WO2020153225A1 - ガスの脱硫剤および脱硫方法 - Google Patents

ガスの脱硫剤および脱硫方法 Download PDF

Info

Publication number
WO2020153225A1
WO2020153225A1 PCT/JP2020/001285 JP2020001285W WO2020153225A1 WO 2020153225 A1 WO2020153225 A1 WO 2020153225A1 JP 2020001285 W JP2020001285 W JP 2020001285W WO 2020153225 A1 WO2020153225 A1 WO 2020153225A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
desulfurization
desulfurizing agent
mass
nickel
Prior art date
Application number
PCT/JP2020/001285
Other languages
English (en)
French (fr)
Inventor
則岡慎平
大塚浩文
平野竹徳
Original Assignee
大阪瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪瓦斯株式会社 filed Critical 大阪瓦斯株式会社
Priority to EP20745985.0A priority Critical patent/EP3915677A4/en
Priority to JP2020568103A priority patent/JP7446244B2/ja
Priority to US17/424,007 priority patent/US20220080398A1/en
Publication of WO2020153225A1 publication Critical patent/WO2020153225A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8896Rhenium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/103Sulfur containing contaminants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/14Injection, e.g. in a reactor or a fuel stream during fuel production
    • C10L2290/141Injection, e.g. in a reactor or a fuel stream during fuel production of additive or catalyst
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/542Adsorption of impurities during preparation or upgrading of a fuel

