WO2020153530A1 - Plastic valve - Google Patents

Plastic valve Download PDF

Info

Publication number
WO2020153530A1
WO2020153530A1 PCT/KR2019/005452 KR2019005452W WO2020153530A1 WO 2020153530 A1 WO2020153530 A1 WO 2020153530A1 KR 2019005452 W KR2019005452 W KR 2019005452W WO 2020153530 A1 WO2020153530 A1 WO 2020153530A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
hole
opening
fluid
closing
Prior art date
Application number
PCT/KR2019/005452
Other languages
French (fr)
Korean (ko)
Inventor
이상선
Original Assignee
이상선
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190053040A external-priority patent/KR20200091770A/en
Application filed by 이상선 filed Critical 이상선
Priority to EP19835223.9A priority Critical patent/EP3705761A4/en
Priority to JP2020502577A priority patent/JP2021515143A/en
Priority to CN201980003673.3A priority patent/CN111328368A/en
Priority to US16/747,655 priority patent/US20200232568A1/en
Publication of WO2020153530A1 publication Critical patent/WO2020153530A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm

Definitions

  • the present invention relates to a plastic valve.
  • the valve is a means to open and close the flow of the fluid, and uses a diaphragm or ball to control the flow of the fluid.
  • FIG. 1 is a view showing the structure of a typical valve.
  • the valve includes a body 100, a diaphragm 102 and an operation unit 104 that controls the diaphragm 102.
  • a fluid transfer hole 106 is formed inside the main body 100, and the fluid input to the input terminal 110 of the fluid transfer hole 106 is discharged through the output terminal 112.
  • the present invention is to provide a plastic valve and an opening and closing portion used in the valve.
  • the present invention is to provide an opening and closing portion used in a plastic valve and a valve capable of minimizing the residual fluid inside the body after the fluid transfer is completed.
  • the present invention is to provide a plastic valve and an opening and closing portion used in the valve that can extend the life of the valve by preventing damage to the body by minimizing the residual toxic chemical fluid inside the body.
  • the present invention is to provide an opening and closing portion used in a plastic valve and a valve that can prevent vortices from occurring in a corner existing inside the body.
  • the present invention is to provide an opening and closing portion used in a plastic valve and a valve capable of increasing the flow rate twice as compared to the conventional one due to the improvement in the opening and closing stroke.
  • a plastic valve and an opening/closing part used in the valve are provided.
  • the valve the body in which the fluid transfer hole is formed to move the fluid in the inner space; And an opening/closing part for opening/closing the hole formed in the body, wherein the opening/closing part has a stair shape, and when the valve is closed, a part of the opening/closing part blocks the hole, and when the valve is opened, the opening/closing part having the stair shape
  • a valve can be provided which is characterized by rising.
  • a first fluid transport hole through which the fluid flows into the body and a second fluid transport hole through which the fluid is output are formed, and the fluid transport holes are connected through a hole in the body, and the fluid is the first fluid transport hole , It may flow through the hole and the second fluid transfer hole.
  • a portion of the inner surface of the body adjacent to the hole may have a curved shape to prevent vortex.
  • a first pipe coupling portion is coupled to one end of the body, a second pipe coupling portion is coupled to the other end of the body, a first pipe is inserted into the first pipe coupling portion, and a second pipe is coupled to the second pipe
  • the inner diameter of the first pipe and the inner diameter of the body are the same when the first pipe and the body are joined by the first pipe coupling portion, and the first pipe coupling portion When the pipe and the body are combined, the inner diameter of the second pipe and the inner diameter of the body may be the same.
  • It is formed inside the body, and further includes a flow path changing unit for changing a flow direction of the fluid, and the first fluid transfer hole and the second fluid transfer hole may be connected through the body hole by the flow path changing unit.
  • the flow path change part includes a partition wall that blocks the movement of the fluid, and a partition wall part connected to a lower bottom surface of any one of the first fluid transport hole and the second fluid transport hole may be formed in a curved shape.
  • the opening and closing portion a fixing portion fixed to the upper body;
  • a diaphragm having one end connected to the fixing part and formed in the step shape to be deformed by opening and closing of the valve;
  • a center cover part connected to the other end of the diaphragm part and contacting a hole formed at an upper portion of the flow path change part.
  • the stepped diaphragm descends through a hole in the body to block the fluid movement by blocking the hole in the body, and when the valve is opened, the diaphragm moves upward through the body hole. Can rise.
  • the opening and closing portion is formed of polytetrafluoroethylene (PTFE), and the thickness may be formed within 1 mm.
  • PTFE polytetrafluoroethylene
  • the opening and closing portion formed on the body of the plastic valve having a step shape, a part of the opening and closing portion closes the hole when the valve is closed, and the step shape when the valve is opened
  • An opening and closing portion characterized in that the portion rises upward may be provided.
  • the opening and closing portion is fixed to the upper portion of the body; One end is connected to the fixing portion, has a staircase shape and the diaphragm portion is deformed when the valve is opened and closed; And a central cover part connected to the other end of the diaphragm, blocking the hole of the body by deformation of the diaphragm when the valve is closed, blocking the fluid from being transferred to the output end of the body, and moving upward when the valve is opened. It can contain.
  • the plastic valve according to an embodiment of the present invention, there is an advantage in that the fluid, which is a highly toxic chemical, is minimized to remain inside the body, thereby preventing damage to the body and extending the valve life.
  • the present invention also has the advantage that the vortex does not occur at the corners present inside the body.
  • the present invention has the advantage that the flow rate can be doubled compared to the conventional one due to the improved stroke of the opening and closing portion.
  • FIG. 1 is a view showing the structure of a typical valve.
  • Figure 2 is a perspective view schematically showing a valve according to the first embodiment.
  • FIG 3 is a sectional view showing a valve according to the first embodiment.
  • FIG. 4 is a view showing a cross section of a valve closed by an opening and closing unit according to the first embodiment.
  • FIG. 5 is a view illustrating a fluid flow according to an embodiment of the present invention.
  • FIG. 6 is a view showing the structure of an opening and closing part according to an embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing a valve according to the first embodiment
  • FIG. 3 is a cross-sectional view showing a valve according to the first embodiment
  • FIG. 4 is a valve closed by an opening and closing unit according to the first embodiment 5 is a view showing a cross-section
  • FIG. 5 is a view illustrating a fluid flow according to an embodiment of the present invention
  • FIG. 6 is a view showing an opening and closing part according to an embodiment of the present invention.
  • the valve according to an embodiment of the present invention is configured to include a body 210 and the opening and closing portion 220.
  • a plurality of holes may be formed at the side ends of the body 210, and the fastening means 350 and 352 may connect the valve and the pipe through the holes. That is, the first pipe coupling part 350 may be coupled to one end of the body 210, and the second pipe coupling part 352 may be coupled to the other end of the body 210.
  • the first pipe may be inserted into the first pipe coupling portion 350, and the second pipe may be inserted into the second pipe coupling portion 352.
  • the inner diameter of the first pipe and the second pipe and the inner diameter of the body 210 do not have a step difference.
  • the first pipe coupling part 350 and the second pipe coupling part 352 may be combined.
  • the inner diameter of the first pipe and the inner diameter of the body 210 may be formed to be the same.
  • the inner diameter of the second pipe and the inner diameter of the body 210 may be formed to be the same.
  • Holes for fluid movement (hereinafter referred to as fluid transfer holes) 240a, 240b are formed on the inner surface of the body 210.
  • the body 210 may be made of fluorine resin.
  • Fluorine resin is a generic term for a resin containing fluorine in a molecule, and includes polytetrafluoroethylene (PTFE), polyclotripolyethylene (PCTFE), for example, tetrafluoroethylene perfluor alkylvinyl ether copolymer (Tetra It may be fluoro ethylene perfluoro alkylvinyl ether coppolymer (PFA).
  • PTFE polytetrafluoroethylene
  • PCTFE polyclotripolyethylene
  • Tetra tetrafluoroethylene perfluor alkylvinyl ether copolymer
  • PFA fluoro ethylene perfluoro alkylvinyl ether coppolymer
  • the inner surface of the body 210 includes an upper inner surface 310a and a lower inner surface 310b.
  • a hole 315 in which a portion of the opening/closing portion 220 can move up and down is formed in the upper portion of the body 210.
  • At least some of the inner surfaces of the body 210 are formed to have a curved shape. That is, the inner surfaces of the body 210 may be formed such that there are no obstacles (eg, angled parts, etc.) that obstruct the flow of fluid when viewed in the entire section.
  • obstacles eg, angled parts, etc.
  • the vicinity of the opening/closing portion 220 of the upper inner surface 310a of the body 210-that is, portions 320 adjacent to the hole 315- may be formed in a curved shape.
  • the curved parts may be formed to be slanted toward the opening/closing part 220.
  • the fluid transport holes 240a and 240b corresponding to the inner surface of the body 210 are means for transporting the fluid.
  • the fluid may be input through the input end 300a of the fluid transfer holes 240a and 240b and output to the output end 300b of the fluid transfer hole 240.
  • a left fluid transfer hole 240a connected to an input terminal and a right fluid transfer hole 240b connected to an output terminal may be included.
  • the left fluid transfer hole 240a and the right fluid transfer hole 240b are formed in a structure that communicates through the hole 315 formed on the upper portion of the body 210. Therefore, the fluid is input through the input terminal is transferred through the left fluid transfer hole (240a), after passing through the left fluid transfer hole (240a) is moved through the hole 315 formed on the upper body 210, the right fluid transfer hole It flows into the (240b) and passes through the right fluid transfer hole (240b) and is then output through the output terminal.
  • the fluid is introduced into the body 210 through the input terminal 300a, and the fluid introduced through the input terminal 330a is moved along the left fluid transfer hole 240a.
  • the fluid transfer direction is changed by the partition wall 210 (ie, the flow path changing unit) formed inside and moves to the hole formed at the upper portion of the body 210.
  • the fluid moved to the hole formed in the upper portion of the body 210 flows into the right fluid transfer hole 240b through the flow path changing unit 325, and is moved along the right fluid transfer hole 240b to be output to the output terminal 300b. do.
  • a flow path changing unit 325 for changing the fluid movement direction is formed inside the fluid transfer hole 240.
  • the partition wall of the flow path changing part 325 is included, but the left fluid transfer hole 240a and the right fluid transfer hole 240b are not directly connected by the partition wall.
  • the partition wall formed in the flow path changing part 325 is formed to extend to a part of the hole 315 formed in the body 210 by being connected to the lower inner surface of the inner surface of the body 210, as shown in FIG. 3.
  • an upper surface of the flow path changing part 325 is formed with a hole (to be referred to as a flow path changing hole) through the left fluid transfer hole 240a.
  • the fluid transferred through the left fluid transfer hole 240a through the flow path changing hole 330 may be moved to the hole 315 of the body 210. That is, the fluid flowing through the left fluid transfer hole 240a is moved to the hole 315 of the body 210 by the flow path changing unit 325, and passes through the hole 315 of the body 210 to the right fluid. It will be output to the transfer hole (240b).
  • the left fluid transfer hole (240a) is formed in a structure that communicates with the body 210 through the flow path change hole 330 formed on the upper surface of the flow path changing section 325 .
