WO2020151748A1 - 一种控制eirp的方法、通信装置和通信系统 - Google Patents

一种控制eirp的方法、通信装置和通信系统 Download PDF

Info

Publication number
WO2020151748A1
WO2020151748A1 PCT/CN2020/073823 CN2020073823W WO2020151748A1 WO 2020151748 A1 WO2020151748 A1 WO 2020151748A1 CN 2020073823 W CN2020073823 W CN 2020073823W WO 2020151748 A1 WO2020151748 A1 WO 2020151748A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
spatial grid
spatial
grid
eirp
Prior art date
Application number
PCT/CN2020/073823
Other languages
English (en)
French (fr)
Inventor
郑晓军
郭江
陈卫
朱强
薛春林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20744967.9A priority Critical patent/EP3905430A4/en
Priority to AU2020212219A priority patent/AU2020212219B2/en
Priority to CA3127254A priority patent/CA3127254C/en
Publication of WO2020151748A1 publication Critical patent/WO2020151748A1/zh
Priority to US17/380,807 priority patent/US11456783B2/en
Priority to US17/897,510 priority patent/US20230075467A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/043Power distribution using best eigenmode, e.g. beam forming or beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • H04B17/102Power radiated at antenna
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a method for controlling EIRP, a communication device and a communication system.
  • MIMO technology has emerged as the spectrum resources are becoming increasingly saturated.
  • access network devices can communicate with multiple terminals on the same time-frequency resources through space division. , which greatly improves the capacity of the communication system.
  • the power and antenna gain of access network equipment using MIMO technology is greater than that of traditional access network equipment.
  • Each country/organization has its own requirements for EMF strength. How to control the EMF strength of access network equipment? It is an urgent problem to make it meet the EMF strength requirements of various countries/organizations.
  • the embodiments of the present application provide a method, a communication device, and a communication system for controlling EIRP, which can control the EIRP of access network equipment, so that the EMF strength of the access network equipment meets the EMF strength requirements of various countries/organizations.
  • an embodiment of the present application provides a method for controlling EIRP.
  • the method for controlling EIRP may be applied to an access network device or a chip in an access network device, for example, it may be executed by a baseband unit (BBU) or a chip in the BBU.
  • BBU baseband unit
  • the method comprising: determining a spatial grid EIRP threshold value X n E n, E n that associated with the safety distance X n R n, n is an integer of from 0 to take over N-1, N is the number of spatial grid , N is greater than or equal to 1;
  • the plurality of beams in the X n EIRP of multiple beams can be understood as the total EIRP of X n.
  • the EIRP of the access network equipment can be controlled with the spatial grid as the granularity, thereby controlling the EMF strength of the access network equipment.
  • the E n between the R n X n of the Related comprising:
  • the EIRP thresholds of the two spatial grids are also different.
  • the EIRP of a spatial grid can be flexibly controlled according to the EIRP threshold of the spatial grid, so as to avoid the MIMO performance degradation caused by restricting the EIRP of all spatial directions according to the safety distance of a certain spatial direction. With this solution, it is possible to maintain MIMO performance while meeting local EMF requirements.
  • E n, R n and EMF strength threshold S may have other relationships.
  • the horizontal plane angle range of X n is the minimum horizontal plane angle Maximum angle to horizontal plane
  • the vertical angle range of X n is the minimum angle of the vertical surface Maximum angle to vertical
  • the horizontal plane angle is And the vertical angle is (It can be expressed as The antenna gain is The horizontal plane angle is And the vertical angle is (It can be expressed as The antenna gain is versus The difference between is less than or equal to the difference threshold, where with Are both to A value in with Are both to A value in not equal to or not equal to
  • the difference between the antenna gains in the two directions in the space grid is not too large, which facilitates subsequent control of the EIRP of the space grid, for example, the EIRP of the space grid can be controlled by controlling the power of the space grid.
  • the length of the horizontal plane angle range of each space grid is the same as the length of the vertical plane angle range, and several space grids can be easily determined.
  • N is greater than or equal to 2
  • x is an integer from 0 to N-1
  • y is an integer from 0 to N-1
  • x is not equal to y
  • the length of the horizontal plane angle range of each spatial grid is different, or the length of the vertical plane angle range is different, and at the same time, it can satisfy that the antenna gain in the two spatial directions in the above-mentioned spatial grid is not too large, so that fewer spatial grids can be determined Grid, thereby reducing the complexity of the algorithm.
  • the R n is the horizontal plane angle is And the vertical angle is Safety distance, for to A value in for to A value in.
  • the horizontal plane angle is And the vertical angle is Is a spatial direction in the spatial grid X n , which can be passed determine.
  • the above method further includes:
  • X n is such that the EIRP does not exceed the E n.
  • a plurality of beams can be understood as the total power in the mapping of X n.
  • the antenna gain of each spatial grid can be determined, and the mapping power of multiple beams on the spatial grid can be controlled to achieve that the EIRP of the spatial grid does not exceed the EIRP threshold.
  • X n is such that the EIRP does not exceed the E n comprises:
  • Controlling the plurality of beams of power in the mapping of the X n is smaller than the threshold value equal to the power P n, P n which is obtained from the E n and G n of the.
  • the plurality of beams of power in the mapping of the X n comprising a plurality of the beam power of the instantaneous mapping of X n.
  • a plurality of beams in the instantaneous power of the mapping of X n can be understood as the total of the instantaneous power mapping of X n.
  • the instantaneous mapping power By controlling the instantaneous mapping power, it can be ensured that the EMF intensity of multiple beams in the spatial grid X n at any time does not exceed the EMF intensity threshold, and the radiation of the deployment of the access network equipment 11 at any time is controlled within a certain range Therefore, the deployment of the access network device 11 meets local requirements.
  • the plurality of beams in the X n power mapping comprises a period T on the average power of the mapping of X n
  • the period T of the plurality of beams in the X n is the average power of the average of the period T plurality of mapping the instantaneous power of the beam in the X n.
  • a plurality of beams in the average power of the mapping of X n can be understood as the total average power of the map in the X n.
  • the non-ionizing radiation in EMF may have an impact on organisms during a period of accumulation.
  • the T time period includes a time t1, where at the time t1, the instantaneous mapping power of the multiple beams at the X n is greater than the P n .
  • the instantaneous mapping power of multiple beams in the spatial grid X n can be greater than the power threshold, which can improve the performance of the access network device 11 at some time points, and the average mapped power is less than or equal to the power threshold, and the deployment of the access network device 11 meets the local requirements. It is required that there is no radiation hazard to living organisms.
  • the T time period includes a time t2, where at the time t2, the instantaneous mapping power of the multiple beams at the X n is less than or equal to the P n .
  • the instantaneous mapping power of the multiple beams on the spatial grid X n may be greater than the power threshold, or less than or equal to the power threshold, so as to achieve the goal that the average mapping power is less than or equal to the power threshold.
  • the G n is the horizontal plane angle
  • the vertical angle is (It can be expressed as Antenna gain, for to A value in for to A value in.
  • the instantaneous mapped power of the multiple beams at the X n includes that the angle of the multiple beams in the horizontal plane is And the vertical angle is (It can be expressed as Instantaneous mapped power, for to A value in for to A value in.
  • the average mapped power of the multiple beams at the X n on the T includes the horizontal plane angle of the multiple beams on the T is And the vertical angle is (It can be expressed as Average mapping power, for to A value in for to A value in
  • the instantaneous mapping power of the multiple beams at the X n includes the angle of the multiple beams in the horizontal plane is And the vertical angle is The instantaneous mapped power.
  • the above method further includes:
  • the power of at least one beam of the multiple beams is less than the beam power threshold, so that the mapped power of the multiple beams at the X n is less than or equal to the P n .
  • the power of one or more of the multiple beams can be reduced to control the mapping power of the multiple beams on the spatial grid.
  • the at least one beam is a beam whose mapping power at the X n is greater than a mapping power threshold among the multiple beams.
  • mapping power of the spatial grid can be effectively reduced.
  • the above method further includes:
  • the plurality of beams in the X n may include a mapping of the power of the beam of the plurality of X n mapping the instantaneous power and / or a plurality of beams in the average power of the map in the X n.
  • the network manager can present the mapping power of multiple beams on the spatial grid, so that the user can obtain the mapping power of the spatial grid.
  • the above method further includes:
  • X n is such that the EIRP does not exceed the E n.
  • the access network device can transmit multiple beams according to the ideal power.
  • the above method further includes:
  • X n is such that the EIRP does not exceed the E n.
  • the antenna gain and power of the space grid can be controlled at the same time, so that it can be controlled flexibly according to the actual situation, so that the EIRP of the space grid does not exceed the EIRP threshold.
  • controlling the antenna gain of the multiple beams at the X n includes:
  • the antenna gain of the multiple beams at the X n is adjusted by the structure of the antenna that transmits the multiple beams.
  • the gain of the spatial grid antenna of the multiple beams can be adjusted by controlling the structure of the multiple beam antennas.
  • the structure of the antenna includes the distance between the elements and/or the number of the elements.
  • an embodiment of the present application provides a method. Based on the method in the first aspect, the method further includes: transmitting the multiple beams.
  • the BBU of the access network device or the chip in the BBU can execute the method of the first aspect, and the remote radio unit (RRU) and the antenna in the access network device can transmit the multiple beams.
  • RRU remote radio unit
  • an embodiment of the present application provides a communication device including a processor coupled with a memory, the memory is used to store a computer program or instruction, and the processor is used to execute the computer program or instruction in the memory, The communication device is caused to execute the method of the first aspect described above.
  • the communication device further includes the memory.
  • the communication device may be an access network device or a chip in an access network device, for example, a BBU or a chip in a BBU.
  • an embodiment of the present application provides a processing device, the processing device includes: a processor + an interface, the interface is used to receive code instructions (from external memory or other devices) and transmit to the processor, the The processor is used to run the code instructions to execute the method.
  • the processing apparatus may be an access network device or a chip in an access network device, for example, a BBU or a chip in a BBU.
  • an embodiment of the present application provides a communication device.
  • the communication device further includes an antenna, and the antenna is configured to transmit the multiple beams.
  • the communication device may also include an RRU.
  • an embodiment of the present application provides a communication device.
  • the communication device includes one or more modules for implementing the method of the first aspect or the second aspect.
  • the one or more modules may be compatible with the first aspect or the second aspect.
  • embodiments of the present application provide a computer storage medium, which is used to store a computer program or instruction, and when the program runs in a computer, the computer executes the method of the first aspect or the second aspect. .
  • the embodiments of the present application provide a computer program product, the program product including a program, and when the program is executed, the method of the first aspect or the second aspect is executed.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of an access network device provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a method for controlling EIRP according to an embodiment of the present application.
  • Figure 4 is a schematic diagram of a coordinate system
  • Figure 5 is a schematic diagram of a method for determining a spatial grid
  • Figure 6a is a schematic diagram of a horizontal plane antenna gain and a vertical plane antenna gain
  • Figure 6b is a schematic diagram of a uniformly divided grid
  • Figure 7a is a schematic diagram of a method for determining the EIRP threshold of a spatial grid
  • Figure 7b is a schematic diagram of a horizontal safety distance and a vertical safety distance
  • Figure 8 is a schematic diagram of determining whether the spatial grid needs EIRP control
  • Figure 9 is a schematic diagram of an ideal safety distance
  • Figure 10 is a schematic diagram of multiple beams
  • FIG. 11 is a schematic diagram of the mapped power of the beam m on the spatial grid X n ;
  • FIG. 12 is a schematic diagram of a communication device 1200
  • FIG. 13 is a schematic diagram of a communication device 1300.
  • the embodiment of the present invention provides a communication system.
  • the communication system includes an access network device and at least one terminal, and the at least one terminal can perform wireless communication with the access network device.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of this application.
  • the access network device 11 and the terminal 12 can perform wireless communication
  • the access network device 11 and the terminal 13 can perform wireless communication.
  • the access network equipment and terminals included in the communication system as shown in FIG. 1 are only an example.
  • the type, number, and network elements of the communication system include The connection relationship between elements is not limited to this.
  • the communication system in the embodiment of the present application may be a communication system supporting fourth generation (4G) access technology, such as long term evolution (LTE) access technology; or, the communication system may also support Fifth generation (5G) access technology communication system, such as new radio (NR) access technology; or, the communication system can also support third generation (3G) access technology
  • 4G fourth generation
  • 5G Fifth generation
  • NR new radio
  • a communication system such as a (universal mobile telecommunications system, UMTS) access technology
  • the communication system may also be a communication system supporting multiple wireless technologies, such as a communication system supporting LTE technology and NR technology.
  • the communication system can also be applied to future-oriented communication technologies.
  • the access network equipment in the embodiments of the present application may be equipment used on the access network side to support terminal access to the communication system.
  • it may be a base transceiver station (BTS) in a 2G access technology communication system.
  • BSC base station controller
  • node B node B
  • RNC radio network controller
  • 3G access technology communication system 3G access technology communication system
  • evolved nodeB, eNB next generation nodeB
  • TRP transmission reception point
  • relay node relay node
  • access access point (access) in 5G access technology communication systems point, AP) and so on.
  • the terminal in the embodiments of the present application may be a device that provides voice or data connectivity to users, for example, it may also be called user equipment (UE), mobile station (mobile station), subscriber unit (subscriber unit), Station (station), terminal equipment (terminal equipment, TE), etc.
  • the terminal can be a cellular phone (cellular phone), personal digital assistant (personal digital assistant, PDA), wireless modem (modem), handheld device (handheld), laptop computer (laptop computer), cordless phone (cordless phone), wireless Local loop (wireless local loop, WLL) station, tablet computer (pad), etc.
  • devices that can access the communication system, communicate with the network side of the communication system, or communicate with other objects through the communication system can all be the terminals in the embodiments of this application, such as intelligent transportation Terminals and cars in smart homes, household equipment in smart homes, power meter reading equipment in smart grids, voltage monitoring equipment, environmental monitoring equipment, video monitoring equipment in smart security networks, cash registers, etc.
  • the terminal may communicate with an access network device, for example, the access network device 11.
  • Figure 2 is a schematic diagram of the structure of an access network device.
  • the structure of the access network device 11 can refer to the structure shown in FIG. 2.
  • the access network device includes at least one processor 1111, at least one memory 1112, at least one transceiver 1113, at least one network interface 1114, and one or more antennas 1115.
  • the processor 1111, the memory 1112, the transceiver 1113 and the network interface 1114 are connected, for example, by a bus.
  • the antenna 1115 is connected to the transceiver 1113.
  • the network interface 1114 is used to connect the access network device to other communication devices through a communication link, for example, the access network device is connected to a core network network element through an S1 interface.
  • the connection may include various interfaces, transmission lines, or buses, etc., which is not limited in this embodiment.
  • the processor in the embodiment of the present application may include at least one of the following types: a general-purpose central processing unit (Central Processing Unit, CPU), a digital signal processor (Digital Signal Processor, DSP), a microprocessor, Application-Specific Integrated Circuit (ASIC), Microcontroller Unit (MCU), Field Programmable Gate Array (FPGA), or integrated circuit used to implement logic operations .
  • the processor 1111 may be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the at least one processor 1111 may be integrated in one chip or located on multiple different chips.
  • the memory in the embodiment of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM) or other types of dynamic storage devices that can store information and instructions, or electrically erasable programmable read-only memory (Electrically erasable programmabler-only memory, EEPROM).
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • the memory can also be a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.) , A magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • a magnetic disk storage medium or other magnetic storage device or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory 1112 may exist independently and is connected to the processor 1111.
  • the memory 1112 may also be integrated with the processor 1111, for example, integrated in a chip.
  • the memory 1112 can store program codes for executing the technical solutions of the embodiments of the present application, and the processor 1111 controls execution, and various types of computer program codes executed can also be regarded as driver programs of the processor 1111.
  • the processor 1111 is configured to execute computer program code stored in the memory 1112, so as to implement the technical solutions in the embodiments of the present application.
  • the transceiver 1113 may be used to support the reception or transmission of radio frequency signals between the access network device and the terminal, and the transceiver 1113 may be connected to the antenna 1115.
  • one or more antennas 1115 can receive radio frequency signals
  • the transceiver 1113 can be used to receive the radio frequency signals from the antennas, convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the digital baseband signals or
  • the digital intermediate frequency signal is provided to the processor 1111, so that the processor 1111 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transceiver 1113 can be used to receive a modulated digital baseband signal or digital intermediate frequency signal from the processor 1111, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass it through one or more antennas 1115 Sending the radio frequency signal.
  • the transceiver 1113 can selectively perform one or more stages of down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal.
  • the order of precedence is adjustable.
  • the transceiver 1113 can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal, the up-mixing processing and digital-to-analog conversion processing
  • the order of precedence is adjustable.
  • Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • the transceiver may be called a transceiver circuit, a transceiver unit, a transceiver device, a transmission circuit, a transmission unit, or a transmission device, etc.
  • the processor 1111 may be located in the BBU
  • the memory 1112 may be located in the BBU
  • the transceiver 1113 may be located in the RRU
  • the access network device 11 may include a BBU, an RRU, and an antenna.
  • the access network device 11 can use electromagnetic waves to send data to the terminal 12 to the terminal 27 in an electromagnetic field.
  • the electromagnetic field (EMF, electromagnetic field) includes non-ionizing radiation (NIR). It will cause harm to living organisms, such as electromagnetic radiation such as ultraviolet, light, infrared and radio waves, and mechanical waves such as infrasound and ultrasound will not ionize atoms and molecules.
  • NIR non-ionizing radiation
  • ICNIRP International Commission on Non-ionizing Radiation Protection
  • Table 1 shows the EMF strength requirements of multiple countries/organizations.
  • the EMF intensity is represented by the power spectral density, and the unit of the power spectral density is w/m 2 , and the power spectral density can be understood as the incident plane wave power density.
  • the EMF intensity can be expressed in other units, which is not limited in the embodiment of the present application.
  • EMF intensity can be expressed by electric field intensity, and the unit of electric field intensity is V/m, or EMF intensity can be expressed by electric current intensity, and the unit of electric current intensity is A/m.
  • the power spectral density in Table 1 refers to the maximum value. When the measured power spectral density is less than the value in 1, the EMF intensity requirement is met.
  • the power spectral density is f/200w/m 2 and when the frequency range is above 2G, the power spectral density is 10w/m 2 ; some countries in the European Union have special requirements.
  • the power spectral density of Switzerland is 0.042w/m 2
  • the power spectral density of Italy and Tru is 0.095w/m 2
  • the power spectral density of Belgium and Luxembourg is 0.0238 w/m 2
  • outskirt China has special requirements, using GB8702B standard, when the frequency range is 0.03G-3G, the power spectral density is 0.4w/m 2 , the frequency range is 3G-15G, and the power spectral density is f/7500w/m 2.
  • the frequency range is 15G-30G
  • the power spectral density is 2w/m 2 .
  • the EMF strength requirements may be different for different frequency ranges.
  • the power spectral density can be calculated by the following formula: Among them, S is the power spectral density of the test point, P is the input power of the antenna port, G is the antenna gain, and R is the distance from the antenna to the test point. Among them, P*G can be called Effective Isotropic Radiated Power (EIRP).
  • EIRP Effective Isotropic Radiated Power
  • the power spectrum density requirements of the country or region where the access network equipment is deployed can be used to obtain the power spectrum that satisfies the country or region
  • the safety distance R of density for example, the safety distance R can be obtained by the following formula: Among them, S is the power spectral density requirement, P is the input power of the antenna port, and G is the antenna gain.
  • S is the power spectral density requirement
  • P is the input power of the antenna port
  • G is the antenna gain.
  • MIMO access network equipment uses the 3.5G frequency band
  • the ICNIRP guidelines require a power spectral density of 10w/m 2
  • P is 200w
  • G is 24dBi.
  • the safety distance of the multi-frequency scene can be obtained from the safety distance of each frequency point. For example, if there are n frequencies, the safety distance R i of frequency point i can be calculated separately, and then calculated by the following formula:
  • MIMO technology has emerged as the spectrum resources become increasingly saturated.
  • access network equipment and terminals can communicate using MIMO technology, and access network equipment 11 can Dozens or even hundreds of antennas are arranged to realize that the access network device 11 communicates with at least one terminal in a space division manner on the same time-frequency resource.
  • MIMO technology can be applied to various standards, such as LTE or NR.
  • MIMO access network equipment such as access network equipment 11
  • MIMO access network equipment 11 The transmission power and antenna gain of the access network equipment using MIMO technology (for ease of description, hereinafter referred to as MIMO access network equipment, such as access network equipment 11) are larger than those of traditional access network equipment This leads to a greater safety distance of the MIMO access network equipment than that of the traditional access network equipment when the MIMO access network equipment is deployed.
  • the existing site In order to save the cost of building a site, you can consider deploying MIMO access network equipment on the existing site, and the existing site only considers the EMF strength requirements of the frequency point of the existing site, and the surrounding geographical environment has been It is determined that the distance between the existing site and the surrounding buildings may not meet the safety distance required by the MIMO access network equipment.
  • the safe distance of the existing site is 14m
  • the existing site has a school 15m in a certain direction
  • the safe distance of the MIMO access network equipment is 19.98m
  • the site where the MIMO access network equipment is deployed can be re-selected, which will result in excessive site construction costs and a long site construction period.
  • the power of MIMO access network equipment can be reduced according to the safety distance of the existing site.
  • the safety distance of the existing site is 14m
  • the ICNIRP guidelines require a power spectral density of 10w/m 2 , G Is 24dbi, Reduce the power of MIMO access network equipment to 98w. This will cause MIMO performance degradation.
  • the embodiments of the present application provide a solution for controlling EIRP.
  • the EIRP of each spatial grid can be controlled at the granularity of the spatial grid.
  • the EIRP threshold of the spatial grid enables the deployment of MIMO access network equipment to meet the EMF strength requirements of various countries/regions.
  • FIG. 3 is a method for controlling EIRP provided by the present application, which may be executed by the access network device 11 or a chip in the access network device 11. As shown in Figure 3:
  • n is an integer from 0 to N-1
  • N is the number of spatial grids
  • N is greater than or equal to 1.
  • the spatial grid X n may be understood as the concept of an angle domain, and the spatial grid X n may include one or more spatial directions.
  • a spatial direction can be determined by the horizontal plane angle and the vertical plane angle.
  • the horizontal plane angle of a spatial direction can be understood as the angle of the spatial direction on the horizontal plane
  • the vertical plane angle of a spatial direction can be understood as the angle of the spatial direction on the vertical plane.
  • the spatial grid X n may include multiple spatial directions within an angular range, and the angular range includes a horizontal plane angular range and a vertical angular range. It can be understood that a spatial grid X n can be determined by the horizontal plane angle range and the vertical plane angle range.
  • X n spatial grid of horizontal angle range can be understood as X n spatial grid in the angular range in the horizontal plane
  • the angle range of vertical spatial grid X n may be understood to be an angle range of spatial grid of X n in the vertical plane.
  • the horizontal plane angle range of the spatial grid X n is the minimum horizontal plane angle Maximum angle to horizontal plane
  • the vertical angle range of the space grid X n is the minimum angle of the vertical surface Maximum angle to vertical
  • the spatial grid X n can include the horizontal plane angle range to And the vertical angle range to All spatial directions within.
  • Figure 4 is a schematic diagram of a coordinate system.
  • the origin of the coordinate system can be the location of the antenna, such as the center point of the antenna, the bottom end of the antenna, or other positions of the antenna.
  • the coordinate system includes three coordinate axes, namely x-axis, y-axis and z Axis, where the plane formed by the x axis and the y axis can be called a horizontal plane, and the plane formed by the y axis and the z axis can be called a vertical plane.
