WO2020010527A1 - 波束赋形方法及装置、基站、存储介质 - Google Patents

波束赋形方法及装置、基站、存储介质 Download PDF

Info

Publication number
WO2020010527A1
WO2020010527A1 PCT/CN2018/095192 CN2018095192W WO2020010527A1 WO 2020010527 A1 WO2020010527 A1 WO 2020010527A1 CN 2018095192 W CN2018095192 W CN 2018095192W WO 2020010527 A1 WO2020010527 A1 WO 2020010527A1
Authority
WO
WIPO (PCT)
Prior art keywords
sector
frequency
broadcast beam
cell
target
Prior art date
Application number
PCT/CN2018/095192
Other languages
English (en)
French (fr)
Inventor
张大刚
宋照红
陶茂智
王新宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880095353.0A priority Critical patent/CN112385151B/zh
Priority to PCT/CN2018/095192 priority patent/WO2020010527A1/zh
Publication of WO2020010527A1 publication Critical patent/WO2020010527A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of data transmission technologies, and in particular, to a beamforming method and device, a base station, and a storage medium.
  • the signal coverage area of each base station can be divided into multiple sectors, and each sector is covered with signals of multiple frequencies.
  • the frequencies of the signals covered in multiple sectors correspond one-to-one, and the frequencies with the corresponding relationship are equal.
  • the signal coverage area of each base station can be divided into three sectors, and the three sectors are covered with 1500 trillion Hertz (MHz), 1600MHz, and 1700MHz signals.
  • the range covered by the signal of each frequency is called a cell.
  • the terminal in the sector can select a cell and access it according to the signal quality of the cell in the sector to implement the communication service of the terminal.
  • the implementation process includes: determining a signal coverage range of each cell according to network planning requirements, and determining a signal to be sent to according to the signal coverage range of each cell. Forming weight of the broadcast beam of the corresponding cell, and then beamforming the broadcast beam of the corresponding cell according to the forming weight to form a directional broadcast beam, and realize the corresponding cell by the directional broadcast beam Signal coverage. And, in each sector, the signal coverage ranges of multiple cells determined according to the network planning requirements are basically the same.
  • the present application provides a beamforming method and device, a base station, and a storage medium, which can solve the problem of low power usage efficiency when implementing cell coverage in related technologies.
  • the technical solutions provided in this application are as follows:
  • the present application provides a beamforming method, including: obtaining position information of multiple terminals in a sector; and adjusting the position of a broadcast beam of a target frequency in the sector based on the position information of the multiple terminals. Shaping weighting; based on the adjusted shaping weighting, beamforming the broadcast beam of the target frequency in the broadcast beam to be sent to the sector to adjust the broadcast beam location of the target frequency Covered cell range.
  • the beam forming method obtaineds position information of multiple terminals in a sector, adjusts the forming weight of a broadcast beam in the sector based on the position information, and based on the adjusted forming Beamforming the broadcast beam with weights to adjust the range of cells covered by the broadcast beam according to the position of the terminal in the sector, and then adjust the density of the power consumed when the cell is covered by the broadcast beam at various locations in the sector. Improve power usage efficiency.
  • adjusting the shaping weight of a broadcast beam of a target frequency in the sector based on the position information of the multiple terminals includes: among multiple available frequencies in the sector , Select a base layer frequency of the sector; and adjust a shaping weight of a broadcast beam of a non-base layer frequency in the sector based on the position information of the multiple terminals, where the non-base layer frequency is an available amount of the sector A frequency other than the base layer frequency.
  • the selection of the base layer frequency of the sector includes determining a frequency different from the base layer frequency of an adjacent sector among the plurality of available frequencies of the sector as the base layer frequency of the sector.
  • the sector By determining a frequency different from the base layer frequency of the adjacent sector as the base layer frequency of the sector, the sector can be made different from the frequency corresponding to the cell with the largest coverage in the adjacent sector, that is, the sector
  • the coverage of the cell with the largest coverage in the middle and the cell with the largest coverage in the adjacent sector are staggered, which can reduce the possibility of using multiple cells of the same frequency in a given area, thereby reducing the possibility of co-channel interference.
  • the adjacent sector may be a sector of a different base station. Therefore, staggering the coverage of the cell with the largest coverage in the sector and the cell with the largest coverage in the neighboring sector can also reduce the coverage of different base stations. Signal interference between sectors makes the communication quality of the terminal improved.
  • the method further includes: based on the adjusted shaping weighting, Obtaining a cell coverage map of a broadcast beam in the sector and at least one adjacent sector; based on the cell coverage map, determining that a range of a cell covered by a broadcast beam of a first frequency in the sector is in the sector Whether the relative position of is the same as the relative position of the cell range covered by the broadcast beam of the first frequency in the at least one adjacent sector in the corresponding adjacent sector, and the first frequency is the target frequency Any one of the frequencies; when the relative position of the cell range covered by the broadcast beam of the first frequency in the sector in the sector is the same as the broadcast of the first frequency in the at least one adjacent sector When the relative position of the cell range covered by the beam is the same in the corresponding adjacent sector, the shaping weight of the first frequency broadcast beam in the sector is readjusted until the first frequency broadcast beam in the sector is adjusted. Covered The
  • the relative position of the cell range covered by the broadcast beam of the first frequency in the sector is relative to the first position in at least one adjacent sector
  • the relative position of the cell range covered by the broadcast beam of the frequency is different in the corresponding adjacent sector, which can make the cell range covered by the broadcast beam of the first frequency in the sector and the broadcast beam of the first frequency in the adjacent sector
  • the range of cells covered is staggered. Compared to related technologies, it can reduce the possibility of multiple cells using the same frequency in a given area, and reduce the possibility of signal interference between sectors of different base stations, thereby reducing Co-frequency interference and signal interference between sectors of different base stations occur to improve the spectral efficiency of signal transmission, and then improve the communication quality of the terminal.
  • determining a relative position of a cell range covered by a broadcast beam of a first frequency in the sector in the sector is relative to the first position in the at least one adjacent sector.
  • Whether the relative position of the cell range covered by the broadcast beam of the same frequency in the corresponding adjacent sector is the same including: obtaining, based on the cell coverage map, all the broadcast beam locations in the sector and the at least one adjacent sector The area of the covered cell range; based on the area of the cell range, sorting the broadcast beams in each sector separately; when the sort order of the broadcast beams of the first frequency in the sector is the same as the first adjacent sector
  • the sorting order of the first frequency broadcast beam is the same, determine the relative position of the cell range covered by the first frequency broadcast beam in the sector in the sector, and the relative position in the sector with the first adjacent sector.
  • the relative range of the cell range covered by the broadcast beam of the first frequency is the same in the first adjacent sector, and the first adjacent sector is any phase in the at least one adjacent sector. Adjacent sectors.
  • the method further includes: The adjusted shaping weight determines the total power consumed by the broadcast beam in the sector to achieve cell coverage; determines the difference between the rated power and the total power, and the rated power is available in the sector Based on the sum of the power of the transmitted beams; based on the difference, increasing the service power of the target service in the sector.
  • the power use efficiency can be improved, more power can be provided for the user's service channel usage, and the signal-to-noise ratio of the signal received by the terminal is improved.
  • the user experience has been greatly improved.
  • the adjusting a forming weight of a broadcast beam of a target frequency in the sector based on the position information of the multiple terminals includes: based on the position information of the multiple terminals, Acquiring the position distribution characteristics of the plurality of terminals in a sector, the position distribution characteristics being used to reflect an overview of the position distribution of all terminals in the sector; and adjusting the target frequency in the sector based on the position distribution characteristics The shaping weight of the broadcast beam.
  • obtaining the location distribution characteristics of the multiple terminals in a sector based on the location information of the multiple terminals includes: obtaining a location distribution instruction based on the location information of the multiple terminals, and the location distribution.
  • the instruction is used to indicate the position distribution feature.
  • the adjusting a forming weight of a broadcast beam of a target frequency in the sector based on the position information of the multiple terminals includes: based on the position information of the multiple terminals, Obtaining an adjustment target when adjusting a cell range covered by the broadcast beam of the target frequency, the adjustment target being obtained according to a position distribution characteristic of the plurality of terminals in the sector; and based on the adjustment target, adjusting A weighting value for a broadcast beam of a target frequency in the sector.
  • the location distribution characteristics include: uniform distribution or centralized distribution; when the location distribution characteristics are uniform distribution, the adjustment target is used to indicate: reducing a cell radius of a cell corresponding to the target frequency, and Keep the cell coverage width of the cell corresponding to the target frequency unchanged; when the location distribution feature is a concentrated distribution, the adjustment target is used to indicate: reduce the cell coverage width of the cell corresponding to the target frequency, and maintain The cell radius of the cell corresponding to the target frequency is unchanged.
  • the location distribution feature When the location distribution feature is uniformly distributed, by reducing the cell radius and keeping the cell coverage width constant, it is possible to access more terminals in a limited spectrum according to the distribution characteristics of the terminals in space, so as to facilitate more Users provide communication services to improve spectrum efficiency.
  • the adjusting a forming weight of a broadcast beam of a target frequency in the sector based on the position information of the multiple terminals includes: based on the position information of the multiple terminals, A weight adjustment instruction is obtained, where the weight adjustment instruction carries a target forming weight of a broadcast beam of a target frequency in the sector, and the target forming weight is based on the multiple terminals in the fan.
  • the position distribution characteristics within the region are obtained by adjusting the shaping weight of the broadcast beam of the target frequency, and the position distribution characteristics are obtained according to the position information of the multiple terminals; based on the weight adjustment instruction,
  • the forming weight of the broadcast beam of the target frequency is adjusted to the target forming weight.
  • the acquiring position information of multiple terminals in a sector includes: for each terminal in the sector, receiving an uplink signal sent by the terminal; and determining a position of the terminal based on the uplink signal information.
  • the location information of the terminal includes: the direction in which the terminal is located, and the distance from the terminal to the base station, and determining the location information of the terminal based on the uplink signal includes: based on the uplink signal
  • the signal strength or transmission delay determines the direction in which the terminal is located; based on the transmission delay, determines the distance from the terminal to the base station.
  • the present application provides a beamforming device, including: a first acquisition module for acquiring position information of a plurality of terminals in a sector; and an adjustment module for acquiring position information based on the plurality of terminals, Adjusting a shaping weight of a broadcast beam of a target frequency in the sector; a processing module, configured to, based on the adjusted shaping weight, perform, on the broadcast beam to be sent to the sector, The broadcast beam is beamformed to adjust a cell range covered by the broadcast beam of the target frequency.
  • the adjustment module includes: a selection sub-module for selecting a base-layer frequency of the sector among a plurality of available frequencies of the sector; and an adjustment sub-module for use based on the multiple terminals Position information of the base station, and adjust the forming weight of the broadcast beam of the non-base-layer frequency in the sector.
  • the non-base-layer frequency is a frequency other than the base-layer frequency among the available frequencies of the sector.
  • the selection sub-module is configured to determine, among a plurality of available frequencies of the sector, a frequency different from a base layer frequency of an adjacent sector as a base layer frequency of the sector.
  • the apparatus further includes: a second obtaining module, configured to obtain a cell coverage map of a broadcast beam in the sector and at least one adjacent sector based on the adjusted forming weights; a determining module, configured to: Based on the cell coverage map, determine the relative position of the cell range covered by the broadcast beam of the first frequency in the sector in the sector and the first frequency in the at least one adjacent sector Whether the relative position of the range of the cell covered by the broadcast beam in the corresponding adjacent sector is the same, the first frequency is any frequency of the target frequency; the adjustment module is further configured to be used when the sector The relative position of the range of cells covered by the broadcast beam of the first frequency in the sector, and the range of cells covered by the broadcast beam of the first frequency in the at least one adjacent sector is in the corresponding adjacent sector When the relative position in the area is the same, the shaping weight of the broadcast beam of the first frequency in the sector is readjusted until the range of the cell covered by the broadcast beam of the first frequency in the sector is in the sector Relative position The first broadcast beam
  • the judgment module is configured to: obtain an area of a cell range covered by all broadcast beams in the sector and the at least one adjacent sector based on the cell coverage map; based on the cell range Area, sort the broadcast beams in each sector separately; when the sort order of the broadcast beams of the first frequency in the sector is the same as the sort order of the broadcast beams of the first frequency in the first adjacent sector To determine the relative position of the range of the cell covered by the broadcast beam of the first frequency in the sector in the sector, and the cell covered by the broadcast beam of the first frequency in the first adjacent sector The relative positions of the ranges in the first neighboring sectors are the same, and the first neighboring sectors are any neighboring sectors in the at least one neighboring sector.
  • the apparatus further includes: a first determining module, configured to determine a total power consumed by the broadcast beams in the sector to achieve cell coverage based on the adjusted forming weights; a second determining module, Configured to determine a difference between a rated power and the total power, where the rated power is a sum of powers available for transmitting beams in the sector; and adding a module for increasing the power in the sector based on the difference. Service power of the target business.
  • the adjustment module includes: an acquisition sub-module configured to acquire the position distribution characteristics of the plurality of terminals in the sector based on the position information of the plurality of terminals, and the position distribution characteristics are used to reflect An overview of the position distribution of all terminals in the sector; the adjustment submodule is configured to adjust the forming weight of the broadcast beam of the target frequency in the sector based on the position distribution characteristics.
  • the obtaining submodule is configured to obtain a location distribution instruction based on the location information of the multiple terminals, where the location distribution instruction is used to indicate the location distribution feature.
  • the adjustment module is configured to obtain an adjustment target when adjusting a cell range covered by the broadcast beam of the target frequency based on the position information of the multiple terminals, and the adjustment target is based on the The position distribution characteristics of multiple terminals in the sector are obtained; and based on the adjustment target, the shaping weighting value of the broadcast beam of the target frequency in the sector is adjusted.
  • the location distribution characteristics include: uniform distribution or centralized distribution; when the location distribution characteristics are uniform distribution, the adjustment target is used to indicate: reducing a cell radius of a cell corresponding to the target frequency, and Keep the cell coverage width of the cell corresponding to the target frequency unchanged; when the location distribution feature is a concentrated distribution, the adjustment target is used to indicate: reduce the cell coverage width of the cell corresponding to the target frequency, and maintain The cell radius of the cell corresponding to the target frequency is unchanged.
  • the adjustment module is configured to obtain a weight adjustment instruction based on the position information of the multiple terminals, where the weight adjustment instruction carries a target assignment of a broadcast beam of a target frequency in the sector.
  • a shape weight, the target forming weight is obtained by adjusting the forming weight of a broadcast beam of the target frequency according to the position distribution characteristics of the multiple terminals in the sector, and the position is obtained The distribution characteristics are obtained according to the position information of the multiple terminals; and based on the weight adjustment instruction, the forming weight of the broadcast beam of the target frequency is adjusted to the target forming weight.
  • the first acquisition module includes: a receiving sub-module configured to receive, for each terminal in the sector, an uplink signal sent by the terminal; and a determining sub-module configured to be based on the uplink signal Determining location information of the terminal.
  • the location information of the terminal includes: a direction in which the terminal is located, and a distance from the terminal to a base station, and the determining submodule is configured to: based on a signal strength or a transmission delay of the uplink signal To determine the direction in which the terminal is located; and based on the transmission delay, determine the distance from the terminal to the base station.
  • the present application provides a base station, where the base station includes: the beamforming apparatus according to any one of the second aspect.
  • the present application provides a beamforming device, the beamforming device includes: a processor; a memory for storing executable instructions of the processor; wherein the processor is configured to: Obtain position information of multiple terminals in a sector; adjust the forming weight of a broadcast beam of a target frequency in the sector based on the position information of the multiple terminals; and based on the adjusted forming weight, wait for transmission Among the broadcast beams to the sector, beamforming is performed on the broadcast beam of the target frequency to adjust a cell range covered by the broadcast beam of the target frequency.
  • the present application provides a storage medium, when an instruction in the storage medium is executed by a processor of a terminal, so that the terminal can execute the beamforming method according to any one of the first aspects.
  • FIG. 1 is a schematic structural diagram of a communication system involved in a beamforming method provided in this application;
  • FIG. 2 is a schematic diagram of dividing a signal coverage area of each base station into three sectors provided by the present application;
  • FIG. 3 is a schematic diagram of a cell coverage provided by the present application.
  • FIG. 4 is a schematic structural diagram of a communication system involved in another beamforming method provided in the present application.
  • FIG. 5 is a schematic structural diagram of a base station provided by the present application.
  • FIG. 6 is a schematic structural diagram of a terminal provided by this application.
  • FIG. 8 is a flowchart of a method for obtaining location information of multiple terminals in a sector provided in the present application
  • FIG. 9 is a flowchart of a method for determining location information of a terminal based on an uplink signal provided by the present application.
  • FIG. 10 is a schematic diagram of signal coverage provided by a base station and an adjacent base station after a base layer frequency in a sector is provided according to the present application;
  • FIG. 11 is a flowchart of a method for adjusting a forming weight of a broadcast beam of a target frequency in a sector based on position information of multiple terminals provided in the present application;
  • FIG. 12 is a schematic diagram showing that the position distribution feature is a uniform distribution provided by the present application.
  • FIG. 13 is a schematic diagram of a position distribution feature with an axial distribution provided by the present application.
  • FIG. 14 is a schematic diagram of a position distribution feature with a band distribution provided by the present application.
  • 15 is a flowchart of another method for adjusting a forming weight of a broadcast beam of a target frequency in a sector based on position information of multiple terminals provided in the present application;
  • FIG. 16 is a flowchart of another method for adjusting a weight of a broadcast beam forming a target frequency in a sector based on position information of multiple terminals provided in the present application;
  • FIG. 17 is a schematic diagram after performing beamforming on a coverage area corresponding to the broadcast beam shown in FIG. 10 provided in the present application; FIG.
  • FIG. 18 is a block diagram of a beamforming device provided by the present application.
  • 19 is a block diagram of an adjustment module provided by the present application.
  • FIG. 20 is a block diagram of another beamforming apparatus provided by the present application.
  • FIG. 21 is a block diagram of another adjustment module provided by the present application.
  • FIG. 22 is a block diagram of a first obtaining module provided by the present application.
  • FIG. 23 is a schematic structural diagram of a beamforming device provided by the present application.
  • the signal coverage of each cell after the signal coverage of each cell is determined according to network planning requirements, the signal coverage of each cell will not change. And in each sector, the signal coverage of multiple cells determined according to the network planning requirements is basically the same, so that the density of the power consumed when the cell is covered by the broadcast beam at each location in the sector results in the same Broadcast beams also need to be transmitted at the locations of the undistributed terminals. Therefore, in the related art, the implementation method of implementing the signal coverage of each cell in the sector has low power usage efficiency, resulting in waste of power.
  • an embodiment of the present application provides a beamforming method.
  • the beamforming method obtains position information of multiple terminals in a sector, adjusts the forming weights of broadcast beams in the sector based on the position information, and Beamforming the broadcast beam based on the adjusted shaping weights to adjust the range of cells covered by the broadcast beam according to the position of the terminal in the sector, and then adjust the cell coverage by using the broadcast beam at various locations in the sector.
  • the density of consumed power can improve the efficiency of power use.
  • the communication system involved in the beamforming method may include: a base station 10 and a terminal 20, and a communication connection can be established between the terminal 20 and the base station 10, so that the base station 10 and the terminal are convenient. 20 can communicate with each other.
  • the base station 10 and one terminal 20 included in the communication system shown in FIG. 1 are only examples.
  • the base station 10 can communicate with multiple terminals 20, which is not limited in the embodiment of the present application.
  • the communication between the base station 10 and multiple terminals 20 is taken as an example to describe the beamforming method provided in the embodiment of the present application.
  • the signal coverage area of the base station 10 can be divided into multiple sectors, and each sector is covered with signals of multiple frequencies, or it can be understood as Both signals are covered with multiple frequency points.
  • the frequency can be represented by the frequency point, and there is a correspondence relationship between the frequency point and the frequency.
  • the frequency of the signal generally refers to the center frequency of the signal, but for ease of description, no distinction is made in the embodiments of the present application.
  • the base station 10 can obtain the position information of multiple terminals 20 in the sector, and adjust the shaping weighting of the broadcast beam of the target frequency in the sector according to the position information of the multiple terminals 20, and then according to the adjusted The beamforming is performed on the broadcast beam of the target frequency in the sector to adjust the range of the cell covered by the broadcast beam of the target frequency.