Definitions

  • the present invention relates to a gas desulfurizing agent and a desulfurizing method.
  • the steam reforming process is a process of reacting hydrocarbon with steam to obtain a hydrogen main component gas, and is used for industrial hydrogen production and fuel reforming of a fuel cell.
  • a raw material for the steam reforming process a raw fuel mainly composed of light hydrocarbons such as natural gas, liquefied petroleum gas (LPG) and city gas using these as raw materials contains heavy hydrocarbons that easily cause carbon precipitation. It is particularly preferable because it contains almost no sulfur and has a small sulfur content.
  • natural gas and liquefied petroleum gas (LPG) also usually contain trace amounts of sulfur compounds. Further, even in the case of city gas produced by using liquefied natural gas (LNG) that does not substantially contain sulfur as a main raw material, a small amount of an odorant is added to ensure safety during transportation.
  • LNG liquefied natural gas
  • Organo-sulfur compounds such as tertiary butyl mercaptan (TBM), tetrahydrothiophene (THT) and dimethyl sulfide (DMS) are commonly used as odorants.
  • TBM tertiary butyl mercaptan
  • THT tetrahydrothiophene
  • DMS dimethyl sulfide
  • hydrodesulfurization As typical desulfurization methods performed prior to steam reforming of hydrocarbons, hydrodesulfurization (hydrodesulfurization) method, adsorptive desulfurization method, ultra-high-order desulfurization method and the like are known. Hydrodesulfurization is carried out by reacting an organic sulfur compound in a hydrocarbon raw material with hydrogen using a Co-Mo-based or Ni-Mo-based catalyst to hydrocrack and then removing the produced hydrogen sulfide by adsorbing it on zinc oxide. Is a method (Non-Patent Documents 1 and 2). Hydrodesulfurization is widely used for practical purposes such as being used as a desulfurization process for fuel oil in petroleum refining.
  • Non-Patent Document 2 Since the adsorption of hydrogen sulfide on zinc oxide may be an equilibrium reaction, it is unavoidable that a trace amount of sulfur remains. In addition, it is said that several tens of ppb of sulfur are leaked to the steam reforming catalyst (Non-Patent Document 2).
  • a sulfur compound is adsorbed and removed by a zeolite containing a transition metal such as Ag or Cu at room temperature (Patent Document 1 and Non-Patent Document 3).
  • the adsorptive desulfurization method has an advantage that desulfurization can be performed at room temperature. Further, there is an advantage in that the addition of hydrogen is unnecessary. However, there is a problem that the desulfurization capacity per volume is small. Further, there is a problem that the adsorption performance is further deteriorated when the gas contains water. Furthermore, there is a problem that Ag, which is relatively resistant to moisture, is particularly expensive.
  • the ultra-high-order desulfurization method removes the sulfur content in the raw material by bringing the hydrocarbon raw material into contact with a copper-zinc-based desulfurizing agent in the temperature range of 100°C to 400°C in the presence of hydrogen.
  • Patent Documents 2 and 3 There are (Patent Documents 2 and 3).
  • the concentration of the sulfur content after the treatment can be reduced to 1 ppb or less, so that the steam reforming catalyst can be prevented from being poisoned for a long time.
  • hydrodesulfurization it can be said that a large amount of desulfurizing agent is required in order to obtain sufficient desulfurization performance at 300°C or lower.
  • Patent Document 4 discloses that a mixed aqueous solution containing a copper compound and a zinc compound is mixed with an alkaline substance aqueous solution to cause precipitation, and the obtained precipitate is calcined to obtain a slurry of the calcined product.
  • a desulfurizing agent obtained by obtaining a copper oxide-zinc oxide mixture molded body by using the molded body, impregnating the molded body with an element of iron or nickel, and further calcining the resulting oxide calcined body with hydrogen Has been done.
  • Patent Document 5 discloses a gas containing zinc oxide, aluminum oxide and copper, further containing 1.0% by mass to 10% by mass of nickel and 0.1% by mass to 1.0% by mass of ruthenium.
  • Desulfurizing agents are also disclosed. These desulfurizing agents show high desulfurizing performance even at low temperatures, but in the case where loading capacity is restricted and replacement is restricted, such as in fuel cells, there is still a need for higher performance desulfurizing agents. high.
  • Non-Patent Document 4 reports the results of comparing the activities of various elements at 400° C. with respect to the hydrodesulfurization reaction of dibenzothiophene (DBT), which is relatively difficult to desulfurize.
  • the activity of the 4th period (Ti to Ni), 5th period (Zr to Pd), 6th period (Ta to Au) transition metal is shown, and Ru (379.5), Ir (171.8), High activity of Rh(106.1), Re(39.4), Mo(8.0), Cr(4.8), W(3.2), Nb(1.7) other than platinum group. ), Ni(1.5), Ti(1.4), Co(1.4), etc. are said to be active (the number in parentheses indicates the number of molecules of DBT reacted per 1 mole of metal and 1 second). It is the number divided by 10 16 and indicates the relative activity per atom).
  • Patent Document 6 discloses that nickel is 50 mass% to 95 mass% in terms of oxide (NiO), molybdenum is 0.5 mass% to 25 mass% in terms of oxide (MoO 3 ), and ruthenium is oxide (RuO 2 ). ) 0.1 to 12 mass% in terms of conversion, and a desulfurizing agent for hydrocarbons characterized by containing an inorganic oxide are disclosed. It is said that this desulfurizing agent can extremely efficiently remove the sulfur content in hydrocarbons such as kerosene, jet fuel, naphtha, gasoline, LPG, and natural gas, and can significantly increase the 50 mass ppb breakthrough time.
  • this desulfurizing agent can extremely efficiently remove the sulfur content in hydrocarbons such as kerosene, jet fuel, naphtha, gasoline, LPG, and natural gas, and can significantly increase the 50 mass ppb breakthrough time.
  • Ni has a high activity of decomposing hydrocarbons, when the raw fuel gas contains C5 or higher hydrocarbons and olefins, it causes carbon precipitation in a relatively short period depending on the operating conditions and acts as a desulfurizing agent. May lose functionality.
  • a high-performance gas that has a high desulfurization capacity even at low temperatures and can maintain desulfurization performance for a long period of time, which can be used even when the installed capacity is restricted and the replacement is restricted, such as a fuel cell. It is desired to provide a desulfurization agent and a desulfurization method of
  • the present invention has been made in view of such circumstances, the object is to have a high desulfurization performance even at low temperatures, it is possible to maintain the sulfur compound concentration slipping to the subsequent stage at an extremely low level for a long time, Another object of the present invention is to provide a high-performance gas desulfurizing agent having a high desulfurization capacity and capable of treating a gas for a long period with a small amount of desulfurizing agent used, and a desulfurizing method using the desulfurizing agent.
  • the characteristic configuration of the gas desulfurization agent according to the present invention for achieving the above object is, It contains zinc oxide, aluminum oxide and copper, and further contains 1.0% by mass to 10% by mass of nickel and 0.1% by mass to 1.0% by mass of rhenium.
  • the desulfurizing agent comprises a mixture of zinc oxide, aluminum oxide and copper, and nickel and rhenium as its components.
  • the mixture includes not only a state in which the components are mixed but also a state like a complex oxide.
  • the desulfurization agent has high desulfurization performance for gas (gas such as raw fuel gas) even at a relatively low temperature. Therefore, when used as a desulfurizing agent for a desulfurizer or the like, the concentration of the sulfur compound that slips (leaks) to the subsequent stage (downstream side) of the desulfurizer can be maintained at an extremely low level for a long time. Further, the desulfurizing agent having the above structure has a high desulfurizing capacity. Therefore, the amount of desulfurizing agent used can be reduced. Further, the sulfur compounds contained in the gas can be decomposed and removed for a long period of time.
  • the desulfurizing agent having the above-mentioned configuration contains copper or copper oxide in a metallic state as copper, and preferably contains metallic copper as main copper. Further, the desulfurizing agent having the above-mentioned structure contains nickel in a metallic state or an oxide thereof as nickel, and preferably contains nickel in a metallic state (metallic nickel) as main nickel. Further, the desulfurizing agent having the above-mentioned structure contains, as rhenium, metallic rhenium or an oxide thereof, and preferably contains metallic rhenium as main rhenium.
  • a desulfurizing agent containing zinc oxide, aluminum oxide, and copper, and further containing 1.0% by mass to 10% by mass of nickel and 0.1% by mass to 1.0% by mass of rhenium is gasified in the presence of hydrogen.
  • the sulfur compound in the gas is decomposed and removed.
  • the desulfurization agent exhibits high desulfurization performance for gas (gas such as raw fuel gas) even at a relatively low temperature. Therefore, the concentration of the sulfur compound slipping to the subsequent stage can be maintained at an extremely low level for a long time. Further, according to the above configuration, the sulfur compound contained in the gas can be decomposed and removed for a long period of time by utilizing the high desulfurization capacity of the desulfurization agent with a small amount of the desulfurization agent used.
  • the desulfurizing agent should reduce its copper component, rhenium component, and nickel component in advance in the presence of hydrogen. After the reduction, contact with gas is preferable because it exerts a high decomposition and removal ability for sulfur compounds.
  • FIG. 3 is a flow diagram of a desulfurization system that realizes a desulfurization method using a desulfurization agent.
  • the gas desulfurizing agent and the desulfurizing method according to the embodiment of the present invention will be described below.
  • the desulfurizing agent of the present invention comprises zinc oxide, aluminum oxide and copper, and further comprises 1% by mass to 10% by mass of nickel and 0.1% by mass to 1.0% by mass of rhenium. ..
  • the desulfurizing agent of the present invention is usually produced by firing in air. Then, it is used after being subjected to a reduction treatment before being subjected to a desulfurization reaction. It is presumed that zinc and aluminum are in an oxidized state (ZnO, Al 2 O 3 ) both at the stage of production and after the reduction treatment. It is presumed that copper and nickel are mainly oxides (Cu 2 O, NiO) at the stage of firing (manufacturing stage) in air, and are mainly in a metallic state after the reduction treatment.
  • Rhenium is mainly an oxide (ReO 2 , Re 2 O 7 ) at the stage of firing in air (manufacturing stage), and is mainly in the state of metal Re after the reduction treatment, but part of it is There may be a low oxidation number oxide (ReO 2 ) state.
  • the desulfurizing agent of the present invention contains zinc oxide, aluminum oxide and copper oxide during production. Further, the desulfurizing agent of the present invention contains zinc oxide, aluminum oxide and copper (copper metal) when used, and may further contain copper oxide.
  • the desulfurizing agent of the present invention contains 1.0% by mass to 10% by mass of nickel in the total mass of the desulfurizing agent, when viewed in terms of mass when nickel is converted to a metal state. Further, in terms of mass when rhenium is converted to a metal state, it contains 0.1 mass% to 1.0 mass% of rhenium in the total mass of the desulfurizing agent.