  • the angle between the projection of a certain spatial direction on the horizontal plane and the x-axis can be called the horizontal plane angle
  • the angle between the projection of a certain spatial direction on the vertical plane and the z-axis can be called the vertical plane angle
  • Figure 4 is only an example. There are other ways to express the horizontal plane angle and the vertical plane angle. For example, the angle between the projection of a certain spatial direction on the horizontal plane and the y-axis can be called the horizontal plane angle, and a certain spatial direction is on the vertical plane. The angle between the projection of and the y-axis can be called the vertical angle. It can be understood that the coordinate system in Fig. 4 is also an example. There are other ways to express the coordinate system. The positions of the x-axis, y-axis and z-axis can be interchanged. , Y-axis and z-axis are the same or opposite.
  • a spatial direction pointed from the origin can be determined by a horizontal plane angle and a vertical plane angle.
  • the horizontal angle of space direction 1 is The vertical angle of space direction 1 is
  • the spatial direction 1 can be expressed as
  • the horizontal plane angle of space direction 2 is
  • the vertical angle of space direction 1 is
  • the spatial direction 2 can be expressed as
  • the spatial grid X n can include all spatial directions pointing to the curved surface, and all spatial directions pointing to the curved surface satisfy the horizontal plane angle range: to The vertical angle range is to
  • the spatial grid X n includes the spatial direction 1 And spatial direction 2
  • the spatial grid X n is projected into a spatial direction on the horizontal plane.
  • the spatial grid X n is projected into a spatial direction on the vertical plane.
  • the spatial grid X n is projected as a spatial direction on the horizontal plane and the head portrait is also a spatial direction on the vertical plane. It can be understood that the spatial grid X n is a spatial direction at this time, and the horizontal plane angle of the spatial direction is The vertical angle of the space direction is
  • the number of spatial grids may be one or more, that is, N may be 1 or an integer greater than 1.
  • a spatial grid X n may correspond to a safe distance EIRP R n and a threshold E n.
  • EIRP R n a safe distance
  • E n a threshold
  • the safety distance R n can be understood as the required distance between the antenna and the biological body on the spatial grid X n .
  • the safety distance R n may be the required distance between the antenna and the person, or, for example, on the spatial grid X n , the safety distance R n may be the antenna and the nearest building the distance between.
  • the safety distance R n can be determined by an operator or a regulatory agency, or the safety distance R n can be measured according to the actual geographical environment between the antenna and the person on the spatial grid X n , or the distance between the antenna and the nearest building The distance between.
  • the spatial grid safe distance X n R n may be perpendicular to the safe distance and horizontal spatial grid safety distance X n X n of the spatial grid to determine the horizontal spatial grid safety distance X n may be a spatial grid X n R n safe distance in the horizontal plane of projection, the vertical spatial grid safety distance may be X n X n spatial grid safety distance R n in the vertical plane of projection.
  • the safety distance of each spatial grid may be the same or different.
  • the spatial grid safe distance R i X i R j differs from the safe distance X j of the spatial grid, the spatial grid of X i E i EIRP threshold value different from the gate space
  • the EIRP threshold E j of the grid X j , i and j are integers from 0 to N-1, i is not equal to j.
  • safe distance spatial grid of R 1 X 1 is 4m
  • the spatial grid X EIRP threshold E 0 0 X is different from the spatial grid of EIRP threshold E 1 1 .
  • the relationship between the intensity S R n and EMF may also be below the threshold relationship.
  • E n 4 ⁇ *S 1 *R n 2 /(1+ ⁇ ) 2 /A sl ; or
  • a sl represents the sidelobe suppression value
  • represents the downtilt angle
  • ⁇ bw represents the vertical half-power wave width
  • represents the reflection coefficient
  • this method can flexibly control EIRP according to local requirements, ensure the deployment of the access network equipment 11, and provide communications for the public.
  • the EMF intensity threshold of each frequency point can be determined first, and then the EIRP under each frequency point can be controlled separately.
  • the spatial grid X n may include multiple spatial directions. There may be a safety distance in each spatial direction, and the safety distance in each spatial direction may be the same or different. For example, as shown in Figure 4, the safety distance in space direction 1 is
  • the safety distance in a space direction can be obtained from the horizontal safety distance in the space direction and the vertical safety distance in the space direction.
  • the horizontal safety distance in the space direction 1 is The vertical safety distance in space direction 1 is
  • the safety distance of the spatial grid X n may be a safety distance in one spatial direction among the multiple spatial directions.
  • the safety distance of the spatial grid X n may be the maximum safety distance among the safety distances in the plurality of spatial directions; or may be the minimum safety distance among the safety distances in the plurality of spatial directions; Or it may be the safety distance in any one of the multiple spatial directions.
  • the horizontal angle range of the spatial grid X n to The vertical angle range of the spatial grid X n is to The safety distance R n can be the horizontal plane angle
  • the vertical angle is Safety distance, for to A value in for to A value in.
  • the safe distance in this space direction is the largest; or, among the safe distances in the space grid X n , The safety distance in this spatial direction is the smallest; or, It can be any spatial direction of the spatial grid X n .
  • the plurality of spatial directions X n may be a spatial grid comprises all or part of the spatial direction
  • the safety distance in each spatial direction to obtain spatial grid of the safety distance X n
  • the safety distance of each of the multiple spatial directions may be calculated to obtain the safety distance of the spatial grid X n
  • the calculation may be an average or other calculation methods.
  • the safety distance of each space direction can be averaged to obtain the safety distance of the space grid X n .
  • the average in the embodiments of the present application may be arithmetic average, geometric average, square average, harmonic average, weighted average, and so on.
  • determining the spatial grid EIRP threshold value X n E n may include receiving a spatial grid EIRP threshold value X n E n, such as a grid EIRP threshold value X n from the network receiving space.
  • NMS may calculate the spatial grid EIRP threshold value X n E n, or the network may be obtained from X n spatial grid operator or regulator EIRP threshold value E n.
  • the processor 1111 may be a grid of X n EIRP threshold value E n received from the network space
  • memory 1112 can store the spatial grid EIRP threshold X n E n.
  • the processor 1111 may calculate the spatial grid EIRP threshold value X n E n X n or the processor 1111 may EIRP threshold value E n of the grid 1114 through a network interface receiving space, memory 1112 may store spatial grid of X n the EIRP threshold value E n, the horizontal angle range, and a vertical angle range safety distance R n and the like.
  • S302 controlling a plurality of beams in the total EIRP spatial grid of X n, such that the total EIRP less EIRP threshold E n.
  • the multiple beams may include beams covering different terminals, and the beams of each terminal may use the same or different time-frequency resources. For example, when the distance between two terminals is relatively long, the beams covering the two terminals may occupy the same When the distance between two terminals is relatively short, the beams covering the two terminals can occupy different time-frequency resources.
  • the total EIRP of multiple beams in the spatial grid X n can be understood as the EIRP of the spatial grid X n under the combined action of multiple beams, or can be understood as the combination or combination of multiple beams, the spatial grid X n EIRP of grid X n . That is, each beam contributes to the EIRP of the spatial grid X n , and according to the EIRP contribution of each beam to the spatial grid X n , the total EIRP of multiple beams on the spatial grid X n can be obtained.
  • the processor 1111 may control the plurality of beams in the total spatial grid EIRP X n is less than or equal EIRP threshold E n.
  • a plurality of beams in the total spatial grid EIRP X n may be in a plurality of spatial grid beams X n total mapping of power and / or spatial grid antenna gain determination X n.
  • a plurality of beams of the following spatial grid of X n total mapping spatial grid power and antenna gain X n will be described.
  • the power obtained by mapping the power of the beam to the spatial grid X n may be referred to as the mapped power of the beam on the spatial grid X n .
  • each beam can be acquired power mapping spatial grid of X n, and obtain the plurality of beams in the total mapping spatial grid in the map X n X n spatial grid power according to each beam power.
  • the mapped power of each beam on the spatial grid X n can be summed to obtain the total mapped power of multiple beams on the spatial grid X n .
  • multiple beams may have a total mapping power in each spatial direction of the spatial grid X n , and multiple beams may be located in each space of the spatial grid X n .
  • the total mapping power in the direction can be the same or different.
  • a plurality of beams in the total mapping spatial grid power X n may be the total power in a spatial mapping spatial grid direction X n of a plurality of beams.
  • a plurality of beams in the total mapping spatial grid power X n may be a plurality of power of the beam are mapped to respective spatial directions X n of the spatial grid (each spatial direction X n may be included in the spatial grid or all Part of the spatial direction), the maximum total mapping power among the multiple total mapping powers is obtained; or it may be the multiple total mapping powers obtained after the powers of multiple beams are respectively mapped to each spatial direction of the spatial grid X n Or it can be the total mapping power of multiple beams in any spatial direction of the spatial grid X n .
  • the total mapping power of the multiple beams on the spatial grid X n may be that the angle of the multiple beams on the horizontal plane is And the vertical angle is Total mapped power, for to A value in for to A value in.
  • the total mapping power in this spatial direction is the largest; or, among the total mapping powers of multiple beams in each spatial direction of the spatial grid X n , The total mapping power in this spatial direction is the smallest; or, It can be any spatial direction of the spatial grid X n .
  • a plurality of beams can be mapped in the total power of each spatial grid spatial direction X n in accordance with a plurality of beams in the total mapping spatial grid power X n, for example, a plurality of spatial grid beams X n in accordance with
  • the total mapping power of each spatial direction in the multiple spatial directions obtains the total mapping power of the multiple beams on the spatial grid X n , for example, by averaging or other calculation methods.
  • the multiple beams on the spatial grid X can be calculated For the total mapping power in each spatial direction of n , multiple total mapping powers in multiple spatial directions are obtained, and then the multiple total mapping powers are averaged to obtain the total mapping power of the spatial grid X n .
  • the antenna gain of the spatial grid X n can be determined.
  • the antenna structure for transmitting multiple beams may include the number of antenna arrays, the number of antenna elements in each antenna array, the arrangement of antenna elements in each antenna array, the distance between antenna elements, and other methods. One or more of. After some antennas leave the factory, the antenna structure for transmitting multiple beams has been determined, and for some antennas, after leaving the factory, the structure of the antenna for transmitting multiple beams can still be flexibly adjusted, and the structure of the antenna for transmitting multiple beams can be determined, and then Determine the antenna gain in each spatial direction.
  • the spatial grid X n may include a plurality of spatial directions, there may be a plurality of beams in the antenna gain of each spatial grid spatial direction X n, a plurality of beams in the spatial grid of the respective spatial directions X n
  • the antenna gains can be the same or different.
  • a plurality of beams in the spatial grid of X n may be an antenna gain of the antenna gain in a spatial direction X n of the spatial grid of the plurality of beams.
  • a plurality of beams in the X n spatial grid antenna gain may be a plurality of beams in respective spatial directions (respective spatial directions X n may be a spatial grid comprises all or part of the spatial direction) the maximum antenna gain of the antenna Gain; or it may be the smallest antenna gain among the antenna gains of multiple beams in each spatial direction; or it may be the antenna gain of multiple beams in any spatial direction of the spatial grid X n .
  • the antenna gain of the multiple beams on the spatial grid X n may be that the angle of the multiple beams on the horizontal plane is And the vertical angle is Antenna gain, for to A value in for to A value in.
  • the antenna gain in this spatial direction is the largest; or, among the multiple antenna gains of multiple beams in multiple spatial directions of the spatial grid X n , The antenna gain in this spatial direction is the smallest; or, It can be any spatial direction of the spatial grid X n .
  • a plurality of beams can be obtained according to the multiple-beam antenna gain in respective spatial directions X n of the spatial grid in the antenna gain of the spatial grid X n, for example, a plurality of beams in the spatial grid of X n
  • the antenna gains of each of the multiple spatial directions in each spatial direction obtain the antenna gains of the multiple beams on the spatial grid X n , for example, by averaging, weighting, or other calculation methods.
  • the multiple beams on the spatial grid X can be calculated.
  • For the antenna gains in each spatial direction of n multiple antenna gains in multiple spatial directions are obtained, and then the multiple antenna gains are averaged to obtain the antenna gain of the spatial grid X n .
  • the first implementation is a first implementation:
  • the X n can be determined spatial grid G n-gain antenna, controlling the plurality of beams in the total mapping spatial grid power equal to the power X n is smaller than the threshold value P n, P n and E n is G n obtained, for example,
  • the antenna gain in each spatial direction can be determined.
  • X n be the grid threshold value E n EIRP and antenna gain G n according to obtain the spatial spatial grid of the power threshold value X n P n, e.g., By controlling the total mapping power of multiple beams on the spatial grid X n so that the total mapping power on the spatial grid X n is less than or equal to the power threshold P n , the total EIRP of the multiple beams on the spatial grid X n can be less than or equal to EIRP threshold value E n.
  • a plurality of spatial grid beams X n may be the total power of the plurality of mapping spatial grid beams X n mapping of instantaneous total power or average power total mapping, following these two examples were described.
  • the instantaneous total mapping power of multiple beams on the spatial grid X n can be controlled to be less than or equal to the power threshold P n .
  • a plurality of beams in the spatial grid instantaneous total power of X n mapping a plurality of beams may be mapped instantaneous total power in a spatial direction X n of the spatial grid, for example, may be The instantaneous total mapped power at, or the instantaneous total mapped power of multiple beams in the spatial grid X n can be obtained according to the instantaneous total mapped power of multiple beams in various spatial directions.
  • the above multiple beams in spatial Related content of the total mapped power of the grid X n please refer to the above multiple beams in spatial Related content of the total mapped power of the grid X n .
  • the intensity threshold ensures that the radiation of the access network equipment 11 is controlled within a certain range at any time, avoiding harm to living organisms, so that the deployment of the access network equipment 11 meets local requirements.
  • the average total mapping power of multiple beams on the spatial grid X n in the T time period can be controlled so that the average total mapping power of the spatial grid X n is less than or equal to the power threshold P n .
  • the length of the T period may be 6 minutes.
  • the plurality of beams in the period T the average total mapping spatial grid power X n may be the period of time T a plurality of beams in the average power of a total mapping spatial direction X n of the spatial grid, for example the
  • the spatial direction can be Average total mapped power at, for to A value in for to A value in.
  • a plurality of beams in the average power of an instantaneous total mapping spatial grid mapped X n of the average total power of the plurality of beams in the spatial grid of X n is the average period of the plurality of beams in the spatial grid of X n mapping of instantaneous total power.
  • the instantaneous total mapped power of multiple beams on the spatial grid X n can be obtained according to the instantaneous total mapped power of multiple beams in each spatial direction.
  • the instantaneous total mapped power of multiple beams on the spatial grid X n can be The instantaneous total mapped power.
  • the number of sampling time points may be determined according to the capabilities of the access network device 11, which is not limited in the embodiment of the present application.
  • MIMO beams have the characteristics of time.
  • the spatial direction of the beam at a certain moment can be determined by the location of the terminal.
  • the directions of multiple beams may be different, so the total mapping power of a spatial grid may change over time It is changed, by taking the average total mapping spatial grid of the power of X n, can more accurately estimate the power in the spatial grid X n.
  • the non-ionizing radiation in the EMF may have an impact on the organism over a period of time.
  • the ICNIRP guidelines judge the average EMF intensity within 6 minutes to measure whether the deployment of the access network device 11 meets the requirements.
  • P n the power threshold
  • the instantaneous total mapping power of multiple beams on the spatial grid X n at a certain moment may be greater than or equal to the power threshold P n , and at another moment the instantaneous total mapping power of multiple beams on the spatial grid X n
  • the power may be less than or equal to the power threshold P n , so that the average total mapped power of the multiple beams on the spatial grid X n is less than or equal to the power threshold P n .
  • the T time period includes time t1 and time t2, where, at time t1, the instantaneous total mapped power of multiple beams on the spatial grid X n is greater than the power threshold P n , and at time t2, the multiple beams are on the spatial grid X The instantaneous total mapped power of n is less than or equal to the power threshold P n .
  • the access network device 11 may use T as a time sliding window, and predict the unknown next time based on the power threshold P n and the instantaneous total mapped power of the spatial grid X n at several known moments in the T time period. space time power grid instantaneous total mapping of X n, then control the instantaneous total power of the unknown spatial grid map X n of less than the predicted value of the next time, to achieve an average total mapping spatial grid power equal to the power X n is smaller than the threshold value The purpose of P n .
  • the instantaneous total mapped power of multiple beams on the spatial grid X n can be greater than the power threshold, which can improve the access network equipment 11
  • the performance at some moments in general, can not only enable the deployment of the access network equipment 11 to meet local requirements without causing radiation risks to living organisms, but also maintain the performance of the access network equipment 11 and improve user experience.
  • the embodiments of the present application provide the following exemplary methods.
  • the power of at least one beam in the multiple beams can be controlled to be less than the beam power threshold, so that the contribution value of the mapping power of the at least one beam on the spatial grid X n is reduced, so that the total spatial grid X n
  • the mapped power is less than or equal to the power threshold P n .
  • the at least one beam may be a beam whose mapping power on the spatial grid X n is greater than a mapping power threshold among multiple beams.
  • the mapping power of the spatial grid X n is greater than the mapping power threshold may be the instantaneous mapping power of the spatial grid X n (for example, a certain moment in the above T time period), or it may be the spatial grid X n
  • the average mapping power (for example, it may be the average mapping power of the spatial grid X n in the aforementioned T time period).
  • mapping spatial grid power contribution values By reducing the maximum beam power to X n mapping spatial grid power contribution values, can effectively reduce the total mapping spatial grid power X n, so that the total mapping spatial grid power equal to the power X n is smaller than the threshold value P n .
  • the at least one beam may include a data channel beam.
  • the performance of terminal access can be guaranteed.
  • the at least one beam may include a data channel beam and a broadcast channel beam.
  • spatial grid X n antenna gain by controlling the spatial grid X n antenna gain, spatial grid such that the total does not exceed EIRP X n E n.
  • the antenna gain of multiple beams at X n can be adjusted by controlling the structure of the antenna emitting multiple beams.
  • the structure of the multiple beam antenna may include the number of antenna arrays, One or more of the number of antenna elements in each antenna array, the arrangement of antenna elements in each antenna array, and the distance between the antenna elements.
  • the access network device 11 may transmit multiple beams, for example, multiple beams may be transmitted according to the power that the hardware can support transmission, and the structure of the antenna that transmits multiple beams may be controlled so that the EIRP of the spatial grid X n does not exceed E n .
  • the processor 1111 of the access network device 11 may instruct the antenna 1115 to change the antenna structure, thereby adjusting the antenna gains of multiple beams at X n .
  • the total mapping may control the power and antenna gain spatial grid X n at the same time, when the result of the total power and antenna gain map function both spatial grid of X n, X n can satisfy the spatial grid the total EIRP can not exceed E n, and the size of the antenna gain of the present application is not limited spatial grid according to X n of the total size of the mapping embodiment of the power, or the total power and antenna gain scale map X n of the spatial grid.
  • the total mapping power and antenna gain of the control grid X n reference may be made to the content in the first implementation manner and the second implementation manner.
  • the total EIRP spatial grid is less than or equal to the X n E n, since the electric field intensity of the total X n X n EIRP spatial grid and the spatial grid having a relationship proportional e.g., may cause the spatial grid X The electric field strength of n meets the local EMF requirements.
  • step S302 may be executed by the processor 1111 in the access network device 11, and the memory 1112 may store data that the processor 1111 performs during the execution of S302, such as instantaneous total mapping power or average total mapping power.
  • the method in FIG. 3 may further include: transmitting the multiple beams.
  • it may be executed by the transceiver 1113 and/or the antenna 1115 in the access network device 11.
  • Fig. 5 is a schematic diagram of a method for determining a spatial grid. The following describes how to determine a spatial grid with reference to Fig. 5. The method of Fig. 5 can be executed by the access network device 11 or the chip in the access network device 11. .
  • n is an integer from 0 to N-1
  • N is the number of spatial grids
  • N is greater than or equal to 1.
  • the angle range here may include a horizontal plane angle range and/or a vertical plane angle range.
  • the access network device 11 may divide the spatial direction included in a horizontal plane angle range and a vertical plane angle range into N spatial grids, and the horizontal plane angle range may be 0 to 360 degrees, or may be 0 to 360 degrees. A part of the horizontal plane angle range in degrees; the vertical plane angle range may be 0 to 360 degrees, or may be a part of the vertical plane angle range from 0 to 360 degrees.
  • the horizontal plane angle range may be 0 to 360 degrees
  • the vertical plane angle range may be 0 to 360 degrees
  • the horizontal plane angle range and the vertical plane angle range may be the horizontal plane angle range and the vertical plane angle range of the spatial direction to be controlled by the EMF intensity.
  • the first example is a first example:
  • the antenna gain in each spatial direction can be simulated.
  • the access network device 11 may determine that the spatial direction in which the antenna gain satisfies the condition needs to control the EMF intensity.
  • the condition may be that the antenna gain exceeds a threshold.
  • the EMF intensity at the safe distance required by the operator in the spatial direction may be higher when the power is not controlled, and when the antenna gain of a horizontal plane angle and a vertical plane angle does not exceed this
  • the threshold is set, even when the power in the spatial direction corresponding to the horizontal plane angle and the vertical plane angle is not controlled, for example, according to the ideal power, such as 200w, the EMF intensity at the safe distance required by the operator in this spatial direction will not exceed the EMF Intensity threshold.
  • the angle range of the spatial grid can be reduced, and the complexity of the algorithm is saved.
  • antenna gain in each spatial direction can be represented by numerical values, tables, or graphs, and the content of FIG. 6a does not constitute a limitation.
  • Fig. 6a is a schematic diagram of horizontal plane antenna gain and vertical plane antenna gain.
  • the schematic diagram on the left in Fig. 6a can represent the antenna gain on the horizontal plane, and the schematic diagram on the right in Fig. 6a can represent the antenna gain on the vertical plane.
  • the angle coordinates represent the horizontal plane angle, for example, 0 degrees, 30 degrees or 60 degrees, etc.; concentric circles represent the difference with the maximum antenna gain, for example, the maximum antenna gain is 24dbi, from inside to
  • the outer concentric circles respectively represent 30dB less than the maximum antenna gain, 20dB less than the maximum antenna gain, 10dB less than the maximum antenna gain, and equal to the maximum antenna gain. That is, the concentric circles from the inside to the outside indicate the antenna gain -6dBi, 4dBi, 14dBi and 24dBi.
  • the thick black line represents the envelope of the antenna gain in the horizontal plane.
  • Each point on the solid line corresponds to a horizontal plane angle and antenna gain.
  • the antenna gain with a horizontal plane angle of 90 degrees is 24dbi.
  • the angle coordinates represent the vertical angle, for example, 0 degrees, 30 degrees or 60 degrees, etc.
  • the concentric circles represent the difference with the maximum antenna gain.
  • the maximum antenna gain is 24dbi.
  • the concentric circles to the outside represent respectively 30dB less than the maximum antenna gain, 20dB less than the maximum antenna gain, 10dB less than the maximum antenna gain and equal to the maximum antenna gain, that is, the concentric circles from the inside to the outside indicate the antenna gain -6dBi, 4dBi respectively , 14dBi and 24dBi.
  • the thick black line represents the envelope of the antenna gain on the vertical plane.
  • Each point on the solid line corresponds to the angle and antenna gain of a vertical plane.
  • the antenna gain with a vertical plane angle of 90 degrees is 24dbi.
  • the antenna gain will reach a threshold, such as 24dbi, within a horizontal plane angle range and a vertical plane angle range.
  • a threshold such as 24dbi
  • the access network device 11 can determine that the horizontal plane angle range is 35 degrees to 155 degrees, and the vertical plane angle range is 75 degrees to 205 degrees in the spatial direction antenna gain is close to 24dbi, then the horizontal plane angle range is 35 degrees to 155 degrees, and The vertical angle range is 75 degrees to 205 degrees, which are the horizontal and vertical angle ranges of the spatial direction that the EMF intensity needs to be controlled.
  • the horizontal angle range and vertical angle range of the spatial direction that the EIRP intensity needs to be controlled can be obtained according to the geographic environment of the access network device 11, for example, the access network device 11 can receive the horizontal angle range of the spatial direction that the EIRP intensity needs to be controlled from the operator And the vertical angle range.
  • the probability of organisms appearing is small, even if organisms appear, such as airplanes, the distance between the organisms and the antenna is far, and the EIRP of the position of the organisms The strength is safe.
  • the horizontal angle range and the vertical angle range of the spatial direction to be controlled by the EIRP intensity can be calculated.
  • first example and the second example can be combined to determine the horizontal plane angle range and the vertical plane angle range of the spatial direction that the EIRP intensity needs to be controlled.