  • the terminal 20 may send an uplink signal to the base station 10, so that the base station 10 determines the location information of the terminal 20 according to the uplink signal.
  • the target frequency broadcast beam may be a broadcast beam of all frequencies in the corresponding sector, or the target frequency may be a broadcast beam of some frequencies in the corresponding sector.
  • the signal coverage area of each base station 10 can be divided into sector 1, sector 2 and sector 3, and referring to FIG. 3, each sector is covered with a frequency f1 as 1500MHz, frequency f2 is 1600MHz, and frequency f3 is 1700MHz.
  • the broadcast beam of the target frequency can be the broadcast beam of frequency 1500MHz, the broadcast beam of frequency f2 of 1600MHz, and the broadcast beam of frequency f3 of 1700MHz in the corresponding sector.
  • the target frequency may be a broadcast beam with a frequency f2 of 1600 MHz and a broadcast beam with a frequency f3 of 1700 MHz in the corresponding sector.
  • the same pattern in the coverage range corresponding to the broadcast beam is used to identify the coverage range of the broadcast beam of the same frequency.
  • the communication system involved in the beamforming method provided in the embodiment of the present application may include: a base station 10, a management device 30, and a terminal 20.
  • the terminal 20 and the base station 10 can communicate with each other. Communication, and the management device 30 and the base station 10 can communicate.
  • the terminal 20 in FIG. 4 has the same function as the terminal 20 in FIG. 1.
  • the base station 10 in FIG. 4 is configured to obtain the location information of the terminal 20 in the sector, and send a request to the management device 30 to adjust the shaping weight of the broadcast beam of the target frequency in the sector based on the location information, and receive
  • the response sent by the management device 30 according to the request is so as to adjust the weighting of the broadcast beam of the target frequency in the sector according to the response, so as to beamform the broadcast beam of the target frequency in the sector so that the The cell range covered by the broadcast beam of the target frequency is adjusted.
  • the communication system may be a communication system supporting a fourth generation (4G) access technology, such as a long term evolution (LTE) access technology; or the communication system may also be Supports fifth generation (5G) access technology communication systems, such as new wireless (newradio, NR) access technologies; or, the communication system may also support third generation (3G) access technologies Communication system, such as (universal mobile communication system, UMTS) access technology; or the communication system may also be a communication system of second generation (2G) access technology, such as global mobile system (global mobile communication system) (GSM) access technology; or, the communication system may also be a communication system supporting multiple wireless technologies, such as a communication system supporting LTE technology and NR technology. In addition, this communication system can also be applied to future-oriented communication technologies.
  • 4G fourth generation
  • 5G fifth generation
  • 5G new wireless
  • NR new wireless
  • 3G third generation
  • Communication system such as (universal mobile communication system, UMTS) access technology
  • 2G global mobile system (global mobile communication system) (
  • the base station 10 in the communication system may be a device for supporting the terminal 20 to access the communication system.
  • the base station 10 may be a base station 10 transceiver (BTS) and a base station 10 controller in a 2G access technology communication system.
  • BSC base station controller
  • RNC radio network controller
  • 3G access technology communication system evolved base station 10 in 4G access technology communication system
  • ENB next-generation base station 10
  • TRP transmission and reception point
  • relay node relay node
  • access point access point
  • the terminal 20 in the communication system may be a device that provides voice or data connectivity to a user.
  • the terminal 20 may also be referred to as a user equipment (UE), a mobile station (mobile station), or a subscriber unit (subscriber unit). Station (station) or terminal 20 equipment (TE).
  • the terminal 20 may be a cellular phone, a personal digital assistant (PDA), a wireless modem (modem), a handheld device (laptop computer), a cordless phone (cordless phone), Wireless local loop (wireless local loop (WLL)) or tablet (pad).
  • PDA personal digital assistant
  • modem wireless modem
  • handheld device laptop computer
  • cordless phone cordless phone
  • WLL Wireless local loop
  • tablet tablet
  • devices that can access the communication system can communicate with the network side of the communication system, or communicate with other objects through the communication system can be the terminal 20 in the embodiment of this application, for example, smart Terminals 20 in traffic and automobiles, household equipment in smart homes, power meter reading instruments in smart grids, voltage monitoring instruments, environmental monitoring instruments, video monitoring instruments or cash registers in smart security networks, and so on.
  • communication may also be performed between multiple terminals 20.
  • the terminal 20 may be statically fixed or mobile.
  • the base station 10 may include a baseband unit (BBU), a radio frequency unit, and an antenna.
  • the radio frequency unit may be a remote radio unit (RRU), and the RRU is physically separated from the BBU; or, the radio unit It may be a radio frequency unit (RFU), which is physically set together with the BBU.
  • the radio frequency unit can be physically integrated with the antenna.
  • the integrated device can be called an Active Antenna Unit (AAU).
  • AAU Active Antenna Unit
  • FIG. 5 is a schematic diagram of a base station 10 including an RRU.
  • the base station 10 may include a BBU 101, an RRU 102, and an antenna 103.
  • the BBU 101 can also be called a processing unit, which is mainly used to process baseband signals, such as channel coding, frequency multiplexing, digital modulation, and spread spectrum.
  • RRU 102 can also be called a transceiver unit, transceiver, transceiver circuit or transceiver, which is mainly used for the conversion of radio frequency signals and baseband signals.
  • the antenna 103 is mainly used for receiving and transmitting radio frequency signals with the terminal 20.
  • the RRU 102 receives the baseband signal from the BBU 101, converts the baseband signal into a radio frequency signal, and sends the radio frequency signal to the terminal 20 through the antenna 103.
  • the antenna 103 receives the radio frequency signal from the terminal 20 and sends it to the RRU 102.
  • the RRU 102 converts the radio frequency signal into a baseband signal and sends it to the BBU 101.
  • the BBU 101 further processes the baseband signal , Such as decoding. And the signal coverage of one sector can be achieved by one RRU 102 and one antenna 103, or the signal coverage of one sector can be achieved by multiple RRU 102 and multiple antennas 103.
  • the BBU 101 may include a processor and a memory, and the processor may be used to control a device that the base station 10 implements a series of functions.
  • the processor may be a general-purpose central processing unit (CPU), a digital signal processor (DSP), a microprocessor, an application-specific integrated circuit (ASIC) Microcontroller (Microcontroller Unit, MCU), Field Programmable Gate Array (FPGA), or integrated circuit for implementing logic operations.
  • the memory may be any medium for carrying or storing the desired program code in the form of instructions or data structures and which can be accessed by a computer.
  • the memory may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM), or a device that can store information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • EEPROMs electrically erasable programmable read-only memories
  • the terminal 20 may include at least one processor 201, at least one radio frequency unit 202, and at least one memory 203.
  • the processor 201 is connected to the radio frequency unit 202, and the memory 203 is connected to the radio frequency unit 202.
  • the terminal 20 may further include an output device 204, an input device 205, and at least one antenna 206.
  • the antenna 206 is connected to the radio frequency unit 202, and the output device 204 and the input device 205 are connected to the processor 201.
  • processor 201 of the terminal For the processor 201 of the terminal 20, reference may be made to the description of the processor 201 of the base station 10, and for the memory 203 of the terminal 20, reference may be made to the description of the memory 203 of the base station 10.
  • the radio frequency unit 202 of the terminal 20 may also be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver. It is mainly used for transmitting and receiving radio frequency signals with the base station 10 and converting radio frequency signals and baseband signals.
  • the output device 204 may communicate with the processor 201, and the output device 204 may display information in a variety of ways.
  • the output device 204 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector. Wait.
  • An input device 205 may be in communication with the processor 201, and the input device 205 may accept user input in a variety of ways.
  • the input device 205 may be a mouse, a keyboard, a touch screen device, or a sensing device.
  • the radio frequency unit 202 may receive a baseband signal from the processor 201, convert the baseband signal into a radio frequency signal, and send the radio frequency signal to the base station 10 through the antenna 206.
  • the antenna 206 can receive a radio frequency signal from the base station 10 and send the radio frequency signal to the radio frequency unit 202.
  • the radio frequency unit 202 can convert the radio frequency signal into a baseband signal and send it to the processor 201, and the processor 201 can process the baseband signal. For further processing, such as decoding processing.
  • the management device 30 may be a machine with a computing function such as a general-purpose computer, a special-purpose computer, a network device, a server, or a distributed device, which is not specifically limited in this embodiment of the present application.
  • FIG. 7 is a flowchart of a beamforming method according to an embodiment of the present application.
  • the method may be applied to a base station in the communication system shown in FIG. 1 or FIG. 4. As shown in FIG. 7, the method may include:
  • Step 301 Perform beamforming on a broadcast beam to be sent to a corresponding cell based on network planning requirements, so as to achieve signal coverage in different cells.
  • the signal coverage of each cell can be determined according to the network planning requirements, and the forming weights of the broadcast beams to be sent to the corresponding cell can be determined according to the signal coverage of each cell.
  • the shaping weight is used to beamform the broadcast beam of the corresponding cell, so as to achieve signal coverage of the corresponding cell by the beamformed broadcast beam.
  • the RRU may be controlled to turn on power according to network planning requirements, so as to send a radio frequency signal having a preset strength to an antenna, and transmit the radio frequency signal having a preset strength through the antenna.
  • Step 302 Obtain position information of multiple terminals in a sector.
  • step 302 may include:
  • Step 3021 For each terminal in the sector, receive an uplink signal sent by the terminal.
  • the uplink signal may be a signal sent by the terminal to the base station when the terminal requests access to the network or during the communication process. For example, when the terminal accesses the network, the terminal may send an uplink signal requesting access to the network to the base station. Alternatively, when the terminal communicates with other terminals, the terminal may send a signal to be sent to the other terminal to the base station, so that the signal is transmitted to the other terminal through the base station, thereby realizing communication between the terminal and the other terminal.
  • the signals to other terminals are uplink signals sent by the terminal to the base station.
  • Step 3022 Determine location information of the terminal based on the uplink signal.
  • the location information of the terminal may include: the direction in which the terminal is located, and the distance between the terminal and the base station.
  • the implementation process of step 3022 may include:
  • Step 3022a Determine the direction in which the terminal is located based on the signal strength or transmission delay of the uplink signal.
  • step 3022a may be implemented through an antenna in the base station.
  • a base station may include multiple antennas, and the multiple antennas are disposed at different positions.
  • a base station may include 64 or 128 antennas, and the multiple antennas may be arranged in an array.
  • the terminal sends an uplink signal to the base station, the multiple antennas can receive the uplink signal, and because each antenna is set at a different position, the transmission delay of the uplink signal received by the antennas set at different positions is different and different The signal strength of the uplink signal received by the antenna at the location is different.
  • the direction in which the terminal is located can be determined based on at least one of the transmission delay and signal strength of the uplink signals received by the multiple antennas, and the setting positions and setting distances between the multiple antennas.
  • the transmission delay can be obtained by reading a timing advance (TA) sent by the base station to the terminal.
  • TA timing advance
  • Step 3022b Determine the distance from the terminal to the base station based on the transmission delay.
  • the distance from the terminal to the base station is the product of the transmission delay and the signal transmission speed. Because each antenna is set at a different position, the transmission delay of the uplink signal received by the antennas set at different positions is different. Based on the transmission delay of the uplink signals received by the multiple antennas, and the set positions and set distances between the multiple antennas, the distance from the terminal to the base station can be determined. And after determining the direction in which the terminal is located and the distance from the terminal to the base station, the location information of the terminal can be determined.
  • the direction of the terminal relative to the base station is 30 degrees south-southeast based on the delay of receiving uplink signals by multiple antennas, and the distance between the terminals of the multi-base station is 5 kilometers, it can be determined that the terminal is 30 south-east of the base station 5 kilometers in the direction of the degree.
  • step 303 among a plurality of available frequencies of the sector, a base layer frequency of the sector is selected.
  • the base layer frequency may be set to a frequency corresponding to a cell with the largest coverage in the sector after beamforming.
  • one of the plurality of available frequencies may be randomly selected as the base layer frequency of the sector.
  • a frequency different from the base layer frequency of an adjacent sector may be determined as the base layer frequency of the sector.
  • the step 303 may be performed by a base station, that is, when the step 303 is implemented, the base station may select a base layer frequency of the sector among multiple available frequencies of the sector.
  • this step 303 may also be performed by a management device.
  • the management device may be a device that supervises a base station.
  • the management device may obtain the availability of each sector in multiple base stations that it manages. Frequency, and then based on the principle that the base layer frequencies of adjacent sectors are different, the base layer frequency of each sector is determined, and the determined base layer frequency of each sector is sent to the corresponding base station.
  • the signal coverage of the base station and an adjacent base station is shown in FIG. 10, where the dotted line shows the coverage of the base frequency in the two base stations.
  • the base station frequency of the base station is different from that of the neighboring base station.
  • step 303 by determining a frequency different from the base layer frequency of the neighboring sector as the base layer frequency of the sector, the frequency corresponding to the sector with the largest coverage area in the neighboring sector can be made different.
  • the possibility of a cell reduces the possibility of co-channel interference, and the adjacent sector can be a sector of a different base station. Therefore, the cell with the largest coverage in the sector and the coverage in the adjacent sector are made.
  • the coverage of the largest cell is staggered, and signal interference between sectors of different base stations can be reduced, so that the communication quality of the terminal is improved.
  • step 303 is an optional step, and whether to perform step 303 can be selected according to actual needs.
  • Step 304 Adjust the forming weight of the broadcast beam of the target frequency in the sector based on the position information of the multiple terminals.
  • step 304 may include: adjusting the forming weights of broadcast beams of non-base-layer frequencies in the sector based on the position information of multiple terminals, and the non-base-layer frequencies Is the frequency of the sector other than the base layer frequency.
  • the base layer frequency is the frequency corresponding to the cell with the largest coverage in the sector after beamforming
  • the base layer frequency can be changed.
  • the forming weight of the broadcast beam is the same as the forming weight determined according to the network planning requirements, so that the coverage of the cell covered by the broadcasting beam at the base frequency is the same as the coverage determined by the network planning requirements, so as to ensure that the Signal coverage, thereby avoiding no signal coverage when the terminal moves in the sector where the cell is located. That is, by not adjusting the formation weight of the broadcast beam at the base layer frequency, it is possible to ensure that the signal coverage of the sector determined according to the network planning requirements is not changed, so that the beam forming The signal coverage of the sector meets the network planning requirements.
  • the base station obtains the location distribution characteristics of the terminal in the sector according to the location information of the terminal, and adjusts the forming weight of the broadcast beam of the target frequency in the sector according to the location distribution characteristics.
  • an implementation process of the first implementable manner of adjusting the forming weight may include:
  • Step 3041a Based on the location information of multiple terminals, obtain the location distribution characteristics of multiple terminals in the sector.
  • the location distribution feature is used to reflect the location distribution profile of all terminals in the sector.
  • the implementation of step 3041a may include at least the following three cases:
  • the base station automatically obtains the location distribution characteristics based on the location information of multiple terminals.
  • the base station may store location distribution feature determination rules in advance. After the base station obtains the location information of multiple terminals, it may determine the location information of the multiple terminals based on the location information of the multiple terminals and the location distribution feature determination rules. More reflected location distribution characteristics. Alternatively, the base station may store multiple location distribution templates in advance. After the base station obtains the location information of multiple terminals, the base station may match the multiple location distribution templates based on the location information of the multiple terminals, and The position distribution template with the highest matching degree is determined as a position distribution feature corresponding to the position information of the plurality of terminals.
  • a rule or a position distribution template is determined according to the position distribution characteristics.
  • the process of determining the position distribution characteristics may be performed by a neural network, a naive Bayes model, and a k-means clustering model. , Fuzzy clustering model or support vector machine (English: support vector machine; SVM) model.
  • the base station obtains a location distribution instruction based on the location information of multiple terminals, and the location distribution instruction is used to indicate a location distribution feature.
  • the implementation manner of obtaining the location distribution instruction may include: the base station sends the location information of the multiple terminals to the management device, and after receiving the location information, the management device automatically obtains the location distribution characteristic and sends the location distribution characteristic to the base station .
  • the base station can periodically or real-time send the terminal's location information to the management device.
  • the implementation process of the management device's automatic acquisition of the location distribution feature please refer to the implementation process of the base station's automatic acquisition of the location distribution feature.
  • the management device may display the location information of the multiple terminals on the display screen of the management device and receive the management personnel based on the Position distribution instructions triggered by the displayed position information.
  • Step 3042a Adjust the forming weight of the broadcast beam of the target frequency in the sector based on the location distribution characteristics.
  • the location distribution feature and the rule for adjusting the forming weight may be stored in the base station in advance.
  • the base station may adjust the target frequency in the sector according to the rule and the location distribution feature obtained in step 3041a.
  • the shaping weight of the broadcast beam may be stored in the base station in advance.
  • the position distribution characteristics may include: a uniform distribution (refer to FIG. 12) and a centralized distribution
  • the centralized distribution may include: an axial distribution (refer to FIG. 13) and a band distribution (refer to FIG. 14), FIG. 12
  • the black dots in Figures 13, 13 and 14 are used to identify the location of the terminal.
  • the location distribution characteristics and the rules for adjusting the forming weights can be: when the location distribution characteristics are uniformly distributed, adjust the forming weights so that the target The cell radius of the cell corresponding to the frequency decreases, and the cell coverage width of the cell corresponding to the target frequency remains unchanged; when the location distribution is characterized by a centralized distribution, the shaping weight is adjusted to make the cell coverage width of the cell corresponding to the target frequency Decreases, and the cell radius of the cell corresponding to the target frequency remains unchanged.
  • the location distribution feature When the location distribution feature is uniformly distributed, by reducing the cell radius and keeping the cell coverage width constant, it is possible to access more terminals in a limited spectrum according to the distribution characteristics of the terminals in space, so as to facilitate more Users provide communication services to improve spectrum efficiency.
  • the base station obtains an adjustment target when adjusting the cell range covered by the broadcast beam of the target frequency according to the location information of the terminal, and adjusts the shaping of the broadcast beam of the target frequency in the sector according to the adjustment target.
  • Weight may include:
  • Step 3041b Obtain an adjustment target when adjusting the cell range covered by the broadcast beam of the target frequency based on the position information of multiple terminals.
  • the adjustment target may be obtained according to the position distribution characteristics of multiple terminals in the sector.
  • the adjustment target may be determined according to a preset adjustment target rule and location distribution characteristics reflected by multiple terminals, or the adjustment target may be information indicated by a manager according to the location information of multiple terminals. .
  • the location distribution characteristics include: uniform distribution or centralized distribution.
  • the adjustment target is used to indicate that the cell radius of the cell corresponding to the target frequency is reduced, and the cell coverage width of the cell corresponding to the target frequency is maintained.
  • the location distribution feature is a concentrated distribution, the adjustment target is used to indicate that: the cell coverage width of the cell corresponding to the target frequency is reduced, and the cell radius of the cell corresponding to the target frequency is kept unchanged.
  • the example of the adjustment target is only used as an example, and is not used to limit the present application, and the manner in which the adjustment target is formulated can be adjusted according to actual needs, which is not specifically limited in the embodiments of the present application.
  • Step 3042b Based on the adjustment target, adjust the shaping weight of the broadcast beam of the target frequency in the sector.
  • the adjustment target and the rule for adjusting the forming weight may be stored in the base station in advance.
  • the base station may adjust the forming weight of the broadcast beam of the target frequency in the sector according to the rule and the adjustment target. value.
  • the base station obtains a weight adjustment instruction according to the location information of the terminal, and adjusts the shaping weight of the broadcast beam of the target frequency in the sector according to the weight adjustment instruction.
  • a weight adjustment instruction may include:
  • Step 3041c Obtain a weight adjustment instruction based on the location information of multiple terminals.
  • the weight adjustment instruction carries a target forming weight of a broadcast beam of a target frequency in a sector, and the target forming weight is a broadcast of the target frequency according to a position distribution characteristic of multiple terminals in the sector.
  • the beam forming weights are obtained after adjustment, and the position distribution characteristics are obtained according to the position information of multiple terminals.
  • the base station may send the location information of multiple terminals to the management device, and the management device may determine the location distribution characteristics of the terminals in the sector according to the location information of the multiple terminals, and determine the target shaping according to the location distribution characteristics.