  • the desulfurizing agent of the present invention contains nickel oxide as a nickel component and rhenium oxide as a rhenium component during production.
  • the desulfurizing agent of the present invention contains metallic nickel as a nickel component and metallic rhenium as a rhenium component. Similar to the case of copper, nickel oxide and rhenium oxide may be contained, respectively.
  • the desulfurizing agent of the present invention is used by first undergoing a reduction treatment in the presence of hydrogen and then contacting it with a gas in the presence of hydrogen. Then, the sulfur compound in the gas can be decomposed and removed.
  • the method for producing the desulfurizing agent of the present invention is not limited, but it is preferably produced by the same method as in Patent Document 4.
  • a water-soluble copper compound such as copper nitrate (Cu(NO 3 ) 2 ) and a water-soluble zinc compound such as zinc nitrate (Zn(NO 3 ) 2 ) are mixed with aluminum. It is mixed with an aqueous alkaline substance solution in the presence of the compound. At this time, the aluminum compound may be in a dissolved or gel state. Then, the mixing causes precipitation. Further, the obtained precipitate is calcined to obtain a mixture of copper oxide, zinc oxide and aluminum oxide. Hereinafter, this mixture is referred to as a copper oxide-zinc oxide-aluminum oxide mixture.
  • the above mixture is molded into a copper oxide-zinc oxide-aluminum oxide mixture molded body. Then, this copper oxide-zinc oxide-aluminum oxide mixture molded body is impregnated with an aqueous solution containing nickel and rhenium and fired. Then, using the copper oxide-zinc oxide-aluminum oxide mixture molded body as a carrier, nickel and rhenium are supported on the carrier to obtain the desulfurizing agent of the present invention.
  • molding by compression molding by compression
  • compression molding method for example, a tableting method can be used.
  • the copper oxide-zinc oxide-aluminum oxide mixture molded body a commercially available molded body may be diverted.
  • a desulfurizing agent, a methanol synthesis catalyst, or a commercially available molded product of a copper oxide-zinc oxide-aluminum oxide mixture as a carbon monoxide conversion catalyst may be used.
  • the desulfurizing agent of the present invention can be obtained by impregnating this with an aqueous solution containing nickel and rhenium and firing it.
  • a molding aid such as graphite may be added to a commercially available molded product of a copper oxide-zinc oxide-aluminum oxide mixture.
  • these molding auxiliaries do not impair the function as the desulfurizing agent unless the amount is extremely large.
  • a water-soluble nickel compound can be used as a raw material of nickel for preparing an aqueous solution containing nickel and rhenium.
  • nickel nitrate, nickel acetate, nickel chloride or the like can be used as the water-soluble nickel compound.
  • nickel nitrate and nickel acetate are particularly preferable. This is because these have high solubility and are preferable. Further, these are because chlorine ions do not remain in the prepared desulfurizing agent, and desulfurization performance is not impaired by the remaining chlorine ions.
  • ammonium perrhenate As a raw material of rhenium for preparing an aqueous solution containing nickel and rhenium, ammonium perrhenate (NH 4 ReO 4 ), rhenium (III) chloride, rhenium (V) chloride and the like can be used.
  • ammonium perrhenate is particularly preferable. These are because chlorine ions do not remain in the prepared desulfurizing agent, and desulfurization performance is not impaired by the remaining chlorine ions.
  • the content of copper, zinc, and aluminum in the desulfurization agent is a mass ratio (content in the desulfurization agent) to the desulfurization agent after production and before use, which is 10% by mass to 50% by mass as CuO and 30% by mass as ZnO. To about 70% by mass, and Al 2 O 3 is about 5% to 20% by mass.
  • ZnO is an essential component for fixing sulfur as ZnS. If the formulation amount of ZnO is too small, the desulfurization capacity becomes small.
  • Copper catalyzes the decomposition of organic sulfur compounds. In addition to this catalytic action, it also contributes to the fixation of sulfur as Cu 2 S, CuS and the like. Therefore, if the prescription amount of copper is too small, desulfurization performance cannot be obtained.
  • Al 2 O 3 contributes to the specific surface area and strength. Therefore, if the formulation amount of Al 2 O 3 is too small, the desulfurization performance will deteriorate. Further, if the prescribed amount of Al 2 O 3 is too small, there is a concern that practical strength may not be obtained.
  • the content of nickel and rhenium in the desulfurization agent is 1.0% by mass to 10% by mass as Ni and 0.1% by mass to 1.0% by mass as Re in terms of mass ratio to the desulfurization agent.
  • the mass ratio with respect to the desulfurizing agent is 3.0 mass% to 10 mass% as Ni and 0.1 mass% to 1.0 mass% as Re. More preferably, the mass ratio with respect to the desulfurizing agent is 3.0 mass% to 6.0 mass% as Ni and 0.1 mass% to 1.0 mass% as Re.
  • the content of nickel and rhenium in the desulfurizing agent is 1.0 mass% to 6.0 mass% for Ni and 0.1 mass% to 1.0 mass% for Re, in terms of mass ratio to the desulfurizing agent.
  • the mass ratio to the desulfurizing agent may be 1.0 mass% to 3.0 mass% as Ni and 0.1 mass% to 1.0 mass% as Re.
  • the content of nickel and rhenium in the desulfurizing agent is 0.01 to 1 in terms of Re/Ni mass ratio.
  • the Re/Ni mass ratio is preferably 0.02 to 0.4.
  • the desulfurization agent of the present invention can be obtained by impregnating a carrier composed of a copper oxide-zinc oxide-aluminum oxide mixture with an aqueous solution in which predetermined nickel and rhenium are dissolved, evaporating to dryness, and then firing.
  • a carrier composed of a copper oxide-zinc oxide-aluminum oxide mixture
  • an aqueous solution in which predetermined nickel and rhenium are dissolved
  • Firing after evaporation to dryness may be performed in air at about 250° C. to 350° C. for about 1 to 10 hours. If the firing temperature is too low, the nickel or rhenium compound used for supporting is not sufficiently decomposed and desired performance cannot be obtained. If the calcination temperature is too high, the specific surface area of the desulfurizing agent will be too small to obtain the desired performance.
  • the nickel and rhenium may be loaded on the carrier in a plurality of times.
  • a method of sequentially supporting nickel on the carrier and then further supporting rhenium on the carrier may be used.
  • the desulfurization method of the raw fuel gas G1 (gas) of the present invention is such that the desulfurizing agent obtained above is subjected to reduction treatment in the presence of hydrogen, and then contacted with the raw fuel gas G1 (gas) in the presence of hydrogen, The sulfur compound of the raw fuel gas G1 is decomposed and removed.
  • the desulfurization method the desulfurization agent (produced desulfurization agent) obtained above is subjected to reduction treatment in the presence of hydrogen, and then contacted with the raw fuel gas G1 (gas) in the presence of hydrogen. The case of decomposing and removing the sulfur compound of the raw fuel gas G1 will be described.
  • the raw fuel gas G1 as a gas is mainly composed of light hydrocarbons (about C1 to C4) such as natural gas, liquefied petroleum gas, and city gas using these as raw materials. When used as a gas, it exhibits particularly excellent performance.
  • the desulfurization method of the present invention is a mercaptan (thiol) such as tertiary butyl mercaptan (TBM), tetrahydrothiophene (THT), dimethyl sulfide (DMS) and sulfide (thioether) which are commonly used as odorants. And the like, exhibit excellent desulfurization performance for organic sulfur compounds contained in the raw fuel gas G1.
  • thiol such as tertiary butyl mercaptan (TBM), tetrahydrothiophene (THT), dimethyl sulfide (DMS) and sulfide (thioether)
  • the raw fuel gas G1 exemplified above may contain hydrogen sulfide, carbonyl sulfide, and disulfides in addition to these, since the desulfurizing agent of the present invention also has the ability to remove these, if the amount is small. There is no problem if it is mixed.
  • the raw fuel gas G1 exemplified above may contain a slight amount of hydrogen, carbon monoxide, oxygen, nitrogen, carbon dioxide, or water depending on the manufacturing method.
  • hydrogen, carbon monoxide, oxygen, nitrogen, and carbon dioxide are 4%, 0.05%, and 0.01% at the maximum, respectively. %, 1.0%, 0.5% (all are based on volume).
  • carbon monoxide and carbon dioxide may cause a methanation reaction that produces methane by reacting with hydrogen on the desulfurizing agent, and therefore, it is generally not preferable if they are present in a high concentration. ..
  • the methanation activity of the desulfurizing agent of the present invention is relatively low as compared with the desulfurizing agent containing Ni as a main component and the desulfurizing agent containing Ru, so that the influence is small.
  • Oxygen may not be contained because the desulfurization agent may be oxidized and the desulfurization performance may be deteriorated, but if it is about 0.1%, it will be rapidly removed by reacting with hydrogen on the desulfurization agent. Since the temperature rise due to is small, there is no problem.
  • Liquefied petroleum gas may contain a small amount of unsaturated hydrocarbons such as propylene and butadiene in addition to saturated hydrocarbons such as propane and butane. Further, since a small amount of liquefied petroleum gas is usually added to the natural gas-based city gas in order to adjust the heat quantity, a small amount of unsaturated hydrocarbon may be contained in the same manner. Unsaturated hydrocarbons are converted into saturated hydrocarbons on the desulfurizing agent in the coexistence of hydrogen, but there is a concern that carbon may be deposited on the desulfurizing agent due to the polymerization reaction.
  • the desulfurization agent of the present invention has a relatively low carbon precipitation activity as compared with a desulfurization agent containing Ru, and the influence of unsaturated hydrocarbons is small.
  • the desulfurization agent (produced desulfurization agent) is reduced by a reduction treatment in the presence of hydrogen before being brought into contact with the raw fuel gas G1.
  • the temperature in the case of performing the above reduction treatment is about 150°C to 350°C.
  • the gas used for the reduction treatment is, for example, an inert gas such as nitrogen to which about 1% to 10% by volume of hydrogen (hydrogen gas) is added.
  • the reduction time is calculated from the flow rate of the gas used for the reduction treatment and the hydrogen content, and the time required to achieve the reduction stoichiometrically is calculated. good. If the reduction temperature is too low, the reduction will not be completed, and if it is too high, the performance of the desulfurizing agent will be deteriorated due to sintering. If the hydrogen concentration of the gas used for the reduction treatment (volume concentration of hydrogen gas) is too low, a large amount of gas needs to flow until the reduction is completed, which is economically disadvantageous. On the other hand, if the hydrogen concentration of the gas used for the reduction treatment is too high, the heat of reaction due to the reaction between hydrogen and the desulfurizing agent in the oxidized state causes a rapid temperature increase, which is not preferable. For example, it may be impossible to maintain a predetermined reduction temperature due to a rapid temperature increase.
  • the desulfurization method of the present invention is performed by filling a desulfurization agent container with a desulfurization agent, keeping the desulfurization agent at a predetermined temperature by external heating, and passing the raw fuel gas G1 to which hydrogen is added.
