WO2020153136A1 - 制御システム、プログラム - Google Patents

制御システム、プログラム Download PDF

Info

Publication number
WO2020153136A1
WO2020153136A1 PCT/JP2020/000452 JP2020000452W WO2020153136A1 WO 2020153136 A1 WO2020153136 A1 WO 2020153136A1 JP 2020000452 W JP2020000452 W JP 2020000452W WO 2020153136 A1 WO2020153136 A1 WO 2020153136A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
measurement process
capacity measurement
capacity
control unit
Prior art date
Application number
PCT/JP2020/000452
Other languages
English (en)
French (fr)
Inventor
政志 小田
祐一郎 寺本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020153136A1 publication Critical patent/WO2020153136A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a control system and a program for measuring the capacity of a storage battery.
  • a storage battery is connected to electrical equipment located in the home or office.
  • the electric power charged in the storage battery is provided to the electric device when a power failure occurs, and thus the electric device can be used even during the power failure. Therefore, when there is a possibility of a power failure, it is desired to increase the amount of power charged in the storage battery.
  • charging of the storage battery is started based on the weather information (for example, refer to Patent Document 1).
  • the storage battery is, for example, a lithium-ion storage battery
  • the capacity of the storage battery that can be charged will decrease as the storage battery is used. Therefore, in order to improve the accuracy of charge/discharge control of the storage battery, it is necessary to grasp the capacity of the storage battery.
  • capacity measurement processing for measuring the capacity of the storage battery is executed. In the capacity measurement process, the remaining capacity of the storage battery is made substantially zero. When a power failure occurs when the remaining amount is practically zero, the storage battery cannot supply power. Therefore, it is not desirable to execute the capacity measurement process when the possibility of power failure is high.
  • the present disclosure has been made in view of such a situation, and an object thereof is to provide a technique of stopping the capacity measurement process of the storage battery when the possibility of power failure is high.
  • a control system that controls a power storage system including a storage battery and a charging/discharging circuit for charging/discharging the storage battery, and operating the charging/discharging circuit.
  • a control unit that executes a capacity measurement process that measures the capacity of the storage battery, and an acquisition unit that acquires the warning of the weather warning are provided. The control unit suspends the capacity measurement process when the acquisition unit acquires the warning of the weather warning.
  • the capacity measurement process of the storage battery can be stopped when the possibility of power failure is high.
  • the embodiment relates to a power distribution system in which a storage battery is connected to a power system.
  • the power distribution system charges the storage battery with the power from the power system or supplies the load device with the power from the power system and the storage battery.
  • the charging/discharging of this storage battery is controlled by the control system, and the control system discharges the storage battery at the time of a power failure or charges the storage battery at night when the unit price of the electricity is low due to the peak shift, and the unit price of the electricity is charged. Highly discharges the storage battery in the daytime.
  • Such a power storage system, a control system, and a load device are installed in, for example, a facility (hereinafter, referred to as “customer”) to which power is supplied from a power grid.
  • the storage battery is, for example, a lithium-ion storage battery
  • the capacity of the storage battery that can be charged will decrease as the storage battery is used. Under such a situation, even if the charge/discharge of the storage battery is controlled based on the past capacity, the accuracy of the control is lowered.
  • the capacity of the storage battery is grasped by executing a capacity measurement process for measuring the capacity of the storage battery. In the capacity measuring process, for example, after the first step of discharging the storage battery until the remaining amount of the storage battery becomes substantially zero, the second step of charging the storage battery to the full charge is performed.
  • the amount of electric power charged in the second step indicates the capacity of the storage battery. If a power failure occurs when the remaining capacity of the storage battery is substantially zero due to the capacity measurement process, it becomes impossible to provide electric power from the storage battery to the load device. Therefore, it is not desirable to discharge the storage battery by executing the capacity measurement process when the possibility of power failure is high.
  • the control system is connected to the server via the network.
  • the server provides weather information, one of which is a weather alert. When a weather warning is issued, it is likely to cause a power failure due to heavy rain or strong wind.
  • the control system stops the execution of the capacity measurement process when the warning information is issued from the server via the network.
  • FIG. 1 shows the configuration of the power distribution system 100.
  • the power distribution system 100 is connected to the power system 10 and includes a distribution board 12, a load device 14, a power storage system 20, and a control system 30, and the power storage system 20 includes a charge/discharge circuit 22 and a storage battery 24. Further, the control system 30 is connected to the network 40 and the server 42.
  • the charging/discharging circuit 22 and the storage battery 24 may be separate devices, but may be integrated as one device.
  • the distribution board 12, the load device 14, the power storage system 20, and the control system 30 are installed in a customer. Consumers are, for example, single-family homes, condominiums such as condominiums, stores such as convenience stores or supermarkets, commercial facilities such as buildings, and factories. Consumers are facilities that are supplied with electric power from electric power companies and the like.
  • the power system 10 is a facility of a power company or the like, and provides commercial power to consumers.
  • the distribution board 12 is connected to the power system 10. Further, the distribution board 12 connects the load device 14 and supplies power to the load device 14.
  • the load device 14 is a device that consumes the power supplied from the distribution board 12.
  • the load device 14 includes devices such as an air conditioner (air conditioner), a television receiver (television), a lighting device, and a refrigerator.
  • one load device 14 is connected to the distribution board 12, but a plurality of load devices 14 may be connected to the distribution board 12.
  • the storage battery 24 is capable of charging and discharging electric power, and is composed of a plurality of storage battery cells connected in series or series/parallel.
  • a lithium ion storage battery a nickel hydrogen storage battery, a lead storage battery, an electric double layer capacitor, a lithium ion capacitor or the like is used.
