WO2020154999A1 - 显示组件和亮度控制方法 - Google Patents

显示组件和亮度控制方法 Download PDF

Info

Publication number
WO2020154999A1
WO2020154999A1 PCT/CN2019/074077 CN2019074077W WO2020154999A1 WO 2020154999 A1 WO2020154999 A1 WO 2020154999A1 CN 2019074077 W CN2019074077 W CN 2019074077W WO 2020154999 A1 WO2020154999 A1 WO 2020154999A1
Authority
WO
WIPO (PCT)
Prior art keywords
brightness
transistor
pixel row
pixel
processor
Prior art date
Application number
PCT/CN2019/074077
Other languages
English (en)
French (fr)
Inventor
赖证宇
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to CN201980073715.0A priority Critical patent/CN113261045A/zh
Priority to PCT/CN2019/074077 priority patent/WO2020154999A1/zh
Publication of WO2020154999A1 publication Critical patent/WO2020154999A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • This application relates to the field of display technology, and in particular to a display assembly and a brightness control method of the display assembly.
  • AMOLED Active-matrix organic light emitting diode
  • TFTs thin film transistors
  • the TFT has problems with uniformity or stability, which causes the AMOLED display to display uneven brightness or afterimages, so it is necessary to compensate for the AMOLED display.
  • Compensation methods usually include internal compensation and external compensation. Internal compensation will cause a complex pixel structure and a small compensation range. At present, people tend to adopt external compensation with a simpler pixel structure and a larger compensation range.
  • One way to use external compensation is that each row of pixel units has a detection TFT.
  • the detection TFT will detect the electrical signal of the driving TFT of a certain row of pixel units. It is usually done in the blank area (V-Blanking) of the idle time outside of each frame to write data. However, the current that should flow to the Organic Light-Emitting Diode (OLED) during detection will flow to the detection TFT, which causes the OLED to dim and produce dark lines, which affects the display effect of the display.
  • OLED Organic Light-Emitting Diode
  • the embodiments of the present application provide a display assembly and a brightness control method.
  • the display component of the embodiment of the present application includes a display screen, a detector, a processor, and a calibration module.
  • the detector is connected to the display screen.
  • the detector, the calibration module, and the display screen are all connected to each other.
  • the processor is connected, the display screen includes a plurality of pixel rows, the correction module stores first correction information, the detector is used for detecting the actual brightness information of each pixel row, and the processor is used for According to the actual brightness information and the first correction information, calculate the compensation brightness information of the pixel row adjacent to the detected pixel row, and calculate the compensation brightness of the adjacent pixel row The information adjusts the brightness of the adjacent pixel row.
  • the processor reduces the brightness of the adjacent pixel row with the detected pixel row, so that the dark line generated when the detected pixel row is detected and the brightness of the adjacent pixel row smoothly transition .
  • the use of the integral effect of the human eye can reduce the display impact caused by dark lines, thereby ensuring the quality of the display screen.
  • the brightness control method of the embodiment of the present application is used for a display component.
  • the display component includes a display screen, a detector, a processor, and a correction module.
  • the detector, the correction module, and the display screen are The processor is connected, the display screen includes a plurality of pixel rows, the correction module stores first correction information, and the method includes:
  • the detector detects the actual brightness information of each pixel row
  • the processor calculates the compensation of the pixel row adjacent to the detected pixel row according to the actual brightness information and the first correction information of each pixel row detected by the detector Brightness information, and adjust the brightness of the adjacent pixel row according to the calculated compensation brightness information of the adjacent pixel row.
  • the processor reduces the brightness of the adjacent pixel row with the detected pixel row, so that the dark line generated when the detected pixel row is detected and the brightness of the adjacent pixel row are smoothed. Transition, using the integral effect of the human eye can reduce the display impact caused by dark lines, thereby ensuring the quality of the display screen.
  • FIG. 1 is a schematic diagram of modules of an electronic device according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a brightness control method according to an embodiment of the present application.
  • FIG. 3 is a Gamma curve of gray scale and brightness of a pixel row in an embodiment of the present application.
  • FIG. 4 is another Gamma curve of the gray scale and brightness of the pixel row in the embodiment of the present application.
  • FIG. 5 is a schematic diagram of the distribution of the Gamma value of the pixel row in the embodiment of the present application when it is detected.
  • Fig. 6 is a partial circuit diagram of a display screen according to an embodiment of the present application.
  • FIG. 7 is a diagram of voltage changes in stages of the detection process of the embodiment of the present application.
  • FIG. 8 is another block diagram of the electronic device according to the embodiment of the present application.
  • FIG. 9 is another flowchart of the brightness control method according to the embodiment of the present application.
  • the electronic device 1000 the display assembly 100, the display screen 10, the detector 20, the processor 30, the processing unit 32, the buffer 34, the digital-to-analog converter 36, the buffer amplifier 38, the correction module 40, the compensation module 50, and the main board 200.
  • first and second are only used for description purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of the features.
  • “plurality” means two or more than two, unless specifically defined otherwise.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be mechanically connected, or electrically connected or can communicate with each other; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two components or the interaction of two components relationship.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be mechanically connected, or electrically connected or can communicate with each other; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two components or the interaction of two components relationship.
  • an embodiment of the present application provides a display assembly 100.
  • the display assembly 100 includes a display screen 10, a detector 20, a processor 30 and a calibration module 40.
  • the detector 20 is connected to the display screen 10, and the processor 30 is simultaneously connected to the detector 20, the display screen 10 and the calibration module 40.
  • the display screen 10 includes a plurality of pixel rows.
  • the detector 20 is used to detect the actual brightness information of each pixel row.
  • the detector 20 detects the actual brightness of each pixel row when the display element 100 is in a blank area.
  • the correction module 40 stores first correction information.
  • the processor 30 is configured to compare the actual brightness information of each pixel row detected by the detector 20 with the first correction information, and then calculate the compensation of the adjacent pixel row adjacent to the detected pixel row
  • the brightness information is used to reduce the brightness of the adjacent pixel row according to the calculated compensation brightness information of the adjacent pixel row, that is, adjust the actual brightness of the adjacent pixel row to the brightness corresponding to the compensated brightness information.
  • the detected pixel row may be described as the detected pixel row
  • the adjacent pixel row may be described as the adjacent pixel row.
  • the adjacent pixel row refers to the same as the detected pixel row.
  • the adjacent pixel row refers to the same as the detected pixel row.
  • an embodiment of the present application provides a brightness control method.
  • the brightness control method of this embodiment is used in the display assembly 100 of this embodiment.
  • Brightness control methods include:
  • Step S10 the detector 20 detects the actual brightness information of each pixel row
  • step S20 the processor 30 calculates the compensation brightness information of the pixel row adjacent to the detected pixel row according to the actual brightness information of each pixel row detected by the detector 20 and the pre-stored first correction information , And adjust the brightness of adjacent pixel rows according to the calculated compensation brightness information of adjacent pixel rows.
  • the processor 30 reduces the brightness of the pixel row adjacent to the detected pixel row, so that the dark lines and phases generated when the detected pixel row is detected
  • the brightness of adjacent pixel rows is smoothly transitioned, and the integral effect of the human eye can be used to reduce the display influence caused by the dark line, thereby ensuring the quality of the display screen 10 displayed.