  • the horizontal angle range and vertical angle range of the spatial direction that the EIRP intensity needs to be controlled determined in the first example and the horizontal angle range and vertical angle range of the spatial direction that the EIRP intensity needs to be controlled in the second example can be used. Take the intersection or union of the two.
  • S501 may be executed by the processor 1111 in the access network device 11.
  • the access network device 11 may divide the spatial grid.
  • N may be 1, or an integer greater than 1.
  • multiple spatial directions included in one spatial grid do not overlap with multiple spatial directions included in another spatial grid, that is, one spatial grid Any one of the multiple spatial directions included in the grid may be different from the multiple spatial directions included in another spatial grid.
  • a spatial direction can be uniquely divided into a spatial grid, which facilitates the control of the EIRP of the spatial grid.
  • the spatial grid when dividing the spatial grid, it may be divided in a uniform manner or an uneven manner.
  • the uniform method can be understood as the length of the horizontal plane angle range of each space grid is equal and the length of the vertical plane angle range is equal.
  • the horizontal angle range of the spatial grid X x is to The vertical angle range is to The horizontal angle range of the spatial grid X y is to The vertical angle range is to And x is an integer from 0 to N-1, y is an integer from 0 to N-1, and x is not equal to y.
  • Figure 6b is a schematic diagram of a uniformly divided grid.
  • Fig. 6b illustrates that the horizontal plane angle range is 35 degrees to 155 degrees, and the vertical plane angle range is 75 degrees to 205 degrees.
  • the length of the horizontal plane angle range of each space grid is 20 dB, and the length of the vertical plane angle range is 10 dB.
  • the uniform division method can be determined by determining the length of the horizontal plane angle range and the length of the vertical plane angle range of the space grid, so that the division of the space grid can be completed relatively simply.
  • the non-uniform method can be understood as the unequal length of the horizontal plane angle range or the unequal length of the vertical plane angle range of each spatial grid.
  • the horizontal angle range of the spatial grid X x is to The vertical angle range is to The horizontal angle range of the spatial grid X y is to The vertical angle range is to or x is an integer from 0 to N-1, y is an integer from 0 to N-1, and x is not equal to y.
  • the difference between the antenna gains in the two spatial directions on the spatial grid can be made less than or equal to the difference threshold, as follows Be explained.
  • the antenna gains in each spatial direction can be determined.
  • the antenna gains of multiple spatial directions on the spatial grid X n may satisfy certain conditions, for example, the difference between the antenna gains of any two spatial directions on the spatial grid may be less than or equal to the difference threshold.
  • the spatial direction 1 The antenna gain is Space direction 2
  • the antenna gain is versus The difference between is less than or equal to the difference threshold, where with Are both to A value in with Are both to A value in not equal to or not equal to
  • the difference threshold is 3dB.
  • the antenna gains of all spatial directions on the spatial grid can be made close, which facilitates the control of multiple beams in the spatial grid.
  • the total mapped power thus controls the EIRP of multiple beams on the spatial grid.
  • the non-uniform approach can be considered such that the difference between the antenna gains in any two spatial directions on the spatial grid is less than or equal to the difference threshold, so that the performance of the EIRP for controlling the spatial grid can be guaranteed to make
  • the number of spatial grids is as small as possible to reduce the complexity of the algorithm.
  • S501 may be executed by the processor 1111 in the access network device 11, and the memory 1112 may store the horizontal angle range and the vertical angle range of the N spatial grids.
  • Fig. 5 is only an example.
  • the access network device 11 may not first determine the angle range, and then divide the angle range into several grids.
  • the access network device 11 may directly determine several grids.
  • the spatial grid for example, the access network equipment 11 obtains one or more spatial directions that need to be controlled by the EIRP intensity from the operator or regulatory agency, and takes a horizontal plane angle range and a vertical plane angle range near one spatial direction to determine Several spatial grids.
  • FIG. 7a is a schematic diagram of a method for determining the EIRP threshold of a spatial grid, and its content can be cross-referenced with the content in S301. As shown in Figure 7a:
  • the access network device 11 determines the safety distance of the spatial grid.
  • the safety distance of the spatial grid can refer to the relevant content in S301.
  • the access network device 11 may receive the safe distance of the spatial grid from the operator.
  • the safety distance of each spatial grid can be received, and the safety distance of each spatial grid can be the same or different; or, only one safety distance can be received, and each spatial grid needs to meet this requirement.
  • the requirements of the safety distance for example, the operator can select a minimum safety distance among the safety distances of each spatial grid and send it to the access network device 11.
  • the processor 1111 receives the safety distance of the spatial grid through the network interface 1114.
  • the access network device 11 may receive the distribution of the space grid buildings from the operator to determine the safe distance of the space grid. For example, the operator may first determine the location of the space grid buildings For example, the latitude and longitude of the building, or the location of the building using the spatial coordinate system, the operator can send the location of the building on the spatial grid to the access network device 11, and then the access network device 11 can use the spatial grid The location of the building calculates the safety distance of the spatial grid.
  • the processor 1111 receives the distribution of the buildings of the spatial grid through the network interface 1114, and then the processor 1111 may calculate the safety distance of the spatial grid according to the location of the buildings of the spatial grid.
  • the access network device 11 can obtain the horizontal safety distance and the vertical safety distance of the space grid from the operator, and then obtain the space according to the horizontal safety distance and the vertical safety distance of the space grid. The safety distance of the grid.
  • the horizontal safety distance may be the projection of the safety distance of the space grid on the horizontal plane
  • the vertical safety distance may be the projection of the safety distance of the space grid on the vertical plane
  • the operator may determine that the horizontal safety distance is A and the vertical safety distance is B.
  • Each spatial grid needs to meet the EMF strength restriction of the horizontal safety distance A and the vertical safety distance B.
  • Figure 7b is a schematic diagram of a horizontal safety distance and a vertical safety distance.
  • Figure 7b takes the bottom end of the antenna as the origin of the coordinate system.
  • draw a cylinder through A and B The radius of the cylinder is A and the height is C+B, where C is the height of the antenna.
  • the distance between the cylindrical surface on the space grid and the bottom end of the antenna is the safe distance of the space grid.
  • the horizontal angle range of the spatial grid X n is to The vertical angle range of the spatial grid X n is to The safety distance of the spatial grid X n is R n can be the horizontal plane angle And the vertical angle is Safety distance, for to A value in for to A value in.
  • R n is The distance between the intersection with the cylinder and the bottom of the antenna.
  • the distance between the cylindrical surface and the bottom end of the antenna on each space grid can be determined separately.
  • the access network device 11 determines the equivalent isotropic radiation power EIRP threshold of the space grid.
  • the processor 1111 may perform calculation according to the above formula 5.
  • the access network device 11 may directly obtain the equivalent isotropic radiated power EIRP threshold value of the space grid from the operator, or obtain the equivalent isotropic radiated power EIRP threshold of the space grid.
  • the threshold value is not limited in the embodiment of the present application.
  • the spatial grid is determined, for example, after S502, it can be determined whether EIRP control is required on the spatial grid.
  • EIRP control is required on the spatial grid
  • the spatial grid is controlled.
  • EIRP control may not be performed, so that the access network device 11 can transmit beams according to the ideal power and ideal antenna gain, and the performance of the access network device 11 can be guaranteed.
  • Fig. 8 is a schematic diagram of determining whether the spatial grid needs EIRP control. It should be noted that the solution in Fig. 8 is optional, and the access network device 11 may not perform the judgment in Fig. 8 and directly control the spatial grid. Perform EIRP control.
  • S801 Calculate the ideal safety distance of the space grid according to the ideal power and the ideal antenna gain.
  • the ideal power here can be understood as the maximum power that can be transmitted when the access network device 11 does not control the power; or can be understood as the transmission power supported by the hardware of the access network device 11; or it can be understood as if the EMF strength does not need to be considered, The transmission power that the access network device 11 expects to use.
  • the ideal antenna gain can be understood as the maximum antenna gain that the antenna can support when the access network device 11 does not control the antenna gain, or can be understood as the antenna gain supported by the hardware of the access network device 11; or it can be understood as if it does not need to be considered EMF strength, the antenna gain that the access network device 11 expects to use.
  • the ideal power of the access network device 11 is 200 W
  • the ideal antenna gain of the access network device 11 is the antenna gain of a certain antenna structure.
  • the ideal safety distance of the spatial grid may be the distance from the antenna in the spatial direction corresponding to the spatial grid.
  • the processor 1111 may execute S801.
  • the actual safety distance of the space grid can be understood as the safety distance to be met on the space grid due to the requirements of operators and/or regulatory agencies.
  • the actual safety distance of the space grid can refer to the relevant content in S301 and S701. It should be noted that, in order to distinguish it from the ideal safety distance of the space grid, the actual safety distance of the space grid is used for description here.
  • the access network device 11 can compare the size between the ideal safety distance of the space grid and the actual safety distance. When the ideal safety distance of the space grid is less than or equal to the actual safety distance of the space grid, it means that the access network device 11 is in accordance with the ideal safety distance. When transmitting beams with power and ideal antenna gain, the EMF intensity at the actual safe distance on the space grid will not exceed the EMF intensity threshold. At this time, there is no need to limit the EIRP on the space grid; when the ideal safety distance of the space grid is greater than The actual safe distance of the space grid means that when the access network device 11 transmits beams according to the ideal power and ideal antenna gain, the EMF intensity at the actual safe distance on the space grid will exceed the EMF intensity threshold. EIRP on the restrictions.
  • the access network device 11 can compare the ideal safety distance and the actual safety distance on the spatial grid.
  • the access network device 11 can obtain the ideal horizontal safety distance of the space grid X n and the ideal vertical safety distance of the space grid according to the ideal safety distance on the space grid, and then compare the ideal level of the space grid The safety distance and the actual horizontal safety distance of the space grid, and compare the ideal vertical safety distance of the space grid and the actual vertical safety distance of the space grid, when the ideal horizontal safety distance of the space grid X n is greater than the actual level of the space grid Safety distance, and when the ideal vertical safety distance of the space grid is greater than the actual vertical safety distance of the space grid, the EIRP of the space grid is controlled.
  • the access network device 11 may not be sure of the actual safety distance of the space grid, and can first set the ideal level of the space grid The safety distance is compared with the actual horizontal safety distance of the space grid, and the ideal vertical safety distance of the space grid is compared with the actual vertical safety distance of the space grid.
  • the space grid needs to be controlled, the space is determined according to S701 The actual safety distance of the grid.
  • the access network device 11 can determine whether the ideal safety distance on the space grid falls outside the cylinder, for example, it can compare whether the ideal safety distance on the space grid is greater than the surface of the cylinder on the space grid. The distance from the bottom of the antenna or whether the horizontal safety distance on the space grid is greater than A, and whether the vertical safety distance on the space grid is greater than B can be compared.
  • Figure 9 is a schematic diagram of an ideal safety distance.
  • the horizontal axis represents the horizontal safety distance
  • the vertical axis represents the vertical safety distance
  • the starting point of the horizontal axis is the horizontal position of the antenna
  • the starting point of the vertical axis It is the position of the roof.
  • each point can represent a spatial direction (for example, the horizontal plane angle of each spatial direction is 90 degrees, and the vertical plane angle of each spatial direction is different), and each spatial direction corresponds to A horizontal ideal safety distance and a vertical ideal safety distance.
  • the actual vertical safety distance is 3.7m (because the distance between the roof and the antenna is 3.7m)
  • the horizontal plane angle is 90 degrees and the vertical plane angle is 11 degrees, to the horizontal plane angle
  • the ideal vertical safety distance in the spatial direction of 90 degrees and the vertical plane angle of 24 degrees exceeds 3.7m. For example, in a place where the horizontal plane angle is 90 degrees and the vertical plane angle is 18 degrees, the ideal vertical safety distance reaches 4.7m.
  • S802 may be executed by the processor 1111.
  • Fig. 10 is a schematic diagram of multiple beams.
  • RBGs in a time-frequency domain resource
  • M r beams on RBG r for example, M r terminals can be covered respectively, which can be called M r streams
  • r is an integer from 0 to R-1
  • the number of beams on each RBG may be different, that is, the two numbers of M 0 , M 1 , M 2 ,...M r can be the same or different.
  • FIG. 11 is a schematic diagram of the mapped power of the beam m on the spatial grid X n , and the beam m is one of the above-mentioned multiple beams.
  • the projection of W dm on W n can be expressed as
  • the mapped power of beam m on the spatial grid X n can be expressed as Among them, W dm is the weight of beam m, W dm is the vector of K*1, Is the transposition of W dm , W n is the weight of the spatial grid X n , and W n is the vector of K*1.
  • the mapped power of each beam of the multiple beams on the spatial grid X n can be obtained separately, and then the total mapped power of the multiple beams on the spatial grid X n is obtained according to the mapped power of each beam on the spatial grid X n .
  • each beam in the X n mapping spatial grid power obtained by summing a plurality of beams of power in the total mapping spatial grid of X n, to be noted that, according to how each beam in the spatial grid of X n
  • the mapping power obtains the mapping power of multiple beams on the spatial grid X n .
  • weighted summation which is not limited in the embodiment of the present application.
  • the total mapped power of multiple beams on the spatial grid X n can be expressed by the following formula:
  • P n is the total mapped power of multiple beams in the spatial grid X n
  • W dm is the weight of beam m
  • W dm is the vector of K*1
  • m is an integer from 0 to M-1
  • M is the number of RBG beams
  • R is the number of RBGs
  • W n is the weight of the spatial grid X n
  • W n is K *1 vector.
  • normalization can be performed on the basis of the above formula 7 to obtain the following formula:
  • the beam of MIMO is different from the traditional beam.
  • the traditional technology forms a wider beam in space, with more concentrated energy, and the power in each spatial direction is the same.
  • the power in each spatial direction can be the maximum power, and through MIMO Technology, can form several slender beams in space at the same time, the energy is not concentrated, the power of each beam cannot reach the maximum power, for example, M*N beams can equally divide the maximum power; in addition, the direction of multiple beams different spatial directions and the maximum power of each beam there is a certain angle between the raster X n, the power of each beam in the spatial grid map X n may be less than the maximum power of each beam, resulting in a plurality of beams The mapping power of the spatial grid X n cannot reach the maximum power of the access network device 11. Taking into account the characteristics of the MIMO beam, a plurality of beams seek power spatial grid mapping X n can be more objectively estimated spatial grid power map of X n.
  • FIG. 12 is a schematic diagram of a communication device 1200, as shown in FIG. 12:
  • the communication device 1200 includes a processing unit 1201 and a communication unit 1202.
  • the communication device 1200 further includes a storage unit 1203.
  • the processing unit 1201, the communication unit 1202, and the storage unit 1203 are connected through a communication bus.
  • the processing unit 1201 may be a unit with processing functions for controlling the communication device 1200 to perform a method or action, and the processing unit 1201 may include one or more processors.
  • the storage unit 1203 may be a unit with a storage function.
  • the storage unit 1203 may include one or more memories, and the memories may be devices for storing programs or data in one or more devices or circuits.
  • the storage unit 1203 may exist independently and is connected to the processing unit 1201 through a communication bus.
  • the storage unit may also be integrated with the processing unit 1201.
  • the communication unit 1202 may be a unit with a transceiving function for communicating with other communication devices.
  • the communication apparatus 1200 may be used in communication equipment, circuits, hardware components, or chips.
  • the communication apparatus 1200 may be an access network device in the embodiment of the present application, for example, the access network device 11.
  • the schematic diagram of the access network device 11 may be as shown in FIG. 2.
  • the communication unit 1202 of the apparatus 1200 may include an antenna and a transceiver, for example, the antenna 1115 and the transceiver 1113 in FIG. 2.
  • the communication unit 1202 of the apparatus 1200 may include a network interface, such as the network interface 1112 in FIG. 2.
  • the communication apparatus 1200 may be a chip in the access network device in the embodiment of the present application, for example, a chip in the access network device 11.
  • the communication unit 1202 may be an input or output interface, pin or circuit, or the like.
  • the storage unit may store a computer execution instruction of the method on the access network device side, so that the processing unit 1201 executes the method for the access network device 11 in the foregoing embodiment.
  • the storage unit 1203 can be a register, a cache or RAM, etc.
  • the storage unit 1203 can be integrated with the processing unit 1201; the storage unit 1203 can be a ROM or other types of static storage devices that can store static information and instructions.
  • the storage unit 1203 can be integrated with The processing unit 1001 is independent.
  • the transceiver may be integrated on the communication device 1200, for example, the communication unit 1202 integrates the transceiver 1212.
  • the communication apparatus 1200 can be an access network device or a chip in an access network device in the implementation of this application, the communication device 1200 can execute a method executed by the access network device, for example, a method executed by the access network device 11.
  • the processing unit 1201 may perform calculation, determination, and acquisition related actions in the method executed by the access network device 11, and the storage unit 1203 may execute the storage of data and/or instructions in the method executed by the access network device 11.
  • the communication unit 1202 may execute the aforementioned methods executed by the access network device 11 to send and/or receive data, interact with other communication devices, and interact with other units in the access network device 11, and so on.
  • processing unit 1201 may determine the spatial grid EIRP threshold value X n E n, controlling the plurality of beams in the spatial grid of the total EIRP X n, such that the total EIRP less EIRP threshold E n.
  • the communication unit 1202 transmits multiple beams.
  • the communication unit 1202 may instruct the transceiver and/or antenna to transmit Multiple beams, for example, the communication unit 1202 may send data of multiple beams to the transceiver and/or antenna, and the transceiver and/or antenna transmits multiple beams according to the data of the multiple beams.
  • processing unit 1201 may determine spatial grid safe distance X n R n, X n of the spatial grid to determine the threshold EIRP distance E n R n X n in accordance with the security of the spatial grid.
  • the processing unit 1201 may determine the horizontal plane angle range and the vertical plane angle range of the spatial grid X n .
  • the processing unit 1201 may divide one or more spatial grids.
  • processing unit 1201 may control power of a plurality of beams in total mapping spatial grid of X n, and / or X n spatial grid antenna gain, such that the total EIRP spatial grid to X n EIRP does not exceed the threshold value E n.
  • the processing unit 1201 may obtain the total mapped power of multiple beams in the spatial grid X n .
  • the processing unit 1201 may control the power of at least one beam in the multiple beams, for example, control the power of at least one beam in a manner such as controlling the weight of the at least one beam.
  • the processing unit 1201 may also control the antenna gain of the spatial grid X n .
  • the processing unit 1201 may control the antenna structure.
  • the processing unit 1201 may instruct the antenna adjustment structure to achieve the purpose of controlling the antenna gain of the spatial grid X n . .
  • the processing unit 1201, the communication unit 1202, and the storage unit 1203 may perform other actions in the foregoing method for accessing the network device 11, and reference may be made to the foregoing method for details.
  • FIG. 13 is a schematic diagram of another communication device 1300 provided by an embodiment of this application. As shown in FIG. 13, the communication device 1300 may include a determination unit 1301 and a control unit 1302.
  • E n EIRP threshold determination unit 1301 for determining a spatial grid of X n, wherein, the threshold EIRP E n X n spatial grid associated with the safe distance R n, n is an integer of 0 to take over N-1, N is the The number of spatial grids, N is a positive integer greater than or equal to 1.
  • a control unit 1302 for controlling the plurality of beams in the spatial grid of the total EIRP X n, such that the total EIRP EIRP less than or equal to the threshold value E n.
  • control unit 1302 is further configured to control the plurality of beams by the total power of the spatial grid mapping of X n, such that the total spatial grid of X n EIRP EIRP does not exceed the threshold value E n.
  • the determining unit 1301 may be used to determine the antenna gain G n of X n ; the control unit 1302 may be used to control the total mapping power of multiple beams on the spatial grid X n to be less than or equal to the power threshold P n , E n is a P n and G n obtained.
  • control unit 1302 may be configured to control the power of at least one beam of the multiple beams to be less than a beam power threshold, so that the total mapped power of the multiple beams on the spatial grid X n is less than or equal to the P n .
  • control unit 1302 may be used for controlling the plurality of beams by the antenna gain of X n, X n is such that the EIRP does not exceed the E n, or
  • the communication device 1300 may further include a sending unit 1303, configured to send the total mapped power of the multiple beams in the spatial grid X n to the network manager.
  • a sending unit 1303 configured to send the total mapped power of the multiple beams in the spatial grid X n to the network manager.
  • the communication device 1300 may perform other steps in the above method, and reference may be made to the content in FIGS. 3 to 11 above.
  • the above method involves a terminal and can be executed by a module or unit in the terminal.
  • a module or unit corresponding to the method in the terminal, or the memory in the terminal may store computer instructions and data, and the processor may execute the computer instructions and The data thus performs the above method.
  • the methods in the embodiments of the present application may be executed by one or more modules or units, and one or more of the modules or units may be implemented by software, hardware or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor can be used to execute the program instructions to implement the above method flow.
  • the processor may include but is not limited to at least one of the following: central processing unit (CPU), microprocessor, digital signal processor (DSP), microcontroller (microcontroller unit, MCU), or artificial intelligence
  • CPU central processing unit
  • DSP digital signal processor
  • MCU microcontroller unit
  • Artificial intelligence Various computing devices such as processors that run software. Each computing device may include one or more cores for executing software instructions for calculation or processing.
  • the processor can be a separate semiconductor chip, or it can be integrated with other circuits to form a semiconductor chip.
  • SoC on-chip
  • other circuits such as codec circuits, hardware acceleration circuits, or various bus and interface circuits.
  • System can be integrated into the ASIC as a built-in processor of an ASIC, and the ASIC integrated with the processor can be packaged separately or together with other circuits.
  • the processor can also include necessary hardware accelerators, such as field programmable gate array (FPGA) and PLD (programmable logic device) , Or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate array
  • PLD programmable logic device
  • the hardware can be CPU, microprocessor, DSP, MCU, artificial intelligence processor, ASIC, SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator or non-integrated discrete device For any one or any combination of these, it can run necessary software or does not rely on software to perform the above method flow.
  • the embodiment of the present application also provides a computer-readable storage medium.
  • the methods described in the foregoing embodiments may be implemented in whole or in part by software, hardware, firmware, or any combination thereof. If implemented in software, the functions can be stored on or transmitted on a computer-readable medium as one or more instructions or codes.
  • Computer-readable media may include computer storage media and communication media, and may also include any media that can transfer a computer program from one place to another.
  • the storage medium may be any target medium that can be accessed by a computer.
  • the computer-readable medium may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that is targeted to carry or use instructions or data structures
  • the required program code is stored in the form of and can be accessed by the computer.
  • any connection is properly termed a computer-readable medium.
  • coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) or wireless technology such as infrared, radio and microwave
  • coaxial cable, fiber optic cable , Twisted pair, DSL or wireless technologies such as infrared, radio, and microwave are included in the definition of the medium.
  • Magnetic disks and optical disks as used herein include compact disks (CDs), laser disks, optical disks, digital versatile disks (DVDs), floppy disks and blu-ray disks, in which disks usually reproduce data magnetically, while optical disks reproduce data optically using lasers. Combinations of the above should also be included in the scope of computer-readable media.
  • the embodiment of the present application also provides a computer program product.
  • the methods described in the foregoing embodiments may be implemented in whole or in part by software, hardware, firmware, or any combination thereof. If implemented in software, it can be implemented in whole or in part in the form of computer program products.
  • the computer program product includes one or more computer instructions. When the above computer program instructions are loaded and executed on the computer, the procedures or functions described in the above method embodiments are generated in whole or in part.
  • the above-mentioned computer may be a general-purpose computer, a special-purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution.
  • the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present invention.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种控制EIRP的方法和通信装置。在该方案中,可以确定空间栅格的EIRP阈值,空间栅格的EIRP阈值与该空间栅格的安全距离相关;控制多个波束,使得多个波束在所述空间栅格的总EIRP小于等于所述EIRP阈值,通过上述方案,可以以空间栅格为粒度控制每个空间栅格的总EIRP不超过该空间栅格的EIRP阈值,从而使得MIMO接入网设备的部署符合各个国家/地区规定的EMF强度要求。