  • An electric double layer capacitor may be used as the storage battery 24.
  • the battery is a lithium ion storage battery.
  • the charge/discharge circuit 22 is arranged between the distribution board 12 and the storage battery 24.
  • the charge/discharge circuit 22 charges/discharges the storage battery 24.
  • the charging/discharging circuit 22 converts the AC power from the distribution board 12 into DC power to charge the storage battery 24, and also converts the DC power discharged from the storage battery 24 into AC power for distribution. Output to the electric board 12.
  • the AC power output to the distribution board 12 is consumed in the load device 14.
  • the control system 30 is connected to the charge/discharge circuit 22 and controls the power storage system 20 including the charge/discharge circuit 22 and the storage battery 24.
  • the configuration of the control system 30 will be described later.
  • the control system 30 has a communication function and is connected to the network 40.
  • the network may be a wired network, a wireless network, or a combination thereof.
  • the server 42 is installed outside the customer.
  • the server 42 manages, for example, weather information announced by the Meteorological Agency.
  • special warnings, warnings, and warnings are set for each category such as heavy rain or storm.
  • the special warning and the warning correspond to the weather warning, but the warning may be included in the weather warning.
  • the server 42 transmits weather information.
  • attention is paid to the case where the weather warning is included in the weather information or the weather warning is not included in the weather information.
  • FIG. 2 shows the configuration of the control system 30.
  • the control system 30 includes a control unit 50, a monitoring unit 52, and an acquisition unit 54.
  • the control system 30 may be one device including the control unit 50, the monitoring unit 52, and the acquisition unit 54, and the control unit 50, the monitoring unit 52, and the acquisition unit 54 are included in a plurality of devices. May be. In the latter case, for example, the control unit 50 and the monitoring unit 52 are included in the charge/discharge circuit 22, and the acquisition unit 54 is included in another device.
  • the monitoring unit 52 measures the voltage of the storage battery 24 in FIG.
  • the monitoring unit 52 outputs the measured voltage (hereinafter, referred to as “voltage information”) to the control unit 50. Further, the monitoring unit 52 measures the integrated current amount output from the storage battery 24 and the integrated current amount input to the storage battery 24 during the period designated by the control unit 50. The monitoring unit 52 outputs the measured integrated current amount (hereinafter “integrated current amount information”) to the control unit 50.
  • the control unit 50 receives voltage information from the monitoring unit 52.
  • the control unit 50 controls the operation of the charging/discharging circuit 22 based on the voltage information. This corresponds to controlling charge/discharge of the storage battery 24. For example, when the voltage is lower than the threshold value, the control unit 50 causes the charge/discharge circuit 22 to charge the storage battery 24. The case where the voltage is lower than the threshold value corresponds to the case where the remaining amount of the storage battery 24 is low.
  • the control unit 50 may cause the charging/discharging to be executed according to the time zone. For example, the control unit 50 operates the charging/discharging circuit 22 so as to charge the storage battery 24 at night when the unit price of electricity is low and to discharge the storage battery 24 during the daytime when the unit price of electricity is high.
  • a well-known technique may be used for the control of charging/discharging by the control unit 50, and thus the description thereof will be omitted here.
  • control unit 50 executes a capacity measurement process for measuring the capacity of the storage battery 24 by operating the charge/discharge circuit 22 regularly, for example, once a year or once a month. ..
  • a capacity measurement process for measuring the capacity of the storage battery 24 by operating the charge/discharge circuit 22 regularly, for example, once a year or once a month. ..
  • the storage battery 24 is a lithium-ion storage battery, as the storage battery 24 is used, the chargeable capacity of the storage battery 24 decreases. Therefore, in order to accurately grasp the capacity of the storage battery 24, capacity measurement processing is performed.
  • FIG. 3 shows an outline of the capacity measurement process by the control unit 50.
  • the horizontal axis represents time, and the vertical axis represents the amount of electric power charged in the storage battery 24.
  • the control unit 50 first executes the first step in the capacity measurement process. In the first step, the control unit 50 discharges the storage battery 24 and controls the charging/discharging circuit 22 so that the remaining amount of the storage battery 24 becomes substantially zero.
  • the charging/discharging circuit 22 discharges the storage battery 24 according to an instruction from the control unit 50. At that time, the electric power discharged from the storage battery 24 is consumed in the load device 14.
  • the control unit 50 confirms the voltage information received from the monitoring unit 52, and ends the first step when the voltage is smaller than the voltage threshold value determined to start the capacitance measurement.
  • the control unit 50 executes the second step.
  • the control unit 50 controls the charging/discharging circuit 22 so as to charge the storage battery 24 having a substantially zero remaining amount until it is fully charged.
  • the charging/discharging circuit 22 charges the storage battery 24 according to an instruction from the control unit 50.
  • the control unit 50 confirms the voltage information received from the monitoring unit 52, and ends the second step when the voltage indicates a value corresponding to full charge.
  • the control unit 50 causes the monitoring unit 52 to measure the integrated current amount input to the storage battery 24.
  • the control unit 50 receives the integrated current amount information from the monitoring unit 52. More specifically, the control unit 50 instructs the monitoring unit 52 to start the measurement of the integrated current amount when starting the second step, and terminates the measurement of the integrated current amount when ending the second step.
  • the monitoring unit 52 is used.
  • the monitoring unit 52 measures the integrated current amount from the time when the measurement start is instructed until the time when the measurement end is instructed. As a result, the control unit 50 acquires the integrated current amount as the capacity of the storage battery 24.
  • the control unit 50 may output information regarding the capacity of the storage battery 24 to the outside of the control system 30.
  • the acquisition unit 54 has a communication function and is connected to the server 42 via the network 40 of FIG.
  • the acquisition unit 54 receives the weather information from the server 42.
  • the acquisition unit 54 acquires the issuance of the weather warning when the weather information does not show the weather warning and the weather information shows the weather warning.
  • the acquisition unit 54 outputs the weather information to the control unit 50.
