WO2020152820A1 - 電圧測定装置及びガス絶縁開閉装置 - Google Patents

電圧測定装置及びガス絶縁開閉装置 Download PDF

Info

Publication number
WO2020152820A1
WO2020152820A1 PCT/JP2019/002233 JP2019002233W WO2020152820A1 WO 2020152820 A1 WO2020152820 A1 WO 2020152820A1 JP 2019002233 W JP2019002233 W JP 2019002233W WO 2020152820 A1 WO2020152820 A1 WO 2020152820A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
crystal
electric field
conductor
measuring device
Prior art date
Application number
PCT/JP2019/002233
Other languages
English (en)
French (fr)
Inventor
泰智 大竹
貴弘 梅本
康人 橋場
河野 裕之
大悟 松元
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP19910988.5A priority Critical patent/EP3916399B1/en
Priority to JP2019526026A priority patent/JP6590124B1/ja
Priority to US17/296,266 priority patent/US11486906B2/en
Priority to PCT/JP2019/002233 priority patent/WO2020152820A1/ja
Publication of WO2020152820A1 publication Critical patent/WO2020152820A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/241Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using electro-optical modulators, e.g. electro-absorption
    • G01R15/242Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using electro-optical modulators, e.g. electro-absorption based on the Pockels effect, i.e. linear electro-optic effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/247Details of the circuitry or construction of devices covered by G01R15/241 - G01R15/246
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof

Definitions

  • the present invention relates to a voltage measuring device and a gas-insulated switchgear utilizing the electro-optical effect.
  • HVDC high voltage direct current
  • the first-order electro-optic effect is a phenomenon in which when an electric field is applied to an electro-optic crystal, the refractive index changes in proportion to the primary strength of the electric field, resulting in birefringence.
  • Birefringence means that when an electric field is applied to the electro-optic crystal and light is transmitted through the electro-optic crystal in which only the refractive index in a specific direction changes and the anisotropy of the refractive index occurs, the birefringence is orthogonal in the electro-optic crystal It is a phenomenon that an optical phase difference occurs due to different transmission speeds of the two components, and the polarization state changes.
  • the optical phase difference is referred to as a polarization phase difference.
  • the polarization phase difference is proportional to the electric field applied to the electro-optic crystal. Therefore, by obtaining the polarization phase difference by measurement, the electric field applied to the electro-optic crystal, that is, the potential difference across the electro-optic crystal can be obtained.
  • the voltage of the DC system is once lowered to a voltage easy to handle by using a voltage divider composed of a plurality of resistors, and the voltage is applied to both ends of the electro-optic crystal having the Pockels effect for measurement.
  • a voltage divider composed of a plurality of resistors In addition, there is a method of measuring the voltage of a high-voltage conductor of a DC system in a non-contact manner using an electric field sensor utilizing the Pockels effect (see, for example, Patent Document 2).
  • the present invention has been made in order to solve the above problems, and a voltage measuring device capable of reducing deterioration in measurement accuracy of a DC voltage of a measurement target due to the influence of a fluctuation phenomenon without increasing the size.
  • the purpose is to provide.
  • the voltage measuring device includes a light source, a polarizer that polarizes light emitted from the light source, a ground conductor that is provided so as to be separated from the high-voltage conductor, and is grounded. And a crystal end face electrode that is not in contact with the high-voltage conductor, a Pockels cell that is provided between the crystal end face electrode and the ground conductor, that transmits the light emitted from the polarizer, and the light reflected by the Pockels cell.
  • An analyzer that transmits the light, a photodetector that detects light emitted from the analyzer, an in-crystal electric field measurement unit that converts the voltage output by the photodetector into an in-crystal electric field, and a high-voltage conductor
  • a bias electrode is provided between the crystal facet electrode and the crystal facet electrode so as not to be in contact with the crystal facet electrode, a bias power source connected to the bias electrode, and an in-crystal electric field measurement unit are connected to eliminate the internal electric field of the Pockels cell.
  • a bias power supply control unit that controls the bias power supply so as to keep the voltage at a high level, and a measurement voltage calculation unit that obtains the voltage of the high-voltage conductor based on the output results of the in-crystal electric field measurement unit and the bias power supply control unit.
  • the voltage measuring device can reduce the size of the electric measuring device by using the electro-optic crystal, and reduce the decrease in the measurement accuracy of the DC voltage of the measurement target due to the influence of the fluctuation phenomenon.
  • FIG. 1 is an example of a configuration diagram for explaining a voltage measuring device according to a first embodiment.
  • FIG. 3 is a cross-sectional view of a part of the configuration diagram for explaining the voltage measurement device according to the first embodiment, viewed from the arrow A.
  • 3 is an example of a schematic view of a Pockels cell used in the voltage measurement device according to the first embodiment.
  • FIG. 3 is an example of an electrical equalization circuit for explaining the voltage measuring device according to the first embodiment.
  • 3 is an example of a sine wave graph of the voltage measurement device according to the first embodiment.
  • 6 is an example of a configuration diagram for explaining a voltage measuring device according to a second embodiment.
  • FIG. 5 is an example of a sine wave graph of the voltage measurement device according to the second embodiment.
  • FIG. 7 is an example of a configuration diagram for explaining a voltage measuring device according to a third embodiment.
  • 9 is an example of a diagram for explaining a voltage measuring device according to a fourth embodiment.
  • FIG. 10 is an example of a configuration diagram for explaining a voltage measuring device according to a fifth embodiment.
  • FIG. 16 is an example of a configuration diagram for explaining a voltage measuring device according to a sixth embodiment. It is an example of the external view of the gas insulation switchgear which applied the voltage measuring device which concerns on Embodiment 7. It is an example of the figure for showing the circuit composition of the gas insulation switchgear which applied the voltage measuring device concerning Embodiment 7.
  • FIG. 16 is an example of a configuration diagram for explaining a voltage measuring device according to a seventh embodiment.
  • FIG. 16 is a cross-sectional view of a part of the configuration diagram for explaining the voltage measurement device according to the seventh embodiment, viewed from the arrow B.
  • FIG. 1 is a configuration diagram for explaining the configuration of the voltage measuring device according to the present embodiment.
  • the dotted arrow indicates the flow of laser light.
  • the solid arrows indicate the flow of signals.
  • the voltage measuring device according to the present embodiment measures the DC voltage applied to the high voltage conductor 1.
  • the voltage measuring device according to the present embodiment includes a ground conductor 2a fixed to a ground potential, a Pockels cell 3, a crystal end face electrode 4, a bias electrode 10, a bias power supply 11, an optical fiber 14, a bushing 15, and an insulating support. 16, an input unit 100 and an output unit 101 are provided.
  • a Pockels cell 3 composed of an electro-optic crystal having a Pockels effect is arranged between the high-voltage conductor 1 and the ground conductor 2a without contacting the high-voltage conductor 1 and in contact with the ground conductor 2a.
  • the crystal end face electrode 4 is provided on the upper surface of the Pockels cell 3.
  • the input section 100 is provided with a light source 5, a polarizer 6, an analyzer 7 and a photodetector 8.
  • the output unit 101 is provided with an in-crystal electric field measurement unit 9, a bias power supply control unit 12, and a measurement voltage calculation unit 13.
  • the light source 5 will be described below as a laser light source. Further, the optical fiber 14 can hold the polarization state of the laser light.
  • the laser light emitted from the light source 5 and passing through the polarizer 6 enters the Pockels cell 3 from the lower end through one optical fiber 14.
  • the laser light that has entered the Pockels cell 3 via one optical fiber 14 is reflected by the upper end surface of the Pockels cell 3, passes through the analyzer 7 via the other optical fiber 14, and enters the photodetector 8.
  • the photodetector 8 outputs the intensity of the laser light detected to the in-crystal electric field measuring unit 9.
  • the in-crystal electric field measuring unit 9 obtains the electric field in the electro-optic crystal of the Pockels cell 3 from the intensity of the laser light, and outputs the value of the measured electric field to the bias power supply control unit 12 and the measurement voltage calculation unit 13.
  • the bias electrode 10 is supported and fixed by an insulating support 16 so as not to be in contact with the crystal end face electrode 4.
  • the bias power source 11 is connected to the bias electrode 10 through a bushing 15 for electrically insulating the ground conductor 2a.
  • the bias power supply control unit 12 outputs a setting signal in order to set the bias voltage output from the bias power supply 11 according to the value of the electric field input from the in-crystal electric field measurement unit 9.
  • the bias power supply 11 receives the setting signal output from the bias power supply control unit 12, and controls the bias voltage output from the bias power supply control unit 12.
  • the measurement voltage calculation unit 13 is connected to the in-crystal electric field measurement unit 9 and the bias power supply 11, and the value of the electric field measured by the intra-crystal electric field measurement unit 9 and the setting signal output from the bias power supply control unit 12. Then, the DC voltage applied to the high-voltage conductor 1 is calculated.
  • the ground conductor 2a has a flat plate shape and is provided so as to face the high-voltage conductor 1 at a distance.
  • the high-voltage conductor 1 is a charging unit that is connected to a DC power transmission line and boosted to reduce Joule loss for DC power transmission.
  • the DC voltage reaches several hundred kV when it is high.
  • Examples of the high-voltage conductor 1 include conductors around electric power equipment in substations, AC/DC converters, and frequency converters.
  • the ground conductor 2a is installed so as to face the high-voltage conductor 1, and its potential is fixed to the ground potential, that is, 0 potential through the ground wire and the ground pole embedded in the ground.
  • the impedance of the ground wire or the ground electrode must be sufficiently low, and it is desirable to secure the Class A ground.
  • the electro-optic crystal used in the Pockels cell 3 is a crystal having a primary electro-optic effect, so-called Pockels effect.
  • Examples of electro-optic crystals are LiNbO 3 , LiTaO 3 , Bi 12 SiO 12 , BiGe 3 O 12 and quartz.
  • the Pockels cell 3 is installed for measuring the potential difference between the ground conductor 2a and the crystal end face electrode 4.
  • the electro-optic crystal forming the Pockels cell 3 has a higher dielectric constant and a lower resistivity than the surrounding medium such as air or insulating gas.
  • FIG. 3 is a schematic diagram of the Pockels cell 3 used in the voltage measuring device according to the present embodiment.
  • the dotted arrow indicates the flow of laser light.
  • the high voltage conductor 1 It leads to the reduction of the error in the electric potential measurement.
  • the conductive layers 21a and 21b are formed by depositing a conductive material on both end surfaces of the electro-optic crystal 3a.
  • the electroconductive crystal 21a and the electroconductive layer 21b suppress an error in potential measurement of the high-voltage conductor 1 without forming voids between the electro-optic crystal 3a and the crystal end face electrode 4, and between the electro-optic crystal 3a and the ground conductor 2a. Will be able to.
  • the laser beam is transmitted through the Pockels cell 3 for measuring the polarization phase difference caused by the change in the refractive index inside the electro-optic crystal 3a due to the electric field.
  • the ground conductor 2a that is in contact with the conductive layer 21b provided in the Pockels cell 3 is provided with an incident side opening through which light passes, and the laser light is incident from this incident side opening.
  • the entrance-side opening is provided so that the laser light has the same direction as the electric field formed between the high-voltage conductor 1 and the ground conductor 2a. Then, the laser light is reflected on the surface of the conductive layer 21a provided on the upper surface of the Pockels cell 3 which is in contact with the crystal end face electrode 4.
  • the ground conductor 2a which is in contact with the conductive layer 21b provided in the Pockels cell 3, is also provided with an exit side opening through which light passes, and is reflected by the surface of the conductive layer 21a and returned through the inside of the Pockels cell 3. The received laser light is emitted from this emission side opening.
  • the upper surface of the Pockels cell 3 needs to be formed of a conductive layer 21a having optical reflection characteristics and capable of being electrically connected to the crystal end face electrode 4. Further, the lower surface of the Pockels cell 3 needs to be composed of a conductive layer 21b having an optical transmission characteristic and capable of being electrically connected to the ground conductor 2a.
  • a conductive material such as gold and aluminum is used for the conductive layer 21a which is required to have optical reflection characteristics.
  • a material such as indium tin oxide (ITO) having an optical transmission characteristic is used for the conductive layer 21b which is required to have an optical transmission characteristic in order to secure a laser optical path.
  • ITO indium tin oxide
  • the crystal end face electrode 4 is placed in contact with the conductive layer 21 a provided in the Pockels cell 3. Since the crystal end face electrode 4 is installed under a high electric field, it is desirable that the end portion has a shape that avoids the electric field emphasis such as chamfering with R. Since the crystal end face electrode 4 has a floating potential, it is placed in non-contact with the high voltage conductor 1, the ground conductor 2a, and the bias electrode 10.
  • FIG. 4 shows an electrically equivalent circuit diagram of a voltage measuring system for measuring the DC voltage applied to the high-voltage conductor 1 in the voltage measuring device according to the first embodiment.
  • the potential V f of the crystal end face electrode 4 is shown in formula (1).
  • the potential V f of the crystal end face electrode 4 is determined by the potential V app of the high voltage conductor 1, the 0 potential of the ground conductor 2 a, and the potential V b of the bias electrode 10.
  • the capacitance between the crystal end face electrode 4 and the high-voltage conductor 1 is the capacitance C 1
  • the capacitance between the crystal end face electrode 4 and the ground conductor 2 a is the capacitance C 2
  • the crystal end face electrode 4 and the bias are The electrostatic capacitance with the electrode 10 is shown by a capacitance C 3
  • the electric resistance of the Pockels cell 3 is shown by R
  • the charge amount of the crystal end face electrode 4 is shown by a charge amount Q.
  • the electric resistance R of the electro-optic crystal 3a constituting the Pockels cell 3 is finite, when the potential V f of the crystal end face electrode 4 is not zero, the charge amount Q of the crystal end face electrode 4 is caused by the charge transfer through the electric resistance R. Fluctuates, and the potential V f of the crystal end face electrode 4 fluctuates so as to become the same potential as the ground conductor 2a.
  • the decay time constant of this fluctuation is represented by the product of the dielectric constant and the resistivity of the electro-optic crystal 3a. It is desirable that the light source 5 has good coherence and directivity, and a laser is often used. Specific examples of the laser used include a semiconductor laser, a solid-state laser, a gas laser and the like.
  • the laser light emitted from the light source 5 becomes linearly polarized light by passing through the polarizer 6, and enters the Pockels cell 3 through the optical fiber 14 that holds polarized light having collimators at both ends.
  • the laser light passing through the Pockels cell 3 is reflected on the surface of the conductive layer 21a after having a polarization phase difference according to the electric field in the electro-optic crystal 3a.
  • the reflected laser light again causes a polarization phase difference according to the electric field in the electro-optic crystal 3a, and then passes through the conductive layer 21b, passes through the analyzer 7 through the optical fiber 14, and reaches the photodetector 8. Incident.
  • the photodetector 8 detects the light intensity as an electric signal by light-electric conversion.
  • the polarization phase difference is converted into light intensity for measurement.
