转移方法
CN113675130B (zh) * 2021-07-29 2022-04-29 江苏美斯其新材料科技有限公司 一种芯片封装用排片机及使用方法
CN114171398A (zh) * 2021-12-03 2022-03-11 东莞市中麒光电技术有限公司 Led显示模块芯片混装方法及led显示模块
CN114596791B (zh) * 2022-02-23 2024-05-31 东莞市中麒光电技术有限公司 显示模块制作方法
CN115138583B (zh) * 2022-07-01 2024-07-26 厦门未来显示技术研究院有限公司 一种发光芯片的分选方法及分选装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856474A (zh) * 2012-08-27 2013-01-02 晶测光电(深圳)有限公司 Led-cob智能型配对封装技术
US8348749B1 (en) * 2007-05-04 2013-01-08 Mark Curran Ungaro Multiple progressive gaming table apparatus
CN104640312A (zh) * 2014-12-16 2015-05-20 浙江大丰实业股份有限公司 一种舞台照明多控通信系统
CN105929574A (zh) * 2016-06-30 2016-09-07 Tcl显示科技(惠州)有限公司 显示模组的生产方法
CN109103119A (zh) * 2018-07-03 2018-12-28 长春希达电子技术有限公司 消除色差的发光芯片分档方法及分档发光芯片的应用方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100880812B1 (ko) * 2004-03-29 2009-01-30 아티큘레이티드 테크놀러지스 엘엘씨 롤-투-롤 제조된 광 시트 및 캡슐화된 반도체 회로디바이스들
KR20090125267A (ko) * 2007-03-09 2009-12-04 오스람 옵토 세미컨덕터스 게엠베하 Led 모듈
CN101650897A (zh) * 2009-06-17 2010-02-17 北京巨数数字技术开发有限公司 一种led显示装置
CN102128423B (zh) * 2010-11-30 2012-07-11 巴可伟视(北京)电子有限公司 一种基于led模组的随机矩阵混灯方法及其系统装置
WO2013149325A2 (en) * 2012-04-03 2013-10-10 Murdoch Graham Blair Systems and methods for user installation of modular led displays
CN202712179U (zh) * 2012-08-01 2013-01-30 青岛海泰新光科技有限公司 一种高亮度、高显色指数的白光led光源
JP6139323B2 (ja) * 2013-08-06 2017-05-31 三菱電機株式会社 映像表示装置およびその製造方法
CN104064657B (zh) * 2014-07-04 2017-02-15 西安诺瓦电子科技有限公司 基于板上芯片封装技术的led显示模块制作方法及系统
CN105427757B (zh) * 2015-12-30 2018-08-28 广东威创视讯科技股份有限公司 一种led灯板拼接方法及装置
FR3068819B1 (fr) * 2017-07-04 2019-11-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif d'affichage a leds
KR102514755B1 (ko) * 2017-07-10 2023-03-29 삼성전자주식회사 마이크로 엘이디 디스플레이 및 그 제작 방법
US11281383B2 (en) * 2018-03-29 2022-03-22 Intel Corporation Side-channel attack resistant fuse programming

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8348749B1 (en) * 2007-05-04 2013-01-08 Mark Curran Ungaro Multiple progressive gaming table apparatus
CN102856474A (zh) * 2012-08-27 2013-01-02 晶测光电(深圳)有限公司 Led-cob智能型配对封装技术
CN104640312A (zh) * 2014-12-16 2015-05-20 浙江大丰实业股份有限公司 一种舞台照明多控通信系统
CN105929574A (zh) * 2016-06-30 2016-09-07 Tcl显示科技(惠州)有限公司 显示模组的生产方法
CN109103119A (zh) * 2018-07-03 2018-12-28 长春希达电子技术有限公司 消除色差的发光芯片分档方法及分档发光芯片的应用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3919970A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410368A (zh) * 2021-05-31 2021-09-17 长春希龙显示技术有限公司 高均匀性集成led显示模块芯片混编封装方法

Also Published As

Publication number Publication date
KR20210003257A (ko) 2021-01-11
JP2021520520A (ja) 2021-08-19
EP3919970A4 (en) 2022-09-14
TWI694620B (zh) 2020-05-21
CN111357095B (zh) 2024-04-02
CN111357095A (zh) 2020-06-30
TW202030893A (zh) 2020-08-16
EP3919970A1 (en) 2021-12-08
US20210057396A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
WO2020155162A1 (zh) 一种led倒装显示屏及其制造方法
US8328405B2 (en) Independent control of light emitting diodes
CN107331678B (zh) 可消除色度差异的集成led显示模块芯片混编封装方法
CN106876408B (zh) 微发光二极管显示面板及制作方法
CN107078132A (zh) 硅基彩色iled显示器
CN111201595B (zh) 显示装置及其制造方法
CN103185220A (zh) 固态发光器件色温调节方法及使用该方法的照明装置
US20180261647A1 (en) Display device and epitaxial wafer
US20060033423A1 (en) Mixed-color light emitting diode apparatus, and method for making same
CN108336206B (zh) 一种发光二极管显示器的制造方法
KR102443444B1 (ko) 디스플레이 장치의 제조 방법 및 그의 제조 장치
CN113410368B (zh) 高均匀性集成led显示模块芯片混编封装方法
CN102005161B (zh) 一种led显示屏的制作方法
CN101968172A (zh) 一种可变色温的白光led模组及其应用方法
CN108281361A (zh) 一种发光二极管显示器的制造方法
CN114171398A (zh) Led显示模块芯片混装方法及led显示模块
TW200821685A (en) Light-emitting diode backlight module and application thereof
CN210771671U (zh) Led阵列、led灯具及摄影灯
KR102244667B1 (ko) 마이크로 엘이디 픽셀 패키지의 제조 방법 및 이에 의해 제조된 마이크로 엘이디 픽셀 패키지
CN108428771A (zh) 一种微型发光二极管显示屏的制作方法和装置
CN213124405U (zh) 芯片转移装置和显示装置
CN113675317B (zh) 一种led芯片的混合方法
CN213983100U (zh) 一种可调光调色的led灯丝灯
CN106653982A (zh) 一种led贴片元器件的n×n型封装结构
CN117542292B (zh) 一种具有左右视角颜色一致性显示模组及其加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020560348

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207034607

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019912701

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019912701

Country of ref document: EP

Effective date: 20210902