WO2020153563A1 - 기능성 친환경 파티클 보드 제조용 억연성 바인더 조성물, 이를 이용하여 제조한 억연성 바인더 및 이의 제조방법 - Google Patents

기능성 친환경 파티클 보드 제조용 억연성 바인더 조성물, 이를 이용하여 제조한 억연성 바인더 및 이의 제조방법 Download PDF

Info

Publication number
WO2020153563A1
WO2020153563A1 PCT/KR2019/011142 KR2019011142W WO2020153563A1 WO 2020153563 A1 WO2020153563 A1 WO 2020153563A1 KR 2019011142 W KR2019011142 W KR 2019011142W WO 2020153563 A1 WO2020153563 A1 WO 2020153563A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
comparative
preparation example
binder
composition
Prior art date
Application number
PCT/KR2019/011142
Other languages
English (en)
French (fr)
Inventor
배영호
Original Assignee
(주)영신에프앤에스
배영호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)영신에프앤에스, 배영호 filed Critical (주)영신에프앤에스
Publication of WO2020153563A1 publication Critical patent/WO2020153563A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08L61/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08L61/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K3/00Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process
    • B27K3/16Inorganic impregnating agents
    • B27K3/163Compounds of boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K3/00Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process
    • B27K3/34Organic impregnating agents
    • B27K3/343Heterocyclic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K3/00Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process
    • B27K3/52Impregnating agents containing mixtures of inorganic and organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/002Manufacture of substantially flat articles, e.g. boards, from particles or fibres characterised by the type of binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/02Manufacture of substantially flat articles, e.g. boards, from particles or fibres from particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K2240/00Purpose of the treatment
    • B27K2240/30Fireproofing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide

Definitions

  • the present invention relates to a non-combustible binder suitable for use in the production of particle boards, a composition used for the preparation thereof, and a method for manufacturing the same.
  • the particle board (hereinafter referred to as PB), which has been developed in the past, produces wood from solid wood and crushes the remaining waste residues, making them into small pieces, or destroying building waste materials, furniture waste materials, wood by-products, etc. It is a processing material made by mixing with adhesive and pressing at high temperature and pressure.
  • the amount of waste wood used for the production of such PB is 11,260,400 m3, which is 40% of the annual domestic demand for wood (as of 2015) 28,151,000 m3.
  • PB wood chips are generally manufactured by aggregating them into a thermosetting synthetic resin system which is an adhesive bond.
  • formaldehyde emission phenomenon which is atopic skin-causing substance, may occur, and organic volatile organic substances (VOCs) may be released from a binder used to attach sheet paper or film paper to the PB surface, so that As the shortcomings such as the occurrence of fatal toxins emerge, the perception of PB is not very good.
  • PB is made of waste wood, and the strength of the wood itself is poor, and it is often exposed to decay and rain, causing discoloration, abrasion, and cracks. It can be a nuisance.
  • cellulose and hemicellulose which occupy more than 70% of the cell wall, absorb water molecules (H 2 O), or the amount of moisture to be damped depends on the relative humidity and temperature. There is a theory that it can be up to 30%.
  • an object of the present invention is to provide a functional eco-friendly particle board using a non-combustible binder for the production of a functional eco-friendly particle board.
  • the functional eco-friendly particle board for the production of the non-combustible binder composition is an inhibitor; water; And melamine resin.
  • the inhibitor may include crystals prepared by processing two or more types selected from boric acid, zinc carbonate, and magnesium hydroxide.
  • the inhibitor may include crystals prepared by processing three types of boric acid, zinc carbonate, and magnesium hydroxide.
  • the crystal may be boric acid, zinc carbonate and magnesium hydroxide in a ratio of 1: 3.0 to 4.5: 1.4 to 2.0.
  • the inhibitor is a first step of preparing a saturated aqueous solution of boric acid; After heating the saturated aqueous boric acid solution, two steps of dissolving zinc carbonate and magnesium hydroxide in the heated saturated aqueous boric acid solution, followed by boiling; And after cooling and filtration, drying the filtrate to obtain white crystals; and crystals prepared by performing a process including the process.
  • the retardant binder composition of the present invention may include 0.1 to 5.0% by weight of the retardant, 10 to 15% by weight of water, and a residual amount of melamine resin.
  • the incombustible binder composition of the present invention may further include a flame retardant.
  • the incombustible binder composition of the present invention may further include a flame retardant aid.
  • the non-combustible binder composition may further include a strength modifier.
  • the incombustible binder composition of the present invention may further include a desiccant.
  • the incombustible binder composition of the present invention may further include an antibacterial agent.
  • the incombustible binder composition of the present invention may further include a coupling agent.
  • the incombustible binder composition of the present invention may further include a preservative.
  • the incombustible binder composition of the present invention may further include a penetrant.
  • the flame retardant may include silane-coated ammonium and ammonium polyphosphate.
  • the flame retardant may include silane-coated ammonium and ammonium polyphosphate in a volume ratio of 1: 1.5 to 3.0.
  • the flame retardant adjuvant may include one or more selected from ammonium sulfate, ammonium polyphosphate and polyphosphazene.
  • the retardant binder composition of the present invention is 0.5 to 5.0% by weight of a retardant, 20 to 25% by weight of a flame retardant, 0.5 to 2.0% by weight of a flame retardant, 0.3 to 1.2% by weight of a strength reinforcing agent, 0.5 of a desiccant ⁇ 2.0 wt%, antibacterial agent 1.0 ⁇ 3.0 wt%, coupling agent 0.3 ⁇ 1.2 wt%, preservatives 0.05 ⁇ 1.2 wt%, penetrant 0.2 ⁇ 1.0 wt%, water 10 ⁇ 15 wt%, and may contain residual amount of melamine resin .
  • Another object of the present invention relates to a method for preparing a non-combustible binder using the non-combustible binder composition, the first step of preparing a non-combustible binder composition having various compositions described above; After mixing the non-combustible binder composition, a second step of stirring for 10 to 30 minutes at a stirring speed of 800 ⁇ 1,500 rpm to prepare a stirred material; And three steps of aging the stirred material in a dark room at 20 to 35° C. for 6 to 12 hours; to perform a process including a non-combustible binder.
  • Another object of the present invention is to provide a non-combustible binder comprising an aging product of a mixture of the above-described various compositions of the non-combustible binder composition.
  • Another object of the present invention is to provide a particle board comprising a heat-compressed coating of a coating infiltrating a particle chip (particle chip) with the non-combustible binder.
  • Eco-friendly functional particle board (PB) manufactured using the non-combustible binder of the present invention is compared with PB produced using a conventional melamine binder resin, and the strength is supplemented, resulting in fine dust and dust generated by breaking the PB during construction.
  • This has the advantage of improving the productivity due to the comfortable construction environment, and the inside of the PB chip rots due to the moisture absorption of PB, thereby effectively preventing or minimizing the propagation of odor, bacteria, and fungi caused by insect damage. It has a synergistic effect such as deodorization.
  • 1A is a photograph of a particle chip pulverizer for PB production of the present invention
  • B is a PB dryer
  • C is a dry state in a dryer
  • D is a PB cutting machine
  • E is a PB coating machine.
  • binder resins are used for adhesion of particle chips during PB production.
  • Urea resins, melamine resins (or urea melamine resins) and phenol resins are used as the binder resins.
  • the melamine resin when the melamine resin is cured, it forms a colorless and transparent film, so it is widely used in the manufacture of floorboards, furniture members, adhesive of decorative veneers at the time of manufacture, low pressure melamine, high pressure melamine, high pressure laminate, overlay paper, shape paper, and back paper. have.
  • the film or coating formed by curing the melamine resin is strong in water resistance, heat resistance, and chemical resistance.
  • melamine resin is colorless, transparent and hard, it is frequently used as a floorboard, roofboard, inner wall material, crosslinking agent, and PB adhesive.
  • PB is somewhat different depending on the formaldehyde emission amount depending on u-type PB, M-type PB, and P-type PB, but is generally defined as 5 mg/L or less based on the formaldehyde emission at the time of shipment.
  • a functional eco-friendly particle board (hereinafter referred to as PB) for a non-combustible binder composition (hereinafter referred to as "composition") can be used as one or more selected from urea resin, melamine resin and phenol resin as an adhesive resin, Preferably, a melamine resin can be used.
  • PB is a processed material made by crushing waste wood, building waste materials, furniture waste materials, wood by-products, etc., and mixing them with small adhesives and compressing them at high temperature and high pressure to reduce combustion heat by endothermic reaction during combustion or by thermal decomposition.
  • a reaction such as dehydration proceeds, a large amount of harmful smoke (gas) is generated, and it is very likely that the smoke density is high.
  • the composition of the present invention may further include an inhibitor to suppress the generation of harmful smoke (gas).
  • a general inhibitor used in the art may be used as the inhibitor, and preferably, crystals prepared by processing two or three selected from boric acid, zinc carbonate, and magnesium hydroxide (Mg(OH)2) It can be used as an inhibitor, more preferably boric acid (H 3 BO 3 ), zinc carbonate (ZnCO 3 ) and magnesium hydroxide in a ratio of 1: 2.5 to 5: 1.0 to 2.5 by weight ratio, more preferably For example, crystals prepared by processing boric acid, zinc carbonate, and magnesium hydroxide in a weight ratio of 1: 3.0 to 4.5: 1.4 to 2.0 can be used as an inhibitor.
  • boric acid H 3 BO 3
  • ZnCO 3 zinc carbonate
  • crystals prepared by processing boric acid, zinc carbonate, and magnesium hydroxide in a weight ratio of 1: 3.0 to 4.5: 1.4 to 2.0 can be used as an inhibitor.
  • the boric acid in the retardant component dissolves well in hot water, represents a weak acid, and has a weak sterilizing action and antiseptic properties. Due to its bactericidal properties, it has a natural insect repellent function, inhibits mold growth, and has high resistance to termites. Therefore, when using the inhibitor, it is possible to increase not only the smoke of PB, but also flame retardancy, antiseptic, antifungal, and termite resistance. At this time, when the zinc carbonate and magnesium hydroxide are out of the weight ratio range, the depressurization effect may be relatively reduced when compared to the case in which they are used within the weight range.
  • the step of preparing the saturated aqueous solution of boric acid by dissolving boric acid in water After heating the saturated aqueous boric acid solution, two or more steps of dissolving one or two selected from zinc carbonate and magnesium hydroxide in the heated saturated aqueous boric acid solution, followed by boiling; And after cooling and filtration, drying the filtrate to obtain white crystals; and may be prepared by performing a process including the process.
  • boric acid The amount of boric acid, zinc carbonate, and magnesium hydroxide is preferred to satisfy the weight ratio between these components.
  • the content of the inhibitor in the composition of the present invention can be used in 0.1 to 5.0% by weight, preferably 0.5 to 2.5% by weight, more preferably 0.6 to 1.0% by weight. At this time, if the content of the inhibitor is less than 0.1% by weight, the amount of use may be too small to see the effect of smoking, and when it is used in excess of 5.0% by weight, other physical properties such as flat tensile strength of PB due to reduced compatibility with other compositions Rather, there may be a problem that deteriorates.
  • the water is used for mixing between the adhesive resin of the non-combustible binder and other compositions and securing an appropriate viscosity of the binder, 10 to 15% by weight, preferably 10 to 13.5% by weight of the total weight of the composition, More preferably, it is better to use 10.2 ⁇ 12.5% by weight, and in this case, if the water content is less than 10% by weight, there may be a problem that mixing between the compositions does not work well, and if it exceeds 15% by weight, in the produced non-combustible binder Due to the high moisture content, the drying time is long and the mixture of the composition is not ripened well, so there may be a problem that the physical properties of the PB made of the incombustible binder are poor.
  • PB is a processed wood, not raw wood, and is made by reprocessing using furniture waste materials, wood by-products, etc.
  • the ignition point is very low, and there is a problem of easy combustion. Therefore, the composition of the present invention may further include a flame retardant and a flame retardant auxiliary agent to impart flame retardancy to PB.
  • a general wood flame retardant used in the art may be used, but preferably, one or more selected from silane-coated polyammonium phosphate and ammonium polyphosphate (water-soluble APP) may be used.
  • Ammonium polyphosphate (water-soluble APP) has an excellent effect of removing odors of metal ions, and has excellent dispersion and crystal formation prevention effects. It has a function of preventing precipitation of poorly soluble substances as crystals and preventing pH changes.
  • ammonium polyphosphate is a problem in water resistance and may cause a problem of bleed when placed under high temperature and high humidity conditions.
  • due to the lack of heat resistance it melts well around 90 ⁇ 110°C, and there is no adhesiveness and solution viscosity.
  • the melamine-based compound is coated on the surface of the powder of ammonium polyphosphate, the specific gravity is large and the lower precipitate is good, and the dispersibility is not good and the stickiness is poor.
  • ammonium polyphosphate coated (coated) with silane has good dispersibility and sedimentability, and can increase the bonding force between particle chips.
  • the optimum composition ratio for using two types of silane-coated ammonium phosphate and ammonium phosphate as flame retardants is 1: 1.5 to 3.0 volume ratio of silane-coated polyammonium ammonium and ammonium polyphosphate, preferably 1: 1.8 to 2.5 volume ratio , More preferably, it is better to use in a mixture of 1: 1.8 ⁇ 2.2 volume ratio.
  • the silane-coated polyammonium phosphate in the composition is relatively too large, so the flame retardancy may decrease, and if the ammonium polyphosphate is used in an excess of 3.0 volume ratio, the silane The use amount of the coated ammonium phosphate is relatively low, so the mechanical properties of the PB may be lower than when the silane coated polyammonium phosphate is used in an appropriate amount.
  • the appropriate content of the flame retardant in the composition of the present invention is 20 to 25% by weight, preferably 21.5 to 25% by weight, more preferably 22.5 to 24.5% by weight of the total weight of the composition.
  • the flame retardant content is less than 20% by weight, proper flame retardancy and flame retardancy may not be secured, and when it is used in excess of 25% by weight, permeability to the particle chip of the binder resin prepared with the composition of the present invention due to excessive use, etc. It may be a problem that other physical properties such as the mechanical properties of the PB fall off, so it is preferable to use within the above range.
  • the composition of the present invention may further include a flame retardant aid in addition to the flame retardant.
  • a flame retardant adjuvant one or more selected from ammonium sulfate ((NH4)2SO4), ammonium polyphosphate and polyphosphazene may be used, preferably one or more selected from ammonium sulfate and ammonium polyphosphate, more preferably Ammonium sulfate can be used.
  • the flame retardant auxiliary agent is mixed with an additive containing sulfur, preferably, it is produced by thermal decomposition upon combustion to produce polymetaphosphoric acid, which is formed by dehydration when the protective layer is formed and when polymetaphosphoric acid is produced.
  • the carbon film to be intercepted can impart high flame retardancy (flame resistance).
  • the content of the flame retardant adjuvant in the composition of the present invention is preferably 0.5 to 2.0 wt%, preferably 0.6 to 1.6 wt%, more preferably 0.75 to 1.40 wt%, wherein the flame retardant adjuvant content is less than 0.5 wt%. Since the amount of use is too small, there may be no additional flame retardant improvement effect due to the use of a flame retardant aid, and even when it is used in excess of 2.0% by weight, there is no longer any flame retardancy effect, and it is preferable to use within the above range.
  • PB is composed of waste residue after single-plate production, waste residue of lumber, chips for pulp, wood sawdust, various sawdust, waste residue after woodworking, waste residue after construction of a wooden furniture house, and waste residue of an apartment sample house.
  • the composition of the present invention may further include a strength modifier to exert tensile strength reinforcement, water resistance, moisture resistance, and antiseptic functions by coating a portion where the strength of particle chips is weakened.
  • a mixed powder of a mixture of aerogels and pyrite may be used, preferably a mixture of aerogels and pyrite at a weight ratio of 1: 0.40 to 1.00, more preferably a mixture of aerogels and pyrite at a weight ratio of 1: 0.60 to 0.85.
  • Mixed powder can be used.
  • the aerogel is a highly porous nanostructure having a specific surface area of 600 to 1,500 m 2 /g, and is composed of nanoparticles having a size of 1 to 50 nm, and has a porous structure, so it has excellent thermal insulation properties, so that it has excellent insulation, sound insulation, and shock absorption This is excellent and can prevent cracking, and the strength is increased by mixing with pyrite.
  • the airgel increases adhesion and improves adhesion between particle chip pieces, flat tensile strength, and prevents thermal deformation and improves long-term deformation by load.
  • Pyrite is rich in fat, and has the characteristics of being a refractory and filling material and mixing well with aerogels.
  • the content of the strength modifier in the composition of the present invention can be used in 0.3 to 1.2% by weight, preferably 0.5 to 1.0% by weight, more preferably 0.60 to 0.80% by weight. At this time, if the content of the strength modifier is less than 0.3% by weight, the amount of use is too small to see the effect of improving the mechanical strength of the PB. There may be a problem.
  • the composition of the present invention may further include a desiccant.
  • a desiccant a general desiccant used in the art can be used, and preferably, a liquid paraffin wax can be used.
  • the liquid paraffin wax can penetrate the particle chip or be coated on the surface to improve the moisture resistance of the PB, and the liquid paraffin wax delays the water content and dimensional change without changing the function of the PB, and improves water resistance and moisture resistance. I can do it.
  • the content of the desiccant in the composition of the present invention may be 0.5 to 2.0% by weight, preferably 0.5 to 1.6% by weight, more preferably 0.7 to 1.0% by weight. At this time, if the content of the desiccant is less than 0.5% by weight, the amount of use is too small to see the effect of improving the water resistance and moisture resistance of the PB, and if it is used in excess of 2.0% by weight, the viscosity of the incombustible binder prepared using the composition is too large. It is preferable to use within the above range because there is a problem that the mixing property with the particle chip increases and the penetration of the binder into the particle chip decreases.
  • composition of the present invention may further include an antibacterial agent to impart antibacterial, antifungal, antiseptic, and deodorant properties of PB.
  • the antibacterial agent may include at least one selected from organic antibacterial agents and inorganic antibacterial agents, and it is preferable to use an inorganic antibacterial agent.
  • the inorganic antibacterial agent includes silver (Ag) nanoparticles and titanium dioxide (TiO 2 ) nanoparticles in a mixed nanopowder containing a weight ratio of 1: 0.5 to 1.0, preferably silver (Ag) nanoparticles and titanium dioxide ( TiO 2 ) It is better to use a mixed nano powder containing nanoparticles in a weight ratio of 1: 0.75 to 1.00.
  • Silver (Ag) nanoparticles not only have strong antibacterial and sterilizing power, but also are used as antibiotics in a wide range of fields, such as removing odors, removing formaldehyde (CH 2 O) and VOCs, and emitting far infrared rays and anions, and mixed with titanium dioxide nanoparticles
  • removing odors removing formaldehyde (CH 2 O) and VOCs
  • emitting far infrared rays and anions and mixed with titanium dioxide nanoparticles
  • the content of the antimicrobial agent in the composition of the present invention may include 1.0 to 3.0% by weight of the total weight of the composition, preferably 1.5 to 2.7% by weight, more preferably 1.70 to 2.20% by weight, wherein If the content of the antibacterial agent is less than 1.0% by weight, the antibacterial effect may be insufficient, and even if it is used in excess of 3.0% by weight, there is no further increase in the antibacterial effect, which is uneconomical.
  • the non-combustible binder prepared with the composition of the present invention may be hydrophobic and non-polar, the bonding strength with the hydrophilic particle chip may be deteriorated.
  • the composition of the present invention may further include a coupling agent in order to improve chemical bonding between the interface between the non-combustible binder and the particle chip. Due to the introduction of the coupling agent, it is possible to increase the bending strength and elastic modulus, stabilize the dimension, and increase the impact strength.
  • the coupling agent it is preferable to use an acrylic phosphate coupling agent, the content of which is 0.3 to 1.2% by weight of the total weight of the composition, preferably 0.5 to 1.2% by weight, more preferably 0.65 to 1.0% by weight %.
  • the content of the coupling agent is less than 0.5% by weight, the effect of increasing the physical properties due to the use of the coupling agent may be inadequate, and when it exceeds 1.2% by weight, the viscosity of the non-combustible binder increases, rather, it is mixed with particle chips and permeability. Since it may fall and there may be a problem of poor flame retardancy of PB, it is recommended to use it within the above range.
  • the composition of the present invention is a preservative to prevent the occurrence of mold, which decays, pests, or termite particle chips by effectively inhibiting the occurrence of moss, microorganisms, etc. due to corrosion or decay of the PB inside or the surface due to the penetration of moisture. It may further include.
  • a preservative one or more types selected from organic preservatives and inorganic preservatives may be used, preferably an inorganic preservative, and more preferably copper sulfate (CuSO 4 ), an inorganic preservative.
  • the content of the preservative in the composition of the present invention may be 0.05 to 1.2% by weight of the total weight of the composition, preferably 0.50 to 1.20% by weight, more preferably 0.70 to 1.15% by weight.
  • the preservative content is less than 0.05% by weight, the amount of use is too small to see the antiseptic effect, and when it is used in excess of 1.2% by weight, the antiseptic effect is excellent, but the penetration effect of the non-combustible binder into the particle chip is reduced. Therefore, there may be a problem that the mechanical properties of the PB decrease.
  • the composition of the present invention may further include a penetrant so that the non-combustible binder permeates the particle chip evenly.
  • a penetrating agent a general penetrating component used in the art may be used, and anionic alkyl succinate may be preferably used.
  • the amount of the penetrant used may be 0.2 to 1.0% by weight, preferably 0.4 to 1.0% by weight, and more preferably 0.65 to 1.00% by weight of the total weight of the composition.
  • the amount of the penetrant used is less than 0.2% by weight, the amount of the used agent may be too small to see the effect of using it, and even if it is used in excess of 1.0% by weight, it may be uneconomical since there is no effect of improving the physical properties of PB. It is recommended to use within the above range.
  • composition of the present invention By using the composition of the present invention described above it can be made of a non-combustible binder through the following method.
  • the incombustible binder of the present invention comprises the first step of preparing a composition of various compositions described above; After mixing the composition, the second step of preparing a stirring material; And three steps of aging the stirring material; can perform a process comprising a non-combustible binder.
  • step 1 The composition of step 1 is as described above.
  • the stirring material of the second stage may be prepared by stirring the composition of the first stage at a stirring speed of 800 to 1,500 rpm for 10 to 30 minutes, and preferably for 15 to 25 minutes at a stirring speed of 1,000 to 1,350 rpm. At this time, if the stirring speed is less than 800 rpm, the composition components may not be well dissolved, and if the stirring speed exceeds 1,500 rpm, foaming may occur. And, the stirring time is a relative appropriate stirring time according to the stirring speed.
  • step 3 is a step of aging the stirred well stirred under sufficient conditions, the aging for 6 to 12 hours in a dark room at 20 ⁇ 35 °C, preferably for 7 ⁇ 10 hours in a dark room at 20 ⁇ 30 °C It can be left to aging to produce the incombustible binder of the present invention.
  • the non-combustible binder of the present invention manufactured as described above can be applied to a particle chip to produce PB.
  • the particle chip is introduced into an automatic mixing coating machine, and then the non-combustible binder is introduced and mixed.
  • a first step of preparing a coating in which the non-combustible binder penetrates the particle chip A second step of preparing the thermocompressed material by compressing the coating material with a thermocompressed press; Three steps of drying the thermocompressed material can be performed to produce a functional eco-friendly particle board.
  • the input amount of the retardant binder may be 32.5 to 48.7 parts by weight of the composition, preferably 35.0 to 45.0 parts by weight, and more preferably 37 to 43 parts by weight based on 100 parts by weight of particle chips.
  • the particle chip may not be sufficiently penetrated and coated, so the physical properties of the PB may not be good. There may be a falling problem.
  • the coating of the first step is introduced into a thermopress press having a top plate temperature of 100°C to 120°C and a bottom plate temperature of 110°C to 155°C for 60 minutes to 60 kgf/cm 2 to 80 kgf/cm 2 for 5 minutes to 10 minutes. By thermocompression can be performed.
  • thermocompression After the thermocompression is completed, it can be dried at room temperature (18°C to 35°C) for 1 to 3 days to produce a functional eco-friendly particle board of the present invention.
  • a flame retardant was prepared by mixing with a silane-coated ammonium polyphosphate and ammonium polyphosphate (water-soluble APP) in a 1:2 volume ratio.
  • a flame retardant was prepared in the same manner as in Preparation Example 1, but a flame retardant was prepared by mixing and stirring the silane-coated ammonium polyphosphate and ammonium polyphosphate to have a composition ratio as shown in Table 1 below.
  • Boric acid solution was prepared by adding 3 g of boric acid to a beaker filled with 50 mL of water and heating and stirring at 95° C. for 30 minutes to form a saturated solution.
  • a mixed nanopowder was prepared comprising silver (Ag) nanoparticles and titanium dioxide (TiO 2 ) nanoparticles in a weight ratio of 1: 0.87.
  • An antimicrobial agent was prepared in the same manner as in Preparation Example 3-1, but silver nanoparticles and titanium dioxide nanoparticles were mixed to have a composition ratio as shown in Table 3, respectively, to prepare a mixed nanopowder (antibacterial agent).
  • a mixed powder was prepared by mixing aerogel (Talc) having a specific surface area of 600 m 2 /g to 1,500 m 2 /g and a size of 1 nm to 50 nm and palrite in a weight ratio of 1: 0.78 to prepare a strength enhancer.
  • Example 1 Preparation of a non-combustible binder for the production of functional eco-friendly particle board
  • the stirred material was allowed to stand for 8 hours in a dark room at 22°C to 23°C to mature to prepare a non-combustible binder.
  • melamine resin containing 0.1% by weight of residual formaldehyde, manufactured by Solar Synthetic Corporation
  • a non-combustible binder was prepared in the same manner as in Example 1, but instead of the flame retardant of Preparation Example 1-1 as a flame retardant, Preparation Examples 1-2 to 1-3 and Comparative Preparation Examples 1-1 to 1-2 as shown in Table 4 below. Each of the non-combustible binders was prepared using a flame retardant, and Examples 2 to 3 and Comparative Examples 1 to 2 were performed.
  • a non-combustible binder was prepared in the same manner as in Example 1, but a non-combustible binder was prepared by varying the amount of the flame retardant or the flame retardant auxiliary agent, and Examples 4 to 5 and Comparative Examples 4 to 7 were performed as shown in Table 5 below. .
  • Example 1 Example 2
  • Example 3 Comparative Example 2 Comparative Example 3 water 10.830 10.830 10.830 10.830
  • Flame retardant Preparation Example 1-1 23.364 - - - - Preparation Example 1-2 - 23.364 - - - Preparation Example 1-3 - - 23.364 - - Comparative Preparation Example 1-1 - - - - 23.364 - Comparative Preparation Example 1-2 - - - - 23.364 Flame retardant aid Ammonium sulfate 1.011 1.011 1.011 1.011 1.011 1.011 Inhibitor Preparation Example 2-1 0.722 0.722 0.722 0.722 0.722 0.722 Preparation Example 2-2 - - - - - Preparation Example 2-3 - - - - - - Comparative Preparation Example 2-1 - - - - - Comparative Preparation Example 2-2 - - - - - Comparative
  • Example 4 Example 5 Comparative Example 4 Comparative Example 5 Comparative Example 6 Comparative Example 7 water 10.830 10.830 10.830 10.830 10.830 10.830 Flame retardant Preparation Example 1-1 21.580 24.475 18.822 27.050 23.364 23.364 Flame retardant aid Ammonium sulfate 1.011 1.011 1.011 0.38 2.510 Inhibitor Preparation Example 2-1 0.722 0.722 0.722 0.722 0.722 0.722 0.722 0.722 Antibacterial Preparation Example 3-1 2.120 2.120 2.120 2.120 2.120 2.120 Strength enhancer Preparation Example 4-1 0.722 0.722 0.722 0.722 0.722 0.722 0.722 0.722 Desiccant Paraffin wax 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 Coupling agent Acrylic phosphate coupling agent 0.870 0.870 0.870 0.870 antiseptic Copper sulfate 1.011 1.011 1.011 1.011 1.011 1.011 1.011
  • Example 1 In the same manner as in Example 1 to prepare a non-combustible binder, as a flame retardant, instead of the flame retardant of Preparation Example 1-1, as shown in Table 6 and Table 7, Preparation Examples 2-2 to 2-3 and Comparative Preparation Examples 2-1 to A retardant binder was prepared using 2-3 flame retardants, respectively, and Examples 6 to 7 and Comparative Examples 8 to 10 were performed, respectively.
  • Example 6 Example 7 Comparative Example 8 Comparative Example 9 Comparative Example 10 water 10.830 10.830 10.830 10.830 Flame retardant Preparation Example 1-1 23.364 23.364 23.364 23.364 Flame retardant aid Ammonium sulfate 1.011 1.011 1.011 1.011 Inhibitor Preparation Example 2-1 - - - - Preparation Example 2-2 0.722 - - - - Preparation Example 2-3 - 0.722 - - - Comparative Preparation Example 2-1 - - 0.722 - - Comparative Preparation Example 2-2 - - - 0.722 - Comparative Preparation Example 2-3 - - - - 0.722 Antibacterial Preparation Example 3-1 2.120 2.120 2.120 2.120 Strength enhancer Preparation Example 4-1 0.722 0.722 0.722 0.722 0.722 0.722 0.722 Desiccant Paraffin wax 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800
  • Example 8 Example 9 Comparative Example 11 Comparative Example 12 water 10.830 10.830 10.830 10.830 Flame retardant Preparation Example 1-1 23.364 23.364 23.364 Flame retardant aid Ammonium sulfate 1.011 1.011 1.011 Inhibitor Preparation Example 2-1 0.500 1.500 0.011 5.050 Antibacterial Preparation Example 3-1 2.120 2.120 2.120 2.120 Strength enhancer Preparation Example 4-1 0.722 0.722 0.722 0.722 0.722 Desiccant Paraffin wax 0.800 0.800 0.800 0.800 Coupling agent Acrylic phosphate coupling agent 0.870 0.870 0.870 antiseptic Copper sulfate 1.011 1.011 1.011 1.011 Penetrant Alkyl succinate 0.910 0.910 0.910 0.910 Adhesive resin Melamine resin Remaining balance (100 wt% in total)
  • Example 10 to 11 and Comparative Examples 13 to 16 were performed, respectively.
  • Comparative Example 15 was prepared in the same composition and composition ratio as in Example 1, but using only a pyrite without using an airgel as a strength modifier.
  • Example 10 Example 11 Comparative Example 13 Comparative Example 14 Comparative Example 15 Comparative Example 16 water 10.830 10.830 10.830 10.830 10.830 Flame retardant Preparation Example 1-1 23.364 23.364 23.364 23.364 23.364 Flame retardant aid Ammonium sulfate 1.011 1.011 1.011 1.011 1.011 Inhibitor Preparation Example 2-1 0.722 0.722 0.722 0.722 0.722 0.722 0.722 0.722 Antibacterial Preparation Example 3-1 2.120 2.120 2.120 2.120 2.120 2.120 Strength enhancer Preparation Example 4-1 0.353 1.000 0.127 1.400 0.722 0.722 Desiccant Paraffin wax 0.800 0.800 0.800 0.800 0.800 0.800 0.800 Coupling agent Acrylic phosphate coupling agent 0.870 0.870 0.870 0.870 antiseptic Copper sulfate 1.011 1.011 1.011 1.011 1.011 1.011 Penetrant Alkyl
  • Particle (particle) chip (chip) was put into an automatic mixing coating machine, and about 100 minutes by weight of the particle chip, 40 parts by weight of the binder prepared in Example 1 was injected to coat the mixture for about 10 minutes to be a mixed penetration coating.
  • the coated coating was placed in a hot plate press having a top plate temperature of 110°C and a bottom plate temperature of 145°C, and heat-pressed at 50 kgf/cm 2 for 5 minutes. Next, the thermocompressed material was put in a dryer and dried at room temperature (22 to 25°C) for 3 days to produce a functional eco-friendly PB.
  • FIGS. 1A to E Manufacturing facilities used to manufacture the PB are shown in FIGS. 1A to E.
  • A represents the pulverizer of the material for PB production of the present invention
  • B represents the dryer
  • C represents the dry state in the dryer
  • D represents the cutting machine of PB
  • E represents the PB coating machine.
  • PB was prepared in the same manner as in Preparation Example 1, but PB was prepared using the binder (product of Solar Synthesis) of Comparative Example 1 instead of Example 1 as a binder.
  • PB was prepared in the same manner as in Production Example 1, but instead of Example 1 as a binder, PB was prepared using each of the inhibitory binders of Examples 2 to 9 or Comparative Production Examples 2 to 14, thereby preparing Examples 2 to Production Examples 9 and Comparative Preparation Examples 2 to 14 were performed respectively (see Table 9).
  • the antimicrobial properties of PBs prepared in the above-mentioned Preparation Examples and Comparative Production Examples were measured by requesting to the Korea Institute for Construction and Living Environment Testing, and the antibacterial properties were tested for KCL-FiR-1003;2011.
  • the decrease in the slime mold of Comparative Preparation Example 1 was 99.9% for all of E. coli, Staphylococcus aureus, and pneumococcus, and the functional eco-friendly PB of the present invention was also measured for almost the same antimicrobial activity as E. coli 99.9%, Staphylococcus aureus 99.9%, and Pneumococcus 99.9%. The results were shown, and the results were almost the same as in Comparative Production Example 1.
  • both the PBs of the Preparation Example and the Comparative Preparation Example had excellent antibacterial properties (see Table 10 above).
  • aqueous solutions of formaldehyde are commercially available as disinfectants, disinfectants, and preservatives.
  • the binder used in Comparative Preparation Example 1, melamine resin has a very high concentration of formaldehyde of 0.1% (1,000 ppm), which results in high antibacterial activity. It is judged to have. Residual formaldehyde in the melamine resin is highly toxic to the human body and has been reported to cause disease symptoms when exposed.
  • formaldehyde emission standards and eco-friendly material standards are set as follows to regulate the regulations, and the standards are shown in Table 11 below.
  • the mold resistance and resistance of the PB prepared in the above-mentioned Preparation Examples and Comparative Manufacturing Examples were measured by requesting to the Korea Institute for Construction and Living Environment Testing, and the mold resistance was applied according to ASTM G21-15 and the mold resistance according to ASTM D6329-98 (2015). Tested
  • the mold resistance of Comparative Production Example 1 was excellent in the 0 grade, and the mold resistance was found to be 1.0 or less.
  • PB of Preparation Example 1 also exhibited excellent results with mold resistance of 0 grade and mold resistance of 1.0 or less.
  • the standard value of the mold resistance grade is 0 to 4.
  • Comparative Production Example 1 showed excellent mold resistance and resistance without a separate antibacterial agent, due to the high concentration of formaldehyde remaining in the binder used in the PB production of Comparative Production Example 1 as in the Experimental Example 1 antibacterial activity test. It is judged.
  • the flame retardancy of PBs manufactured in Manufacturing Examples and Comparative Manufacturing Examples was measured by requesting to the Korea Institute for Construction and Living Environment Testing, and was measured according to the test standards of the Ministry of Public Safety and Security No. 2016-138.
  • Comparative Production Example 1 which is PB using an existing binder, had a problem that the carbonization length and the residual salt time did not satisfy the reference value.
  • Comparative Production Example 6 which was prepared with a binder using less than 0.5% by weight of a flame retardant aid, when compared with Preparation Example 1, it showed a problem of reduced flame retardancy, and the flame retardant aid was prepared with a binder using more than 2.0% by weight.
  • Comparative Production Example 7 when compared with Production Example 1, it showed a result without the flame retardancy increasing effect.
  • PB of Comparative Production Example 9 which was prepared with a binder using magnesium hydroxide in an amount of less than 0.5 weight ratio compared to boric acid, had a very high smoke density for radiant heat and a smoke density for direct heat exceeding a reference value.
  • Comparative Production Example 11 which was prepared with a binder containing 0.011% by weight of the inhibitor, the smoke density increased rapidly when compared with Production Example 8, and thus it was confirmed that there was a problem that there was little incombustibility,
  • Comparative Production Example 12 in which the inhibitor was used in an amount exceeding 5% by weight, there was no significant increase in the inhibitory effect even when the inhibitor was used three times more than in Comparative Example 9.
  • the removal rate of TVOC, toluene, and formaldehyde for PBs of Production Examples and Comparative Production Examples was measured in accordance with the indoor air quality process test standards (Ministry of Environment Notice No. 2017-11), and the results are shown in Table 15 below.
  • the removal rate of Table 15 is a PB of Comparative Preparation Example 1 is measured based on the following equation 1 based on TVOC, toluene and formaldehyde measurements.
  • Removal rate (%) ⁇ (Measured value of Comparative Production Example 1-Sample measured value)/(Measured value of Comparative Production Example 1) ⁇ ⁇ 100(%)
  • Comparative Preparation Example 3 manufactured with a binder having a relatively high proportion of ammonium polyphosphate in the flame retardant of the binder, showed a slightly reduced formaldehyde removal rate than Preparation Example 1. However, all of Comparative Production Examples 2 to 3 showed excellent TVOC, toluene and formaldehyde removal rates overall.
  • Comparative Preparation Example 13 using a binder composed of only lead stone as a strength reinforcing agent and Comparative Preparation Example 14 prepared with a binder using less than 0.2% by weight of the penetrant TVOC removal rate and formaldehyde removal rate compared to Production Example 1, etc. This showed a significantly decreasing problem.
  • the flat tensile strength of PBs of Preparation Example 1, Preparation Examples 10 to 11, and Comparative Preparation Examples 11 to 16 were measured by requesting from the Korea Institute for Construction and Environment Testing, and the measurement method was measured by applying KSF 3104:2016. And, the results of measuring the flat tensile strength of the PBs prepared in Production Example 1, Production Example 5, Production Examples 10 to 11, Comparative Production Example 5, and Comparative Production Examples 13 to 16 are shown in Table 17 below. In addition, the relative tensile strength reduction rate was calculated based on Equation 2 below.
  • Relative tensile strength reduction rate (%) ⁇ (planar tensile strength of manufacturing example 1-plane tensile strength of sample)/(planar tensile strength of manufacturing example 1) ⁇ ⁇ 100(%)
  • Equation 2 the flat tensile strength of Preparation Example 1 was 1.1 MPa.
  • planar tensile strength test is a measure of the characteristics of the particle board when it is stressed, and applies a tensile force uniformly distributed on the surface of the target to measure the force perpendicular to the outermost surface of the specimen until fracture occurs. It means vertical tensile test to be measured.
  • the legal reference value of PB was 0.4 MPa or more, and the manufacturing example 1 having a flat tensile strength of 1.1 MPa showed a result of about 2.75 times higher than the legal reference value.
  • Comparative Preparation Example 15 using a binder composed of only lead stone as a strength reinforcing agent it was slightly increased compared to Production Example 1, but considering the reduction effect of TVOC and the like (see Table 16), airgel was mixed with lead stone as a reinforcing agent. It was confirmed that doing so is advantageous in terms of overall physical properties.
  • the non-combustible binder composition of the present invention and the non-combustible binder prepared therefrom have excellent antimicrobial, anti-fungal, sterilizing, deodorizing, tensile, bursting, and flexural strength, such as formaldehyde. In addition to preventing and/or minimizing divergence, it was confirmed that it is suitable for manufacturing in a particle board having excellent smoke retardancy and flame retardancy.