  • the polarizer 6 and the analyzer 7 are arranged so that the optical axes thereof are orthogonal to each other, the relationship between the light intensity I in entering the Pockels cell 3 and the light intensity I out entering the photodetector 8 is expressed by It is represented by (2).
  • the polarization phase difference ⁇ represents the polarization phase difference caused by the electro-optical effect of the laser light passing once through the Pockels cell 3. Therefore, since the laser light is reflected as shown by the arrow indicated by the dotted line in FIG. 1, a polarization phase difference 2 ⁇ of two passes is generated, which is as shown on the right side of Expression (2).
  • the polarizer 6 and the analyzer 7 are arranged so that their optical axes are orthogonal to each other.
  • the polarizer 6 and the analyzer 7 are arranged so that their optical axes are orthogonal to each other.
  • the laser light emitted from the light source 5 light of a specific polarization direction that is the same as the direction of the optical axis of the polarizer 6 passes through the polarizer 6.
  • the laser light having the same polarization direction as the optical axis direction of the analyzer 7 passes through the analyzer 7. That is, the polarization direction of the laser light transmitted through the polarizer 6 is orthogonal to the polarization direction of the laser light transmitted through the analyzer 7.
  • the laser light emitted from the light source 5 cannot pass through the analyzer 7 in a state where no electric field is applied to the electro-optic crystal 3a, the light intensity detected by the photodetector 8 is theoretically zero.
  • an electric field is applied to the electro-optic crystal 3a, a polarization phase difference occurs in the incident light according to the Pockels effect principle. In that case, the light emitted from the light source 5 passes through the polarizer 6 and becomes linearly polarized light. After that, the light passes through the Pockels cell 3 and becomes elliptically polarized light.
  • the component corresponding to the optical axis of the analyzer 7 can pass through the analyzer 7, and the light intensity detected by the photodetector 8 has a non-zero value.
  • This light intensity shows a sinusoidal curve according to the electric field inside the electro-optic crystal 3a.
  • the proportional coefficient greatly depends on the type and crystal axis of the electro-optic crystal 3a.
  • the in-crystal electric field measuring unit 9 converts the input output voltage of the photodetector 8 into an in-crystal electric field and outputs it.
  • FIG. 5 a sinusoidal curve showing the relationship between the in-crystal electric field previously acquired during calibration and the output voltage of the photodetector 8 is shown.
  • the vertical axis represents the output voltage of the photodetector 8 standardized, and the horizontal axis represents the polarization phase difference ⁇ .
  • the output of the in-crystal electric field measurement unit 9 is input to the bias power supply control unit 12.
  • the bias power supply controller 12 controls the output value of the bias power supply 11 according to the internal electric field of the electro-optic crystal 3a.
  • the crystal end face electrode 4 has a floating potential, and the potential of the crystal end face electrode 4 can be induced and controlled according to the potential of the bias electrode 10.
  • the internal electric field of the electro-optic crystal 3a can be measured from the polarization phase difference ⁇ of the light propagating in the electro-optic crystal 3a and output from the intra-crystal electric field measurement unit 9 to be grasped.
  • the bias power supply control unit 12 controls the bias power supply 11 to change the potential of the crystal end face electrode 4 and output from the in-crystal electric field measurement unit 9. Feedback control is performed so that is zero.
  • the feedback period needs to be sufficiently shorter than the time constant of charging due to electric conduction of the electro-optic crystal 3a. Further, the feedback period is preferably as small as possible because it determines the response speed of the voltage measuring device. However, it is necessary to increase the sampling frequency of the in-crystal electric field measuring unit 9 in accordance with the response speed, and the cost is increased, so that the sampling frequency is selected according to the application.
  • the measurement voltage calculation unit 13 receives the output of the in-crystal electric field measurement unit 9 and the output of the bias power supply control unit 12, and the output of the intra-crystal electric field measurement unit 9 becomes zero and the internal electric field of the electro-optic crystal 3a becomes zero. After confirming that, the potential V app of the high-voltage conductor 1, which is the measurement target, is calculated. An equation (3) obtained by modifying the equation (1) is shown. From the equation (3), the potential V app of the high voltage conductor 1 is calculated. The potential V f of the crystal end face electrode 4 of the equation (3) is generally obtained from the product of the internal electric field of the electro-optic crystal 3a and the thickness when the internal electric field of the electro-optic crystal 3a is generated. In addition, when the internal electric field of the electro-optic crystal 3a is zero, the potential V f is also zero.
  • the charge amount Q of the crystal end face electrode 4 is usually small, as shown in the formula (3), the charge amount Q becomes a measurement error factor in the potential measurement of the high-voltage conductor 1, so at the start of measurement.
  • the crystal end face electrode 4 is grounded and discharged, and the charge amount Q is set to zero.
  • the internal electric field of the electro-optic crystal 3a can be maintained at zero. Therefore, by using the electro-optic crystal 3a having the Pockels effect, the voltage measuring device does not increase in size, and by performing feedback control so that the internal electric field of the electro-optic crystal 3a becomes zero, it is possible to reduce the influence of the fluctuation phenomenon. It is possible to reduce the deterioration of the measurement accuracy of the DC voltage of the measurement target.
  • FIG. 6 is a configuration diagram for explaining the configuration of the voltage measurement device according to the second embodiment.
  • the difference from the first embodiment is that a quarter-wave plate 31 is inserted between the polarizer 6 and the Pockels cell 3.
  • the description of the same contents as in the first embodiment will be omitted.
  • FIG. 6 shows an example in which the quarter-wave plate 31 is inserted between the polarizer 6 and the Pockels cell 3, the quarter-wave plate 31 is at least the polarizer 6 and the detector 6. It only has to be inserted between the photons 7.
  • the optical axes of the polarizer 6 and the analyzer 7 are orthogonal to each other, and the FAST axis among the optical axes of the quarter-wave plate 31 is ⁇ with respect to the optical axis of the polarizer 6. 45 degrees.
  • the relationship between the light intensity I in incident on the Pockels cell 3 and the light intensity I out incident on the photodetector 8 is expressed by Expression (4).
  • the polarization phase difference ⁇ represents the polarization phase difference generated by applying an electric field to the electro-optic crystal 3a, as in the first embodiment.
  • the laser light Since the laser light is incident on the Pockels cell 3 and then reflected on the conductive layer 21a and then incident on the photodetector 8, the laser light is set to sin 2 ⁇ like the laser light flow indicated by the dotted line in FIG. That is, since the laser light passes through the Pockels cell 3 twice as in the case of the first embodiment, the polarization phase difference 2 ⁇ for two passes is obtained.
  • FIG. 7 shows a sinusoidal curve showing the relationship between the in-crystal electric field and the output voltage of the photodetector 8 in the present embodiment.
  • 9 is a graph when the FAST axis is +45 degrees with respect to the optical axis of the polarizer 6 among the optical axes of the quarter-wave plate 31.
  • the vertical axis represents the relationship between the in-crystal electric field and the output voltage of the photodetector 8
  • the horizontal axis represents the polarization phase difference ⁇ .
  • the phase shifts by 45 degrees, so that the phase is left-right asymmetrical, unlike FIG. 5 of the first embodiment. Therefore, the polarity of the DC voltage applied to the high voltage conductor 1 can also be determined.
  • FIG. 8 is a configuration diagram for explaining the configuration of the voltage measurement device according to the third embodiment.
  • the third embodiment differs from the first and second embodiments in that a beam splitter 32 between the Pockels cell 3 and the analyzer 7 and a reflected light detector 33 for detecting reflected light are provided. .. The description of the same contents as in the first and second embodiments will be omitted.
  • the in-crystal electric field measuring unit 9 calculates the electric field applied to the electro-optic crystal 3a from the output voltages of the photodetector 8 and the reflected light detector 33.
  • the intensity of the incident light to the photodetector 8 is increased or decreased due to the variation of the optical characteristics of the element on the laser optical path due to the variation of the intensity of the emitted light of the light source 5 and the variation of the temperature, and There was an electric field reading error in the optical crystal 3a. Since the reflected light detector 33 of the present embodiment detects the laser light intensity before passing through the analyzer 7, it is not affected by the polarization phase difference ⁇ , and the variation of the emitted light intensity of the light source 5 described above. Also, only changes in the optical characteristics of the elements on the laser optical path due to temperature changes and the like are detected. In Expression (2) or Expression (4), by using the output of the reflected light detector 33 for I in , it is possible to correct the fluctuation and improve the measurement accuracy.
  • FIG. 9 is a configuration diagram for explaining the configuration of the voltage measurement device according to the fourth embodiment.
  • the difference from the first to third embodiments is that a lock-in amplifier 34, a signal attenuator 35, and an AC power supply 36 connected to the photodetector 8 and the in-crystal electric field measuring unit 9 are provided.
  • the description of the same contents as in the first to third embodiments will be omitted.
  • the ground conductor 2a is not directly grounded, but is grounded via an AC power supply 36 that generates a modulation voltage. That is, the modulation voltage generated by the AC power supply 36 is applied to the ground conductor 2a.
  • the modulation voltage generated by the AC power supply 36 is attenuated via the signal attenuator 35 and becomes the reference signal of the lock-in amplifier 34.
  • the lock-in amplifier 34 uses the output of the photodetector 8 as an input signal. Further, the lock-in amplifier 34 performs phase-synchronous detection of the input signal using the attenuated modulation signal from the signal attenuator 35 as a reference signal, and outputs the input signal to the in-crystal electric field measuring unit 9.
  • the photodetector 8 may be affected by ambient light, which is not laser light, and ambient electromagnetic noise, so that the measurement sensitivity may decrease.
  • the potential of the ground conductor 2a is oscillated at a predetermined frequency, and components of the same frequency and the same phase are extracted from the output of the photodetector 8 by the lock-in amplifier 34. And the influence of ambient electromagnetic noise can be reduced.
  • FIG. 10 is a configuration diagram for explaining the configuration of the voltage measurement device according to the fifth embodiment.
  • the difference from the first to fourth embodiments is that a temperature sensor 37 is provided and the temperature of the Pockels cell 3, the light source 5, the polarizer 6, the analyzer 7, the photodetector 8 and the quarter-wave plate 31 is measured. It is a point.
  • the description of the same contents as in Embodiments 1 to 4 will be omitted.
  • only one temperature sensor 37 is provided in FIG. 10, a plurality of temperature sensors 37 may be provided.
  • the temperature dependency is acquired in advance and the temperature sensor 37 grasps the measurement environment temperature. By doing so, the influence can be reduced.
  • FIG. 11 is a structural diagram for explaining the structure of the voltage measuring device according to the sixth embodiment.
  • the difference from the first to fifth embodiments is that the crystal end face electrode 4 has a charge eliminating portion 38 for eliminating charge.
  • the description of the same contents as in the first to fifth embodiments will be omitted.
  • the charging of the crystal facet electrode 4 causes a measurement error. At the time of measurement, it is conceivable that the crystal end face electrode 4 is charged due to electron emission, minute discharge, and space charge emission from a high electric field portion in a metal portion installed around the crystal end face electrode 4.
  • the surrounding structure of the crystal end face electrode 4 it is required to adopt an electric field relaxation structure that eliminates the electric field enhancing structure such as the electrode corners and triple points of different materials in order to reduce the electric field.
  • the charge eliminating portion 38 as in the present embodiment, the charge of the crystal end face electrode 4 can be eliminated periodically, and the measurement accuracy can be improved and the measurement system can be downsized.
  • a gas-insulated switchgear is a gas-insulated switchgear that houses a circuit breaker, a disconnector, a grounding switch, a busbar, a lightning arrester, an instrument transformer, a current transformer, etc. in a grounded metal closed container.
  • a gas insulated switchgear that houses a circuit breaker, a disconnector, a grounding switch, a busbar, a lightning arrester, an instrument transformer, a current transformer, etc. in a grounded metal closed container.
  • FIG. 12 is an external view of a gas-insulated switchgear to which the voltage measuring device 200 according to the present embodiment is applied
  • FIG. 13 is a diagram showing a circuit configuration of the gas-insulated switchgear.
  • the gas-insulated switchgear shown in FIGS. 12 and 13 has a busbar 50 housed in a grounded metal hermetic container, a cable head 40 to which a DC power transmission line is connected, and a DC voltage measurement target.
  • Apparatus 200 Apparatus 200.
  • FIG. 14 is a configuration diagram for explaining the structure of the voltage measuring device 200 according to the present embodiment, which is suitable for being mounted on the gas insulated switchgear shown in FIGS. 12 and 13.
  • the difference from the first to sixth embodiments is that the shape of the ground conductor is changed in order to apply the voltage measuring device 200 to the gas insulated switchgear.
  • FIG. 15 is a view of a part of FIG. 14 viewed from a dashed arrow B.
  • the ground conductor 2b in the present embodiment is formed of a cylindrical metal conductor, and is arranged with the bus bar 50 as the central axis. Has been done. The description of the same contents as in the first to sixth embodiments will be omitted.
  • the bus 50 corresponds to the high-voltage conductor in the present embodiment, and voltage measuring device 200 according to the present embodiment measures the DC voltage charged in bus 50 with reference to the potential of ground conductor 2b.
  • the space between the cylindrical metal conductor, which is the ground conductor 2b, and the high-voltage conductor corresponding to the bus bar 50 has an insulation distance for ensuring an insulation distance, and further has insulation characteristics.
  • the gas is hermetically sealed with an insulating gas pressurized above atmospheric pressure.
  • the insulating gas include dry air, SF 6 , CO 2 and CF 3 I.
  • the Pockels cell 3 is installed inside the cylindrical metal conductor that is the ground conductor 2b.
  • the method of measuring the DC voltage charged in bus 50 as the high voltage conductor is the same as in the first embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