  • an embodiment of the present application further provides an electronic device 1000.
  • the electronic device 1000 includes a main board 200 and the aforementioned display assembly 100, and the main board 200 is connected to the display assembly 100.
  • the main board 200 can input corresponding electrical signals, such as voltage/current data, to the display assembly 100.
  • the display component 100 can process the input image signal and display it on the display screen 10.
  • the display assembly 100 includes a plurality of pixel units arranged in an array, and the plurality of pixel units arranged in a row form a pixel row.
  • the electronic device 1000 in the embodiment of the present application includes, but is not limited to, a display, a mobile phone, a tablet computer, a notebook computer, an electronic book, a television, and a wearable smart device.
  • the display screen 10 has a blank area before and after each frame displayed, and the detector 20 detects the actual brightness information of each pixel row during the blank area period.
  • the motherboard 200 to which the display component 100 is connected can write voltage/current data to the pixel rows of the display component 100 line by line. For example, in each frame of the display screen, voltage/current data is written line by line for each pixel row. In the time period between every two frames, no voltage/current data is written to the pixel unit, and the blank area (V-Blanking) is in this period, that is, the blank area exists every time the next write The idle time before or after the frame data.
  • the motherboard 200 to which the display assembly 100 is connected is connected to the processor 30 of this embodiment.
  • the processor 30 can process the electrical signals output by the motherboard 200 and form an image signal which is fed back to the display screen 10 to finally
  • the display screen 10 displays image information corresponding to the image signal.
  • the processor 30 may also control the main board 200 according to the compensated brightness information, so that the main board 200 outputs an image signal corresponding to the compensated brightness information.
  • the detector 20 detects the actual brightness information of the pixel row, such as voltage or current, only when the display element 100 is in the blank area, and does not detect data during each frame of working time. The detection is performed so as to reduce the risk of errors in the display of the display assembly 100.
  • the detector 20 detects the actual brightness information of each pixel row, the current of the pixel will at least partially flow to the detection line, which causes the pixels of the display screen 10 to darken and generate dark lines.
  • the first calibration information includes the ideal Gamma curve of each pixel row when the display screen 10 is normally displayed
  • the actual brightness information includes the actual Gamma curve of the detected pixel row
  • the compensation brightness information includes the The compensation Gamma curve of the pixel row adjacent to the pixel row, the compensation Gamma curve is located between the ideal Gamma curve and the actual Gamma curve.
  • Each Gamma curve includes brightness data and grayscale data.
  • the detector 20 detects the actual brightness data of each pixel row, and the processor 30 compares the actual brightness data with the ideal brightness data of the first correction information to obtain the compensated Gamma. For the compensated brightness data of the curve, the processor 30 further adjusts the brightness of adjacent pixel rows according to the compensated brightness data.
  • the first correction information can be understood as an ideal Gamma curve, that is, the Gamma curve of each pixel row when the display screen 10 is normally displayed.
  • the first correction information includes grayscale data during normal display (ideal grayscale data for short) and brightness data for normal display (ideal brightness data for short).
  • the ideal grayscale data is used as the X coordinate
  • the ideal brightness data is used as the Y coordinate.
  • the correction module 40 can store multiple sets of ideal Gamma curves to correspond to different modes of display.
  • the processor 30 adjusts the brightness information of the pixel row adjacent to the detected pixel row to compensate the brightness information.
  • the brightness information includes grayscale data and brightness data, that is, the actual brightness information includes actual grayscale data and actual brightness data, and the compensated brightness information includes compensated grayscale data and compensated brightness data.
  • the brightness data may be voltage values.
  • the compensated brightness information is obtained based on the actual brightness data and the ideal brightness data, that is, under the same grayscale value, the actual The brightness data is compared with the ideal brightness data, and then the compensation brightness data is calculated, thereby obtaining the compensation brightness information.
  • the value of the compensated brightness data is any value in the interval formed by the actual brightness data and the ideal brightness data, and preferably the middle value of the two is taken.
  • the compensated brightness data is a value between the actual brightness data and the ideal brightness data, so that the dark lines generated when the detected pixel row is detected and the brightness of adjacent pixel rows smoothly transition to the brightness of normal display, so that It is not easy for the human eye to perceive the existence of the dark lines, thereby improving the display effect of the display screen 10.
  • the processor 30 converts the compensation brightness data into a compensation voltage for driving the pixels, and further outputs the compensation voltage to the display screen 10 to adjust the display brightness of the display screen 10.
  • the processor 30 can select the compensation brightness information of the pixel row adjacent to the detected pixel row, so that the According to the human vision principle, the smooth transition between the dark line generated during the line and the brightness of the adjacent pixel rows does not cause a single dark line to appear in the picture, thereby ensuring the quality of the picture displayed on the display screen 10.
  • the brightness information of the pixel row includes grayscale data and brightness data, and the grayscale data and the brightness data are in a mutual correspondence relationship.
  • L1 is the ideal Gamma curve drawn based on the grayscale data and brightness data when the pixel row is normally displayed
  • L2 is the actual graph drawn based on the actual grayscale data and the actual brightness data when the pixel row is detected.
  • Gamma curve when the pixel row is detected, the brightness of the detection will be attenuated under the same grayscale data.
  • the grayscale data is x
  • the ideal brightness data of the pixel row is y. Because the detection causes the brightness of the detected pixel row under the grayscale data to decrease by ⁇ L, the actual brightness data decreases to y1. Since the ⁇ L corresponding to each grayscale data is different, the actual brightness data y1 under each grayscale data is recorded to obtain the actual Gamma curve L2 after brightness attenuation.
  • L1 is the ideal Gamma curve when the detected pixel row is displayed normally
  • L2 is the actual Gamma curve when the detected pixel row is detected
  • L3 is the adjacent pixel of the detected pixel row
  • the compensation Gamma curve is drawn based on the grayscale data and the compensated brightness data.
  • L4 is another adjacent pixel row of the detected pixel row (for example, the adjacent pixel row of the adjacent pixel row) according to the grayscale data and compensated brightness Compensation Gamma curve drawn by data, L3 curve and L4 curve are located between L1 curve and L2 curve.
  • the brightness data drops from point A to point B, and the Gamma curve crossing between AB is used as a combination of multiple compensation Gamma curves for transition, and it is written on the motherboard 200 in the next frame
  • the first correction information that is, according to the calculated detected pixel row brightness gradient
  • the actual brightness information of the pixel row reduces the brightness of multiple adjacent pixel rows.
  • one line is detected in the blank area (V-Blanking) of each frame.
  • the processor 30 can use the actual brightness value of the mth line (that is, the actual Brightness data) and ideal brightness value (ie ideal brightness data), respectively adjust the brightness value of the adjacent k rows, for example, adjust the brightness value of the m+1th row to the brightness1 and the brightness value of the m+2th row Adjust to brightness 2, the brightness value of the m+3th row is adjusted to brightness 3...
  • the brightness value of the m+kth row is adjusted to the brightness k, and the brightness value of the m-1th row is adjusted to the brightness 1, m-
  • the brightness value of the 2 rows is adjusted to brightness 2
  • the brightness value of the m-3th row is adjusted to brightness 3...
  • the brightness value of the mkth row is adjusted to the brightness k, and both m and k are natural numbers greater than 0.