  • the right fluid transfer hole (240b) when viewed from the perspective of the right fluid transfer hole (240b), the right fluid transfer hole (240b) is formed so as not to communicate with the flow path changing unit 325. That is, the right fluid transfer hole 240b has a structure in communication with a part of the hole 315 formed on the upper part of the body 210.
  • the fluid that has passed through the left fluid transfer hole 240a passes through the inside of the flow path changing part 325 and passes through the flow path changing hole 330 communicating with the upper portion, and then moves to the hole of the body 210 and then moves to the body. It passes through the right fluid transfer hole (240b) in communication with a portion of the hole 315 of (210) is output to the output terminal.
  • the flow path changing hole 330 communicating from the upper surface of the flow path changing portion 325 to one side may be formed in a curved shape so that there is no angled portion therein.
  • the upper portion of the flow path changing part 325 may be formed to protrude convexly to a portion (eg, lower portion) of the hole 315 of the body 210. Due to this, the fluid introduced through the flow path changing hole 330 may pass through a part of the hole 315 of the body 210 and move to the right fluid transfer hole 240b.
  • the portion connected to the fluid transfer hole 240 from the outer top of the flow path changing part 325 does not have an angled portion, and may be formed of curved portions.
  • the hole formed on the upper surface of the flow path changing part 325 may be formed to completely contact by a part of the opening and closing part 220 so that fluid movement is impossible when the valve is closed by the opening and closing part 220.
  • the fluid transfer hole portion through which the fluid is input based on the flow path changing hole 330 may be formed such that there is no angled portion. That is, the lower side facing the input end of the flow path changing hole 330 may be formed in a curved shape opposite to the bottom face of the left fluid transfer hole 240a to be coupled. However, the lower side facing the output end of the flow path changing part 325 may not be a curved shape.
  • the corner portions inside the body adjacent to the flow path changing part 325 are formed in a curved shape, vortices may not be generated in the corner portions inside the body. If the corner portions 318 and 320 are not curved, but angled, the fluid will hit the angled portion during fluid movement. That is, the angled portion acts as an obstacle to the fluid flow, and as a result, a vortex is generated around the angled portion. Due to the vortex, fluid cannot be smoothly transferred. Accordingly, the present invention curves the corner portions 318 and 320, and as a result, the fluid naturally moves along the corner portions 318 and 320 without hitting the corner portions 318 and 320.
  • the corner portions 318 and 320 do not act as an obstruction to the fluid flow, and thus the fluid flow can be smooth. Comparing the amount of fluid transfer when the corner portions 318 and 320 are formed at an angle and when formed as a curve, the corner portions 318 and 320 are compared to the amount of fluid transfer when the corner portions 318 and 320 are formed at an angle. When 320) is formed in a curve, the amount of fluid transfer is considerably large.
  • the flow path changing unit 325 inside the fluid transfer hole 240, there is an advantage that can minimize the fluid stays inside the valve 200 after the transfer of the highly toxic fluid is completed.
  • the fluid used for semiconductor or LCD manufacturing is a highly toxic fluid, and if the fluid remains inside the body 210, it is highly likely that the fluid will deteriorate, and thereby, the inside of the body 210 is likely to be damaged. Accordingly, by installing a flow path changing unit 325 inside the body 210 so as to minimize the remaining of the fluid, which is a highly toxic chemical, remains inside the body 210, the fluid is transferred into the body 210 after the fluid transfer is completed. It can minimize what remains in the.
  • one side of the flow path changing part 325 directly contacts the body 210 and is formed to communicate with the fluid transfer hole 240a, and the upper side of the other side does not directly contact the body 210. Is formed so as not to. That is, the bottom surface of the other side of the flow path changing part 325 is in contact with the right fluid transfer hole (240b) and the upper portion is spaced apart from the right fluid transfer hole (240b) and may be formed so as not to contact the body (210).
  • the partition wall of the flow path changing part 325 may be formed to have a height so as to be located in a part of the part supporting the opening and closing part 220 (hereinafter, referred to as opening and closing support part 340).
  • the fluid introduced through the input end of the fluid transfer hole 240 moves along the inside of the left fluid transfer hole 240a, and the flow path change part (through the flow path change hole 330 formed in the flow path change part 325) 325) is introduced into the interior of the flow path changing unit 325 is output to the upper outside of the body 210 may pass through a portion of the hole 315 may be output to the output terminal of the right fluid transfer hole (240b).
  • the flow of fluid may be controlled by vertical movement of the opening/closing part 220. That is, in the state in which the opening/closing part 220 is completely open, the space of the hole 315 of the body 210 is wide, so that a relatively large amount of fluid can be moved, and the opening/closing part 220 is located below the hole 315 of the body 210. When moving to, the space is relatively reduced to reduce the amount of fluid that can be moved.
  • the diameter of the flow path changing hole 330 may be formed to be the same as the diameter of the fluid transfer holes 240a and 240b. Due to this, there is an advantage that can reduce the obstacles caused by vortex generation and fluid transfer due to the difference in diameter between the flow path change hole 330 and the fluid transfer hole (240a, 240b).
  • the opening/closing unit 220 may be positioned on the body 200 or the body 210 as a means to allow or close fluid movement within the fluid transfer holes 240a and 240b.
  • the opening/closing unit 220 When the fluid flows through the fluid transport holes 240a and 240b, the opening/closing unit 220 has the structure of FIG. 3, and when the fluid flow is closed in the fluid transport holes 240a and 240b, it is illustrated in FIG. 4. As described above, it may contact the upper surface of the flow path changing part 325. Due to this, the fluid flowing through the input terminal 300a is closed by the flow path changing unit 325 and cannot be transferred to the right fluid transfer hole 240b.
  • a part of the opening/closing part 220 has a stair shape, and when the valve is closed, the opening/closing part closes a hole formed in the upper part of the body 210, and when the valve is opened, the opening/closing part having a stair shape is formed upward.
  • a part of the opening/closing part 220 is formed in a step shape, there is an advantage of improving the stroke of the opening/closing part 220 when the valve 220 is closed or/and opened and moved vertically.
  • the opening/closing unit 220 may be a diaphragm or a ball. However, in the drawings, a diaphragm is used as the opening/closing unit 220, but is not limited to the diaphragm.
  • opening and closing portion 220 is illustrated in FIG. 6 as follows, the opening and closing portion 220 is not necessarily limited to a circular shape, and variously formed according to the shape of the hole formed in the body 210. Of course it can be.
  • the opening/closing unit 220 may be formed of one of engineering plastics using fluorine resin.
  • the opening/closing unit 220 may be formed of a polytetrafluoroethylene (PTFE) material.
  • PTFE polytetrafluoroethylene
  • the operation unit is a means for controlling the opening/closing operation of the opening/closing unit 220.
  • the opening/closing unit 220 does not contact or contact the top surface of the flow path changing unit 325 through the top surface of the hole 315 of the body 210. Can be controlled.
  • the opening/closing part 220 includes a fixing part 610, a diaphragm part 620, and a central cover part 630.
  • the fixing part 610 is a means for fixing the opening/closing part 220.
  • the fixing part 610 may be fixedly coupled to a groove formed in an upper part of the main body. Due to this, it is possible to prevent the fluid, which is a highly toxic chemical, from passing through the fluid transfer hole and leaking through the hole formed in the body.
  • the fixing part 610 may allow the opening/closing part 220 to be coupled with a part of the main body even when the opening/closing part 220 moves up or down by the control of the operation part coupled to the connection part connected to the upper part of the opening/closing part.
  • the fixing part 610 may prevent the bottom surface of the opening/closing part 220 from being removed from a part of the body when the valve is closed, so that toxic fluid does not flow through the upper part of the body.
  • the fixing part 610 may be formed such that a part of the opening/closing part 220 has elasticity and is not deformed even if deformed.
  • the fixing part 610 may be formed along the outer periphery of the opening/closing part 220.
  • the diaphragm portion 620 is formed in a step shape. 3 to 6, the diaphragm portion 620 is illustrated as being formed in a step shape, but is not necessarily limited to the step shape.
  • the diaphragm 620 descends into the hole 315 formed at the top of the body 210 when the valve is closed, and moves upward when the valve is opened.
  • the diaphragm 620 may be formed in a step shape having a constant step. As the diaphragm portion 620 is formed in a step shape, there is an advantage that the stroke can be increased when the valve is closed.
  • the center cover portion 630 may move downward as the opening/closing portion 220 has elasticity and expands. Due to this, the center cover portion 630 can block the hole formed at the top of the flow path changing portion 325 to block fluid movement.
  • the diaphragm 620 is preferably formed to a thickness within 1 mm to increase the stroke when the valve is closed.
  • the diaphragm portion 620 is formed in a step shape, but this is mainly described, but is not limited to the step shape.
  • the diaphragm portion 620 is formed in a step shape, there is an advantage that the stroke can be increased.
  • the diaphragm portion 620 has a predetermined elasticity in addition to the step shape, and when formed to allow contraction and relaxation, the shape of the diaphragm portion 620 is not necessarily limited to the step shape.
  • the opening/closing portion 220 may adjust the deformation of the diaphragm portion 620 in addition to closing the valve and also adjusting the fluid transfer amount.
  • the central cover portion 630 is connected to the other end of the diaphragm portion 620.
  • the center cover portion 630 may be formed as a flat surface having no step.
  • the size of the center cover portion 630 is sufficient as long as it is possible to block the movement of the fluid by blocking the hole formed in the upper portion of the flow path changing portion 325.
  • a connection portion is coupled to the upper surface of the central cover portion 630. The connection portion serves to transmit the force applied under the control of the operation portion to the central cover portion 630, and as the central cover portion 630 descends by the force applied to the central cover portion 630, the central cover portion 630 )
  • the diaphragm 620 connected along the outer periphery has elasticity and is deformed.
  • the center cover part 630 formed with a certain diameter based on the center of the opening/closing part 220, and the diaphragm part 620 connected along the outer periphery of the center cover part 630 , It includes a fixing portion 610 formed along the outer periphery of the diaphragm portion 620.
  • the fixing part 610 and the center cover part 630 of the opening/closing part 220 are not deformed, and the center cover part 630 descends by the force applied through the connection part to the center cover part 630. Accordingly, the diaphragm portion 620 formed between the fixing portion 610 and the center cover portion 630 may be deformed to have elasticity.
  • the degree to which the center cover portion 630 descends through the hole formed in the upper portion of the body 310 is determined by the force applied to the connection portion through the operation portion, and thereby the amount of fluid to be moved may be adjusted.
  • the opening/closing portion When the opening/closing portion is not formed in a stair type but is formed in a planar shape, the elasticity of the opening/closing portion is considerably small, so that the space between the flow path changing hole 330 and the opening/closing portion when the valve is opened is small. Therefore, the amount of fluid movement must be small.
  • the opening/closing part 220 when the opening/closing part 220 is formed in a step type, the elasticity of the opening/closing part 220 increases, so that the space between the flow path changing hole 330 and the opening/closing part 220 increases when the valve is opened. As a result, large amounts of fluid can move. That is, a larger amount of fluid can move through the valve at the same time.