Abstract

본 발명은 파티클 보드 제조용 억연성 바인더 조성물 및 이를 이용하여 제조한 바인더를 이용한 기능성 환경 파티클 보드에 관한 것으로서, 좀 더 구체적으로 설명하면, 파티클 보드의 억연성을 크게 향상시키면서도, 난연성, 항균성, 항곰팡이성, 살균성, 소취성, 인장강도, 파열강도 및 휨 강도의 기능을 가짐과 동시에 포름알데히드 등의 발산을 방지 및/또는 최소화된 파티클 보드 제조에 사용되는 억연성 바인더, 이를 이용하여 제조한 기능성 친환경 파티클 보드에 관한 것이다.

Description

기능성 친환경 파티클 보드 제조용 억연성 바인더 조성물, 이를 이용하여 제조한 억연성 바인더 및 이의 제조방법
본 발명은 파티클 보드 제조에 사용하기 적합한 억연성 바인더 및 이의 제조에 사용되는 조성물, 이의 제조방법에 관한 것이다.
종래 개발된 파티클 보드(particle board, 이하 PB로 표기)는 원목으로 목재를 생산하고, 남은 폐잔재를 부수어, 작은 조각으로 만들거나, 건축물 폐자재, 가구 폐자재, 목재 부산물 등을 부수어, 작은 조각으로 만들어 접착제를 섞어 고온, 고압으로 압착시켜서 만든 가공재이다. 이와 같은 PB의 제조에 사용되는 폐목재의 발생량은 연간국내 목재 수요량(2015년 기준) 28,151,000 ㎥의 40% 수준인11,260,400 ㎥이 사용되고 있다.
또한, PB를 제조하기 위해서 일반적으로 나무칩을 접착본드인 열경화성 합성 수지계로 뭉쳐서 제조하였다. 상기와 같이 제조할 경우, 아토피성 피부 원인 물질인 포름알데히드 방출 현상이 일어날 수 있고, PB 표면에 시트지나 필름지를 부착시키기 위하여 사용되는 바인더에서 유기 휘발성 유기물(VOCs)이 방출될 수 있으므로, 인체에 치명적인 독소가 발생하는 등의 단점이 부각되면서 PB에 대한 인식은 상당히 좋지 않다.
PB는 폐목재로 제조되며, 목재 자체의 강도가 떨어져 부패, 풍우에 노출되어 변색, 마모, 균열이 된 것도 많고, 심지어는 흰개미와 염먹이들의 충해 피해로 강도와 내구성이 약하게 되어 불에 잘타는 폐목이 될 수 있다. 또한, 목재는 세포벽의 70% 이상을 점유하는 셀룰로우스와 헤미셀룰로우스가 물분자(H2O)를 흡수하거나, 방습하는 양은 상대 습도와 온도에 따라 달라지지만, 흡습량은 PB 무게의 최대 30%가 된다는 학설도 있다.
또한, PB로 가공된 가구나 책상, 부엌가구(싱크대), 붙박이가구 같은 것들이 시간이 지나면, 마감재인 필름지 또는 시트지가 접착력이 떨어져 벗겨지는 경우가 많다. 벗겨진 부분으로 PB판 내부에 습기가 발생하게 되면, PB의 칩은 팽창을 하면서 결합력이 급속하게 약화되어 벌어지는 문제가 발생되고, 세균과 곰팡이가 번식되어 위생에 문제가 될 수 있다는 지적이 되고 있다. 이에 상기 문제점을 보완 개량한 기능성 PB의 제조 및 이를 위한 소재 개발에 대한 시도가 있었으나, 기존 개발 제품은 파티클 보드에서 발생되는 포름알데하이드 및/또는 VOCs를 저감 효과가 있으나, 화재에 취약하거나 화재시 다량의 연기가 발생하는 등 개량된 효과 범위가 미비하여 상품성이 떨어지는 문제가 있었다. 이에 파티클 보드로부터 발산되는 오염물질을 최소화하면서 억연 효과가 우수한 상품성을 증대시킬 수 있는 새로운 파티클 보드용 소재 및 이를 이용한 기능성 파티클 보드에 대한 필요성이 대두되고 있다.
이에, 본 발명자들은 종래 파티클 보드의 단점을 극복한 파티클 보드를 제공하고자 예의 노력한 결과, 본 발명에서 제시하는 조성물을 이용하여 파티클 보드를 제조할 경우 억연성 뿐만 아니라 난연성 및 내구도가 우수하면서, 친환경적인 특성을 가진 파티클 보드를 제조할 수 있다는 것을 확인하여, 본 발명을 완성하게 되었다. 즉, 본 발명의 목적은 기능성 친환경 파티클 보드의 제조용 억연성 바인더 및 이를 이용한 기능성 친환경 파티클 보드를 제공하고자 한다.
상술한 과제를 해결하기 위한 본 발명의 기능성 친환경 파티클 보드 제조용 억연성 바인더 조성물은 억연제; 물; 및 멜라민 수지;를 포함한다.
본 발명의 바람직한 일실시예로서, 상기 억연제는 붕산, 탄산아연 및 수산화마그네슘 중에서 선택된 2종 이상을 가공하여 제조한 결정을 포함할 수 있다.
본 발명의 바람직한 일실시예로서, 상기 억연제는 붕산, 탄산아연 및 수산화마그네슘 3종을 가공하여 제조한 결정을 포함할 수 있다.
본 발명의 바람직한 일실시예로서, 상기 결정은 붕산, 탄산아연 및 수산화마그네슘을 1 : 3.0 ~ 4.5 : 1.4 ~ 2.0 중량비로 가공한 것일 수 있다.
본 발명의 바람직한 일실시예로서, 상기 억연제는 붕산 포화 수용액을 제조하는 1단계; 붕산 포화 수용액을 가열한 후, 가열된 붕산 포화 수용액에 탄산아연 및 수산화마그네슘을 용해시킨 다음 끓이는 2단계; 및 냉각 및 여과한 후, 여과물을 건조시켜 백색 결정을 수득하는 3단계;를 포함하는 공정을 수행하여 제조한 결정을 포함할 수 있다.
본 발명의 바람직한 일실시예로서, 본 발명의 억연성 바인더 조성물은 상기 억연제 0.1 ~ 5.0 중량%, 물 10 ~ 15 중량% 및 잔량의 멜라민 수지를 포함할 수 있다.
본 발명의 바람직한 일실시예로서, 본 발명의 억연성 바인더 조성물은 난연제를 더 포함할 수 있다.
본 발명의 바람직한 일실시예로서, 본 발명의 억연성 바인더 조성물은 난연보조제를 더 포함할 수 있다.
본 발명의 바람직한 일실시예로서, 상기 억연성 바인더 조성물은 강도보강제를 더 포함할 수 있다.
본 발명의 바람직한 일실시예로서, 본 발명의 억연성 바인더 조성물은 방습제를 더 포함할 수 있다.
본 발명의 바람직한 일실시예로서, 본 발명의 억연성 바인더 조성물은 항균제를 더 포함할 수 있다.
본 발명의 바람직한 일실시예로서, 본 발명의 억연성 바인더 조성물은 커플링제를 더 포함할 수 있다.
본 발명의 바람직한 일실시예로서, 본 발명의 억연성 바인더 조성물은 방부제를 더 포함할 수 있다.
본 발명의 바람직한 일실시예로서, 본 발명의 억연성 바인더 조성물은 침투제를 더 포함할 수 있다.
본 발명의 바람직한 일실시예로서, 상기 난연제는 실란 코팅 암모늄 및 폴리인산암모늄을 포함할 수 있다.
본 발명의 바람직한 일실시예로서, 상기 난연제는 실란 코팅 암모늄 및 폴리인산암모늄을 1 : 1.5 ~ 3.0 부피비로 포함할 수 있다.
본 발명의 바람직한 일실시예로서, 상기 난연보조제는 황산암모늄, 암모늄 폴리포스페이트 및 폴리포스파젠 중에서 선택된 1종 이상을 포함할 수 있다.
본 발명의 바람직한 일실시예로서, 본 발명의 억연성 바인더 조성물은 억연제 0.5 ~ 5.0 중량%, 난연제 20 ~ 25 중량%, 난연보조제 0.5 ~ 2.0 중량%, 강도보강제 0.3 ~ 1.2 중량%, 방습제 0.5 ~ 2.0 중량%, 항균제 1.0 ~ 3.0 중량%, 커플링제 0.3 ~ 1.2 중량%, 방부제 0.05 ~ 1.2 중량%, 침투제 0.2 ~ 1.0 중량, 물 10 ~ 15 중량% 및 잔량의 멜라민 수지를 포함할 수 도 있다.
본 발명의 다른 목적은 상기 억연성 바인더 조성물을 이용하여 억연성 바인더를 제조하는 방법에 관한 것으로서, 앞서 설명한 다양한 조성의 억연성 바인더 조성물을 준비하는 1단계; 상기 억연성 바인더 조성물을 혼합한 후, 800 ~ 1,500 rpm의 교반 속도로 10 ~ 30분간 교반하여 교반물을 제조하는 2단계; 및 상기 교반물을 20 ~ 35℃의 암실에서 6 ~ 12 시간 동안 숙성시키는 3단계;를 포함하는 공정을 수행하여 억연성 바인더를 제조할 수 있다.
본 발명의 또 다른 목적은 앞서 설명한 다양한 조성의 억연성 바인더 조성물을 혼합한 혼합물의 숙성물을 포함하는 억연성 바인더를 제공하는데 있다.
또한, 본 발명의 다른 목적은 상기 억연성 바인더로 파티클 칩(particle chip)을 침투 코팅시킨 코팅물의 열압착물을 포함하는 파티클 보드를 제공하는데 있다.
본 발명의 억연성 바인더를 이용하여 제조한 친환경 기능성 파티클 보드(PB)는 기존 멜라민 바인더 수지를 이용하여 제조한 PB와 비교할 때, 강도가 보완되어, 시공시 PB가 깨져 발생하는 미세먼지, 분진 발생이 없어 시공 환경이 쾌적하여 생산성이 향상되는 장점이 있고, PB의 흡습으로 인해 PB 칩 내부가 썩어 충해로 인한 냄새, 세균, 곰팡이의 번식을 효율적으로 방지 내지 최소화할 수 있으며, 나아가 항균, 살균, 소취 등의 시너지 효과를 갖는다. 또한, 멜라민 수지(또는 요소 멜라민 수지) 용액 중에 미반응된 잔류(유리) 포름알데히드와, PB 표면에 마무리 작업으로 시트지 또는 필름지를 부착하는 접착제에서 방출되는 휘발성 유기 화합물(VOCs)를 제거함과 더불어 연소시 연기 발생을 억제시킬 수 있으며, 억연성 및 난연성이 매우 우수한 PB를 제공할 수 있다.
도 1의 A는 본 발명의 PB 제조를 위한 파티클칩 제조용 분쇄기를, B는 PB 건조기를, C는 건조기 안에서 건조 상태를, D는 PB의 재단기를, E는 PB 코팅기를 찍은 사진이다.
이하, 본 발명을 보다 상세하게 설명한다.
일반적으로 PB 제조시 파티클 칩의 접착을 위해 다양한 바인더 수지가 사용되고 있는데, 이러한 바인더 수지로는 요소 수지, 멜라민 수지(또는 요소 멜라민 수지), 페놀 수지가 사용되고 있다. 그리고, 멜라민 수지는 경화되면 무색 투명한 피막을 형성하므로, 마루판, 가구부재, 제조시의 화장단판의 접착, 저압 멜라민, 고압 멜라민, 고압 라미네이트, 오버레이지, 모양지, 후면지의 제조시에 많이 이용되고 있다. 멜라민 수지가 경화되어 형성된 피막 또는 코팅은 내수성, 내열성, 내약품성에 강하다. 또한, 멜라민 수지는 무색투명하고 단단하므로 마루판, 지붕판, 내벽재료, 가교제, PB 접착제로 많이 이용되고 있다.
PB는 포름알데히드 방출량에 따라 u형 PB, M형 PB, P 형 PB에 따라 다소 차이가 있지만, 일반적으로 출하 시의 포름알데히드 방출량 기준 5mg/L 이하로 규정하고 있다.
그리고, 최근에는 종전 포름알데히드 방출량 보다 한층 강화되어 0.5mg/L 이하일 때는 E0형, 1.5 mg/L 이하일 때는 E1형, 5 mg/L 이하일 때는 E2형으로 규정하고 있으며, 2009년 국내에서 생산된 목질 판상제품 중, PB의 72.1%와 MDF의 86.2% 이상이 KS 기준등급 외의 제품이었으나 현재는 E1, E0 수준으로 서서히 전환되고 있다. 포름알데히드 방출에 대한 기준과 규제가 강화되었기 때문에, 포름알데히드 발생량을 저감시키는 다양한 방법이 시도되고 있으며, 본 발명에서는 멜라민 수지 내 잔류 포름알데히드가 0.1 중량%가 내재되어 있어 E0 등급까지 저감시킬 수 있는 PB 제조용 억연성 바인더 조성물 및 억연성 바인더를 제공하고자 하는 것이다.
본 발명은 기능성 친환경 파티클 보드(particle board, 이하 PB) 제조용 억연성 바인더 조성물(이하, "조성물"로 칭함)은 접착수지로서 요소 수지, 멜라민 수지 및 페놀 수지 중에서 선택된 1종 이상을 사용할 수 있으며, 바람직하게는 멜라민 수지를 사용할 수 있다.
PB는 폐목재, 건축물 폐자재, 가구 폐자재, 목재 부산물 등을 부수어, 작은 조각으로 만들어 접착제를 섞어 고온, 고압으로 압착시켜서 만든 가공재로, 연소시 흡열 반응으로 연소열을 감소시키거나 열 분해에 의한 탈수 작업 등의 반응이 진행될 시 많은 양의 유해성 연기(가스)를 발생시키고, 또한 연기 밀도가 높을 가능성이 아주 높다. 이에 본 발명의 조성물은 유해성 연기(가스)발생을 억제시키기 위한 억연제를 더 포함할 수 있다. 그리고, 억연제로는 당업계에서 사용하는 일반적인 억연제를 사용할 수 있으며, 바람직하게는 붕산, 탄산아연 및 수산화마그네슘(Mg(OH)2) 중에서 선택된 2종 또는 3종을 가공하여 제조한 결정을 억연제로 사용할 수 있으며, 더욱 바람직하게는 붕산(H3BO3), 탄산아연(ZnCO3) 및 수산화마그네슘을 1 : 2.5 ~ 5 : 1.0 ~ 2.5 중량비로 가공하여 제조한 결정을, 더 더욱 바람직하게는 붕산, 탄산아연 및 수산화마그네슘을 1 : 3.0 ~ 4.5 : 1.4 ~ 2.0 중량비로 가공하여 제조한 결정을 억연제로 사용할 수 있다. 그리고, 상기 억연제 성분 내 붕산은 온수에 잘 녹고, 약산을 나타내며, 약한 살균 작용, 방부성도 있다. 살균성 때문에 천연 방충제 기능과 곰팡이 성장 억제와 흰개미의 저항성이 높다. 따라서, 상기 억연제 사용시, PB의 연기뿐만 아니라, 난연성, 살균성, 항곰팡이성, 흰개미 저항성을 증대 시킬 수 있다. 이때, 탄산아연 및 수산화마그네슘이 상기 중량비 범위를 벗어나는 경우, 상기 중량 범위 내로 사용하는 경우와 비교할 때 상대적으로 억연 효과가 감소할 수 있다.
이러한, 상기 억연제는 물에 붕산을 용해시켜서 붕산 포화 수용액을 제조하는 1단계; 붕산 포화 수용액을 가열한 후, 가열된 붕산 포화 수용액에 탄산아연 및 수산화마그네슘 중에서 선택된 1종 또는 2종을 용해시킨 다음 끓이는 2단계; 및 냉각 및 여과한 후, 여과물을 건조시켜 백색 결정을 수득하는 3단계;를 포함하는 공정을 수행하여 제조할 수 있다.
상기 붕산, 탄산아연 및 수산화마그네슘의 사용량은 앞서 설명한 이들 성분들 간 중량비를 만족하는 것이 좋다.
본 발명에서 사용하는 상기 억연제를 제조하는 바람직한 일구현예를 들면, 물 50mL가 채워진 비커에 붕산 5mL(3g) 주입하여 포화용액이 되도록 80 ~ 105℃로 20 ~ 40분간 가열하고, 염기성인 탄산아연10mL(11g)을 붕산 포화용액에 주입하여 교반을 800 ~ 1,400 rpm으로 지속적으로 실시하면서, 수산화마그네슘(Mg(OH)2) 5mL(5.5g)을 주입한다. 다음으로, 50분 ~ 90분간 끓인 후, 5 ~ 8시간 동안을 방치 및 필터링한 다음, 여과물을 건조시켜서 백색의 기둥 모양의 결정 수득할 수 있다.
그리고, 본 발명의 조성물 내 상기 억연제의 함량은 0.1 ~ 5.0 중량%, 바람직하게는 0.5 ~ 2.5 중량%, 더욱 바람직하게는 0.6 ~ 1.0 중량%로 사용할 수 있다. 이때, 억연제 함량이 0.1 중량% 미만이면 그 사용량이 너무 적어서 억연 효과를 보지 못할 수 있고, 5.0 중량%를 초과하여 사용하면 다른 조성물과의 상용성 저하로 PB의 평면 인장강도 등의 다른 물성이 오히려 저하되는 문제가 있을 수 있다.
본 발명의 조성물 중 상기 물은 억연성 바인더의 접착수지와 다른 조성물간 혼합 및 바인더의 적정 점도 확보를 위해 사용하는 것으로서, 조성물 전체 중량 중 10 ~ 15중량%, 바람직하게는 10 ~ 13.5 중량%, 더욱 바람직하게는 10.2 ~ 12.5 중량%를 사용하는 것이 좋으며, 이때, 물 함량이 10 중량% 미만이면 조성물간 혼합이 잘 되지 않는 문제가 있을 수 있고, 15 중량%를 초과하면 제조한 억연성 바인더 내 수분 함량이 높아져서 건조 시간이 길어지고 조성물의 혼합물 숙성이 잘 되지 않아서 억연성 바인더로 제조한 PB의 물성이 떨어지는 문제가 있을 수 있다.
PB는 원목이 아닌 가공목으로 가구 폐자재, 목재 부산물 등으로 이용하여 재가공하여 만들기 때문에 불이 붙을 경우 착화점이 매우 낮아서, 쉽게 연소하는 문제점이 있다. 따라서, 본 발명의 조성물은 PB에 방염성을 부여하기 위하여, 난연제 및 난연보조제를 더 포함할 수 있다.
상기 난연제로는 당업계에서 사용하는 일반적인 목재용 난연제를 사용할 수 있으나, 바람직하게는 실란 코팅 폴리인산암모늄 및 폴리인산암모늄(수용성 APP) 중에서 선택된 1종 이상을 사용할 수 있다.