  • the detector 20 is used to simultaneously detect the actual brightness information of multiple pixel rows when the display element 100 is in the blank area, and the detected multiple pixel rows are separated by a predetermined number of pixel rows. In this way, the detection efficiency can be improved, and dark lines can be avoided during detection. For example, when detecting, multiple pixel rows are detected in the blank area (V-Blanking) of each frame at the same time, such as detecting the m+1th row and the 2m+1th row, and detecting when writing m rows of data When the pixel row is m+1 and the 2m row data is written, the detected pixel row is 2m+1 row, the detected pixel row is the m+n row and the detected pixel row is the next m frame.
  • the second pixel row, the sixth pixel row, and the 10th pixel row are detected simultaneously.
  • the pixel row in the second row and the pixel row in the sixth row are separated by 4 pixel rows, and the pixel row in the sixth row and the pixel row in the 10th row are also separated by 4 pixel rows.
  • the detected pixel rows of adjacent frames cannot be too close apart, so as to avoid the situation that the image is affected by the overlap of the transition area .
  • the multiple pixel rows include multiple groups, and each group includes the same number of pixel rows, and the detector 20 simultaneously detects one row of pixel rows in each group.
  • all pixel rows of the display assembly 100 can be divided into multiple groups that are adjacent to each other.
  • the number of pixel rows in each group can be set according to actual conditions.
  • One way is to divide the pixel rows.
  • the rows are divided evenly into multiple groups. Detect one row of pixels in each group in the V-Blanking of each frame. For example, in the first frame, detect the m-th pixel row in each group, in the second frame, detect the m+1-th pixel row in each group, and in the third frame, detect The m+2th row of pixels.
  • the processor 30 includes a processing unit 32, a buffer 34, a digital-to-analog converter 36, and a buffer amplifier 38.
  • the processing unit 32 processes the electrical signal input from the motherboard 200 and stores it in the buffer.
  • the digital-to-analog converter 36 converts the electrical signal processed by the processing unit 32 into an image signal
  • the image signal is amplified by the buffer amplifier 38
  • the corresponding image information is displayed on the display screen 10.
  • the image signal includes a driving voltage signal
  • the image information includes brightness.
  • the processing unit 32 is also used to generate compensation brightness information according to the actual brightness information and the first correction information, and further control the main board 200 to output electrical signals corresponding to the compensation brightness information, such as driving current or driving voltage, so as to finally control the display of the display screen.
  • the detector 20 detects the actual brightness information of each pixel row in the display screen 10.
  • the processor 30 uses the actual brightness information of each pixel row detected by the detector 20 and the first calibration pre-stored in the calibration module 40 Information to calculate the compensation brightness information of the pixel row adjacent to the detected pixel row, and the compensation brightness information of the adjacent pixel row may also be temporarily buffered in the buffer 34. In some embodiments, referring to FIG.
  • each pixel unit of the display screen 10 includes a first transistor T1, a second transistor T2, a third transistor T3, a capacitor Cst, and a light emitting diode d (not labeled); the first transistor The source of T1 is connected to the positive voltage ELVDD of the power supply, the drain of the first transistor T1 is connected to the anode of the light emitting diode d, one end of the capacitor Cst and the drain of the third transistor T3, and the gate of the first transistor T1 is connected to the second transistor T2
  • the source of the second transistor T2 and the gate of the second transistor T2 are connected to the processor 30, the source of the second transistor T2 is connected to one end of the capacitor Cst and the gate of the first transistor T1; the third transistor T3
  • the drain is connected to the anode of the light emitting diode d and one end of the capacitor Cst, the gate of the third transistor T3 is connected to the processor 30, and the source of the third transistor T3 is connected to the detector 20.
  • the first transistor T1, the second transistor T2, and the third transistor T3 are turned on and off so that the display screen 10 outputs a corresponding image and can detect the pixel rows of the display element 100, and the circuit is simple.
  • the capacitor Cst connected to the second transistor T2 is charged, and the first transistor T1 is turned on to make the light emitting diode d emit light.
  • the detection can be performed by switching different pixel rows, so that the dark line generated during the detection It will switch around the entire display area, making it harder for the human eye to detect.
  • the pixel row detection process includes an initialization phase.
  • the processor 30 is used to control the second transistor T2 and the third transistor T3 to turn on.
  • the brightness control method includes:
  • the processor 30 controls the second transistor and the third transistor to be turned on.
  • the second transistor T2 and the third transistor T3 input high levels respectively to turn on the second transistor T2 and the third transistor T3.
  • the initial voltage Vint is written at the detection terminal of the source of the third transistor T3.
  • the pixel row detection process includes a charging phase after the initialization phase.
  • the capacitor Cst is in a charged state, and the first transistor T1, the second transistor T2, and the third transistor T3 are all on .
  • the charged capacitor Cst can increase the voltage of the first transistor T1 so that the light-emitting diode d is always in a light-emitting state.
  • the detection process of the pixel row includes a detection phase after the charging phase.
  • the processor 30 adjusts the voltage input to the pixel row adjacent to the detected pixel row according to the compensation brightness information, thereby adjusting the brightness.
  • the display assembly 100 includes a compensation module 50.
  • the detection process of pixel rows includes a detection phase after the charging phase.
  • the compensation module 50 is used for processing by the computing processor 30.
  • the difference between the voltage of the pixel row obtained by the image signal and the voltage of the pixel row detected by the detector 20, and the difference is provided to the processor 30, and the processor 30 is used to calculate the difference according to the difference (that is, brightness compensation information) And the preset second correction information to adjust the voltage input to the pixel row.
  • the brightness control method includes:
  • Step S30 the compensation module 50 calculates the difference between the voltage of the pixel row obtained by the processor 30 processing the electrical signal and the voltage of the pixel row detected by the detector 20;
  • step S40 the processor 30 adjusts the voltage input to the pixel row according to the difference value and the preset second correction information.
  • step S30 can be implemented by a compensation module.
  • Step 40 can be implemented by the processor 30.
  • the quality of the picture displayed by the display assembly 100 can be guaranteed.
  • the input voltage of the detected pixel row is Vdate. Due to the internal resistance of the circuit elements of the display assembly 100, some voltage loss may occur during the operation of the circuit.
  • the voltage of the source Sense of the three transistors can be sampled and converted by an analog-to-digital converter. The obtained voltage is recorded as V1.
  • the compensation module 50 calculates the voltage of the detected pixel row and the detector 20 detects it.
  • the second calibration information can be preset and stored in the calibration module 40.
  • each part of this application can be executed by hardware, software, firmware or a combination thereof.
  • multiple steps or methods can be executed by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a logic gate circuit for performing logic functions on data signals
  • Discrete logic circuits Discrete logic circuits
  • application-specific integrated circuits with suitable combinational logic gates
  • FPGA field programmable gate array
  • each functional unit in each embodiment of the present application may be integrated into a processor, or each unit may exist alone physically, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be executed in the form of hardware or software function modules. If the integrated module is executed in the form of a software function module and sold or used as an independent product, it can also be stored in a computer readable storage medium.
  • the storage medium mentioned above may be a read-only memory, a magnetic disk or an optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示组件(100)和亮度控制方法。显示组件(100)包括显示屏(10)、侦测器(20)、处理器(30)和校正模块(40),侦测器(20)连接显示屏(10),处理器(30)同时连侦测器(20)、显示屏(10)和校正模块(40),显示屏(10)包括多个像素行,校正模块(40)存储有第一校正信息,侦测器(20)用于侦测每个像素行的实际亮度信息,处理器(30)用于根据实际亮度信息和第一校正信息,计算出与被侦测的像素行相邻的像素行的补偿亮度信息,并根据补偿亮度信息调整相邻的像素行的亮度。