  • the desulfurization reaction does not generate much heat or endotherm unless the concentration of the sulfur compound is extremely high. Therefore, the raw fuel gas G1 or the raw fuel gas G1 added with hydrogen gas can be preheated to a temperature preferable for desulfurization in advance, and the desulfurizing agent container itself can be reacted in an adiabatic state without heating or cooling.
  • the raw fuel gas G1 or the raw fuel gas G1 added with hydrogen gas may be preheated to a temperature of about 150° C. to 350° C., which is the temperature at which the reduction treatment is performed.
  • the amount of hydrogen to be added may be determined depending on the kind and amount of the sulfur compound contained in the raw material, but since the sulfur content is usually in the ppm level, the molar ratio to the raw fuel gas G1 is 0. 0.001 or more, preferably about 0.01 to 0.5, and more preferably about 0.01 to 0.2.
  • the hydrogen produced by the steam reforming reaction may contain carbon monoxide, carbon dioxide, and steam, but there is no major problem unless the molar ratio with respect to the raw fuel gas G1 exceeds about 0.01.
  • FIG. 1 shows a schematic flow diagram (one example) of a desulfurization system when performing desulfurization as a pretreatment of the steam reforming process.
  • the desulfurization system 100 shown in FIG. 1 has a desulfurizer 1 in which a desulfurizing agent is enclosed and a reformer 2 in which a reforming catalyst is enclosed.
  • the desulfurization system 100 is a reaction system that desulfurizes the supplied raw fuel gas G1 and further performs steam reforming to obtain a reformed fuel gas G3 containing hydrogen.
  • the desulfurization system 100 will be specifically described.
  • the raw fuel gas G1 is supplied to the desulfurizer 1 from the supply passage 11 and becomes the desulfurizing agent outlet gas G2.
  • the desulfurizing agent outlet gas G2 is supplied from the desulfurizer 1 through the reformer passage 12 to the reformer 2 connected to the downstream side.
  • a steam supply passage 21 is connected to the reformer passage 12, and steam S as water is supplied to the reformer passage 12. Therefore, the reformer 2 is supplied with the desulfurizing agent outlet gas G2 and the steam S.
  • the desulfurizing agent outlet gas G2 reformed by the reformer 2 becomes the reformed fuel gas G3.
  • the reformed fuel gas G3 is supplied to the next process such as a fuel cell (not shown) via the reformed gas passage 13 connected to the downstream side of the reformer 2.
  • a part of the reformed fuel gas G3 is returned as the recycled gas G4 to the desulfurizer 1 via the return passage 31 that branches from the reformed gas passage 13 and is connected to the supply passage 11.
  • Example 1 Commercially available copper oxide-zinc oxide-aluminum oxide mixture molded body (MDC-7, 3 mm tablet, CuO: 41% by mass, ZnO: 46% by mass, Al 2 O 3 : 9% by mass) as a carrier. To 70.03 g, 50 g of an aqueous solution containing ammonium perrhenate (containing 0.352 g of Re) and nickel nitrate (containing 4.470 g of Ni) was added dropwise and impregnated for 3 hours.
  • MDC-7 3 mm tablet, CuO: 41% by mass, ZnO: 46% by mass, Al 2 O 3 : 9% by mass
  • a muffle furnace as a firing furnace was used at a temperature rising rate of 2° C./min in air. The temperature was raised to 300° C., and the temperature was maintained at 300° C. for 1 hour as firing. Then, a desulfurization agent A containing 0.5 mass% Re and 6 mass% Ni was obtained.
  • a heat-resistant glass (Pyrex glass) reaction tube (inner diameter 14 mm) was filled with 20 g of the desulfurizing agent A to form a desulfurizing agent layer.
  • This desulfurizing agent layer corresponds to the desulfurizer 1.
  • heating the lower end portion (outlet side) of the desulfurizing agent layer at 250° C., 60 liters/hour (0° C., 1° C.) of reducing gas obtained by mixing 2% hydrogen gas (volume basis) with nitrogen gas was heated. It was distributed in a standard state of atmospheric pressure) and subjected to reduction treatment for 4 hours. That is, the desulfurizing agent A was reduced in the presence of hydrogen.
  • the heating conditions were changed, while maintaining the lower end of the desulfurizing agent layer at 200° C., nitrogen gas containing 130 ppm DMS and 2% hydrogen (both by volume) was added at 20 liters/hour (0° C.). Flowed at a standard pressure of 1 atm). That is, the desulfurizing agent A was brought into contact with the raw fuel gas G1 in the coexistence of hydrogen.
  • nitrogen is used as a component of the raw fuel gas G1 instead of hydrocarbon such as methane. That is, as the raw fuel gas G1, a model gas in a reducing atmosphere in which a predetermined amount of DMS as a sulfur compound (odorant) is added to nitrogen (hydrocarbon substitute gas) is used.
  • the concentrations of DMS, hydrogen sulfide and methane in the desulfurizing agent outlet gas G2 were analyzed by a gas chromatograph (GC-14B manufactured by Shimadzu Corporation, with FPD and FID detector).
  • the DMS concentration of the desulfurizing agent outlet gas G2 was not initially detected, and was 3.4 ppb after 72 hours, 4.6 ppb after 74 hours, and 5.2 ppb after 75 hours.
  • Example 2 A desulfurizing agent B containing 0.2 mass% Re and 6 mass% Ni was obtained in the same manner as in Example 1 except that the amount of Re in ammonium perrhenate was changed to one containing 0.140 g of Re. It was When the desulfurization performance was evaluated in the same manner as in Example 1, the 5 ppb breakthrough time was 71.7 hours.
  • Example 3 In the same manner as in Example 1 except that the amount of Ni in nickel nitrate was 2.166 g as Ni and the amount of Re in ammonium perrhenate was changed to be 0.351 g as Re, 0.5 A desulfurizing agent C containing Re of 3 mass% and Ni of 3 mass% was obtained. When the desulfurization performance was evaluated in the same manner as in Example 1, the 5 ppb breakthrough time was 42.0 hours.
  • Example 1 The copper oxide-zinc oxide-aluminum oxide mixture molded body used in Example 1 was directly used as a desulfurizing agent (desulfurizing agent D). When the desulfurization performance was evaluated in the same manner as in Example 1, the 5 ppb breakthrough time was 20.0 hours.
  • Example 2 A desulfurizing agent E containing 6% by mass of Ni was obtained in the same manner as in Example 1 except that Re was not used. When the desulfurization performance was evaluated in the same manner as in Example 1, the 5 ppb breakthrough time was 41.9 hours.
  • Example 3 A desulfurizing agent F containing 3% by mass of Ni was obtained in the same manner as in Example 3 except that Re was not used. When the desulfurization performance was evaluated in the same manner as in Example 1, the 5 ppb breakthrough time was 26.6 hours.
  • Example 1 The results of Examples 1 to 3 and Comparative Examples 1 to 4 are summarized in Table 1.
  • the desulfurizing agent A supporting 0.5% by mass Re and 6% by mass Ni is a desulfurizing agent B supporting 5 ppb breakthrough time of 74.7 hours and 0.2% by mass Re and 6% by mass Ni.
  • the 5 ppb breakthrough time was 71.7 hours, which was a significantly longer breakthrough time than the 5 ppb breakthrough time of 20.0 hours of the desulfurizing agent D which is copper oxide-zinc oxide-aluminum oxide.
  • the desulfurizing agent C carrying 0.5 mass% Re and 3 mass% Ni also had a 5ppb breakthrough time of 42.0 hours, which was significantly longer than the 5ppb breakthrough time of the desulfurizing agent D.
  • the desulfurization agent containing both Re and Ni significantly improves the desulfurization performance. That is, the desulfurizing agents A to C have high desulfurizing performance for sulfur compounds such as DMS and hydrogen sulfide even at a low temperature of about 200° C., and slip (leakage) to the subsequent stage (downstream side of the desulfurizer 1).
  • the sulfur compound concentration can be maintained at an extremely low level for a long period of time, the desulfurization capacity is high, and the raw fuel gas G1 can be treated (desulfurization) for a long time with a small amount of the desulfurizing agent.
  • Example 4 [City gas desulfurization test] Using 200.08 g of a copper oxide-zinc oxide-aluminum oxide mixture molded body as a carrier and using an aqueous solution in which ammonium perrhenate (containing 1.01 g of Re) and nickel nitrate (containing 12.77 g of Ni) were used In the same manner as in Example 1, a desulfurizing agent H containing 0.5 mass% Re and 6 mass% Ni was obtained. 66 cc (97.4 g) of desulfurizing agent H was filled in a stainless steel reaction tube (inner diameter 26 mm). A stainless steel reaction tube filled with the desulfurizing agent H corresponds to the desulfurizer 1.
  • the whole reaction tube was placed in a thermostat maintained at 250° C., and 300 liters/hour of reducing gas obtained by mixing 2% hydrogen (volume basis) with nitrogen gas (volume under standard conditions of 0° C. and 1 atmosphere). , And subjected to reduction treatment for 5 hours.
  • the temperature of the incubator was lowered to 200° C., and 13 A city gas mixed with 2% hydrogen (volume basis) was used as the raw fuel gas G1 at 330 liters/hour (volume at standard conditions of 0° C. and 1 atm).
  • the 13A city gas as the raw fuel gas G1 contains about 3.1 ppm of DMS and about 2.4 ppm of TBM as odorants (sulfur compounds).
  • Example 4 and Comparative Example 5 are summarized in Table 2.
  • the breakthrough time of DMS is 228.3 hours
  • the desulfurizing agent H supporting 0.5% by mass of Re and 6% by mass of Ni
  • Neither DMS, TBM nor hydrogen sulfide was detected after 300 hours. From this result, it has been clarified that the desulfurizing agent containing both Re and Ni exhibits high performance even in the desulfurization of the gas containing hydrocarbon as the main component.
  • the desulfurization agent H has a high desulfurization performance for sulfur compounds such as DMS, TBM, and hydrogen sulfide even at a low temperature of about 200° C., and keeps the concentration of sulfur compounds slipping to the subsequent stage at an extremely low level for a long time.
  • the raw fuel gas G1 could be treated (desulfurized) for a long period of time with a high desulfurization capacity and a small amount of desulfurizing agent used.
  • the desulfurization system 100 exemplifies the case where the desulfurizer 1 is provided on the upstream side of the reformer 2 (that is, the reformer 2 is provided on the downstream side of the desulfurizer 1).
  • the desulfurization system 100 is not necessarily used in combination with the reformer 2, but can be used in combination with other process devices such as a reactor.
  • the desulfurization agent and the desulfurization method of the present invention exhibit their desulfurization performance even when the gas contains other components, as long as the gas contains hydrogen and the gas can be brought into contact with the desulfurization agent under a reducing atmosphere. ..
  • the produced desulfurizing agent copper is copper oxide
  • the desulfurizing method is used in which the produced desulfurizing agent is subjected to a reduction treatment and then used for desulfurization before being subjected to the desulfurization reaction.
  • the copper of the desulfurizing agent produced is metallic copper
  • reduction treatment may not be included.
  • the nickel component of the desulfurizing agent produced is an oxide
  • the desulfurizing method is used for desulfurization after a reduction treatment before subjecting the produced desulfurizing agent to a desulfurization reaction. ..
  • the nickel component of the manufactured desulfurization agent is mainly metallic nickel, the reduction treatment may not be included.
  • the rhenium component of the produced desulfurization agent is an oxide
  • the desulfurization method is used in which the produced desulfurization agent is subjected to a reduction treatment and then used for desulfurization before being subjected to the desulfurization reaction.
  • the rhenium component of the produced desulfurizing agent is mainly metal rhenium
  • the reduction treatment may not be included.
  • the present invention can be applied to, for example, a desulfurizing agent for a raw fuel gas and a desulfurizing method to be used for a fuel gas reformer of a fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Fuel Cell (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