폴리인산암모늄(수용성 APP)은 금속이온 냄새 제거하는 효과가 우수하며, 분산작용과 결정형성방지효과가 우수하다. 난용성 물질이 결정으로서 석출되는 것을 막고, pH 변화를 막는 기능이 있다. 그러나, 폴리인산암모늄은 내수성이 문제가 되며, 고온 다습한 조건 하에 놓일 경우 블리드(bleed)를 발생시키는 문제점을 발생시킬 수 있다. 그리고 내열성이 부족하여 90~110℃ 부근에서 잘 녹아 부착성과 용액 점도가 전혀 없어서 단독 사용하는데 불충분한 점이 많다. 또한, 폴리인산암모늄의 분체 표면에 멜라민계 화합물이 피복 등이 되는 것은 비중이 크고 하부 침전이 잘 되어, 분산성이 좋지 않고 끈적하며 건조성이 좋지 않을 수 있다. 따라서, 상기 난연제로서, 실란 코팅 폴리인산암모늄 및 폴리인산암모늄 2종을 혼합한 것이 더욱 바람직하다. 실란으로 코팅(피복)시킨 폴리인산암모늄은 분산성과 침전성이 양호하고, 파티클 칩간의 결합력을 증가시킬 수 있다.
여기서, 실란 코팅 폴리인산암모늄 및 폴리인산암모늄 2종을 난연제로 사용하기 위한 최적 조성비는 실란 코팅 폴리인산암모늄 및 폴리인산암모늄을 1 : 1.5 ~ 3.0 부피비로, 바람직하게는 1 : 1.8 ~ 2.5 부피비로, 더욱 바람직하게는 1 : 1.8 ~ 2.2 부피비로 혼합하여 사용하는 것이 좋다. 이때, 폴리인산암모늄이 실란 코팅 폴리인산암모늄에 대하여 1.5 부피비 미만이면 상대적으로 조성물 내 실란 코팅 폴리인산암모늄이 상대적으로 너무 많아서 오히려 난연성이 감소할 수 있고, 폴리인산암모늄을 3.0 부피비 초과하여 사용하면 실란 코팅 폴리인산암모늄 사용량이 상대적으로 너무 적어서 실란 코팅 폴리인산암모늄을 적정량 사용한 경우 보다 PB의 기계적 물성이 떨어질 수 있다.
그리고, 본 발명의 조성물 내 난연제의 적정 함량은 조성물 전체 중량 중 20 ~ 25 중량%, 바람직하게는 21.5 ~ 25 중량%, 더욱 바람직하게는 22.5 ~ 24.5 중량%이다. 이때, 난연제 함량이 20 중량% 미만이면 적절한 방염성, 난연성을 확보하지 못할 수 있고, 25 중량%를 초과하여 사용하면 과다 사용으로 인해 본 발명의 조성물로 제조한 바인더 수지의 파티클 칩에 대한 침투성 등이 떨어져서 PB의 기계적 물성 등 다른 물성이 떨어지는 문제가 있을 수 있으므로 상기 범위 내로 사용하는 것이 좋다.
본 발명의 조성물은 상기 난연제 외에 난연보조제를 더 포함할 수 있다. 난연보조제로는 황산암모늄((NH4)2SO4), 암모늄 폴리포스페이트 및 폴리포스파젠 중에서 선택된 1종 이상을 사용할 수 있고, 바람직하게는 황산암모늄 및 암모늄 폴리포스페이트 중에서 선택된 1종 이상을, 더욱 바람직하게는 황산암모늄을 사용할 수 있다. 난연보조제를, 바람직하게는 황을 포함한 첨가물을 혼합시켜 병용 처리할 경우 연소시 열분해에 의하여 폴리메타인산을 생성하고, 이것이 보호층을 형성하는 경우와 폴리메타인산이 생성될 때 탈수작용에 의해 생성되는 탄소 피막이 산소를 차단하여 고난연(방염)성을 부여할 수 있다. 본 발명의 조성물 내 난연보조제의 함량은 0.5 ~ 2.0 중량%, 바람직하게는 0.6 ~ 1.6 중량%, 더욱 바람직하게는 0.75 ~ 1.40 중량%인 것이 좋은데, 이때, 난연보조제 함량이 0.5 중량% 미만이면 그 사용량이 너무 적어서 난연보조제 사용으로 인한 추가적인 난연성 향상 효과가 없을 수 있고, 2.0 중량%를 초과하여 사용하더라도 더 이상의 난연성 항상 효과가 없는 바, 상기 범위 내로 사용하는 것이 좋다.
PB는 단판 제조 후의 폐잔재, 재재목의 폐잔재, 펄프용 칩, 제재목의 대패밥, 각종 톱밥, 목공 작업 후의 폐잔재, 폐가구 목조 주택 시공 후 폐잔재, 아파트 샘플 하우스 폐잔재 등으로 이루고 있다. 이런 폐잔재를 이용시 제조 조건으로는 강도가 약하고, 수분 변동에 따른 수축 팽창이 생길 수 있다. 이러한 단점을 개선하기 위해, 파티클칩의 강도가 약해진 부분을 코팅이 되게 하여, 인장강도 보강, 내수, 내습, 방부기능을 발휘하도록 본 발명의 조성물은 강도보강제를 더 포함할 수도 있다. 강도보강제로는 에어로겔(Aerogel) 및 납석을 혼합한 혼합분말을 사용할 수 있으며, 바람직하게는 에어로겔 및 납석을 1 : 0.40 ~ 1.00 중량비, 더욱 바람직하게는 에어로겔 및 납석을 1 : 0.60 ~ 0.85 중량비 혼합한 혼합분말을 사용할 수 있다.
상기 에어로겔은 600 ~ 1,500 m2/g의 비표면적을 가지는 고다공성 나노구조체로서, 1 ~ 50 nm 크기의 나노입자로 구성되어 있으며, 다공성 구조를 갖고 있어서 단열성이 우수해 단열, 방음, 충격 완화력이 뛰어나 깨짐을 방지할 수 있으며, 납석과 혼합됨으로써 강도가 증가된다. 또한, 에어로겔은 접착력을 증가시켜 파티클칩 조각끼리 부착이 잘 되도록 하는 기능과 평탄 인장강도와, 열변형을 막고 하중에 의한 장기적 변형을 개선한다. 납석은 지방감이 풍부하고, 내화재, 충진재로의 기능과 에어로겔과 혼합이 잘 되는 특징이 있다.
그리고, 본 발명의 조성물 내 상기 강도보강제의 함량은 0.3 ~ 1.2 중량%, 바람직하게는 0.5 ~ 1.0 중량%, 더욱 바람직하게는 0.60 ~ 0.80 중량%로 사용할 수 있다. 이때, 강도보강제 함량이 0.3 중량% 미만이면 사용량이 너무 적어서 PB의 기계적 강도 향상 효과를 보지 못할 수 있고, 1.2 중량%를 초과하여 사용하면 다른 조성물과의 상용성 저하로 PB의 다른 물성이 오히려 저하되는 문제가 있을 수 있다.
PB로 가공된 가구나 책상, 부엌가구(싱크대), 붙박이 가구 같은 것들이, 시간이 지나면, 마감재인 시트지 또는 필름지가 접착력이 떨어져 PB 판 내부에 습기가 발생되면, 파티클칩은 팽창을 하면서 결합력이 급속하게 약화되어 어걸어지는 문제가 발생되고, 세균과 곰팡이가 번식되어 위생 문제가 발생할 수 있다. 이에 본 상기 문제점을 보완 개량하기 위해 본 발명의 조성물은 방습제를 더 포함할 수도 있다. 방습제로는 당업계에서 사용하는 일반적인 방습제를 사용할 수 있으며, 바람직하게는 유동성 파라핀 왁스를 사용할 수 있다. 유동성 파라핀 왁스가 파티클칩 내부에 침투 또는 표면에 코팅화되어 PB의 내습성이 향상될 수 있으며, 유동성 파라핀 왁스는 PB의 기능을 변경시키지 않고 함수율과 치수 변화를 지연시키며, 내수성과 내습성을 향상시킬 수 있다. 본 발명의 조성물 내 상기 방습제의 함량은 0.5 ~ 2.0 중량%, 바람직하게는 0.5 ~ 1.6 중량%, 더욱 바람직하게는 0.7 ~ 1.0 중량%일 수 있다. 이때, 방습제 함량이 0.5 중량% 미만이면 사용량이 너무 적어서 PB의 내수성, 내습성 향상 효과를 보지 못할 수 있고, 2.0 중량%를 초과하여 사용하면 조성물을 이용하여 제조한 억연성 바인더의 점도가 너무 크게 증가하여 파티클칩과의 혼합성이 떨어지며, 바인더의 파티클칩에 대한 침투성이 떨어지는 문제가 있을 수 있으므로 상기 범위 내로 사용하는 것이 좋다.
또한, 본 발명의 조성물은 PB의 항균성, 항곰팡이성, 살균성, 소취성 등을 부여하기 위하여 항균제를 더 포함할 수 있다. 상기 항균제로는 유기계 항균제 및 무기계 항균제 중에서 선택된 1종 이상을 포함할 수 있으며, 바람직하게는 무기계 항균제를 사용하는 것이 좋다. 그리고, 상기 무기계 항균제로는 은(Ag) 나노입자 및 이산화티타늄(TiO2) 나노입자를 1 : 0.5 ~ 1.0 중량비로 포함하는 혼합 나노분말을, 바람직하게는 은(Ag) 나노입자 및 이산화티타늄(TiO2) 나노입자를 1 : 0.75 ~ 1.00 중량비로 포함하는 혼합 나노분말을 사용하는 것이 좋다. 은(Ag) 나노입자는 항균력과 살균력이 강할 뿐 아니라, 냄새 제거, 포름알데히드(CH2O)와 VOCs 제거, 원적외선과 음이온 방출 등 광범위한 분야에서 항생 물질로 사용되고 있으며, 이산화티타늄 나노입자와 혼합 사용함으로써, 접착 수지 내 잔류성 포름 알데히드, 그리고 시트지나 필름지를 부착시키기 위하여 사용되는 바인더에서 방출되는 휘발성 유기 화합물 제거와 폐목재의 흡습으로 인하여 부패되는 과정에서 발생되는 악취와 심지어는 흰개미, 염먹이 들의 충해 또는 그로 인한 강도와 내구성이 약해지는 문제점을 개선할 수 있으며, 소취, 방충(방부) 효과를 얻을 수 있다.
그리고, 본 발명의 조성물 내 상기 항균제의 함량은 조성물 전체 중량 주 1.0 ~ 3.0 중량%를, 바람직하게는 1.5 ~ 2.7 중량%를, 더욱 바람직하게는 1.70 ~ 2.20 중량%를 포함할 수 있으며, 이때, 항균제 함량이 1.0 중량% 미만이면 항균 효과가 미비할 수 있고, 3.0 중량%를 초과하여 사용하더라도 더 이상의 항균 효과 증대가 없는 바 비경제적이다.
본 발명의 조성물로 제조한 억연성 바인더는 소수성인 비극성일 수 있으므로, 친수성인 파티클칩과의 결합력이 떨어질 수 있다. 이에 억연성 바인더와 파티클칩과의 계면 사이에 화학적 결합을 개선하기 위하여 본 발명 조성물은 커플링제를 더 포함할 수도 있다. 커플링제 도입으로 인해 굽힘 강도와 탄성계수 증대, 치수 안정, 충격 강도 증대효과를 볼 수 있다. 그리고, 상기 커플링제로는 인산아크릴계 커플링제로를 사용하는 것이 좋으며, 그 함량은 조성물 전체 중량 중 0.3 ~ 1.2 중량%를, 바람직하게는 0.5 ~ 1.2 중량%를, 더욱 바람직하게는 0.65 ~ 1.0 중량%일 수 있다. 이때, 커플링제 함량이 0.5 중량% 미만이면 커플링제 사용으로 인한 물성 증대 효과가 미비할 수 있으며, 1.2 중량%를 초과하여 사용하면 억연성 바인더의 점도가 높아지고, 오히려 파티클칩과의 혼합성, 침투성이 떨어지고 PB의 난연성이 떨어지는 문제가 있을 수 있으므로 상기 범위 내로 사용하는 것이 좋다.
습기의 침투로 인한 PB 내부 또는 표면이 부식, 부패로 인하여 이끼, 미생물을 비롯한 청태 발생을 효율적으로 억제, 살균, 해충 또는 흰개미 파티클칩을 부패시키는 곰팡이 발생하는 것을 억제하기 위해서 본 발명의 조성물은 방부제를 더 포함할 수도 있다. 방부제로는 유기계 방부제 및 무기계 방부제 중에서 선택된 1종 이상을 사용할 수 있고, 바람직하게는 무기계 방부제를, 더욱 바람직하게는 무기계 방부제인 황산구리(CuSO4)를 사용할 수 있다. 그리고, 본 발명의 조성물 내 방부제의 함량은 조성물 전체 중량 중 0.05 ~ 1.2 중량%를, 바람직하게는 0.50 ~ 1.20 중량%를, 더욱 바람직하게는 0.70 ~ 1.15 중량%일 수 있다. 이때, 방부제 함량이 0.05 중량% 미만이면 그 사용량이 너무 적어서 방부 효과를 볼 수 없을 수 있고, 1.2 중량%를 초과하여 사용하면 방부 효과는 우수하나, 억연성 바인더의 파티클칩에 대한 침투 효과를 감소시켜서 PB의 기계적 물성이 감소하는 문제가 있을 수 있다.
본 발명의 조성물은 억연성 바인더가 파티클칩에 골고루 잘 스며들도록 침투제를 더 포함할 수도 있다. 이때, 상기 침투제로는 당업계에서 사용하는 일반적인 침투성분을 사용할 수 있으며, 바람직하게는 음이온성인 알킬석시네이트(alkyl succinate)를 사용할 수 있다. 그리고, 침투제의 사용량은 조성물 전체 중량 중 0.2 ~ 1.0 중량%를, 바람직하게는 0.4 ~ 1.0 중량%를, 더욱 바람직하게는 0.65 ~ 1.00 중량%일 수 있다. 이때, 침투제 사용량이 0.2 중량% 미만이면 그 사용량이 너무 적어서 이를 사용하는 효과를 볼 수 없을 수 있고, 1.0 중량%를 초과하여 사용하더라도 이로 인한 PB의 물성 향상 효과가 없으므로 비경제적일 수 있는 바, 상기 범위 내로 사용하는 것이 좋다.
앞서 설명한 본 발명의 조성물을 이용하여 하기와 같은 방법을 통해 억연성 바인더를 제조할 수 있다.
본 발명의 억연성 바인더는 앞서 설명한 다양한 조성의 조성물을 준비하는 1단계; 상기 조성물을 혼합한 후, 교반물을 제조하는 2단계; 및 상기 교반물을 숙성시키는 3단계;를 포함하는 공정을 수행하여 억연성 바인더를 제조할 수 있다.
1단계의 상기 조성물은 앞서 설명한 바와 같다.
그리고, 2단계의 교반물은 1단계의 조성물을 800 ~ 1,500 rpm의 교반 속도로 10 ~ 30분간 교반하여, 바람직하게는 1,000 ~ 1,350 rpm의 교반 속도로 15 ~ 25분간 교반하여 제조할 수 있다. 이때, 교반 속도가 800 rpm 미만이면 조성물 성분이 잘 용해되지 않을 수 있고, 교반속도가 1,500 rpm을 초과하면 거품이 발생할 수 있다. 그리고, 교반 시간은 상기 교반속도에 따른 상대적인 적정 교반 시간이다.
그리고, 3단계는 충분한 조건으로 잘 교반된 교반물을 숙성시키는 단계로서, 상기 숙성은 20 ~ 35℃의 암실에서 6 ~ 12 시간 동안, 바람직하게는 20 ~ 30℃의 암실에서 7 ~ 10 시간 동안 방치하여 숙성시켜서 본 발명의 억연성 바인더를 제조할 수 있다.
이와 같이 제조된 본 발명의 억연성 바인더는 파티클칩에 적용하여 PB를 제조할 수 있으며, 바람직한 일구현예를 들면, 파티클칩을 자동혼합코팅기에 투입한 후, 상기 억연성 바인더를 투입 및 혼합하여, 억연성 바인더가 파티클칩에 침투 코팅된 코팅물을 제조하는 1단계; 상기 코팅물을 열압프레스로 압착시켜서 열압착물을 제조하는 2단계; 열압착물을 건조하는 3단계;를 수행하여 기능성 친환경 파티클 보드를 제조할 수 있다.
상기 1단계에서 억연성 바인더의 투입량은 파티클칩 100 중량부에 대하여 상기 조성물 32.5 ~ 48.7 중량부를, 바람직하게는 35.0 ~ 45.0 중량부를, 더욱 바람직하게는 37 ~ 43 중량부를 사용할 수 있다. 이때, 억연성 바인더 투입량이 32.5 중량부 미만이면 파티클칩에 충분하게 바인더가 침투 코팅되지 못하여 PB의 물성이 좋지 않을 수 있고, 억연성 바인더 투입량이 48.7 중량부를 초과하는 것은 과량 사용으로 오히려 PB 물성이 떨어지는 문제가 있을 수 있다.
2단계의 압착은 상기 1단계의 코팅물을 상판 온도 100℃ ~ 120℃, 하판 온도 110℃ ~ 155℃인 열압프레스에 투입하여 5분 ~ 10분 동안 60 kgf/cm2 ~ 80 kgf/cm2으로 열압착을 수행할 수 있다.
그리고, 열압착이 완료된 후, 1일 ~ 3일 동안 상온(18℃ ~ 35℃)에서 건조시켜서 본 발명의 기능성 친환경 파티클 보드를 제조할 수 있다.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예 및 실험예를 제시한다. 그러나 하기의 실시예 및 실험에는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것 일뿐 하기 실시예 및 실험예에 의해 본 발명의 내용이 한정되는 것은 아니다.
[실시예]
준비예 1-1 : 난연제의 제조
실란 코팅 폴리인산암모늄 및 폴리인산암모늄(수용성 APP)과 1 : 2 부피비로 혼합하여 난연제를 준비하였다.
준비예 1-2 ~ 1-3 및 비교준비예 1-1 ~ 1-2
상기 준비예 1과 동일한 방법으로 난연제를 제조하되, 하기 표 1과 같은 조성비를 가지도록 실란 코팅 폴리인산암모늄 및 폴리인산암모늄을 혼합 및 교반하여 난연제를 각각 제조하였다.
구분 실란 코팅 폴리인산암모늄 및 폴리인산암모늄 부피비
준비예 1-1 1 : 2.0
준비예 1-2 1 : 1.8
준비예 1-3 1 : 2.5
비교준비예 1-1 1 : 1.0
비교준비예 1-2 1 : 3.5
준비예 2-1 : 억연제의 제조
물 50mL가 채워진 비커에 붕산 3g을 투입하여 포화용액이 되도록 95℃로 30분간 가열 및 교반하여 붕산 용액을 제조하였다.
다음으로, 염기성인 탄산아연11g을 붕산 용액에 투입한 다음, 1,200rpm속도로 교반을 지속적으로 실시하면서, 수산화마그네슘(Mg(OH)2) 5.5g을 투입하였다.
다음으로, 수산화마그네슘 투입된 용액을 1 시간 동안 끓인 후, 6시간 동안을 방치하였다.
다음으로, 필터링한 다음, 여과물을 건조시켜서 백색의 기둥 모양의 결정 수득하였으며, 이를 억연제로 준비하였다.
준비예 2-1 ~ 2-3 및 비교준비예 2-1 ~ 2-2