  • the weight is then carried in the weight adjustment instruction and sent to the base station, so that the base station can adjust the weight of the broadcast beam of the target frequency in the sector according to the weight of the target.
  • Step 3042c Adjust the shaping weight of the broadcast beam of the target frequency to the target shaping weight based on the weight adjustment instruction.
  • the base station may adjust the forming weight of the broadcast beam of the target frequency in the sector to the target forming weight carried by the weight adjustment instruction.
  • Step 305 Obtain a cell coverage map of a broadcast beam in a sector and at least one neighboring sector based on the adjusted shaping weights.
  • the process of signal coverage of the broadcast beam can be simulated to obtain the cell coverage map of the adjusted sector.
  • a cell coverage map of a broadcast beam in at least one neighboring sector adjacent to the sector may be obtained, so as to determine whether further adjustment is needed based on the cell coverage of the broadcast beam in the sector and at least one neighboring sector. After shaping the weights are adjusted.
  • the base station may estimate a preset algorithm based on the signal transmission strength, the azimuth of the transmitting antenna, the physical type and frequency of the antenna, and according to the link propagation model of the broadcast beam, and the adjusted shaping weights.
  • Cell coverage map of the adjusted sector may be set in advance, and after the shaping weight is adjusted, a mapping weight matching the adjusted shaping weight may be found in the correspondence, The cell coverage map corresponding to the shaping weight is determined as the cell coverage map corresponding to the adjusted shaping weight.
  • Step 306 Based on the cell coverage map of the broadcast beam in the sector and at least one neighboring sector, determine the relative position of the cell range covered by the broadcast beam of the first frequency in the sector in the sector, and at least one neighboring fan. Whether the relative range of the cell range covered by the broadcast beam of the first frequency in the zone is the same in the corresponding adjacent sector.
  • the first frequency is any frequency among the target frequencies.
  • the implementation process of step 306 may include:
  • Step 3061 Based on the cell coverage map, obtain the area of the cell range covered by all broadcast beams in the sector and at least one neighboring sector.
  • the area of the cell range covered by each broadcast beam can be counted according to the cell coverage map of the broadcast beam in the sector and at least one adjacent sector.
  • Step 3062 Sort the broadcast beams in each sector based on the area of the cell area.
  • the area of each cell area in each sector can be sorted in the order of the area of the cell area from large to small (or from small to large). And because the broadcast beam and the cell range have a one-to-one correspondence relationship, according to the sorting of the area of each cell range, the order of the broadcast beams in each sector can be obtained.
  • the three cells are a cell 11, a cell 12, and a cell 13, respectively, the cell 11 corresponds to a broadcast beam 11, the cell 12 corresponds to a broadcast beam 12, and the cell 13 corresponds to a broadcast Corresponding to beam 13, the cell area areas of the three cells are 120, 123, and 100.
  • the order of the three cells is: cell 12> cell 11 > Cell 13 can be obtained according to the ordering and the correspondence between the broadcast beam and the cell range.
  • the order of the broadcast beams in this sector is: broadcast beam 12> broadcast beam 11> broadcast beam 13.
  • adjacent sectors include three cells, the three cells are cell 21, cell 22, and cell 23, the cell 21 corresponds to the broadcast beam 21, the cell 22 corresponds to the broadcast beam 22, and the cell 23 corresponds to the broadcast Corresponding to beam 23, the cell area areas of the three cells are 132, 123, and 99.
  • the order of the three cells is: cell 21> cell 22 > Cell 23, according to the ordering and the correspondence between the broadcast beam and the cell range, the order of the broadcast beams in the adjacent sector is: broadcast beam 21> broadcast beam 22> broadcast beam 23.
  • Step 3063 When the sorting order of the broadcast beams of the first frequency in the sector is the same as the sorting order of the broadcast beams of the first frequency in the first adjacent sector, determine the cell covered by the broadcast beams of the first frequency in the sector.
  • the relative position of the range in the sector is the same as the relative position of the range of the cell covered by the broadcast beam of the first frequency in the first adjacent sector in the first adjacent sector.
  • the first neighboring sector is any neighboring sector among at least one neighboring sector.
  • the order of the broadcast beams in the sector is: broadcast beam 12> broadcast beam 11> broadcast beam 13, and the order of the broadcast beams in adjacent sectors is: broadcast beam 21> broadcast beam 22> broadcast beam 23, and assuming that the frequency of broadcast beam 11 is the same as the frequency of broadcast beam 21, the frequency of broadcast beam 12 is the same as the frequency of broadcast beam 22, the frequency of broadcast beam 13 is the same as the frequency of broadcast beam 23, according to the sector
  • the sequence of the internal broadcast beam and the sequence of the internal broadcast beam can be seen: the sequence of the broadcast beam 13 is the same as the sequence of the broadcast beam 23.
  • the relative position is the same as the relative position of the cell range covered by the broadcast beam 23 in the first adjacent sector.
  • Step 307 When the relative position of the range of the cell covered by the broadcast beam of the first frequency in the sector in the sector is in the corresponding adjacent sector with the range of the cell covered by the broadcast beam of the first frequency in at least one adjacent sector.
  • the shaping weight of the first frequency broadcast beam in the sector is readjusted until the relative position in the sector of the cell range covered by the first frequency broadcast beam in the sector is at least The relative position of the cell range covered by the broadcast beam of the first frequency in an adjacent sector is different in the corresponding adjacent sector.
  • the relative position of the cell range covered by the broadcast beam of the first frequency in the sector is relative to the first position in at least one adjacent sector
  • the relative position of the cell range covered by the broadcast beam of the frequency is different in the corresponding adjacent sector, which can make the cell range covered by the broadcast beam of the first frequency in the sector and the broadcast beam of the first frequency in the adjacent sector
  • the range of cells covered is staggered. Compared to related technologies, it can reduce the possibility of multiple cells using the same frequency in a given area, and reduce the possibility of signal interference between sectors of different base stations, thereby reducing Co-frequency interference and signal interference between sectors of different base stations occur to improve the spectral efficiency of signal transmission, and then improve the communication quality of the terminal.
  • Step 308 Based on the adjusted shaping weights, perform beamforming on the broadcast beam of the target frequency among the broadcast beams to be sent to the sector to adjust the cell range covered by the broadcast beam of the target frequency.
  • the BBU can also be called a processing unit, which is mainly used to complete the processing of the baseband signal.
  • the RRU is used to receive the baseband signal processed by the BBU, convert the baseband signal into a radio frequency signal, and then send the radio frequency signal to the antenna.
  • the antenna is caused to transmit the radio frequency signal to the sector.
  • the beamforming in the embodiment of the present application refers to multiplying a baseband signal corresponding to a broadcast beam of a target frequency by a shaping weight in a process in which a BBU processes a baseband signal, and then multiplying the baseband signal by the shaping weight.
  • the baseband signal is sent to the RRU. After the RRU converts it into a radio frequency signal, it is transmitted to the corresponding sector through the antenna, so that the cell range covered by the broadcast beam of the target frequency is adjusted, and the adjustment usually manifests as a decrease in the cell range.
  • the shaping weighting value of the broadcasting beam is adjusted according to the location distribution characteristic, and the adjusted shaping weight After performing beamforming on the broadcast beam, the coverage range corresponding to the corresponding broadcast beam is shown in FIG. 17.
  • the range of cells covered is determined by the fixed power.
  • the antenna is tilted downward. Angle (for example: mechanical downtilt or electrical downtilt).
  • Angle for example: mechanical downtilt or electrical downtilt.
  • the beamforming method provided in the embodiment of the present application adjusts the forming weight of the broadcast beam in the sector based on the position information of multiple terminals in the sector and based on the position information, so that the BBU processes the baseband signal based on This adjusted shaping weight is used to beamform the broadcast beam.
  • This adjusted shaping weight is used to beamform the broadcast beam.
  • it can adjust the coverage according to user needs, and can ensure that the adjusted coverage is consistent with network planning requirements, thereby improving the effective use of signals. rate.
  • Step 309 Based on the adjusted shaping weights, determine the total power consumed by the broadcast beams in the sector to achieve cell coverage.
  • the total power is a sum of power consumed when all broadcast beams in the sector achieve cell coverage, that is, a sum of power consumed when all broadcast beams in the sector are transmitted.
  • the BBU performs digital modulation on the baseband signal
  • the amplitude of the baseband signal corresponding to the broadcast beam is modulated according to a preset modulation rule to perform power allocation for transmitting the power of each broadcast beam. This power allocation result is recorded.
  • the record may be queried to obtain the power consumed for transmitting each broadcast beam, and then the total power consumed by the broadcast beam in the sector to achieve cell coverage.
  • a sector includes three cells, and the three cells are the cells covered by the broadcast beam 11, the broadcast beam 12, and the broadcast beam 13, respectively.
  • Step 310 Determine a difference between the rated power and the total power.
  • the rated power is the sum of the power available for transmitting beams in the sector, and the rated power can be determined according to network planning requirements.
  • the beams to be transmitted in a sector include: a broadcast beam used for cell coverage and a data beam used to provide communication services for a terminal. Therefore, the difference between the rated power and the total power can be understood as the sum of the power used to transmit the data beam.
  • the rated power of the sector determined according to network planning requirements is 300W
  • the total power consumed by the broadcast beam in the sector to achieve cell coverage is 128W
  • the difference between the amount of electric power and the total power is 172W, That is, the sum of the power used to transmit the data beam is 172W.
  • Step 311 Increase the service power of the target service in the sector based on the difference between the rated power and the total power.
  • the power of the broadcast beam used to transmit the target power is correspondingly reduced due to the decrease in the cell range. Accordingly, all The total power consumed by the broadcast beam to achieve cell coverage is reduced, so that the difference between the rated power and the total power is increased. Therefore, the data beam used in the sector to achieve the target service can be increased according to the increased difference.
  • Service power ie, increase the service power of the target service.
  • the implementation manner of increasing the service power of the data beam used to implement the target service in the sector may include: increasing the signal amplitude of the data beam.
  • the target service can be a service provided by all data beams in the sector.
  • the signal amplitude of each data beam can be randomly increased, or each of the data beams can be increased according to a preset rule.
  • the signal amplitude of the data beam For example, the signal amplitude of each data beam in the sector can be increased by the same amplitude.
  • the target service may be a service provided by some data beams in the sector.
  • the partial data beam may be at least one data beam randomly selected among all data beams in the sector, or may be at least one data beam determined according to a preset target.
  • the preset rule and the preset target may be determined according to actual needs, for example, may be determined according to network planning requirements, or may be determined according to parameters such as the priority of the terminal.
  • the target service when signals corresponding to all data beams in a sector are converted by one RRU, the target service may be a service provided by all data beams in the sector, and all data beams may use the rated power and the total power in common. Difference to increase the signal amplitude of all data beams.
  • the target service is a service provided by some data beams in the sector, and the target RRU can be determined in the multiple RRUs according to the partial data beams, and The amplitude of the signal converted by the target RRU is increased to increase the service power of the target service in the sector.
  • the power use efficiency can be improved, more power can be provided for the user's service channel usage, and the signal-to-noise ratio of the signal received by the terminal is improved.
  • the user experience has been greatly improved.
  • Step 312 Detect whether the location information of the terminal in the sector changes. When the location information of the terminal in the sector changes, repeat steps 302 to 311.
  • step 302. Go to step 311 to improve the power use efficiency and the spectral efficiency of signal transmission.
  • the beamforming method provided in the embodiment of the present application is not only applicable to wireless communication systems, but also applicable to other systems that require broadcast energy, so as to adjust the use range of the broadcast energy by using the beamforming method.
  • the beamforming method obtains position information of multiple terminals in a sector, adjusts the forming weight of a broadcast beam in the sector based on the position information, and Beamforming the broadcast beam based on the adjusted shaping weights to adjust the range of cells covered by the broadcast beam according to the position of the terminal in the sector, and then adjust the cell coverage by using the broadcast beam at various locations in the sector Compared with the related technology, the density of the consumed power improves the efficiency of power use.
  • step 303 can be selected not to be performed. Any person skilled in the art will be disclosed in the present invention. Within the technical scope of the invention, the methods that can be easily imagined should all be covered by the protection scope of the present invention, and therefore will not be described again.
  • FIG. 18 shows a block diagram of a beamforming apparatus according to an embodiment of the present application.
  • the beamforming apparatus 600 may include:
  • the first acquiring module 601 is configured to acquire position information of multiple terminals in a sector.
  • An adjustment module 602 is configured to adjust a forming weight of a broadcast beam of a target frequency in a sector based on position information of multiple terminals.
  • a processing module 603 is configured to perform beamforming on a broadcast beam of a target frequency among broadcast beams to be sent to a sector based on the adjusted shaping weights to adjust a cell range covered by the broadcast beam of the target frequency.
  • the adjustment module 602 may include:
  • a selection sub-module 6021 is configured to select a base layer frequency of a sector among a plurality of available frequencies of the sector.
  • the adjustment sub-module 6022 is configured to adjust the shaping weight of the broadcast beam of the non-base-layer frequency in the sector based on the location information of multiple terminals.
  • the non-base-layer frequency is a frequency other than the base-layer frequency among the available frequencies of the sector.
  • a selection sub-module 6021 is configured to: among a plurality of available frequencies of the sector, determine a frequency different from a base-layer frequency of an adjacent sector as a base-layer frequency of the sector.
  • the apparatus 600 may further include:
  • a second obtaining module 604 is configured to obtain a cell coverage map of a broadcast beam in a sector and at least one adjacent sector based on the adjusted forming weight.
  • a judging module 605 is configured to judge, based on the cell coverage map, the relative position of the cell range covered by the broadcast beam of the first frequency in the sector in the sector and the coverage of the broadcast beam of the first frequency in at least one adjacent sector. Whether the relative position of the cell range in the corresponding adjacent sector is the same, and the first frequency is any one of the target frequencies.
  • the adjustment module 602 is further configured to: when the relative position of the range of the cell covered by the broadcast beam of the first frequency in the sector is in the sector, and the range of the cell covered by the broadcast beam of the first frequency in at least one adjacent sector, When the corresponding relative positions in the adjacent sectors are the same, the shaping weight of the broadcast beam of the first frequency in the sector is readjusted until the relative range of cells in the sector covered by the broadcast beam of the first frequency in the sector is relative The position is different from the relative position of the cell range covered by the first frequency broadcast beam in at least one adjacent sector in the corresponding adjacent sector.
  • the judging module 605 is configured to:
  • the area of the cell range covered by all broadcast beams in the sector and at least one neighboring sector is obtained.
  • the broadcast beams in each sector are sorted separately.
  • the sorting order of the first frequency broadcast beam in the sector is the same as the sorting order of the first frequency broadcast beam in the first neighboring sector, it is determined that the range of the cell covered by the first frequency broadcast beam in the sector is in the fan range.
  • the relative position in the zone is the same as the relative position in the first adjacent sector of the cell range covered by the broadcast beam of the first frequency in the first adjacent sector, and the first adjacent sector is at least one adjacent fan. Any adjacent sector in the zone.
  • the apparatus 600 may further include:
  • a first determining module 606 is configured to determine, based on the adjusted forming weight, the total power consumed by the broadcast beam in the sector to achieve cell coverage.
  • the second determining module 607 is configured to determine a difference between the rated power and the total power, where the rated power is a sum of powers available for transmitting beams in the sector.
  • An adding module 608 is configured to increase the service power of the target service in the sector based on the difference.
  • the adjustment module 602 may further include:
  • the obtaining submodule 6023 is configured to obtain the position distribution characteristics of the multiple terminals in the sector based on the location information of the multiple terminals, and the location distribution characteristics are used to reflect the location distribution profile of all the terminals in the sector.
  • An adjustment sub-module 6022 is configured to adjust a forming weight of a broadcast beam of a target frequency in a sector based on a location distribution feature.
  • the obtaining submodule 6023 is configured to obtain a location distribution instruction based on the location information of multiple terminals, and the location distribution instruction is used to indicate a location distribution feature.
  • the adjustment module 602 is configured to:
  • an adjustment target when adjusting the cell range covered by the broadcast beam of the target frequency is obtained, and the adjustment target is obtained according to the position distribution characteristics of the multiple terminals in the sector.
  • the shaping weight of the broadcast beam of the target frequency in the sector is adjusted.
  • the location distribution characteristics may include: uniform distribution or centralized distribution.
  • the adjustment target is used to indicate that the cell radius of the cell corresponding to the target frequency is reduced, and the cell coverage width of the cell corresponding to the target frequency is maintained.
  • the adjustment target is used to indicate that the cell coverage width of the cell corresponding to the target frequency is reduced, and the cell radius of the cell corresponding to the target frequency is kept unchanged.
  • the adjustment module 602 is configured to:
  • a weight adjustment instruction is obtained, and the weight adjustment instruction carries the target forming weight of the broadcast beam of the target frequency in the sector.
  • the target forming weight is based on the multiple terminals in the sector.
  • the position distribution characteristics are obtained by adjusting the shaping weight of the broadcast beam of the target frequency, and the position distribution characteristics are obtained according to the position information of multiple terminals.
  • the forming weight of the broadcast beam of the target frequency is adjusted to the target forming weight.
  • the first obtaining module 601 may include:
  • the receiving sub-module 6011 is configured to receive, for each terminal in the sector, an uplink signal sent by the terminal.
  • a determining sub-module 6012 is configured to determine position information of the terminal based on the uplink signal.
  • the location information of the terminal may include: a direction in which the terminal is located, and a distance from the terminal to the base station, and a determining sub-module 6012 is configured to:
  • the distance from the terminal to the base station is determined.
  • the beamforming device obtained in the embodiment of the present application obtains position information of multiple terminals in a sector through a first acquisition module, and the adjustment module adjusts the forming weight of a broadcast beam in the sector based on the position information.
  • the processing module performs beamforming on the broadcast beam based on the adjusted shaping weights, so as to adjust the range of the cell covered by the broadcast beam according to the position of the terminal in the sector, and then adjust the cell coverage through the broadcast beam at various positions in the sector Compared with related technologies, the density of power consumed at the time improves the efficiency of power use.
  • An embodiment of the present application further provides a beamforming apparatus.
  • the beamforming apparatus may include: a processor; a memory for storing executable instructions of the processor; wherein the processor is configured to: obtain multiple data in a sector; Based on the location information of multiple terminals; adjusting the shaping weight of the broadcast beam of the target frequency in the sector based on the location information of multiple terminals; based on the adjusted shaping weight, in the broadcast beam to be sent to the sector,
  • the target frequency broadcast beam is beamformed to adjust the cell range covered by the target frequency broadcast beam.
  • an embodiment of the present application further provides a beamforming device 20.
  • the beamforming device 20 may include a processor 22 and a signal interface 24.
  • the processor 22 includes one or more processing cores.
  • the processor 22 executes various functional applications and data processing by running software programs and modules.
  • the processor 22 may include one or more of a central processing unit, a digital signal processor, a microprocessor, a microcontroller, or an artificial intelligence processor, and may further optionally include a hardware accelerator required to perform an operation, such as Various logic operation circuits.
  • the signal interface 24 is used to establish a connection with other devices or modules.
  • the signal interface 24 may be connected to a transceiver. Therefore, optionally, the device 20 may further include a transceiver (not shown in the figure).
  • the transceiver specifically performs signal transmission and reception.
  • the processor 22 needs to perform a signal transceiving operation, it can call or drive the transceiver to perform the corresponding transceiving operation. Therefore, when the device 20 performs signal transmission and reception, the processor 22 is used to determine or initiate a transmission and reception operation, which is equivalent to the initiator, and the transceiver is used to perform specific transmission and reception, which is equivalent to the performer.
  • the transceiver may also be a transceiver circuit, a radio frequency circuit, or a radio frequency unit, which is not limited in this embodiment.
  • the beamforming device 20 further includes components such as a memory 26 and a bus 28.
  • the memory 26 and the signal interface 24 are connected to the processor 22 through a bus 28, respectively.
  • the memory 26 may be used to store software programs and modules. Specifically, the memory 26 may store at least one program module 262 required for a function, and the program may be an application program or a driver program.
  • the program module 262 may include:
  • the first obtaining unit 2621 has the same or similar functions as the first obtaining module 601.
  • the adjustment unit 2622 has the same or similar functions as the adjustment module 602.
  • the processing unit 2623 has the same or similar functions as the processing module 603.
  • An embodiment of the present application further provides a base station, and the base station includes the beamforming apparatus provided in the foregoing embodiment.
  • An embodiment of the present application further provides a storage medium.
  • the storage medium may be a non-volatile computer-readable storage medium.
  • the terminal can execute the application provided by the embodiment of the application Beamforming method.
  • the embodiment of the present application also provides a computer program product containing instructions.
  • the computer program product runs on a computer, the computer causes the computer to execute the beamforming method provided by the embodiment of the present application.
  • the program may be stored in a computer-readable storage medium.
  • the storage medium mentioned may be a read-only memory, a magnetic disk or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种波束赋形方法及装置、基站、存储介质,属于数据传输技术领域。包括:获取扇区中多个终端的位置信息,基于该位置信息调整扇区内广播波束的赋形权值,并基于该调整后的赋形权值对广播波束进行波束赋形,以根据扇区中终端的位置调整广播波束所覆盖的小区范围。本申请通过调整扇区内各个位置处通过广播波束实现小区覆盖时所耗费的功率的密度,可以提高功率使用效率。