Abstract

A plastic valve is disclosed. The valve comprises: a body having a fluid transfer hole, through which fluid moves, formed in an inner space; and an opening and closing part for opening and closing the hole formed in the body, wherein the opening and closing part is stair-shaped, and a portion of the opening and closing part blocks the hole when the valve is closed and the stair-shaped portion of the opening and closing part can be raised upward when the valve is opened.

Description

플라스틱 밸브Plastic valve
본 발명은 플라스틱 밸브에 관한 것이다. The present invention relates to a plastic valve.
밸브는 유체의 흐름을 개폐할 수 있는 수단으로서, 다이아프램 또는 볼을 이용하여 유체의 흐름을 제어한다. The valve is a means to open and close the flow of the fluid, and uses a diaphragm or ball to control the flow of the fluid.
도 1은 일반적인 밸브의 구조를 도시한 도면이다.1 is a view showing the structure of a typical valve.
도 1을 참조하면, 밸브는 본체(100), 다이아프램(102) 및 다이아프램(102)을 제어하는 조작부(104)를 포함한다. Referring to FIG. 1, the valve includes a body 100, a diaphragm 102 and an operation unit 104 that controls the diaphragm 102.
본체(100) 내부에는 유체 이송공(106)이 형성되며, 유체 이송공(106)의 입력단(110)으로 입력된 유체는 출력단(112)을 통하여 배출된다. A fluid transfer hole 106 is formed inside the main body 100, and the fluid input to the input terminal 110 of the fluid transfer hole 106 is discharged through the output terminal 112.
반도체 제조 공정 등에 사용되는 종래의 밸브는 독성이 강한 화학물질인 유체가 바디 내부에 잔존함에 따라 바디 손상이 잦은 문제점이 있었다. 독성이 가능한 화학물질인 유체를 이송하는 경우, 유체 이송 이후에 바디 내부에 유체가 잔존하는 것을 최소화해야 바디의 손상을 막을 수 있다. Conventional valves used in semiconductor manufacturing processes, etc. have a problem of frequent body damage as fluid, which is a highly toxic chemical, remains inside the body. When transporting a fluid that is a toxic chemical, it is necessary to minimize the residual fluid inside the body after transporting the fluid to prevent damage to the body.
본 발명은 플라스틱 밸브 및 밸브에 사용되는 개폐부를 제공하기 위한 것이다.The present invention is to provide a plastic valve and an opening and closing portion used in the valve.
또한, 본 발명은 유체 이송이 완료된 이후 바디 내부에 유체가 잔존하는 것을최소화할 수 있는 플라스틱 밸브 및 밸브에 사용되는 개폐부를 제공하기 위한 것이다.In addition, the present invention is to provide an opening and closing portion used in a plastic valve and a valve capable of minimizing the residual fluid inside the body after the fluid transfer is completed.
이를 통해, 본 발명은 독성이 강한 화학물질인 유체가 바디 내부에 잔존하는 것을 최소화하여 바디 손상을 방지하여 밸브 수명을 연장시킬 수 있는 플라스틱 밸브 및 밸브에 사용되는 개폐부를 제공하기 위한 것이다. Through this, the present invention is to provide a plastic valve and an opening and closing portion used in the valve that can extend the life of the valve by preventing damage to the body by minimizing the residual toxic chemical fluid inside the body.
또한, 본 발명은 바디 내부에 존재하는 코너에서 와류가 발생하지 않도록 할 수 있는 플라스틱 밸브 및 밸브에 사용되는 개폐부를 제공하기 위한 것이다. In addition, the present invention is to provide an opening and closing portion used in a plastic valve and a valve that can prevent vortices from occurring in a corner existing inside the body.
또한, 본 발명은 개폐부 스트로크 향상으로 인해 종래에 비해 유량이 2배 증가시킬 수 있는 플라스틱 밸브 및 밸브에 사용되는 개폐부를 제공하기 위한 것이다. In addition, the present invention is to provide an opening and closing portion used in a plastic valve and a valve capable of increasing the flow rate twice as compared to the conventional one due to the improvement in the opening and closing stroke.
본 발명의 일 측면에 따르면, 플라스틱 밸브 및 밸브에 사용되는 개폐부가 제공된다. According to an aspect of the present invention, a plastic valve and an opening/closing part used in the valve are provided.
본 발명의 일 실시예에 따르면, 밸브에 있어서, 내측 공간에 유체가 이동하는 유체 이송공이 형성되는 바디; 및 상기 바디에 형성된 홀을 개폐시키는 개폐부를 포함하되, 상기 개폐부는 계단 형상을 가지고, 상기 밸브 폐쇄시 상기 개폐부의 일부가 상기 홀을 막으며, 상기 밸브 개방시 상기 계단 형상을 가지는 개폐부 부분이 위로 상승하는 것을 특징으로 하는 밸브가 제공될 수 있다. According to an embodiment of the present invention, the valve, the body in which the fluid transfer hole is formed to move the fluid in the inner space; And an opening/closing part for opening/closing the hole formed in the body, wherein the opening/closing part has a stair shape, and when the valve is closed, a part of the opening/closing part blocks the hole, and when the valve is opened, the opening/closing part having the stair shape A valve can be provided which is characterized by rising.
상기 바디 내로 상기 유체가 유입되는 제1 유체 이송공 및 상기 유체가 출력되는 제2 유체 이송공이 형성되며, 상기 유체 이송공들은 상기 바디의 홀을 통해 연결되되, 상기 유체는 상기 제1 유체 이송공, 상기 홀 및 상기 제2 유체 이송공을 통하여 흐를 수 있다. A first fluid transport hole through which the fluid flows into the body and a second fluid transport hole through which the fluid is output are formed, and the fluid transport holes are connected through a hole in the body, and the fluid is the first fluid transport hole , It may flow through the hole and the second fluid transfer hole.
상기 바디의 내측면 중 상기 홀에 인접한 부분은 와류가 방지되도록 곡선 형상을 가질 수 있다. A portion of the inner surface of the body adjacent to the hole may have a curved shape to prevent vortex.
상기 바디의 일단에 제 1 파이프 결합부가 결합되고, 상기 바디의 타단에 제 2 파이프 결합부가 결합되며, 제 1 파이프가 상기 제 1 파이프 결합부의 내측으로 삽입되고, 제 2 파이프가 상기 제 2 파이프 결합부의 내측으로 삽입되되, 상기 제 1 파이프 결합부에 의해 상기 제 1 파이프와 상기 바디가 결합될 때 상기 제 1 파이프의 내경과 상기 바디의 내경이 동일하고, 상기 제 2 파이프 결합부에 의해 상기 제 2 파이프와 상기 바디가 결합될 때 상기 제 2 파이프의 내경과 상기 바디의 내경이 동일할 수 있다. A first pipe coupling portion is coupled to one end of the body, a second pipe coupling portion is coupled to the other end of the body, a first pipe is inserted into the first pipe coupling portion, and a second pipe is coupled to the second pipe When inserted into the inside of the unit, the inner diameter of the first pipe and the inner diameter of the body are the same when the first pipe and the body are joined by the first pipe coupling portion, and the first pipe coupling portion When the pipe and the body are combined, the inner diameter of the second pipe and the inner diameter of the body may be the same.
상기 바디 내부에 형성되며, 유체의 이동 방향을 변경하는 유로 변경부를 더 포함하되, 상기 유로 변경부에 의해 상기 제1 유체 이송공과 상기 제2 유체 이송공이 상기 바디의 홀을 통해 연결될 수 있다.It is formed inside the body, and further includes a flow path changing unit for changing a flow direction of the fluid, and the first fluid transfer hole and the second fluid transfer hole may be connected through the body hole by the flow path changing unit.
상기 유로 변경부는 상기 유체 이동을 차단하는 격벽을 포함하되, 상기 제1 유체 이송공 및 상기 제2 유체 이송공 중 어느 하나의 하측 저면과 연결되는 격벽 부분은 곡선 형상으로 형성될 수 있다. The flow path change part includes a partition wall that blocks the movement of the fluid, and a partition wall part connected to a lower bottom surface of any one of the first fluid transport hole and the second fluid transport hole may be formed in a curved shape.
상기 개폐부는, 상기 바디 상부에 고정되는 고정부; 일단이 상기 고정부에 연결되며, 상기 계단 형상으로 형성되어 상기 밸브의 개방 및 폐쇄에 의해 변형되는 격막부; 및 상기 격막부의 타단과 연결되며 상기 유로 변경부의 상부에 형성된 홀과 접촉하는 중심 덮개부를 포함할 수 있다. The opening and closing portion, a fixing portion fixed to the upper body; A diaphragm having one end connected to the fixing part and formed in the step shape to be deformed by opening and closing of the valve; And a center cover part connected to the other end of the diaphragm part and contacting a hole formed at an upper portion of the flow path change part.
상기 밸브 폐쇄시 상기 계단 형상의 격막부가 상기 바디의 홀을 통해 하강함에 따라 상기 중심 덮개부가 상기 바디의 홀을 막아 상기 유체 이동을 차단하며, 상기 밸브 개방시 상기 격막부가 상기 바디의 홀을 통해 위로 상승할 수 있다. When the valve closes, the stepped diaphragm descends through a hole in the body to block the fluid movement by blocking the hole in the body, and when the valve is opened, the diaphragm moves upward through the body hole. Can rise.
상기 개폐부는 플로테트라플로오로에틸렌(PTFE: Polytetrafluoroethylene)으로 형성되되, 두께는 1mm 이내로 형성될 수 있다. The opening and closing portion is formed of polytetrafluoroethylene (PTFE), and the thickness may be formed within 1 mm.
본 발명의 다른 실시예에 따르면, 플라스틱 밸브의 바디 위에 형성되는 개폐부에 있어서, 계단 형상을 가지고, 상기 밸브 폐쇄시 상기 개폐부의 일부가 상기 홀을 막으며, 상기 밸브 개방시 상기 계단 형상을 가지는 개폐부 부분이 위로 상승하는 것을 특징으로 하는 개폐부가 제공될 수 있다. According to another embodiment of the present invention, in the opening and closing portion formed on the body of the plastic valve, the opening and closing portion having a step shape, a part of the opening and closing portion closes the hole when the valve is closed, and the step shape when the valve is opened An opening and closing portion characterized in that the portion rises upward may be provided.
상기 개폐부는, 상기 바디의 상부 일부에 고정되는 고정부; 일단이 상기 고정부에 연결되며, 계단 형상을 가지며 상기 밸브의 개방 및 폐쇄시 변형되는 격막부; 및 상기 격막부의 타단과 연결되며, 상기 밸브 패쇄시 상기 격막부의 변형에 의해 상기 바디의 홀을 막아 상기 유체가 상기 바디의 출력단으로 이송되는 것을 차단하며, 상기 밸브 개방시 위로 상승 이동하는 중심 덮개부를 포함할 수 있다. The opening and closing portion is fixed to the upper portion of the body; One end is connected to the fixing portion, has a staircase shape and the diaphragm portion is deformed when the valve is opened and closed; And a central cover part connected to the other end of the diaphragm, blocking the hole of the body by deformation of the diaphragm when the valve is closed, blocking the fluid from being transferred to the output end of the body, and moving upward when the valve is opened. It can contain.
본 발명의 일 실시예에 따른 플라스틱 밸브를 제공함으로써, 독성이 강한 화학물질인 유체가 바디 내부에 잔존하는 것을 최소화하여 바디 손상을 방지하여 밸브 수명을 연장시킬 수 있는 이점이 있다. By providing the plastic valve according to an embodiment of the present invention, there is an advantage in that the fluid, which is a highly toxic chemical, is minimized to remain inside the body, thereby preventing damage to the body and extending the valve life.
또한, 본 발명은 바디 내부에 존재하는 코너에서 와류가 발생하지 않도록 할 수 있는 이점도 있다. In addition, the present invention also has the advantage that the vortex does not occur at the corners present inside the body.
또한, 본 발명은 개폐부 스트로크 향상으로 인해 종래에 비해 유량이 2배 증가시킬 수 있는 이점도 있다. In addition, the present invention has the advantage that the flow rate can be doubled compared to the conventional one due to the improved stroke of the opening and closing portion.
도 1은 일반적인 밸브의 구조를 도시한 도면.1 is a view showing the structure of a typical valve.
도 2는 제1 실시예에 따른 밸브를 개략적으로 도시한 사시도.Figure 2 is a perspective view schematically showing a valve according to the first embodiment.
도 3은 제1 실시예에 따른 밸브를 도시한 단면도.3 is a sectional view showing a valve according to the first embodiment.
도 4는 제1 실시예에 따른 개폐부에 의해 폐쇄된 밸브의 단면을 도시한 도면.4 is a view showing a cross section of a valve closed by an opening and closing unit according to the first embodiment.
도 5는 본 발명의 일 실시예에 따른 유체 흐름을 설명하기 위해 도시한 도면.5 is a view illustrating a fluid flow according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 개폐부의 구조를 도시한 도면.6 is a view showing the structure of an opening and closing part according to an embodiment of the present invention.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.The present invention can be applied to various transformations and can have various embodiments, and specific embodiments will be illustrated in the drawings and described in detail in the detailed description. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all conversions, equivalents, and substitutes included in the spirit and scope of the present invention. In the description of the present invention, when it is determined that detailed descriptions of related well-known technologies may obscure the subject matter of the present invention, detailed descriptions thereof will be omitted.