Description

显示组件和亮度控制方法 技术领域
本申请涉及显示技术领域,特别涉及一种显示组件和该显示组件的亮度控制方法。
背景技术
有源矩阵有机发光二极体(Active-matrix organic light emitting diode,简称AMOLED)显示屏具有高对比度、轻薄、可弯等优点,然AMOLED显示屏的薄膜晶体管(Thin Film Transistor,简称TFT)由于制造工艺的原因,TFT存在均匀性或稳定性的问题,造成AMOLED显示屏显示亮度不均匀或残像,因此需要对AMOLED显示屏进行补偿。补偿的方法通常包括内部补偿和外部补偿,内部补偿会造成像素结构复杂和补偿范围偏小,目前人们更趋向于采用像素结构较简单并且补偿范围更大的外部补偿。采用外部补偿的其中一种方式是,每一行像素单元都有一个侦测TFT,在每一帧画面显示时间内,侦测TFT会对某一行像素单元的驱动TFT的电信号进行检测,侦测通常会在每帧写入数据之外的空闲时间中的空白区(V-Blanking)来进行。然而,在侦测时本应流向有机发光二极管(Organic Light-Emitting Diode,简称OLED)的电流会流向侦测TFT,导致OLED变暗产生暗线,影响显示屏的显示效果。
发明内容
本申请的实施方式提供一种显示组件和亮度控制方法。
本申请实施方式的显示组件包括显示屏、侦测器、处理器和校正模块,所述侦测器连接所述显示屏,所述侦测器、所述校正模块和所述显示屏均与所述处理器连接,所述显示屏包括多个像素行,所述校正模块存储有第一校正信息,所述侦测器用于侦测每个所述像素行的实际亮度信息,所述处理器用于根据所述实际亮度信息与所述第一校正信息,计算出与所述被侦测的像素行相邻的像素行的补偿亮度信息,并根据计算得到的所述相邻的像素行的补偿亮度信息调整所述相邻的像素行的亮度。
上述实施方式的显示组件中,处理器通过降低与被侦测的像素行的相邻像素行的亮度,使得在侦测被侦测的像素行时产生的暗线与相邻像素行的亮度平滑过渡,利用人眼的积分效应可减小暗线带来的显示影响,从而保证显示屏显示画面的质量。
本申请实施方式的亮度控制方法,用于显示组件,所述显示组件包括显示屏、侦测器、处理器和校正模块,所述侦测器、所述校正模块和所述显示屏均与所述处理器连接,所述显示屏包括多个像素行,所述校正模块存储有第一校正信息,所述方法包括:
所述侦测器侦测每个所述像素行的实际亮度信息;
所述处理器根据所述侦测器侦测到的每个所述像素行的实际亮度信息与所述第一校正信息,计算出与所述被侦测的像素行相邻的像素行的补偿亮度信息,并根据计算得到的所述相邻的像素行的补偿亮度信息调整所述相邻的像素行的亮度。
上述实施方式的亮度控制方法中,处理器通过降低与被侦测的像素行的相邻像素行的亮度,使得在侦测被侦测的像素行时产生的暗线与相邻像素行的亮度平滑过渡,利用人眼的积分效应可减小暗线带来的显示影响,从而保证显示屏显示画面的质量。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式的电子装置的模块示意图。
图2是本申请实施方式的亮度控制方法的流程示意图。
图3是本申请实施方式的像素行的灰阶与亮度的Gamma曲线。
图4是本申请实施方式的像素行的灰阶与亮度的另一Gamma曲线。
图5是本申请实施方式的像素行的被侦测时的Gamma值的分布示意图。
图6是本申请实施方式的显示屏的部分电路图。
图7是本申请实施方式的侦测过程的阶段电压变化图。
图8是本申请实施方式的电子装置的另一模块图。
图9是本申请实施方式的亮度控制方法的另一流程示意图。
主要附图标号:
电子装置1000、显示组件100、显示屏10、侦测器20、处理器30、处理单元32、缓存器34、数模转换器36、缓冲放大器38、校正模块40、补偿模块50、主板200。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、 “第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1,本申请实施方式提供一种显示组件100。显示组件100包括显示屏10、侦测器20、处理器30和校正模块40,侦测器20连接显示屏10,处理器30同时连接侦测器20、显示屏10和校正模块40。显示屏10包括多个像素行,侦测器20用于侦测每个像素行的实际亮度信息,较佳为,侦测器20在显示组件100处于空白区时侦测每个像素行的实际亮度信息,校正模块40存储有第一校正信息。处理器30用于将侦测器20侦测到的每个像素行的实际亮度信息和第一校正信息进行比对,进而计算出与被侦测的像素行相邻的相邻像素行的补偿亮度信息,并用于根据计算得到的相邻像素行的补偿亮度信息降低相邻像素行的亮度,即,将相邻的像素行的实际亮度调整至与补偿亮度信息对应的亮度。需要说明的是,被侦测的像素行可能会被描述为被侦测像素行,相邻的像素行可能会被描述为相邻像素行,相邻像素行指与被侦测的像素行相邻的像素行。
请参阅图2,本申请实施方式提供一种亮度控制方法。本实施方式的亮度控制方式用于本实施方式的显示组件100。亮度控制方法包括:
步骤S10,侦测器20侦测每个像素行的实际亮度信息;
步骤S20,处理器30根据侦测器20侦测到的每个像素行的实际亮度信息和预先存储的第一校正信息,计算出与被侦测的像素行相邻的像素行的补偿亮度信息,并根据计算得到的相邻的像素行的补偿亮度信息调整相邻的像素行的亮度。
上述实施方式的显示组件100及亮度控制方法中,处理器30通过降低与被侦测的像素行的相邻的像素行的亮度,使得在侦测被侦测的像素行时产生的暗线与相邻像素行的亮度平滑过渡,利用人眼的积分效应可减小暗线带来的显示影响,从而保证显示屏10显示画面 的质量。
请参阅图1,本申请实施方式还提供一种电子装置1000,电子装置1000包括主板200和上述显示组件100,主板200连接显示组件100。主板200可以给显示组件100输入相应的电信号,例如电压/电流数据。显示组件100可以对输入的图像信号进行处理并在显示屏10上进行显示。显示组件100包括阵列排布的多个像素单元,成行排列的多个像素单元形成像素行。需要说明的是,本申请实施方式的电子装置1000包括但不限于显示器、手机、平板电脑、笔记型电脑、电子书、电视机和可穿戴智能设备等电子装置1000。
在某些实施方式中,显示屏10显示每帧画面的前后具有空白区,侦测器20在空白区时段侦测每个像素行的实际亮度信息。
可以理解,显示组件100所连接的主板200可以对显示组件100的像素行逐行写入电压/电流数据,例如在显示画面的每一帧时间内,逐行对每一像素行写入电压,在每两帧之间的时间段内并没有对像素单元写入电压/电流数据,而空白区(V-Blanking)则处于该段时间内,也就是说,空白区存在于每写入下一帧数据之前或之后的空闲时间里。