Description

波束赋形方法及装置、基站、存储介质 技术领域
本申请涉及数据传输技术领域,尤其涉及一种波束赋形方法及装置、基站、存储介质。
背景技术
在无线通信系统中,例如:长期演进(Long Term Evolution,LTE)网络系统,每个基站的信号覆盖区域可划分为多个扇区,每个扇区中均覆盖有多个频率的信号,该多个扇区中覆盖的信号的频率一一对应,且具有对应关系的频率相等,例如:每个基站的信号覆盖区域可划分为三个扇区,该三个扇区中均覆盖有1500兆赫兹(MHz)、1600MHz和1700MHz的信号。并且,在每个扇区中,每个频率的信号所覆盖的范围称为一个小区。扇区内的终端可以根据扇区内小区的信号质量选择一个小区并接入,以实现该终端的通信业务。
相关技术中,在实现扇区中每个小区的信号覆盖时,其实现过程包括:根据网络规划需求确定每个小区的信号覆盖范围,并根据该每个小区的信号覆盖范围,确定待发送至对应小区的广播波束的赋形权值,然后,根据该赋形权值对对应小区的广播波束进行波束赋形,以形成具有指向性的广播波束,通过该具有指向性的广播波束实现对应小区的信号覆盖。并且,在每个扇区中,根据该网络规划需求所确定的多个小区的信号覆盖范围基本相同。
但是,当每个扇区中多个小区的信号覆盖范围基本相同时,扇区中各个位置处通过广播波束实现小区覆盖时所耗费的功率的密度相同,导致功率的使用效率较低。
发明内容
本申请提供了一种波束赋形方法及装置、基站、存储介质,可以解决相关技术中实现小区覆盖时功率使用效率较低的问题。本申请提供的技术方案如下:
第一方面,本申请提供了一种波束赋形方法,包括:获取扇区中多个终端的位置信息;基于所述多个终端的位置信息,调整所述扇区内目标频率的广播波束的赋形权值;基于调整后的赋形权值,在待发送至所述扇区的广播波束中,对所述目标频率的广播波束进行波束赋形,以调整所述目标频率的广播波束所覆盖的小区范围。
本申请提供的波束赋形方法,该波束赋形方法通过获取扇区中多个终端的位置信息,基于该位置信息调整扇区内广播波束的赋形权值,并基于该调整后的赋形权值对广播波束进行波束赋形,以根据扇区中终端的位置调整广播波束所覆盖的小区范围,进而调整扇区内各个位置处通过广播波束实现小区覆盖时所耗费的功率的密度,可以提高功率使用效率。
在一种可实现方式中,所述基于所述多个终端的位置信息,调整所述扇区内目标频率的广播波束的赋形权值,包括:在所述扇区的多个可用频率中,选择所述扇区的基层频率;基于所述多个终端的位置信息,调整所述扇区内非基层频率的广播波束的赋形权值,所述非基层频率为所述扇区的可用频率中除所述基层频率外的频率。
其中,所述选择所述扇区的基层频率,包括:在所述扇区的多个可用频率中,将与相 邻扇区的基层频率不同的频率确定为所述扇区的基层频率。
通过将与相邻扇区的基层频率不同的频率确定为扇区的基层频率,可使该扇区与相邻扇区中覆盖范围最大的小区对应的频率不同,也即是,使该扇区中覆盖范围最大的小区与相邻扇区中覆盖范围最大的小区的覆盖范围错开,能够降低在给定区域内存在使用相同频率的多个小区的可能性,进而降低出现同频干扰的可能性,并且,该相邻扇区可以为不同基站的扇区,因此,使该扇区中覆盖范围最大的小区与相邻扇区中覆盖范围最大的小区的覆盖范围错开,还能降低不同基站的扇区之间的信号干扰,使得终端的通信质量得到提高。
可选地,在所述基于所述多个终端的位置信息,调整所述扇区内目标频率的广播波束的赋形权值之后,所述方法还包括:基于调整后的赋形权值,获取所述扇区和至少一个相邻扇区内广播波束的小区覆盖图;基于所述小区覆盖图,判断所述扇区中第一频率的广播波束所覆盖的小区范围在所述扇区中的相对位置,与所述至少一个相邻扇区中所述第一频率的广播波束所覆盖的小区范围在对应相邻扇区中的相对位置是否相同,所述第一频率为所述目标频率中的任一频率;当所述扇区中第一频率的广播波束所覆盖的小区范围在所述扇区中的相对位置,与所述至少一个相邻扇区中所述第一频率的广播波束所覆盖的小区范围在对应相邻扇区中的相对位置相同时,重新调整所述扇区中第一频率的广播波束的赋形权值,直至所述扇区中第一频率的广播波束所覆盖的小区范围在所述扇区中的相对位置,与所述至少一个相邻扇区中所述第一频率的广播波束所覆盖的小区范围在对应相邻扇区中的相对位置不相同。
通过调整扇区中第一频率的广播波束的赋形权值,使得扇区中第一频率的广播波束所覆盖的小区范围在扇区中的相对位置,与至少一个相邻扇区中第一频率的广播波束所覆盖的小区范围在对应相邻扇区中的相对位置不相同,能够使扇区中第一频率的广播波束所覆盖的小区范围与相邻扇区中第一频率的广播波束所覆盖的小区范围错开,相较于相关技术,能够降低在给定区域内存在使用相同频率的多个小区的可能性,以及降低不同基站的扇区之间的信号干扰的可能性,进而降低出现同频干扰和不同基站的扇区之间的信号干扰,以提高信号传输的频谱效率,继而使得终端的通信质量得到提高。
作为一种可实现方式,所述判断所述扇区中第一频率的广播波束所覆盖的小区范围在所述扇区中的相对位置,与所述至少一个相邻扇区中所述第一频率的广播波束所覆盖的小区范围在对应相邻扇区中的相对位置是否相同,包括:基于所述小区覆盖图,获取所述扇区和所述至少一个相邻扇区内所有广播波束所覆盖的小区范围的面积;基于所述小区范围的面积,分别对每个扇区内的广播波束进行排序;当所述扇区中第一频率的广播波束的排序次序与第一相邻扇区中第一频率的广播波束的排序次序相同时,确定所述扇区中第一频率的广播波束所覆盖的小区范围在所述扇区中的相对位置,与所述第一相邻扇区中所述第一频率的广播波束所覆盖的小区范围在所述第一相邻扇区中的相对位置相同,所述第一相邻扇区为所述至少一个相邻扇区中的任一相邻扇区。
可选地,在所述基于调整后的赋形权值,在待发送至所述扇区的广播波束中,对所述目标频率的广播波束进行波束赋形之后,所述方法还包括:基于调整后的赋形权值,确定所述扇区中的广播波束实现小区覆盖时所耗费的总功率;确定额定功率与所述总功率的差值,所述额定功率为所述扇区中可用于发射波束的功率的总和;基于所述差值,增加所述扇区中目标业务的服务功率。
基于调整后的赋形权值,通过增加扇区中目标业务的服务功率,能够提高功率的使用效率,能够提供更多的功率共用户业务信道使用,进而提高终端接收的信号的信噪比,使得用户体验得到较大幅度的提升。
在第一种可实现方式中,所述基于所述多个终端的位置信息,调整所述扇区内目标频率的广播波束的赋形权值,包括:基于所述多个终端的位置信息,获取所述多个终端在扇区内的位置分布特征,所述位置分布特征用于反映所述扇区中所有终端的位置分布概况;基于所述位置分布特征,调整所述扇区内目标频率的广播波束的赋形权值。
其中,所述基于所述多个终端的位置信息,获取所述多个终端在扇区内的位置分布特征,包括:基于所述多个终端的位置信息,获取位置分布指令,所述位置分布指令用于指示所述位置分布特征。
在第二种可实现方式中,所述基于所述多个终端的位置信息,调整所述扇区内目标频率的广播波束的赋形权值,包括:基于所述多个终端的位置信息,获取对所述目标频率的广播波束所覆盖的小区范围进行调整时的调整目标,所述调整目标根据所述多个终端在所述扇区内的位置分布特征得到;基于所述调整目标,调整所述扇区内目标频率的广播波束的赋形权值。
可选地,所述位置分布特征包括:均匀分布或集中分布;当所述位置分布特征为均匀分布时,所述调整目标用于指示:减小所述目标频率对应的小区的小区半径,且保持所述目标频率对应的小区的小区覆盖宽度不变;当所述位置分布特征为集中分布时,所述调整目标用于指示:减小所述目标频率对应的小区的小区覆盖宽度,且保持所述目标频率对应的小区的小区半径不变。
当位置分布特征为均匀分布时,通过减小小区半径并保持小区覆盖宽度不变,能够根据终端在空间内的分布特点,在有限的频谱内接入更多的终端,以便于为更多的用户提供通信服务,进而提高频谱效率。
在第三种可实现方式中,所述基于所述多个终端的位置信息,调整所述扇区内目标频率的广播波束的赋形权值,包括:基于所述多个终端的位置信息,获取权值调整指令,所述权值调整指令中携带有所述扇区内目标频率的广播波束的目标赋形权值,所述目标赋形权值为根据所述多个终端在所述扇区内的位置分布特征,对所述目标频率的广播波束的赋形权值进行调整后得到,所述位置分布特征根据所述多个终端的位置信息得到;基于所述权值调整指令,将所述目标频率的广播波束的赋形权值调整为所述目标赋形权值。
可选地,所述获取扇区中多个终端的位置信息,包括:对于所述扇区中的每个终端,接收所述终端发送的上行信号;基于所述上行信号确定所述终端的位置信息。
其中,所述终端的位置信息包括:所述终端所在的方向,以及,所述终端到基站的距离,所述基于所述上行信号确定所述终端的位置信息,包括:基于所述上行信号的信号强度或传输时延,确定所述终端所在的方向;基于所述传输时延,确定所述终端到所述基站的距离。
第二方面,本申请提供了一种波束赋形装置,包括:第一获取模块,用于获取扇区中多个终端的位置信息;调整模块,用于基于所述多个终端的位置信息,调整所述扇区内目标频率的广播波束的赋形权值;处理模块,用于基于调整后的赋形权值,在待发送至所述 扇区的广播波束中,对所述目标频率的广播波束进行波束赋形,以调整所述目标频率的广播波束所覆盖的小区范围。
可选地,所述调整模块,包括:选择子模块,用于在所述扇区的多个可用频率中,选择所述扇区的基层频率;调整子模块,用于基于所述多个终端的位置信息,调整所述扇区内非基层频率的广播波束的赋形权值,所述非基层频率为所述扇区的可用频率中除所述基层频率外的频率。
可选地,所述选择子模块,用于:在所述扇区的多个可用频率中,将与相邻扇区的基层频率不同的频率确定为所述扇区的基层频率。
可选地,所述装置还包括:第二获取模块,用于基于调整后的赋形权值,获取所述扇区和至少一个相邻扇区内广播波束的小区覆盖图;判断模块,用于基于所述小区覆盖图,判断所述扇区中第一频率的广播波束所覆盖的小区范围在所述扇区中的相对位置,与所述至少一个相邻扇区中所述第一频率的广播波束所覆盖的小区范围在对应相邻扇区中的相对位置是否相同,所述第一频率为所述目标频率中的任一频率;所述调整模块,还用于当所述扇区中第一频率的广播波束所覆盖的小区范围在所述扇区中的相对位置,与所述至少一个相邻扇区中所述第一频率的广播波束所覆盖的小区范围在对应相邻扇区中的相对位置相同时,重新调整所述扇区中第一频率的广播波束的赋形权值,直至所述扇区中第一频率的广播波束所覆盖的小区范围在所述扇区中的相对位置,与所述至少一个相邻扇区中所述第一频率的广播波束所覆盖的小区范围在对应相邻扇区中的相对位置不相同。
可选地,所述判断模块,用于:基于所述小区覆盖图,获取所述扇区和所述至少一个相邻扇区内所有广播波束所覆盖的小区范围的面积;基于所述小区范围的面积,分别对每个扇区内的广播波束进行排序;当所述扇区中第一频率的广播波束的排序次序与第一相邻扇区中第一频率的广播波束的排序次序相同时,确定所述扇区中第一频率的广播波束所覆盖的小区范围在所述扇区中的相对位置,与所述第一相邻扇区中所述第一频率的广播波束所覆盖的小区范围在所述第一相邻扇区中的相对位置相同,所述第一相邻扇区为所述至少一个相邻扇区中的任一相邻扇区。
可选地,所述装置还包括:第一确定模块,用于基于调整后的赋形权值,确定所述扇区中的广播波束实现小区覆盖时所耗费的总功率;第二确定模块,用于确定额定功率与所述总功率的差值,所述额定功率为所述扇区中可用于发射波束的功率的总和;增加模块,用于基于所述差值,增加所述扇区中目标业务的服务功率。
可选地,所述调整模块,包括:获取子模块,用于基于所述多个终端的位置信息,获取所述多个终端在扇区内的位置分布特征,所述位置分布特征用于反映所述扇区中所有终端的位置分布概况;所述调整子模块,用于基于所述位置分布特征,调整所述扇区内目标频率的广播波束的赋形权值。
可选地,所述获取子模块,用于:基于所述多个终端的位置信息,获取位置分布指令,所述位置分布指令用于指示所述位置分布特征。
可选地,所述调整模块,用于:基于所述多个终端的位置信息,获取对所述目标频率的广播波束所覆盖的小区范围进行调整时的调整目标,所述调整目标根据所述多个终端在所述扇区内的位置分布特征得到;基于所述调整目标,调整所述扇区内目标频率的广播波束的赋形权值。
可选地,所述位置分布特征包括:均匀分布或集中分布;当所述位置分布特征为均匀分布时,所述调整目标用于指示:减小所述目标频率对应的小区的小区半径,且保持所述目标频率对应的小区的小区覆盖宽度不变;当所述位置分布特征为集中分布时,所述调整目标用于指示:减小所述目标频率对应的小区的小区覆盖宽度,且保持所述目标频率对应的小区的小区半径不变。
可选地,所述调整模块,用于:基于所述多个终端的位置信息,获取权值调整指令,所述权值调整指令中携带有所述扇区内目标频率的广播波束的目标赋形权值,所述目标赋形权值为根据所述多个终端在所述扇区内的位置分布特征,对所述目标频率的广播波束的赋形权值进行调整后得到,所述位置分布特征根据所述多个终端的位置信息得到;基于所述权值调整指令,将所述目标频率的广播波束的赋形权值调整为所述目标赋形权值。
可选地,所述第一获取模块,包括:接收子模块,用于对于所述扇区中的每个终端,接收所述终端发送的上行信号;确定子模块,用于基于所述上行信号确定所述终端的位置信息。
可选地,所述终端的位置信息包括:所述终端所在的方向,以及,所述终端到基站的距离,所述确定子模块,用于:基于所述上行信号的信号强度或传输时延,确定所述终端所在的方向;基于所述传输时延,确定所述终端到所述基站的距离。
第三方面,本申请提供了一种基站,所述基站包括:第二方面任一所述的波束赋形装置。
第四方面,本申请提供了一种波束赋形装置,所述波束赋形装置包括:处理器;用于存储所述处理器的可执行指令的存储器;其中,所述处理器被配置为:获取扇区中多个终端的位置信息;基于所述多个终端的位置信息,调整所述扇区内目标频率的广播波束的赋形权值;基于调整后的赋形权值,在待发送至所述扇区的广播波束中,对所述目标频率的广播波束进行波束赋形,以调整所述目标频率的广播波束所覆盖的小区范围。
第五方面,本申请提供了一种存储介质,当所述存储介质中的指令由终端的处理器执行时,使得所述终端能够执行第一方面任一所述的波束赋形方法。
附图说明
图1是本申请提供的一种波束赋形方法所涉及的通信系统的结构示意图;
图2是本申请提供的一种每个基站的信号覆盖区域划分为三个扇区的示意图;
图3是本申请提供的一种小区覆盖的示意图;
图4是本申请提供的另一种波束赋形方法所涉及的通信系统的结构示意图;
图5是本申请提供的一种基站的结构示意图;
图6是本申请提供的一种终端的结构示意图;
图7是本申请提供的一种波束赋形方法的流程图;
图8是本申请提供的一种获取扇区中多个终端的位置信息的方法流程图;
图9是本申请提供的一种基于上行信号确定终端的位置信息的方法流程图;
图10是本申请提供的一种在选择扇区中的基层频率后,基站与一相邻基站的信号覆盖示意图;
图11是本申请提供的一种基于多个终端的位置信息,调整扇区内目标频率的广播波束 的赋形权值的方法流程图;
图12是本申请提供的一种位置分布特征为均匀分布的示意图;
图13是本申请提供的一种位置分布特征为轴状分布的示意图;
图14是本申请提供的一种位置分布特征为带状分布的示意图;
图15是本申请提供的另一种基于多个终端的位置信息,调整扇区内目标频率的广播波束的赋形权值的方法流程图;
图16是本申请提供的再一种基于多个终端的位置信息,调整扇区内目标频率的广播波束的赋形权值的方法流程图;
图17是本申请提供的一种对图10所示的广播波束对应的覆盖范围进行波束赋形之后的示意图;
图18是本申请提供的一种波束赋形装置的框图;
图19是本申请提供的一种调整模块的框图;
图20是本申请提供的另一种波束赋形装置的框图;
图21是本申请提供的另一种调整模块的框图;
图22是本申请提供的一种第一获取模块的框图;
图23是本申请提供的一种波束赋形装置的结构示意图。
具体实施方式
相关技术中,在根据网络规划需求确定每个小区的信号覆盖范围后,该每个小区的信号覆盖范围不会再发生变动。且在每个扇区中,根据该网络规划需求所确定的多个小区的信号覆盖范围基本相同,使得扇区中各个位置处通过广播波束实现小区覆盖时所耗费的功率的密度相同,导致在未分布终端的位置处也需要发射广播波束,因此,相关技术中实现扇区中每个小区的信号覆盖的实现方式的功率使用效率较低,造成了功率浪费。
为此,本申请实施例提供了一种波束赋形方法,该波束赋形方法通过获取扇区中多个终端的位置信息,基于该位置信息调整扇区内广播波束的赋形权值,并基于该调整后的赋形权值对广播波束进行波束赋形,以根据扇区中终端的位置调整广播波束所覆盖的小区范围,进而调整扇区内各个位置处通过广播波束实现小区覆盖时所耗费的功率的密度,可以提高功率使用效率。
在一种可实现方式中,请参考图1,该波束赋形方法所涉及的通信系统可以包括:基站10和终端20,终端20与基站10之间能够建立通信连接,以便于基站10与终端20之间能够进行通信。需要说明的是,如图1所示的通信系统所包含的基站10和一个终端20仅仅是一种示例,通常,基站10可以与多个终端20进行通信,本申请实施例对此不作限定,且本申请实施例以基站10与多个终端20进行通信为例,对本申请实施例提供的波束赋形方法进行说明。
在图1所示的通信系统中,基站10的信号覆盖区域可划分为多个扇区,且每个扇区中均覆盖有多个频率的信号,或者,也可理解为每个扇区中均覆盖有多个频点的信号。其中,频率可以通过频点表示,且频点与频率之间存在对应关系。并且,在本申请实施例中,信号的频率通常指信号的中心频率,但为便于描述,本申请实施例中对其不做区分。
如图1所示,基站10可以获取扇区中多个终端20的位置信息,并根据该多个终端20的位置信息调整扇区内目标频率的广播波束的赋形权值,然后根据调整后的赋形权值,对扇区中目标频率的广播波束进行波束赋形,以调整该目标频率的广播波束所覆盖的小区范围。终端20可以向基站10发送上行信号,以便于基站10根据该上行信号确定终端20的位置信息。
其中,目标频率的广播波束可以为对应扇区中所有频率的广播波束,或者,目标频率可以为对应扇区中部分频率的广播波束。例如:如图2所示,假设每个基站10的信号覆盖区域可划分为扇区1、扇区2和扇区3,并且,请参考图3,每个扇区中均覆盖有频率f1为1500MHz、频率f2为1600MHz和频率f3为1700MHz的信号,该目标频率的广播波束可以分别为对应扇区中频率f1为1500MHz的广播波束、频率f2为1600MHz的广播波束和频率f3为1700MHz的广播波束,或者,目标频率可以为对应扇区中频率f2为1600MHz的广播波束和频率f3为1700MHz的广播波束。在该图3中,广播波束对应的覆盖范围中同一种图案填充用于标识相同频率的广播波束的覆盖范围。
在另一种可实现方式中,请参考图4,本申请实施例提供的波束赋形方法所涉及的通信系统可以包括:基站10、管理设备30和终端20,终端20与基站10之间能够通信,且管理设备30与基站10之间能够通信。
其中,该图4中的终端20与图1中的终端20具有相同的作用。该图4中的基站10用于获取扇区内终端20的位置信息,并基于该位置信息向管理设备30发送请求调整该扇区内目标频率的广播波束的赋形权值的请求,并接收管理设备30根据该请求发送的响应,以便于根据该响应调整扇区内目标频率的广播波束的赋形权值,以对该扇区中目标频率的广播波束进行波束赋形,使得扇区中该目标频率的广播波束所覆盖的小区范围得到调整。