  • the control unit 50 stops the capacity measurement process when the weather warning is issued by acquiring the weather information from the acquisition unit 54. For example, when the weather warning is issued before the start of the capacity measurement process, the control unit 50 does not start the capacity measurement process even when the start time of the capacity measurement process arrives. This corresponds to stopping the start of the capacity measurement process.
  • control unit 50 suspends the execution of the capacity measurement process when the acquisition unit 54 acquires the warning of the weather warning during the execution of the capacity measurement process, particularly during the execution of the first step of the capacity measurement process. That is, the control unit 50 controls the charging/discharging circuit 22 so as to stop discharging the storage battery 24. Following this, the control unit 50 may control the charging/discharging circuit 22 to charge the storage battery 24.
  • the control unit 50 continues the execution of the capacity measurement process when the acquisition unit 54 acquires the warning of the weather warning during the execution of the second step of the capacity measurement process. That is, the control unit 50 continues to control the charge/discharge circuit 22 so as to charge the storage battery 24.
  • the acquisition unit 54 acquires the cancellation of the weather warning when the weather information received by the acquisition unit 54 transits from the state in which the weather warning is displayed to the state in which the weather information does not indicate the weather warning.
  • the control unit 50 acquires the cancellation of the weather warning after stopping the capacity measurement processing
  • the control unit 50 newly executes the capacity measurement processing after a certain period of time has elapsed. In other words, the control unit 50 newly executes the first step of the capacity measurement process whether the capacity measurement process is started or the first step of the capacity measurement process is stopped. To do.
  • the main body of the device, system, or method in the present disclosure includes a computer.
  • the computer executes the program, the functions of the subject of the apparatus, system, or method according to the present disclosure are realized.
  • the computer includes a processor that operates according to a program as a main hardware configuration.
  • the processor may be of any type as long as it can realize the function by executing the program.
  • the processor is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or LSI (Large Scale Integration).
  • the plurality of electronic circuits may be integrated on one chip or may be provided on the plurality of chips.
  • the plurality of chips may be integrated in one device or may be provided in the plurality of devices.
  • the program is recorded in a non-transitory recording medium such as a computer-readable ROM, an optical disk, a hard disk drive.
  • the program may be stored in the recording medium in advance, or may be supplied to the recording medium via a wide area communication network such as the Internet.
  • FIG. 4 is a flowchart showing the procedure of the capacity measurement process by the control system 30.
  • the acquisition unit 54 acquires the warning of the weather warning (S10). If it is before the start of the capacity measurement process (Y of S12), the control unit 50 stops the start of the capacity measurement process (S14). If the first step is being executed (Y in S16), not before the capacity measurement process is started (N in S12), the control unit 50 stops the capacity measurement process (S18). When the first step is not being executed (N in S16), the control unit 50 continues the capacity measuring process (S20).
  • the capacity measuring process is stopped, so that the capacity measuring process of the storage battery can be stopped when the possibility of power failure is high. Further, when the weather warning is issued before the start of the capacity measurement process, the start of the capacity measurement process is stopped, so that the execution of the capacity measurement process can be avoided. Further, when the acquisition unit 54 acquires the announcement of the weather warning during the execution of the capacity measurement processing, the execution of the capacity measurement processing is stopped, so that the continuation of the capacity measurement processing can be avoided.
  • the execution of the capacity measurement process is stopped, so that the discharge of the storage battery 24 can be stopped.
  • the capacity measuring process is continued, so that the storage battery 24 can be continuously charged.
  • the capacity measurement process is newly executed after a certain period of time elapses, so that the capacity can be acquired.
  • a control system 30 is a control system 30 that controls a power storage system 20 that includes a storage battery 24 and a charging/discharging circuit 22 that charges/discharges the storage battery 24, and operates the charging/discharging circuit 22.
  • a control unit 50 that executes a capacity measurement process that measures the capacity of the storage battery 24, and an acquisition unit 54 that acquires the issuance of a weather warning. When the acquisition unit 54 acquires the warning of the weather warning, the control unit 50 stops the capacity measurement process.
  • the control unit 50 stops the start of the capacity measurement process when the acquisition unit 54 acquires the warning of the weather warning before the start of the capacity measurement process.
  • the control unit 50 suspends the execution of the capacity measurement process when the acquisition unit 54 acquires the warning of the weather warning during the execution of the capacity measurement process.
  • the capacity measurement process in the control unit 50 discharges the storage battery 24 to make the remaining amount of the storage battery 24 substantially zero, and charges the storage battery 24 having substantially zero remaining amount to full charge.
  • the second step may be included.
  • the control unit 50 stops the execution of the capacity measurement process, and during the execution of the second step of the capacity measurement process.
  • the capacity measurement process is continued.
  • the control unit 50 When the acquisition unit 54 acquires the cancellation of the weather warning after the capacity measurement process is stopped, the control unit 50 newly executes the capacity measurement process after a certain period of time.
  • the second step is executed after the first step is executed.
  • the first step may be executed after the second step is executed. According to this modification, the degree of freedom in the configuration can be improved.
  • the power distribution system 100 in this embodiment includes a power storage system 20.
  • the power distribution system 100 may include a renewable energy power generation device such as a solar cell in addition to the power storage system 20.
  • the storage battery 24 can be charged with the electric power generated by the solar cell. Further, the electric power generated by the solar cell can be output to the distribution board 12.
  • the capacity measurement process of the storage battery can be stopped when the possibility of power failure is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