本発明は、電気光学結晶内を通じる電圧をゼロにするようバイアス電極を制御するバイアス電源制御部を用いて高電圧導体の直流電圧を測定することが可能な電圧測定装置を提供する。 本発明の電圧測定装置は、光源(5)と、光源(5)から出射された光を偏光する偏光子(6)と、高電圧導体(1)と離隔するように設けられ、接地された接地導体(2a)と、浮遊電位であり、接地導体(2a)及び高電圧導体(1)とは非接触である結晶端面電極(4)と、結晶端面電極(4)と接地導体(2a)との間に設けられ、偏光子(6)から出射された光を透過するポッケルスセル(3)と、ポッケルスセル(3)で反射された光を透過する検光子(7)と、検光子(7)から出射された光を検出する光検出器(8)と、光検出器(8)により出力された電圧を結晶内電界に換算して出力する結晶内電界測定部(9)と、高電圧導体(1)と結晶端面電極(4)との間に、結晶端面電極(4)と非接触となるように設けられるバイアス電極(10)と、バイアス電極(10)に接続されるバイアス電源(11)と、結晶内電界測定部(9)と接続され、ポッケルスセル(3)の内部電界をゼロに保つようにバイアス電源(11)を制御するバイアス電源制御部(12)と、結晶内電界測定部(9)及びバイアス電源制御部(12)の出力結果に基づいて高電圧導体(1)の電圧を求める測定電圧演算部(13)と、を備えたことを特徴とする。