Description

一种控制EIRP的方法、通信装置和通信系统 技术领域
本申请涉及无线通信技术领域,尤其涉及一种控制EIRP方法、通信装置和通信系统。
背景技术
随着无线通信技术的发展,在频谱资源日趋饱和的情况下,MIMO技术应运而生,通过MIMO技术,接入网设备可以在相同的时频资源上通过空分的方式与多个终端进行通信,这大大提升了通信系统的容量。
采用MIMO技术的接入网设备的功率和天线增益较传统接入网设备的功率和天线增益更大,各个国家/组织对EMF强度均有自己的要求,如何控制接入网设备的EMF强度,使其满足各个国家/组织的EMF强度要求是一个亟待解决的问题。
发明内容
本申请实施例提供了一种控制EIRP的方法、通信装置和通信系统,可以实现控制接入网设备的EIRP,从而使得接入网设备的EMF强度满足各个国家/组织的EMF强度要求。
第一方面,本申请实施例提供了一种控制EIRP的方法。该控制EIRP的方法可以应用于接入网设备或者接入网设备中的芯片,例如,可以由基带处理单元(baseband unit,BBU)执行或者BBU中的芯片执行。
该方法包括:确定空间栅格X n的EIRP阈值E n,该E n与该X n的安全距离R n相关,n为取遍0至N-1的整数,N为空间栅格的个数,N大于等于1;
控制多个波束在该X n的EIRP,使得该EIRP小于等于该E n
可选的,这里多个波束在该X n的EIRP可以理解为多个波束在该X n的总EIRP。
可以以空间栅格为粒度控制接入网设备的EIRP,从而控制接入网设备的EMF强度。
可选的,在该方法中,该E n与该X n的该R n相关包括:
当N大于等于2时,若空间栅格X i的安全距离R i不同于空间栅格X j的安全距离R j,则该X i的EIRP阈值E i不同于该X j的EIRP阈值E j,i和j均为0至N-1的整数,i不等于j。
当两个空间栅格的安全距离不同时,这两个空间栅格的EIRP阈值也不同。可以灵活地根据一个空间栅格的EIRP阈值控制该空间栅格的EIRP,避免根据某一个空间方向的安全距离限制所有空间方向的EIRP而带来的MIMO性能下降。通过该方案,可以在满足当地EMF要求的同时,保持MIMO性能。
可选的,在该方法中,该E n、该R n和EMF强度阈值S之间的关系满足:E n=a*S b*R n c,a,b和c为正数。
例如,a为4π,b为1,c为2。上述关系是一种示例,E n、R n和EMF强度阈值S可能存在其他关系。
可选的,在上述方法中,该X n的水平面角度范围为水平面最小角度
Figure PCTCN2020073823-appb-000001
至水平面最大角度
Figure PCTCN2020073823-appb-000002
且该X n的垂直面角度范围为垂直面最小角度
Figure PCTCN2020073823-appb-000003
至垂直面最大角度
Figure PCTCN2020073823-appb-000004
可选的,在上述方法中,水平面角度为
Figure PCTCN2020073823-appb-000005
且垂直面角度为
Figure PCTCN2020073823-appb-000006
(可以表示为
Figure PCTCN2020073823-appb-000007
的天线增益为
Figure PCTCN2020073823-appb-000008
水平面角度为
Figure PCTCN2020073823-appb-000009
且垂直面角度为
Figure PCTCN2020073823-appb-000010
(可以表示为
Figure PCTCN2020073823-appb-000011
的天线增益为
Figure PCTCN2020073823-appb-000012
Figure PCTCN2020073823-appb-000013
Figure PCTCN2020073823-appb-000014
之间的差值小于等于差值阈值,其中,
Figure PCTCN2020073823-appb-000015
Figure PCTCN2020073823-appb-000016
均为
Figure PCTCN2020073823-appb-000017
Figure PCTCN2020073823-appb-000018
中的一个值,
Figure PCTCN2020073823-appb-000019
Figure PCTCN2020073823-appb-000020
均为
Figure PCTCN2020073823-appb-000021
Figure PCTCN2020073823-appb-000022
中的一个值,
Figure PCTCN2020073823-appb-000023
不等于
Figure PCTCN2020073823-appb-000024
或者
Figure PCTCN2020073823-appb-000025
不等于
Figure PCTCN2020073823-appb-000026
通过空间栅格中两个方向的天线增益差值不至于过大,可以便于后续控制空间栅格的EIRP,例如可以通过控制空间栅格的功率控制空间栅格的EIRP。
可选的,在上述方法中,当N大于等于2时,
Figure PCTCN2020073823-appb-000027
Figure PCTCN2020073823-appb-000028
x为0至N-1中的一个整数,y为0至N-1中的一个整数,且x不等于y。
各个空间栅格的水平面角度范围的长度和垂直面角度范围的长度相同,可以较简单地确定若干个空间栅格。
可选的,在上述方法中,当N大于等于2时,
Figure PCTCN2020073823-appb-000029
或者
Figure PCTCN2020073823-appb-000030
x为0至N-1中的一个整数,y为0至N-1中的一个整数,且x不等于y。
各个空间栅格的水平面角度范围的长度不同,或者垂直面角度范围的长度不同,同时可以满足上述空间栅格中两个空间方向上的天线增益不至于过大,从而可以确定较少的空间栅格,从而减小算法的复杂度。
可选的,在上述方法中,该R n为水平面角度为
Figure PCTCN2020073823-appb-000031
且垂直面角度为
Figure PCTCN2020073823-appb-000032
的安全距离,
Figure PCTCN2020073823-appb-000033
Figure PCTCN2020073823-appb-000034
Figure PCTCN2020073823-appb-000035
中的一个值,
Figure PCTCN2020073823-appb-000036
Figure PCTCN2020073823-appb-000037
Figure PCTCN2020073823-appb-000038
中的一个值。
水平面角度为
Figure PCTCN2020073823-appb-000039
且垂直面角度为
Figure PCTCN2020073823-appb-000040
是空间栅格X n中的一个空间方向,可以通过
Figure PCTCN2020073823-appb-000041
确定。
可选的,上述方法还包括:
通过控制该多个波束在该X n的映射功率,使得该X n的EIRP不超过该E n
可选的,这里多个波束在该X n的映射功率,可以理解为多个波束在该X n的总映射功率。
发射多个波束的天线的结构确定后,可以确定各个空间栅格的天线增益,可以通过控制多个波束在空间栅格的映射功率,从而达到该空间栅格的EIRP不超过EIRP阈值。
可选的,在该方法中,通过控制该多个波束在该X n的映射功率,使得该X n的EIRP不超过该E n包括:
确定该X n的天线增益G n
控制该多个波束在该X n的映射功率小于等于功率阈值P n,该P n是由该E n和该G n得到的。
可选的,在上述方法中,该多个波束在该X n的映射功率,包括该多个波束在该X n的瞬时映射功率。
可选的,这里多个波束在该X n的瞬时映射功率,可以理解为多个波束在该X n的瞬时总映射功率。
通过控制瞬时映射功率,可以保证任一时刻多个波束在在空间栅格X n的EMF强度都不超过EMF强度阈值,保证了接入网设备11的部署在任一时刻的辐射都控制在一定范围之内,从而使得接入网设备11的部署满足当地要求。
可选的,在上述方法中,该多个波束在该X n的映射功率,包括T时间段上该多个波束在该X n的平均映射功率,该T时间段上该多个波束在该X n的平均功率为T时间段上该多个波束在该X n的瞬时映射功率的平均值。
可选的,这里多个波束在该X n的平均映射功率,可以理解为多个波束在该X n的平均总映射功率。
EMF中的非电离辐射在累积一段时间可能对生物体造成影响,通过控制多个波束在空间栅格的平均映射功率小,可以实现通过控制一段时间的平均EMF强度不超过阈值,使得接入网设备11的部署满足当地要求。
可选的,在上述方法中,该T时间段包括t1时刻,其中,在该t1时刻,该多个波束在该X n的瞬时映射功率大于该P n
多个波束在空间栅格X n的瞬时映射功率可以大于功率阈值,可以提高接入网设备11在一些时刻点的性能,而平均映射功率小于等于功率阈值,接入网设备11的部署满足当地要求,不会对生物体带来辐射危险。
可选的,在上述方法中,该T时间段包括t2时刻,其中,在该t2时刻,该多个波束在该X n的瞬时映射功率小于等于该P n
多个波束在空间栅格X n的瞬时映射功率可以大于功率阈值,或者小于等于功率阈值,从而达到平均映射功率小于等于功率阈值的目标。
可选的,在上述方法中,该G n为水平面角度为
Figure PCTCN2020073823-appb-000042
且垂直面角度为
Figure PCTCN2020073823-appb-000043
(可以表示为
Figure PCTCN2020073823-appb-000044
的天线增益,
Figure PCTCN2020073823-appb-000045
Figure PCTCN2020073823-appb-000046
Figure PCTCN2020073823-appb-000047
中的一个值,
Figure PCTCN2020073823-appb-000048
Figure PCTCN2020073823-appb-000049
Figure PCTCN2020073823-appb-000050
中的一个值。
可选的,在上述方法中,该多个波束在该X n的瞬时映射功率包括该多个波束在水平面角度为
Figure PCTCN2020073823-appb-000051
且垂直面角度为
Figure PCTCN2020073823-appb-000052
(可以表示为
Figure PCTCN2020073823-appb-000053
的瞬时映射功率,
Figure PCTCN2020073823-appb-000054
Figure PCTCN2020073823-appb-000055
Figure PCTCN2020073823-appb-000056
中的一个值,
Figure PCTCN2020073823-appb-000057
Figure PCTCN2020073823-appb-000058
Figure PCTCN2020073823-appb-000059
中的一个值。
可选的,在上述方法中,该T上该多个波束在该X n的平均映射功率包括该T上该多个波束在水平面角度为
Figure PCTCN2020073823-appb-000060
且垂直面角度为
Figure PCTCN2020073823-appb-000061
(可以表示为
Figure PCTCN2020073823-appb-000062
的平均映射功率,
Figure PCTCN2020073823-appb-000063
Figure PCTCN2020073823-appb-000064
Figure PCTCN2020073823-appb-000065
中的一个值,
Figure PCTCN2020073823-appb-000066
Figure PCTCN2020073823-appb-000067
Figure PCTCN2020073823-appb-000068
中的一个值;
该多个波束在该X n的瞬时映射功率包括该多个波束在水平面角度为
Figure PCTCN2020073823-appb-000069
且垂直面角度为
Figure PCTCN2020073823-appb-000070
的瞬时映射功率。
可选的,上述方法还包括:
通过该多个波束中至少一个波束的功率小于波束功率阈值,使得该多个波束在该X n的映射功率小于等于该P n
可以通过降低多个波束中的一个或者多个波束的功率,从而控制该多个波束在空间栅格的映射功率。
可选的,在上述方法中,该至少一个波束为该多个波束中在该X n的映射功率大于映射功率阈值的波束。
通过降低对空间栅格的映射功率贡献较大的波束的功率,可以有效降低该空间栅格的映射功率。
可选的,上述方法还包括:
向网管发送该多个波束在该X n的映射功率。
可选的,该多个波束在该X n的映射功率可以包括该多个波束在该X n的瞬时映射功率和/或多个波束在该X n的平均映射功率。
网管可以呈现多个波束在空间栅格的映射功率,便于用户获取空间栅格的映射功率的情况。
可选的,上述方法还包括:
通过控制该X n的天线增益,使得该X n的EIRP不超过该E n
通过控制空间栅格的天线增益,可以使得接入网设备按照理想功率发射多个波束。
可选的,在上述方法还包括:
通过控制该多个波束在该X n的映射功率和天线增益,使得该X n的EIRP不超过该E n
可以同时控制空间栅格的天线增益和功率,从而可以根据实际情况较灵活地控制,达到空间栅格的EIRP不超过EIRP阈值。
可选的,在上述方法中,控制该多个波束在该X n的天线增益包括:
通过发射该多个波束的天线的结构调整该多个波束在该X n的天线增益。
可以通过控制多个波束的天线的结构来调整该多个波束在空间栅格天线增益。
可选的,在上述方法中,该天线的结构包括该阵子之间的距离和/或该阵子的数量。
可选的,上述方法中,
Figure PCTCN2020073823-appb-000071
Figure PCTCN2020073823-appb-000072
Figure PCTCN2020073823-appb-000073
中的任意两个可以相同或者不同。
第二方面,本申请实施例提供了一种方法,在第一方面的方法的基础上,还包括:发射该多个波束。
接入网设备的BBU或者BBU中的芯片可以执行第一方面的方法,接入网设备中的射频拉远单元(remote radio unit,RRU)和天线可以发射该多个波束。
第三方面,本申请实施例提供了一种通信装置,包括处理器,该处理器与存储器耦合,该存储器用于存储计算机程序或指令,该处理器用于执行存储器中的该计算机程序或指令,使得该通信装置执行上述第一方面的方法。可选的,该通信装置还包括该存储器。可选的,该通信装置可以是接入网设备或者接入网设备中的芯片,例如,BBU或者BBU中的芯片。
第四方面,本申请实施例提供了一种处理装置,该处理装置包括:处理器+接口,该接口,用于将接收代码指令(来自外部存储器或其他器件)并传输至该处理器,该处理器用于运行所述代码指令以执行方法。可选的,该处理装置可以是接入网设备或者接入网设备中的芯片,例如,BBU或者BBU中的芯片。
第五方面,本申请实施例提供了一种通信装置,还第三方面的通信装置的基础上,还包括天线,该天线用于发送该多个波束。可选的,该通信装置还可以包括RRU。
第六方面,本申请实施例提供了一种通信装置,该通信装置包括一个或者多个模块,用于实现上述第一方面或者第二方面的方法,该一个或者多个模块可以与上述第一方面或者第二方面的方法的步骤相对应。
第七方面,本申请实施例提供了一种计算机存储介质,该存储介质用于存储计算机程序或者指令,当该程序在计算机中运行时,使得该计算机执行上述第一方面或者第二方面的方法。
第八方面,本申请实施例提供了一种计算机程序产品,该程序产品包括程序,当该程序被运行时,使得上述第一方面或者第二方面的方法被执行。
附图说明
为了更清楚地说明本申请,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例提供的一种通信系统的示意图;
图2是本申请实施例提供的一种接入网设备的结构示意图;
图3是本申请实施例提供的一种控制EIRP的方法示意图;
图4是一种坐标系的示意图;
图5是一种确定空间栅格的方法的示意图;
图6a是一种水平面天线增益和垂直面天线增益的示意图;
图6b是一种均匀划分栅格的示意图;
图7a是一种确定空间栅格的EIRP阈值的方法的示意图;
图7b是一种水平安全距离和垂直安全距离的示意图;
图8是一种确定空间栅格是否需要EIRP控制的示意图;
图9是一种理想安全距离的一种示意图;
图10是一种多个波束的示意图;
图11是一种波束m在空间栅格X n的映射功率的示意图;
图12是一种通信装置1200的一种示意图;
图13是一种通信装置1300的一种示意图。
具体实施方式
下面将结合本申请中的附图,对本申请中的技术方案进行说明。
本发明实施例提供了一种通信系统,该通信系统包括接入网设备和至少一个终端,该至少一个终端可以与该接入网设备进行无线通信。图1为本申请实施例提供的一种通信系统的示意图。图1中,接入网设备11和终端12可以进行无线通信,接入网设备11和终端13可以进行无线通信。需要说明的是,在如图1所述的通信系统包含的接入网设备和终端仅是一种示例,在本发明实施例中,所述通信系统包含的网元的类型、数量,以及网元之间的连接关系不限于此。
本申请实施例中的通信系统可以是支持第四代(fourth generation,4G)接入技术的通信系统,例如长期演进(long term evolution,LTE)接入技术;或者,该通信系统也可以是支持第五代(fifth generation,5G)接入技术通信系统,例如新无线(new radio,NR)接入技术;或者,该通信系统也可以是支持第三代(third generation,3G)接入技术的通信系统,例如(universal mobile telecommunications system,UMTS)接入技术;或者,该通信系统还可以是支持多种无线技术的通信系统,例如支持LTE技术和NR技术的通信系统。另外,该通信系统也可以适用于面向未来的通信技术。
本申请实施例中的接入网设备可以是接入网侧用于支持终端接入通信系统的设备,例如,可以是2G接入技术通信系统中的基站收发信台(base transceiver station,BTS)和基站控制器(base station controller,BSC)、3G接入技术通信系统中的节点B(node B)和无线网络控制器(radio network controller,RNC)、4G接入技术通信系统中的演进型基站(evolved nodeB,eNB)、5G接入技术通信系统中的下一代基站(next generation nodeB,gNB)、发送接收点(transmission reception point,TRP)、中继节点(relay node)、接入点(access point,AP)等等。
本申请实施例中的终端可以是一种向用户提供语音或者数据连通性的设备,例如也可以称为用户设备(user equipment,UE),移动台(mobile station),用户单元(subscriber unit),站台(station),终端设备(terminal equipment,TE)等。终端可以为蜂窝电话(cellular phone),个人数字助理(personal digital assistant,PDA),无线调制解调器(modem),手持设备(handheld),膝上型电脑(laptop computer),无绳电话(cordless phone),无线本地环路(wireless local loop,WLL)台,平板电脑(pad)等。随着无线通信技术的发展,可以接入通信系统、可以与通信系统的网络侧进行通信,或者通过通信系统与其它物体进行通信的设备都可 以是本申请实施例中的终端,譬如,智能交通中的终端和汽车、智能家居中的家用设备、智能电网中的电力抄表仪器、电压监测仪器、环境监测仪器、智能安全网络中的视频监控仪器、收款机等等。在本申请实施例中,终端可以与接入网设备,例如接入网设备11进行通信。
图2是一种接入网设备的结构示意图。接入网设备11的结构可以参考图2所示的结构。
接入网设备包括至少一个处理器1111、至少一个存储器1112、至少一个收发器1113、至少一个网络接口1114和一个或多个天线1115。处理器1111、存储器1112、收发器1113和网络接口1114相连,例如通过总线相连。天线1115与收发器1113相连。网络接口1114用于使得接入网设备通过通信链路,与其它通信设备相连,例如接入网设备通过S1接口,与核心网网元相连。在本申请实施例中,所述连接可包括各类接口、传输线或总线等,本实施例对此不做限定。
本申请实施例中的处理器,例如处理器1111,可以包括如下至少一种类型:通用中央处理器(Central Processing Unit,CPU)、数字信号处理器(Digital Signal Processor,DSP)、微处理器、特定应用集成电路专用集成电路(Application-Specific Integrated Circuit,ASIC)、微控制器(Microcontroller Unit,MCU)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、或者用于实现逻辑运算的集成电路。例如,处理器1111可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。至少一个处理器1111可以是集成在一个芯片中或位于多个不同的芯片上。
本申请实施例中的存储器,例如存储器1112,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically erasable programmabler-only memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
存储器1112可以是独立存在,与处理器1111相连。可选的,存储器1112也可以和处理器1111集成在一起,例如集成在一个芯片之内。其中,存储器1112能够存储执行本申请实施例的技术方案的程序代码,并由处理器1111来控制执行,被执行的各类计算机程序代码也可被视为是处理器1111的驱动程序。例如,处理器1111用于执行存储器1112中存储的计算机程序代码,从而实现本申请实施例中的技术方案。
收发器1113可以用于支持接入网设备与终端之间射频信号的接收或者发送,收发器1113可以与天线1115相连。具体地,一个或多个天线1115可以接收射频信号,该收发器1113可以用于从天线接收所述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器1111,以便处理器1111对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器1113可以用于从处理器1111接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线1115发送所述射频信号。具体地,收发器1113可以选择性地对射频信号进行一级或多级下混频处理 和模数转换处理以得到数字基带信号或数字中频信号,所述下混频处理和模数转换处理的先后顺序是可调整的。收发器1113可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,所述上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。
收发器可以称为收发电路、收发单元、收发器件、发送电路、发送单元或者发送器件等等。
可选的,图2中,处理器1111可以存储器1112可以位于BBU中,收发器1113可以位于RRU中,接入网设备11可以包括BBU、RRU和天线。
在图1所示的通信系统中,接入网设备11可以在电磁场中利用电磁波向终端12-终端27发送数据,电磁场(EMF,electromagnetic field)中的非电离辐射(NIR,non-ionizing radiation)会对生物体会产生危害,例如紫外线、光、红外线和无线电波的电磁辐射,以及诸如次声波和超声波的机械波不会使得原子和分子发生电离。NIR对生物体的危害主要体现在热效应、非热效应和累积效应。为保护生物体免于暴露在NIR的危害之中,国际非电离辐射防护委员会(ICNIRP,international commission on non-ionizing radiation protection)提供了《时变的电场、磁场和电磁场的接触水平予以限制的指南》(《guidelines for limating exposure to time-varying electric,magnetic and electromagnetic fields》),为描述方便,下文该指南称为ICNIRP指南。目前世界上部分国家遵循ICNIRP指南,部分国家有特殊要求。
表1示出了多个国家/组织的EMF强度要求。表1中,EMF强度通过功率谱密度表示,功率谱密度的单位为w/m 2,该功率谱密度可以理解为发射面波功率密度(incident plane wave power density)。EMF强度可以通过其他单位表示,本申请实施例对此不作限制。例如EMF强度可以通过电场强度表示,电场强度的单位是V/m,或者EMF强度可以通过电流强度表示,电流强度的单位是A/m。可以理解,表1中的功率谱密度是指最大值,当测量得到的功率谱密度小于表示1中的值的时候,满足EMF强度要求。
如表1所示,欧盟的大部分国家参考ICNIRP指南,频率(frequency,f)范围为0.4G-2G时,功率谱密度为f/200w/m 2,频率范围为2G以上时,功率谱密度为10w/m 2;欧盟的部分国家有特殊要求,例如瑞士的功率谱密度为0.042w/m 2,意大利和波兰的功率谱密度为0.095w/m 2,比利时和卢森堡的功率谱密度为0.0238w/m 2;中国大陆具有特殊要求,使用GB8702B标准,频率范围为0.03G-3G时,功率谱密度为0.4w/m 2,频率范围为3G-15G,功率谱密度为f/7500w/m 2,频率范围为15G-30G,功率谱密度为2w/m 2。其他地区/国家可以参考表1中的相关内容,在此不再赘述。
Figure PCTCN2020073823-appb-000074
从表1中可以看出,不同频率范围,EMF强度要求可能不同。在一个频率范围下,功率谱密度可以通过下面公式进行计算:
Figure PCTCN2020073823-appb-000075
其中,S为测试点的功率谱密度,P为天线端口输入功率,G为天线增益,R为从天线到测试点的距离。其中,P*G可以称为等效全向辐射功率(Effective Isotropic Radiated Power,EIRP)。
对公式(1)进行变换,可以由部署接入网设备的国家或者地区的功率谱密度要求、接入网设备的天线端口输入功率P和天线增益G,获得在满足该国家或者地区的功率谱密度的安全距离R,例如安全距离R可以通过下面公式得到:
Figure PCTCN2020073823-appb-000076
其中,S为功率谱密度要求,P为天线端口输入功率,G为天线增益。例如,MIMO接入网设备使用3.5G频段,ICNIRP指南要求功率谱密度为10w/m 2,P为200w,G为24dBi,
Figure PCTCN2020073823-appb-000077
Figure PCTCN2020073823-appb-000078
在多频场景下,该多频场景的安全距离可以由每个频点的安全距离得到,例如存在n个频率,可以分别计算频点i的安全距离R i,然后通过下面公式计算:
Figure PCTCN2020073823-appb-000079
Figure PCTCN2020073823-appb-000080
通过上述内容可知,在单频或者多频场景下,当P和G越大时,安全距离R越大。
随着无线通信技术的发展,在频谱资源日趋饱和的情况下,MIMO技术应运而生,图1所示通信系统中,接入网设备和终端可以利用MIMO技术进行通信,接入网设备11可以布置几十甚至上百根天线,实现接入网设备11在同一时频资源上通过空分方式与至少一个终端进行通信。MIMO技术可以应用在各种制式中,例如LTE或者NR。
采用MIMO技术的接入网设备(为描述方便,下文称为MIMO接入网设备,例如接入网设备11)的发射功率和天线增益较传统接入网设备的发射功率和天线增益均较大,这导致在部署MIMO接入网设备时,该MIMO接入网设备的安全距离较传统接入网设备的安全距离更大。
这给MIMO接入网设备的部署带来了问题。通常为了节约建站的成本,可以考虑将MIMO的接入网设备在部署在现有的站点上,而现有的站点仅仅考虑了现有站点的频点的EMF强度要求,其周围的地理环境已经确定了,现有站点与其周围建筑的距离可能无法满足MIMO接入网设备要求的安全距离。例如,现有站点的安全距离是14m,现有站点在某方向的15m处建立有一所学校,而MIMO接入网设备的安全距离是19.98m,若在现有站点位置部署MIMO接入网设备,会导致站点某方向的15m处的学校位置的EMF强度不满足要求。
在一种相关方案中,可以重新选择部署MIMO接入网设备的站点,这将导致建站成本过大,建站周期变长。在另一种相关方案中,可以根据现有站点的安全距离,降低MIMO接入网设备的功率,例如,现有站点的安全距离为14m,ICNIRP指南要求功率谱密度为10w/m 2,G为24dbi,
Figure PCTCN2020073823-appb-000081
将MIMO接入网设备的功率降低至98w。这样会导致MIMO性能下降。
基于上述问题,本申请实施例提供了一种控制EIRP的方案,在该方案中,通过将空间划分为若干个空间栅格,可以以空间栅格为粒度控制每个空间栅格的EIRP不超过该空间栅格的EIRP阈值,从而使得MIMO接入网设备的部署符合各个国家/地区规定的EMF强度要求。
图3是本申请提供的一种控制EIRP的方法,可以由接入网设备11或者接入网设备11中的芯片执行。如图3所示:
S301:确定空间栅格X n的等效全向辐射功率EIRP阈值E n
其中,E n与空间栅格X n的安全距离R n相关。n为取遍0至N-1的整数,N为空间栅格的个数,N大于等于1。
下面分别对空间栅格X n、安全距离R n和EIRP阈值E n进行说明。
可选的,空间栅格X n可以理解为角度域的概念,空间栅格X n可以包括1个或者多个空间方向。
可选的,一个空间方向可以通过水平面角度和垂直面角度确定。一空间方向的水平面角度可以理解为该空间方向在水平面上的角度,一空间方向的垂直面角度可以理解为该空间方向在垂直面上的角度。
空间栅格X n可以包括一角度范围内的多个空间方向,该角度范围包括水平面角度范围和垂直面角度范围。可以理解,一个空间栅格X n可以通过水平面角度范围和垂直面角度范围确定。空间栅格X n的水平面角度范围可以理解为空间栅格X n在水平面上的角度范围,空间栅格X n的垂直面角度范围可以理解为空间栅格X n在垂直面上的角度范围。
作为一种示例,空间栅格X n的水平面角度范围为水平面最小角度