본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 본 명세서의 설명 과정에서 이용되는 숫자(예를 들어, 제1, 제2 등)는 하나의 구성요소를 다른 구성요소와 구분하기 위한 식별기호에 불과하다.In describing the present invention, when it is determined that a detailed description of related known technologies may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted. In addition, the numbers used in the description process of the present specification (for example, first, second, etc.) are only identification numbers for distinguishing one component from other components.
또한, 본 명세서에서, 일 구성요소가 다른 구성요소와 "연결된다" 거나 "접속된다" 등으로 언급된 때에는, 상기 일 구성요소가 상기 다른 구성요소와 직접 연결되거나 또는 직접 접속될 수도 있지만, 특별히 반대되는 기재가 존재하지 않는 이상, 중간에 또 다른 구성요소를 매개하여 연결되거나 또는 접속될 수도 있다고 이해되어야 할 것이다. 이하, 도면을 참조하여 상세히 설명하기로 한다.In addition, in the present specification, when one component is referred to as “connected” or “connected” with another component, the one component may be directly connected to the other component, or may be directly connected. It should be understood that, as long as there is no objection to the contrary, it may or may be connected via another component in the middle. Hereinafter, it will be described in detail with reference to the drawings.
도 2는 제1 실시예에 따른 밸브를 개략적으로 도시한 사시도이고, 도 3은 제1 실시예에 따른 밸브를 도시한 단면도이며, 도 4는 제1 실시예에 따른 개폐부에 의해 폐쇄된 밸브의 단면을 도시한 도면이고, 도 5는 본 발명의 일 실시예에 따른 유체 흐름을 설명하기 위해 도시한 도면이고, 도 6은 본 발명의 일 실시예에 따른 개폐부를 도시한 도면이다. 2 is a perspective view schematically showing a valve according to the first embodiment, FIG. 3 is a cross-sectional view showing a valve according to the first embodiment, and FIG. 4 is a valve closed by an opening and closing unit according to the first embodiment 5 is a view showing a cross-section, and FIG. 5 is a view illustrating a fluid flow according to an embodiment of the present invention, and FIG. 6 is a view showing an opening and closing part according to an embodiment of the present invention.
도 2를 참조하면, 본 발명의 일 실시예에 따른 밸브는 바디(210) 및 개폐부(220)를 포함하여 구성된다. Referring to Figure 2, the valve according to an embodiment of the present invention is configured to include a body 210 and the opening and closing portion 220.
바디(210)의 측면 종단에는 복수의 홀이 형성될 수 있으며, 체결 수단(350, 352)이 홀을 통해 밸브와 파이프를 연결시킬 수 있다. 즉, 바디(210)의 일단에 제1 파이프 결합부(350)가 결합되고, 바디(210)의 타단에 제2 파이프 결합부(352)가 결합될 수 있다. 제1 파이프가 제1 파이프 결합부(350)의 내측으로 삽입되며, 제2 파이프가 제2 파이프 결합부(352)의 내측으로 삽입될 수 있다. 제1 파이프 및 제2 파이프가 제1 파이프 결합부(350)과 제2 파이프 결합부(352)에 삽입시, 제1 파이프 및 제2 파이프의 내경과 바디(210)의 내경은 단차를 가지지 않도록 제1 파이프 결합부(350) 및 제2 파이프 결합부(352)와 결합될 수 있다. 결과적으로, 제1 파이프 결합부(350)에 의해 제1 파이프와 바디(210)가 결합될 때, 제1 파이프의 내경과 바디(210)의 내경이 동일하도록 형성될 수 있다. 또한, 제2 파이프 결합부(350)에 의해 제2 파이프가 바디(210)에 결합될 때, 제2 파이프의 내경과 바디(210)의 내경이 동일하도록 형성될 수 있다. A plurality of holes may be formed at the side ends of the body 210, and the fastening means 350 and 352 may connect the valve and the pipe through the holes. That is, the first pipe coupling part 350 may be coupled to one end of the body 210, and the second pipe coupling part 352 may be coupled to the other end of the body 210. The first pipe may be inserted into the first pipe coupling portion 350, and the second pipe may be inserted into the second pipe coupling portion 352. When the first pipe and the second pipe are inserted into the first pipe coupling portion 350 and the second pipe coupling portion 352, the inner diameter of the first pipe and the second pipe and the inner diameter of the body 210 do not have a step difference. The first pipe coupling part 350 and the second pipe coupling part 352 may be combined. As a result, when the first pipe and the body 210 are coupled by the first pipe coupling part 350, the inner diameter of the first pipe and the inner diameter of the body 210 may be formed to be the same. In addition, when the second pipe is coupled to the body 210 by the second pipe coupling part 350, the inner diameter of the second pipe and the inner diameter of the body 210 may be formed to be the same.
바디(210)의 내측면에는 유체 이동을 위한 홀(이하에서는 유체 이송공이라 칭하기로 함)(240a, 240b)이 형성된다. Holes for fluid movement (hereinafter referred to as fluid transfer holes) 240a, 240b are formed on the inner surface of the body 210.
본 발명의 일 실시예에 따르면, 바디(210)는 불소 수지로 이루어질 수 있다. 불소 수지는 분자 안에 불소를 함유한 수지를 총칭하는 것으로서, 폴리테트라플루오르에틸렌(PTFE), 폴리클로트리폴리오르에틸렌(PCTFE) 등이 있으며, 예를 들어 테트라 플루오르 에틸렌 페르플루오르 알킬비닐 에테르 공중합체(Tetra fluoro ethylene perfluoro alkylvinyl ether coppolymer, PFA)일 수 있다. 이러한 불소 수지는 내열성, 내약품성, 전기 절연성이 뛰어나고 마찰계수가 작으며 접착 및 점착성이 없다. 즉, 불소 수지로 바디(210)를 형성하면, 바디(210)의 마찰 계수가 작기 때문에 유체 이송공(240a, 240b) 내에서의 층류에 따른 유속 변경을 최소화할 수 있다. According to an embodiment of the present invention, the body 210 may be made of fluorine resin. Fluorine resin is a generic term for a resin containing fluorine in a molecule, and includes polytetrafluoroethylene (PTFE), polyclotripolyethylene (PCTFE), for example, tetrafluoroethylene perfluor alkylvinyl ether copolymer (Tetra It may be fluoro ethylene perfluoro alkylvinyl ether coppolymer (PFA). These fluorine resins are excellent in heat resistance, chemical resistance, and electrical insulation, have a small coefficient of friction, and have no adhesion and adhesion. That is, when the body 210 is formed of fluorine resin, since the friction coefficient of the body 210 is small, it is possible to minimize a change in flow rate due to laminar flow in the fluid transport holes 240a and 240b.
도 3에서 보여지는 바와 같이, 바디(210)의 내측면은 상측 내측면(310a)과 하측 내측면(310b)을 포함한다. 또한, 바디(210)의 상부 일부분에는 개폐부(220)의 일부분이 상하로 움직일 수 있는 홀(315)이 형성된다. As shown in FIG. 3, the inner surface of the body 210 includes an upper inner surface 310a and a lower inner surface 310b. In addition, a hole 315 in which a portion of the opening/closing portion 220 can move up and down is formed in the upper portion of the body 210.
바디(210)의 내측면들 중 적어도 일부는 곡선 형상을 가지도록 형성된다. 즉, 바디(210)의 내측면들은 전체 구간으로 볼 때 유체의 흐름을 방해하는 장애물(예를 들어, 각진 부분 등)이 존재하지 않도록 형성될 수 있다. At least some of the inner surfaces of the body 210 are formed to have a curved shape. That is, the inner surfaces of the body 210 may be formed such that there are no obstacles (eg, angled parts, etc.) that obstruct the flow of fluid when viewed in the entire section.
보다 상세하게, 바디(210)의 상측 내측면(310a) 중 개폐부(220)의 인근-즉 홀(315)에 인접한 부분들(320)-은 곡선 형상으로 형성될 수 있다. 여기서, 곡선 부분들은 개폐부(220)를 향해 비탈지도록 형성될 수 있다. In more detail, the vicinity of the opening/closing portion 220 of the upper inner surface 310a of the body 210-that is, portions 320 adjacent to the hole 315-may be formed in a curved shape. Here, the curved parts may be formed to be slanted toward the opening/closing part 220.
바디(210)의 내측면에 해당하는 유체 이송공(240a, 240b)은 유체를 이송하기 위한 수단이다. 유체는 유체 이송공(240a, 240b)의 입력단(300a)을 통해 입력되어 유체 이송공(240)의 출력단(300b)으로 출력될 수 있다. The fluid transport holes 240a and 240b corresponding to the inner surface of the body 210 are means for transporting the fluid. The fluid may be input through the input end 300a of the fluid transfer holes 240a and 240b and output to the output end 300b of the fluid transfer hole 240.
도 2에 도시된 바와 같이, 입력단과 연결되는 좌측 유체 이송공(240a)과 출력단과 연결되는 우측 유체 이송공(240b)를 포함할 수 있다. 좌측 유체 이송공(240a)과 우측 유체 이송공(240b)은 바디(210)의 상부에 형성된 홀(315)을 통해 연통되는 구조로 형성된다. 따라서 유체는 입력단을 통해 입력되어 좌측 유체 이송공(240a)를 통해 이송되며, 좌측 유체 이송공(240a)를 통과한 후 바디(210) 상부에 형성된 홀(315)을 통해 이동되어 우측 유체 이송공(240b)로 유입되며 우측 유체 이송공(240b)를 통과한 후 출력단을 통해 출력되게 된다. As illustrated in FIG. 2, a left fluid transfer hole 240a connected to an input terminal and a right fluid transfer hole 240b connected to an output terminal may be included. The left fluid transfer hole 240a and the right fluid transfer hole 240b are formed in a structure that communicates through the hole 315 formed on the upper portion of the body 210. Therefore, the fluid is input through the input terminal is transferred through the left fluid transfer hole (240a), after passing through the left fluid transfer hole (240a) is moved through the hole 315 formed on the upper body 210, the right fluid transfer hole It flows into the (240b) and passes through the right fluid transfer hole (240b) and is then output through the output terminal.
이러한 유체 이송공(240a, 240b)의 내부에는 유체 흐름을 방해하는 장애물이 존재하지 않는 형상으로 형성될 수 있다. Inside the fluid transport holes 240a and 240b, there may be formed a shape in which there are no obstacles that interfere with fluid flow.
유체 이송의 관점에서 이를 다시 정리하면, 유체는 입력단(300a)를 통해 바디(210) 내부로 유입되고, 입력단(330a)를 통해 유입된 유체는 좌측 유체 이송공(240a)를 따라 이동되되, 바디(210) 내부에 형성된 격벽(즉, 유로 변경부)에 의해 유체 이송 방향이 변경되어 바디(210)의 상부에 형성된 홀로 이동된다. 바디(210) 상부에 형성된 홀로 이동된 유체는 유로 변경부(325)를 통해 우측 유체 이송공(240b)로 유입되되, 우측 유체 이송공(240b)를 따라 이동된 후 출력단(300b)로 출력되게 된다. In summary, from the viewpoint of fluid transfer, the fluid is introduced into the body 210 through the input terminal 300a, and the fluid introduced through the input terminal 330a is moved along the left fluid transfer hole 240a. The fluid transfer direction is changed by the partition wall 210 (ie, the flow path changing unit) formed inside and moves to the hole formed at the upper portion of the body 210. The fluid moved to the hole formed in the upper portion of the body 210 flows into the right fluid transfer hole 240b through the flow path changing unit 325, and is moved along the right fluid transfer hole 240b to be output to the output terminal 300b. do.
이러한 유체 이송공(240)의 내부에는 유체 이동 방향을 변경하는 유로 변경부(325)가 형성된다. 유로 변경부(325)의 격벽을 포함하되, 격벽에 의해 좌측 유체 이송공(240a)과 우측 유체 이송공(240b)이 직접적으로 연통되지 않는다. 유로 변경부(325)에 형성된 격벽은 도 3에서 보여지는 바와 같이, 바디(210)의 내측면 중 하측 내측면과 연결되어 바디(210)에 형성된 홀(315)의 일부까지 연장되도록 형성된다. Inside the fluid transfer hole 240, a flow path changing unit 325 for changing the fluid movement direction is formed. The partition wall of the flow path changing part 325 is included, but the left fluid transfer hole 240a and the right fluid transfer hole 240b are not directly connected by the partition wall. The partition wall formed in the flow path changing part 325 is formed to extend to a part of the hole 315 formed in the body 210 by being connected to the lower inner surface of the inner surface of the body 210, as shown in FIG. 3.
또한, 유로 변경부(325)의 상부면은 좌측 유체 이송공(240a)과 관통되는 홀(유로 변경홀이라 칭하기로 함)이 형성된다. 유로 변경홀(330)을 통해 좌측 유체 이송공(240a)을 통해 이송된 유체는 바디(210)의 홀(315)로 이동될 수 있다. 즉, 좌측 유체 이송공(240a)을 통해 유입되는 유체는 유로 변경부(325)에 의해 바디(210)의 홀(315)로 이동되며, 바디(210)의 홀(315)을 통과하여 우측 유체 이송공(240b)로 출력되게 된다. In addition, an upper surface of the flow path changing part 325 is formed with a hole (to be referred to as a flow path changing hole) through the left fluid transfer hole 240a. The fluid transferred through the left fluid transfer hole 240a through the flow path changing hole 330 may be moved to the hole 315 of the body 210. That is, the fluid flowing through the left fluid transfer hole 240a is moved to the hole 315 of the body 210 by the flow path changing unit 325, and passes through the hole 315 of the body 210 to the right fluid. It will be output to the transfer hole (240b).
좌측 유체 이송공(240a)의 관점에서 살펴보면, 좌측 유체 이송공(240a)는 유로 변경부(325)의 상부면에 형성된 유로 변경홀(330)을 통해 바디(210)와 연통되는 구조로 형성된다. Looking from the perspective of the left fluid transfer hole (240a), the left fluid transfer hole (240a) is formed in a structure that communicates with the body 210 through the flow path change hole 330 formed on the upper surface of the flow path changing section 325 .