制御システム30は、蓄電池と、蓄電池を充放電させる充放電回路とを備える蓄電システムを制御する。制御部50は、充放電回路を動作させることによって、蓄電池の容量を測定する容量測定処理を実行する。取得部54は、気象警報の発令を取得する。制御部50は、取得部54が気象警報の発令を取得した場合、容量測定処理を中止する。

Description

制御システム、プログラム
 本開示は、蓄電池の容量を測定する制御システム、プログラムに関する。
 家庭内あるいはオフィスなどに配置された電気機器に蓄電池が接続される。この接続により、停電の発生時に蓄電池に充電されている電力が電気機器に提供されるので、停電時にも電気機器が使用可能になる。そのため、停電の可能性がある場合には、蓄電池に充電される電力量を増加させることが望まれる。これに対応するために、気象情報をもとに蓄電池の充電が開始される(例えば、特許文献1参照)。
国際公開第16/185760号
 蓄電池が例えばリチウムイオン蓄電池である場合、蓄電池の使用とともに、蓄電池に充電可能な容量は低下していく。そのため、蓄電池の充放電の制御の正確性を向上させるために、蓄電池の容量を把握する必要がある。蓄電池の容量を把握するために、蓄電池の容量を測定するための容量測定処理が実行される。容量測定処理においては、蓄電池の残量が実質的にゼロにされる。残量が実質的にゼロである場合に停電が発生すると、蓄電池による電力の供給が不可能になる。そのため、停電の発生の可能性が高い場合に、容量測定処理を実行することは望ましくない。
 本開示はこうした状況に鑑みなされたものであり、その目的は、停電の発生の可能性が高い場合に蓄電池の容量測定処理を中止させる技術を提供することにある。
 上記課題を解決するために、本開示のある態様の制御システムは、蓄電池と、蓄電池を充放電させる充放電回路とを備える蓄電システムを制御する制御システムであって、充放電回路を動作させることによって、蓄電池の容量を測定する容量測定処理を実行する制御部と、気象警報の発令を取得する取得部とを備える。制御部は、取得部が気象警報の発令を取得した場合、容量測定処理を中止する。
 なお、以上の構成要素の任意の組合せ、本開示の表現を方法、装置、システム、コンピュータプログラム、またはコンピュータプログラムを記録した記録媒体などの間で変換したものもまた、本開示の態様として有効である。
 本開示によれば、停電の発生の可能性が高い場合に蓄電池の容量測定処理を中止できる。
実施例に係る配電システムの構成を示す図である。 図1の制御システムの構成を示す図である。 図2の制御部による容量測定処理の概要を示す図である。 図2の制御システムによる容量測定処理の手順を示すフローチャートである。
 本開示の実施例を具体的に説明する前に、本実施例の概要を説明する。実施例は、蓄電池を電力系統に接続させた配電システムに関する。配電システムは、電力系統からの電力を蓄電池に充電させたり、電力系統、蓄電池からの電力を負荷機器に供給させたりする。この蓄電池の充放電は制御システムにより制御されており、制御システムは、停電時に蓄電池を放電させたり、ピークシフトのために、電気料金の単価の安い夜間に蓄電池を充電させ、電気料金の単価の高いに昼間に蓄電池を放電させたりする。このような蓄電システム、制御システム、負荷機器は、例えば、電力系統からの電力の供給を受ける施設(以下、「需要家」という)に設置される。
 前述のごとく、蓄電池が例えばリチウムイオン蓄電池である場合、蓄電池の使用とともに、蓄電池に充電可能な容量は低下していく。このような状況下において、過去の容量をもとに蓄電池の充放電を制御しても、制御の正確性は低下する。蓄電池の充放電の制御の正確性を向上させるために、蓄電池の容量を定期的に把握する必要がある。蓄電池の容量は、蓄電池の容量を測定するための容量測定処理を実行することによって把握される。容量測定処理では、例えば、蓄電池の残量が実質的にゼロになるまで蓄電池を放電させる第1ステップがなされた後に、蓄電池を満充電まで充電させる第2ステップがなされる。ここで、第2ステップで充電された電力量が蓄電池の容量を示す。容量測定処理によって蓄電池の残量が実質的にゼロである場合に停電が発生すると、蓄電池から負荷機器への電力の提供が不可能になる。そのため、停電の発生の可能性が高い場合に、容量測定処理の実行によって蓄電池を放電することは望ましくない。
 これに対応するために、本実施例に係る制御システムは、ネットワークを介してサーバに接続される。サーバは気象情報を提供しており、気象情報の1つが気象警報である。気象警報が発令される場合は、雨が強かったり、風が強かったりするので、停電の可能性が高くなる。制御システムは、ネットワークを介してサーバから警報情報の発令を取得すると、容量測定処理の実行を中止する。