Description

電圧測定装置及びガス絶縁開閉装置
 本発明は、電気光学効果を利用した電圧測定装置及びガス絶縁開閉装置に関するものである。
 電力の長距離送電においては、送電効率及びコストの面から、直流送電の技術である高電圧直流(High Voltage Direct Current、以下ではHVDCと呼ぶ)送電が世界的に注目を集めており、各国で技術開発が進んでいる。直流送電系統と従来の交流送電系統とを連繋するための交直変換所及び、異なる周波数である交流送電系統同士を連繋するため両系統間の接続に直流送電を利用する周波数変換所において、電力系統の制御、保護及び計測のために直流電圧は常時監視しておく必要がある。
 送電系統、交直変換所及び周波数変換所で監視対象となる直流電圧は、一般に数百kVの高電圧であり、直接測定するのは困難である。そこで、電圧の測定方法として、ポッケルス効果と呼ばれる1次電気光学効果を用いる手法が提案されている。
 1次電気光学効果とは、電気光学結晶に対して電界を加えた際に屈折率が電界の強さの1次に比例して変化し複屈折が生じる現象である。複屈折とは、電気光学結晶に電界をかけ、特定の方向の屈折率のみが変化して屈折率に異方性が生じた電気光学結晶内部を光が透過すると、電気光学結晶内部において直交する2成分の透過速度が異なることで、光学的な位相差が生じて偏光状態が変化する現象のことである。光学的な位相差のことを、以下では、偏光位相差と呼ぶ。複屈折の例では、電界が加わった電気光学結晶に所定の角度を有する直線偏光の光を入射させると、出射光は楕円偏光となる。1次電気光学効果であるポッケルス効果において、偏光位相差は電気光学結晶に印加された電界に比例する。したがって偏光位相差を測定によって得ることで、電気光学結晶に印加された電界、すなわち電気光学結晶の両端の電位差を求めることができる。
 そこで従来では、直流系統の電圧を複数の抵抗体で構成された分圧器を用いて一旦扱い易い電圧まで降下させた電圧をポッケルス効果を有する電気光学結晶の両端に印加して測定するようにしていた(例えば、特許文献1参照)。また、直流系統の高電圧導体の電圧を、ポッケルス効果を利用した電界センサを用いて非接触で測定する方法があった(例えば、特許文献2参照)。
特開2015-11019号公報 特開平5-93743号公報
 しかしながら、このような従来の複数の抵抗体で構成された分圧器を用いて直流の系統電圧を測定する方法では、複数の抵抗体を絶縁油に浸漬する必要があり、電圧測定装置が大型化してしまうという問題があった。また、ポッケルス効果を有する電気光学結晶に直流電圧が印加された場合、電気光学結晶の内部を通じた電荷挙動により電気光学結晶の両端電圧は次第に減少していくという変動現象が生じる。その結果、ポッケルス効果を有する電気光学結晶を利用した電界センサを用いて非接触で電圧を測定する装置では、変動現象の影響で測定対象の直流電圧の精度が低下するという問題があった。
 本発明は、上述のような課題を解決するためになされたもので、大型化することなく、変動現象の影響により測定対象の直流電圧の測定精度が低下することを低減可能な電圧測定装置を提供することを目的とする。
 本発明に係る電圧測定装置は、光源と、光源から出射された光を偏光する偏光子と、高電圧導体と離隔するように設けられ、接地された接地導体と、浮遊電位であり、接地導体及び高電圧導体とは非接触である結晶端面電極と、結晶端面電極と接地導体との間に設けられ、偏光子から出射された光を透過するポッケルスセルと、ポッケルスセルで反射された光を透過する検光子と、検光子から出射された光を検出する光検出器と、光検出器により出力された電圧を結晶内電界に換算して出力する結晶内電界測定部と、高電圧導体と結晶端面電極との間に、結晶端面電極と非接触となるように設けられるバイアス電極と、バイアス電極に接続されるバイアス電源と、結晶内電界測定部と接続され、ポッケルスセルの内部電界をゼロに保つようにバイアス電源を制御するバイアス電源制御部と、結晶内電界測定部及びバイアス電源制御部の出力結果に基づいて高電圧導体の電圧を求める測定電圧演算部と、を備えたことを特徴とする。
 本発明に係る電圧測定装置は、電気光学結晶を使用することで電気測定装置を小型化することができ、変動現象の影響による測定対象の直流電圧の測定精度の低下を低減することができる。
実施の形態1に係る電圧測定装置を説明するための構成図の例である。 実施の形態1に係る電圧測定装置を説明するための構成図の一部をAの矢印から見た断面図である。 実施の形態1に係る電圧測定装置に用いるポッケルスセルの模式図の例である。 実施の形態1に係る電圧測定装置を説明するための電気的等化回路の例である。 実施の形態1に係る電圧測定装置の正弦波のグラフの例である。 実施の形態2に係る電圧測定装置を説明するための構成図の例である。 実施の形態2に係る電圧測定装置の正弦波のグラフの例である。 実施の形態3に係る電圧測定装置を説明するための構成図の例である。 実施の形態4に係る電圧測定装置を説明するための成図の例である。 実施の形態5に係る電圧測定装置を説明するための構成図の例である。 実施の形態6に係る電圧測定装置を説明するための構成図の例である。 実施の形態7に係る電圧測定装置を適用したガス絶縁開閉装置の外観図の例である。 実施の形態7に係る電圧測定装置を適用したガス絶縁開閉装置の回路構成を示すための図の例である。 実施の形態7に係る電圧測定装置を説明するための構成図の例である。 実施の形態7に係る電圧測定装置を説明するための構成図の一部をBの矢印から見た断面図である。
 実施の形態1.
 本実施の形態である電圧測定装置について説明する。図1は、本実施の形態である電圧測定装置の構成を説明するための構成図である。点線の矢印は、レーザ光の流れを示す。また、実線の矢印は信号の流れを示す。
 図1に示されるように、本実施の形態である電圧測定装置は、高電圧導体1に印加された直流電圧を測定するものである。本実施の形態である電圧測定装置には、接地電位に固定された接地導体2a、ポッケルスセル3、結晶端面電極4、バイアス電極10、バイアス電源11、光ファイバ14、ブッシング15、絶縁性支持物16、入力部100及び出力部101が設けられている。
 ポッケルス効果を有する電気光学結晶で構成されたポッケルスセル3は、高電圧導体1と接地導体2aとの間に、高電圧導体1とは非接触で、接地導体2aとは接触して配置されている。結晶端面電極4は、ポッケルスセル3の上面に設けられている。また、入力部100には、光源5、偏光子6、検光子7及び光検出器8が備えられている。出力部101には、結晶内電界測定部9、バイアス電源制御部12及び測定電圧演算部13が備えられている。なお、光源5は、レーザ光源であるとして以下では説明する。また、光ファイバ14は、レーザ光の偏光状態が保持可能なものである。
 光源5から出射され偏光子6を通ったレーザ光は、一方の光ファイバ14を介してポッケルスセル3に下端から入射する。一方の光ファイバ14を介してポッケルスセル3に入射したレーザ光は、ポッケルスセル3の上端面で反射され、他方の光ファイバ14を介して検光子7を通り、光検出器8に入射する。光検出器8は、結晶内電界測定部9に検出したレーザ光の強度を出力する。
 結晶内電界測定部9は、レーザ光の強度からポッケルスセル3の電気光学結晶内の電界を求め、バイアス電源制御部12及び測定電圧演算部13に測定された電界の値を出力する。
 バイアス電極10は、結晶端面電極4とは非接触になるよう絶縁性支持物16によって支持固定されている。
 バイアス電源11は、接地導体2aと電気絶縁するためのブッシング15を通してバイアス電極10に接続されている。
 バイアス電源制御部12は、結晶内電界測定部9から入力された電界の値に応じてバイアス電源11から出力されるバイアス電圧を設定するために、設定信号を出力する。バイアス電源11は、バイアス電源制御部12が出力する設定信号が入力され、バイアス電源制御部12により出力するバイアス電圧が制御される。
 また、測定電圧演算部13は、結晶内電界測定部9及びバイアス電源11と接続されており、結晶内電界測定部9で測定された電界の値とバイアス電源制御部12から出力された設定信号とから、高電圧導体1に印加されている直流電圧を演算により求める。
 図2は、図1の破線の矢印Aから見た高電圧導体1と接地導体2aとの断面図である。図2で示されるように、接地導体2aは平板形状をしており、高電圧導体1と離隔して対向するように設けられている。
 高電圧導体1は、本実施の形態では、直流の送電線に接続され直流の送電用にジュール損を低減するように昇圧された充電部であり、直流電圧は高い場合で数100kVに至る。高電圧導体1としての例としては、変電所、交直変換所及び周波数変換所における電力機器周囲の導体が挙げられる。
 接地導体2aは、高電圧導体1に対向するように設置され、その電位は接地線と地面に埋め込まれた接地極を通じて対地電位、すなわち0電位に固定される。接地線や接地極のインピーダンスは充分低くある必要があり、A種接地が確保されていることが望ましい。
 ポッケルスセル3に使用される電気光学結晶は、1次電気光学効果、いわゆるポッケルス効果を有する結晶である。電気光学結晶の例としては、LiNbO、LiTaO、Bi12SiO12、BiGe12及び水晶がある。