또한, 우측 유체 이송공(240b)의 관점에서 살펴보면, 우측 유체 이송공(240b)는 유로 변경부(325)와 연통되지 않도록 형성된다. 즉, 우측 유체 이송공(240b)는 바디(210)의 상부에 형성된 홀(315)의 일부와 연통되는 구조를 가지게 된다. In addition, when viewed from the perspective of the right fluid transfer hole (240b), the right fluid transfer hole (240b) is formed so as not to communicate with the flow path changing unit 325. That is, the right fluid transfer hole 240b has a structure in communication with a part of the hole 315 formed on the upper part of the body 210.
다시 정리하면, 좌측 유체 이송공(240a)를 통과한 유체는 유로 변경부(325)의 내부를 통과하여 상부에 연통된 유로 변경홀(330)을 통과하여 바디(210)의 홀로 이동된 후 바디(210)의 홀(315) 일부와 연통된 우측 유체 이송공(240b)를 통과하여 출력단으로 출력되게 된다. In summary, the fluid that has passed through the left fluid transfer hole 240a passes through the inside of the flow path changing part 325 and passes through the flow path changing hole 330 communicating with the upper portion, and then moves to the hole of the body 210 and then moves to the body. It passes through the right fluid transfer hole (240b) in communication with a portion of the hole 315 of (210) is output to the output terminal.
유로 변경부(325)의 상면에서 일측면으로 연통되는 유로 변경홀(330)은 내부에 각진 부분이 존재하지 않도록 곡선 형상으로 형성될 수 있다. 유로 변경부(325)의 상부는 바디(210)의 홀(315)의 일부분(예를 들어, 하부)에 볼록하게 튀어나오도록 형성될 수 있다. 이로 인해, 유로 변경홀(330) 내부를 통해 유입된 유체는 바디(210)의 홀(315)의 일부를 통과하여 우측 유체 이송공(240b)으로 이동될 수 있다. 또한, 유로 변경부(325)의 외측 상단에서 유체 이송공(240)으로 연결되는 부분은 각진 부분이 존재하지 않으며, 곡선 부분들로 형성될 수 있다. 또한, 유로 변경부(325)의 상면에 형성된 홀은 개폐부(220)에 의해 밸브 폐쇄시 유체 이동이 불가능하도록 개폐부(220)의 일부에 의해 완전히 맞닿도록 형성될 수 있다. The flow path changing hole 330 communicating from the upper surface of the flow path changing portion 325 to one side may be formed in a curved shape so that there is no angled portion therein. The upper portion of the flow path changing part 325 may be formed to protrude convexly to a portion (eg, lower portion) of the hole 315 of the body 210. Due to this, the fluid introduced through the flow path changing hole 330 may pass through a part of the hole 315 of the body 210 and move to the right fluid transfer hole 240b. In addition, the portion connected to the fluid transfer hole 240 from the outer top of the flow path changing part 325 does not have an angled portion, and may be formed of curved portions. In addition, the hole formed on the upper surface of the flow path changing part 325 may be formed to completely contact by a part of the opening and closing part 220 so that fluid movement is impossible when the valve is closed by the opening and closing part 220.
또한, 유로 변경홀(330)을 기준으로 유체가 입력되는 유체 이송공 부분은 각진 부분이 존재하지 않도록 형성될 수 있다. 즉, 유로 변경홀(330)의 입력단에 대향하는 하측면은 결합되는 좌측 유체 이송공(240a)의 저면에 대향하여 곡선 형상으로 형성될 수 있다. 다만 유로 변경부(325)의 출력단에 대향하는 하측면은 곡선 형상이 아닐 수 있다. In addition, the fluid transfer hole portion through which the fluid is input based on the flow path changing hole 330 may be formed such that there is no angled portion. That is, the lower side facing the input end of the flow path changing hole 330 may be formed in a curved shape opposite to the bottom face of the left fluid transfer hole 240a to be coupled. However, the lower side facing the output end of the flow path changing part 325 may not be a curved shape.
다시 정리하면, 유로 변경부(325)와 인접한 바디 내부의 코너 부분들이 곡선 형상으로 형성됨에 따라 바디 내부의 코너 부분에서 와류가 발생하지 않도록 할 수 있다. 코너 부분들(318 및 320)이 곡선이 아니고 각지게 형성되면, 유체 이동시 상기 유체가 상기 각진 부분에 부딪히게 된다. 즉, 상기 각진 부분이 유체 흐름을 방해하는 방해물로 작용하며, 그 결과 상기 각진 부분 주변에 와류가 생성된다. 상기 와류 발생으로 인하여 유체가 원활히 이송되지 못하게 된다. 이에, 본 발명은 코너 부분들(318 및 320)을 곡선으로 형성하며, 그 결과 유체가 코너 부분들(318 및 320)에 부딪히지 않고 코너 부분들(318 및 320)을 따라서 자연스럽게 이동하게 된다. 즉, 코너 부분들(318 및 320)이 유체 흐름을 방해하는 방해물로 작용하지 않으며, 따라서 유체 흐름이 원활할 수 있다. 코너 부분들(318 및 320)이 각지게 형성될 때와 곡선으로 형성될 때 유체 이송량을 비교하면, 코너 부분들(318 및 320)이 각지게 형성될 때에 유체 이송량에 비하여 코너 부분들(318 및 320)이 곡선으로 형성될 때 유체 이송량이 상당히 많게 된다. In summary, as the corner portions inside the body adjacent to the flow path changing part 325 are formed in a curved shape, vortices may not be generated in the corner portions inside the body. If the corner portions 318 and 320 are not curved, but angled, the fluid will hit the angled portion during fluid movement. That is, the angled portion acts as an obstacle to the fluid flow, and as a result, a vortex is generated around the angled portion. Due to the vortex, fluid cannot be smoothly transferred. Accordingly, the present invention curves the corner portions 318 and 320, and as a result, the fluid naturally moves along the corner portions 318 and 320 without hitting the corner portions 318 and 320. That is, the corner portions 318 and 320 do not act as an obstruction to the fluid flow, and thus the fluid flow can be smooth. Comparing the amount of fluid transfer when the corner portions 318 and 320 are formed at an angle and when formed as a curve, the corner portions 318 and 320 are compared to the amount of fluid transfer when the corner portions 318 and 320 are formed at an angle. When 320) is formed in a curve, the amount of fluid transfer is considerably large.
코너 부분들(318 및 320)을 각지게 형성하고 유체 이송량을 증가시킬려고 하면, 밸브의 사이즈를 증가시켜야만 한다. 그러나, 밸브의 사이즈 증가는 단순히 밸브의 비용만 증가하는 것이 아니라 밸브와 관련된 주변 장치들도 모두 변경하여야만 하며, 그 결과 시스템 구현 비용이 상당히 올라가게 된다. If the corner portions 318 and 320 are angled and an attempt is made to increase the fluid transfer amount, the size of the valve must be increased. However, an increase in the size of the valve not only increases the cost of the valve, but also the peripheral devices related to the valve must be changed, and as a result, the system implementation cost increases significantly.
반면에, 코너 부분들(318 및 320)을 곡선으로 형성하면 밸브의 사이즈를 증가시키지 않더라도 충분한 양의 유체를 이송시킬 수 있다. 따라서, 시스템 구현 비용을 증가시키지 않을 수 있다. On the other hand, if the corner portions 318 and 320 are curved, a sufficient amount of fluid can be transferred without increasing the size of the valve. Therefore, it is not possible to increase the cost of implementing the system.
유체 이송공(240) 내부에 유로 변경부(325)를 포함할 때의 장점을 살펴보면, 독성이 강한 유체가 이송이 완료된 이후 유체가 밸브(200) 내부에 머무는 것을 최소화할 수 있는 이점이 있다. 반도체나 LCD 제조에 이용되는 유체는 독성이 매우 강한 유체로, 바디(210) 내부에 유체가 잔존하는 경우 유체가 변질될 가능성이 높으며, 이로 인해 바디(210) 내부가 손상될 가능성이 높다. 따라서, 독성이 강한 화학물질인 유체가 바디(210) 내부에 잔존하는 것을 최소화할 수 있도록 바디(210) 내부에 유로 변경부(325)를 설치함으로써 유체 이송이 완료된 이후 유체가 바디(210) 내부에 잔존하는 것을 최소화할 수 있다. Looking at the advantages of including the flow path changing unit 325 inside the fluid transfer hole 240, there is an advantage that can minimize the fluid stays inside the valve 200 after the transfer of the highly toxic fluid is completed. The fluid used for semiconductor or LCD manufacturing is a highly toxic fluid, and if the fluid remains inside the body 210, it is highly likely that the fluid will deteriorate, and thereby, the inside of the body 210 is likely to be damaged. Accordingly, by installing a flow path changing unit 325 inside the body 210 so as to minimize the remaining of the fluid, which is a highly toxic chemical, remains inside the body 210, the fluid is transferred into the body 210 after the fluid transfer is completed. It can minimize what remains in the.
다시 정리하면, 유로 변경부(325)의 일측면은 바디(210)와 직접적으로 맞닿으며, 유체 이송공(240a)과 연통되도록 형성되고, 타측면의 상부는 바디(210)와 직접적으로 맞닿지 않도록 형성된다. 즉, 유로 변경부(325)의 타측면의 저면은 우측 유체 이송공(240b)와 접촉하며 상부는 우측 유체 이송공(240b)와 일정 간격 떨어지며 바디(210) 와 접촉하지 않도록 형성될 수 있다. 또한, 유로 변경부(325)의 격벽은 개폐부(220)를 지지하는 부분(이하에서는 개폐 지지부(340)라 칭하기로 함)의 일부에 위치되도록 높이가 형성될 수 있다. In summary, one side of the flow path changing part 325 directly contacts the body 210 and is formed to communicate with the fluid transfer hole 240a, and the upper side of the other side does not directly contact the body 210. Is formed so as not to. That is, the bottom surface of the other side of the flow path changing part 325 is in contact with the right fluid transfer hole (240b) and the upper portion is spaced apart from the right fluid transfer hole (240b) and may be formed so as not to contact the body (210). In addition, the partition wall of the flow path changing part 325 may be formed to have a height so as to be located in a part of the part supporting the opening and closing part 220 (hereinafter, referred to as opening and closing support part 340).
이로 인해, 유체 이송공(240)의 입력단을 통해 유입된 유체는 좌측 유체 이송공(240a) 내부를 따라 이동하며, 유로 변경부(325)에 형성된 유로 변경홀(330)을 통해 유로 변경부(325)의 내부로 유입되어 유로 변경부(325)의 외측 상부로 출력되어 바디(210)의 홀(315)의 일부를 통과한 후 우측 유체 이송공(240b)의 출력단으로 출력될 수 있다. Due to this, the fluid introduced through the input end of the fluid transfer hole 240 moves along the inside of the left fluid transfer hole 240a, and the flow path change part (through the flow path change hole 330 formed in the flow path change part 325) 325) is introduced into the interior of the flow path changing unit 325 is output to the upper outside of the body 210 may pass through a portion of the hole 315 may be output to the output terminal of the right fluid transfer hole (240b).
또한, 유로 변경부(325)의 상면이 바디(210)의 홀(315)의 하부에 위치됨으로써 개폐부(220)의 상하 이동에 의해 유체의 흐름을 조절할 수도 있다. 즉, 개폐부(220)가 완전히 열려 있는 상태에서는 바디(210)의 홀(315)의 공간이 넓어 상대적으로 많은 유체가 이동 가능하며, 개폐부(220)가 바디(210)의 홀(315)의 아래쪽으로 이동하는 경우 공간이 상대적으로 줄어들어 이동 가능한 유체의 양이 줄어들게 된다.In addition, since the upper surface of the flow path changing part 325 is located below the hole 315 of the body 210, the flow of fluid may be controlled by vertical movement of the opening/closing part 220. That is, in the state in which the opening/closing part 220 is completely open, the space of the hole 315 of the body 210 is wide, so that a relatively large amount of fluid can be moved, and the opening/closing part 220 is located below the hole 315 of the body 210. When moving to, the space is relatively reduced to reduce the amount of fluid that can be moved.
이러한 유로 변경홀(330)의 직경은 유체 이송공(240a, 240b)의 직경과 동일하게 형성될 수 있다. 이로 인해, 유로 변경홀(330)과 유체 이송공(240a, 240b)의 직경 차이로 인한 와류 발생 및 유체 이송에 따른 장애를 줄일 수 있는 이점이 있다. The diameter of the flow path changing hole 330 may be formed to be the same as the diameter of the fluid transfer holes 240a and 240b. Due to this, there is an advantage that can reduce the obstacles caused by vortex generation and fluid transfer due to the difference in diameter between the flow path change hole 330 and the fluid transfer hole (240a, 240b).
개폐부(220)는 유체 이송공(240a, 240b) 내에서의 유체 이동을 허용하거나 폐쇄하는 수단으로서, 본체(200) 또는 바디(210) 위에 위치할 수 있다. 유체가 유체 이송공(240a, 240b)으로 흐르도록 할 경우에는 개폐부(220)는 도 3의 구조를 가지며, 유체 이송공(240a, 240b)에서 유체의 흐름을 폐쇄할 경우에는 도 4에 도시된 바와 같이 유로 변경부(325)의 상면과 접촉할 수 있다. 이로 인해, 입력단(300a)을 통해 유입되는 유체는 유로 변경부(325)에 의해 폐쇄되어 우측 유체 이송공(240b)로 이송되지 못하게 된다. The opening/closing unit 220 may be positioned on the body 200 or the body 210 as a means to allow or close fluid movement within the fluid transfer holes 240a and 240b. When the fluid flows through the fluid transport holes 240a and 240b, the opening/closing unit 220 has the structure of FIG. 3, and when the fluid flow is closed in the fluid transport holes 240a and 240b, it is illustrated in FIG. 4. As described above, it may contact the upper surface of the flow path changing part 325. Due to this, the fluid flowing through the input terminal 300a is closed by the flow path changing unit 325 and cannot be transferred to the right fluid transfer hole 240b.