Figure PCTCN2020073823-appb-000082
至水平面最大角度
Figure PCTCN2020073823-appb-000083
且空间栅格X n的垂直面角度范围为垂直面最小角度
Figure PCTCN2020073823-appb-000084
至垂直面最大角度
Figure PCTCN2020073823-appb-000085
空间栅格X n可以包括水平面角度范围
Figure PCTCN2020073823-appb-000086
Figure PCTCN2020073823-appb-000087
且垂直面角度范围
Figure PCTCN2020073823-appb-000088
Figure PCTCN2020073823-appb-000089
内所有空间方向。
在该示例中,
Figure PCTCN2020073823-appb-000090
Figure PCTCN2020073823-appb-000091
是连续的,
Figure PCTCN2020073823-appb-000092
Figure PCTCN2020073823-appb-000093
是连续的,需要说明的是,水平面角度范围或者垂直面角度范围均可以是不连续的。
图4为一种坐标系的示意图。如图4所示,坐标系的原点可以是天线所在位置,例如天线的中心点、天线的底端或者天线的其他位置,坐标系中包括3条坐标轴,分别为x轴,y轴和z轴,其中,x轴和y轴形成的平面可以称为水平面,y轴和z轴形成的平面可以称为垂直面。在该坐标系中,某空间方向在水平面的投影与x轴的角度可以称为水平面角度,某空间方向在垂直面的投影与z轴的角度可以称为垂直面角度。
可以理解,图4仅是一种示例,水平面角度和垂直面角度存在其他表示的方式,例如某空间方向在水平面的投影与y轴之间的角度可以称为水平面角度,某空间方向在垂直面的投影与y轴之间的角度可以称为垂直面角度。可以理解,图4中的坐标系也是一种示例,坐标系存在其他表示方式,x轴、y轴z轴的位置可以互换,x轴、y轴和z轴可以分别与图4中x轴、y轴和z轴的方向相同或者相反。
如图4所示,在该坐标系中,从原点指向的一空间方向可以通过一水平面角度和一垂直面角度确定。例如,空间方向1的水平面角度为
Figure PCTCN2020073823-appb-000094
空间方向1的垂直面角度为
Figure PCTCN2020073823-appb-000095
空间方向1可以表示为
Figure PCTCN2020073823-appb-000096
例如,空间方向2的水平面角度为
Figure PCTCN2020073823-appb-000097
空间方向1的垂直面角度为
Figure PCTCN2020073823-appb-000098
空间方向2可以表示为
Figure PCTCN2020073823-appb-000099
如图4所示,空间栅格X n可以包括指向曲面的所有空间方向,指向该曲面的所有空间方向满足水平面角度范围为
Figure PCTCN2020073823-appb-000100
Figure PCTCN2020073823-appb-000101
垂直面角度范围为
Figure PCTCN2020073823-appb-000102
Figure PCTCN2020073823-appb-000103
例如,空间栅格X n包括空间方向1
Figure PCTCN2020073823-appb-000104
和空间方向2
Figure PCTCN2020073823-appb-000105
可选的,
Figure PCTCN2020073823-appb-000106
可以等于
Figure PCTCN2020073823-appb-000107
此时空间栅格X n在水平面投影为一个空间方向。
可选的,
Figure PCTCN2020073823-appb-000108
可以等于
Figure PCTCN2020073823-appb-000109
此时空间栅格X n在垂直面投影为一个空间方向。
可选的,
Figure PCTCN2020073823-appb-000110
可以等于
Figure PCTCN2020073823-appb-000111
Figure PCTCN2020073823-appb-000112
可以等于
Figure PCTCN2020073823-appb-000113
此时空间栅格X n在水平面投影为一个空间方向且在垂直面头像也为一个空间方向,可以理解此时空间栅格X n为一个空间方向,该空间方向的水平面角度为
Figure PCTCN2020073823-appb-000114
该空间方向的垂直面角度为
Figure PCTCN2020073823-appb-000115
可选的,空间栅格的个数可以为1个或者多个,即N可以为1或者大于1的整数。
可选的,一个空间栅格X n可以对应一个安全距离R n和一个EIRP阈值E n。例如,当N为2时,此时存在两个空间栅格X 0(n=0)和X 1(n=1),X 0的安全距离为R 0,X 0的EIRP阈值为E 0,X 1的安全距离为R 1,X 1的EIRP阈值为E 1
安全距离R n可以理解为在空间栅格X n上,要求的天线与生物体之间的距离。例如,在空间栅格X n上,安全距离R n可以为要求的天线与人之间的距离,或者,例如,在空间栅格X n上,安全距离R n可以为天线与最近的建筑物之间的距离。
可选的,安全距离R n可以由运营商或者监管机构确定,或者安全距离R n可以根据实际地理环境测量空间栅格X n上天线与人之间的距离,或者天线与最近的建筑物之间的距离。
可选的,空间栅格X n的安全距离R n可以空间栅格X n的水平安全距离和空间栅格X n的垂直安全距离确定,空间栅格X n的水平安全距离可以是空间栅格X n的安全距离R n在水平面的投影,空间栅格X n的垂直安全距离可以是空间栅格X n的安全距离R n在垂直面的投影。
E n与空间栅格X n的安全距离R n相关,可以理解为当R n取不同值时,E n也取不同的值。
可选的,当N大于等于2时,每个空间栅格的安全距离可以相同或者不同。
可选的,当N大于等于2时,若空间栅格X i的安全距离R i不同于空间栅格X j的安全距离R j,则空间栅格X i的EIRP阈值E i不同于空间栅格X j的EIRP阈值E j,i和j均为0至N-1的整数,i不等于j。
例如,空间栅格X 0的安全距离R 0为5m,空间栅格X 1的安全距离R 1为4m,则空间栅格X 0的EIRP阈值E 0不同于空间栅格X 1的EIRP阈值E 1
作为一种示例,E n、R n和EMF强度阈值S之间的关系可以满足:E n=a*S b*R n c(公式5),a,b和c为正数,例如,a为4π,b为1,c为2。
可选的,E n、R n和EMF强度阈值S之间的关系还可以是下面关系。
E n=4π*S 1*R n 2/(1+γ) 2;或者
E n=4π*S 1*R n 2/(1+γ) 2/A sl;或者
E n=4π*S 1*R n 2/(1+γ) 2/sin 2(α+1.129θ bw)
其中,A sl表示旁瓣抑制值,α表示下倾角,θ bw表示垂直半功率波宽,γ表示反射系数。
可选的,上述公式仅是示意,E n、R n和EMF强度阈值S之间的关系还可以通过其他公式表示,本申请实施例对此不作限定。
可以确定空间栅格X n的EMF强度阈值S后,根据空间栅格X n的EMF强度阈值S推算出空间栅格X n的EIRP阈值,再根据EIRP阈值控制空间栅格X n的总EIRP,能够较可靠得保证接入网设备11的部署满足EMF强度要求。
另外,由于不同国家/组织的EMF强度要求可能不同,通过该方法可以灵活得根据当地的需求控制EIRP,保障接入网设备11的部署,为公众提供通信。
可选的,在多频场景下,可以先确定每个频点的EMF强度阈值,然后分别对每个频点下的EIRP进行控制。
可选的,由于空间栅格X n可以包括多个空间方向。每个空间方向上可以存在一个安全距离,各个空间方向上的安全距离可以相同或者不同。例如,如图4所示,空间方向1的安全距离为
Figure PCTCN2020073823-appb-000116
可选的,一个空间方向的安全距离可以由该空间方向的水平安全距离和该空间方向的垂直安全距离得到,例如如图4所示,空间方向1的水平安全距离为
Figure PCTCN2020073823-appb-000117
空间方向1的垂直安全距离为
Figure PCTCN2020073823-appb-000118
Figure PCTCN2020073823-appb-000119
可选的,该空间栅格X n的安全距离可以是该多个空间方向中一个空间方向上的安全距离。例如,该空间栅格X n的安全距离可以是该多个空间方向上的多个安全距离中的最大安全距离;或者可以是该多个空间方向上的多个安全距离中的最小安全距离;或者可以是该多个空间方向上中任一空间方向上的安全距离。
可以理解为,空间栅格X n的水平面角度范围为
Figure PCTCN2020073823-appb-000120
Figure PCTCN2020073823-appb-000121
空间栅格X n的垂直面角度范围为
Figure PCTCN2020073823-appb-000122
Figure PCTCN2020073823-appb-000123
安全距离R n可以是水平面角度为
Figure PCTCN2020073823-appb-000124
且垂直面角度为
Figure PCTCN2020073823-appb-000125
的安全距离,
Figure PCTCN2020073823-appb-000126
Figure PCTCN2020073823-appb-000127
Figure PCTCN2020073823-appb-000128
中的一个值,
Figure PCTCN2020073823-appb-000129
Figure PCTCN2020073823-appb-000130
Figure PCTCN2020073823-appb-000131
中的一个值。
其中,
Figure PCTCN2020073823-appb-000132
可以是空间栅格X n的一个空间方向。在空间栅格X n的多个空间方向上的多个安全距离中,
Figure PCTCN2020073823-appb-000133
这一空间方向的安全距离最大;或者,在空间栅格X n的多个空间方向的多个安全距离中,
Figure PCTCN2020073823-appb-000134
这一空间方向的安全距离最小;或者,
Figure PCTCN2020073823-appb-000135
Figure PCTCN2020073823-appb-000136
可以是空间栅格X n的任一空间方向。
可选的,可以根据多个空间方向(这里多个空间方向可以是空间栅格X n包括的全部或者部分空间方向)中的每个空间方向的安全距离得到空间栅格X n的安全距离,例如可以将多个空间方向中的每个空间方向的安全距离通过某些计算得到空间栅格X n的安全距离,该计算可以是平均或者其他计算方式。例如可以对每个空间方向的安全距离求平均值,得到空间栅格X n的安全距离。需要说明的是,本申请实施例中的平均可以是算数平均、几何平均、平方平均、调和平均或者加权平均等等。
可选的,确定空间栅格X n的EIRP阈值E n,可以包括接收空间栅格X n的EIRP阈值E n,例如从网管接收空间栅格X n的EIRP阈值。网管可以计算空间栅格X n的EIRP阈值E n,或者网管可以从运营商或者监管机构获得空间栅格X n的EIRP阈值E n
例如,处理器1111可以从网管接收空间栅格X n的EIRP阈值E n,存储器1112可以保存空间栅格X n的EIRP阈值E n
可选的,确定空间栅格X n的EIRP阈值E n,可以包括通过计算确定空间栅格X n的EIRP阈值E n,例如,可以根据空间栅格X n的安全距离R n得到空间栅格X n的EIRP阈值E n,例如可以根据下面公式E n=a*S b*R n c(公式5)得到空间栅格X n的EIRP阈值E n
可选的,处理器1111可以计算空间栅格X n的EIRP阈值E n或者处理器1111可以通过网络接口1114接收空间栅格X n的EIRP阈值E n,存储器1112可以存储空间栅格X n的的EIRP阈值E n、水平面角度范围、垂直面角度范围和安全距离R n等等。
当有多个空间栅格时,由于每个空间栅格的安全距离可能不同,可以灵活地根据每个空间栅格的安全距离,调整每个空间栅格的EIRP,避免根据某一个空间方向的安全距离限制所有空间方向的EIRP而带来的MIMO性能下降。通过该方案,可以在满足当地EMF要求的同时,保持MIMO性能。
S302:控制多个波束在空间栅格X n的总EIRP,使得总EIRP小于等于EIRP阈值E n
可选的,多个波束可以包括覆盖不同终端的波束,各个终端的波束可以使用相同或者不同的时频资源,例如,当两个终端的距离比较远时,覆盖两个终端的波束可以占用相同的时频资源,当两个终端之间的距离比较近时,覆盖两个终端的波束可以占用不同的时频资源。
多个波束在空间栅格X n的总EIRP可以理解为在多个波束共同作用下,空间栅格X n的EIRP,或者可以理解为在多个波束的合成或者组合(combination)下,空间栅格X n的EIRP。也就是说,每个波束对空间栅格X n的EIRP均有贡献,根据每个波束对空间栅格X n的EIRP贡献,可以得到多个波束在空间栅格X n的总EIRP。需要说明的是,关于根据如何根据每个波束对空间栅格X n的EIRP贡献,得到多个波束在空间栅格X n的总EIRP,可以通过求和、求积、加权求和、加权求积、累积或者其他计算方式,本申请实施例对此不作限制。
可选的,处理器1111可以控制多个波束在空间栅格X n的总EIRP小于等于EIRP阈值E n
可选的,多个波束在空间栅格X n的总EIRP可以由多个波束在空间栅格X n的总映射功率和/或空间栅格X n的天线增益确定。下面首先对多个波束在空间栅格X n的总映射功率和空间栅格X n的天线增益进行说明。
接入网设备11在向一空间方向发射一个波束时,将该波束的功率映射到空间栅格X n得到的功率可以称为该波束在空间栅格X n的映射功率。
在多个波束的场景中,可以获取每个波束在空间栅格X n的映射功率,然后根据每个波 束在空间栅格X n的映射功率得到多个波束在空间栅格X n的总映射功率。例如,可以对每个波束在空间栅格X n的映射功率求和,得到多个波束在空间栅格X n的总映射功率。
可选的,由于空间栅格X n可以包括多个空间方向,多个波束在空间栅格X n的每个空间方向可以存在一个总映射功率,多个波束在空间栅格X n的各个空间方向上的总映射功率可以相同或者不同。
可选的,多个波束在空间栅格X n的总映射功率可以是多个波束在空间栅格X n的一个空间方向上的总映射功率。例如,多个波束在空间栅格X n的总映射功率可以是将多个波束的功率分别映射到空间栅格X n的各个空间方向(各个空间方向可以是空间栅格X n包括的全部或者部分空间方向)上后,得到多个总映射功率中的最大总映射功率;或者可以是多个波束的功率分别映射到空间栅格X n的各个空间方向上后,得到的多个总映射功率中的最小总映射功率;或者可以是多个波束在空间栅格X n的任一空间方向上的总映射功率。
可以理解为,所述多个波束在空间栅格X n的总映射功率可以为所述多个波束在水平面角度为
Figure PCTCN2020073823-appb-000137
且垂直面角度为
Figure PCTCN2020073823-appb-000138
的总映射功率,
Figure PCTCN2020073823-appb-000139
Figure PCTCN2020073823-appb-000140
Figure PCTCN2020073823-appb-000141
中的一个值,
Figure PCTCN2020073823-appb-000142
Figure PCTCN2020073823-appb-000143
Figure PCTCN2020073823-appb-000144
中的一个值。
其中,
Figure PCTCN2020073823-appb-000145
可以是空间栅格X n的一个空间方向。在多个波束在空间栅格X n的各个空间方向上的总映射功率中,
Figure PCTCN2020073823-appb-000146
这一空间方向的总映射功率最大;或者,在多个波束在空间栅格X n的各个空间方向上的总映射功率中,
Figure PCTCN2020073823-appb-000147
这一空间方向的总映射功率最小;或者,
Figure PCTCN2020073823-appb-000148
可以是空间栅格X n的任一空间方向。
可选的,可以根据多个波束在空间栅格X n的各个空间方向的总映射功率得到多个波束在空间栅格X n的总映射功率,例如可以根据多个波束在空间栅格X n的多个空间方中的每个空间方向的总映射功率得到多个波束在空间栅格X n的总映射功率,例如通过平均或者其他计算方式,例如,可以计算多个波束在空间栅格X n的每个空间方向上的总映射功率,得到多个空间方向上的多个总映射功率,然后对该多个总映射功率求平均值,得到空间栅格X n的总映射功率。
当发射多个波束的天线结构确定后,可以确定空间栅格X n的天线增益。本申请实施例中,发射多个波束的天线结构可以包括天线阵列的组数、各个天线阵列中天线阵子的个数、各个天线阵列中天线阵子的排列方式、天线阵子之间的距离以及其他方式中的一个或者多个。一些天线在出厂之后,发射多个波束的天线结构已经确定了,而对于一些天线,在出厂之后,仍然可以灵活调整发射多个波束天线的结构,可以确定发射多个波束的天线的结构,然后确定各个空间方向的天线增益。
可选的,由于空间栅格X n可以包括多个空间方向,多个波束在空间栅格X n的每个空间方向可以存在一个天线增益,多个波束在空间栅格X n的各个空间方向上的天线增益可以相同或者不同。
可选的,多个波束在空间栅格X n的天线增益可以是多个波束在空间栅格X n的一个空间方向上的天线增益。例如,多个波束在空间栅格X n的天线增益可以是多个波束在各个空间方向(各个空间方向可以是空间栅格X n包括的全部或者部分空间方向)上的天线增益中的最大天线增益;或者可以是多个波束在各个空间方向上的天线增益中的最小天线增益;或者可以是多个波束在空间栅格X n的任一空间方向上的天线增益。
可以理解为,所述多个波束在空间栅格X n的天线增益可以为所述多个波束在水平面角度为
Figure PCTCN2020073823-appb-000149
且垂直面角度为
Figure PCTCN2020073823-appb-000150
的天线增益,
Figure PCTCN2020073823-appb-000151
Figure PCTCN2020073823-appb-000152
Figure PCTCN2020073823-appb-000153
中的一个值,
Figure PCTCN2020073823-appb-000154
Figure PCTCN2020073823-appb-000155
Figure PCTCN2020073823-appb-000156
中 的一个值。
其中,
Figure PCTCN2020073823-appb-000157
可以是空间栅格X n的一个空间方向。在多个波束在空间栅格X n的多个空间方向上的多个天线增益中,
Figure PCTCN2020073823-appb-000158
这一空间方向的天线增益最大;或者,在多个波束在空间栅格X n的多个空间方向上的多个天线增益中,
Figure PCTCN2020073823-appb-000159
这一空间方向的天线增益最小;或者,
Figure PCTCN2020073823-appb-000160
可以是空间栅格X n的任一空间方向。
可选的,可以根据多个波束在空间栅格X n的各个空间方向上的天线增益得到多个波束在空间栅格X n的天线增益,例如可以根据多个波束在空间栅格X n的多个空间方中的每个空间方向的天线增益得到多个波束在空间栅格X n的天线增益,例如可以通过平均、加权或者其他计算方式,例如,可以计算多个波束在空间栅格X n的每个空间方向上的天线增益,得到多个空间方向上的多个天线增益,然后对该多个天线增益求平均值,得到空间栅格X n的天线增益。
下面介绍控制空间栅格X n的总EIRP的几种实施方式。
第一种实施方式:
可以通过控制空间栅格X n的总映射功率,使得空间栅格X n的总EIRP不超过E n
在第一种实施方式中,可以确定空间栅格X n的天线增益G n,控制多个波束在空间栅格X n的总映射功率小于等于功率阈值P n,P n是由E n和G n得到的,例如,
Figure PCTCN2020073823-appb-000161
当发射多个波束的天线的结构确定后,可以确各个空间方向的天线增益。在确定空间栅格X n的天线增益G n后,可以根据空间栅格X n的EIRP阈值E n和天线增益G n获取空间栅格X n的功率阈值P n,例如,
Figure PCTCN2020073823-appb-000162
通过控制多个波束在空间栅格X n的总映射功率,使得在空间栅格X n的总映射功率小于等于功率阈值P n,可以使得多个波束在空间栅格X n的总EIRP小于等于EIRP阈值E n
多个波束在空间栅格X n的总映射功率可以是多个波束在空间栅格X n的瞬时总映射功率或者平均总映射功率,下面分别对这两种示例进行说明。
作为第一种实施方式的第一种示例,可以控制多个波束在空间栅格X n的瞬时总映射功率小于等于功率阈值P n
可选的,多个波束在空间栅格X n的瞬时总映射功率可以是多个波束在空间栅格X n的一个空间方向上的瞬时总映射功率,例如可以是
Figure PCTCN2020073823-appb-000163
处的瞬时总映射功率,或者,可以根据多个波束在各个空间方向上的瞬时总映射功率得到多个波束在空间栅格X n的瞬时总映射功率,相关内容可以参考上面多个波束在空间栅格X n的总映射功率的相关内容。
通过第一种示例,在任一时刻多个波束在空间栅格X n的总EIRP均不超过EIRP阈值E n,从而任一时刻多个波束在在空间栅格X n的EMF强度都不超过EMF强度阈值,保证了接入网设备11的部署在任一时刻的辐射都控制在一定范围之内,避免对生物体造成危害,从而使得接入网设备11的部署满足当地要求。
作为第一种实施方式的第二种示例,可以控制T时间段上多个波束在空间栅格X n的平均总映射功率,使得空间栅格X n的平均总映射功率小于等于功率阈值P n。例如,该T时间段的长度可以是6分钟。
可选的,T时间段上多个波束在空间栅格X n的平均总映射功率可以是T时间段上多个波束在空间栅格X n的一个空间方向上的平均总映射功率,例如该空间方向可以是
Figure PCTCN2020073823-appb-000164
Figure PCTCN2020073823-appb-000165
处的平均总映射功率,
Figure PCTCN2020073823-appb-000166
Figure PCTCN2020073823-appb-000167
Figure PCTCN2020073823-appb-000168
中的一个值,
Figure PCTCN2020073823-appb-000169
Figure PCTCN2020073823-appb-000170
Figure PCTCN2020073823-appb-000171
中的一个值。这里
Figure PCTCN2020073823-appb-000172
可以与上面
Figure PCTCN2020073823-appb-000173
不同,或者
Figure PCTCN2020073823-appb-000174
与上面
Figure PCTCN2020073823-appb-000175
不同。
可选的,多个波束在空间栅格X n的平均总映射功率为多个波束在空间栅格X n的瞬时总映射功率的平均值。例如,在T时间段上多个波束在空间栅格X n的平均总映射功率为T时间段上多个波束在空间栅格X n的瞬时总映射功率的平均值。或者,可以根据多个波束在各个空间方向上的瞬时总映射功率得到多个波束在空间栅格X n的瞬时总映射功率,相关内容可以参考上面多个波束在空间栅格X n的映射功率的相关内容。
可选的,多个波束在空间栅格X n的瞬时总映射功率可以是
Figure PCTCN2020073823-appb-000176
的瞬时总映射功率。例如,可以在T时间段上,获取
Figure PCTCN2020073823-appb-000177
的多个瞬时总映射功率,然后对
Figure PCTCN2020073823-appb-000178
Figure PCTCN2020073823-appb-000179
上的多个瞬时总映射功率求平均值,得到T时间段上多个波束在空间栅格X n的平均总映射功率。
示例性地,可以通过选取一些时间采样点,例如在T时间段上选取多个采样时间点,分别获取这些时间采样点上,多个波束在空间栅格X n的瞬时总映射功率,然后得到多个波束在空间栅格X n的平均总映射功率。采样时间点的数量可以根据接入网设备11的能力而定,本申请实施例对此不作限定。
MIMO波束具有时间性的特点,某一时刻波束的空间方向可以由终端的位置而定,在不同时刻,多个波束的指向可能不同,从而一个空间栅格的总映射功率可能随着时间的变化而变化,通过求空间栅格X n的平均总映射功率,可以较准确地估计空间栅格X n上的功率。
另外,EMF中的非电离辐射在累积一段时间可能对生物体造成影响,例如ICNIRP指南判断6分钟内的平均EMF强度来衡量接入网设备11的部署是否满足要求。通过控制多个波束在空间栅格X n的平均总映射功率小于等于功率阈值P n,可以实现通过控制一段时间的平均EMF强度不超过阈值,使得接入网设备11的部署满足当地要求。
在第二种示例中,在某一个时刻多个波束在空间栅格X n的瞬时总映射功率可以大于等于功率阈值P n,在另一个时刻多个波束在空间栅格X n的瞬时总映射功率可以小于等于功率阈值P n,从而使得多个波束在空间栅格X n的平均总映射功率小于等于功率阈值P n。例如,T时间段包括t1时刻和t2时刻,其中,在t1时刻,多个波束在空间栅格X n的瞬时总映射功率大于功率阈值P n,在t2时刻,多个波束在空间栅格X n的瞬时总映射功率小于等于功率阈值P n
可选的,接入网设备11可以以T为时间滑窗,根据功率阈值P n,以及T时间段已知的若干个时刻的空间栅格X n的瞬时总映射功率,预测未知的下一时刻的空间栅格X n的瞬时总映射功率,进而控制未知的下一时刻的空间栅格X n的瞬时总映射功率小于预测值,达到空间栅格X n的平均总映射功率小于等于功率阈值P n的目的。
通过控制多个波束在空间栅格X n的平均总映射功率小于等于功率阈值P n,多个波束在空间栅格X n的瞬时总映射功率可以大于功率阈值,可以提高接入网设备11在一些时刻点的性能,综合来看,既能使得接入网设备11的部署满足当地要求,不会对生物体带来辐射危险,又能保持接入网设备11的性能,提高用户体验。
关于如何控制多个波束在空间栅格X n的总映射功率小于等于功率阈值P n,本申请实施例提供了如下一些示例性的方式。
可选的,可以通过控制多个波束中至少一个波束的功率小于波束功率阈值,从而该至少一个波束在空间栅格X n的映射功率的贡献值会减少,从而使得空间栅格X n的总映射功率小于等于功率阈值P n
可选的,该至少一个波束可以是在多个波束中在空间栅格X n的映射功率大于映射功率 阈值的波束。这里在空间栅格X n的映射功率大于映射功率阈值可以是在空间栅格X n的瞬时映射功率(例如是上述T时间段中的某一时刻),或者,可以是空间栅格X n的平均映射功率(例如可以是上述T时间段上,在空间栅格X n的平均映射功率)。
通过降低对空间栅格X n的映射功率贡献值最大的波束的功率,可以有效地降低空间栅格X n的总映射功率,从而使得空间栅格X n的总映射功率小于等于功率阈值P n
可选的,该至少一个波束可以包括数据信道波束。
通过降低数据信道波束的功率,不降低控制信道波束,可以保证终端接入的性能。
可选的,该至少一个波束可以包括数据信道波束和广播信道波束。
作为第二种实施方式,可以通过控制空间栅格X n的天线增益,使得空间栅格X n的总EIRP不超过E n
第二种实施方式
控制空间栅格X n的天线增益,可以通过控制发射多个波束的天线的结构调整多个波束在所述X n的天线增益,该多个波束的天线的结构可以包括天线阵列的组数、各个天线阵列中天线阵子的个数、各个天线阵列中天线阵子的排列方式、以及天线阵子之间的距离中的一个或者多个。
可选的,接入网设备11可以发射多个波束,例如可以按照硬件能够支持发射的功率发射多个波束,通过控制发射多个波束的天线的结构使得空间栅格X n的EIRP不超过E n
例如,接入网设备11的处理器1111可以指示天线1115改变天线结构,从而调整多个波束在所述X n的天线增益。
第三种实施方式
可以通过控制空间栅格X n的总映射功率和天线增益,使得空间栅格X n的总EIRP不超过E n
在第三种实施方式中,可以同时控制空间栅格X n的总映射功率和天线增益,当空间栅格X n的总映射功率和天线增益两者作用的结果,能够满足空间栅格X n的总EIRP不超过E n即可,本申请实施例不限制空间栅格X n的总映射功率的大小和天线增益的大小,或者空间栅格X n的总映射功率与天线增益的比例。关于控制栅格X n的总映射功率和天线增益,可以参考第一种实施方式和第二种实施方式中的内容。
通过控制空间栅格X n的总EIRP小于等于所述E n,由于空间栅格X n的总EIRP与该空间栅格X n的电场强度具有一关系,例如成正比,可以使得空间栅格X n的电场强度满足当地的EMF要求。
可选的,S302步骤可以由接入网设备11中的处理器1111执行,存储器1112可以存储处理器1111在执行S302中出现的数据,例如瞬时总映射功率或者平均总映射功率。
可选的,图3中的方法还可以包括:发射该多个波束。例如,可以由接入网设备11中的收发器1113和/或天线1115执行。
在图3中的S301之前,接入网设备11可以确定若干个空间栅格。图5是一种确定空间栅格的方法的示意图,下面结合图5对如何确定空间栅格进行进一步的说明,图5的方法可以由接入网设备11或者接入网设备11中的芯片执行。
S501:确定一角度范围。
其中,n为取遍0至N-1的整数,N为空间栅格的个数,N大于等于1。
可选的,这里角度范围可以包括水平面角度范围和/或垂直面角度范围。
可选的,接入网设备11可以将一水平面角度范围和一垂直面角度范围包括的空间方向划分为N个空间栅格,该水平面角度范围可以是0至360度,或者可以是0至360度中的一部分水平面角度范围;该垂直面角度范围可以是0至360度,或者可以是0至360度中的一部分垂直面角度范围。
作为第一种实施方式,该水平面角度范围可以是0至360度,垂直面角度范围可以是0至360度。
作为第二种实施方式,该水平面角度范围和垂直面角度范围可以是EMF强度需要控制的空间方向的水平面角度范围和垂直面角度范围。
关于如何确定EMF强度需要控制的空间方向的水平面角度范围和垂直面角度范围,提供了如下示例。
第一种示例:
在天线结构确定后,可以模拟出各个空间方向的天线增益。接入网设备11可以确定天线增益满足条件的空间方向需要控制EMF强度,例如该条件可以是天线增益超过一阈值。