 ポッケルスセル3は、接地導体2aと結晶端面電極4との電位差の測定のため設置される。ポッケルスセル3を構成する電気光学結晶は、空気又は絶縁ガス等の周囲媒体に比べると誘電率が高く、抵抗率が低い。したがって、ポッケルスセル3の電気光学結晶と接地導体2aとの間、及び電気光学結晶と結晶端面電極4との間にもし空隙が入ると、ポッケルスセル3の両端電圧は大きく変動することになってしまう。こうした両端電圧の変動は、高電圧導体1の電位測定の誤差の要因となる。
 図3は、本実施の形態の電圧測定装置で用いられているポッケルスセル3の模式図である。点線の矢印はレーザ光の流れを示す。図3に示すように、電気光学結晶3aと結晶端面電極4との接触面に導電層21a、電気光学結晶3aと接地導体2aとの接触面に導電層21bを設けることで、高電圧導体1の電位測定における誤差の減少につながる。導電層21a及び導電層21bは、導電材料を電気光学結晶3aの両端面に蒸着して形成される。
 導電層21a及び導電層21bにより、電気光学結晶3aと結晶端面電極4、及び電気光学結晶3aと接地導体2aとは各々空隙を生じることなく、高電圧導体1の電位測定の誤差を抑制することができるようになる。
 ポッケルスセル3には、電界による電気光学結晶3a内部の屈折率の変化で生じる偏光位相差の測定のため、レーザ光を透過させる。図1の例では、ポッケルスセル3に設けられた導電層21bと接触する接地導体2aには、光が通過する入射側開口が設けられており、この入射側開口からレーザ光が入射する。このとき、入射側開口は、レーザ光が高電圧導体1と接地導体2aとの間に形成される電界の向きと極力同じ向きになるように設けられている。そして、結晶端面電極4と接触するポッケルスセル3の上面に設けられた導電層21aの表面にてレーザ光は反射する。ポッケルスセル3に設けられた導電層21bと接触する接地導体2aには、光が通過する出射側開口も設けられており、導電層21aの表面で反射してポッケルスセル3の内部を通って戻ってきたレーザ光は、この出射側開口から出射する。
 そのため、図1及び図3において、ポッケルスセル3の上面は、光学反射特性を持った、結晶端面電極4と電気接続可能な導電層21aで構成される必要がある。
 また、ポッケルスセル3の下面は、光学透過特性を持った、接地導体2aと電気接続可能な導電層21bで構成される必要がある。
 光学反射特性が要求される導電層21aには、金及びアルミ等の材料からなる導電性の材料を用いる。
 レーザ光路を確保するために、光学透過特性が要求される導電層21bには、光学透過特性のある酸化インジウム錫(Indium Tin Oxide、ITO)等の材料を用いる。
 結晶端面電極4は、ポッケルスセル3に設けられた導電層21aに接触して設置される。結晶端面電極4は高電界下に設置されるため、端部はR面取りするといった電界強調を避ける形状とするのが望ましい。
 結晶端面電極4は、浮遊電位とするため、高電圧導体1、接地導体2a及びバイアス電極10とは非接触で設置される。
 図4は、実施の形態1に係る電圧測定装置で高電圧導体1に印加された直流電圧を測定するための電圧測定系の電気的等価回路図を示す。結晶端面電極4の電位Vを式(1)に示す。結晶端面電極4の電位Vは、高電圧導体1の電位Vapp、接地導体2aの0電位及びバイアス電極10の電位Vにより決定される。ここで、結晶端面電極4と高電圧導体1との静電容量を静電容量C、結晶端面電極4と接地導体2aとの静電容量を静電容量C、結晶端面電極4とバイアス電極10との静電容量を静電容量C、ポッケルスセル3の電気抵抗をR及び結晶端面電極4の帯電量を帯電量Qで示す。
Figure JPOXMLDOC01-appb-M000001
 ポッケルスセル3を構成する電気光学結晶3aの電気抵抗Rは有限であるため、結晶端面電極4の電位Vがゼロでない場合は、電気抵抗Rを通じた電荷移動により結晶端面電極4の帯電量Qが変動していき、結晶端面電極4の電位Vは接地導体2aと同電位となるよう変動する。この変動の減衰時定数は、電気光学結晶3aの誘電率と抵抗率の積で表される。
 光源5は、可干渉性及び指向性のよいものが望ましくレーザが使用される場合が多い。使用するレーザの具体例としては、半導体レーザ、固体レーザ及びガスレーザ等が挙げられる。
 光源5が出射したレーザ光は、偏光子6を透過することで直線偏光となり、両端にコリメータを有する偏光を保持する光ファイバ14を通してポッケルスセル3に入射する。ポッケルスセル3を透過するレーザ光は、電気光学結晶3a内電界に応じた偏光位相差を生じた後、導電層21aの表面で反射する。反射されたレーザ光は、再度、電気光学結晶3a内電界に応じた偏光位相差を生じた後に導電層21bを透過し、光ファイバ14を介して検光子7を通過し、光検出器8に入射する。光検出器8では、光―電気変換により光強度を電気信号として検出する。
 ポッケルスセル3を透過するレーザ光に生じる偏光位相差を直接測定することは困難である。したがって、偏光子6及び検光子7に光を透過させることで、偏光位相差を光強度に換算して測定する。例えば、偏光子6と検光子7の光学軸を互いに直交させるように配置した場合、ポッケルスセル3に入射する光強度Iinと、光検出器8に入射する光強度Ioutの関係は、式(2)で表される。ここで偏光位相差θは、ポッケルスセル3をレーザ光が1回通過することによっての電気光学効果により生じる偏光位相差を表す。したがって、レーザ光は図1の点線で示す矢印のように反射されることから、2回通過分の偏光位相差2θが生じることになり、式(2)の右辺のようになる。
Figure JPOXMLDOC01-appb-M000002
 本実施の形態では、偏光子6と検光子7との各光学軸を互いに直交させるように配置する。このように配置した場合、光源5から出射されたレーザ光のうち、偏光子6の光学軸の方向と同じ特定の偏光方向の光が偏光子6を透過する。さらに、ポッケルスセル3から出射されたレーザ光のうち、検光子7の光学軸の方向と同じ偏光方向のレーザ光が検光子7を透過する。すなわち、偏光子6を透過したレーザ光の偏光方向と検光子7を透過したレーザ光の偏光方向とは直交する。したがって、光源5が出射したレーザ光は、電気光学結晶3aに電界が加わらない状態では、検光子7を透過することはできないため光検出器8で検出される光強度は原理上ゼロである。
 一方、電気光学結晶3aに電界が加わると、ポッケルス効果の原理に従って、入射光には偏光位相差が生じる。その場合、光源5が出射した光は偏光子6を透過し、直線偏光となる。その後、ポッケルスセル3を透過し楕円偏光となる。したがって、検光子7の光学軸に対応した成分は検光子7を透過することができ、光検出器8で検出される光強度はゼロでない値となる。この光強度は、電気光学結晶3a内部の電界に応じて正弦波曲線を示す。また、偏光位相差θと電気光学結晶3aの両端の電位差Vには比例関係があり、比例係数は電気光学結晶3aの種類及び結晶軸に大きく依存する。
 結晶内電界測定部9は、入力された光検出器8の出力電圧を結晶内電界に換算して出力する。図5において、予め校正時に取得される結晶内電界と光検出器8の出力電圧の関係を示す正弦波曲線を示す。縦軸が光検出器8の出力電圧を規格化したものであり、横軸は偏光位相差θを表す。結晶内電界測定部9の出力は、バイアス電源制御部12に入力される。
 バイアス電源制御部12は、電気光学結晶3aの内部電界に応じてバイアス電源11の出力値を制御する。結晶端面電極4は浮遊電位であり、結晶端面電極4の電位はバイアス電極10の電位に応じて誘導され制御することが出来る。
 本実施の形態では、電気光学結晶3aの内部電界をゼロに保つことで、電気光学結晶3aを通じた電気伝導を抑制する。電気光学結晶3aの内部電界は、電気光学結晶3a内を伝搬する光の偏光位相差θから測定し、結晶内電界測定部9から出力され把握することが出来る。電気光学結晶3aの内部電界がゼロ以外の値を有する場合は、バイアス電源制御部12がバイアス電源11を制御することで、結晶端面電極4の電位を変化させ、結晶内電界測定部9の出力がゼロになるようフィードバック制御する。
 フィードバック周期は、電気光学結晶3aの電気伝導による帯電の時定数より十分早くする必要がある。さらに、フィードバック周期は、電圧測定装置の応答速度を決めるため、小さいほど望ましい。しかし、応答速度に応じて結晶内電界測定部9のサンプリング周波数を高くする必要があり、高コスト化するため、用途に応じて選定される。
 測定電圧演算部13は、結晶内電界測定部9の出力及びバイアス電源制御部12の出力を受け、結晶内電界測定部9も出力がゼロとなり電気光学結晶3aの内部電界がゼロとなったことを確認した上で、測定対象である高電圧導体1の電位Vappを演算する。式(1)を変形した式(3)を示す。式(3)より、高電圧導体1の電位Vappが算出される。式(3)の結晶端面電極4の電位Vは、一般的に電気光学結晶3aの内部電界が生じている場合において、電気光学結晶3aの内部電界と厚さの積から求められる。なお、電気光学結晶3aの内部電界がゼロの場合は、電位Vもゼロである。
Figure JPOXMLDOC01-appb-M000003
 結晶端面電極4の帯電量Qの値は通常わずかであるが、式(3)に示すように、高電圧導体1の電位測定において、帯電量Qが測定誤差要因となるため、測定開始時点では結晶端面電極4を接地除電し、帯電量Qをゼロとする。
 バイアス電源制御部12によってバイアス電源11を制御することで、電気光学結晶3aの内部電界をゼロに保つことできる。したがって、ポッケルス効果を有する電気光学結晶3aを使用することで電圧測定装置が大型化することなく、また、電気光学結晶3aの内部電界がゼロとなるようにフィードバック制御することで変動現象の影響により測定対象の直流電圧の測定精度の低下を低減することができる。