低温でも脱硫能力が高く、長期間脱硫性能を維持する、高性能なガスの脱硫剤および脱硫方法を提供する。 酸化亜鉛、酸化アルミニウムおよび銅を含み、さらに1.0質量%から10質量%のニッケルおよび0.1質量%から1.0質量%のレニウムを含んでなるガスの脱硫剤、および、その脱硫剤を、水素の共存下でガスに接触させて、ガス中の硫黄化合物を分解除去することを特徴とする、ガスの脱硫方法。

Description

ガスの脱硫剤および脱硫方法
 本発明は、ガスの脱硫剤および脱硫方法に関する。
 水蒸気改質プロセスは、炭化水素を水蒸気と反応させて、水素主成分ガスを得るプロセスであり、工業用の水素製造や燃料電池の燃料改質に用いられている。
 水蒸気改質プロセスの原料として、天然ガス、液化石油ガス(LPG)やこれらを原料とする都市ガスのような軽質炭化水素を主成分とする原燃料は、炭素析出を引き起こしやすい重質炭化水素をほとんど含まず、硫黄分も少ないので、特に好適である。しかし、天然ガス、液化石油ガス(LPG)にも、通常は微量の硫黄化合物が含まれる。また、実質的に硫黄分を含まない液化天然ガス(LNG)を主原料として製造される都市ガスであっても、輸送時の安全性確保のため、微量の付臭剤が添加されている。
 付臭剤として一般的に用いられているのは、ターシャリーブチルメルカプタン(TBM)、テトラヒドロチオフェン(THT)、ジメチルサルファイド(DMS)等の有機硫黄化合物である。
 水蒸気改質反応では、NiやRuを耐熱性の無機酸化物に担持した触媒が用いられるが、これらは硫黄分により被毒され、その活性を急速に失うことが知られている。したがって、水蒸気改質反応に供する原料は、その硫黄分を可能な限り低減しておく脱硫処理が欠かせない。
 炭化水素を水蒸気改質するに先立って行われている代表的な脱硫方法として、水素化脱硫(水添脱硫)法、吸着脱硫法、超高次脱硫法などが知られている。
 水素化脱硫は、Co-Mo系あるいはNi-Mo系触媒を用いて炭化水素原料中の有機硫黄化合物を水素と反応させて水素化分解した後、生成した硫化水素を酸化亜鉛に吸着させて除去する方法である(非特許文献1、2)。水素化脱硫は、石油精製における燃料油の脱硫プロセスとしても用いられるなど、幅広く実用に供されている。しかし、硫化水素の酸化亜鉛への吸着が平衡反応となることもあり、微量の硫黄分の残存が避けられない。
また、数十ppbの硫黄分が水蒸気改質触媒にリークするとされている(非特許文献2)。
 吸着脱硫法は、Ag、Cuなどの遷移金属を含むゼオライトにより硫黄化合物を常温で吸着除去するものである(特許文献1、非特許文献3)。
 吸着脱硫法は、常温で脱硫が行えることが利点である。また、水素の添加が不要である点が利点である。しかし、体積当たりの脱硫能力が小さいという課題がある。また、ガス中に水分が含まれると吸着性能がさらに低下するという課題がある。さらに、比較的水分に強いAgは特に高価である、などの課題がある。
 超高次脱硫法は、炭化水素原料を水素の共存下、100℃から400℃程度の温度範囲で、銅-亜鉛系の脱硫剤に接触させることにより、原料中の硫黄分を除去するものである(特許文献2、3)。
 この方法では、処理後の硫黄分の濃度は1ppb以下に低減できるため、水蒸気改質触媒の被毒を長期にわたって防ぐことができる。しかし、水素化脱硫と同様に300℃以下で十分な脱硫性能を得るには、多量の脱硫剤を要する点は課題といえる。
 この点に鑑み、特許文献4には、銅化合物および亜鉛化合物を含む混合水溶液とアルカリ物質水溶液とを混合して沈澱を生じさせ、得られた沈澱を焼成し、得られた焼成物のスラリーを用いて酸化銅-酸化亜鉛混合物成型体を得た後、この成型物に鉄またはニッケルの元素を含浸させ、さらに焼成し、得られた酸化物焼成体を水素還元して得られる脱硫剤が開示されている。
 また、特許文献5には、酸化亜鉛、酸化アルミニウムおよび銅を含み、さらに1.0質量%から10質量%のニッケルおよび0.1質量%から1.0質量%のルテニウムを含んでなるガスの脱硫剤も開示されている。
 これらの脱硫剤は、低温でも高い脱硫性能を示すが、燃料電池のように、搭載容量が制約され、かつ交換が制約されるような場合などでは、より高性能な脱硫剤の必要性はなお高い。
 非特許文献4では、比較的難脱硫性とされるジベンゾチオフェン(DBT)の水素化脱硫反応に対する各種元素の活性を400℃において比較した結果が報告されている。第4周期(TiからNi)、第5周期(ZrからPd)、第6周期(TaからAu)遷移金属の活性が示されており、Ru(379.5)、Ir(171.8)、Rh(106.1)の活性が高いこと、白金族以外では、Re(39.4)、Mo(8.0)、Cr(4.8)、W(3.2)、Nb(1.7)、Ni(1.5)、Ti(1.4)、Co(1.4)などが活性を示すとされている(括弧内は、金属1モル、1秒あたり反応したDBTの分子数を10の16乗で除した数字で、原子あたりの相対活性を示す)。
 特許文献6には、ニッケルを酸化物(NiO)換算で50質量%から95質量%、モリブデンを酸化物(MoO)換算で0.5質量%から25質量%、ルテニウムを酸化物(RuO)換算で0.1質量%から12質量%、および無機酸化物を含有することを特徴とする炭化水素用脱硫剤が開示されている。この脱硫剤は、灯油、ジェット燃料、ナフサ、ガソリン、LPG、天然ガスなど炭化水素中の硫黄分を極めて効率よく除去でき、50質量ppb破過時間を著しく増加させることができるとされている。
 しかし、この文献では、脱硫処理する際に水素は添加されていないことから、反応機構の詳細は不明であるものの、水素化脱硫反応は生じていないものと推測され、炭素析出を引き起こすことなく長期にわたって脱硫性能が維持できるかは不明である。また、燃料油である灯油の脱硫性能は示されているものの、原燃料ガスの脱硫性能は示されておらず、気体原料に適用した際に、気体中の硫黄分を除去できるものかどうかは明らかではない。
 Niを含む脱硫剤の例は多いが、脱硫剤にNiを50質量%から95質量%もの多量に用いた場合には、炭素析出が促進される懸念もある。Niは炭化水素を分解する活性が高いため、原燃料ガス中にC5以上の炭化水素やオレフィン類が含まれる場合には、運転条件によっては比較的短期間で炭素析出を引き起こし、脱硫剤としての機能を失うことがある。
特開2001-286753号公報 特開平1-123627号公報 特開平1-123628号公報 特開平11-61154号公報 国際公開第2018/216555号 特開2007-254728号公報
斯波、「触媒」、1巻1号、49ページ(1959年) 松久、「触媒」、48巻5号、326ページ(2006年) S. Satokawa, Y. Kobayashi, H. Fujiki, Applied Catalysis B: Environmental、56巻51ページ(2005年) T. A. Pecoraro, R. R. Chianelli, Journal of Catalysis、67巻430ページ(1981年)
 そこで、たとえば燃料電池のように、搭載容量が制約され、かつ交換が制約されるような場合などにおいても利用可能な、低温でも脱硫能力が高く、長期間脱硫性能を維持する、高性能なガスの脱硫剤および脱硫方法の提供が望まれる。
 本発明は、かかる実状に鑑みて為されたものであって、その目的は、低い温度でも高い脱硫性能を有し、後段にスリップする硫黄化合物濃度を極めて低いレベルに長時間保つことができ、かつ高い脱硫容量を有し、少ない脱硫剤の使用量で長期にわたってガスを処理しうる高性能な、ガスの脱硫剤、および当該脱硫剤を用いた脱硫方法を提供することにある。
 上記目的を達成するための本発明に係るガスの脱硫剤の特徴構成は、
 酸化亜鉛、酸化アルミニウムおよび銅を含み、さらに1.0質量%から10質量%のニッケルおよび0.1質量%から1.0質量%のレニウムを含んでなる点にある。
 上記構成によれば、脱硫剤は、酸化亜鉛、酸化アルミニウムおよび銅の混合物に、その成分としてニッケルおよびレニウムを含んで成る。ここで、混合物とは、成分を混合した状態のみならず、複合酸化物のような状態を含む。
 そして、上記構成によれば、脱硫剤は、比較的低い温度でもガス(原燃料ガスなどの気体)に対する高い脱硫性能を有する。そのため、脱硫器などの脱硫剤として用いた場合に、脱硫器の後段(下流側)にスリップ(リーク)する硫黄化合物濃度を極めて低いレベルに長時間保つことができる。
 また、上記構成の脱硫剤は、高い脱硫容量を有する。そのため、脱硫剤の使用量を少なくすることができる。また、長期にわたってガスに含まれる硫黄化合物を分解除去しうる。
 なお、上記構成の脱硫剤は、銅として、金属状態の銅ないし酸化銅を含み、好ましくは主たる銅として金属銅を含む。
 また、上記構成の脱硫剤は、ニッケルとして、金属状態のニッケルないしその酸化物を含み、好ましくは主たるニッケルとして金属状態のニッケル(金属ニッケル)を含む。
 また、上記構成の脱硫剤は、レニウムとして、金属状態のレニウムないしその酸化物を含み、好ましくは主たるレニウムとして金属レニウムを含む。
 上記目的を達成するための本発明に係るガスの脱硫方法の特徴構成は、
 酸化亜鉛、酸化アルミニウムおよび銅を含み、さらに1.0質量%から10質量%のニッケルおよび0.1質量%から1.0質量%のレニウムを含んでなる脱硫剤を、水素の共存下でガスに接触させて、前記ガス中の硫黄化合物を分解除去する点にある。
 上記構成によれば、脱硫剤は、比較的低い温度でもガス(原燃料ガスなどの気体)に対する高い脱硫性能を発揮する。そのため、後段にスリップする硫黄化合物濃度を極めて低いレベルに長時間保つことができる。
 また、上記構成によれば、脱硫剤の高い脱硫容量を活かして、少ない脱硫剤の使用量で長期にわたってガスに含まれる硫黄化合物を分解除去しうる。
 なお、脱硫剤は、あらかじめ水素の共存下において、その銅成分、およびレニウム成分、ニッケル成分を還元しておくとよい。当該還元後に、ガスに接触させることで、硫黄化合物に対する高い分解除去能を発揮するため好ましい。
は、脱硫剤を用いた脱硫方法を実現する脱硫システムのフロー図である。
〔実施形態〕
 以下に本発明の実施形態にかかるガスの脱硫剤および脱硫方法を説明する。
 本発明の脱硫剤は、酸化亜鉛、酸化アルミニウムおよび銅を含み、さらに1質量%から10質量%のニッケルおよび0.1質量%から1.0質量%のレニウムを含んでなることを特徴とする。
 下記に詳述するように本発明の脱硫剤は通常空気中で焼成することにより製造される。
 そして、脱硫反応に供する前に還元処理してから使用される。
 亜鉛およびアルミニウムは、製造された段階でも還元処理後の段階でも酸化状態(ZnO、Al)にあると推測される。
 銅、ニッケルは、空気中で焼成した段階(製造された段階)では、主に酸化物(CuO,NiO)であり、還元処理後は主に金属状態にあると推測される。
 レニウムは、空気中で焼成した段階(製造された段階)では、主に酸化物(ReO,Re)であり、還元処理後は主に金属Reの状態にあるが、一部は低酸化数の酸化物(ReO)状態のものも存在する可能性がある。
 すなわち、本発明の脱硫剤は、製造時は、酸化亜鉛、酸化アルミニウムおよび酸化銅を含む。
 また、本発明の脱硫剤は、使用時は、酸化亜鉛、酸化アルミニウムおよび銅(金属銅)を含み、さらに酸化銅を含む場合がある。
 そして、本発明の脱硫剤は、ニッケルを金属状態に換算した場合の質量でみた場合に、脱硫剤全体の質量のうち、1.0質量%から10質量%のニッケルを含む。また、レニウムを金属状態に換算した場合の質量でみた場合に、脱硫剤全体の質量のうち、0.1質量%から1.0質量%のレニウムを含む。
 本発明の脱硫剤は、製造時は、ニッケル成分としてニッケルの酸化物、およびレニウム成分としてレニウムの酸化物を含む。
 また、本発明の脱硫剤は、使用時は、ニッケル成分として金属ニッケル、およびレニウム成分として金属レニウムを含む。上記銅の場合と同様に、それぞれニッケルの酸化物、レニウムの酸化物を含む場合がある。
 本発明の脱硫剤は、先に水素存在下で還元処理した後、水素の共存下でガスに接触させて使用する。そうすると、ガス中の硫黄化合物を分解除去することができる。
〔脱硫剤の製造方法の説明〕
 本発明の脱硫剤の製造方法に制約はないが、好ましくは、特許文献4と同様の方法で製造される。
 本発明の脱硫剤の製造方法は、まず、硝酸銅(Cu(NO)などの水溶性銅化合物と、硝酸亜鉛(Zn(NO)などの水溶性亜鉛化合物とを、アルミニウム化合物の共存下にアルカリ物質水溶液と混合させる。この際、アルミニウム化合物は、溶解していてもゲル状であってもよい。
 そして、当該混合により、沈澱を生じさせる。
 さらに、得られた沈澱を焼成し、酸化銅と、酸化亜鉛と、酸化アルミニウムとの混合物を得る。以下、この混合物を、酸化銅-酸化亜鉛-酸化アルミニウム混合物と称する。
 次に、上記混合物を成型し、酸化銅-酸化亜鉛-酸化アルミニウム混合物成型体とする。そして、この酸化銅-酸化亜鉛-酸化アルミニウム混合物成型体にニッケルおよびレニウムを含有する水溶液を含浸させ、焼成する。そうすると、酸化銅-酸化亜鉛-酸化アルミニウム混合物成型体を担体として、当該担体にニッケルおよびレニウムが担持され、本発明の脱硫剤を得る。
 上記成型は、例えば圧縮による成型(圧縮成型)を利用でき、圧縮成型法としては、例えば打錠法を用いることができる。
 なお、酸化銅-酸化亜鉛-酸化アルミニウム混合物成型体は、市販のものを転用してもよい。たとえば、脱硫剤、メタノール合成触媒、あるいは一酸化炭素転化触媒として市販されている酸化銅-酸化亜鉛-酸化アルミニウム混合物成型体を転用してもよい。
 市販の酸化銅-酸化亜鉛-酸化アルミニウム混合物成型体を担体として用いる場合も、これにニッケルおよびレニウムを含有する水溶液を含浸させ、焼成して、本発明の脱硫剤を得ることができる。
 なお、市販の酸化銅-酸化亜鉛-酸化アルミニウム混合物成型体には、グラファイトなどの成型助剤が添加されている場合がある。しかし、これら成型助剤は極端に多すぎない限り、脱硫剤としての機能を損なうことはない。
 ニッケルおよびレニウムを含有する水溶液を調製するためのニッケルの原料としては、水溶性ニッケル化合物が使用できる。水溶性ニッケル化合物としては、硝酸ニッケル、酢酸ニッケルや、塩化ニッケルなどが使用できる。
 上記ニッケルの原料のうち、硝酸ニッケル、酢酸ニッケルが特に好適である。これらは、溶解度が高く、好ましいためである。また、これらは、調製された脱硫剤に塩素イオンを残留させることが無く、塩素イオンの残留により脱硫性能を損なうことが無いためである。
 ニッケルおよびレニウムを含有する水溶液を調製するためのレニウムの原料としては、過レニウム酸アンモニウム(NHReO)、塩化レニウム(III)、塩化レニウム(V)などが使用できる。