상기 준비예 2-1과 동일한 방법으로 억연제를 제조하되, 하기 표 2와 같은 조성비를 가지도록 붕산, 탄산아연 및 수산화마그네슘을 투입 및 교반하여 백색의 기둥 모양의 결정인 억연제를 각각 제조하였다.
구분 붕산, 탄산아연 및 수산화마그네슘 중량비
준비예 2-1 1 : 3.67 : 1.83
준비예 2-2 1 : 4.21 : 1.45
준비예 2-3 1 : 3.20 : 1.95
비교준비예 2-1 1 : 2.13 : 1.83
비교준비예 2-2 1 : 3.67 : 0.50
비교준비예 2-3 1 : 3.67 : 3.67
준비예 3-1 : 항균제의 제조
은(Ag) 나노입자 및 이산화티타늄(TiO2) 나노입자를 1 : 0.87 중량비로 포함하는 혼합 나노분말을 준비하였다.
준비예 3-2 ~ 3-3 및 비교준비예 3-1 ~ 3-2
상기 준비예 3-1과 동일한 방법으로 항균제를 제조하되, 하기 표 3과 같은 조성비를 가지도록 은 나노입자 및 이산화티타늄 나노입자를 혼합하여 혼합 나노분말(항균제) 각각을 제조하였다.
구분 은 나노입자 및 이산화티타늄 나노입자 중량비
준비예 3-1 1 : 0.87
준비예 3-2 1 : 0.75
준비예 3-3 1 : 1.00
비교준비예 3-1 1 : 0.30
비교준비예 3-2 1 : 1.20
준비예 4-1 : 강도보강제의 제조
600 m2/g ~ 1,500 m2/g의 비표면적 및 1 nm ~ 50 nm 크기를 가지는 에어로겔(Talc)과 납석을 1 : 0.78 중량비로 혼합한 혼합분말을 제조하여 강도보강제로서 준비하였다.
실시예 1 : 기능성 친환경 파티클 보드 제조용 억연성 바인더의 제조
물에 멜라민 수지를 첨가하고, 준비예 1-1의 난연제를 첨가한 후, 난연보조제로서 황산암모늄을 첨가하였다. 이후 준비예 2-1의 억연제, 준비예 3-1의 항균제, 준비예 4-1의 강도보강제, 방습제인 파라핀 왁스, 인산 아크릴계 커플링제, 방부제인 황산구리 및 침투제로서 알킬석시네이트를 하기 표 3의 조성비로 첨가한 후, 1,200 rpm 교반 속도로 20분간 교반하여 교반물을 제조하였다.
다음으로, 상기 교반물을 22℃ ~ 23℃의 암실에서 8시간 동안 방치하여 숙성시켜서 억연성 바인더를 제조하였다.
비교예 1
기능성 친환경 파티클 보드 제조용 바인더로서 멜라민 수지(잔류 포름알데히드 0.1 중량% 포함, 태양합성사 제품)을 준비하였다.
실시예 2 ~ 3 및 비교예 2 ~ 3
상기 실시예 1과 동일한 방법으로 억연성 바인더를 제조하되, 난연제로서 준비예 1-1의 난연제 대신 하기 표 4와 같이 준비예 1-2 ~ 1-3 및 비교준비예 1-1 ~ 1-2의 난연제를 사용하여 억연성 바인더를 각각 제조하여, 실시예 2 ~ 3 및 비교예 1 ~ 2를 실시하였다.
실시예 4 ~ 5 및 비교예 4 ~ 7
상기 실시예 1과 동일한 방법으로 억연성 바인더를 제조하되, 난연제 또는 난연보조제 사용량을 달리하여 억연성 바인더를 각각 제조하여, 실시예 4 ~ 5 및 비교예 4 ~ 7를 하기 표 5와 같이 실시하였다.
구분 (중량%) 실시예 1 실시예 2 실시예 3 비교예 2 비교예 3
10.830 10.830 10.830 10.830 10.830
난연제 준비예 1-1 23.364 - - - -
준비예 1-2 - 23.364 - - -
준비예 1-3 - - 23.364 - -
비교준비예 1-1 - - - 23.364 -
비교준비예 1-2 - - - - 23.364
난연보조제 황산암모늄 1.011 1.011 1.011 1.011 1.011
억연제 준비예 2-1 0.722 0.722 0.722 0.722 0.722
준비예 2-2 - - - - -
준비예 2-3 - - - - -
비교준비예 2-1 - - - - -
비교준비예 2-2 - - - - -
비교준비예 2-3 - - - - -
항균제 준비예 3-1 2.120 2.120 2.120 2.120 2.120
강도보강제 준비예 4-1 0.722 0.722 0.722 0.722 0.722
방습제 파라핀왁스 0.800 0.800 0.800 0.800 0.800
커플링제 인산아크릴계 커플링제 0.870 0.870 0.870 0.870 0.870
방부제 황산구리 1.011 1.011 1.011 1.011 1.011
침투제 알킬석시네이트 0.910 0.910 0.910 0.910 0.910
접착 수지 멜라민 수지 나머지 잔량 (합 100 중량%)
구분 (중량%) 실시예 4 실시예 5 비교예 4 비교예 5 비교예 6 비교예 7
10.830 10.830 10.830 10.830 10.830 10.830
난연제 준비예 1-1 21.580 24.475 18.822 27.050 23.364 23.364
난연보조제 황산암모늄 1.011 1.011 1.011 1.011 0.38 2.510
억연제 준비예 2-1 0.722 0.722 0.722 0.722 0.722 0.722
항균제 준비예 3-1 2.120 2.120 2.120 2.120 2.120 2.120
강도보강제 준비예 4-1 0.722 0.722 0.722 0.722 0.722 0.722
방습제 파라핀왁스 0.800 0.800 0.800 0.800 0.800 0.800
커플링제 인산아크릴계 커플링제 0.870 0.870 0.870 0.870 0.870 0.870
방부제 황산구리 1.011 1.011 1.011 1.011 1.011 1.011
침투제 알킬석시네이트 0.910 0.910 0.910 0.910 0.910 0.910
접착 수지 멜라민 수지 나머지 잔량 (합 100 중량%)
실시예 6 ~ 7 및 비교예 8 ~ 10
상기 실시예 1과 동일한 방법으로 억연성 바인더를 제조하되, 난연제로서 준비예 1-1의 난연제 대신 하기 표 6 및 표 7과 같이 준비예 2-2 ~ 2-3 및 비교준비예 2-1 ~ 2-3의 난연제를 사용하여 억연성 바인더를 각각 제조하여, 실시예 6 ~ 7 및 비교예 8 ~ 10을 각각 실시하였다.
구분 (중량%) 실시예 6 실시예 7 비교예 8 비교예 9 비교예 10
10.830 10.830 10.830 10.830 10.830
난연제 준비예 1-1 23.364 23.364 23.364 23.364 23.364
난연보조제 황산암모늄 1.011 1.011 1.011 1.011 1.011
억연제 준비예 2-1 - - - - -
준비예 2-2 0.722 - - - -
준비예 2-3 - 0.722 - - -
비교준비예 2-1 - - 0.722 - -
비교준비예 2-2 - - - 0.722 -
비교준비예 2-3 - - - - 0.722
항균제 준비예 3-1 2.120 2.120 2.120 2.120 2.120
강도보강제 준비예 4-1 0.722 0.722 0.722 0.722 0.722
방습제 파라핀왁스 0.800 0.800 0.800 0.800 0.800
커플링제 인산아크릴계 커플링제 0.870 0.870 0.870 0.870 0.870
방부제 황산구리 1.011 1.011 1.011 1.011 1.011
침투제 알킬석시네이트 0.910 0.910 0.910 0.910 0.910
접착 수지 멜라민 수지 나머지 잔량 (합 100 중량%)
구분 (중량%) 실시예 8 실시예 9 비교예 11 비교예 12
10.830 10.830 10.830 10.830
난연제 준비예 1-1 23.364 23.364 23.364 23.364
난연보조제 황산암모늄 1.011 1.011 1.011 1.011
억연제 준비예 2-1 0.500 1.500 0.011 5.050
항균제 준비예 3-1 2.120 2.120 2.120 2.120
강도보강제 준비예 4-1 0.722 0.722 0.722 0.722
방습제 파라핀왁스 0.800 0.800 0.800 0.800
커플링제 인산아크릴계 커플링제 0.870 0.870 0.870 0.870
방부제 황산구리 1.011 1.011 1.011 1.011
침투제 알킬석시네이트 0.910 0.910 0.910 0.910
접착 수지 멜라민 수지 나머지 잔량 (합 100 중량%)
실시예 10 ~ 11 및 비교예 13 ~ 16
상기 실시예 1과 동일한 방법으로 억연성 바인더를 제조하되, 하기 표 8과 같이 강도보강제 및 침투제 사용량을 달리하여 억연성 바인더를 각각 제조하여, 실시예 10 ~ 11 및 비교예 13 ~ 16을 각각 실시하였다.
그리고, 비교예 15는 실시예 1과 동일한 조성 및 조성비로 제조하되, 강도보강제로서 에어로겔을 사용하지 않고 납석만을 사용하였다.
구분 (중량%) 실시예 10 실시예 11 비교예 13 비교예 14 비교예 15 비교예 16
10.830 10.830 10.830 10.830 10.830 10.830
난연제 준비예 1-1 23.364 23.364 23.364 23.364 23.364 23.364
난연보조제 황산암모늄 1.011 1.011 1.011 1.011 1.011 1.011
억연제 준비예 2-1 0.722 0.722 0.722 0.722 0.722 0.722
항균제 준비예 3-1 2.120 2.120 2.120 2.120 2.120 2.120
강도보강제 준비예 4-1 0.353 1.000 0.127 1.400 0.722 0.722
방습제 파라핀왁스 0.800 0.800 0.800 0.800 0.800 0.800
커플링제 인산아크릴계 커플링제 0.870 0.870 0.870 0.870 0.870 0.870
방부제 황산구리 1.011 1.011 1.011 1.011 1.011 1.011
침투제 알킬석시네이트 0.910 0.910 0.910 0.910 0.910 0.118
접착 수지 멜라민 수지 나머지 잔량 (합 100 중량%)
제조예 1 : 기능성 친환경 PB(Particle board)의 제조
파티클(particle) 칩(chip)을 자동혼합코팅기에 투입하고, 파티클칩 100 중량부에 대하여, 상기 실시예 1에서 제조한 바인더 40 중량부를 주입하여 혼합 침투 코팅이 되도록 10분 정도 코팅을 해주었다.
코팅이 완료된 코팅물을 상판 온도 110℃ 하판 온도는 145℃인 열판프레스에 넣고 5분 동안 50 kgf/cm2으로 열압착하여 주었다. 다음으로 열압착물을 건조기에 투입하여 3일 동안 상온(22 ~ 25℃)에서 건조시켜 기능성 친환경 PB를 제조하였다.
상기 PB 제조에 사용한 제조시설은 도 1의 A 내지 E에 나타내었다. A는 본 발명의 PB 제조를 위한 소재의 분쇄기를 나타낸 것이고, B는 건조기를 나타낸 것이며, C는 건조기 안에서 건조 상태를 나타낸 것이고, D는 PB의 재단기를 나타낸 것이며, E는 PB 코팅기를 나타낸 도면이다.
비교제조예 1
상기 제조예 1과 동일한 방법으로 PB를 제조하되, 바인더로서 실시예 1 대신 비교예 1의 바인더(태양합성사 제품)를 사용하여 PB를 제조하였다.
제조예 2 ~ 9 및 비교제조예 2 ~ 14
상기 제조예 1과 동일한 방법으로 PB를 제조하되, 바인더로서 실시예 1 대신 실시예 2 ~ 9 또는 비교제조예 2 ~ 14의 억연성 바인더 각각을 사용하여 PB를 제조함으로써, 제조예 2 ~ 제조예 9 및 비교제조예 2 ~ 14를 각각 실시하였다(표 9 참조).
구분 바인더
제조예 1 실시예 1
제조예 2 실시예 2
제조예 3 실시예 3
제조예 4 실시예 4
제조예 5 실시예 5
제조예 6 실시예 6
제조예 7 실시예 7
제조예 8 실시예 8
제조예 9 실시예 9
제조예 10 실시예 10
제조예 11 실시예 11
비교제조예 1 비교예 1
비교제조예 2 비교예 2
비교제조예 3 비교예 3
비교제조예 4 비교예 4
비교제조예 5 비교예 5
비교제조예 6 비교예 6
비교제조예 7 비교예 7
비교제조예 8 비교예 8
비교제조예 9 비교예 9
비교제조예 10 비교예 10
비교제조예 11 비교예 11
비교제조예 12 비교예 12
비교제조예 13 비교예 13
비교제조예 14 비교예 14
비교제조예 15 비교예 15
비교제조예 16 비교예 16
실험예 1 : 항균성 측정
상기 제조예 및 비교제조예에서 제조한 PB의 항균성을 한국건설생활환경시험연구원에 의뢰하여 측정하였으며, 항균성 측정은 KCL-FiR-1003;2011 준용 시험하였으다.
비교제조예 1의 점균 감소율은 대장균, 황색포도상구균, 폐렴균 모두 99.9%이며, 본 발명의 기능성 친환경 PB인 제조예 1 역시 대장균 99.9%, 황색포도상구균 99.9%, 폐렴균 99.9%로 거의 동일한 항균도 측정 결과를 보였으며, 비교제조예 1과 거의 동일하게 나타났다.
또한, 제조예 2 ~ 3, 제조예 6 ~ 9, 비교제조예 2 ~ 3, 비교제조예 8 ~ 12에 대한 항균도 측정 결과를 하기 표 10에 나타내었다.
구분 세균감소율(%)
대장균 황색포도상구균 폐렴균
제조예 1 99.9 99.9 99.9
제조예 2 99.8 99.9 99.9
제조예 3 99.9 99.8 99.9
제조예 6 99.9 99.8 99.9
제조예 7 99.9 99.9 99.8
제조예 8 99.9 99.8 99.9
제조예 9 99.9 99.9 99.8
비교제조예 1 99.9 99.9 99.9
비교제조예 2 99.9 99.9 99.9
비교제조예 3 99.8 99.9 99.8
비교제조예 8 99.9 99.9 99.8
비교제조예 9 99.9 99.9 99.9
비교제조예 10 99.9 99.9 99.9
비교제조예 11 99.9 99.9 99.9
비교제조예 12 99.9 99.9 99.9
제조예 및 비교제조예의 PB 모두 우수한 항균성을 가지는 것을 확인할 수 있었다(상기 표 10 참조).그러나, 비교제조예 1의 PB 제조시 작업하기가 어렵고, 눈, 코, 목 등에 통증을 느낄 정도였다. 일반적으로 포름알데히드의 수용액은 소독제, 살균제, 방부제로 시중에 판매되고 있는데, 비교제조예 1에서 사용한 바인더인 멜라민 수지는 포름알데히드가 0.1%(1,000 ppm)의 매우 높은 농도였으며, 이로 인해 높은 항균도를 가지는 것으로 판단된다. 멜라민 수지 내 잔류 포름알데히드는 인체에 대한 독성이 매우 강하여 노출되면 질병증상이 나타나는 것으로 보고 되고 있으며, 잔류 포름알데히드 농도가 0.1ppm 이하의 경우에는 눈, 코, 목에 자극이 오고, 0.25 ~ 0.5ppm인 경우에는 호흡기 장애 등의 치명적 영향을 미친다고 한다. 이와 관련하여 하기와 같이 포름알데히드 방산량 기준, 친환경 자재 기준을 정하여 법으로 규제를 하고 있으며, 그 기준은 하기 표 11과 같다.
(super) seo 0.3mg/l 이하, 포름알데히드 방산량이 가장 적은 최상급 자재등급.
E0 0.5mg/l 이하, 중·상급 자재
E1 1.5mg/l 이하, 실내가구 사용 기본등급
E2 5mg/l 이하, 실내가구 사용 불가등급
실험예 2 : 곰팡이 저항성 및 저항력 실험
상기 제조예 및 비교제조예에서 제조한 PB의 곰팡이 저항성 및 저항력을 한국건설생활환경시험연구원에 의뢰하여 측정하였으며, 곰팡이 저항성은 ASTM G21-15, 곰팡이 저항력은 ASTM D6329-98(2015)에 따라 준용 시험하였다
비교제조예 1의 곰팡이 저항성은 0등급으로 우수한 결과를 하며, 곰팡이 저항력은 1.0 이하로 양호하게 나타났다. 또한, 제조예 1의 PB 역시 곰팡이 저항성 0등급, 곰팡이 저항력은 1.0 이하로 우수한 결과를 보였다. 이때, 곰팡이 저항성 등급의 기준치는 0 ~ 4 등급이다.
비교제조예 1이 별도의 항균제 없이도 우수한 곰팡이 저항성 및 저항력을 가진 결과를 보인 것은 실험예 1의 항균력 실험과 같이 비교제조예 1의 PB 제조에 사용된 바인더 내 잔류하고 있는 포름알데히드의 높은 농도로 인한 것으로 판단된다.
또한, 제조예 2 ~ 3, 제조예 6 ~ 9, 비교제조예 2 ~ 3, 비교제조예 8 ~ 12에 대한 항균도 측정 결과를 하기 표 12에 나타내었다.