 図1は、配電システム100の構成を示す。配電システム100は、電力系統10に接続されるとともに、分電盤12、負荷機器14、蓄電システム20、制御システム30を含み、蓄電システム20は、充放電回路22、蓄電池24を含む。また、制御システム30は、ネットワーク40、サーバ42に接続される。充放電回路22と蓄電池24は、別の装置であってもよいが、1つの装置として一体化されてもよい。分電盤12、負荷機器14、蓄電システム20、制御システム30は、需要家内に設置される。需要家は、例えば、一戸建ての住宅、マンションなどの集合住宅、コンビニエンスストアまたはスーパーマーケットなどの店舗、ビルなどの商用施設、工場である。需要家は、電力会社等からの電力の供給を受けている施設である。
 電力系統10は、電力会社等の設備であり、需要家に商用電力を提供する。分電盤12は、電力系統10に接続される。また、分電盤12は、負荷機器14を接続し、負荷機器14に電力を供給する。負荷機器14は分電盤12から供給される電力を消費する機器である。負荷機器14は、空調機器(エアコン)、テレビジョン受信装置(テレビ)、照明装置、冷蔵庫等の機器を含む。ここでは、分電盤12に1つの負荷機器14が接続されているが、分電盤12に複数の負荷機器14が接続されてもよい。
 蓄電池24は、電力を充放電可能であり、直列または直並列接続された複数の蓄電池セルにより構成される。蓄電池セルには、リチウムイオン蓄電池、ニッケル水素蓄電池、鉛蓄電池、電気二重層キャパシタ、リチウムイオンキャパシタ等が使用される。蓄電池24として、電気二重層コンデンサが使用されてもよい。ここでは、リチウムイオン蓄電池であるとする。
 充放電回路22は、分電盤12と蓄電池24との間に配置される。充放電回路22は、蓄電池24を充放電させる。具体的に説明すると、充放電回路22は、分電盤12からの交流電力を直流電力に変換して蓄電池24に充電させるとともに、蓄電池24から放電された直流電力を交流電力に変換して分電盤12に出力させる。分電盤12に出力した交流電力は、負荷機器14において消費される。
 制御システム30は、充放電回路22に接続され、充放電回路22と蓄電池24とを備える蓄電システム20を制御する。制御システム30の構成は後述する。制御システム30は、通信機能を有し、ネットワーク40に接続される。ネットワークは、有線ネットワークでもよく、無線ネットワークでもよく、それらの組合せでもよい。サーバ42は、需要家外に設置される。サーバ42は、例えば、気象庁の発表する気象情報を管理する。気象情報には、大雨あるいは暴風などのカテゴリごとに特別警報、警報、注意報が設定される。ここで、特別警報、警報が気象警報に相当するが、気象警報に注意報が含まれてもよい。サーバ42は、気象情報を送信する。ここでは、気象警報が気象情報に含まれたり、気象警報が気象情報に含まれなくなったりする場合に着目する。
 図2は、制御システム30の構成を示す。制御システム30は、制御部50、監視部52、取得部54を含む。図示のごとく、制御システム30は、制御部50、監視部52、取得部54を含んだ1つの装置であってもよく、制御部50、監視部52、取得部54が複数の装置に含まれてもよい。後者の場合、例えば、制御部50と監視部52が充放電回路22に含まれ、取得部54が別の装置に含まれる。
 監視部52は、図1の蓄電池24の電圧を測定する。監視部52は、測定した電圧(以下、「電圧情報」という)を制御部50に出力する。また、監視部52は、制御部50によって指定される期間において、蓄電池24から出力される積算電流量、蓄電池24に入力される積算電流量を測定する。監視部52は、測定した積算電流量(以下、「積算電流量情報」と意宇を制御部50に出力する。
 制御部50は、監視部52から電圧情報を受けつける。制御部50は、電圧情報をもとに充放電回路22の動作を制御する。これは、蓄電池24の充放電を制御することに相当する。例えば、電圧がしきい値よりも少ない場合に、制御部50は、充放電回路22に対して、蓄電池24を充電させる。電圧がしきい値よりも少ない場合は、蓄電池24の残量が少ない場合に相当する。また、制御部50は、時間帯に応じて充放電を実行させてもよい。例えば、制御部50は、電気料金の単価の安い夜間に蓄電池24を充電させ、電気料金の単価の高い昼間に蓄電池24を放電させるように、充放電回路22を動作させる。このような制御部50による充放電の制御には公知の技術が使用されればよいので、ここでは説明を省略する。
