WO2020151214A1 - 一种潮间带一体化测绘的多传感器数据融合方法 - Google Patents

一种潮间带一体化测绘的多传感器数据融合方法 Download PDF

Info

Publication number
WO2020151214A1
WO2020151214A1 PCT/CN2019/098771 CN2019098771W WO2020151214A1 WO 2020151214 A1 WO2020151214 A1 WO 2020151214A1 CN 2019098771 W CN2019098771 W CN 2019098771W WO 2020151214 A1 WO2020151214 A1 WO 2020151214A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate system
inertial navigation
coordinates
laser scanner
sounding
Prior art date
Application number
PCT/CN2019/098771
Other languages
English (en)
French (fr)
Inventor
石波
卢秀山
李国玉
田茂义
陈超
孙海超
马龙称
Original Assignee
青岛秀山移动测量有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛秀山移动测量有限公司 filed Critical 青岛秀山移动测量有限公司
Publication of WO2020151214A1 publication Critical patent/WO2020151214A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Definitions

  • the invention relates to the field of intertidal zone surveying and mapping, in particular to a multi-sensor data fusion method for intertidal zone integrated surveying and mapping.
  • the intertidal zone is located between the sea and the land. How to quickly integrate the integration of sea and land data has become a hot spot.
  • a single sensor can only obtain part of the information segment of the environment and the measured object, while multiple sensors can perfectly and accurately reflect the environmental characteristics after fusion.
  • the topography of the intertidal zone is greatly affected by man-made and natural factors, and topographic data is difficult to obtain. Since single beam and laser scanners cannot obtain data in the shallow area, a towed sounding system is introduced to completely integrate the water and underwater terrain data.
  • the intertidal zone mobile measurement system mainly integrates various sensors such as satellite positioning system, inertial navigation system, three-dimensional laser scanner, towed vehicle, etc. Because the data measured by multiple sensors are in different coordinate systems, coordinate conversion is required. First, Obtain the conversion parameters, then merge the point clouds, and finally generate an integrated topographic map of the intertidal zone.
  • the present invention provides a multi-sensor data fusion method for intertidal zone integrated surveying and mapping, which combines the precise calibration of each sensor to complete the conversion of multi-sensor data space coordinates.
  • a multi-sensor data fusion method for integrated surveying and mapping of intertidal zones including a carrier vehicle on which sensors are arranged.
  • the sensors include a satellite positioning system, an inertial navigation system, a laser scanner, a single beam sounder and a towed sounding device ;
  • Coordinate systems include single-beam coordinate system, drag sounding coordinate system, laser scanner coordinate system, satellite positioning system coordinate system and inertial navigation system coordinate system, and local horizontal coordinate system and WGS84 coordinate system are also required;
  • the multi-sensor data fusion method includes the following steps:
  • Step 1 Use a precision industrial measurement system to calibrate the phase center and shaft system of each sensor
  • Step 2 Use a single-beam sounding device to collect data in shallow waters, a towed sounding device to collect data in shallow waters, and a laser scanner to collect data on land.
  • Step 3 Convert the data coordinates collected under the laser scanner coordinate system, single beam coordinate system and drag sounding coordinate system to the WGS84 coordinate system.
  • the step 1 specifically includes the following sub-steps:
  • Step 1.1 Use two theodolites for directional measurement and determine the relative position between the two theodolites to establish a spatial rectangular coordinate system
  • Step 1.2 Use the space forward intersection measurement principle to determine the phase center and attitude information of the inertial navigation system and laser scanner, and the phase center position of the satellite positioning system, single beam sounder and towed sounding device.
  • the step 2 specifically includes:
  • the single-beam echo sounder includes a transducer, through which a short pulse wave is emitted vertically downwards, and is received by the transducer after reflection on the seabed.
  • the water depth is calculated by the propagation speed and propagation time of the sound wave in the water;
  • h is the distance between the transducer and the bottom
  • C is the average sound velocity of the water body
  • t is the two-way travel time of the sound wave
  • the position information of the single-beam echo sounder given by the satellite positioning system can calculate the three-dimensional space coordinates of the seabed terrain
  • the towed sounding device includes a connecting rod connected to the rear end of the carrier vehicle, two encoders are arranged at the front end of the connecting rod, and a roller is arranged at the rear end of the connecting rod.
  • the roller moves up and down, left, and right in different terrains, and is transmitted to the connecting rod.
  • the front encoder with two degrees of freedom, vertical and horizontal, through the vertical and horizontal angle changes, the length of the connecting rod, the satellite positioning system, and the inertial navigation system, calculate the three-dimensional space coordinates of the shallow and intertidal terrain;
  • ( ⁇ x, ⁇ y, ⁇ h) are the coordinates of the feature points in the drag sounding coordinate system
  • L is the length of the connecting rod
  • is the angle between the vertical direction of the connecting rod and the Y axis of the drag sounding coordinate system
  • is the connecting rod The angle between the horizontal direction and the Y axis of the drag sounding coordinate system
  • the laser scanner provides accurate position information of the carrier through the satellite positioning system, and the spatial attitude information of the carrier provided by the inertial navigation system to measure the three-dimensional spatial coordinates of the water terrain.
  • the step 3 specifically includes:
  • the data conversion model is as follows:
  • h is the seafloor depth measured by a single beam echo sounder
  • C is the average sound velocity of the water body
  • t is the two-way travel time of the sound wave