在本申请实施例中,通信系统可以是支持第四代(fourth generation,4G)接入技术的通信系统,例如长期演进(long term evolution,LTE)接入技术;或者,该通信系统也可以是支持第五代(fifth generation,5G)接入技术通信系统,例如新无线(newradio,NR)接入技术;或者,该通信系统也可以是支持第三代(third generation,3G)接入技术的通信系统,例如(universal mobile telecommunications system,UMTS)接入技术;或者该通信系统也可以是第二代(second generation,2G)接入技术的通信系统,例如全球移动通讯系统(global system for mobile communications,GSM)接入技术;或者,该通信系统还可以是支持多种无线技术的通信系统,例如支持LTE技术和NR技术的通信系统。另外,该通信系统也可以适用于面向未来的通信技术。
该通信系统中的基站10可以是用于支持终端20接入通信系统的设备,例如,可以是2G接入技术通信系统中的基站10收发信台(base transceiver station,BTS)和基站10控制器(base station controller,BSC)、3G接入技术通信系统中的节点B(node B)和无线网络控制器(radio network controller,RNC)、4G接入技术通信系统中的演进型基站10(evolved nodeB,eNB)、5G接入技术通信系统中的下一代基站10(next generation nodeB,gNB)、发送接收点(transmission reception point,TRP)、中继节点(relay node)或接入点(access point,AP)等等。
该通信系统中的终端20可以是一种向用户提供语音或者数据连通性的设备,例如也可以称为用户设备(user equipment,UE),移动台(mobile station),用户单元(subscriber unit), 站台(station)或终端20设备(terminal equipment,TE)等。终端20可以为蜂窝电话(cellular phone),个人数字助理(personal digital assistant,PDA),无线调制解调器(modem),手持设备(handheld),膝上型电脑(laptop computer),无绳电话(cordless phone),无线本地环路(wireless local loop,WLL)台或平板电脑(pad)等。随着无线通信技术的发展,可以接入通信系统、可以与通信系统的网络侧进行通信,或者通过通信系统与其它物体进行通信的设备均可以是本申请实施例中的终端20,例如,智能交通中的终端20和汽车、智能家居中的家用设备、智能电网中的电力抄表仪器、电压监测仪器、环境监测仪器、智能安全网络中的视频监控仪器或收款机等等。在本申请实施例中,多个终端20之间也可以进行通信。且终端20可以是静态固定的,也可以是移动的。
并且,基站10可以包括基带单元(baseband unit,BBU),射频单元和天线,其中,射频单元可以是远端射频单元(remote radio unit,RRU),该RRU与BBU物理上分离;或者,射频单元可以是射频单元(radio frequency unit,RFU),该RFU与BBU物理上设置在一起。射频单元可以与天线物理上集成在一起,两者集成后的器件可称为有源天线单元(Active Antenna Unit,AAU)。
图5为基站10包括RRU的示意图,如图5所示,基站10可以包括BBU 101,RRU 102和天线103。该BBU 101也可以称为处理单元,主要用于对基带信号进行处理,例如:信道编码,频率复用,数字调制和扩频等。RRU 102也可以称为收发单元、收发机、收发电路或者收发器,主要用于射频信号与基带信号的转换。天线103主要用于与终端20之间射频信号的收发。其工作过程包括:在基站10向终端20发送信号的过程中,RRU 102接收来自BBU 101的基带信号,将该基带信号转换为射频信号,通过天线103向终端20发送该射频信号。在终端20向基站10发送信号的过程中,天线103从终端20接收射频信号,并发送至RRU 102,RRU 102将该射频信号转换为基带信号发送至BBU 101,BBU 101对基带信号进行进一步处理,例如译码处理等。且一个扇区的信号覆盖可以通过一个RRU 102和一副天线103实现,或者,一个扇区的信号覆盖可以通过多个RRU 102和多副天线103实现。
其中,BBU 101可以包括处理器和存储器,该处理器可以用于控制基站10实现一系列功能的器件。例如,该处理器可以是通用中央处理器(Central ProcessingUnit,CPU)、数字信号处理器(Digital Signal Processor,DSP)、微处理器、特定应用集成电路专用集成电路(Application-Specific Integrated Circuit,ASIC)、微控制器(Microcontroller Unit,MCU)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、或者用于实现逻辑运算的集成电路。该存储器可以是用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何介质。例如,该存储器可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically erasable programmabler-only memory,EEPROM)。
如图6所示,该终端20可以包括至少一个处理器201、至少一个射频单元202和至少一个存储器203。其中,处理器201与射频单元202连接,且存储器203与射频单元202连接。可选的,终端20还可以包括输出设备204、输入设备205和至少一个天线206。该天线206与射频单元202连接,输出设备204、输入设备205均与处理器201连接。
其中,终端20的处理器201可以参考上述基站10的处理器201的描述,终端20的存储器203可以参考上述基站10的存储器203的描述。
终端20的射频单元202也可以称为收发单元、收发机、收发电路或者收发器。主要用于与基站10之间射频信号的收发以及射频信号与基带信号的转换。输出设备204可以与处理器201通信,该输出设备204可以以多种方式来显示信息。例如,输出设备204可以是液晶显示器(Liquid Crystal Display,LCD)、发光二级管(Light Emitting Diode,LED)显示设备、阴极射线管(Cathode Ray Tube,CRT)显示设备、或投影仪(projector)等。输入设备205可以与处理器201通信,该输入设备205可以以多种方式接受用户的输入。例如,输入设备205可以是鼠标、键盘、触摸屏设备或传感设备等。
在一种可实现方式中,射频单元202可以接收来自处理器201的基带信号,将该基带信号转换为射频信号,并通过天线206向基站10发送该射频信号。相应的,天线206可以从基站10接收射频信号,将该射频信号发送至射频单元202,该射频单元202可以将该射频信号转换为基带信号发送至处理器201,该处理器201可以对基带信号进行进一步处理,例如译码处理等。
该管理设备30可以为通用计算机(general-purpose computer)、专用计算机(special-purpose computer)、网络设备、服务器或分布式设备等具有运算功能的机器,本申请实施例对其不做具体限定。
图7为本申请实施例提供的波束赋形方法的流程图,该方法可应用于图1或图4所示的通信系统中的基站,如图7所示,该方法可以包括:
步骤301、基于网络规划需求对待发送至对应小区的广播波束进行波束赋形,以实现不同小区的信号覆盖。
在实现该步骤301时,可以根据网络规划需求确定每个小区的信号覆盖范围,并根据该每个小区的信号覆盖范围,确定待发送至对应小区的广播波束的赋形权值,然后,根据该赋形权值对对应小区的广播波束进行波束赋形,以通过波束赋形后的广播波束实现对应小区的信号覆盖。并且,在实现信号覆盖时,可以控制RRU按照网络规划需求开启功率,以将具有预设强度的射频信号发送至天线,并通过天线实现该具有预设强度的射频信号的发射。
步骤302、获取扇区中多个终端的位置信息。
可选地,请参考图8,该步骤302的实现过程可以包括:
步骤3021、对于扇区中的每个终端,接收该终端发送的上行信号。
其中,该上行信号可以为终端在请求接入网络或者终端在通信过程中,向基站发送的信号。示例地,在终端接入网络时,终端可向基站发送请求接入网络的上行信号。或者,在终端与其他终端通信时,终端可将待发送至其他终端的信号发送至基站,以通过基站将该信号发送至其他终端,进而实现该终端与其他终端之间的通信,该待发送至其他终端的信号为终端向基站发送的上行信号。
步骤3022、基于上行信号确定终端的位置信息。
其中,终端的位置信息可以包括:终端所在的方向,以及,终端到基站的距离,相应的,请参考图9,该步骤3022的实现过程可以包括:
步骤3022a、基于上行信号的信号强度或传输时延,确定终端所在的方向。
可选地,该步骤3022a可以通过基站中的天线实现。通常,一个基站可以包括多根天线,且该多根天线的设置位置不同,例如:一个基站可包括64根或128根天线,该多根天线可阵列排布。当终端向基站发送上行信号时,该多根天线均可接收该上行信号,且由于每根天线的设置位置不同,设置在不同位置处的天线接收到的上行信号的传输时延不同,且不同位置处的天线接收到的上行信号的信号强度不同。因此,可以基于该多根天线接收到的上行信号的传输时延和信号强度中的至少一个,以及多根天线之间的设置位置和设置间距,可以确定终端所在的方向。其中,传输时延可以通过读取基站向终端发送的时间提前量(Timing Advance,TA)获得。
步骤3022b、基于传输时延,确定终端到基站的距离。
其中,该终端到基站的距离为传输时延与信号传输速度的乘积。由于每根天线的设置位置不同,设置在不同位置处的天线接收到的上行信号的传输时延不同。基于该多根天线接收到的上行信号的传输时延,以及多根天线之间的设置位置和设置间距,可以确定终端到基站的距离。且在确定终端所在的方向和终端到基站的距离后,即可确定终端的位置信息。
示例地,假设基于多根天线接收上行信号的时延,确定终端相对于基站的方向为南偏东30度,且终端多基站的距离为5千米,则可以确定终端在基站南偏东30度方向上的5千米位置处。
步骤303、在扇区的多个可用频率中,选择该扇区的基层频率。
其中,可以设置该基层频率为波束赋形后该扇区中覆盖范围最大的小区对应的频率。
在一种可实现方式中,可以随机地在该多个可用频率中选择一个频率作为该扇区的基层频率。在另一种可实现方式中,可以在扇区的多个可用频率中,将与相邻扇区的基层频率不同的频率确定为该扇区的基层频率。
可选地,该步骤303可以由基站执行,即在实现该步骤303时,可以通过基站在其扇区的多个可用频率中,选择该扇区的基层频率。或者,该步骤303也可以由管理设备执行。在一种可实现方式中,该管理设备可以为对基站进行监管的设备,当该步骤303由该管理设备执行时,该管理设备可以获取其所管理的多个基站中每个扇区的可用频率,然后根据相邻扇区的基层频率不同的原则,确定每个扇区的基层频率,并将确定后的每个扇区的基层频率发送至对应基站。
示例地,在选择扇区中的基层频率后,基站与一相邻基站的信号覆盖图请参考图10,其中,虚线所示为该两个基站中的基层频率的覆盖范围,根据图10可知,该基站的基层频率与该相邻基站的基层频率不同。
相关技术中,为了保证信号的覆盖范围,在任一给定的覆盖区域内,通常存在使用相同频率的多个小区,该多个小区称为同频小区。但是,当终端处于该给定覆盖范围内时,由于终端仅能接入同频小区中的一个小区,该同频小区中的其他小区的信号会对该终端造成同频干扰,同时,不同基站之间的信号之间也会存在干扰,导致终端的频谱效率较低,通信质量较差。因此,在该步骤303中,通过将与相邻扇区的基层频率不同的频率确定为扇区的基层频率,可使该扇区与相邻扇区中覆盖范围最大的小区对应的频率不同,也即是,使该扇区中覆盖范围最大的小区与相邻扇区中覆盖范围最大的小区的覆盖范围错开,相较 于相关技术,能够降低在给定区域内存在使用相同频率的多个小区的可能性,进而降低出现同频干扰的可能性,并且,该相邻扇区可以为不同基站的扇区,因此,使该扇区中覆盖范围最大的小区与相邻扇区中覆盖范围最大的小区的覆盖范围错开,还能降低不同基站的扇区之间的信号干扰,使得终端的通信质量得到提高。
需要说明的是,该步骤303为可选步骤,可以根据实际需要选择是否执行该步骤303。
步骤304、基于多个终端的位置信息,调整扇区内目标频率的广播波束的赋形权值。
若在该步骤304之前执行了步骤303,则该步骤304的实现方式可以包括:基于多个终端的位置信息,调整扇区内非基层频率的广播波束的赋形权值,且该非基层频率为扇区的可用频率中除基层频率外的频率。
此时,由于该基层频率为波束赋形后该扇区中覆盖范围最大的小区对应的频率,当在该步骤304中不调整基层频率的广播波束的赋形权值时,能够使基层频率的广播波束的赋形权值与根据网络规划需求确定的赋形权值相同,进而使该基层频率的广播波束所覆盖的小区范围与网络规划需求确定的覆盖范围相同,以保证在该范围内的信号覆盖,进而避免终端在该小区所在的扇区内移动时出现无信号覆盖的情况。也即是,通过不调整基层频率的广播波束的赋形权值,能够保证不改变根据网络规划需求确定的扇区的信号覆盖范围,使得根据调整后的赋形权值进行波束赋形后的扇区的信号覆盖范围满足网络规划需求。
该步骤304的实现方式可以有多种,本申请实施例以以下几种可实现方式为例对其进行说明:
第一种可实现方式,基站根据终端的位置信息,获取终端在扇区内的位置分布特征,并根据该位置分布特征调整扇区内目标频率的广播波束的赋形权值。请参考图11,该调整赋形权值的第一种可实现方式的实现过程可以包括:
步骤3041a、基于多个终端的位置信息,获取多个终端在扇区内的位置分布特征。
其中,位置分布特征用于反映扇区中所有终端的位置分布概况。可选地,该步骤3041a的实现方式至少可以包括以下三种情况:
第一种情况:基站基于多个终端的位置信息,自动获取该位置分布特征。
该基站中可以预先存储有位置分布特征确定规则,在基站获取多个终端的位置信息之后,可以基于该多个终端的位置信息和该位置分布特征确定规则,确定由该多个终端的位置信息多反映的位置分布特征。或者,该基站中可以预先存储有多种位置分布模板,在基站获取多个终端的位置信息之后,基站可以基于该多个终端的位置信息,与该多个位置分布模板分别进行匹配,并将匹配度最高的位置分布模板确定为与该多个终端的位置信息对应的位置分布特征。
可选地,该第一种情况中根据位置分布特征确定规则或位置分布模板,确定位置分布特征的过程可以通过神经网络、朴素贝叶斯模型、k均值(英文:k-means)聚类模型、模糊聚类模型或支持向量机(英文:support vector machine;SVM)模型等实现。
第二种情况:基站基于多个终端的位置信息,获取位置分布指令,该位置分布指令用于指示位置分布特征。
可选地,获取位置分布指令的实现方式可以包括:基站向管理设备发送该多个终端的位置信息,管理设备接收该位置信息后,自动获取该位置分布特征,并向基站发送该位置分布特征。其中,基站可以周期性地或者实时地向管理设备发送终端的位置信息,且管理 设备自动获取位置分布特征的实现过程请相应参考基站自动获取位置分布特征的实现过程,此处不再赘述。
或者,在基站向管理设备发送该多个终端的位置信息,且管理设备在接收该位置信息后,可以在该管理设备的显示屏上显示该多个终端的位置信息,并接收管理人员基于该显示的位置信息所触发的位置分布指令。
步骤3042a、基于位置分布特征,调整扇区内目标频率的广播波束的赋形权值。
可选地,可以在基站中预先存储位置分布特征与调整赋形权值的规则,在确定位置分布特征后,基站可以根据该规则和步骤3041a中获取的位置分布特征,调整扇区内目标频率的广播波束的赋形权值。
示例地,位置分布特征可以包括:均匀分布(请参考图12)和集中分布,且集中分布可以包括:轴状分布(请参考图13)和带状分布(请参考图14),该图12、图13和图14中的黑点用于标识终端的位置,该位置分布特征与调整赋形权值的规则可以为:当该位置分布特征为均匀分布时,调整赋形权值,使得目标频率对应的小区的小区半径减小,且目标频率对应的小区的小区覆盖宽度保持不变;当该位置分布特征为集中分布时,调整赋形权值,使得目标频率对应的小区的小区覆盖宽度减小,且目标频率对应的小区的小区半径保持不变。
当位置分布特征为均匀分布时,通过减小小区半径并保持小区覆盖宽度不变,能够根据终端在空间内的分布特点,在有限的频谱内接入更多的终端,以便于为更多的用户提供通信服务,进而提高频谱效率。
需要说明的是,该位置分布特征与调整赋形权值的规则仅用于示例,并不用于限定本申请,且该规则的实现方式可以根据实际需要进行调整,本申请实施例对其不做具体限定。
第二种可实现方式,基站根据终端的位置信息,获取对目标频率的广播波束所覆盖的小区范围进行调整时的调整目标,并根据该调整目标调整扇区内目标频率的广播波束的赋形权值。请参考图15,该调整赋形权值的第二种可实现方式的实现过程可以包括:
步骤3041b、基于多个终端的位置信息,获取对目标频率的广播波束所覆盖的小区范围进行调整时的调整目标。
其中,该调整目标可以根据多个终端在扇区内的位置分布特征得到。在一种可实现方式中,该调整目标可以根据预设调整目标规则和多个终端所反映的位置分布特征确定,或者,该调整目标可以为管理人员根据多个终端的位置信息所指示的信息。
示例地,位置分布特征包括:均匀分布或集中分布。当位置分布特征为均匀分布时,该调整目标用于指示:减小目标频率对应的小区的小区半径,且保持目标频率对应的小区的小区覆盖宽度不变。当位置分布特征为集中分布时,该调整目标用于指示:减小目标频率对应的小区的小区覆盖宽度,且保持目标频率对应的小区的小区半径不变。
需要说明的是,该调整目标的举例仅用于示例,并不用于限定本申请,且该调整目标的制定方式可以根据实际需要进行调整,本申请实施例对其不做具体限定。
步骤3042b、基于调整目标,调整扇区内目标频率的广播波束的赋形权值。
可选地,可以在基站中预先存储调整目标与调整赋形权值的规则,在获取调整目标后,基站可以根据该规则和该调整目标,调整扇区内目标频率的广播波束的赋形权值。
第三种可实现方式,基站根据终端的位置信息,获取权值调整指令,并根据该权值调 整指令调整扇区内目标频率的广播波束的赋形权值。请参考图16,该调整赋形权值的第三种可实现方式的实现过程可以包括:
步骤3041c、基于多个终端的位置信息,获取权值调整指令。
其中,该权值调整指令中携带有扇区内目标频率的广播波束的目标赋形权值,该目标赋形权值为根据多个终端在扇区内的位置分布特征,对目标频率的广播波束的赋形权值进行调整后得到,该位置分布特征根据多个终端的位置信息得到。
可选地,基站可以向管理设备发送多个终端的位置信息,该管理设备可以根据该多个终端的位置信息确定该扇区中终端的位置分布特征,并根据该位置分布特征确定目标赋形权值,然后将该目标赋形权值携带在权值调整指令中发送至基站,以便于基站根据该目标赋形权值调整扇区内目标频率的广播波束的赋形权值。
步骤3042c、基于权值调整指令,将目标频率的广播波束的赋形权值调整为目标赋形权值。
基站在接收到管理设备发送的权值调整指令后,可将扇区内目标频率的广播波束的赋形权值调整为该权值调整指令所携带的目标赋形权值。
步骤305、基于调整后的赋形权值,获取扇区和至少一个相邻扇区内广播波束的小区覆盖图。