구분 곰팡이 저항성(4주 후) 곰팡이 저항력(log 값) 곰팡이 포자수(CFU/plate)
제조예 1 0 등급 1.0 < 10
제조예 2 0 등급 1.0 < 10
제조예 3 0 등급 1.0 < 10
제조예 6 0 등급 1.0 < 10
제조예 7 0 등급 1.0 < 10
제조예 8 0 등급 1.0 < 10
제조예 9 0 등급 1.0 < 10
비교제조예 1 0 등급 1.0 < 10
비교제조예 2 0 등급 1.0 < 10
비교제조예 3 0 등급 1.0 < 10
비교제조예 8 0 등급 1.0 < 10
비교제조예 9 0 등급 1.0 < 10
비교제조예 10 0 등급 1.0 < 10
비교제조예 11 0 등급 1.0 < 10
비교제조예 12 0 등급 1.0 < 10
실험예 3 : 난연(방염)성 측정
제조예 및 비교제조예에서 제조한 PB의 난연성을 한국건설생활환경시험연구원에 의뢰하여 측정하였고, 이때, 국민 안전처 고시 제 2016-138호 시험 기준에 따라 측정하였다.
그리고, 제조예 1 ~ 7 및 비교제조예 1 ~ 10에 대한 측정 결과를 하기 표 13에 나타내었다. 하기 표 13의 탄화 길이, 탄화 면적, 잔염 시간 및 잔신 시간은 각 샘플에 대해 3번 측정한 평균값을 나타낸 것이다.
구분 탄화 길이(cm) 탄화 면적(cm2) 잔염 시간(초) 잔신 시간(초)
제조예 1 6.0 22.3 0 0
제조예 2 6.9 24.4 1 3
제조예 3 5.7 21.1 0 0
제조예 4 7.1 26.9 2 4
제조예 5 5.5 20.2 0 0
제조예 6 6.2 22.7 1 0
제조예 7 6.3 22.6 0 0
제조예 8 6.4 22.7 1 0
제조예 9 5.8 21.5 0 0
비교제조예 1 19.7 55.8 13 22
비교제조예 2 12.8 38.2 3 8
비교제조예 3 5.6 20.9 0 0
비교제조예 4 15.3 42.3 10 17
비교제조예 5 5.5 20.4 0 0
비교제조예 6 9.6 32.1 3 6
비교제조예 7 5.9 22.5 0 0
비교제조예 8 6.3 22.9 0 0
비교제조예 9 6.7 23.5 0 1
비교제조예 10 7.1 24.0 1 1
비교제조예 11 6.4 22.8 1 1
비교제조예 12 5.8 21.4 0 0
[난연성 합격 기준치]*탄화길이 : 20 cm 이내 / *탄화면적 : 50 cm2 이내 *잔염시간 : 10 초 이내 / *잔신시간 : 30 초 이내
상기 표 13의 측정 결과를 살펴보면, 제조예 1 내지 제조예 3을 비교할 때, 난연제 성분 중 폴리인산암모늄 부피비가 감소하면 난연성이 다소 감소하는 경향이 있었고, 폴리인산암모늄 부피비가 증가하면 난연성이 다소 증가하는 경향을 보였다.
이에 반해, 기존 바인더를 사용한 PB인 비교제조예 1은 탄화길이와 잔염시간이 기준치를 만족시키지 못하는 문제가 있었다.
그리고, 난연제로서 실란 코팅 폴리인산암모늄 1 부피비에 대해 폴리인산암모늄을 1.5 부피비 미만으로 사용한 바인더로 제조한 비교제조예 2의 경우, 제조예 2와 비교할 때, 난연성이 크게 떨어지는 경향이 있으며, 폴리인산암모늄을 3.0 부피비를 초과한 바인더로 제조한 비교제조예 3의 경우, 제조예 3과 비교할 때 난연성 증대 효과가 거의 없었다.
또한, 난연제를 20 중량% 미만으로 사용한 바인더로 제조한 비교제조예 4의 경우, 제조예 1 및 제조예 4와 비교할 때, 난연성이 급격하게 감소하는 문제가 있으며, 난연제를 25 중량% 초과하여 사용한 바인더로 제조한 비교제조예 5의 경우, 제조예 1 및 제조예 5와 비교할 때, 난연성 증대 효과가 없는 결과를 보였다.
또한, 난연보조제를 0.5 중량% 미만으로 사용한 바인더로 제조한 비교제조예 6의 경우, 제조예 1과 비교할 때, 난연성이 감소하는 문제를 보였고, 난연보조제를 2.0 중량% 초과하여 사용한 바인더로 제조한 비교제조예 7의 경우, 제조예 1과 비교할 때, 난연성 증대 효과가 없는 결과를 보였다.
그리고, 비교제조예 8 ~ 10의 경우, 제조예 6 ~ 7과 비교할 때, 난연성에 큰 차이는 없는 결과를 보였다.
또한, 제조예 1, 제조예 8 ~ 9 및 비교제조예 11 ~ 12를 비교해볼 때, 억연제 사용으로 인한 난연성이 약간 증대하는 효과가 있는 것으로 판단되나, 억연제 투여량을 볼 때 의미 있는 난연성 증대 변화는 매우 미세한 것으로 판단된다.
실험예 4 : 연기 밀도의 복사열(Non-Flaming)과 직화열(Flaming) 측정을 통한 억연 효과 측정
제조예 및 비교제조예의 PB에 대한 억연 효과를 확인하기 위하여, PB의 연기밀도에 따른 복사열 및 직화열을 측정하는 실험을 한국건설생활환경시험연구원에 의뢰하여 수행하였다. 이때, 복사열 및 직화열 시험방법은 소방청 고시 제 2017-1호에 준용 시험하였다.
또한, 제조예 1 ~ 3, 제조예 6 ~ 9, 비교제조예 2 ~ 3, 비교제조예 8 ~ 10의 측정 결과를 하기 표 14에 나타내었다.
구분 복사열에 대한최대 연기밀도 직화열에 대한최대 연기밀도
제조예 1 262 286
제조예 2 268 292
제조예 3 256 275
제조예 6 275 302
제조예 7 257 278
제조예 8 288 316
제조예 9 223 247
비교제조예 2 295 339
비교제조예 3 263 310
비교제조예 8 337 376
비교제조예 9 359 414
비교제조예 10 277 304
비교제조예 11 410 453
비교제조예 12 219 240
[최대 연기밀도 합격 기준치]* 복사열에 대한 최대 연기밀도 400 미만 * 직화열에 대한 최대 연기밀도 400 미만
상기 표 14의 측정 결과를 살펴보면, 제조예의 경우, 복사열 및 직화열에 대한 연기밀도가 기준치 보다 매우 낮은 결과를 보였다. 또한, 비교제조예 2 ~ 3 역시 제조예 1 등과 비교할 때, 연기밀도의 차이가 크지 않았다. 이에 반해, 붕산 대비 탄산아연을 2.5 중량비 미만으로 사용한 억연제를 사용한 바인더로 제조한 비교제조예 8의 PB는 제조예 1 및 제조예 6과 비교할 때, 합격 기준치는 만족하나, 복사열 및 직화열에 대한 연기밀도가 급격하게 증대하는 문제를 보였다.
또한, 붕산 대비 수산화마그네슘을 0.5 중량비 미만으로 사용한 바인더로 제조한 비교제조예 9의 PB는 복사열에 대한 연기밀도가 매우 높을 뿐만 아니라, 직화열에 대한 연기밀도가 기준치를 초과하는 문제가 있었다.
그리고, 붕산 대비 수산화마그네슘을 2.5 중량비 초과하여 사용한 억연제를 사용한 바인더로 제조한 비교제조예 10의 PB는 제조예 1 및 제조예 7과 비교할 때, 억연 효과 증대가 없는 결과를 보였다.
또한, 억연제를 0.011 중량% 미량으로 포함하는 바인더로 제조한 비교제조예 11의 경우, 제조예 8과 비교할 때, 급격하게 연기밀도가 증가하여 억연성이 거의 없는 문제가 있음을 확인할 수 있으며, 억연제를 5 중량% 초과하여 사용한 비교제조예 12의 경우, 제조예 9와 비교할 때, 억연제를 3배 이상 더 사용했음에도 억연 효과 증대가 크게 없었다.
실험예 5 : 총휘발성유기화합물(TVOC), 톨루엔(Toluene), 포름알데히드(Formaldehyde)의 제거율 측정
제조예 및 비교제조예의 PB에 대한 TVOC, 톨루엔, 포름알데히드의 제거율을 실내공기질 공정시험기준(환경부 고시 제2017-11호)에 준용하여 측정하였고, 그 결과를 하기 표 15에 나타내었다. 그리고, 표 15의 제거율은 비교제조예 1의 PB를 TVOC, 톨루엔 및 포름알데히드 측정값을 기준으로 하기 방정식 1에 의거하여 측정한 것이다.
[방정식 1]
제거율(%) = {(비교제조예 1의 측정값 - 샘플의 측정값)/(비교제조예 1의 측정값)} × 100(%)
참고로, 환경산업기술원의 사무용 책걸상, 학생용 책걸상, 사무실 칸막이 등의 기준치를 하기 표 16에 나타내었다.
구분 TVOC 톨루엔 포름알데히드
측정값(mg/(m2,h)) 제거율(%) 측정값(mg/(m2,h)) 제거율(%) 측정값 (mg/(m2,h)) 제거율(%)
비교제조예 1 0.350 - 0.001 - 0.885 -
제조예 1 0.089 75.0 불검출 100 0.038 96.0
제조예 2 0.094 73.2 불검출 100 0.522 94.1
제조예 3 0.079 77.5 불검출 100 0.021 97.6
제조예 6 0.095 72.8 0.0001 0.056 93.7
제조예 7 0.077 78.1 불검출 100 0.028 96.8
제조예 8 0.102 70.9 0.001 - 0.097 89.0
제조예 9 0.081 76.9 불검출 100 0.030 96.6
비교제조예 2 0.087 75.2 불검출 100 0.027 96.9
비교제조예 3 0.088 74.9 0.0001 90 0.065 92.6
비교제조예 4 0.136 61.2 0.0001 90 0.111 87.5
비교제조예 5 0.072 79.5 불검출 100 0.027 96.9
비교제조예 8 0.090 74.3 불검출 100 0.034 96.2
비교제조예 9 0.085 75.8 불검출 100 0.040 95.5
비교제조예 10 0.090 74.3 불검출 100 0.094 89.4
비교제조예 11 0.152 56.6 0.0002 80 0.143 83.8
비교제조예 12 0.080 77.1 불검출 100 0.031 96.5
비교제조예 15 0.145 58.5 0.0005 50 0.254 71.3
비교제조예 16 0.126 63.9 0.0002 80 0.181 79.6
총휘발성유기화합물(TVOC) 0.4 mg/(m2,h)
톨루엔 0.080 mg/(m2,h)
포름알데히드 0.12 mg/(m2,h)
상기 표 15를 살펴보면, 제조예 및 비교제조예 모두 비교제조예 1과 비교할 때, 매우 우수한 TVOC, 톨루엔, 포름알데히드 제거 효과를 보임을 확인할 수 있었다.
제조예 1과 비교할 때, 바인더의 난연제 내 폴리인산암모늄 비율이 낮은 바인더를 사용한 비교제조예 2의 경우, 제조예 1 보다 포름알데히드 제거율이 증가한 결과를 보였는데, 이는 제조예 1과 비교할 때, 실란 코팅 폴리인산암모늄으로 인해 PB 내 조성간 결합력이 증대되어 PB로부터 방산되는 포름알데히드 양이 감소한 결과로 판단된다. 그리고, 제조예 1과 비교할 때, 바인더의 난연제 내 상대적으로 폴리인산암모늄 비율이 높은 바인더로 제조한 비교제조예 3의 경우, 제조예 1 보다 포름알데히드 제거율이 다소 감소된 결과를 보였다. 그러나, 비교제조예 2 ~ 3 모두 전반적으로 우수한 TVOC, 톨루엔 및 포름알데히드 제거율을 보였다.
난연제를 20 중량% 미만으로 사용한 바인더로 제조한 비교제조예 4의 경우, 제조예 1과 비교할 때, TVOC 제거율 및 포름알데히드 제거율이 급감하는 경향을 보였다.
그리고, 비교제조예 8 ~ 9의 경우, 제조예 1과 비교할 때, 유사한 제거율을 보였으며, 다만, 억연제 내 수산화마그네슘 중량비가 다소 높았던 비교제조예 10의 경우, 포름알데히드 제거율이 급격하게 감소하는 결과를 보였다. 그러나, 비교제조예 1과 비교할 때 우수한 포름알데히드 제거율을 보였다.
또한, 제조예 1, 제조예 8 ~ 9 및 비교제조예 11 ~ 12를 비교해보면 PB 제조에 사용된 바인더 내 억연제 함량에 따라 TVOC, 포름알데히드 제거율에 영향을 미침을 확인할 수 있으며, 즉 억연제 함량이 증가할수록 TVOC, 포름알데히드 제거율이 증가하는 경향을 보였다. 다만, 제조예 9 및 비교제조예 12를 비교할 때, 억연제 함량이 높다고 해서 비례적으로 TVOC, 포름알데히드 제거율이 증가하는 것은 아님을 확인할 수 있었다.
이에 반해, 강도보강제로서 납석으로만 구성된 바인더를 사용한 비교제조예 13 및 침투제를 0.2 중량% 미만으로 사용한 바인더로 제조한 비교제조예 14의 경우, 제조예 1 등과 비교할 때, TVOC 제거율 및 포름알데히드 제거율이 크게 감소하는 문제를 보였다.
실험예 6 : 평면 인장강도 측정
제조예 1, 제조예 10 ~ 11 및 비교제조예 11 ~ 16의 PB에 대한 평면 인장강도를 한국건설생활환경시험연구원에 의뢰하여 측정하였고, 측정방법은 KSF 3104:2016 준용하여 측정하였다. 그리고, 제조예 1, 제조예 5, 제조예 10 ~ 11, 비교제조예 5, 비교제조예 13 ~ 16에서 제조한 PB의 평면 인장강도 측정 결과를 하기 표 17에 나타내었다. 그리고, 상대 인장강도 감소율은 하기 방정식 2에 의거하여 계산한 것이다.
[방정식 2]
상대 인장강도 감소율(%) = {(제조예 1의 평면 인장강도 - 샘플의 평면 인장강도)/(제조예 1의 평면 인장강도)} × 100(%)
방정식 2에서 제조예 1의 평면 인장강도는 1.1 MPa이다.
여기서, 평면 인장강도 시험이란, 파티클 보드가 응력을 받을 때의 특성을 측정하는 것으로, 시표의 표면에 균등하게 분포된 인장력을 가하여 파단이 일어날 때까지 시편 맨 바깥 표면에 대해 수직으로 저항하는 힘을 측정하는 수직 인장 시험을 의미한다. 그리고, PB의 법적 기준치는 0.4MPa 이상이며, 평면 인장강도가 1.1 MPa인 제조예 1은 법적 기준치 보다 약 2.75배 정도 더 높은 결과를 보였다.
구분 상대 평면 인장강도 감소율
제조예 1 100.00%
제조예 5 99.82%
제조예 8 100.73%
제조예 9 99.97%
제조예 10 98.57%
제조예 11 101.12%
비교제조예 5 97.80%
비교제조예 11 100.88%
비교제조예 12 96.64%
비교제조예 13 93.20%
비교제조예 14 101.40%
비교제조예 15 102.20%
비교제조예 16 95.72%
표 16의 측정결과를 살펴보면, 난연제를 25 중량% 초과하여 사용한 바인더로 제조한 비교제조예 5의 경우, 제조예 1 및 제조예 5(난연제 24.475중량% 사용)와 비교할 때, 난연효과 차이는 없었으나(표 12참조), 평면 인장강도가 약 2.0% 정도 급격하게 감소하는 문제를 보였다.그리고, 강도보강제를 0.30 중량% 미만인 바인더로 제조한 비교제조예 11의 경우, 제조예 1 및 제조예 10과 비교할 때, 평면 인장강도가 급격하게 떨어졌으며, 강도보강제를 1.20 중량% 초과한 바인더로 제조한 비교제조예 14의 경우, 제조예 1 및 제조예 11과 비교할 때, 평면 인장강도 증대 효과가 미비하였다.
그리고, 강도보강제로서 납석으로만 구성된 바인더를 사용한 비교제조예 15의 경우, 제조예 1 보다 다소 증가했으나, TVOC 등의 감소 효과를 감안할 때(표 16 참조), 강도보강제로서 에어로겔을 납석과 혼합 사용하는 것이 전체적인 물성 측면에서 유리함을 확인할 수 있었다.
또한, 침투제를 0.2 중량% 미만으로 사용한 바인더로 제조한 비교제조예 16의 경우, 제조예 1과 비교할 때, 평면 인장강도가 4% 이상 감소하는 문제가 있음을 확인할 수 있었다.
또한, 제조예 1, 제조예 8 ~ 9 및 비교제조예 11을 비교할 때, 바인더 내 억연제 함량이 PB의 평면 인장강도에 큰 영향을 주지는 않았다. 다만, 바인더 내 억연제를 과량 사용한 바인더로 제조한 PB인 비교제조예 12의 경우, 제조예 9와 비교할 때, 평면 인장강도가 크게 감소하는 경향을 보였다.
상기 실시예 및 실험예를 통하여, 본 발명의 억연성 바인더 조성물 및 이로 제조한 억연성 바인더가 우수한 항균성, 항곰팡이성, 살균성, 소취성, 인장강도, 파열강도 및 휨강도를 가지고, 포름알데히드 등의 발산을 방지 및/또는 최소화할 뿐만 아니라 우수한 억연성 및 난연성을 지닌 파티클 보드에 제조하기에 적합함을 확인할 수 있었다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변경이 가능 하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예 및 실험 예들은 모든 면에서 예시적인 것이며, 한정적이 아닌 것으로 이해해야만 한다.