由于一空间方向的天线增益超过一阈值后,在不控制功率时该空间方向上运营商要求的安全距离处的EMF强度可能较高,而当一水平面角度和垂直面角度的天线增益未超过该阈值时,即使在不控制功率时该水平面角度和垂直面角度对应的空间方向上的功率时,例如按照理想功率,例如200w,该空间方向上运营商要求的安全距离处EMF强度不会超过EMF强度阈值。
通过确定天线增益满足条件的空间方向的水平面角度范围和垂直面角度范围可以缩小空间栅格的角度范围,节约算法的复杂度。
下面结合图6a介绍一种示例的天线增益,需要说明的是,实现中,各个空间方向的天线增益可以通过数值、表格或者图形等方式表示,图6a的内容不构成限定。
图6a是一种水平面天线增益和垂直面天线增益的示意图,图6a中左侧的示意图可以表示水平面上的天线增益,图6a中右侧的示意图可以表示垂直面上的天线增益。
如图6a左侧的图所示,角坐标表示水平面角度,例如,0度,30度或者60度等等;同心圆表示与最大天线增益的差值,例如最大天线增益为24dbi,从里至外的同心圆分别表示比最大天线增益小30dB、比最大天线增益小20dB、比最大天线增益小10dB和与最大天线增益相等,即从里向外的同心圆分别表示天线增益-6dBi,4dBi,14dBi和24dBi。黑色粗线表示水平面的天线增益的包络,实线上每个点对应一个水平面的角度和天线增益,例如,水平面角度为90度的天线增益为24dbi。
如图6a右侧的图所示,角坐标表示垂直面角度,例如,0度,30度或者60度等等,同心圆表示与最大天线增益的差值,例如最大天线增益为24dbi,从里至外的同心圆分别表示比最大天线增益小30dB、比最大天线增益小20dB、比最大天线增益小10dB和与最大天线增益相等,即从里向外的同心圆分别表示天线增益-6dBi,4dBi,14dBi和24dBi。黑色粗线表示垂直面的天线增益的包络,实线上每个点对应一个垂直面的角度和天线增益,例如,垂直面角度为90度的天线增益为24dbi。
从图6a中的两张图中,可以看出,在一水平面角度范围内和垂直面角度范围内,天线增益会达到一阈值,例如24dbi。例如,接入网设备11可以确定水平面角度范围是35度至155度,且垂直面角度范围是75度至205度的空间方向天线增益接近24dbi,则水平面角度范围是35度至155度,且垂直面角度范围是75度至205度为EMF强度需要控制的空 间方向的水平面角度范围和垂直面角度范围。
第二种示例:
可以根据接入网设备11的地理环境获取EIRP强度需要控制的空间方向的水平面角度范围和垂直面角度范围,例如接入网设备11可以从运营商接收EIRP强度需要控制的空间方向的水平面角度范围和垂直面角度范围。
例如,可以确定可能存在人的空间方向,例如在天线至天空的方向,出现生物体的概率较小,即使出现生物体,例如飞机,生物体距离天线的距离较远,生物体所在位置的EIRP强度是安全的。或者,可以确定某些空间方向上生物体出现的位置与天线之间的距离小于一阈值,这些空间方向上的EIRP强度需要控制。或者,可以根据接入网设备11的理想功率和理想天线增益去计算EIRP强度需要控制的空间方向的水平面角度范围和垂直面角度范围。
另外,可以结合第一种示例和第二种示例共同确定EIRP强度需要控制的空间方向的水平面角度范围和垂直面角度范围。例如可以将第一种示例确定出的EIRP强度需要控制的空间方向的水平面角度范围和垂直面角度范围和第二种示例确定出的EIRP强度需要控制的空间方向的水平面角度范围和垂直面角度范围两者取交集或者取并集。
例如,S501可以由接入网设备11中的处理器1111执行。
S502:将该角度范围内的方向划分为N个空间栅格。
在确定需要进行空间栅格划分的一水平面角度范围和垂直面角度范围之后,接入网设备11可以进行空间栅格的划分。
可选的,可以存在一个或者多个空间栅格,即N可以为1,或者大于1的整数。
例如,N可以为1,此时存在一个空间栅格X 0(n=0);再例如,N可以为2,此时存在两个空间栅格X 0(n=0)和X 1(n=1);再例如,N可以为大于等于3的整数,本申请实施例对此不作限定。
可选的,当存在多个空间栅格时(即N大于1),一个空间栅格包括的多个空间方向与另一个空间栅格包括的多个空间方向不重叠,也就是说,一个空间栅格包括的多个空间方向中的任一空间方向可以与另一个空间栅格包括的多个空间方向均不相同。这样可以将一个空间方向唯一地划分至一个空间栅格中,便于空间栅格的EIRP的控制。
可选的,在划分空间栅格时,可以按照均匀的方式或者不均匀的方式进行划分。
均匀的方式可以理解为各个空间栅格的水平面角度范围的长度相等且垂直面角度范围的长度相等。
例如,当N大于等于2时,空间栅格X x的水平面角度范围为
Figure PCTCN2020073823-appb-000180
Figure PCTCN2020073823-appb-000181
垂直面角度范围为
Figure PCTCN2020073823-appb-000182
Figure PCTCN2020073823-appb-000183
空间栅格X y的水平面角度范围为
Figure PCTCN2020073823-appb-000184
Figure PCTCN2020073823-appb-000185
垂直面角度范围为
Figure PCTCN2020073823-appb-000186
Figure PCTCN2020073823-appb-000187
Figure PCTCN2020073823-appb-000188
Figure PCTCN2020073823-appb-000189
x为0至N-1中的一个整数,y为0至N-1中的一个整数,且x不等于y。
图6b为一种均匀划分栅格的示意图。图6b示意了将水平面角度范围为35度至155度,垂直面角度范围为75度至205度包括的空间方向划分成6*12=72个空间栅格。如图6b所示,每个空间栅格的水平面角度范围的长度为20dB,垂直面角度范围的长度为10dB。
均匀的划分方式可以通过确定空间栅格的水平面角度范围的长度和垂直面角度范围的长度,从而可以较简单地完成空间栅格的划分。
不均匀的方式可以理解为各个空间栅格的水平面角度范围的长度不等或者垂直面角 度范围的长度不等。
示例性地,当N大于等于2时,空间栅格X x的水平面角度范围为
Figure PCTCN2020073823-appb-000190
Figure PCTCN2020073823-appb-000191
垂直面角度范围为
Figure PCTCN2020073823-appb-000192
Figure PCTCN2020073823-appb-000193
空间栅格X y的水平面角度范围为
Figure PCTCN2020073823-appb-000194
Figure PCTCN2020073823-appb-000195
垂直面角度范围为
Figure PCTCN2020073823-appb-000196
Figure PCTCN2020073823-appb-000197
Figure PCTCN2020073823-appb-000198
或者
Figure PCTCN2020073823-appb-000199
x为0至N-1中的一个整数,y为0至N-1中的一个整数,且x不等于y。
在划分空间栅格时,无论是按照均匀划分的方式,还是按照不均匀划分的方式,可以使得空间栅格上的两个空间方向上的天线增益之间的差值小于等于差值阈值,下面进行说明。
当发射多个波束的天线结构确定后,可以确各个空间方向的天线增益。
可选的,空间栅格X n上多个空间方向的天线增益可以满足一定的条件,例如空间栅格上任两个空间方向的天线增益的差值可以小于等于差值阈值。
可以理解为,在空间栅格X n上选取两个空间方向,如图4所示,空间方向1
Figure PCTCN2020073823-appb-000200
Figure PCTCN2020073823-appb-000201
的天线增益为
Figure PCTCN2020073823-appb-000202
空间方向2
Figure PCTCN2020073823-appb-000203
的天线增益为
Figure PCTCN2020073823-appb-000204
Figure PCTCN2020073823-appb-000205
Figure PCTCN2020073823-appb-000206
之间的差值小于等于差值阈值,其中,
Figure PCTCN2020073823-appb-000207
Figure PCTCN2020073823-appb-000208
均为
Figure PCTCN2020073823-appb-000209
Figure PCTCN2020073823-appb-000210
中的一个值,
Figure PCTCN2020073823-appb-000211
Figure PCTCN2020073823-appb-000212
均为
Figure PCTCN2020073823-appb-000213
Figure PCTCN2020073823-appb-000214
中的一个值,
Figure PCTCN2020073823-appb-000215
不等于
Figure PCTCN2020073823-appb-000216
或者
Figure PCTCN2020073823-appb-000217
不等于
Figure PCTCN2020073823-appb-000218
例如该差值阈值为3dB。
通过控制空间栅格上任两个空间方向的天线增益之间的差值不至于过大,可以使得空间栅格上所有空间方向的天线增益较相近,从而便于通过控制多个波束在空间栅格的总映射功率从而控制多个波束在空间栅格的EIRP。
另外,不均匀的方式可以考虑使得空间栅格上的任两个空间方向上的天线增益的差值相差小于等于差值阈值,从而可以在保证控制空间栅格的EIRP的性能的基础上,使得空间栅格的数量尽量小,减小算法的复杂度。
可选的,S501可以由接入网设备11中的处理器1111执行,存储器1112可以存储N个空间栅格的水平面角度范围和垂直面角度范围。
需要说明的是,图5仅仅是一种示例,实际中,接入网设备11可以不先确定角度范围,再将该角度范围划分为若干个栅格,接入网设备11可以直接确定若干个空间栅格,例如接入网设备11从运营商或者监管机构获取到EIRP强度需要控制的一个或者多个空间方向,在1个空间方向的附近取一水平面角度范围和垂直面角度范围,从而确定若干个空间栅格。
上面结合图5、图6a和图6b介绍了如何划分空间栅格,当空间栅格划分完成后,可以确定各个空间栅格的EIRP阈值。图7a为一种确定空间栅格的EIRP阈值的方法的示意图,其内容可以与S301中的内容相互参考。如图7a所示:
S701:接入网设备11确定空间栅格的安全距离。
空间栅格的安全距离可以参考S301中的相关内容。
作为第一种示例,接入网设备11可以从运营商接收空间栅格的安全距离。
在多个空间栅格的场景下,可以接收各个空间栅格的安全距离,每个空间栅格的安全距离可以相同或者不同;或者,可以只接收一个安全距离,各个空间栅格都需要满足该安全距离的要求,例如运营商可以在各个空间栅格的安全距离中,选择一个最小的安全距离发送给接入网设备11。
例如,处理器1111通过网络接口1114接收空间栅格的安全距离。
作为第二种示例,接入网设备11可以从运营商接收空间栅格的建筑物的分布情况,以确定空间栅格的安全距离,例如,运营商可以先确定空间栅格的建筑物的位置,例如建筑物的经纬度,或者利用空间坐标系表示建筑物的位置,运营商可以将空间栅格上的建筑物的位置发送给接入网设备11,然后接入网设备11可以根据空间栅格的建筑物的位置计算空间栅格的安全距离。
例如,处理器1111通过网络接口1114接收空间栅格的建筑物的分布情况,然后处理器1111可以可以根据空间栅格的建筑物的位置计算空间栅格的安全距离。
在上述第一种示例和第二种示例中,接入网设备11可以从运营商获取空间栅格的水平安全距离和垂直安全距离,然后根据空间栅格的水平安全距离和垂直安全距离得到空间栅格的安全距离。
水平安全距离可以为空间栅格的安全距离在水平面的投影,垂直安全距离可以为空间栅格的安全距离在垂直面的投影。
例如,运营商可以确定水平安全距离为A,且垂直安全距离为B。各个空间栅格都需要满足水平安全距离为A,且垂直安全距离为B的EMF强度的限制。
图7b为一种水平安全距离和垂直安全距离的示意图,图7b以天线底端为坐标系的原点,如图7b所示,假设天线上方不需要控制EMF强度,通过A和B画出一个圆柱体,该圆柱体的半径为A,高度为C+B,其中C为天线的高度。
可选的,空间栅格上圆柱体表面与天线底端之间的距离为空间栅格的安全距离。
例如,空间栅格X n的水平面角度范围为
Figure PCTCN2020073823-appb-000219
Figure PCTCN2020073823-appb-000220
空间栅格X n的垂直面角度范围为
Figure PCTCN2020073823-appb-000221
Figure PCTCN2020073823-appb-000222
空间栅格X n的安全距离为R n可以是水平面角度为
Figure PCTCN2020073823-appb-000223
且垂直面角度为
Figure PCTCN2020073823-appb-000224
的安全距离,
Figure PCTCN2020073823-appb-000225
Figure PCTCN2020073823-appb-000226
Figure PCTCN2020073823-appb-000227
中的一个值,
Figure PCTCN2020073823-appb-000228
Figure PCTCN2020073823-appb-000229
Figure PCTCN2020073823-appb-000230
中的一个值。如图7b所示,R n
Figure PCTCN2020073823-appb-000231
Figure PCTCN2020073823-appb-000232
与圆柱体的交点与天线底端之间的距离。
可选的,当有多个空间栅格时,可以分别确定每个空间栅格上圆柱体表面与天线底端的距离。
S702:接入网设备11确定空间栅格的等效全向辐射功率EIRP阈值。
例如,接入网设备11可以根据上述公式5进行计算空间栅格X n的EIRP阈值E n:E n=a*S b*R n c(公式5),其中R n为空间栅格X n的安全距离,S为EMF强度阈值,a,b和c为正数,例如,a为4π,b为1,c为2。
可选的,处理器1111可以根据上述公式5进行计算。
可选的,除了S701和S702中的示例,接入网设备11可以直接从运营商获取空间栅格的等效全向辐射功率EIRP阈值,或者其他获取空间栅格的等效全向辐射功率EIRP阈值的方式,本申请实施例对此不作限制。
可选的,在确定空间栅格后,例如S502之后,可以判断空间栅格上是否需要进行EIRP控制,当空间栅格上需要进行EIRP控制时,对空间栅格进行控制,当空间栅格上不需要进行EIRP控制时,可以不进行EIRP控制,从而接入网设备11可以按照理想功率和理想天线增益发射波束,可以保证接入网设备11的性能。
下面对判断空间栅格是否需要EIRP控制进行说明。图8是一种确定空间栅格是否需要EIRP控制的示意图,需要说明的是,图8中的方案是可选的,接入网设备11可以不进行图8中的判断,直接对空间栅格进行EIRP控制。
S801:按照理想功率和理想天线增益计算空间栅格的理想安全距离。
这里理想功率可以理解为接入网设备11不控制功率的情况下,能够发射的最大功率;或者可以理解为接入网设备11硬件支持的发射功率;或者可以理解为若不需要考虑EMF强度,接入网设备11期望采用的发射功率。
这里理想天线增益可以理解为接入网设备11不控制天线增益的情况下,天线能够支持的最大天线增益或者可以理解为接入网设备11硬件支持的天线增益;或者可以理解为若不需要考虑EMF强度,接入网设备11期望采用的天线增益。
例如,接入网设备11的理想功率为200w,接入网设备11的理想天线增益为某一天线结构的天线增益。
可选的,空间栅格的理想安全距离可以为空间栅格对应的空间方向上与天线之间的距离。
可选的,可以按照上述公式
Figure PCTCN2020073823-appb-000233
计算R,其中,S为功率谱密度要求,P为天线端口输入功率,G为天线增益。
可选的,处理器1111可以执行S801。
S802:若空间栅格的理想安全距离大于实际安全距离,对空间栅格的总EIRP进行控制。
这里空间栅格的实际安全距离可以理解为由于运营商和/或监管机构的要求,空间栅格上要满足的安全距离。空间栅格的实际安全距离可以参考S301和S701中的相关内容。需要说明的是,这里为了与空间栅格的理想安全距离区分,这里用空间栅格的实际安全距离进行描述。
接入网设备11可以比较空间栅格的理想安全距离与实际安全距离之间的大小,当空间栅格的理想安全距离小于等于空间栅格的实际安全距离时,说明接入网设备11按照理想功率和理想天线增益发射波束时,空间栅格上实际安全距离处的EMF强度不会超过EMF强度阈值,此时不需要对空间栅格上的EIRP进行限制;当空间栅格的理想安全距离大于空间栅格的实际安全距离时,说明接入网设备11按照理想功率和理想天线增益发射波束时,空间栅格上实际安全距离处的EMF强度会超过EMF强度阈值,此时需要对空间栅格上的EIRP进行限制。
作为第一种示例,接入网设备11可以比较空间栅格上的理想安全距离和实际安全距离。
作为第二种示例,接入网设备11可以根据空间栅格上的理想安全距离得到空间栅格X n的理想水平安全距离和空间栅格的理想垂直安全距离,然后比较空间栅格的理想水平安全距离与空间栅格的实际水平安全距离,以及比较空间栅格的理想垂直安全距离和空间栅格的实际垂直安全距离,当空间栅格X n的理想水平安全距离大于空间栅格的实际水平安全距离,且空间栅格的理想垂直安全距离大于空间栅格的实际垂直安全距离时,对空间栅格的EIRP进行控制。此时在S701中,接入网设备11在接收部署接入网设备的水平实际安全距离和垂直实际安全距离后,可以不确定空间栅格的实际安全距离,可以先将空间栅格的理想水平安全距离与空间栅格的实际水平安全距离进行比较,以及将空间栅格的理想垂直安全距离和空间栅格的实际垂直安全距离进行比较,当空间栅格需要进行控制时,再根据S701确定空间栅格的实际安全距离。
例如,在图7b中,接入网设备11可以确定空间栅格上的理想安全距离是否落在圆柱体之外,例如可以比较空间栅格上的理想安全距离是否大于空间栅格上圆柱体表面与天线 底部之间的距离,或者可以比较空间栅格上的水平安全距离是否大于A,空间栅格上的垂直安全距离是否大于B。
例如,图9为一种理想安全距离的一种示意图,如图9所示,横轴代表水平安全距离,竖轴代表垂直安全距离,横轴的起点为天线所在的水平位置,竖轴的起点为楼顶所在的位置,坐标系中的曲线上,每个点可以代表一个空间方向(例如每个空间方向的水平面角度为90度,各个空间方向的垂直面角度不同),每个空间方向对应一个水平理想安全距离和一个垂直理想安全距离。
假设,运营商要求实际水平安全距离为30m,实际垂直安全距离为3.7m(由于楼顶与天线之间的距离为3.7m),水平面角度为90度且垂直面角度为11度,至水平面角度为90度且垂直面角度为24度的空间方向上的理想垂直安全距离超过了3.7m,例如,在水平面角度为90度且垂直面角度为18度的地方,理想垂直安全距离达到了4.7m,所以水平面角度为90度且垂直面角度为11度,至水平面角度为90度且垂直面角度为24度的空间方向上包括的空间栅格需要控制EIRP,例如按照实际垂直安全距离3.7m对这些空间栅格的EIRP进行控制。
S802可以由处理器1111执行。
下面就S302中如何获取多个波束在空间栅格的总映射功率进行说明。
图10是多个波束的示意图,如图10所示,假设在一时频域资源内,共有R个RBG,RBG r上可以有M r个波束(例如可以分别覆盖M r个终端,可以称为M r个流),r为0至R-1的整数,每个RBG上波束的个数可能不同,即M 0、M 1、M 2、...M r中的两个数可以相同或者不同。
图11是波束m在空间栅格X n的映射功率的示意图,波束m是上述多个波束中的一个波束。如图11所示,W dm在W n的投影可以表示为
Figure PCTCN2020073823-appb-000234
波束m在空间栅格X n的映射功率可以表示为
Figure PCTCN2020073823-appb-000235
其中,W dm为波束m的权值,W dm是K*1的向量,
Figure PCTCN2020073823-appb-000236
是W dm的转置,W n为空间栅格X n的权值,W n是K*1的向量。
可以分别获取多个波束中的每个波束在空间栅格X n的映射功率,然后根据每个波束在空间栅格X n的映射功率得到多个波束在空间栅格X n的总映射功率。例如,对每个波束在空间栅格X n的映射功率求和得到多个波束在空间栅格X n的总映射功率,需要说明的是,关于如何根据每个波束在空间栅格X n的映射功率得到多个波束在空间栅格X n的映射功率,存在其他方式,例如加权求和等,本申请实施例对此不作限定。例如,多个波束在空间栅格X n的总映射功率可以通过下面公式进行表示:
Figure PCTCN2020073823-appb-000237
其中,P n是多个波束在空间栅格X n的总映射功率,W dm为波束m的权值,W dm是K*1的向量,
Figure PCTCN2020073823-appb-000238
是W dm的转置,m为0至M-1的整数,M为一个RBG的波束的个数,R为RBG的个数,W n为空间栅格X n的权值,W n是K*1的向量。可选的,还可以在上述公式7的基础上,进行归一化,得到如下公式:
Figure PCTCN2020073823-appb-000239
另外,上述公式7和公式8还可以存在其他变形,本申请实施例对侧不作限制。
MIMO的波束不同于传统波束,传统技术在空间上形成一个较宽的波束,能量较为集中,每个空间方向的功率都相同,例如每个空间方向上的功率都可以是最大功率,而通过MIMO技术,可以在空间上同时形成若干个细长的波束,能量是不集中的,每个波束的功 率达不到最大功率,例如M*N个波束可以均分最大功率;此外多个波束的方向不同,每个波束最大功率的方向与空间栅格X n之间存在一定角度,所述每个波束在空间栅格X n的映射功率可能小于每个波束的最大功率,最终导致多个波束在空间栅格X n的映射功率达不到接入网设备11的最大功率。考虑到MIMO波束的特点,求多个波束在空间栅格X n的映射功率,能够较客观地估计空间栅格X n的映射功率。
上文介绍了本申请实施例提供的方法,下面介绍本申请实施例提供的一种通信装置1200。图12为通信装置1200的一种示意图,如图12所示:
通信装置1200包括处理单元1201和通信单元1202。可选的,通信装置1200还包括存储单元1203。处理单元1201、通信单元1202和存储单元1203通过通信总线相连。
处理单元1201可以是具有处理功能的单元,用于控制通信装置1200执行方法或者动作,处理单元1201可以包括一个或者多个处理器。
存储单元1203可以是具有存储功能的单元,例如存储单元1203可以包括一个或者多个存储器,存储器可以是一个或者多个设备或者电路中用于存储程序或者数据的器件。
存储单元1203可以独立存在,通过通信总线与处理单元1201相连。存储单元也可以与处理单元1201集成在一起。
通信单元1202可以是具有收发功能的单元,用于与其他通信设备进行通信。
通信装置1200可以用于通信设备、电路、硬件组件或者芯片中。
通信装置1200可以是本申请实施例中的接入网设备,例如接入网设备11。接入网设备11的示意图可以如图2所示。可选的,装置1200的通信单元1202可以包括天线和收发器,例如图2中的天线1115和收发器1113。可选的,装置1200的通信单元1202可以包括网络接口,例如图2中的网络接口1112。
通信装置1200可以是本申请实施例中的接入网设备中的芯片,例如接入网设备11中的芯片。通信单元1202可以是输入或者输出接口、管脚或者电路等。可选的,存储单元可以存储接入网设备侧方法的计算机执行指令,以使处理单元1201执行上述实施例中接入网设备11的方法。存储单元1203可以是寄存器、缓存或者RAM等,存储单元1203可以和处理单元1201集成在一起;存储单元1203可以是ROM或者可存储静态信息和指令的其他类型的静态存储设备,存储单元1203可以与处理单元1001相独立。可选的,随着无线通信技术的发展,收发机可以被集成在通信装置1200上,例如通信单元1202集成了收发机1212。
当通信装置1200可以本申请实施中的接入网设备或者接入网设备中的芯片时,通信装置1200可以执行由接入网设备执行的方法,例如接入网设备11执行的方法。
其中,处理单元1201可以执行上述接入网设备11执行的方法中计算、确定和获取等相关的动作,存储单元1203可执行上述接入网设备11执行的方法中数据和/或指令的存储的动作,通信单元1202可以执行上述接入网设备11执行的方法中发送和/或接收数据,与其他通信设备交互的动作,和与接入网设备11中其他单元交互的动作等等。
例如,处理单元1201可以确定空间栅格X n的EIRP阈值E n,控制多个波束在空间栅格X n的总EIRP,使得总EIRP小于等于EIRP阈值E n。可选的,当通信装置1200是接入网设备11时,通信单元1202发射多个波束,当通信装置1200是接入网设备中的芯片时,通信 单元1202可能指示收发器和/或天线发射多个波束,例如通信单元1202可能将多个波束的数据发送给收发器和/或天线,收发器和/或天线根据该多个波束的数据发射多个波束。
例如,处理单元1201可以确定空间栅格X n的安全距离R n,根据空间栅格X n的安全距离R n确定空间栅格X n的EIRP阈值E n
例如,处理单元1201可以确定空间栅格X n的水平面角度范围和垂直面角度范围。
例如,处理单元1201可以划分一个或者多个空间栅格。
例如,处理单元1201可以控制多个波束在空间栅格X n的总映射功率,和/或空间栅格X n的天线增益,来使得空间栅格X n的总EIRP不超过EIRP阈值E n
例如,处理单元1201可以获取多个波束在空间栅格X n的总映射功率。
例如,处理单元1201可以控制多个波束中至少一个波束功率,例如控制至少一个波束的权值等方式,控制至少一个波束的功率。
例如,处理单元1201还可以控制空间栅格X n的天线增益,例如处理单元1201可以控制天线结构,例如,处理单元1201可以指示天线调整结构,从而达到控制空间栅格X n的天线增益的目的。
处理单元1201、通信单元1202和存储单元1203可以执行上述接入网设备11的方法中其他的动作,具体可以参考上述方法。
图13为本申请实施例提供的另一种通信装置1300的示意图。如图13所示,通信装置1300可以包括确定单元1301和控制单元1302。
确定单元1301用于确定空间栅格X n的EIRP阈值E n,其中,EIRP阈值E n与空间栅格X n的安全距离R n相关,n为取遍0至N-1的整数,N为空间栅格的个数,N为大于等于1的正整数。
控制单元1302用于控制多个波束在空间栅格X n的总EIRP,使得总EIRP小于等于所述EIRP阈值E n
可选的,控制单元1302还用于通过控制所述多个波束在所述空间栅格X n的总映射功率,使得所述空间栅格X n的总EIRP不超过所述EIRP阈值E n
可选的,确定单元1301可以用于确定所述X n的天线增益G n;控制单元1302可以用于控制多个波束在空间栅格X n的总映射功率小于等于功率阈值P n,所述P n是根据E n和G n得到的。
可选的,控制单元1302可以用于通过控制所述多个波束中至少一个波束的功率小于波束功率阈值,使得多个波束在空间栅格X n的总映射功率小于等于所述P n
可选的,控制单元1302可以用于通过控制多个波束在X n的天线增益,使得X n的EIRP不超过所述E n,或者
通过控制多个波束在所述X n的天线增益和功率,使得X n的EIRP不超过E n
可选的,通信装置1300还可以包括发送单元1303,发送单元1303用于向网管发送多个波束在空间栅格X n的总映射功率。
通信装置1300可以执行上述方法中的其他步骤,可以参考上述图3至图11中的内容。
上述方法涉及到终端,可以由终端中的模块或者单元执行,终端中可以存在与该方法对应的模块或者单元,或者,终端中的存储器可以存储计算机指令和数据,处理器可以执行该计算机指令和数据从而执行上述方法。
另外,本申请实施例中的方法可以由一个或者多个模块或单元执行,模块或单元的一个或多个可以软件、硬件或二者结合来实现。
当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令以实现以上方法流程。所述处理器可以包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类运行软件的计算设备,每种计算设备可包括一个或多个用于执行软件指令以进行运算或处理的核。该处理器可以是个单独的半导体芯片,也可以跟其他电路一起集成为一个半导体芯片,例如,可以跟其他电路(如编解码电路、硬件加速电路或各种总线和接口电路)构成一个SoC(片上系统),或者也可以作为一个ASIC的内置处理器集成在所述ASIC当中,该集成了处理器的ASIC可以单独封装或者也可以跟其他电路封装在一起。该处理器除了包括用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
当以上模块或单元以硬件实现的时候,该硬件可以是CPU、微处理器、DSP、MCU、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
本申请实施例还提供了一种计算机可读存储介质。上述实施例中描述的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。如果在软件中实现,则功能可以作为一个或多个指令或代码存储在计算机可读介质上或者在计算机可读介质上传输。计算机可读介质可以包括计算机存储介质和通信介质,还可以包括任何可以将计算机程序从一个地方传送到另一个地方的介质。存储介质可以是可由计算机访问的任何目标介质。
作为一种可选的设计,计算机可读介质可以包括RAM,ROM,EEPROM,CD-ROM或其它光盘存储器,磁盘存储器或其它磁存储设备,或目标于承载的任何其它介质或以指令或数据结构的形式存储所需的程序代码,并且可由计算机访问。而且,任何连接被适当地称为计算机可读介质。例如,如果使用同轴电缆,光纤电缆,双绞线,数字用户线(DSL)或无线技术(如红外,无线电和微波)从网站,服务器或其它远程源传输软件,则同轴电缆,光纤电缆,双绞线,DSL或诸如红外,无线电和微波之类的无线技术包括在介质的定义中。如本文所使用的磁盘和光盘包括光盘(CD),激光盘,光盘,数字通用光盘(DVD),软盘和蓝光盘,其中磁盘通常以磁性方式再现数据,而光盘利用激光光学地再现数据。上述的组合也应包括在计算机可读介质的范围内。
本申请实施例还提供了一种计算机程序产品。上述实施例中描述的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。如果在软件中实现,可以全部或者部分得通过计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行上述计算机程序指令时,全部或部分地产生按照上述方法实施例中描述的流程或功能。上述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (22)