在调整扇区内目标频率的广播波束的赋形权值之后,可以基于该调整后的赋形权值,模拟广播波束实现信号覆盖的过程,以获得调整后的扇区的小区覆盖图。并且,可以获取与该扇区相邻的至少一个相邻扇区内广播波束的小区覆盖图,以根据该扇区和至少一个相邻扇区内广播波束的小区覆盖判断是否需要进一步地对调整后的赋形权值进行调整。
可选地,基站可以根据信号发射强度、发射天线的方位角、天线物理类型和频率等参数,根据广播波束的链路传播模型,以及,调整后的赋形权值,通过预设算法估算出调整后的扇区的小区覆盖图。或者,可以预先设置小区覆盖图与赋形权值的对应关系,在对赋形权值进行调整后,可以在该对应关系中查找与该调整后的赋形权值匹配的赋形权值,并将该赋形权值对应的小区覆盖图确定为该调整后的赋形权值对应的小区覆盖图。
步骤306、基于扇区和至少一个相邻扇区内广播波束的小区覆盖图,判断扇区中第一频率的广播波束所覆盖的小区范围在扇区中的相对位置,与至少一个相邻扇区中第一频率的广播波束所覆盖的小区范围在对应相邻扇区中的相对位置是否相同。
其中,第一频率为目标频率中的任一频率。可选地,该步骤306的实现过程可以包括:
步骤3061、基于小区覆盖图,获取扇区和至少一个相邻扇区内所有广播波束所覆盖的小区范围的面积。
可以根据扇区和至少一个相邻扇区内广播波束的小区覆盖图,统计每个广播波束所覆盖的小区范围的面积。
步骤3062、基于小区范围的面积,分别对每个扇区内的广播波束进行排序。
在获取小区范围面积后,可以按照小区范围面积由大到小(或者由小到大)的顺序,对每个扇区内的各个小区范围面积进行排序。且由于广播波束与小区范围为一一对应关系,因此,根据该各个小区范围面积的排序,可以得到每个扇区内的广播波束的排序。
示例地,假设扇区中包括三个小区,该三个小区分别为小区11、小区12和小区13,该小区11与广播波束11对应,该小区12与广播波束12对应,该小区13与广播波束13 对应,该三个小区的小区范围面积分别为120、123和100,根据该三个小区范围面积对该三个小区进行排序后可得该三个小区的顺序为:小区12>小区11>小区13,则根据该排序和广播波束与小区范围的对应关系可得,该扇区内的广播波束的排序为:广播波束12>广播波束11>广播波束13。并且,相邻扇区中包括三个小区,该三个小区分别为小区21、小区22和小区23,该小区21与广播波束21对应,该小区22与广播波束22对应,该小区23与广播波束23对应,该三个小区的小区范围面积分别为132、123和99,根据该三个小区范围面积对该三个小区进行排序后可得该三个小区的顺序为:小区21>小区22>小区23,则根据该排序和广播波束与小区范围的对应关系可得,该相邻扇区内的广播波束的排序为:广播波束21>广播波束22>广播波束23。
步骤3063、当扇区中第一频率的广播波束的排序次序与第一相邻扇区中第一频率的广播波束的排序次序相同时,确定扇区中第一频率的广播波束所覆盖的小区范围在扇区中的相对位置,与第一相邻扇区中第一频率的广播波束所覆盖的小区范围在第一相邻扇区中的相对位置相同。
其中,第一相邻扇区为至少一个相邻扇区中的任一相邻扇区。
示例地,根据步骤3062中的示例,扇区内的广播波束的排序为:广播波束12>广播波束11>广播波束13,相邻扇区内的广播波束的排序为:广播波束21>广播波束22>广播波束23,且假设广播波束11的频率与广播波束21的频率相同,广播波束12的频率与广播波束22的频率相同,广播波束13的频率与广播波束23的频率相同,根据扇区内广播波束的排序和向里扇区内广播波束的排序可知:广播波束13的排序次序与广播波束23的排序次序相同,此时,可以确定广播波束13所覆盖的小区范围在扇区中的相对位置,与广播波束23所覆盖的小区范围在第一相邻扇区中的相对位置相同。
步骤307、当扇区中第一频率的广播波束所覆盖的小区范围在扇区中的相对位置,与至少一个相邻扇区中第一频率的广播波束所覆盖的小区范围在对应相邻扇区中的相对位置相同时,重新调整扇区中第一频率的广播波束的赋形权值,直至扇区中第一频率的广播波束所覆盖的小区范围在扇区中的相对位置,与至少一个相邻扇区中第一频率的广播波束所覆盖的小区范围在对应相邻扇区中的相对位置不相同。
通过调整扇区中第一频率的广播波束的赋形权值,使得扇区中第一频率的广播波束所覆盖的小区范围在扇区中的相对位置,与至少一个相邻扇区中第一频率的广播波束所覆盖的小区范围在对应相邻扇区中的相对位置不相同,能够使扇区中第一频率的广播波束所覆盖的小区范围与相邻扇区中第一频率的广播波束所覆盖的小区范围错开,相较于相关技术,能够降低在给定区域内存在使用相同频率的多个小区的可能性,以及降低不同基站的扇区之间的信号干扰的可能性,进而降低出现同频干扰和不同基站的扇区之间的信号干扰,以提高信号传输的频谱效率,继而使得终端的通信质量得到提高。
步骤308、基于调整后的赋形权值,在待发送至扇区的广播波束中,对目标频率的广播波束进行波束赋形,以调整目标频率的广播波束所覆盖的小区范围。
通常,BBU也可以称为处理单元,主要用于完成对基带信号的处理,RRU用于接收经BBU处理后的基带信号,并将该基带信号转换为射频信号,再将射频信号发送至天线,使天线将该射频信号发射至扇区。本申请实施例中的波束赋形是指在BBU对基带信号进行处理的过程中,将目标频率的广播波束对应的基带信号乘以赋形权值,然后将与赋形权值相 乘后的基带信号发送至RRU,经RRU将其转换为射频信号后,通过天线发射至对应扇区,使得目标频率的广播波束所覆盖的小区范围得到调整,且该调整通常表现为小区范围的减小。
示例地,对应图10所示的广播波束对应的覆盖范围,假设扇区内位置分布特征为均匀分布时,根据该位置分布特征调整广播波束的赋形权值,并根据调整后的赋形权值对广播波束进行波束赋形后,对应广播波束对应的覆盖范围如图17所示。
相关技术中,对于统一扇区中不同频率的广播波束,其所覆盖的小区范围均是根据固定功率确定其覆盖范围的大小的,在调整广播波束的信号覆盖范围时,是通过调整天线下倾角度(例如:机械下倾或者电下倾斜)实现的。且由于实现该扇区内多个频率的广播波束的信号覆盖时通过同一副天线实现的,当调整扇区内某一频率的广播波束的信号覆盖范围时,该扇区内其他频率的广播波束的信号覆盖范围会相应发生变化,使得扇区内信号的覆盖范围受到较大的影响,变化后的信号覆盖范围甚至不能满足网络规划需求。本申请实施例提供的波束赋形方法通过根据扇区中多个终端的位置信息,并基于该位置信息调整扇区内广播波束的赋形权值,使得BBU对基带信号进行处理的过程中根据该调整后赋形权值对广播波束进行波束赋形,相较于相关技术,能够根据用户需求调整覆盖范围,且能够保证调整后的覆盖范围与网络规划需求保持一致,进而提高信号的有效利用率。
步骤309、基于调整后的赋形权值,确定扇区中的广播波束实现小区覆盖时所耗费的总功率。
该总功率为该扇区中的所有广播波束实现小区覆盖时所耗费的功率的总和,即用于发射该扇区中所有广播波束时所耗费的功率的总和。BBU对基带信号进行数字调制时,会按照预设调制规则调制广播波束对应的基带信号的幅值,以对用于发射各个广播波束的功率进行功率分配。并且,会将该功率分配结果进行记录。在实现该步骤309时,可以查询该记录,以得到用于发射各个广播波束时耗费的功率,进而得到扇区中的广播波束实现小区覆盖时所耗费的总功率。
示例地,假设扇区中包括三个小区,该三个小区分别为广播波束11、广播波束12和广播波束13覆盖的小区,在调整广播波束12和广播波束13的赋形权值,并根据该调整后的赋形权值进行波束赋形后,经查询该三个广播波束对应的功率分配结果可得:广播波束11、广播波束12和广播波束13实现小区覆盖时所耗费的功率分别为50瓦(W)、42W和36W,则可以确定该扇区中的所有广播波束实现小区覆盖时所耗费的总功率P=50W+42W+36W=128W。
步骤310、确定额定功率与该总功率的差值。
其中,该额定功率为扇区中可用于发射波束的功率的总和,该额定功率可以根据网络规划需求确定。一般地,扇区中需要发射的波束包括:用于小区覆盖的广播波束和用于为终端提供通讯服务的数据波束。因此,该额定功率与该总功率的差值可以理解为用于发射数据波束的功率的总和。
示例地,根据网络规划需求确定的该扇区的额定功率为300W,该扇区中的广播波束实现小区覆盖时所耗费的总功率为128W,该额电功率和该总功率的差值为172W,即用于发射数据波束的功率的总和为172W。
步骤311、基于额定功率与该总功率的差值,增加扇区中目标业务的服务功率。
基于调整后的赋形权值对目标频率的广播波束进行波束赋形后,由于小区范围减小,用于发射该目标功率的广播波束的功率相应减小,相应的,该扇区中的所有广播波束实现小区覆盖时所耗费的总功率减小,使得额定功率与该总功率的差值增大,因此,可以根据该增大的差值增加扇区中实现目标业务时所用的数据波束的服务功率(即增加目标业务的服务功率)。可选地,该增加扇区中实现目标业务时所用的数据波束的服务功率的实现方式可以包括:增大该数据波束的信号幅值。
其中,该目标业务可以为扇区中所有数据波束所提供的业务,在增大该目标业务的服务功率时,可以随机增大各个数据波束的信号幅值,也可以按照预设规则增大各个数据波束的信号幅值。例如:可以按照相同幅度增大扇区中各个数据波束的信号幅值。或者,该目标业务可以为扇区中部分数据波束所提供的业务。且该部分数据波束可以为在该扇区中所有数据波束中随机选择的至少一个数据波束,也可以为根据预设目标确定的至少一个数据波束。需要说明的是,该预设规则和预设目标可以根据实际需要确定,例如:可以根据网络规划需求确定,或者,根据终端的优先级等参数确定。
示例地,当扇区中所有数据波束对应的信号通过一个RRU转换时,该目标业务可以为扇区中所有数据波束所提供的业务,该所有数据波束可以共同使用该额定功率与该总功率的差值,以增加该所有数据波束的信号幅值。当扇区中所有数据波束对应的信号通过多个RRU转换时,该目标业务为扇区中部分数据波束所提供的业务,则可以根据该部分数据波束在该多个RRU中确定目标RRU,并增加通过该目标RRU转换的信号的幅值,以增加扇区中目标业务的服务功率。
基于调整后的赋形权值,通过增加扇区中目标业务的服务功率,能够提高功率的使用效率,能够提供更多的功率共用户业务信道使用,进而提高终端接收的信号的信噪比,使得用户体验得到较大幅度的提升。
步骤312、检测扇区中终端的位置信息是否发生变化,当扇区中终端的位置信息发生变化时,重复执行步骤302至步骤311。
当扇区中终端的位置信息发生变化时,扇区中终端的位置分布特征会发生变化,则可以根据该变化后的终端位置分布特征重新调整广播波束所覆盖的小区范围,即重复执行步骤302至步骤311,以提高提高功率使用效率,并提高信号传输的频谱效率。
需要说明的是,本申请实施例提供的波束赋形方法不仅适用于无线通信系统,还能够适用于其他需要广播能量的系统,以通过该波束赋形方法调整该广播能量的使用范围。
综上所述,本申请实施例提供的波束赋形方法,该波束赋形方法通过获取扇区中多个终端的位置信息,基于该位置信息调整扇区内广播波束的赋形权值,并基于该调整后的赋形权值对广播波束进行波束赋形,以根据扇区中终端的位置调整广播波束所覆盖的小区范围,进而调整扇区内各个位置处通过广播波束实现小区覆盖时所耗费的功率的密度,相较于相关技术,提高了功率的使用效率。
本申请实施例提供的波束赋形方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,例如:可以选择不执行步骤303,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本发明的保护范围之内,因此不再赘述。
下述为本申请的装置实施例,可以用于执行本申请的方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
请参考图18,其示出了本申请实施例提供的一种波束赋形装置的框图,如图18所示,该波束赋形装置600可以包括:
第一获取模块601,用于获取扇区中多个终端的位置信息。
调整模块602,用于基于多个终端的位置信息,调整扇区内目标频率的广播波束的赋形权值。
处理模块603,用于基于调整后的赋形权值,在待发送至扇区的广播波束中,对目标频率的广播波束进行波束赋形,以调整目标频率的广播波束所覆盖的小区范围。
可选地,如图19所示,调整模块602,可以包括:
选择子模块6021,用于在扇区的多个可用频率中,选择扇区的基层频率。
调整子模块6022,用于基于多个终端的位置信息,调整扇区内非基层频率的广播波束的赋形权值,非基层频率为扇区的可用频率中除基层频率外的频率。
可选地,选择子模块6021,用于:在扇区的多个可用频率中,将与相邻扇区的基层频率不同的频率确定为扇区的基层频率。
可选地,如图20所示,装置600还可以包括:
第二获取模块604,用于基于调整后的赋形权值,获取扇区和至少一个相邻扇区内广播波束的小区覆盖图。
判断模块605,用于基于小区覆盖图,判断扇区中第一频率的广播波束所覆盖的小区范围在扇区中的相对位置,与至少一个相邻扇区中第一频率的广播波束所覆盖的小区范围在对应相邻扇区中的相对位置是否相同,第一频率为目标频率中的任一频率。
调整模块602,还用于当扇区中第一频率的广播波束所覆盖的小区范围在扇区中的相对位置,与至少一个相邻扇区中第一频率的广播波束所覆盖的小区范围在对应相邻扇区中的相对位置相同时,重新调整扇区中第一频率的广播波束的赋形权值,直至扇区中第一频率的广播波束所覆盖的小区范围在扇区中的相对位置,与至少一个相邻扇区中第一频率的广播波束所覆盖的小区范围在对应相邻扇区中的相对位置不相同。
可选地,判断模块605,用于:
基于小区覆盖图,获取扇区和至少一个相邻扇区内所有广播波束所覆盖的小区范围的面积。
基于小区范围的面积,分别对每个扇区内的广播波束进行排序。
当扇区中第一频率的广播波束的排序次序与第一相邻扇区中第一频率的广播波束的排序次序相同时,确定扇区中第一频率的广播波束所覆盖的小区范围在扇区中的相对位置,与第一相邻扇区中第一频率的广播波束所覆盖的小区范围在第一相邻扇区中的相对位置相同,第一相邻扇区为至少一个相邻扇区中的任一相邻扇区。
可选地,如图20所示,装置600还可以包括:
第一确定模块606,用于基于调整后的赋形权值,确定扇区中的广播波束实现小区覆盖时所耗费的总功率。
第二确定模块607,用于确定额定功率与总功率的差值,额定功率为扇区中可用于发射波束的功率的总和。
增加模块608,用于基于差值,增加扇区中目标业务的服务功率。
可选地,如图21所示,调整模块602,还可以包括:
获取子模块6023,用于基于多个终端的位置信息,获取多个终端在扇区内的位置分布特征,位置分布特征用于反映扇区中所有终端的位置分布概况。
调整子模块6022,用于基于位置分布特征,调整扇区内目标频率的广播波束的赋形权值。
可选地,获取子模块6023,用于:基于多个终端的位置信息,获取位置分布指令,位置分布指令用于指示位置分布特征。
可选地,调整模块602,用于:
基于多个终端的位置信息,获取对目标频率的广播波束所覆盖的小区范围进行调整时的调整目标,调整目标根据多个终端在扇区内的位置分布特征得到。
基于调整目标,调整扇区内目标频率的广播波束的赋形权值。
可选地,位置分布特征可以包括:均匀分布或集中分布。
当位置分布特征为均匀分布时,调整目标用于指示:减小目标频率对应的小区的小区半径,且保持目标频率对应的小区的小区覆盖宽度不变。
当位置分布特征为集中分布时,调整目标用于指示:减小目标频率对应的小区的小区覆盖宽度,且保持目标频率对应的小区的小区半径不变。
可选地,调整模块602,用于:
基于多个终端的位置信息,获取权值调整指令,权值调整指令中携带有扇区内目标频率的广播波束的目标赋形权值,目标赋形权值为根据多个终端在扇区内的位置分布特征,对目标频率的广播波束的赋形权值进行调整后得到,位置分布特征根据多个终端的位置信息得到。
基于权值调整指令,将目标频率的广播波束的赋形权值调整为目标赋形权值。
可选地,如图22所示,第一获取模块601,可以包括:
接收子模块6011,用于对于扇区中的每个终端,接收终端发送的上行信号。
确定子模块6012,用于基于上行信号确定终端的位置信息。
可选地,终端的位置信息可以包括:终端所在的方向,以及,终端到基站的距离,确定子模块6012,用于:
基于上行信号的信号强度或传输时延,确定终端所在的方向。
基于传输时延,确定终端到基站的距离。
综上所述,本申请实施例提供的波束赋形装置,通过第一获取模块获取扇区中多个终端的位置信息,调整模块基于该位置信息调整扇区内广播波束的赋形权值,处理模块基于该调整后的赋形权值对广播波束进行波束赋形,以根据扇区中终端的位置调整广播波束所覆盖的小区范围,进而调整扇区内各个位置处通过广播波束实现小区覆盖时所耗费的功率的密度,相较于相关技术,提高了功率的使用效率。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置、模块和子模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请实施例还提供了一种波束赋形装置,该波束赋形装置可以包括:处理器;用于 存储处理器的可执行指令的存储器;其中,处理器被配置为:获取扇区中多个终端的位置信息;基于多个终端的位置信息,调整扇区内目标频率的广播波束的赋形权值;基于调整后的赋形权值,在待发送至扇区的广播波束中,对目标频率的广播波束进行波束赋形,以调整目标频率的广播波束所覆盖的小区范围。
具体地,请参考图23,本申请实施例还提供了一种波束赋形装置20,如图23所示,该波束赋形装置20可以包括:处理器22和信号接口24。
处理器22包括一个或者一个以上处理核心。处理器22通过运行软件程序以及模块,从而执行各种功能应用以及数据处理。处理器22可以包括中央处理单元、数字信号处理器、微处理器、微控制器或人工智能处理器中的一种或多种,还可以进一步选择性地包括执行运算所需的硬件加速器,如各种逻辑运算电路。
信号接口24可以为多个,该信号接口24用于与其它装置或模块建立连接,例如:可以通过该信号接口24与收发机进行连接。因此,可选地,该装置20还可包括收发机(图中未示出)。该收发机具体执行信号收发。当处理器22需要执行信号收发操作的时候可以调用或驱动收发机执行相应收发操作。因此,当装置20进行信号收发的时候,处理器22用于决定或发起收发操作,相当于发起者,而收发机用于具体收发执行,相当于执行者。该收发机也可以是收发电路、射频电路或射频单元,本实施例对此不限定。
可选的,波束赋形装置20还包括存储器26、总线28等部件。其中,存储器26与信号接口24分别通过总线28与处理器22相连。
存储器26可用于存储软件程序以及模块。具体的,存储器26可存储至少一个功能所需的程序模块262,该程序可以是应用程序或驱动程序。
其中,该程序模块262可以包括:
第一获取单元2621,具有与第一获取模块601相同或相似的功能。
调整单元2622,具有与调整模块602相同或相似的功能。
处理单元2623,具有与处理模块603相同或相似的功能。
本申请实施例还提供了一种基站,基站包括:上述实施例提供的波束赋形装置。
本申请实施例还提供了一种存储介质,该存储介质可以为非易失性计算机可读存储介质,当存储介质中的指令由终端的处理器执行时,使得终端能够执行本申请实施例提供的波束赋形方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行本申请实施例提供的波束赋形方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (29)