Claims (9)

  1. 붕산, 탄산아연 및 수산화마그네슘 중에서 선택된 2종 이상을 가공하여 제조한 결정을 포함하는 억연제; 물; 및 멜라민 수지;를 포함하는 것을 특징으로 하는 기능성 친환경 파티클 보드 제조용 억연성 바인더 조성물.
  2. 제1항에 있어서, 상기 결정은 붕산, 탄산아연 및 수산화마그네슘을 1 : 3.0 ~ 4.5 : 1.4 ~ 2.0 중량비로 가공한 것을 특징으로 하는 기능성 친환경 파티클 보드 제조용 억연성 바인더 조성물.
  3. 제1항에 있어서, 상기 억연제는
    붕산 포화 수용액을 제조하는 1단계;
    붕산 포화 수용액을 가열한 후, 가열된 붕산 포화 수용액에 탄산아연 및 수산화마그네슘을 용해시킨 다음 끓이는 2단계; 및
    냉각 및 여과한 후, 여과물을 건조시켜 백색 결정을 수득하는 3단계;
    를 포함하는 공정을 수행하여 제조한 결정을 포함하는 것을 특징으로 하는 기능성 친환경 파티클 보드 제조용 억연성 바인더 조성물.
  4. 제1항에 있어서, 상기 억연제 0.1 ~ 5.0 중량%, 물 10 ~ 15 중량% 및 잔량의 멜라민 수지를 포함하는 것을 특징으로 하는 기능성 친환경 파티클 보드 제조용 억연성 바인더 조성물.
  5. 제1에 있어서, 난연제, 난연보조제, 강도보강제, 방습제, 항균제, 커플링제, 방부제 및 침투제 중에서 선택된 1종 이상을 더 포함하는 것을 특징으로 하는 기능성 친환경 파티클 보드 제조용 억연성 바인더 조성물.
  6. 제5항에 있어서, 억연제 0.1 ~ 5.0 중량%, 난연제 20 ~ 25 중량%, 난연보조제 0.5 ~ 2.0 중량%, 강도보강제 0.3 ~ 1.2 중량%, 방습제 0.5 ~ 2.0 중량%, 항균제 1.0 ~ 3.0 중량%, 커플링제 0.3 ~ 1.2 중량%, 방부제 0.05 ~ 1.2 중량%, 침투제 0.2 ~ 1.0 중량, 물 10 ~ 15 중량% 및 잔량의 멜라민 수지를 포함하는 것을 특징으로 하는 기능성 친환경 파티클 보드 제조용 억연성 바인더 조성물.
  7. 제1항 내지 제6항 중에서 선택된 어느 한 항의 조성물을 준비하는 1단계;
    상기 조성물을 혼합한 후, 800 rpm ~ 1,500 rpm의 교반 속도로 10 ~ 30분간 교반하여 교반물을 제조하는 2단계; 및
    상기 교반물을 20℃ ~ 35℃의 암실에서 6 ~ 12 시간 동안 숙성시키는 3단계;를 포함하는 공정을 수행하는 것을 특징으로 하는 기능성 친환경 파티클 보드 제조용 억연성 바인더의 제조방법.
  8. 제1항 내지 제6항 중에서 선택된 어느 한 항의 조성물을 혼합한 혼합물의 숙성물을 포함하는 것을 특징으로 기능성 친환경 파티클 보드 제조용 억연성 바인더.
  9. 제8항의 억연성 바인더로 파티클 칩(particle chip)을 침투 코팅시킨 코팅물의 열압착물을 포함하는 것을 특징으로 하는 파티클 보드.
PCT/KR2019/011142 2019-01-25 2019-08-30 기능성 친환경 파티클 보드 제조용 억연성 바인더 조성물, 이를 이용하여 제조한 억연성 바인더 및 이의 제조방법 WO2020153563A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0009674 2019-01-25
KR1020190009674A KR101997644B1 (ko) 2019-01-25 2019-01-25 기능성 친환경 파티클 보드 제조용 억연성 바인더 조성물, 이를 이용하여 제조한 억연성 바인더 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2020153563A1 true WO2020153563A1 (ko) 2020-07-30