개폐부(220)의 일부는 계단 형상을 가지며, 밸브 폐쇄시 개폐부가 바디(210)의 상부에 형성된 홀을 막으며, 밸브 개방시 계단 형상을 가지는 개폐부 부분이 위로 상승하도록 형성된다. A part of the opening/closing part 220 has a stair shape, and when the valve is closed, the opening/closing part closes a hole formed in the upper part of the body 210, and when the valve is opened, the opening/closing part having a stair shape is formed upward.
개폐부(220)의 일부가 계단 형상으로 형성됨에 따라 밸브 폐쇄 또는/및 개방에 따른 개폐부(220)의 상하 이동시 개폐부(220)의 스트로크(stroke)를 향상시킬 수 있는 이점이 있다. Since a part of the opening/closing part 220 is formed in a step shape, there is an advantage of improving the stroke of the opening/closing part 220 when the valve 220 is closed or/and opened and moved vertically.
이러한, 개폐부(220)는 다이아프램일 수도 있고 볼일 수도 있다. 다만, 도면들에서는 개폐부(220)로서 다이아프램을 사용하였으나, 다이아프램으로 한정되는 것은 아니다. The opening/closing unit 220 may be a diaphragm or a ball. However, in the drawings, a diaphragm is used as the opening/closing unit 220, but is not limited to the diaphragm.
또한, 하기의 도 6에서는 개폐부(220)가 원형 형상으로 형성되는 것으로 도시되어 있으나, 개폐부(220)의 형상의 반드시 원형으로 제한되는 것은 아니며, 바디(210)에 형성된 홀의 형상에 따라 다양하게 형성될 수 있음은 당연하다. In addition, although the opening and closing portion 220 is illustrated in FIG. 6 as follows, the opening and closing portion 220 is not necessarily limited to a circular shape, and variously formed according to the shape of the hole formed in the body 210. Of course it can be.
이러한 개폐부(220)는 불소수지로 엔지니어링 플라스틱 중 하나로 형성될 수 있다. 예를 들어, 개폐부(220)는 플로테트라플로오로에틸렌(PTFE: Polytetrafluoroethylene) 재질로 형성될 수 있다. The opening/closing unit 220 may be formed of one of engineering plastics using fluorine resin. For example, the opening/closing unit 220 may be formed of a polytetrafluoroethylene (PTFE) material.
조작부는 개폐부(220)의 개폐 동작을 제어하는 수단으로서, 예를 들어 개폐부(220)가 바디(210)의 홀(315)의 상면을 통해 유로 변경부(325)의 상면과 접촉하거나 접촉하지 않도록 제어할 수 있다. The operation unit is a means for controlling the opening/closing operation of the opening/closing unit 220. For example, the opening/closing unit 220 does not contact or contact the top surface of the flow path changing unit 325 through the top surface of the hole 315 of the body 210. Can be controlled.
이러한 개폐부(220)의 상세 구성에 대해서는 도 6을 참조하여 보다 상세히 설명하기로 한다. The detailed configuration of the opening/closing unit 220 will be described in more detail with reference to FIG. 6.
도 6을 참조하면, 본 발명의 일 실시예에 따른 개폐부(220)는 고정부(610), 격막부(620) 및 중심 덮개부(630)를 포함하여 구성된다.Referring to FIG. 6, the opening/closing part 220 according to an embodiment of the present invention includes a fixing part 610, a diaphragm part 620, and a central cover part 630.
고정부(610)는 개폐부(220)를 고정하기 위한 수단이다. 고정부(610)는 본체의 상부 일부에 형성된 홈에 고정 결합될 수 있다. 이로 인해, 독성이 강한 화학 물질인 유체가 유체 이송공을 통과하여 본체에 형성된 홀을 통해 유출되는 것을 방지할 수 있다. 고정부(610)는 개폐부 상부에 연결된 연결부에 결합된 조작부의 제어에 의해 개폐부(220)가 상승 또는 하강하여 움직이더라도 개폐부(220)가 본체의 일부와 결합되도록 할 수 있다. The fixing part 610 is a means for fixing the opening/closing part 220. The fixing part 610 may be fixedly coupled to a groove formed in an upper part of the main body. Due to this, it is possible to prevent the fluid, which is a highly toxic chemical, from passing through the fluid transfer hole and leaking through the hole formed in the body. The fixing part 610 may allow the opening/closing part 220 to be coupled with a part of the main body even when the opening/closing part 220 moves up or down by the control of the operation part coupled to the connection part connected to the upper part of the opening/closing part.
따라서, 고정부(610)는 밸브 폐쇄시 본체의 일부로부터 개폐부(220)의 저면이 이탈되어 독성 물질인 유체가 본체의 상부를 통해 유출되지 않도록 할 수 있다. 고정부(610)는 밸브 패쇄시 개폐부(220) 일부가 탄성을 가지며 변형되더라도 변형되지 않도록 형성될 수 있다. Therefore, the fixing part 610 may prevent the bottom surface of the opening/closing part 220 from being removed from a part of the body when the valve is closed, so that toxic fluid does not flow through the upper part of the body. When the valve is closed, the fixing part 610 may be formed such that a part of the opening/closing part 220 has elasticity and is not deformed even if deformed.
고정부(610)는 개폐부(220)의 외주연을 따라 형성될 수 있다. The fixing part 610 may be formed along the outer periphery of the opening/closing part 220.
격막부(620)의 일단은 고정부(610)와 연결되며, 타단은 중심 덮개부(630)와 연결된다. 격막부(620)는 계단 형상으로 형성된다. 도 3 내지 도 6에서는 격막부(620)가 계단 형상으로 형성되는 것으로 도시되어 있으나, 반드시 계단 형상으로 제한되는 것은 아니다. One end of the diaphragm 620 is connected to the fixing part 610, and the other end is connected to the central cover part 630. The diaphragm portion 620 is formed in a step shape. 3 to 6, the diaphragm portion 620 is illustrated as being formed in a step shape, but is not necessarily limited to the step shape.
격막부(620)는 밸브 폐쇄시 바디(210)의 상부에 형성된 홀(315) 내부로 하강하며, 밸브 개방시 위로 상승하도록 이동된다.. The diaphragm 620 descends into the hole 315 formed at the top of the body 210 when the valve is closed, and moves upward when the valve is opened.
이러한 격막부(620)는 일정한 단차를 가지는 계단 형상으로 형성될 수 있다. 격막부(620)를 계단 형상으로 형성함에 따라 밸브 폐쇄시 스트로크(stroke)를 크게 할 수 있는 이점이 있다. The diaphragm 620 may be formed in a step shape having a constant step. As the diaphragm portion 620 is formed in a step shape, there is an advantage that the stroke can be increased when the valve is closed.
격막부(620)의 변형에 의해 개폐부(220)가 신축성을 가지며 확장됨에 따라 중심 덮개부(630)가 하향 이동할 수 있게 된다. 이로 인해, 중심 덮개부(630)가 유로 변경부(325)의 상단에 형성된 홀을 막아 유체 이동을 차단할 수 있게 된다. As the diaphragm 620 is deformed, the center cover portion 630 may move downward as the opening/closing portion 220 has elasticity and expands. Due to this, the center cover portion 630 can block the hole formed at the top of the flow path changing portion 325 to block fluid movement.
격막부(620)는 밸브 폐쇄시 스트로크를 크게 하기 위해 두께가 1mm 이내로 형성되는 것이 바람직하다. The diaphragm 620 is preferably formed to a thickness within 1 mm to increase the stroke when the valve is closed.
본 발명의 일 실시예에서는 격막부(620)가 계단 형상으로 형성되는 것을 가정하여 이를 중심으로 설명하나, 반드시 계단 형상으로 제한되는 것은 아니다. 다만, 격막부(620)가 계단 형상으로 형성됨에 따라 스트로크(stroke)를 크게할 수 있는 이점은 있다. 그러나, 격막부(620)는 계단 형상 이외에도 소정의 탄성을 가지며, 수축 및 이완이 가능하도록 형성되는 경우 격막부(620)의 형상이 반드시 계단 형상으로 제한되는 것은 아니다. In one embodiment of the present invention, it is assumed that the diaphragm portion 620 is formed in a step shape, but this is mainly described, but is not limited to the step shape. However, as the diaphragm portion 620 is formed in a step shape, there is an advantage that the stroke can be increased. However, the diaphragm portion 620 has a predetermined elasticity in addition to the step shape, and when formed to allow contraction and relaxation, the shape of the diaphragm portion 620 is not necessarily limited to the step shape.
이와 같이, 격막부(620)가 탄성을 가지며 상하 이동이 가능하도록 변형됨에 따라, 개폐부(220)는 밸브 폐쇄 이외에도 유체 이송량 조절에도 격막부(620)의 변형을 조정할 수 있다. As described above, as the diaphragm portion 620 is elastic and deformed to move up and down, the opening/closing portion 220 may adjust the deformation of the diaphragm portion 620 in addition to closing the valve and also adjusting the fluid transfer amount.
중심 덮개부(630)는 격막부(620)의 타단에 연결된다. 중심 덮개부(630)는 단차를 가지지 않는 평평한 면으로 형성될 수 있다. The central cover portion 630 is connected to the other end of the diaphragm portion 620. The center cover portion 630 may be formed as a flat surface having no step.
또한, 중심 덮개부(630)의 크기는 유로 변경부(325)의 상부에 형성된 홀을 막아 유체 이동을 차단할 수 있는 정도이면 충분하다. 이러한 중심 덮개부(630)의 상부면에는 연결부가 결합된다. 연결부는 조작부의 제어에 따라 가해지는 힘을 중심 덮개부(630)로 전달하는 역할을 하며 중심 덮개부(630)로 가해지는 힘에 의해 중심 덮개부(630)가 하강함에 따라 중심 덮개부(630)의 외주연을 따라 연결된 격막부(620)가 탄성을 가지며 변형되게 된다. In addition, the size of the center cover portion 630 is sufficient as long as it is possible to block the movement of the fluid by blocking the hole formed in the upper portion of the flow path changing portion 325. A connection portion is coupled to the upper surface of the central cover portion 630. The connection portion serves to transmit the force applied under the control of the operation portion to the central cover portion 630, and as the central cover portion 630 descends by the force applied to the central cover portion 630, the central cover portion 630 ) The diaphragm 620 connected along the outer periphery has elasticity and is deformed.
개폐부(220)의 구조를 다시 정리하면, 개폐부(220)의 중심부를 기준으로 일정 직경으로 형성되는 중심 덮개부(630), 중심 덮개부(630)의 외주연을 따라 연결되는 격막부(620), 격막부(620)의 외주연을 따라 형성되는 고정부(610)를 포함하게 된다.When the structure of the opening/closing part 220 is rearranged, the center cover part 630 formed with a certain diameter based on the center of the opening/closing part 220, and the diaphragm part 620 connected along the outer periphery of the center cover part 630 , It includes a fixing portion 610 formed along the outer periphery of the diaphragm portion 620.
밸브 폐쇄시, 개폐부(220)의 고정부(610)와 중심 덮개부(630)는 변형되지 않으며, 중심 덮개부(630)에 연결부를 통해 가해지는 힘에 의해 중심 덮개부(630)가 하강함에 따라 고정부(610)와 중심 덮개부(630) 사이에 형성된 격막부(620)가 탄성을 가지도록 변형될 수 있다. 또한, 조작부를 통해 연결부에 가해지는 힘에 의해 중심 덮개부(630)가 바디(310)의 상부에 형성된 홀을 통해 하강하는 정도가 결정되며, 이로 인해 이동되는 유체의 양을 조절할 수도 있다. When the valve is closed, the fixing part 610 and the center cover part 630 of the opening/closing part 220 are not deformed, and the center cover part 630 descends by the force applied through the connection part to the center cover part 630. Accordingly, the diaphragm portion 620 formed between the fixing portion 610 and the center cover portion 630 may be deformed to have elasticity. In addition, the degree to which the center cover portion 630 descends through the hole formed in the upper portion of the body 310 is determined by the force applied to the connection portion through the operation portion, and thereby the amount of fluid to be moved may be adjusted.
개폐부가 계단 타입으로 형성되지 않고 평면형으로 형성되면, 개폐부의 탄성이 상당히 작기 때문에 밸브 개방시 유로 변경홀(330)과 개폐부 사이의 공간이 작다. 따라서, 유체의 이동량이 작을 수밖에 없다. When the opening/closing portion is not formed in a stair type but is formed in a planar shape, the elasticity of the opening/closing portion is considerably small, so that the space between the flow path changing hole 330 and the opening/closing portion when the valve is opened is small. Therefore, the amount of fluid movement must be small.
반면에, 개폐부(220)가 계단 타입으로 형성되면, 개폐부(220)의 탄성이 높아지기 때문에 밸브 개방시 유로 변경홀(330)과 개폐부(220) 사이의 공간이 커진다. 결과적으로, 많은 양의 유체가 이동할 수 있다. 즉, 동일한 시간에 더 많은 양의 유체가 밸브를 통하여 이동할 수 있다.On the other hand, when the opening/closing part 220 is formed in a step type, the elasticity of the opening/closing part 220 increases, so that the space between the flow path changing hole 330 and the opening/closing part 220 increases when the valve is opened. As a result, large amounts of fluid can move. That is, a larger amount of fluid can move through the valve at the same time.
이상에서는 본 발명의 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 쉽게 이해할 수 있을 것이다.Although described above with reference to embodiments of the present invention, those skilled in the art variously modify the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. And can be easily understood.
다양한 밸브 및 밸브를 포함하는 시스템에 적용될 수 있다. It can be applied to various valves and systems including valves.