  1. 一种波束赋形方法,其特征在于,包括:
    获取扇区中多个终端的位置信息;
    基于所述多个终端的位置信息,调整所述扇区内目标频率的广播波束的赋形权值;
    基于调整后的赋形权值,在待发送至所述扇区的广播波束中,对所述目标频率的广播波束进行波束赋形,以调整所述目标频率的广播波束所覆盖的小区范围。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述多个终端的位置信息,调整所述扇区内目标频率的广播波束的赋形权值,包括:
    在所述扇区的多个可用频率中,选择所述扇区的基层频率;
    基于所述多个终端的位置信息,调整所述扇区内非基层频率的广播波束的赋形权值,所述非基层频率为所述扇区的可用频率中除所述基层频率外的频率。
  3. 根据权利要求2所述的方法,其特征在于,所述选择所述扇区的基层频率,包括:
    在所述扇区的多个可用频率中,将与相邻扇区的基层频率不同的频率确定为所述扇区的基层频率。
  4. 根据权利要求1至3任一所述的方法,其特征在于,在所述基于所述多个终端的位置信息,调整所述扇区内目标频率的广播波束的赋形权值之后,所述方法还包括:
    基于调整后的赋形权值,获取所述扇区和至少一个相邻扇区内广播波束的小区覆盖图;
    基于所述小区覆盖图,判断所述扇区中第一频率的广播波束所覆盖的小区范围在所述扇区中的相对位置,与所述至少一个相邻扇区中所述第一频率的广播波束所覆盖的小区范围在对应相邻扇区中的相对位置是否相同,所述第一频率为所述目标频率中的任一频率;
    当所述扇区中第一频率的广播波束所覆盖的小区范围在所述扇区中的相对位置,与所述至少一个相邻扇区中所述第一频率的广播波束所覆盖的小区范围在对应相邻扇区中的相对位置相同时,重新调整所述扇区中第一频率的广播波束的赋形权值,直至所述扇区中第一频率的广播波束所覆盖的小区范围在所述扇区中的相对位置,与所述至少一个相邻扇区中所述第一频率的广播波束所覆盖的小区范围在对应相邻扇区中的相对位置不相同。
  5. 根据权利要求4所述的方法,其特征在于,所述判断所述扇区中第一频率的广播波束所覆盖的小区范围在所述扇区中的相对位置,与所述至少一个相邻扇区中所述第一频率的广播波束所覆盖的小区范围在对应相邻扇区中的相对位置是否相同,包括:
    基于所述小区覆盖图,获取所述扇区和所述至少一个相邻扇区内所有广播波束所覆盖的小区范围的面积;
    基于所述小区范围的面积,分别对每个扇区内的广播波束进行排序;
    当所述扇区中第一频率的广播波束的排序次序与第一相邻扇区中第一频率的广播波束的排序次序相同时,确定所述扇区中第一频率的广播波束所覆盖的小区范围在所述扇区中的相对位置,与所述第一相邻扇区中所述第一频率的广播波束所覆盖的小区范围在所述第一相邻 扇区中的相对位置相同,所述第一相邻扇区为所述至少一个相邻扇区中的任一相邻扇区。
  6. 根据权利要求1至5任一所述的方法,其特征在于,在所述基于调整后的赋形权值,在待发送至所述扇区的广播波束中,对所述目标频率的广播波束进行波束赋形之后,所述方法还包括:
    基于调整后的赋形权值,确定所述扇区中的广播波束实现小区覆盖时所耗费的总功率;
    确定额定功率与所述总功率的差值,所述额定功率为所述扇区中可用于发射波束的功率的总和;
    基于所述差值,增加所述扇区中目标业务的服务功率。
  7. 根据权利要求1至6任一所述的方法,其特征在于,所述基于所述多个终端的位置信息,调整所述扇区内目标频率的广播波束的赋形权值,包括:
    基于所述多个终端的位置信息,获取所述多个终端在扇区内的位置分布特征,所述位置分布特征用于反映所述扇区中所有终端的位置分布概况;
    基于所述位置分布特征,调整所述扇区内目标频率的广播波束的赋形权值。
  8. 根据权利要求7所述的方法,其特征在于,所述基于所述多个终端的位置信息,获取所述多个终端在扇区内的位置分布特征,包括:
    基于所述多个终端的位置信息,获取位置分布指令,所述位置分布指令用于指示所述位置分布特征。
  9. 根据权利要求1至6任一所述的方法,其特征在于,所述基于所述多个终端的位置信息,调整所述扇区内目标频率的广播波束的赋形权值,包括:
    基于所述多个终端的位置信息,获取对所述目标频率的广播波束所覆盖的小区范围进行调整时的调整目标,所述调整目标根据所述多个终端在所述扇区内的位置分布特征得到;
    基于所述调整目标,调整所述扇区内目标频率的广播波束的赋形权值。
  10. 根据权利要求9所述的方法,其特征在于,所述位置分布特征包括:均匀分布或集中分布;
    当所述位置分布特征为均匀分布时,所述调整目标用于指示:减小所述目标频率对应的小区的小区半径,且保持所述目标频率对应的小区的小区覆盖宽度不变;
    当所述位置分布特征为集中分布时,所述调整目标用于指示:减小所述目标频率对应的小区的小区覆盖宽度,且保持所述目标频率对应的小区的小区半径不变。
  11. 根据权利要求1至6任一所述的方法,其特征在于,所述基于所述多个终端的位置信息,调整所述扇区内目标频率的广播波束的赋形权值,包括:
    基于所述多个终端的位置信息,获取权值调整指令,所述权值调整指令中携带有所述扇区内目标频率的广播波束的目标赋形权值,所述目标赋形权值为根据所述多个终端在所述扇区内的位置分布特征,对所述目标频率的广播波束的赋形权值进行调整后得到,所述位置分 布特征根据所述多个终端的位置信息得到;
    基于所述权值调整指令,将所述目标频率的广播波束的赋形权值调整为所述目标赋形权值。
  12. 根据权利要求1至11任一所述的方法,其特征在于,所述获取扇区中多个终端的位置信息,包括:
    对于所述扇区中的每个终端,接收所述终端发送的上行信号;
    基于所述上行信号确定所述终端的位置信息。
  13. 根据权利要求12所述的方法,其特征在于,所述终端的位置信息包括:所述终端所在的方向,以及,所述终端到基站的距离,所述基于所述上行信号确定所述终端的位置信息,包括:
    基于所述上行信号的信号强度或传输时延,确定所述终端所在的方向;
    基于所述传输时延,确定所述终端到所述基站的距离。
  14. 一种波束赋形装置,其特征在于,包括:
    第一获取模块,用于获取扇区中多个终端的位置信息;
    调整模块,用于基于所述多个终端的位置信息,调整所述扇区内目标频率的广播波束的赋形权值;
    处理模块,用于基于调整后的赋形权值,在待发送至所述扇区的广播波束中,对所述目标频率的广播波束进行波束赋形,以调整所述目标频率的广播波束所覆盖的小区范围。
  15. 根据权利要求14所述的装置,其特征在于,所述调整模块,包括:
    选择子模块,用于在所述扇区的多个可用频率中,选择所述扇区的基层频率;
    调整子模块,用于基于所述多个终端的位置信息,调整所述扇区内非基层频率的广播波束的赋形权值,所述非基层频率为所述扇区的可用频率中除所述基层频率外的频率。
  16. 根据权利要求15所述的装置,其特征在于,所述选择子模块,用于:
    在所述扇区的多个可用频率中,将与相邻扇区的基层频率不同的频率确定为所述扇区的基层频率。
  17. 根据权利要求14至16任一所述的装置,其特征在于,所述装置还包括:
    第二获取模块,用于基于调整后的赋形权值,获取所述扇区和至少一个相邻扇区内广播波束的小区覆盖图;
    判断模块,用于基于所述小区覆盖图,判断所述扇区中第一频率的广播波束所覆盖的小区范围在所述扇区中的相对位置,与所述至少一个相邻扇区中所述第一频率的广播波束所覆盖的小区范围在对应相邻扇区中的相对位置是否相同,所述第一频率为所述目标频率中的任一频率;
    所述调整模块,还用于当所述扇区中第一频率的广播波束所覆盖的小区范围在所述扇区 中的相对位置,与所述至少一个相邻扇区中所述第一频率的广播波束所覆盖的小区范围在对应相邻扇区中的相对位置相同时,重新调整所述扇区中第一频率的广播波束的赋形权值,直至所述扇区中第一频率的广播波束所覆盖的小区范围在所述扇区中的相对位置,与所述至少一个相邻扇区中所述第一频率的广播波束所覆盖的小区范围在对应相邻扇区中的相对位置不相同。
  18. 根据权利要求17所述的装置,其特征在于,所述判断模块,用于:
    基于所述小区覆盖图,获取所述扇区和所述至少一个相邻扇区内所有广播波束所覆盖的小区范围的面积;
    基于所述小区范围的面积,分别对每个扇区内的广播波束进行排序;
    当所述扇区中第一频率的广播波束的排序次序与第一相邻扇区中第一频率的广播波束的排序次序相同时,确定所述扇区中第一频率的广播波束所覆盖的小区范围在所述扇区中的相对位置,与所述第一相邻扇区中所述第一频率的广播波束所覆盖的小区范围在所述第一相邻扇区中的相对位置相同,所述第一相邻扇区为所述至少一个相邻扇区中的任一相邻扇区。
  19. 根据权利要求14至18任一所述的装置,所述装置还包括:
    第一确定模块,用于基于调整后的赋形权值,确定所述扇区中的广播波束实现小区覆盖时所耗费的总功率;
    第二确定模块,用于确定额定功率与所述总功率的差值,所述额定功率为所述扇区中可用于发射波束的功率的总和;
    增加模块,用于基于所述差值,增加所述扇区中目标业务的服务功率。
  20. 根据权利要求14至19任一所述的装置,其特征在于,所述调整模块,包括:
    获取子模块,用于基于所述多个终端的位置信息,获取所述多个终端在扇区内的位置分布特征,所述位置分布特征用于反映所述扇区中所有终端的位置分布概况;
    所述调整子模块,用于基于所述位置分布特征,调整所述扇区内目标频率的广播波束的赋形权值。
  21. 根据权利要求20所述的装置,其特征在于,所述获取子模块,用于:
    基于所述多个终端的位置信息,获取位置分布指令,所述位置分布指令用于指示所述位置分布特征。
  22. 根据权利要求14至19任一所述的装置,其特征在于,所述调整模块,用于:
    基于所述多个终端的位置信息,获取对所述目标频率的广播波束所覆盖的小区范围进行调整时的调整目标,所述调整目标根据所述多个终端在所述扇区内的位置分布特征得到;
    基于所述调整目标,调整所述扇区内目标频率的广播波束的赋形权值。
  23. 根据权利要求22所述的装置,其特征在于,所述位置分布特征包括:均匀分布或集中分布;
    当所述位置分布特征为均匀分布时,所述调整目标用于指示:减小所述目标频率对应的小区的小区半径,且保持所述目标频率对应的小区的小区覆盖宽度不变;
    当所述位置分布特征为集中分布时,所述调整目标用于指示:减小所述目标频率对应的小区的小区覆盖宽度,且保持所述目标频率对应的小区的小区半径不变。
  24. 根据权利要求14至19任一所述的装置,其特征在于,所述调整模块,用于:
    基于所述多个终端的位置信息,获取权值调整指令,所述权值调整指令中携带有所述扇区内目标频率的广播波束的目标赋形权值,所述目标赋形权值为根据所述多个终端在所述扇区内的位置分布特征,对所述目标频率的广播波束的赋形权值进行调整后得到,所述位置分布特征根据所述多个终端的位置信息得到;
    基于所述权值调整指令,将所述目标频率的广播波束的赋形权值调整为所述目标赋形权值。
  25. 根据权利要求14至23任一所述的装置,其特征在于,所述第一获取模块,包括:
    接收子模块,用于对于所述扇区中的每个终端,接收所述终端发送的上行信号;
    确定子模块,用于基于所述上行信号确定所述终端的位置信息。
  26. 根据权利要求25所述的装置,其特征在于,所述终端的位置信息包括:所述终端所在的方向,以及,所述终端到基站的距离,所述确定子模块,用于:
    基于所述上行信号的信号强度或传输时延,确定所述终端所在的方向;
    基于所述传输时延,确定所述终端到所述基站的距离。
  27. 一种基站,其特征在于,所述基站包括:权利要求14至26任一所述的波束赋形装置。
  28. 一种波束赋形装置,其特征在于,所述波束赋形装置包括:处理器;用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    获取扇区中多个终端的位置信息;
    基于所述多个终端的位置信息,调整所述扇区内目标频率的广播波束的赋形权值;
    基于调整后的赋形权值,在待发送至所述扇区的广播波束中,对所述目标频率的广播波束进行波束赋形,以调整所述目标频率的广播波束所覆盖的小区范围。
  29. 一种存储介质,其特征在于,当所述存储介质中的指令由终端的处理器执行时,使得所述终端能够执行权利要求1至13任一所述的波束赋形方法。
PCT/CN2018/095192 2018-07-10 2018-07-10 波束赋形方法及装置、基站、存储介质 WO2020010527A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880095353.0A CN112385151B (zh) 2018-07-10 2018-07-10 波束赋形方法及装置、基站、存储介质
PCT/CN2018/095192 WO2020010527A1 (zh) 2018-07-10 2018-07-10 波束赋形方法及装置、基站、存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/095192 WO2020010527A1 (zh) 2018-07-10 2018-07-10 波束赋形方法及装置、基站、存储介质