 上記レニウムの原料のうち、過レニウム酸アンモニウムが特に好適である。これらは、調製された脱硫剤に塩素イオンを残留させることが無く、塩素イオンの残留により脱硫性能を損なうことが無いためである。
 脱硫剤中の銅、亜鉛、アルミニウムの含有量は、製造後かつ使用前の脱硫剤に対する質量比(脱硫剤中の含有率)で、CuOとして10質量%から50質量%、ZnOとして30質量%から70質量%、Alとして5質量%から20質量%程度である。
 ZnOは硫黄をZnSとして固定するための必須成分である。ZnOの処方量は、少なすぎると脱硫容量が少なくなる。
 銅は、有機硫黄化合物の分解に触媒作用を持つ。また、この触媒作用と共に、CuS,CuSなどとして硫黄の固定にも寄与する。そのため、銅の処方量が少なすぎると脱硫性能が得られない。
 Alは、比表面積と強度に寄与する。そのため、Alの処方量は、少なすぎると脱硫性能が低下する。また、Alの処方量は、少なすぎると実用的な強度が得られない懸念がある。
 脱硫剤中のニッケルおよびレニウムの含有量は、脱硫剤に対する質量比で、Niとして1.0質量%から10質量%、Reとして0.1質量%から1.0質量%である。
 好ましくは、脱硫剤に対する質量比で、Niとして3.0質量%から10質量%、Reとして0.1質量%から1.0質量%である。より好ましくは、脱硫剤に対する質量比で、Niとして3.0質量%から6.0質量%、Reとして0.1質量%から1.0質量%である。
 また、脱硫剤中のニッケルおよびレニウムの含有量は、脱硫剤に対する質量比で、Niとして1.0質量%から6.0質量%、Reとして0.1質量%から1.0質量%であってもよく、脱硫剤に対する質量比で、Niとして1.0質量%から3.0質量%、Reとして0.1質量%から1.0質量%であってもよい。
 脱硫剤中のニッケルおよびレニウムの含有量は、Re/Niの質量比で0.01から1とする。好ましくは、Re/Niの質量比で0.02から0.4とする。
 このように、酸化銅-酸化亜鉛-酸化アルミニウム混合物からなる担体に、所定のニッケルおよびレニウムを溶解した水溶液を含浸し、蒸発乾固して、焼成することにより、本発明の脱硫剤が得られるのである。
 上記蒸発乾固の後の焼成は、空気中、250℃から350℃程度で1時間から10時間程度行えばよい。
 焼成温度が低すぎると、担持に用いたニッケルあるいはレニウム化合物の分解が不十分となって所望の性能が得られない。
 焼成温度が高すぎると、脱硫剤の比表面積が小さくなって、やはり所望の性能が得られない。
 なお、ニッケルおよびレニウムは、複数回に分けて担体に担持してもよい。
 あるいは、ニッケルおよびレニウムを担体に担持させる際、まずニッケルを担体に担持した後に、さらにレニウムを担体に担持する逐次担持の方法によってもよい。
〔脱硫方法の説明〕
 本発明の原燃料ガスG1(ガス)の脱硫方法は、上記で得られた脱硫剤を水素の共存下で還元処理した後、水素の共存下で原燃料ガスG1(ガス)に接触させて、原燃料ガスG1の硫黄化合物を分解除去するものである。
 本実施形態においては、脱硫方法として、上記で得られた脱硫剤(製造された脱硫剤)を水素存在下で還元処理した後、水素の共存下で原燃料ガスG1(ガス)に接触させて、原燃料ガスG1の硫黄化合物を分解除去する場合を説明する。
 本発明の脱硫方法は、ガス(気体)としての原燃料ガスG1が、天然ガス、液化石油ガス、およびこれらを原料とする都市ガスなどの、軽質炭化水素(C1からC4程度)を主成分とするガスに用いると、特に優れた性能を発揮する。
 また、本発明の脱硫方法は、付臭剤として一般的に用いられているターシャリーブチルメルカプタン(TBM)、テトラヒドロチオフェン(THT)、ジメチルサルファイド(DMS)等のメルカプタン(チオール)、サルファイド(チオエーテル)などの、原燃料ガスG1中に含まれる有機硫黄化合物に対して優れた脱硫性能を発揮する。
 上記例示した原燃料ガスG1中には、このほか硫化水素、硫化カルボニル、ジスルフィド類が含まれることがあるが、本発明の脱硫剤はこれらに対しても除去能を有するので、少量であれば混入していても問題ない。
 このほか、上記例示した原燃料ガスG1中には、製造方法によって、微量の水素、一酸化炭素、酸素、窒素、二酸化炭素や水分が含まれる場合がある。
 例えば、天然ガス系都市ガスであっても、バイオガスを混合している場合は、水素、一酸化炭素、酸素、窒素、二酸化炭素が、それぞれ最大で4%、0.05%、0.01%、1.0%、0.5%(いずれも体積基準)程度含まれる可能性がある。
 このうち、一酸化炭素および二酸化炭素は、脱硫剤上で水素と反応してメタンを生成するメタン化反応を引き起こす可能性があるので、高濃度で存在していると、一般的には好ましくない。しかし、本発明の脱硫剤のメタン化活性は、Niを主成分とする脱硫剤やRuを含む脱硫剤と比較すると、相対的に低いため、影響は小さい。
 酸素は、脱硫剤が酸化されて脱硫性能が低下する恐れがあるため、含まれない方が良いが、0.1%程度であれば脱硫剤上で水素と反応して速やかに除去され、反応による温度上昇も小さいので問題にはならない。
 液化石油ガスには、プロパンやブタンなどの飽和炭化水素に加えて、プロピレンやブタジエンなどの不飽和炭化水素が少量含まれる場合がある。また天然ガス系都市ガスにも、熱量調整のために少量の液化石油ガスが添加されるのが普通であるため、同様に少量の不飽和炭化水素が含まれる場合がある。不飽和炭化水素は水素の共存下では、脱硫剤上で飽和炭化水素に変換されるが、重合反応により脱硫剤上に炭素を析出する懸念もある。本発明の脱硫剤は、Ruを含む脱硫剤と比較すると炭素析出の活性は相対的に低く、不飽和炭化水素の影響は小さい。
 脱硫剤(製造された脱硫剤)は、原燃料ガスG1に接触させる前に、水素存在下での還元処理により還元する。
 上記還元処理を行う場合の温度は、150℃から350℃程度である。
 還元処理に用いるガスは、たとえば窒素などの不活性ガス中に1体積%から10体積%程度の水素(水素ガス)を添加したものとする。
 還元時間は、還元処理に用いるガスの流量と水素含有率から、化学量論的に還元を達成するのに必要な時間が計算されるが、その1.5倍から3倍程度とするのが良い。
 還元温度は、低すぎると還元が完結せず、高すぎると脱硫剤の焼結による性能低下を引き起こす。
 還元処理に用いるガスの水素濃度(水素ガスの体積濃度)が低すぎると、還元を完結するまでに多量のガスを流す必要があり、経済的に不利となる。逆に、還元処理に用いるガスの水素濃度が高すぎると、水素と酸化状態の脱硫剤との反応による反応熱で、急激な温度上昇が起こるため好ましくない。たとえば、急激な温度上昇により、所定の還元温度を保つことが不可能になることもある。
 本発明の脱硫方法は、脱硫剤容器に脱硫剤を充填して、外部加熱などで所定の温度に脱硫剤を保ち、これに水素を添加した原燃料ガスG1を通じることにより行なわれる。
 脱硫反応は、硫黄化合物の濃度が極端に高くない限り、大きな発熱も吸熱も生じない。
そのため、原燃料ガスG1、あるいは水素ガスを添加した原燃料ガスG1をあらかじめ脱硫に好ましい温度に予熱しておき、脱硫剤容器自体は加熱も冷却もしない断熱状態で反応させることもできる。たとえば、原燃料ガスG1、あるいは水素ガスを添加した原燃料ガスG1を、上記還元処理を行う場合の温度である、150℃から350℃程度に予熱しておくこともできる。
 添加する水素量は、原料中に含まれている硫黄化合物の種類と量により定めればよいが、通常硫黄含有量はppmレベルの量であるため、原燃料ガスG1に対してモル比で0.001以上、好ましくは0.01から0.5程度、より好ましくは0.01から0.2程度とする。
 水蒸気改質プロセスの前処理としての脱硫を行う場合には、水蒸気改質反応によってできた水素を一部リサイクルすることもできる。
 水蒸気改質反応によってできた水素には、一酸化炭素や二酸化炭素、水蒸気が含まれる場合があるが、原燃料ガスG1に対するモル比で0.01程度を超えなければ大きな問題はない。
〔脱硫システムの説明〕
 水蒸気改質プロセスの前処理として脱硫を行う際の脱硫システムのフロー概略図(一例)を図1に示す。
 図1に示す脱硫システム100は、脱硫剤を封入した脱硫器1と、改質触媒を封入した改質器2とを有する。脱硫システム100は、供給された原燃料ガスG1を脱硫し、およびさらに水蒸気改質して、水素を含有する改質燃料ガスG3を得る反応システムである。
 脱硫システム100について具体的に説明を加える。
 原燃料ガスG1が、供給路11から脱硫器1に供給されて、脱硫剤出口ガスG2になる。
 脱硫剤出口ガスG2は、脱硫器1から改質器流路12を介して下流側に接続される改質器2に供給される。改質器流路12には、水蒸気供給路21が接続されて、水としての水蒸気Sが改質器流路12に供給される。したがって、改質器2には、脱硫剤出口ガスG2と、水蒸気Sとが供給される。
 改質器2で改質された脱硫剤出口ガスG2は改質燃料ガスG3となる。改質燃料ガスG3は、改質器2の下流側に接続された改質ガス流路13を介して、例えば燃料電池(図示せず)などの次工程へ供される。
 改質燃料ガスG3の一部は、リサイクルガスG4として、改質ガス流路13から分岐して供給路11へ接続される返送路31を介して脱硫器1へ返送される。
〔実施例の説明〕
 以下、実施例を示し、本発明をより詳細に説明する。
 なお、本発明はこれらの実施例に限定されるものではない。
〔実施例1〕
 担体としての市販の酸化銅-酸化亜鉛-酸化アルミニウム混合物成型体(ズードケミー触媒社製、MDC-7、3mmタブレット、CuO:41質量%、ZnO:46質量%、Al:9質量%)70.03gに、過レニウム酸アンモニウム(Reとして0.352g含有)、硝酸ニッケル(Niとして4.470g含有)を溶解した50gの水溶液を滴下し、3時間かけて含浸させた。
 その後、加熱器としてのホットプレート上で蒸発乾固し、110℃に設定した乾燥器で1晩乾燥した後、焼成炉としてのマッフル炉を用いて、空気中毎分2℃の昇温速度で300℃まで昇温し、焼成として、300℃に1時間保持した。そして、0.5質量%のReと6質量%のNiを含む脱硫剤Aを得た。
 耐熱ガラス(パイレックスガラス)製反応管(内径14mm)に、20gの脱硫剤Aを充填し、脱硫剤層を形成した。この脱硫剤層は、脱硫器1に相当する。
 そして、この脱硫剤層の下端部(出口側)を250℃に保持するよう加熱しながら、窒素ガスに2%の水素ガス(体積基準)を混合した還元ガスを毎時60リットル(0℃、1気圧の標準状態における体積)で流通し、4時間還元処理を行った。つまり、脱硫剤Aを水素存在下で還元した。
 上記還元処理後、加熱条件を変更し、脱硫剤層の下端部を200℃に維持しながら、130ppmのDMSと2%の水素(いずれも体積基準)を含む窒素ガスを毎時20リットル(0℃、1気圧の標準状態における体積)で流通した。つまり、水素の共存下で脱硫剤Aを原燃料ガスG1に接触させた。ここでは、実験を簡単にするために原燃料ガスG1の成分として、メタン等の炭化水素に代えて窒素を用いている。つまり、原燃料ガスG1として、窒素(炭化水素の代用ガス)に、硫黄化合物(付臭剤)としてのDMSを所定量添加した還元雰囲気のモデルガスを用いている。
 そして、脱硫剤出口ガスG2中のDMS、硫化水素およびメタン濃度を、ガスクロマトグラフ(島津製作所製GC-14B、FPDおよびFID検出器付き)で分析した。
 脱硫剤出口ガスG2のDMS濃度は、当初は検出されず、72時間後に3.4ppb、74時間後に4.6ppb、75時間後に5.2ppbとなった。
 脱硫剤出口ガスG2のDMS濃度が5ppbを超えるまでの時間(5ppb破過時間)を寿命の基準とすると、この条件では74.7時間となる。
 なお、75時間まで脱硫剤出口ガスG2中に硫化水素は検出されず、メタン濃度は約300ppmでほぼ一定であった。DMSは硫化水素とメタンに分解され、硫化水素は脱硫剤に吸収されたと考えられる。
〔実施例2〕
 過レニウム酸アンモニウム中のRe量をReとして0.140g含有するものに変えた他は実施例1と同様にして、0.2質量%のReと6質量%のNiを含む脱硫剤Bを得た。
 実施例1と同様にして脱硫性能を評価したところ、5ppb破過時間は71.7時間となった。
〔実施例3〕
 硝酸ニッケル中のNi量をNiとして2.166g含有し、さらに、過レニウム酸アンモニウム中のRe量をReとして0.351g含有するものに変えた他は実施例1と同様にして、0.5質量%のReと3質量%のNiを含む脱硫剤Cを得た。
 実施例1と同様にして脱硫性能を評価したところ、5ppb破過時間は42.0時間となった。
〔比較例1〕
 実施例1で用いた酸化銅-酸化亜鉛-酸化アルミニウム混合物成型体をそのまま脱硫剤として用いた(脱硫剤D)。
 実施例1と同様にして脱硫性能を評価したところ、5ppb破過時間は20.0時間となった。
〔比較例2〕
 Reを用いなかった他は実施例1と同様にして、6質量%のNiを含む脱硫剤Eを得た。
 実施例1と同様にして脱硫性能を評価したところ、5ppb破過時間は41.9時間となった。
〔比較例3〕
 Reを用いなかった他は実施例3と同様にして、3質量%のNiを含む脱硫剤Fを得た。
 実施例1と同様にして脱硫性能を評価したところ、5ppb破過時間は26.6時間となった。
〔比較例4〕
 Niを用いなかった他は実施例1と同様にして、0.5質量%のReを含む脱硫剤Gを得た。
 実施例1と同様にして脱硫性能を評価したところ、5ppb破過時間は17.8時間となった。
 実施例1から実施例3および比較例1から比較例4の結果を表1にまとめる。
 0.5質量%のReと6質量%のNiを担持した脱硫剤Aは、5ppb破過時間が74.7時間、0.2質量%のReと6質量%のNiを担持した脱硫剤Bでは、5ppb破過時間が71.7時間となり、酸化銅-酸化亜鉛-酸化アルミニウムである脱硫剤Dの5ppb破過時間である20.0時間と比較して、顕著に長い破過時間となった。
 0.5質量%のReと3質量%のNiを担持した脱硫剤Cも42.0時間の5ppb破過時間となり、脱硫剤Dの5ppb破過時間よりも顕著に長くなった。
 ReのみあるいはNiのみを担持した場合は脱硫剤Eから脱硫剤Gの結果が示す通り、5ppb破過時間を延ばす効果は限定的である。脱硫剤Aから脱硫剤Gの結果からも、本発明に従い、ReおよびNiの両方を含む脱硫剤とすることで、脱硫性能が大幅に向上することが明らかである。
 すなわち、脱硫剤Aから脱硫剤Cは、200℃程度の低い温度でも、DMSおよび硫化水素などの硫黄化合物に対して高い脱硫性能を有し、後段(脱硫器1の下流側)にスリップ(リーク)する硫黄化合物濃度を極めて低いレベルに長時間保つことができ、かつ高い脱硫容量を有し、少ない脱硫剤の使用量で長期にわたって原燃料ガスG1を処理(脱硫)できた。
Figure JPOXMLDOC01-appb-T000001
 