 実施の形態2.
 図6は、実施の形態2に係る電圧測定装置の構成を説明するための構成図である。実施の形態1と異なる点は、偏光子6とポッケルスセル3との間に4分の1波長板31を挿入している点である。なお、実施の形態1と同様の内容については説明を省略する。図6では、4分の1波長板31が偏光子6とポッケルスセル3との間に挿入されている例を記載しているが、4分の1波長板31は、少なくとも偏光子6と検光子7との間に挿入されていればよい。本実施の形態においては、偏光子6と検光子7との光学軸を互いに直交させ、さらに4分の1波長板31の光学軸の中でFAST軸を偏光子6の光学軸に対して±45度とする。
 このように構成された電圧測定装置においては、ポッケルスセル3に入射する光強度Iinと、光検出器8に入射する光強度Ioutの関係は、式(4)で表わされる。ここで、偏光位相差θは、実施の形態1と同様に、電気光学結晶3aに電界を加えることで生じる偏光位相差を表す。レーザ光は、ポッケルスセル3に入射した後、導電層21aにおいて反射されて光検出器8に入射するため、図5の点線で示されるレーザ光の流れのようにsin2θとする。すなわち、実施の形態1と同様に、レーザ光はポッケルスセル3を2回通過するので、2回通過分の偏光位相差2θとなる。
Figure JPOXMLDOC01-appb-M000004
 4分の1波長板31を適用することで、偏光位相差θがゼロから微小に変動した際のIoutの変動(dIout/dθ(θ=0))が大きくなるため、偏光位相差θがゼロ付近における測定感度が改善される。
 図7は、本実施の形態の結晶内電界と光検出器8の出力電圧の関係を示す正弦波曲線を示す。4分の1波長板31の光学軸の中で、FAST軸を偏光子6の光学軸に対して+45度とした場合のグラフである。縦軸が結晶内電界と光検出器8の出力電圧の関係であり、横軸は偏光位相差θを表す。
 図7で示すように、4分の1波長板31を設けることで位相が45度ずれるため、実施の形態1の図5とは異なり、左右非対称となる。したがって、高電圧導体1に印加された直流電圧の極性も判定することができる。
 実施の形態3.
 図8は、実施の形態3に係る電圧測定装置の構成を説明するための構成図である。実施の形態3において実施の形態1及び2との相違は、ポッケルスセル3と検光子7との間のビームスプリッタ32及び、反射光を検出する反射光検出器33とを備えている点である。なお、実施の形態1及び2と同様の内容については説明を省略する。結晶内電界測定部9は、光検出器8と反射光検出器33との出力電圧から電気光学結晶3aに加わる電界を算出する。
 実施の形態1の構成では、光源5の出射光強度の変動及び気温変化等によるレーザ光路上にある素子の光学特性の変動により、光検出器8への入射光強度が増減することで、電気光学結晶3a内に電界の読み取り誤差となっていた。
 本実施の形態が有する反射光検出器33は、検光子7を透過する前のレーザ光強度を検出するため偏光位相差θの影響は受けず、上記で述べた光源5の出射光強度の変動及び気温変化等によるレーザ光路上にある素子の光学特性の変動のみを検出する。式(2)又は式(4)において、Iinに反射光検出器33の出力を用いることで、変動を補正し測定精度を向上することができる。
 実施の形態4.
 図9は、実施の形態4に係る電圧測定装置の構成を説明するための構成図である。
 実施の形態1~3との相違は、光検出器8と結晶内電界測定部9とに接続されたロックインアンプ34、信号減衰器35及び交流電源36を有している点である。なお、実施の形態1~3と同様の内容については説明を省略する。
 接地導体2aは、直接接地されずに、変調電圧を生成する交流電源36を介して接地される。すなわち、接地導体2aには交流電源36で生成された変調電圧が印加されている。さらに、交流電源36で生成された変調電圧は信号減衰器35を介して減衰されてロックインアンプ34のリファレンス信号となっている。
 ロックインアンプ34は、光検出器8の出力を入力信号とする。さらに、ロックインアンプ34は、信号減衰器35からの減衰された変調信号をリファレンス信号として入力信号を位相同期検波し、結晶内電界測定部9に出力する。
 光検出器8は、レーザ光ではない外乱光の影響及び周囲電磁ノイズによる影響を受けることで測定感度が低下する可能性がある。
 そこで、接地導体2aの電位を所定の周波数で振動させ、光検出器8の出力から同周波数かつ同位相の成分をロックインアンプ34で抽出することで、上記で挙げたレーザ光ではない外乱光の影響及び周囲電磁ノイズによる影響を低減することができる。
 実施の形態5.
 図10は、実施の形態5に係る電圧測定装置の構成を説明するための構成図である。
 実施の形態1~4との相違は、温度センサ37が設けられ、ポッケルスセル3、光源5、偏光子6、検光子7、光検出器8及び4分の1波長板31の温度を測定する点である。なお、実施の形態1~4と同様の内容については説明を省略する。また図10では、温度センサ37は1つだけ設けているが、複数設けてもよい。
 ポッケルスセル3、光源5、偏光子6、検光子7及び光検出器8は温度に依存し特性が変動するため、予めその温度依存性を取得しておき、測定環境温度を温度センサ37により把握することで、その影響を低減することができる。
 実施の形態6.
 図11は、実施の形態6に係る電圧測定装置の構造を説明するための構造図である。実施の形態1~5との相違は、結晶端面電極4の帯電を除電するための除電部38を有する点である。なお、実施の形態1~5と同様の内容については説明を省略する。
 式(3)で示したように、結晶端面電極4の帯電は測定誤差をもたらす。測定時には、結晶端面電極4の周囲に設置の金属部における高電界箇所からの電子放出、微小放電及び空間電荷の放出による結晶端面電極4の帯電をもたらすことが考えられる。したがって、結晶端面電極4の周囲構造物では、電界低減のため電極角部及び異種材料の三重点といった電界強調する構造を排除した電界緩和構造を採用することが求められる。しかし、機器の寸法やコスト上の制限から電子放出等を完全に抑制することが困難となることが想定される。
 そのため、本実施の形態のように除電部38を備えることで、定期的に結晶端面電極4の帯電を除電することができ、測定精度の向上と測定系の小型化を実現することができる。
 実施の形態7.
 ガス絶縁開閉装置は、接地された金属製の密閉容器内に、遮断器、断路器、接地開閉器、母線、避雷器、計器用変圧器及び変流器等を収納してガス絶縁化した開閉装置である。
 以下では、直流送電に使用される機器に本実施の形態に係る電圧測定装置が適用される例として、直流電圧で充電された母線が収納されたガス絶縁開閉装置への適用例を説明する。
 図12は、本実施の形態に係る電圧測定装置200を適用したガス絶縁開閉装置の外観図であり、図13は、ガス絶縁開閉装置の回路構成を示すための図である。図12及び図13に示されたガス絶縁開閉装置は、接地された金属製の密閉容器内に母線50が収納されており、直流送電線が接続されるケーブルヘッド40と、直流電圧の測定対象となる母線50と、断路器42と、断路器42の両側に設けられた接地開閉器41a,41bと、避雷器43と、計器用変流器44と、母線50の直流電圧を測定する電圧測定装置200とを備えている。
 図14は、図12及び図13に示したガス絶縁開閉装置に搭載するのに適する本実施の形態に係る電圧測定装置200の構造を説明するための構成図である。実施の形態1~6との相違は、電圧測定装置200をガス絶縁開閉装置に適用するために接地導体の形状を変更した点である。図15は、図14の一部を破線の矢印Bから見た図であり、本実施の形態における接地導体2bは、円筒状の金属導体で形成されており、母線50を中心軸にして配置されている。なお、実施の形態1~6と同様の内容は説明を省略する。本実施の形態における高電圧導体は母線50が相当し、本実施の形態に係る電圧測定装置200は、接地導体2bの電位を基準として母線50に充電された直流電圧を測定する。
 ガス絶縁開閉装置において、接地導体2bである円筒状の金属導体と母線50が相当する高電圧導体との間の空間は、絶縁距離を確保するための絶縁距離が確保されており、さらに絶縁特性を高めるために大気圧以上に加圧された絶縁性ガスで気密に封止されている。絶縁性ガスとしては、乾燥空気、SF、CO及びCFI等が挙げられる。
 本実施の形態に係る電圧測定装置200においては、ポッケルスセル3を接地導体2bである円筒状の金属導体の内部に設置している。本実施の形態において、高電圧導体としての母線50に充電された直流電圧を測定する方法は実施の形態1と同様である。
1 高電圧導体
2a,2b 接地導体
3 ポッケルスセル
3a 電気光学結晶
4 結晶端面電極
5 光源
6 偏光子
7 検光子
8 光検出器
9 結晶内電界測定部
10 バイアス電極
11 バイアス電源
12 バイアス電源制御部
13 測定電圧演算部
14 光ファイバ
15 ブッシング
16 絶縁性支持物
21a,21b 導電層
31 4分の1波長板
32 ビームスプリッタ
33 反射光検出器
34 ロックインアンプ
35 信号減衰器
36 交流電源
37 温度センサ
38 除電部
40 ケーブルヘッド
41a,41b 接地開閉器
42 断路器
43 避雷器
44 計器用変流器
50 母線
100 入力部
101 出力部
200 電圧測定装置