  1. 一种控制等效全向辐射功率EIRP的方法,其特征在于,所述方法包括:
    确定空间栅格X n的EIRP阈值E n,所述EIRP阈值E n与所述空间栅格X n的安全距离R n相关,n为取遍0至N-1的整数,N为空间栅格的个数,N为大于等于1的正整数;
    控制多个波束在所述空间栅格X n的总EIRP,使得所述空间栅格X n的所述总EIRP小于等于所述EIRP阈值E n
  2. 根据权利要求1所述的方法,其特征在于,所述EIRP阈值E n与所述空间栅格X n的所述安全距离R n相关包括:
    当N大于等于2时,若空间栅格X i的安全距离R i不同于空间栅格X j的安全距离R j,则所述X i的EIRP阈值E i不同于所述X j的EIRP阈值E j,i和j均为0至N-1的整数,i不等于j。
  3. 根据权利要求1或者2所述的方法,其特征在于,所述EIRP阈值E n、所述安全距离R n和EMF强度阈值S之间的关系满足:E n=a*S b*R n c,a,b和c为正数。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述空间栅格X n的水平面角度范围为水平面最小角度
    Figure PCTCN2020073823-appb-100001
    至水平面最大角度
    Figure PCTCN2020073823-appb-100002
    且所述空间栅格X n的垂直面角度范围为垂直面最小角度
    Figure PCTCN2020073823-appb-100003
    至垂直面最大角度
    Figure PCTCN2020073823-appb-100004
  5. 根据权利要求4所述的方法,其特征在于,水平面角度为
    Figure PCTCN2020073823-appb-100005
    且垂直面角度为
    Figure PCTCN2020073823-appb-100006
    的天线增益为天线增益
    Figure PCTCN2020073823-appb-100007
    水平面角度为
    Figure PCTCN2020073823-appb-100008
    且垂直面角度为
    Figure PCTCN2020073823-appb-100009
    的天线增益为天线增益
    Figure PCTCN2020073823-appb-100010
    天线增益
    Figure PCTCN2020073823-appb-100011
    与天线增益
    Figure PCTCN2020073823-appb-100012
    之间的差值小于等于差值阈值,其中,
    Figure PCTCN2020073823-appb-100013
    Figure PCTCN2020073823-appb-100014
    均为
    Figure PCTCN2020073823-appb-100015
    Figure PCTCN2020073823-appb-100016
    中的一个值,
    Figure PCTCN2020073823-appb-100017
    Figure PCTCN2020073823-appb-100018
    均为
    Figure PCTCN2020073823-appb-100019
    Figure PCTCN2020073823-appb-100020
    中的一个值,
    Figure PCTCN2020073823-appb-100021
    不等于
    Figure PCTCN2020073823-appb-100022
    或者
    Figure PCTCN2020073823-appb-100023
    不等于
    Figure PCTCN2020073823-appb-100024
  6. 根据权利要求4或者5所述的方法,其特征在于,当N大于等于2时,
    Figure PCTCN2020073823-appb-100025
    Figure PCTCN2020073823-appb-100026
    x为0至N-1中的一个整数,y为0至N-1中的一个整数,且x不等于y。
  7. 根据权利要求4或者5所述的方法,其特征在于,当N大于等于2时,
    Figure PCTCN2020073823-appb-100027
    或者
    Figure PCTCN2020073823-appb-100028
    x为0至N-1中的一个整数,y为0至N-1中的一个整数,且x不等于y。
  8. 根据权利要求4-7任一项所述的方法,其特征在于,所述安全距离R n为水平面角度为
    Figure PCTCN2020073823-appb-100029
    且垂直面角度为
    Figure PCTCN2020073823-appb-100030
    的安全距离,
    Figure PCTCN2020073823-appb-100031
    Figure PCTCN2020073823-appb-100032
    Figure PCTCN2020073823-appb-100033
    中的一个值,
    Figure PCTCN2020073823-appb-100034
    Figure PCTCN2020073823-appb-100035
    Figure PCTCN2020073823-appb-100036
    中的一个值。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    通过控制所述多个波束在所述空间栅格X n的总映射功率,使得所述空间栅格X n的 总EIRP不超过所述EIRP阈值E n
  10. 根据权利要求9所述的方法,其特征在于,通过控制所述多个波束在所述空间栅格X n的总映射功率,使得所述空间栅格X n的总EIRP不超过所述EIRP阈值E n包括:
    确定所述X n的天线增益G n
    控制所述多个波束在所述空间栅格X n的总映射功率,使得所述空间栅格X n的总映射功率小于等于功率阈值P n,所述P n是根据所述EIRP阈值E n和所述天线增益G n得到的。
  11. 根据权利要求10所述的方法,其特征在于,所述多个波束在所述空间栅格X n的总映射功率,包括所述多个波束在所述空间栅格X n的瞬时总映射功率。
  12. 根据权利要求10所述的方法,其特征在于,所述多个波束在所述空间栅格X n的总映射功率,包括T时间段上所述多个波束在所述空间栅格X n的平均总映射功率,所述T时间段上所述多个波束在所述空间栅格X n的平均总映射功率为T时间段上所述多个波束在所述空间栅格X n的瞬时总映射功率的平均值。
  13. 根据权利要求12所述的方法,其特征在于,所述T时间段包括t1时刻,其中,在所述t1时刻,所述多个波束在所述空间栅格X n的瞬时总映射功率大于所述P n
  14. 根据权利要求12或者13所述的方法,其特征在于,所述T时间段包括t2时刻,其中,在所述t2时刻,所述多个波束在所述空间栅格X n的瞬时总映射功率小于等于所述P n
  15. 根据权利要求10-14任一项所述的方法,其特征在于,所述天线增益G n为水平面角度为
    Figure PCTCN2020073823-appb-100037
    且垂直面角度为
    Figure PCTCN2020073823-appb-100038
    的天线增益,
    Figure PCTCN2020073823-appb-100039
    Figure PCTCN2020073823-appb-100040
    Figure PCTCN2020073823-appb-100041
    中的一个值,
    Figure PCTCN2020073823-appb-100042
    Figure PCTCN2020073823-appb-100043
    Figure PCTCN2020073823-appb-100044
    中的一个值。
  16. 根据权利要求11所述的方法,其特征在于,所述多个波束在所述X n的瞬时总映射功率包括所述多个波束在水平面角度为
    Figure PCTCN2020073823-appb-100045
    且垂直面角度为
    Figure PCTCN2020073823-appb-100046
    的瞬时总映射功率,
    Figure PCTCN2020073823-appb-100047
    Figure PCTCN2020073823-appb-100048
    Figure PCTCN2020073823-appb-100049
    中的一个值,
    Figure PCTCN2020073823-appb-100050
    Figure PCTCN2020073823-appb-100051
    Figure PCTCN2020073823-appb-100052
    中的一个值。
  17. 根据权利要求12-14任一项所述的方法,其特征在于,所述T上所述多个波束在所述空间栅格X n的平均总映射功率包括所述T上所述多个波束在水平面角度为
    Figure PCTCN2020073823-appb-100053
    且垂直面角度为
    Figure PCTCN2020073823-appb-100054
    的平均总映射功率;
    所述多个波束在所述X n的瞬时总映射功率包括所述多个波束在水平面角度为
    Figure PCTCN2020073823-appb-100055
    且垂直面角度为
    Figure PCTCN2020073823-appb-100056
    的瞬时总映射功率,其中
    Figure PCTCN2020073823-appb-100057
    Figure PCTCN2020073823-appb-100058
    Figure PCTCN2020073823-appb-100059
    中的一个值,
    Figure PCTCN2020073823-appb-100060
    Figure PCTCN2020073823-appb-100061
    Figure PCTCN2020073823-appb-100062
    中的一个值。
  18. 根据权利要求10-17任一项所述的方法,其特征在于,所述方法还包括:
    通过控制所述多个波束中至少一个波束的功率小于波束功率阈值,使得所述多个波束在所述空间栅格X n的总映射功率小于等于所述P n
  19. 根据权利要求18所述的方法,其特征在于,所述至少一个波束为所述多个波束中在所述空间栅格X n的映射功率大于映射功率阈值的波束。
  20. 根据权利要求11-19任一项所述的方法,其特征在于,所述方法还包括:
    向网管发送所述多个波束在所述空间栅格X n的总映射功率。
  21. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的该计算机程序或指令,使得所述通信装置执行权利要求1至20任一所述的方法。
  22. 一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,所述计算机程序或指令被执行时,使得权利要求1至20任一所述的方法被执行。
PCT/CN2020/073823 2019-01-22 2020-01-22 一种控制eirp的方法、通信装置和通信系统 WO2020151748A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20744967.9A EP3905430A4 (en) 2019-01-22 2020-01-22 METHOD OF CONTROLLING EIRP, COMMUNICATION DEVICE AND COMMUNICATION SYSTEM
AU2020212219A AU2020212219B2 (en) 2019-01-22 2020-01-22 Eirp control method, communications apparatus, and communications system
CA3127254A CA3127254C (en) 2019-01-22 2020-01-22 Eirp control method, communications apparatus, and communications system
US17/380,807 US11456783B2 (en) 2019-01-22 2021-07-20 EIRP control method, communications apparatus, and communications system
US17/897,510 US20230075467A1 (en) 2019-01-22 2022-08-29 Eirp control method, communications apparatus, and communications system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910059033.6 2019-01-22
CN201910059033.6A CN111464219B (zh) 2019-01-22 2019-01-22 一种控制等效全向辐射功率eirp的方法、通信装置和通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/380,807 Continuation US11456783B2 (en) 2019-01-22 2021-07-20 EIRP control method, communications apparatus, and communications system