 
〔実施例4〕
〔都市ガスの脱硫試験〕
 担体として酸化銅-酸化亜鉛-酸化アルミニウム混合物成型体200.08gを用い、過レニウム酸アンモニウム(Reとして1.01g含有)及び硝酸ニッケル(Niとして12.77g含有)を溶解した水溶液を用いた他は実施例1と同様にして、0.5質量%のReと6質量%のNiを含む脱硫剤Hを得た。
 ステンレス製反応管(内径26mm)に脱硫剤Hを66cc(97.4g)充填した。脱硫剤Hが充填されたステンレス製反応管が、脱硫器1に相当する。
 そして、250℃に保持した恒温器の中に反応管全体を入れ、窒素ガスに2%の水素(体積基準)を混合した還元ガスを毎時300リットル(0℃、1気圧の標準状態における体積)で流通し、5時間還元処理を行った。
 還元処理後、恒温器の温度を200℃に降温し、2%の水素(体積基準)を混合した13A都市ガスを原燃料ガスG1として毎時330リットル(0℃、1気圧の標準状態における体積)で流通した。なお、この原燃料ガスG1としての13A都市ガスは、付臭剤(硫黄化合物)として、DMSを約3.1ppm、TBMを約2.4ppm含有している。
 そして、脱硫剤出口ガスG2中のDMS、TBMおよび硫化水素濃度をガスクロマトグラフ(GC-14B、FPD検出器付き)で分析した。
 脱硫剤出口ガスG2からは300時間が経過しても、DMS、TBM及び硫化水素はいずれも検出されなかった。
〔比較例5〕
 Reを用いなかった他は実施例4と同様にして、6質量%のNiを含む脱硫剤Iを得た。 実施例4と同様にして脱硫性能を評価したところ、脱硫剤出口ガスG2のDMS濃度は、当初は検出されず、228.3時間後に5.4ppb、237.7時間後に5.6ppbとなった。
 実施例4および比較例5の結果を表2にまとめる。
 6質量%のNiのみを担持した脱硫剤IにおいてDMSの破過時間が228.3時間であるのに対して、0.5質量%のReと6質量%のNiを担持した脱硫剤Hで300時間経過してもDMS、TBM及び硫化水素はいずれも検出されなかった。この結果から、ReおよびNiの両方を含む脱硫剤は炭化水素を主成分とするガスの脱硫においても高い性能を発揮することが明らかとなった。
 すなわち、脱硫剤Hは、200℃程度の低い温度でも、DMS、TBMおよび硫化水素などの硫黄化合物に対して高い脱硫性能を有し、後段にスリップする硫黄化合物濃度を極めて低いレベルに長時間保つことができ、かつ高い脱硫容量を有し、少ない脱硫剤の使用量で長期にわたって原燃料ガスG1を処理(脱硫)できた。
Figure JPOXMLDOC01-appb-T000002