Claims (11)

  1. 밸브에 있어서, In the valve,
    내측 공간에 유체가 이동하는 유체 이송공이 형성되는 바디; 및A body in which a fluid transfer hole through which the fluid moves is formed in the inner space; And
    상기 바디에 형성된 홀을 개폐시키는 개폐부를 포함하되, Including the opening and closing portion for opening and closing the hole formed in the body,
    상기 개폐부는 계단 형상을 가지고, 상기 밸브 폐쇄시 상기 개폐부의 일부가 상기 홀을 막으며, 상기 밸브 개방시 상기 계단 형상을 가지는 개폐부 부분이 위로 상승하는 것을 특징으로 하는 밸브. The opening and closing portion is a valve, characterized in that when the valve is closed, a part of the opening and closing portion closes the hole, and when the valve is opened, the opening and closing portion having the stepped shape rises upward.
  2. 제1 항에 있어서, According to claim 1,
    상기 바디 내로 상기 유체가 유입되는 제1 유체 이송공 및 상기 유체가 출력되는 제2 유체 이송공이 형성되며, 상기 유체 이송공들은 상기 바디의 홀을 통해 연결되되,A first fluid transfer hole through which the fluid flows into the body and a second fluid transfer hole through which the fluid is output are formed, and the fluid transfer holes are connected through a hole in the body,
    상기 유체는 상기 제1 유체 이송공, 상기 홀 및 상기 제2 유체 이송공을 통하여 흐르는 것을 특징으로 하는 밸브. The fluid flowing through the first fluid transfer hole, the hole and the second fluid transfer hole, characterized in that the valve.
  3. 제1 항에 있어서, According to claim 1,
    상기 바디의 내측면 중 상기 홀에 인접한 부분은 와류가 방지되도록 곡선 형상을 가지는 것을 특징으로 하는 밸브. Valve of the inner surface of the body adjacent to the hole has a curved shape to prevent vortex.
  4. 제1 항에 있어서, According to claim 1,
    상기 바디의 일단에 제 1 파이프 결합부가 결합되고, 상기 바디의 타단에 제 2 파이프 결합부가 결합되며,A first pipe coupling portion is coupled to one end of the body, and a second pipe coupling portion is coupled to the other end of the body,
    제 1 파이프가 상기 제 1 파이프 결합부의 내측으로 삽입되고, 제 2 파이프가 상기 제 2 파이프 결합부의 내측으로 삽입되되, A first pipe is inserted into the first pipe joint, and a second pipe is inserted into the second pipe joint,
    상기 제 1 파이프 결합부에 의해 상기 제 1 파이프와 상기 바디가 결합될 때 상기 제 1 파이프의 내경과 상기 바디의 내경이 동일하고, 상기 제 2 파이프 결합부에 의해 상기 제 2 파이프와 상기 바디가 결합될 때 상기 제 2 파이프의 내경과 상기 바디의 내경이 동일한 것을 특징으로 하는 밸브.When the first pipe and the body are joined by the first pipe coupling portion, the inner diameter of the first pipe and the inner diameter of the body are the same, and the second pipe and the body are connected by the second pipe coupling portion. A valve characterized in that when combined, the inner diameter of the second pipe and the inner diameter of the body are the same.
  5. 제2 항에 있어서,According to claim 2,
    상기 바디 내부에 형성되며, 유체의 이동 방향을 변경하는 유로 변경부를 더 포함하되,It is formed inside the body, and further comprises a flow path changing unit for changing the direction of movement of the fluid,
    상기 유로 변경부에 의해 상기 제1 유체 이송공과 상기 제2 유체 이송공이 상기 바디의 홀을 통해 연결되는 것을 특징으로 하는 밸브. A valve characterized in that the first fluid transfer hole and the second fluid transfer hole are connected through a hole in the body by the flow path changing unit.
  6. 제5 항에 있어서, The method of claim 5,
    상기 유로 변경부는 상기 유체 이동을 차단하는 격벽을 포함하되, The flow path change portion includes a partition wall for blocking the fluid movement,
    상기 제1 유체 이송공 및 상기 제2 유체 이송공 중 어느 하나의 하측 저면과 연결되는 격벽 부분은 곡선 형상으로 형성되는 것을 특징으로 하는 밸브. A valve characterized in that the partition portion connected to the lower bottom surface of any one of the first fluid transfer hole and the second fluid transfer hole is formed in a curved shape.
  7. 제1 항에 있어서, According to claim 1,
    상기 개폐부는, 상기 바디 상부에 고정되는 고정부;The opening and closing portion, a fixing portion fixed to the upper body;
    일단이 상기 고정부에 연결되며, 상기 계단 형상으로 형성되어 상기 밸브의 개방 및 폐쇄에 의해 변형되는 격막부; 및 A diaphragm having one end connected to the fixing part and formed in the step shape to be deformed by opening and closing of the valve; And
    상기 격막부의 타단과 연결되며 상기 유로 변경부의 상부에 형성된 홀과 접촉하는 중심 덮개부를 포함하는 것을 특징으로 하는 밸브. And a center cover part connected to the other end of the diaphragm part and contacting a hole formed at an upper portion of the flow path change part.
  8. 제7 항에 있어서, The method of claim 7,
    상기 밸브 폐쇄시 상기 계단 형상의 격막부가 상기 바디의 홀을 통해 하강함에 따라 상기 중심 덮개부가 상기 바디의 홀을 막아 상기 유체 이동을 차단하며, 상기 밸브 개방시 상기 격막부가 상기 바디의 홀을 통해 위로 상승하는 것을 특징으로 하는 밸브. When the valve is closed, as the diaphragm of the stair shape descends through the hole of the body, the center cover blocks the hole of the body to block the fluid movement. A valve characterized by rising.
  9. 제1 항에 있어서, According to claim 1,
    상기 격막부는, The diaphragm portion,
    플로테트라플로오로에틸렌(PTFE: Polytetrafluoroethylene)으로 형성되는 것을 특징으로 하는 밸브. Valve characterized in that it is formed of polytetrafluoroethylene (PTFE).
  10. 플라스틱 밸브의 바디 위에 형성되는 개폐부에 있어서, In the opening and closing portion formed on the body of the plastic valve,
    계단 형상을 가지고, 상기 밸브 폐쇄시 상기 개폐부의 일부가 상기 홀을 막으며, 상기 밸브 개방시 상기 계단 형상을 가지는 개폐부 일부분이 위로 상승하는 것을 특징으로 하는 개폐부. The opening and closing portion having a step shape, a part of the opening and closing portion closes the hole when the valve is closed, and a portion of the opening and closing portion having the step shape rises upward when the valve is opened.
  11. 제10 항에 있어서, The method of claim 10,
    상기 개폐부는,The opening and closing portion,
    상기 바디의 상부 일부에 고정되는 고정부;A fixing part fixed to an upper part of the body;
    일단이 상기 고정부에 연결되며, 계단 형상을 가지며 상기 밸브의 개방 및 폐쇄시 변형되는 격막부; 및 One end is connected to the fixing portion, has a staircase shape and the diaphragm portion is deformed when the valve is opened and closed; And
    상기 격막부의 타단과 연결되며, 상기 밸브 패쇄시 상기 격막부의 변형에 의해 상기 바디의 홀을 막아 상기 유체가 상기 바디의 출력단으로 이송되는 것을 차단하며, 상기 밸브 개방시 위로 상승 이동하는 중심 덮개부를 포함하는 것을 특징으로 하는 개폐부. It is connected to the other end of the diaphragm part, and when the valve is closed, the hole of the body is blocked by deformation of the diaphragm part, blocking the fluid from being transferred to the output end of the body, and including a central cover part that moves upward when the valve is opened. Opening and closing portion characterized in that.
PCT/KR2019/005452 2019-01-23 2019-05-08 Plastic valve WO2020153530A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19835223.9A EP3705761A4 (en) 2019-01-23 2019-05-08 Plastic valve
JP2020502577A JP2021515143A (en) 2019-01-23 2019-05-08 Plastic valve
CN201980003673.3A CN111328368A (en) 2019-01-23 2019-05-08 Plastic valve
US16/747,655 US20200232568A1 (en) 2019-01-23 2020-01-21 Plastic valve