具体地,显示组件100所连接的主板200与本实施方式的处理器30进行连接,处理器30可以对主板200输出的电信号进行处理,并形成图像信号并反馈至显示屏10,以最终在显示屏10上显示与图像信号对应的图像信息。处理器30还可以根据补偿亮度信息控制主板200,以使主板200输出与补偿亮度信息对应的图像信号。。在本申请实施方式中,侦测器20在显示组件100处于空白区时才进行像素行的实际亮度信息的侦测,例如电压或者电流,而不会在每帧写入数据的工作时间段内进行侦测,这样可降低显示组件100显示时出错的风险。
通常地,由于侦测器20对每个像素行的实际亮度信息进行侦测时,像素的电流会至少部分流向侦测线,这样导致显示屏10的像素变暗产生暗线。
在某些实施中,第一校正信息包括显示屏10正常显示时各像素行的理想Gamma曲线,实际亮度信息包括被侦测的像素行时的实际Gamma曲线,补偿亮度信息包括与被侦测的像素行相邻的像素行的补偿Gamma曲线,补偿Gamma曲线位于理想Gamma曲线和实际Gamma曲线之间。
每一Gamma曲线包括亮度数据和灰阶数据,侦测器20侦测每个像素行的实际亮度数据,处理器30将实际亮度数据与第一校正信息的理想亮度数据进行比较,从而得到补偿Gamma曲线的补偿亮度数据,处理器30进一步根据补偿亮度数据调整相邻的像素行的亮度。
具体地,其中,第一校正信息可以理解为理想Gamma曲线,即显示屏10正常显示时各像素行的Gamma曲线。第一校正信息包括正常显示时的灰阶数据(简称理想灰阶数据) 与正常显示时的亮度数据(简称理想亮度数据),以该理想灰阶数据作为X坐标,该理想亮度数据作为Y坐标,从而绘制形成理想Gamma曲线。校正模块40中可保存多组理想Gamma曲线,以对应于不同模式的显示。当侦测到的像素行的实际亮度信息与显示屏10正常显示时的理想Gamma曲线对应的数据不一致时,处理器30调整与被侦测的像素行相邻的像素行的亮度信息为补偿亮度信息。具体地,亮度信息包括灰阶数据与亮度数据,也就是说,实际亮度信息包括实际灰阶数据与实际亮度数据,补偿亮度信息包括补偿灰阶数据与补偿亮度数据。其中,亮度数据可以为电压值。
本实施例中,假设对像素行的侦测不影响像素行的灰阶数据,因此,补偿亮度信息是根据实际亮度数据与理想亮度数据得到,即是在同一灰阶值的情况下,将实际亮度数据与理想亮度数据进行比较后计算得到补偿亮度数据,从而得到补偿亮度信息。在一种实施方式中,补偿亮度数据的取值为实际亮度数据与理想亮度数据所形成的区间中的任意一值,较佳为取二者的中间值。该补偿亮度数据为实际亮度数据与理想亮度数据之间的一个数值,使得在侦测被侦测的像素行时产生的暗线与相邻像素行的亮度平滑地过渡到正常显示时的亮度,使人眼不容易感觉到暗线的存在,进而改善显示屏10的显示效果。
进一步地,处理器30将补偿亮度数据转换为驱动像素的补偿电压,并进一步将补偿电压输出至显示屏10,以调节显示屏10的显示亮度。
由于可以提前获知将对哪一个像素行的实际亮度信息进行侦测,因此,在主板200写入一帧数据时可以根据补偿亮度信息调整相邻像素行的亮度,也就是说,可调整暗线附近的像素行的亮度数据,处理器30可根据被侦测像素行的实际亮度信息与第一校正信息选择被侦测像素行相邻的像素行的补偿亮度信息,这样使得在被侦测的像素行时产生的暗线与相邻的多个像素行的亮度平滑过渡,根据人眼的视觉原理,这种平滑过渡不会使得画面明显出现单独的一条暗线,从而保证显示屏10显示画面的质量。
具体地,像素行的亮度信息包括灰阶数据与亮度数据,灰阶数据与亮度数据是相互对应关系。请参阅图3,L1为根据该像素行正常显示时的灰阶数据与亮度数据绘成的理想Gamma曲线,L2为根据该像素行被侦测时实际灰阶数据与实际亮度数据绘成的实际Gamma曲线,当该像素行被侦测时,在同一灰阶数据情况下,侦测时的亮度会衰减。例如,当灰阶数据为x时,像素行的理想亮度数据为y,由于侦测使得该侦测像素行在此灰阶数据下的亮度下降了ΔL,实际亮度数据下降为y1。由于对应每个灰阶数据的ΔL都不同,因此记录每个灰阶数据下的实际亮度数据y1得到亮度衰减后的实际Gamma曲线L2。
请参阅图4,L1为该被侦测像素行正常显示时的理想Gamma曲线,L2为该被侦测像素行被侦测时的实际Gamma曲线,L3为该被侦测像素行的相邻像素行根据灰阶数据与补偿亮度数据绘成的补偿Gamma曲线,L4为被侦测像素行的另一相邻像素行(例如为相邻 像素行的相邻像素行)根据灰阶数据与补偿亮度数据绘成的补偿Gamma曲线,L3曲线与L4曲线位于L1曲线与L2曲线之间。在正常显示的理想Gamma曲线L1与亮度衰减后的实际Gamma曲线L2之间设立若干组过渡补偿Gamma曲线,以实现亮度的平滑过渡。
当被侦测的像素行为x灰阶数据时,亮度数据从A点降到B点,AB之间穿过的Gamma曲线即作为过渡用的多个补偿Gamma曲线组合,在主板200在下一帧写入数据时,按照被侦测的像素行的像素的实际亮度信息与第一校正信息调整被侦测的像素行相邻的多个像素行亮度梯度,也就是说根据计算得到的被侦测的像素行的实际亮度信息降低相邻的多个像素行的亮度。
请参阅图5,举例而言,侦测时在每帧的空白区(V-Blanking)侦测其中一行,例如侦测第m行,处理器30可以根据第m行的实际亮度值(即实际亮度数据)与理想亮度值(即理想亮度数据),分别将相邻的k行的亮度值进行调整,例如,第m+1行的亮度值调整为亮度1、第m+2行的亮度值调整为亮度2、第m+3行的亮度值调整为亮度3……第m+k行的亮度值调整为亮度k,同时,第m-1行的亮度值调整为亮度1、第m-2行的亮度值调整为亮度2、第m-3行的亮度值调整为亮度3……第m-k行的亮度值调整为亮度k,m和k均为大于0的自然数。
在某些实施方式中,侦测器20用于在显示组件100处于空白区时同时侦测多个像素行的实际亮度信息,被侦测的多个像素行间隔预设像素行数。如此,这样可以提高侦测的效率,并且可避免侦测时产生暗线。举例而言,侦测时在每帧的空白区(V-Blanking)同时侦测多行像素行,例如侦测第m+1行及第2m+1行,在写m行数据时被侦测的像素行为第m+1及写入第2m行数据时被侦测的像素行为2m+1行,下一m帧时被侦测的像素行为第m+n行及被侦测的像素行为第2m+n行……以此类推。例如,同时侦测第2行像素行、第6行像素行、第10行像素行。第2行像素行与第6行像素行间隔4行像素行,第6行像素行与第10行像素行也是间隔4行像素行,也就是说,预设间隔像素行数是4。