Claims (11)

  1.  光源と、
     前記光源から出射された光を偏光する偏光子と、
     高電圧導体と離隔するように設けられ、接地された接地導体と、
     浮遊電位であり、前記接地導体及び前記高電圧導体とは非接触である結晶端面電極と、
     前記結晶端面電極と前記接地導体との間に設けられ、前記偏光子から出射された前記光を透過するポッケルスセルと、
     前記ポッケルスセルで反射された前記光を透過する検光子と、
     前記検光子から出射された前記光を検出する光検出器と、
     前記光検出器により出力された電圧を結晶内電界に換算して出力する結晶内電界測定部と、
     前記高電圧導体と前記結晶端面電極との間に、前記結晶端面電極と非接触となるように設けられるバイアス電極と、
     前記バイアス電極に接続されるバイアス電源と、
     前記結晶内電界測定部と接続され、前記ポッケルスセルの内部電界をゼロに保つように前記バイアス電源を制御するバイアス電源制御部と、
     前記結晶内電界測定部及び前記バイアス電源制御部の出力結果に基づいて前記高電圧導体の電圧を求める測定電圧演算部と、
     を備えたことを特徴とする電圧測定装置。
  2.  前記ポッケルスセルは、
     電気光学結晶と、
     前記電気光学結晶と前記結晶端面電極との接触面に設けられる第1の導電層と、
     前記第1の導電層と対向するように前記電気光学結晶と前記接地導体との接触面に設けられる第2の導電層と、
     で構成されていることを特徴とする請求項1に記載の電圧測定装置。
  3.  前記第1の導電層は、光学反射特性を持った導電性材料で構成されており、
     前記第2の導電層は、光学透過特性を持った材料で構成されている
     ことを特徴とする請求項2に記載の電圧測定装置。
  4.  前記ポッケルスセルを伝播する光の偏光位相差は、
     前記ポッケルスセル内で反射されることで、2倍となる
     ことを特徴とする請求項1から3のいずれか1項に記載の電圧測定装置。
  5.  前記偏光子と前記検光子との間に4分の1波長板を設けること
     を特徴とする請求項1から4のいずれか1項に記載の電圧測定装置。
  6.  前記検光子と前記光検出器との間にビームスプリッタと、
     前記ビームスプリッタから出力された反射光を検出する反射光検出器と、
     を備えたことを特徴とする請求項1から4のいずれか1項に記載の電圧測定装置。
  7.  交流電源と、
     前記交流電源で生成された電圧を減衰させて信号とする信号減衰器と、
     前記信号減衰器で減衰された信号をレファレンス信号とし、前記光検出器からの出力を位相同期検波するロックインアンプと、
     を備え、
     前記接地導体は、前記交流電源を介して接地されることを特徴とする請求項1から4のいずれか1項に記載の電圧測定装置。
  8.  前記電気光学結晶、前記光源、前記偏光子、前記検光子、前記光検出器及び前記4分の1波長板の温度を測定するよう設けられた温度センサと、
     を備えたことを特徴とする請求項1から4のいずれか1項に記載の電圧測定装置。
  9.  前記結晶端面電極の帯電を除電する除電部と
     を備えたことを特徴とする請求項1から4のいずれか1項に記載の電圧測定装置。
  10.  前記高電圧導体は、直流送電の送電線に接続された充電部であり、
     前記接地導体は、平板形状であること
     を特徴とする請求項1から9のいずれか1項に記載の電圧測定装置。
  11.  請求項1から9のいずれか1項に記載の電圧測定装置を搭載し、
     前記高電圧導体は、母線であり、
     前記接地導体は、前記母線を取り囲む円筒状の金属導体であること
     を特徴とするガス絶縁開閉装置。
PCT/JP2019/002233 2019-01-24 2019-01-24 電圧測定装置及びガス絶縁開閉装置 WO2020152820A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19910988.5A EP3916399B1 (en) 2019-01-24 2019-01-24 Voltage measurement device and gas insulated switchgear
JP2019526026A JP6590124B1 (ja) 2019-01-24 2019-01-24 電圧測定装置及びガス絶縁開閉装置
US17/296,266 US11486906B2 (en) 2019-01-24 2019-01-24 Voltage measuring device and gas-insulated switching apparatus
PCT/JP2019/002233 WO2020152820A1 (ja) 2019-01-24 2019-01-24 電圧測定装置及びガス絶縁開閉装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/002233 WO2020152820A1 (ja) 2019-01-24 2019-01-24 電圧測定装置及びガス絶縁開閉装置

Publications (1)

Publication Number Publication Date
WO2020152820A1 true WO2020152820A1 (ja) 2020-07-30

Family

ID=68234935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002233 WO2020152820A1 (ja) 2019-01-24 2019-01-24 電圧測定装置及びガス絶縁開閉装置

Country Status (4)

Country Link
US (1) US11486906B2 (ja)
EP (1) EP3916399B1 (ja)
JP (1) JP6590124B1 (ja)
WO (1) WO2020152820A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7038925B1 (ja) * 2021-06-08 2022-03-18 三菱電機株式会社 光電圧センサ

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184869U (ja) * 1984-11-09 1986-06-04
JPH01136074A (ja) * 1987-11-20 1989-05-29 Fuji Electric Co Ltd ガス絶縁密閉電器の電圧および部分放電検出装置
JPH0481972U (ja) * 1990-11-28 1992-07-16
JPH0593743A (ja) 1991-10-01 1993-04-16 Chubu Electric Power Co Inc 交流電圧検出装置
JPH08211107A (ja) * 1995-02-06 1996-08-20 Takaoka Electric Mfg Co Ltd ガス絶縁電気機器の光学式電圧測定装置
JP2006275974A (ja) * 2005-03-30 2006-10-12 Central Res Inst Of Electric Power Ind 機器異常監視機能を有する光応用計器用変圧器
JP2015011019A (ja) 2013-07-02 2015-01-19 株式会社東芝 直流電圧測定装置
JP2018091782A (ja) * 2016-12-06 2018-06-14 三菱電機株式会社 電圧測定装置および電圧測定方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892357A (en) * 1995-12-08 1999-04-06 Lockheed Martin Idaho Technologies Company Electro-optic voltage sensor for sensing voltage in an E-field
DE19634251A1 (de) * 1996-08-26 1998-03-05 Abb Patent Gmbh Spannungswandler
JPH10221380A (ja) 1997-02-07 1998-08-21 Futaba Corp 電圧測定器
US6307666B1 (en) * 2000-01-13 2001-10-23 Bechtel Bwxt Idaho, Llc Voltage sensing systems and methods for passive compensation of temperature related intrinsic phase shift
EP2479581A1 (en) * 2011-01-21 2012-07-25 PowerSense A/S An AC or DC power transmission system and a method of measuring a voltage

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184869U (ja) * 1984-11-09 1986-06-04
JPH01136074A (ja) * 1987-11-20 1989-05-29 Fuji Electric Co Ltd ガス絶縁密閉電器の電圧および部分放電検出装置
JPH0481972U (ja) * 1990-11-28 1992-07-16
JPH0593743A (ja) 1991-10-01 1993-04-16 Chubu Electric Power Co Inc 交流電圧検出装置
JPH08211107A (ja) * 1995-02-06 1996-08-20 Takaoka Electric Mfg Co Ltd ガス絶縁電気機器の光学式電圧測定装置
JP2006275974A (ja) * 2005-03-30 2006-10-12 Central Res Inst Of Electric Power Ind 機器異常監視機能を有する光応用計器用変圧器
JP2015011019A (ja) 2013-07-02 2015-01-19 株式会社東芝 直流電圧測定装置
JP2018091782A (ja) * 2016-12-06 2018-06-14 三菱電機株式会社 電圧測定装置および電圧測定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3916399A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7038925B1 (ja) * 2021-06-08 2022-03-18 三菱電機株式会社 光電圧センサ
WO2022259353A1 (ja) * 2021-06-08 2022-12-15 三菱電機株式会社 光電圧センサ

Also Published As

Publication number Publication date
US11486906B2 (en) 2022-11-01
US20220026470A1 (en) 2022-01-27
EP3916399A4 (en) 2022-01-19
JPWO2020152820A1 (ja) 2021-02-18
EP3916399B1 (en) 2022-11-30
JP6590124B1 (ja) 2019-10-16
EP3916399A1 (en) 2021-12-01

Similar Documents

Publication Publication Date Title
US9983236B2 (en) Optical sensor
US5892357A (en) Electro-optic voltage sensor for sensing voltage in an E-field
AU2011264004B2 (en) High-voltage sensor with axially overlapping electrodes and local field sensors
Yang et al. Intense electric-field optical sensor for broad temperature-range applications based on a piecewise transfer function
JP5050052B2 (ja) 光vt装置
JP6093308B2 (ja) 交流または直流の送電システムおよび電圧を計測する方法
US10634704B2 (en) Optical pockels voltage sensor assembly device and methods of use thereof
Yakymyshyn et al. Manufacturing challenges of optical current and voltage sensors for utility applications
JPS6325307B2 (ja)
WO2020152820A1 (ja) 電圧測定装置及びガス絶縁開閉装置
Bull et al. A new hybrid current sensor for high-voltage applications
JP2018091782A (ja) 電圧測定装置および電圧測定方法
JPH1114669A (ja) 中実分圧器を有する電気光学センサ
Nedoma et al. Measurement of electric current using optical fibers: A Review
KR100606420B1 (ko) 검출기 삽입형 광 전압검출기
JPS648413B2 (ja)
CA2239722C (en) Electro-optic voltage sensor
WO2023215681A2 (en) A temperature stable optical pockels electric field sensor and methods thereof
WO2022259353A1 (ja) 光電圧センサ
JPH03235064A (ja) 光電圧センサ
JP2887829B2 (ja) 光学式電圧測定器
JPH0560818A (ja) 光方式の電界測定装置
Umemoto et al. Development of optical voltage transformer using electro-optic Pockels effect for HVDC transmission systems
JPH0783961A (ja) 光pt
EP2577327A1 (en) High-voltage sensor with axially overlapping electrodes and local field sensors

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019526026

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019910988

Country of ref document: EP

Effective date: 20210824