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0008671 2019-01-23
KR20190008671 2019-01-23
KR10-2019-0053040 2019-05-07
KR1020190053040A KR20200091770A (en) 2019-01-23 2019-05-07 Plastic valve and core used in the valve

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/747,655 Continuation US20200232568A1 (en) 2019-01-23 2020-01-21 Plastic valve

Publications (1)

Publication Number Publication Date
WO2020153530A1 true WO2020153530A1 (en) 2020-07-30

Family

ID=71736837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005452 WO2020153530A1 (en) 2019-01-23 2019-05-08 Plastic valve

Country Status (1)

Country Link
WO (1) WO2020153530A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100442786B1 (en) * 1996-08-21 2004-08-04 피셔콘트롤스인터내쇼날엘엘씨 Elastomeric element valve
KR20050006115A (en) * 2004-12-28 2005-01-15 주식회사 바램 Control valve system for booster pump
JP2005069463A (en) * 2003-08-04 2005-03-17 Yamatake Corp Cage valve for high temperature
KR20100028361A (en) * 2008-09-04 2010-03-12 한국동서발전(주) Globe valve with separable seat and cage
KR20170028290A (en) * 2016-10-31 2017-03-13 (주)플로닉스 Plastic valve for preventing turbulence

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100442786B1 (en) * 1996-08-21 2004-08-04 피셔콘트롤스인터내쇼날엘엘씨 Elastomeric element valve
JP2005069463A (en) * 2003-08-04 2005-03-17 Yamatake Corp Cage valve for high temperature
KR20050006115A (en) * 2004-12-28 2005-01-15 주식회사 바램 Control valve system for booster pump
KR20100028361A (en) * 2008-09-04 2010-03-12 한국동서발전(주) Globe valve with separable seat and cage
KR20170028290A (en) * 2016-10-31 2017-03-13 (주)플로닉스 Plastic valve for preventing turbulence

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3705761A4 *

Similar Documents

Publication Publication Date Title
WO2018236017A1 (en) Rebar coupler
WO2017200127A1 (en) Valve assembly that controls flow of fluid according to direction of inclination
WO2012173399A2 (en) Pumping-type cosmetics container
WO2013105736A1 (en) Floor heating panel and floor heating panel assembly
WO2018012681A1 (en) Earthquake-proof grooveless coupling
WO2020153530A1 (en) Plastic valve
WO2019027082A1 (en) Union
EP2247991A2 (en) Automatic pressure reducing valve
WO2017052100A1 (en) Exhaust device of wafer treating apparatus
WO2015083949A1 (en) Reverse flow prevention apparatus for common exhaust flue and combustion apparatus having same
WO2021096101A1 (en) Coupling assembly for pipe connection
WO2017126839A1 (en) Air conditioner
WO2017039113A1 (en) Valve capable of preventing vortex and core used therefor
WO2011118885A1 (en) Bottle stopper having vacuum pump
WO2011087190A1 (en) Door valve
WO2021125766A1 (en) Vertical pipe fixing apparatus
WO2018105811A1 (en) Valve assembly capable of controlling flow direction of fluid according to tilt direction
WO2018221959A1 (en) Heat exchanger for cooling electrical device
WO2011081295A2 (en) Three-way valve and pipe body coupling structure
WO2015133834A1 (en) Flow-controlling unit having function of limiting tilting angle of flow-controlling piece
WO2023132561A1 (en) Fluid heater
WO2022158794A1 (en) Window system for preventing inflow of dust and noise and accumulation of dust
WO2022035085A1 (en) Refrigerator
WO2017099380A1 (en) Three-way valve
WO2021261813A1 (en) Ultrasonic flow rate measuring apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020502577

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019835223

Country of ref document: EP

Effective date: 20200120

NENP Non-entry into the national phase

Ref country code: DE