Publications (1)

Publication Number Publication Date
WO2020010527A1 true WO2020010527A1 (zh) 2020-01-16

Family

ID=69142122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095192 WO2020010527A1 (zh) 2018-07-10 2018-07-10 波束赋形方法及装置、基站、存储介质

Country Status (2)

Country Link
CN (1) CN112385151B (zh)
WO (1) WO2020010527A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113271549A (zh) * 2020-02-17 2021-08-17 中兴通讯股份有限公司 一种权值的发送方法及装置、存储介质及电子装置
CN114501338A (zh) * 2020-10-23 2022-05-13 中国移动通信集团设计院有限公司 广播波束权值配置方法、装置及电子设备
CN114614259A (zh) * 2020-12-09 2022-06-10 中国联合网络通信集团有限公司 龙伯透镜天线赋型控制方法、装置、设备及存储介质
CN115002795A (zh) * 2022-06-10 2022-09-02 中国电信股份有限公司 波束赋形方法、装置、电子设备及可读存储介质
CN115134817A (zh) * 2021-03-29 2022-09-30 中国移动通信集团山东有限公司 5g波束赋形优化方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113938821B (zh) * 2021-10-12 2023-06-27 中国联合网络通信集团有限公司 赋形波束配置方法、装置、设备及存储介质
CN116032340A (zh) * 2022-12-27 2023-04-28 中国联合网络通信集团有限公司 一种基站信号参数的调整方法、基站及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102084597A (zh) * 2008-05-09 2011-06-01 北方电讯网络有限公司 用于支持蜂窝网络中天线波束形成的系统和方法
CN106160817A (zh) * 2016-07-22 2016-11-23 北京佰才邦技术有限公司 覆盖波束选择方法及装置
WO2018028960A1 (en) * 2016-08-12 2018-02-15 Sony Corporation Telecommunications apparatus and methods for determining location of terminal device using beam sweeping
CN107919896A (zh) * 2016-10-09 2018-04-17 大唐移动通信设备有限公司 一种波束赋形方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100442905C (zh) * 2005-06-13 2008-12-10 大唐移动通信设备有限公司 用于群覆盖的智能天线波束赋形方法及装置
CN101686469B (zh) * 2008-09-25 2012-09-05 中兴通讯股份有限公司 一种实现下行数据波束赋形的方法及其系统
CN101600213A (zh) * 2008-10-13 2009-12-09 中国移动通信集团设计院有限公司 一种网络优化中调整小区覆盖范围的方法及装置
CN103491553B (zh) * 2012-06-08 2016-12-21 华为技术有限公司 一种波束调整方法和设备
JP6336728B2 (ja) * 2013-08-20 2018-06-06 株式会社Nttドコモ 同期信号送信方法及び基地局装置
US10462732B2 (en) * 2015-05-13 2019-10-29 Telefonaktiebolaget Lm Ericsson (Publ) Beamforming

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102084597A (zh) * 2008-05-09 2011-06-01 北方电讯网络有限公司 用于支持蜂窝网络中天线波束形成的系统和方法
CN106160817A (zh) * 2016-07-22 2016-11-23 北京佰才邦技术有限公司 覆盖波束选择方法及装置
WO2018028960A1 (en) * 2016-08-12 2018-02-15 Sony Corporation Telecommunications apparatus and methods for determining location of terminal device using beam sweeping
CN107919896A (zh) * 2016-10-09 2018-04-17 大唐移动通信设备有限公司 一种波束赋形方法及装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113271549A (zh) * 2020-02-17 2021-08-17 中兴通讯股份有限公司 一种权值的发送方法及装置、存储介质及电子装置
CN113271549B (zh) * 2020-02-17 2024-04-30 中兴通讯股份有限公司 一种权值的发送方法及装置、存储介质及电子装置
CN114501338A (zh) * 2020-10-23 2022-05-13 中国移动通信集团设计院有限公司 广播波束权值配置方法、装置及电子设备
CN114501338B (zh) * 2020-10-23 2023-08-15 中国移动通信集团设计院有限公司 广播波束权值配置方法、装置及电子设备
CN114614259A (zh) * 2020-12-09 2022-06-10 中国联合网络通信集团有限公司 龙伯透镜天线赋型控制方法、装置、设备及存储介质
CN115134817A (zh) * 2021-03-29 2022-09-30 中国移动通信集团山东有限公司 5g波束赋形优化方法及系统
CN115134817B (zh) * 2021-03-29 2024-06-11 中国移动通信集团山东有限公司 5g波束赋形优化方法及系统
CN115002795A (zh) * 2022-06-10 2022-09-02 中国电信股份有限公司 波束赋形方法、装置、电子设备及可读存储介质

Also Published As

Publication number Publication date
CN112385151A (zh) 2021-02-19
CN112385151B (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
WO2020010527A1 (zh) 波束赋形方法及装置、基站、存储介质
US10666336B2 (en) Inter-device coordination method, beam training method, and apparatus
CN109314547B (zh) 混合无线通信系统
CN105830483A (zh) 波束配置方法、基站及用户设备
CN103988526A (zh) 用于在自组织网络(son)中进行波束成形的系统和方法
US9853705B2 (en) Communication system, base station, mobile station, and reception quality determination method
US11509375B2 (en) Multi-band beam codebook design and operations
US20170289917A1 (en) Dynamic time division duplex interference mitigation in a wireless network
US10680770B2 (en) Inter-cell beam coordination scheduling method and related device
US20210067981A1 (en) Determining beam settings for beam management
US11863266B2 (en) Base station wide beam codebook design
US8908647B2 (en) Mobile communication system for reducing interference to an area
Ghatak et al. Positioning data-rate trade-off in mm-wave small cells and service differentiation for 5G networks
US20230119265A1 (en) RESTRICTING UPLINK MIMO ASSIGNMENT BASED ON FADING IN AN mmWAVE SYSTEM
US11395156B2 (en) Downlink data transmission method, network device, and terminal
US11303334B2 (en) Communication method and related device
Vrontos et al. Performance evaluation of spectrum sharing in mmWave cellular networks using ray-tracing
Dastoor et al. Cellular planning for next generation wireless mobile network using novel energy efficient CoMP
US20220191711A1 (en) Dynamic radio architecture beam pattern control
WO2023092361A1 (zh) 通信系统中的终端以及发送设备
WO2019223665A1 (zh) 下行数据的传输方法、网络设备及终端
CN112073973A (zh) 一种毫米波段非授权频谱的接入和波束赋形方法和装置
US12010632B2 (en) Optimizing coverage and power usage in a network deploying an unlicensed band
Onireti et al. Truncated channel inversion power control for the uplink of mmWave cellular networks
US20230361823A1 (en) Uplink coverage using joint phase-time arrays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925820

Country of ref document: EP

Kind code of ref document: A1