 これに加えて、制御部50は、定期的に、例えば、1年あるいは1ヶ月に一度の頻度で、充放電回路22を動作させることによって、蓄電池24の容量を測定する容量測定処理を実行する。これは、前述のごとく、蓄電池24がリチウムイオン蓄電池である場合、蓄電池24の使用とともに、蓄電池24に充電可能な容量は低下していく。そこで、蓄電池24の容量を正確に把握するために、容量測定処理がなされる。
 図3は、制御部50による容量測定処理の概要を示す。横軸は時間を示し、縦軸は蓄電池24に充電される電力量を示す。制御部50は、容量測定処理においてまず第1ステップを実行する。制御部50は、第1ステップにおいて、蓄電池24を放電させて、蓄電池24の残量を実質的にゼロにするように充放電回路22を制御する。充放電回路22は、制御部50からの指示に応じて蓄電池24を放電させる。その際、蓄電池24から放電された電力は負荷機器14において消費される。制御部50は、監視部52から受けつけた電圧情報を確認し、容量測定開始と判定される電圧しきい値よりも電圧が小さい場合に第1ステップを終了する。
 第1ステップの終了後、制御部50は、第2ステップを実行する。制御部50は、第2ステップにおいて、残量が実質的にゼロである蓄電池24を満充電まで充電させるように充放電回路22を制御する。充放電回路22は、制御部50からの指示に応じて蓄電池24を充電させる。制御部50は、監視部52から受けつけた電圧情報を確認し、満充電に対応した値を電圧が示す場合に第2ステップを終了する。
 第2ステップの間にわたって、制御部50は、監視部52に対して、蓄電池24に入力される積算電流量を測定させる。第2ステップの終了後、制御部50は、監視部52から積算電流量情報を受けつける。具体的に説明すると、制御部50は、第2ステップを開始する際に、積算電流量の測定開始を監視部52に指示し、第2ステップを終了する際に、積算電流量の測定終了を監視部52にする。監視部52は、測定開始を指示されてから、測定終了を指示されるまでの間にわたって、積算電流量を測定する。その結果、制御部50は、積算電流量を蓄電池24の容量として取得する。図2に戻る。制御部50は、蓄電池24の容量に関する情報を制御システム30の外部に出力してもよい。
 取得部54は、通信機能を有し、図1のネットワーク40を介してサーバ42に接続される。取得部54は、サーバ42からの気象情報を受信する。特に、気象情報に気象警報が示されていない状態から、気象情報に気象警報が示されている状態に遷移した場合、取得部54は、気象警報の発令を取得するといえる。取得部54は、気象情報を制御部50に出力する。
 制御部50は、取得部54からの気象情報を取得することによって、気象警報の発令を取得した場合、容量測定処理を中止する。例えば、制御部50は、容量測定処理の開始前に、気象警報の発令を取得した場合、容量測定処理の開始時刻が到来しても、容量測定処理を開始しない。これは、容量測定処理の開始を中止することに相当する。
 また、制御部50は、容量測定処理の実行中、特に容量測定処理の第1ステップの実行中に、取得部54が気象警報の発令を取得した場合、容量測定処理の実行を中止する。つまり、制御部50は、蓄電池24の放電を中止するように充放電回路22を制御する。これに続いて、制御部50は、蓄電池24を充電するように充放電回路22を制御してもよい。制御部50は、容量測定処理の第2ステップの実行中に、取得部54が気象警報の発令を取得した場合、容量測定処理の実行を継続する。つまり、制御部50は、蓄電池24を充電するように充放電回路22を制御し続ける。
 取得部54が受信した気象情報に気象警報が示されている状態から、気象情報に気象警報が示されていない状態に遷移した場合、取得部54は、気象警報の解除を取得するといえる。制御部50は、容量測定処理を中止した後、気象警報の解除を取得した場合、一定期間経過後に容量測定処理を新たに実行する。つまり、容量測定処理の開始を中止した場合であっても、容量測定処理の第1ステップの実行を中止した場合であっても、制御部50は、容量測定処理の第1ステップを新たに実行する。
 本開示における装置、システム、または方法の主体は、コンピュータを備えている。このコンピュータがプログラムを実行することによって、本開示における装置、システム、または方法の主体の機能が実現される。コンピュータは、プログラムにしたがって動作するプロセッサを主なハードウェア構成として備える。プロセッサは、プログラムを実行することによって機能を実現することができれば、その種類は問わない。プロセッサは、半導体集積回路(IC)、またはLSI(Large Scale Integration)を含む1つまたは複数の電子回路で構成される。複数の電子回路は、1つのチップに集積されてもよいし、複数のチップに設けられてもよい。複数のチップは1つの装置に集約されていてもよいし、複数の装置に備えられていてもよい。プログラムは、コンピュータが読み取り可能なROM、光ディスク、ハードディスクドライブなどの非一時的記録媒体に記録される。プログラムは、記録媒体に予め格納されていてもよいし、インターネット等を含む広域通信網を介して記録媒体に供給されてもよい。