需要说明的是,在同时侦测多个像素行的实际亮度信息的实施方式中,相邻帧的被侦测的像素行不能间隔太近,这样可避免由于过渡区的重叠而影响画面的情况。
在某些实施方式中,多个像素行包括多组,每一组包括相同数量的像素行,侦测器20同时侦测每一组中的一行像素行。
需要说明的是,本实施方式中,可将显示组件100的所有像素行分成依次相邻的多组,每组中的像素行的行数可根据实际情况设定,其中一种方式为将像素行平均分为多组。每帧的空白区(V-Blanking)内侦测每组中的一行像素行。举例而言,第一帧时,侦测每组中的第m行像素行,第二帧时,侦测每组中的第m+1行像素行,第三帧时,侦测每组中的第m+2行像素行。
请参阅图1,在某些实施方式中,处理器30包括处理单元32、缓冲器34、数模转换器36和缓冲放大器38,处理单元32对主板200输入的电信号进行处理后存储于缓冲器34中,数模转换器36将经过处理单元32处理的电信号转化为图像信号,图像信号经过缓冲放大器38放大后,在显示屏10上显示对应的图像信息。图像信号包括驱动电压信号,图像信息包括亮度。处理单元32还用于根据实际亮度信息和第一校正信息来产生补偿亮度信息,并进一步控制主板200输出对应补偿亮度信息的电信号,例如驱动电流或驱动电压,从而最终控制显示屏的显示。
侦测器20侦测显示屏10中每个像素行的实际亮度信息,处理器30根据侦测器20侦测的每个像素行的实际亮度信息与预先存储于校正模块40中的第一校正信息,来计算出与被侦测的像素行相邻的像素行的补偿亮度信息,相邻的像素行的补偿亮度信息也可以暂时缓存在缓存器34中。在某些实施方式中,请参阅图6,显示屏10的每一像素单元包括第一晶体管T1、第二晶体管T2、第三晶体管T3、电容Cst和发光二极管d(未标示);第一晶体管T1的源极连接电源的正电压ELVDD,第一晶体管T1的漏极连接发光二极管d的阳极、电容Cst的一端和第三晶体管T3的漏极,第一晶体管T1的栅极连接第二晶体管T2的源极;第二晶体管T2的漏极和第二晶体管T2的栅极连接处理器30,第二晶体管T2的源极连接电容Cst的一端和第一晶体管T1的栅极;第三晶体管T3的漏极连接发光二极管d的阳极和电容Cst的一端,第三晶体管T3的栅极连接处理器30,第三晶体管T3的源极连接侦测器20。发光二极管d的阴极连接电源的负电压ELVSS。
如此,通过第一晶体管T1、第二晶体管T2和第三晶体管T3的通断以使得显示屏10输出相应的画面及可以实现对显示组件100的像素行的侦测,电路简单。
具体地,当第二晶体管T2的栅极Gm输入高电平时,第二晶体管T2连接的电容Cst充电,并且第一晶体管T1导通以使得发光二极管d发光。
需要说明的是,在像素行被侦测时,第二晶体管T2的栅极Gm输入高电平,第三晶体管T3的栅极Sm输入高电平以将第三晶体管T3导通。像素电流从第一晶体管T1流向第三晶体管T3,此时显示屏10的显示会异常,因此,在本申请实施方式中,可通过切换不同像素行进行侦测,这样侦测时所产生的暗线会在整个显示区域各处切换,人眼更不容易发觉。
请参阅图7,在某些实施方式中,像素行的侦测过程包括初始化阶段,在初始化阶段,处理器30用于控制第二晶体管T2和第三晶体管T3导通。
在某些实施方式中,在初始化阶段,亮度控制方法包括:
处理器30控制第二晶体管和第三晶体管导通。
如此,这样可以给显示屏10提供一个稳定的状态以进行侦测。具体地,在初始化阶段, 第二晶体管T2和第三晶体管T3分别输入高电平以使第二晶体管T2和第三晶体管T3导通。在第三晶体管T3的源极的侦测端写入初始电压Vint。
在某些实施方式中,像素行的侦测过程包括初始化阶段后的充电阶段,在充电阶段,电容Cst为充电状态,第一晶体管T1、第二晶体管T2和第三晶体管T3均为导通状态。如此,充电的电容Cst可以给第一晶体管T1提高电压以使发光二极管d一直处于发光的状态。
像素行的侦测过程包括充电阶段后的侦测阶段,在侦测阶段,处理器30根据补偿亮度信息调整输入至与被侦测的像素行相邻的像素行的电压,从而调整亮度。
请参阅图8,在某些实施方式中,显示组件100包括补偿模块50,像素行的侦测过程包括充电阶段后的侦测阶段,在侦测阶段,补偿模块50用于计算处理器30处理图像信号所获取的像素行的电压与侦测器20侦测的像素行的电压的差值,并将差值提供给处理器30,处理器30用于根据差值(也就是亮度补偿信息)和预设的第二校正信息调整输入至像素行的电压。
请参阅图9,在某些实施方式中,在侦测阶段,亮度控制方法包括:
步骤S30,补偿模块50计算处理器30处理电信号所获取的像素行的电压与侦测器20侦测的像素行的电压的差值;
步骤S40,处理器30根据差值和预设的第二校正信息调整输入至像素行的电压。
上述实施方式的亮度控制方法可由本实施方式的显示组件100实现。其中,步骤S30可由补偿模块实现。步骤40可由处理器30实现。
如此,通过给像素行提供补偿的电压,这样可以保证显示组件100显示的画面的质量。
具体地,在一个实施例中,被侦测像素行的输入电压为Vdate,由于显示组件100的电路元件存在内阻,这样使得电路在工作的过程中可能出现一些电压的损失,在本实施方式中,可对三晶体管的源极Sense的电压进行采样并通过模数转换器转换,所得到的电压记录为V1,然后,补偿模块50计算被侦测的像素行的电压与侦测器20侦测的像素行的输出电压的差值为Vth=Vdate-V1,并将差值Vth提供给处理器30,处理器30根据差值Vth和预设的第二校正信息调整输入至像素行的电压,从而进行像素行进行电压的补偿。需要说明的是,第二校正信息可预设存储在校正模块40中。
本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来执行。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来执行。例如,如果用硬件来执行,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来执行:具有用于对数据信号执行逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解执行上述实施方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理器中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式执行,也可以采用软件功能模块的形式执行。所述集成的模块如果以软件功能模块的形式执行并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (19)