 
[別実施形態]
(1)上記実施形態では、脱硫システム100は、改質器2の上流側に脱硫器1を設ける場合(つまり、脱硫器1の下流側に改質器2がある場合)を例示した。
 しかしながら、脱硫システム100は、改質器2と必ず組み合わせて用いるものでは無く、その他の反応器などのプロセス装置と組み合わせて利用することができる。
(2)上記実施形態では、ガスが、窒素を主成分とする場合、および、原燃料ガスG1である場合を例示した。しかし、本発明の脱硫剤および脱硫方法は、ガスがその他の成分を含む場合にも、ガスが水素を含み、還元雰囲気下でガスを脱硫剤に接触させることができれば、その脱硫性能を発揮する。
(3)上記実施形態では、製造された脱硫剤の銅が酸化銅であり、当該製造された脱硫剤を脱硫反応に供する前に、還元処理してから脱硫に使用する脱硫方法を例示した。しかし、当該製造された脱硫剤の銅が金属銅である場合、還元処理を含まなくてもよい。
 同様に、上記実施形態では、製造された脱硫剤のニッケル成分が酸化物であり、当該製造された脱硫剤を脱硫反応に供する前に、還元処理してから脱硫に使用する脱硫方法を例示した。しかし、当該製造された脱硫剤のニッケル成分が主に金属ニッケルである場合、還元処理を含まなくてもよい。
 また、上記実施形態では、製造された脱硫剤のレニウム成分が酸化物であり、当該製造された脱硫剤を脱硫反応に供する前に、還元処理してから脱硫に使用する脱硫方法を例示した。しかし、当該製造された脱硫剤のレニウム成分が主に金属レニウムである場合、還元処理を含まなくてもよい。
 なお、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
 本発明は、たとえば燃料電池の燃料ガスの改質器に供する、原燃料ガスの脱硫剤および脱硫方法に適用できる。
1    脱硫器
2    改質器
11   供給路
12   改質器流路
13   改質ガス流路
21   水蒸気供給路
31   返送路
G1   原燃料ガス
G2   脱硫剤出口ガス
G3   改質燃料ガス
G4   リサイクルガス
S    水蒸気
100  脱硫システム

Claims (2)

  1.  酸化亜鉛、酸化アルミニウムおよび銅を含み、さらに1.0質量%から10質量%のニッケルおよび0.1質量%から1.0質量%のレニウムを含んでなる、ガスの脱硫剤。
  2.  酸化亜鉛、酸化アルミニウムおよび銅を含み、さらに1.0質量%から10質量%のニッケルおよび0.1質量%から1.0質量%のレニウムを含んでなる脱硫剤を、水素の共存下でガスに接触させて、前記ガス中の硫黄化合物を分解除去することを特徴とする、ガスの脱硫方法。
PCT/JP2020/001285 2019-01-23 2020-01-16 ガスの脱硫剤および脱硫方法 WO2020153225A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20745985.0A EP3915677A4 (en) 2019-01-23 2020-01-16 DESULFURIZATION AGENT AND GAS DESULFURIZATION METHOD
JP2020568103A JP7446244B2 (ja) 2019-01-23 2020-01-16 ガスの脱硫剤および脱硫方法
US17/424,007 US20220080398A1 (en) 2019-01-23 2020-01-16 Gas Desulfurizing Agent and Desulfurizing Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-009610 2019-01-23
JP2019009610 2019-01-23

Publications (1)

Publication Number Publication Date
WO2020153225A1 true WO2020153225A1 (ja) 2020-07-30

Family

ID=71736077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001285 WO2020153225A1 (ja) 2019-01-23 2020-01-16 ガスの脱硫剤および脱硫方法

Country Status (4)

Country Link
US (1) US20220080398A1 (ja)
EP (1) EP3915677A4 (ja)
JP (1) JP7446244B2 (ja)
WO (1) WO2020153225A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163884A (ja) * 1993-12-15 1995-06-27 Sekiyu Sangyo Kasseika Center 分解軽油留分の水素化処理触媒
JPH1123627A (ja) 1997-07-07 1999-01-29 Chubu Electric Power Co Inc 高調波計測方法
JPH1123628A (ja) 1997-07-04 1999-01-29 Kansai Electric Power Co Inc:The 電力系統の負荷高調波特性測定方法
JPH1161154A (ja) 1997-08-21 1999-03-05 Osaka Gas Co Ltd 脱硫剤の製造方法および炭化水素の脱硫方法
JPH11335101A (ja) * 1998-03-27 1999-12-07 Osaka Gas Co Ltd 水素製造装置
JP2001506914A (ja) * 1996-11-07 2001-05-29 アンスティテュ フランセ デュ ペトロール 第▲vii▼b族の少なくとも1つの元素を含む触媒および水素化処理におけるその使用法
JP2001286753A (ja) 2000-02-01 2001-10-16 Tokyo Gas Co Ltd 燃料ガス中の硫黄化合物吸着剤及びその除去方法
JP2007254728A (ja) 2006-02-24 2007-10-04 Cosmo Oil Co Ltd 炭化水素用脱硫剤
WO2018216555A1 (ja) * 2017-05-25 2018-11-29 大阪瓦斯株式会社 ガスの脱硫剤および脱硫方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070019428A (ko) 2005-08-12 2007-02-15 에스케이 주식회사 유기황화합물 제거용 탈황제, 이의 제조방법 및 이를이용한 유기황화합물의 제거방법
JP7163884B2 (ja) 2019-08-08 2022-11-01 トヨタ自動車株式会社 車両

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163884A (ja) * 1993-12-15 1995-06-27 Sekiyu Sangyo Kasseika Center 分解軽油留分の水素化処理触媒
JP2001506914A (ja) * 1996-11-07 2001-05-29 アンスティテュ フランセ デュ ペトロール 第▲vii▼b族の少なくとも1つの元素を含む触媒および水素化処理におけるその使用法
JPH1123628A (ja) 1997-07-04 1999-01-29 Kansai Electric Power Co Inc:The 電力系統の負荷高調波特性測定方法
JPH1123627A (ja) 1997-07-07 1999-01-29 Chubu Electric Power Co Inc 高調波計測方法
JPH1161154A (ja) 1997-08-21 1999-03-05 Osaka Gas Co Ltd 脱硫剤の製造方法および炭化水素の脱硫方法
JPH11335101A (ja) * 1998-03-27 1999-12-07 Osaka Gas Co Ltd 水素製造装置
JP2001286753A (ja) 2000-02-01 2001-10-16 Tokyo Gas Co Ltd 燃料ガス中の硫黄化合物吸着剤及びその除去方法
JP2007254728A (ja) 2006-02-24 2007-10-04 Cosmo Oil Co Ltd 炭化水素用脱硫剤
WO2018216555A1 (ja) * 2017-05-25 2018-11-29 大阪瓦斯株式会社 ガスの脱硫剤および脱硫方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ESCALONA, N. ET AL.: "Promotion of Re/A1203 and Re/C catalysts by Ni sulfide in the HDS and HDN of gas oil: Effects of Ni loading and support", APPLIED CATALYSIS. A, GENERAL, vol. 319, 2007, pages 218 - 229, XP005876364, DOI: 10.1016/j.apcata.2006.12.007 *
MATSUHISA, CATALYSTS AND CATALYSIS, vol. 48, no. 5, 2006, pages 326
S. SATOKAWAY KOBAYASHIH. FUJIKI, APPLIED CATALYSIS B: ENVIRONMENTAL, vol. 56, 2005, pages 51
See also references of EP3915677A4
SHIBA, CATALYSTS AND CATALYSIS, vol. 1, no. 1, 1959, pages 49
T. A. PECORAROR. R. CHIANELLI, JOURNAL OF CATALYSIS, vol. 67, 1981, pages 430

Also Published As

Publication number Publication date
US20220080398A1 (en) 2022-03-17
EP3915677A1 (en) 2021-12-01
JPWO2020153225A1 (ja) 2021-11-25
JP7446244B2 (ja) 2024-03-08
EP3915677A4 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
US5124140A (en) Process for steam reforming of hydrocarbons
JP2684120B2 (ja) 再生可能な吸着剤を用いる、プロピレン/プロパンから硫黄種を吸着する方法
KR101549269B1 (ko) 내황성 촉매를 이용한 황-함유 탄화수소의 개질
US7820037B2 (en) Desulfurizing agent manufacturing method and hydrocarbon desulfurization method
WO2018216555A1 (ja) ガスの脱硫剤および脱硫方法
US20050121365A1 (en) Process for removal of sulfur compounds from a fuel cell feed stream
US7901566B2 (en) Reforming sulfur-containing hydrocarbons using a sulfur resistant catalyst
JP5755999B2 (ja) 脱硫剤の製造方法、脱硫剤、および、炭化水素の脱硫方法
CA1339564C (en) Process for steam reforming of hydrocarbons
JP6956679B2 (ja) ガスの脱硫剤および脱硫方法
US5685890A (en) Process for steam reforming of hydrocarbons
WO2020153225A1 (ja) ガスの脱硫剤および脱硫方法
JP5911551B2 (ja) 脱硫剤の製造方法および炭化水素の脱硫方法
JP7134019B2 (ja) 脱硫装置、水素製造装置、脱硫方法及び水素製造方法
JP2761636B2 (ja) 炭化水素の水蒸気改質方法
JPH01259088A (ja) 炭化水素の水蒸気改質方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20745985

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020568103

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020745985

Country of ref document: EP

Effective date: 20210823