 以上の構成による配電システム100の動作を説明する。図4は、制御システム30による容量測定処理の手順を示すフローチャートである。取得部54は、気象警報の発令を取得する(S10)。容量測定処理の開始前であれば(S12のY)、制御部50は容量測定処理の開始を中止する(S14)。容量測定処理の開始前でなく(S12のN)、第1ステップを実行中であれば(S16のY)、制御部50は容量測定処理を中止する(S18)。第1ステップを実行中でない場合(S16のN)、制御部50は容量測定処理を続行する(S20)。
 本実施例によれば、気象警報の発令を取得した場合、容量測定処理を中止するので、停電の発生の可能性が高い場合に蓄電池の容量測定処理を中止できる。また、容量測定処理の開始前に、気象警報の発令を取得した場合、容量測定処理の開始を中止するので、容量測定処理の実行を回避できる。また、容量測定処理の実行中に、取得部54が気象警報の発令を取得した場合、容量測定処理の実行を中止するので、容量測定処理の続行を回避できる。また、容量測定処理は、蓄電池24を放電させて、蓄電池24の残量を実質的にゼロにする第1ステップと、残量が実質的にゼロである蓄電池24を満充電まで充電させる第2ステップとを備えるので、容量の測定精度を向上できる。また、容量測定処理の第1ステップの実行中に、気象警報の発令を取得した場合、容量測定処理の実行を中止するので、蓄電池24の放電を中止できる。また、容量測定処理の第2ステップの実行中に、気象警報の発令を取得した場合、容量測定処理の実行を継続するので、蓄電池24の充電を続行できる。また、容量測定処理を中止した後、気象警報の解除を取得した場合、一定期間経過後に容量測定処理を新たに実行するので、容量を取得できる。
 本開示の一態様の概要は、次の通りである。本開示のある態様の制御システム30は、蓄電池24と、蓄電池24を充放電させる充放電回路22とを備える蓄電システム20を制御する制御システム30であって、充放電回路22を動作させることによって、蓄電池24の容量を測定する容量測定処理を実行する制御部50と、気象警報の発令を取得する取得部54とを備える。制御部50は、取得部54が気象警報の発令を取得した場合、容量測定処理を中止する。
 制御部50は、容量測定処理の開始前に、取得部54が気象警報の発令を取得した場合、容量測定処理の開始を中止する。
 制御部50は、容量測定処理の実行中に、取得部54が気象警報の発令を取得した場合、容量測定処理の実行を中止する。
 制御部50における容量測定処理は、蓄電池24を放電させて、蓄電池24の残量を実質的にゼロにする第1ステップと、残量が実質的にゼロである蓄電池24を満充電まで充電させる第2ステップと、を備えてもよい。
 制御部50は、容量測定処理の第1ステップの実行中に、取得部54が気象警報の発令を取得した場合、容量測定処理の実行を中止し、容量測定処理の第2ステップの実行中に、取得部54が気象警報の発令を取得した場合、容量測定処理の実行を継続する。
 制御部50は、容量測定処理を中止した後、取得部54が気象警報の解除を取得した場合、一定期間経過後に容量測定処理を新たに実行する。
 以上、本開示を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。
 本実施例における容量測定処理では、第1ステップを実行した後に、第2ステップを実行している。しかしながらこれに限らず例えば、容量測定処理では、第2ステップを実行した後に、第1ステップを実行してもよい。本変形例によれば、構成の自由度を向上できる。
 本実施例における配電システム100は、蓄電システム20を含む。しかしながらこれに限らず例えば、配電システム100は、蓄電システム20に加えて太陽電池等の再生可能エネルギー発電装置を含んでもよい。本変形例によれば、太陽電池において発電された電力を蓄電池24に充電させることができる。また、太陽電池において発電された電力を分電盤12に出力できる。
 本開示によれば、停電の発生の可能性が高い場合に蓄電池の容量測定処理を中止できる。
 10 電力系統、 12 分電盤、 14 負荷機器、 20 蓄電システム、 22 充放電回路、 24 蓄電池、 30 制御システム、 40 ネットワーク、 42 サーバ、 50 制御部、 52 監視部、 54 取得部、 100 配電システム。