  1. 一种显示组件,其特征在于,包括显示屏、侦测器、处理器和校正模块,所述侦测器连接所述显示屏,所述侦测器、所述校正模块和所述显示屏均与所述处理器连接,所述显示屏包括多个像素行,所述校正模块存储有第一校正信息,所述侦测器用于侦测每个所述像素行的实际亮度信息,所述处理器用于根据所述实际亮度信息与所述第一校正信息,计算出与所述被侦测的像素行相邻的像素行的补偿亮度信息,并根据计算得到的所述相邻的像素行的补偿亮度信息调整所述相邻的像素行的亮度。
  2. 如权利要求1所述的显示组件,其特征在于,所述显示屏显示每帧画面的前后具有空白区,所述侦测器在所述空白区时段侦测每个所述像素行的实际亮度信息。
  3. 如权利要求1所述的显示组件,其特征在于,所述侦测器可同时侦测多个所述像素行的实际亮度信息,所述被侦测的多个像素行间隔预设像素行数。
  4. 如权利要求3所述的显示组件,其特征在于,所述多个像素行包括多组,每一组包括相同数量的所述像素行,所述侦测器同时侦测所述每一组中的一行所述像素行。
  5. 如权利要求1所述的显示组件,其特征在于,所述第一校正信息包括所述显示屏正常显示时各所述像素行的理想Gamma曲线,所述实际亮度信息包括被侦测的所述像素行时的实际Gamma曲线,所述补偿亮度信息包括与所述被侦测的像素行相邻的所述像素行的补偿Gamma曲线,所述补偿Gamma曲线位于所述理想Gamma曲线和所述实际Gamma曲线之间。
  6. 如权利要求5所述的显示组件,其特征在于,每一所述Gamma曲线包括亮度数据和灰阶数据,所述侦测器侦测每个所述像素行的实际亮度数据,所述处理器将所述实际亮度数据与所述第一校正信息的所述理想亮度数据进行比较,从而得到所述补偿Gamma曲线的补偿亮度数据,所述处理器进一步根据所述补偿亮度数据调整所述相邻的像素行的亮度。
  7. 如权利要求1所述的显示组件,其特征在于,所述处理器连接主板,所述处理器控制所述主板输出对应所述补偿亮度信息的电信号至所述显示屏,从而最终控制所述显示屏的显示亮度。
  8. 如权利要求7所述的显示组件,其特征在于,所述处理器包括处理单元、数模转换器和缓冲放大器,所述处理单元对所述电信号进行处理后发送至所述数模转换器,所述数模转换器将经过所述处理单元处理的电信号转化为图像信号,所述图像信号经过所述缓冲放大器放大后,在所述显示屏上显示对应的图像信息。
  9. 如权利要求1所述的显示组件,其特征在于,每一所述像素行包括像素单元,每一所述像素单元包括第一晶体管、第二晶体管、第三晶体管、电容和发光二极管;
    所述第一晶体管的源极连接电源的正电压,所述第一晶体管的漏极连接所述发光二极管的阳极、所述电容的一端和所述第三晶体管的漏极,所述第一晶体管的栅极连接所述第二晶体管的源极;
    所述第二晶体管的漏极和所述第二晶体管的栅极连接所述处理器,所述第二晶体管的源极连接所述电容的一端和所述第一晶体管的栅极;
    所述第三晶体管的漏极连接所述发光二极管的阳极和所述电容的一端,所述第三晶体管的栅极连接所述处理器,所述第三晶体管的源极连接所述侦测器;
    所述发光二极管的阴极连接所述电源的负电压。
  10. 一种亮度控制方法,用于显示组件,其特征在于,所述显示组件包括显示屏、侦测器、处理器和校正模块,所述侦测器、所述校正模块和所述显示屏均与所述处理器连接,所述显示屏包括多个像素行,所述校正模块存储有第一校正信息,所述方法包括:
    所述侦测器侦测每个所述像素行的实际亮度信息;
    所述处理器根据所述侦测器侦测到的每个所述像素行的实际亮度信息与所述第一校正信息,计算出与所述被侦测的像素行相邻的像素行的补偿亮度信息,并根据计算得到的所述相邻的像素行的补偿亮度信息调整所述相邻的像素行的亮度。
  11. 如权利要求10所述的亮度控制方法,其特征在于,所述亮度控制方法包括:
    所述显示屏显示每帧画面的前后具有空白区,所述侦测器在所述空白区时段侦测每个所述像素行的实际亮度信息。
  12. 如权利要求10所述的亮度控制方法,其特征在于,所述侦测器侦测每个所述像素行的实际亮度信息的步骤包括:
    所述侦测器可同时侦测多个所述像素行的实际亮度信息,所述被侦测的多个像素行间隔预设像素行数。
  13. 如权利要求12所述的亮度控制方法,其特征在于,所述多个像素行包括多组,每一组包括相同数量的所述像素行,所述侦测器同时侦测所述每一组中的一行所述像素行。
  14. 如权利要求10所述的亮度控制方法,其特征在于,所述第一校正信息包括所述显示屏正常显示时各所述像素行的理想Gamma曲线,所述实际亮度信息包括被侦测的所述像素行时的实际Gamma曲线,所述补偿亮度信息包括与所述被侦测的像素行相邻的所述像素行的补偿Gamma曲线,所述补偿Gamma曲线位于所述理想Gamma曲线和所述实际Gamma曲线之间。
  15. 如权利要求14所述的亮度控制方法,其特征在于,每一所述Gamma曲线包括亮度数据和灰阶数据,所述侦测器侦测每个所述像素行的实际亮度数据,所述处理器将所述实际亮度数据与所述第一校正信息的所述理想亮度数据进行比较,从而得到所述补偿Gamma曲线的补偿亮度数据,所述处理器进一步根据所述补偿亮度数据调整所述相邻的像素行的亮度。
  16. 如权利要求10所述的亮度控制方法,其特征在于,每一所述像素行包括多个像素单元,每一所述像素单元所述显示屏包括第一晶体管、第二晶体管、第三晶体管、电容和发光二极管;
    所述第一晶体管的源极连接电源的正电压,所述第一晶体管的漏极连接所述发光二极管的阳极、所述电容的一端和所述第三晶体管的漏极,所述第一晶体管的栅极连接所述第二晶体管的源极;
    所述第二晶体管的漏极和所述第二晶体管的栅极连接所述处理器,所述第二晶体管的源极连接所述电容的一端和所述第一晶体管的栅极;
    所述第三晶体管的漏极连接所述发光二极管的阳极和所述电容的一端,所述第三晶体管的栅极连接所述处理器,所述第三晶体管的源极连接所述侦测器;
    所述发光二极管的阴极连接所述电源的负电压。
  17. 如权利要求16所述的亮度控制方法,其特征在于,所述像素行的侦测过程包括初始化阶段,在所述初始化阶段,所述亮度控制方法包括:
    所述处理器控制所述第二晶体管和所述第三晶体管导通。
  18. 如权利要求17所述的亮度控制方法,其特征在于,所述像素行的侦测过程包括所述初始化阶段后的充电阶段,在所述充电阶段,所述电容为充电状态,所述第一晶体管、所述第二晶体管和所述第三晶体管均为导通状态。
  19. 如权利要求18所述的亮度控制方法,其特征在于,所述像素行的侦测过程包括所述充电阶段后的侦测阶段,在所述侦测阶段,所述亮度控制方法包括:
    所述处理器根据所述补偿亮度信息调整输入至所述相邻的像素行的电压。
PCT/CN2019/074077 2019-01-31 2019-01-31 显示组件和亮度控制方法 WO2020154999A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980073715.0A CN113261045A (zh) 2019-01-31 2019-01-31 显示组件和亮度控制方法
PCT/CN2019/074077 WO2020154999A1 (zh) 2019-01-31 2019-01-31 显示组件和亮度控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/074077 WO2020154999A1 (zh) 2019-01-31 2019-01-31 显示组件和亮度控制方法