Publications (1)

Publication Number Publication Date
WO2020151748A1 true WO2020151748A1 (zh) 2020-07-30

Family

ID=71679876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073823 WO2020151748A1 (zh) 2019-01-22 2020-01-22 一种控制eirp的方法、通信装置和通信系统

Country Status (6)

Country Link
US (2) US11456783B2 (zh)
EP (1) EP3905430A4 (zh)
CN (1) CN111464219B (zh)
AU (1) AU2020212219B2 (zh)
CA (1) CA3127254C (zh)
WO (1) WO2020151748A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4207885A4 (en) * 2020-09-29 2024-03-13 Huawei Tech Co Ltd METHOD AND APPARATUS FOR REGULATING TRANSMISSION POWER

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110727633A (zh) * 2019-09-17 2020-01-24 广东高云半导体科技股份有限公司 基于SoC FPGA的边缘人工智能计算系统构架
CN111163372A (zh) * 2019-12-28 2020-05-15 Oppo广东移动通信有限公司 网络设备
CN115696542A (zh) * 2021-07-31 2023-02-03 华为技术有限公司 功率控制方法及通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101283525A (zh) * 2005-08-31 2008-10-08 提捷洛技术股份有限公司 多天线发射信号的平均eirp控制
CN104396157A (zh) * 2012-04-16 2015-03-04 高通股份有限公司 使用空时块码的系统和方法
WO2018056876A1 (en) * 2016-09-23 2018-03-29 Telefonaktiebolaget Lm Ericsson (Publ) Network node and method therein for for determining a beam to be transmitted for at least a first user equipment
WO2018064009A1 (en) * 2016-09-28 2018-04-05 Idac Holding, Inc. Uplink power control

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6466155B2 (en) * 2001-03-30 2002-10-15 Ensco, Inc. Method and apparatus for detecting a moving object through a barrier
CN1333613C (zh) * 2003-09-25 2007-08-22 大唐移动通信设备有限公司 预测电波传播损耗以配置移动通信网络的方法和装置
KR101512465B1 (ko) * 2008-05-08 2015-04-17 삼성전자주식회사 인지 무선 기반의 무선통신 시스템에서 채널 상황 정보요청 장치 및 방법
US9225396B2 (en) * 2013-02-15 2015-12-29 Intel Corporation Apparatus, system and method of transmit power control for wireless communication
US10587332B2 (en) * 2014-01-27 2020-03-10 Peter Lemme System and method for communicating via a satellite in an inclined geosynchronous orbit
US20190036578A1 (en) * 2015-10-07 2019-01-31 Nokia Solutions And Networks Oy Techniques to reduce radiated power for mimo wireless systems
GB2543563B (en) * 2015-10-23 2020-02-12 Cambium Networks Ltd Method and Apparatus for Controlling Equivalent Isotropic Radiated Power

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101283525A (zh) * 2005-08-31 2008-10-08 提捷洛技术股份有限公司 多天线发射信号的平均eirp控制
CN104396157A (zh) * 2012-04-16 2015-03-04 高通股份有限公司 使用空时块码的系统和方法
WO2018056876A1 (en) * 2016-09-23 2018-03-29 Telefonaktiebolaget Lm Ericsson (Publ) Network node and method therein for for determining a beam to be transmitted for at least a first user equipment
WO2018064009A1 (en) * 2016-09-28 2018-04-05 Idac Holding, Inc. Uplink power control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3905430A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4207885A4 (en) * 2020-09-29 2024-03-13 Huawei Tech Co Ltd METHOD AND APPARATUS FOR REGULATING TRANSMISSION POWER

Also Published As

Publication number Publication date
EP3905430A4 (en) 2022-03-09
CA3127254A1 (en) 2020-07-30
US20210351815A1 (en) 2021-11-11
EP3905430A1 (en) 2021-11-03
CA3127254C (en) 2024-04-16
CN111464219A (zh) 2020-07-28
AU2020212219B2 (en) 2023-06-15
US20230075467A1 (en) 2023-03-09
AU2020212219A1 (en) 2021-08-19
CN111464219B (zh) 2022-04-22
US11456783B2 (en) 2022-09-27

Similar Documents

Publication Publication Date Title
WO2020151748A1 (zh) 一种控制eirp的方法、通信装置和通信系统
KR20200140866A (ko) 다중 패널 ue에 대한 빔 표시
JP7128263B2 (ja) 端末、基地局装置、及び通信方法
US11108477B2 (en) Method and apparatus for determining broadcast beam weighted value in wireless communications system
US11764843B2 (en) Adaptation of beamformed transmission
WO2021164676A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2020010527A1 (zh) 波束赋形方法及装置、基站、存储介质
EP3592048A1 (en) Power determination method, device, and system
WO2017167503A1 (en) Dynamic time division duplex interference mitigation in a wireless network
WO2017071587A1 (zh) 通信方法和装置
US11671838B2 (en) Methods and nodes for negotiating citizens broadband radio service devices active antenna system antenna pattern and radio planning for citizen's broadband radio service band
WO2021022479A1 (zh) 波束赋形方法、装置、无线接入网设备及可读存储介质
US10917895B2 (en) Power control method and apparatus
JP7128820B2 (ja) 端末及び通信方法
US11362725B2 (en) Reshaping beams of a beam pattern
WO2023092361A1 (zh) 通信系统中的终端以及发送设备
WO2023010957A1 (zh) 功率控制方法及通信装置
WO2021098291A1 (zh) 一种虚拟天线映射方法及网络设备
WO2019052441A1 (zh) 一种用于生成扩展符号的方法及装置
Yang et al. A prediction model for electromagnetic radiation of multi-system base station
WO2023115341A1 (zh) 无线通信的方法、终端设备及网络设备
US20230362828A1 (en) Communication control method, control station, and communication control program
Li et al. Experiments of a polarization-controlled active antenna to enhance BAN on-body link in human dynamic channels
CN116347495A (zh) 测算天线方位角方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20744967

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3127254

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020212219

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2020744967

Country of ref document: EP

Effective date: 20210730

ENP Entry into the national phase

Ref document number: 2020212219

Country of ref document: AU

Date of ref document: 20200122

Kind code of ref document: A