Family

ID=67261495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011142 WO2020153563A1 (ko) 2019-01-25 2019-08-30 기능성 친환경 파티클 보드 제조용 억연성 바인더 조성물, 이를 이용하여 제조한 억연성 바인더 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR101997644B1 (ko)
WO (1) WO2020153563A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114516100A (zh) * 2022-02-15 2022-05-20 江山花木匠家居有限公司 一种阻燃胶合板及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101997644B1 (ko) * 2019-01-25 2019-07-09 (주)영신에프앤에스 기능성 친환경 파티클 보드 제조용 억연성 바인더 조성물, 이를 이용하여 제조한 억연성 바인더 및 이의 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256013A (ja) * 1993-02-26 1994-09-13 Hakusui Chem Ind Ltd 硼酸亜鉛の製造方法
KR20130074504A (ko) * 2011-12-26 2013-07-04 동화홀딩스 주식회사 포름알데히드의 방산이 억제된 파티클 보드용 친환경 페놀수지의 제조방법
KR101604217B1 (ko) * 2015-12-26 2016-03-21 김금환 난연성과 방습성이 향상된 목재보드 및 그 제조방법
KR101706226B1 (ko) * 2016-04-18 2017-02-14 지에스산건 주식회사 방염패널 제조방법
KR101858939B1 (ko) * 2018-03-20 2018-06-27 이종현 접착성이 향상된 마루바닥재의 제조방법
KR101997644B1 (ko) * 2019-01-25 2019-07-09 (주)영신에프앤에스 기능성 친환경 파티클 보드 제조용 억연성 바인더 조성물, 이를 이용하여 제조한 억연성 바인더 및 이의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256013A (ja) * 1993-02-26 1994-09-13 Hakusui Chem Ind Ltd 硼酸亜鉛の製造方法
KR20130074504A (ko) * 2011-12-26 2013-07-04 동화홀딩스 주식회사 포름알데히드의 방산이 억제된 파티클 보드용 친환경 페놀수지의 제조방법
KR101604217B1 (ko) * 2015-12-26 2016-03-21 김금환 난연성과 방습성이 향상된 목재보드 및 그 제조방법
KR101706226B1 (ko) * 2016-04-18 2017-02-14 지에스산건 주식회사 방염패널 제조방법
KR101858939B1 (ko) * 2018-03-20 2018-06-27 이종현 접착성이 향상된 마루바닥재의 제조방법
KR101997644B1 (ko) * 2019-01-25 2019-07-09 (주)영신에프앤에스 기능성 친환경 파티클 보드 제조용 억연성 바인더 조성물, 이를 이용하여 제조한 억연성 바인더 및 이의 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114516100A (zh) * 2022-02-15 2022-05-20 江山花木匠家居有限公司 一种阻燃胶合板及其制备方法

Also Published As

Publication number Publication date
KR101997644B1 (ko) 2019-07-09

Similar Documents

Publication Publication Date Title
WO2020153562A1 (ko) 기능성 친환경 파티클 보드 제조용 항균성 및 항곰팡이성 바인더 조성물, 이를 이용하여 제조한 항균성 및 항곰팡이성 바인더 및 이의 제조방법
WO2020153563A1 (ko) 기능성 친환경 파티클 보드 제조용 억연성 바인더 조성물, 이를 이용하여 제조한 억연성 바인더 및 이의 제조방법
KR101604217B1 (ko) 난연성과 방습성이 향상된 목재보드 및 그 제조방법
RU2350636C2 (ru) Огнезащитная смесь для лигноцеллюлозных композитов
WO2019132097A1 (ko) 기능성 친환경 파티클보드 제조용 난연성 조성물 및 이의 제조방법
WO2015182920A1 (ko) 목재용 수용성 방염조성물과 방염처리방법
WO2014015818A1 (zh) 一种环保型建材及其制备方法
WO2020153564A1 (ko) 기능성 친환경 파티클 보드 제조용 난연성 바인더 조성물, 이를 이용하여 제조한 난연성 바인더 및 이의 제조방법
CN102864893A (zh) 一种双层复合木地板及其制备方法
US7858005B2 (en) Method for the production of fire-resistant wood fiber moldings
CN111333402B (zh) 一种环保防火内墙材料的制备方法
KR101774507B1 (ko) 기능성 친환경 건축재
KR101995393B1 (ko) 기능성 친환경 파티클 보드 조성물, 이를 이용하여 제조한 기능성 친환경 파티클 보드 및 이의 제조방법
CN111377704B (zh) 一种阻燃刨花板的制备方法
CN108972785A (zh) 木材环保无醛阻燃剂
JP2014144540A (ja) 木材の耐火性付与方法
CN1465646A (zh) 环保型木质素阻燃粘合剂
KR102007882B1 (ko) 항균, 항곰팡이 및 방염 성능을 갖는 강마루판 및 이의 제조방법
WO2023182845A1 (ko) 고농도 붕소 및 페놀수지 화합물을 이용한 목재 및 목질재료용 난연제 조성물, 이를 이용한 난연목재 또는 난연목질재료, 및 그 제조방법
WO2015147585A1 (ko) 건축용 보드 제조용 무기조성물 및 이를 이용한 건축용 보드 제조방법
KR102119860B1 (ko) 난연성 펄프보드
JP2808386B2 (ja) 防燃性銘木化粧シート、これを貼着して成る防燃性銘木化粧板、およびこれらの製造方法
CN109196059B (zh) 生产主要用于建筑产品的防火浸渍物质的方法、防火浸渍物质和其用途
CN111019219A (zh) 一种阻燃木塑表层复合物及具有该阻燃木塑表层复合物的木塑复合材料的制备方法
KR100499342B1 (ko) 불연성 보드 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911117

Country of ref document: EP

Kind code of ref document: A1