Publications (1)

Publication Number Publication Date
WO2020154999A1 true WO2020154999A1 (zh) 2020-08-06

Family

ID=71840711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074077 WO2020154999A1 (zh) 2019-01-31 2019-01-31 显示组件和亮度控制方法

Country Status (2)

Country Link
CN (1) CN113261045A (zh)
WO (1) WO2020154999A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1615029A (zh) * 2003-11-04 2005-05-11 三星电子株式会社 用于增强图像的局部亮度的方法、装置及记录介质
JP2006113090A (ja) * 2004-10-12 2006-04-27 Seiko Epson Corp 電気光学装置用画像補正装置及び方法、画像補正装置付き電気光学装置、並びに電子機器
KR20140095858A (ko) * 2013-01-25 2014-08-04 엘지전자 주식회사 영상 표시 장치의 휘도 보상을 위한 장치 및 방법
CN105070273A (zh) * 2015-09-02 2015-11-18 深圳市华星光电技术有限公司 Mura区域的亮度补偿方法及Mura像素点亮度的设计方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101612455B1 (ko) * 2009-04-16 2016-04-15 삼성디스플레이 주식회사 화소 데이터의 보정 방법 및 이를 수행하기 위한 표시 장치
KR101581427B1 (ko) * 2009-06-30 2015-12-31 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
KR101334100B1 (ko) * 2011-12-30 2013-11-29 (주)실리콘화일 유기발광다이오드 패널의 휘도 보상 장치
CN104021773B (zh) * 2014-05-30 2015-09-09 京东方科技集团股份有限公司 一种显示器件的亮度补偿方法、亮度补偿装置及显示器件
CN104464621B (zh) * 2014-11-14 2017-01-25 深圳市华星光电技术有限公司 补偿amoled电源压降的方法
CN104505021B (zh) * 2014-12-16 2017-09-22 利亚德光电股份有限公司 像素显示调整方法及装置
KR102512487B1 (ko) * 2015-12-30 2023-03-23 엘지디스플레이 주식회사 유기발광 표시장치와 그 구동방법
KR102650046B1 (ko) * 2016-01-19 2024-03-22 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 광학 보상 방법
CN106910483B (zh) * 2017-05-03 2019-11-05 深圳市华星光电技术有限公司 一种显示面板的mura现象补偿方法及显示面板
CN107025884B (zh) * 2017-05-04 2019-10-11 京东方科技集团股份有限公司 Oled像素补偿方法、补偿装置及显示装置
CN106920516B (zh) * 2017-05-12 2019-04-05 京东方科技集团股份有限公司 用于oled的补偿方法和装置、显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1615029A (zh) * 2003-11-04 2005-05-11 三星电子株式会社 用于增强图像的局部亮度的方法、装置及记录介质
JP2006113090A (ja) * 2004-10-12 2006-04-27 Seiko Epson Corp 電気光学装置用画像補正装置及び方法、画像補正装置付き電気光学装置、並びに電子機器
KR20140095858A (ko) * 2013-01-25 2014-08-04 엘지전자 주식회사 영상 표시 장치의 휘도 보상을 위한 장치 및 방법
CN105070273A (zh) * 2015-09-02 2015-11-18 深圳市华星光电技术有限公司 Mura区域的亮度补偿方法及Mura像素点亮度的设计方法

Also Published As

Publication number Publication date
CN113261045A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
US11270630B2 (en) Driving circuit, driving method thereof and display apparatus
US10643535B2 (en) Driving method for preventing image sticking of display panel upon shutdown, and display device
US9858863B2 (en) Pixel, organic light emitting display device including the pixel, and method of driving the pixel
US10210805B2 (en) Organic light-emitting diode (OLED) pixel circuit, display device and control method
US11373602B2 (en) Pixel circuit, method and apparatus for driving the same, array substrate, and display apparatus
US9747839B2 (en) Pixel driving circuit, driving method, array substrate and display apparatus
US11087698B2 (en) Display device
US9746979B2 (en) Pixel circuit, driving method thereof and display device
US10304391B2 (en) Active matrix organic light-emitting display and controlling method thereof
US11468809B2 (en) Low-flicker variable refresh rate display
CN107507566B (zh) 像素驱动电路、显示装置和驱动方法
US10559266B2 (en) Pixel driving method, pixel driving and display apparatus
US11955081B2 (en) Pixel of an organic light emitting diode display device, and organic light emitting diode display device
CN109949750B (zh) 显示装置及其驱动方法
US20210225277A1 (en) Compensation Method and Compensation Apparatus for Organic Light-Emitting Display and Display Device
US20180308422A1 (en) Brightness compensation system and brightness compensating method of oled display device
KR20190064200A (ko) 표시 장치
KR20150071549A (ko) 표시 장치 및 이를 이용한 표시장치의 구동 방법
KR102365205B1 (ko) 유기 발광 표시 장치 및 이의 감마 기준 전압 설정 방법
CN111340730A (zh) 拖影现象的消除方法、终端及存储介质
JP2015222327A (ja) 表示装置の駆動方法および表示装置
KR102293839B1 (ko) 표시장치 및 이의 구동방법
US11996046B2 (en) Display panel and operation method thereof
US9728125B2 (en) AMOLED pixel circuit
CN109616055B (zh) 显示面板的驱动方法、装置及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912556

Country of ref document: EP

Kind code of ref document: A1