Claims (7)

  1.  蓄電池と、前記蓄電池を充放電させる充放電回路とを備える蓄電システムを制御する制御システムであって、
     前記充放電回路を動作させることによって、前記蓄電池の容量を測定する容量測定処理を実行する制御部と、
     気象警報の発令を取得する取得部とを備え、
     前記制御部は、前記取得部が気象警報の発令を取得した場合、前記容量測定処理を中止する、
     制御システム。
  2.  前記制御部は、前記容量測定処理の開始前に、前記取得部が気象警報の発令を取得した場合、前記容量測定処理の開始を中止する、
     請求項1に記載の制御システム。
  3.  前記制御部は、前記容量測定処理の実行中に、前記取得部が気象警報の発令を取得した場合、前記容量測定処理の実行を中止する、
     請求項1に記載の制御システム。
  4.  前記制御部における前記容量測定処理は、前記蓄電池を放電させて、前記蓄電池の残量を実質的にゼロにする第1ステップと、残量が実質的にゼロである前記蓄電池を満充電まで充電させる第2ステップと、
     を備える請求項1に記載の制御システム。
  5.  前記制御部は、前記容量測定処理の第1ステップの実行中に、前記取得部が気象警報の発令を取得した場合、前記容量測定処理の実行を中止し、前記容量測定処理の第2ステップの実行中に、前記取得部が気象警報の発令を取得した場合、前記容量測定処理の実行を継続する、
     請求項4に記載の制御システム。
  6.  前記制御部は、前記容量測定処理を中止した後、前記取得部が気象警報の解除を取得した場合、一定期間経過後に前記容量測定処理を新たに実行する、
     請求項1から5のいずれかに記載の制御システム。
  7.  蓄電池と、前記蓄電池を充放電させる充放電回路とを備える蓄電システムを制御する制御システムにおいて実行されるプログラムであって、
     前記充放電回路を動作させることによって、前記蓄電池の容量を測定する容量測定処理を実行するステップと、
     気象警報の発令を取得するステップとを備え、
     前記容量測定処理を実行するステップは、気象警報の発令を取得した場合、前記容量測定処理を中止することをコンピュータに実行させるためのプログラム。
PCT/JP2020/000452 2019-01-24 2020-01-09 制御システム、プログラム WO2020153136A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019010418A JP7241334B2 (ja) 2019-01-24 2019-01-24 制御システム、プログラム
JP2019-010418 2019-05-14

Publications (1)

Publication Number Publication Date
WO2020153136A1 true WO2020153136A1 (ja) 2020-07-30

Family

ID=71735386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000452 WO2020153136A1 (ja) 2019-01-24 2020-01-09 制御システム、プログラム

Country Status (2)

Country Link
JP (1) JP7241334B2 (ja)
WO (1) WO2020153136A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179968A (ja) * 2005-12-28 2007-07-12 Auto Network Gijutsu Kenkyusho:Kk バッテリ状態管理装置
JP2011200023A (ja) * 2010-03-19 2011-10-06 Commuture Corp 無停電電源装置
JP2016220334A (ja) * 2015-05-18 2016-12-22 シャープ株式会社 制御装置、充放電制御システムおよび制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179968A (ja) * 2005-12-28 2007-07-12 Auto Network Gijutsu Kenkyusho:Kk バッテリ状態管理装置
JP2011200023A (ja) * 2010-03-19 2011-10-06 Commuture Corp 無停電電源装置
JP2016220334A (ja) * 2015-05-18 2016-12-22 シャープ株式会社 制御装置、充放電制御システムおよび制御方法

Also Published As

Publication number Publication date
JP7241334B2 (ja) 2023-03-17
JP2020120517A (ja) 2020-08-06

Similar Documents

Publication Publication Date Title
RU2635101C2 (ru) Управление емкостью аккумуляторной батареи
US9297859B2 (en) Battery-state monitoring system
RU2642422C2 (ru) Гибридная электростанция, в которой используется комбинирование генерирующих средств и системы аккумулирования энергии в режиме реального времени
CN108155663B (zh) 控制配电微电网的方法
US11404877B2 (en) Hierarchical power control system
JP5796213B2 (ja) 蓄電池制御システム
CN115378015B (zh) 微电网的运行控制方法、系统、设备和介质
JP2012095465A (ja) 系統電力安定化システム、系統電力安定化方法、及び充放電器
US20220006294A1 (en) Power control system and power control method
Jie et al. Design of energy storage system using retired valve regulated lead acid (VRLA) batteries in substations
JP2019216528A (ja) 蓄電システム及び蓄電システムの制御方法
WO2020162461A1 (ja) 電力制御システムおよび電力制御方法
WO2020153136A1 (ja) 制御システム、プログラム
US20220006133A1 (en) Power storage control system and power storage control method
KR101319257B1 (ko) 다기능 무정전 전원공급 시스템
Ueshima et al. Improving energy self-consumption rate by using weather forecasts in renewable energy system for back-up power supply
WO2014027462A1 (ja) エネルギー管理装置、及びエネルギー管理装置の制御方法
JP2020120493A (ja) 制御システム、プログラム
Deli et al. Operation and maintenance of back-up photovoltaic systems: An analysis based on a field study in Cameroon
JP2019154108A (ja) 蓄電システム
JP2019154109A (ja) 蓄電システム
KR102703337B1 (ko) 축전지 감시 시스템 및 축전지 감시 장치
KR102514780B1 (ko) 외부 환경 정보에 기반하는 에너지 저장장치 모니터링 시스템
JP7253725B2 (ja) 発電システム
JP6569977B2 (ja) 系統電圧管理システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20745615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20745615

Country of ref document: EP

Kind code of ref document: A1