  • Is the WGS84 coordinate of the underwater topography measured by the single beam sounder Is the rotation matrix from the single beam coordinate system to the inertial navigation system coordinate system, Is the coordinates of the underwater terrain in a single beam coordinate system, Is the coordinate of the phase center of the transducer of the single beam echo sounder in the coordinate system of the inertial navigation system, Is the rotation matrix from the inertial navigation system coordinate system to the local horizontal coordinate system, Is the rotation matrix of the local horizontal coordinate system, Is the coordinates of the center of the inertial navigation system in the WGS84 coordinate system;
  • the data conversion model is as follows:
  • L is the length of the connecting rod
  • is the angle between the horizontal direction of the connecting rod and the Y axis of the drag sounding coordinate system
  • is the angle between the vertical direction of the connecting rod and the Y axis of the drag sounding coordinate system
  • To drag the sounding coordinate system to the rotation matrix of the inertial navigation system coordinate system Is the coordinates of the shoal terrain in the towed bathymetry system coordinate system
  • To tow the coordinates of the phase center of the sounding device in the coordinate system of the inertial navigation system Is the rotation matrix from the inertial navigation system coordinate system to the local horizontal coordinate system
  • the data conversion model is as follows:
  • Is the WGS84 coordinates of the laser foot point Is the rotation matrix from the laser scanner coordinate system to the inertial navigation system coordinate system, Is the coordinates of the laser foot point in the laser scanner coordinate system, Is the coordinate of the laser scanner center in the coordinate system of the inertial navigation system, Is the rotation matrix from the inertial navigation system coordinate system to the local horizontal coordinate system, Is the rotation matrix of the local horizontal coordinate system, It is the coordinates of the center of the inertial navigation system in the WGS84 coordinate system.
  • the multi-sensor data fusion method for integrated surveying and mapping of intertidal zone is based on the principle of space coordinate conversion and combined with the precise calibration of each sensor, which solves the problem of incomplete topographic surveying and mapping of intertidal zone. This method can quickly and accurately The topographic surveying and mapping of the intertidal zone has been completed, which has excellent application prospects.
  • Figure 1 is an overall schematic diagram of each sensor coordinate system on the carrier vehicle
  • Figure 2 is a schematic diagram of a single beam sounding coordinate system
  • Figure 3 is a schematic diagram of the drag sounding coordinate system
  • Figure 4 is a schematic diagram of the coordinate system of the laser scanner
  • Figure 5 is a schematic diagram of the satellite positioning system coordinate system
  • Figure 6 is a schematic diagram of the coordinate system of the inertial navigation system
  • Figure 7 is a schematic diagram of the local horizontal coordinate system
  • Figure 8 is a schematic diagram of the WGS84 coordinate system.
  • a multi-sensor data fusion method for integrated surveying and mapping of intertidal zones includes a carrier vehicle.
  • the carrier vehicle is equipped with sensors.
  • the sensors include a satellite positioning system 4, an inertial navigation system 5, and a laser scanner 3. Single beam sounder 1 and towed sounder 2.
  • the coordinate system includes a single beam coordinate system, a drag sounding coordinate system, a laser scanner coordinate system, a satellite positioning system coordinate system and an inertial navigation system coordinate system.
  • the coordinate origin of the single-beam coordinate system is the phase center of the transducer, the Z axis is vertical upward, the Y axis points to the driving direction, and the X axis satisfies the right-hand rule.
  • the coordinate origin of the drag sounding coordinate system is the phase center of the encoder where the connecting rod and the body are connected, the Z axis is vertical upwards, the Y axis points to the driving direction, and the X axis satisfies the right-hand rule.
  • the coordinate origin of the laser scanner coordinate system is the phase center of the laser scanner, the Z axis is vertical upwards, the Y axis points to the driving direction, and the X axis satisfies the right-hand rule.
  • the origin O of the satellite positioning system coordinate system is the phase center of the GNSS receiver, which is 1 cm away from the top of the receiver.
  • the origin of the coordinate system of the inertial navigation system is the center of the inertial measurement unit, and the three-axis direction is fixedly connected to the inertial measurement unit. It is generally marked on the inertial measurement unit.
  • the directions of the inertial measurement units of different manufacturers are not the same. .
  • the local horizontal coordinate system generally selects a certain point of the carrier vehicle as the coordinate origin.
  • the present invention selects the local horizontal coordinate system origin at the center of the inertial measurement unit, and selects the northeast sky coordinate system.
  • the origin of the WGS84 coordinate system is at the centroid of the earth
  • the Z axis points to the direction of the protocol earth pole defined by BIHI19844.0
  • the X axis points to the intersection of the zero meridian plane of BIHI1984.0 and the equator
  • the Y axis and the X axis and Z axis form Right-handed coordinate system.
  • the multi-sensor data fusion method includes the following steps:
  • Step 1 Use a precision industrial measurement system to calibrate the phase center and shaft system of each sensor.
  • Step 1 specifically includes the following sub-steps:
  • Step 1.1 Use two theodolites for directional measurement and determine the relative position between the two theodolites to establish a spatial rectangular coordinate system
  • Step 1.2 Use the space forward rendezvous measurement principle to determine the phase center and attitude information of the inertial navigation system, the laser scanner, the satellite positioning system, the single-beam echo sounder, and the towed echo sounder.
  • Step 2 Use a single-beam sounding device to collect data in shallow waters, a towed sounding device to collect data in shallow waters, and a laser scanner to collect data on land.
  • step 2 includes:
  • the single-beam echo sounder includes a transducer, through which a short pulse wave is emitted vertically downwards, and is received by the transducer after reflection on the seabed.
  • the water depth is calculated by the propagation speed and propagation time of the sound wave in the water;
  • h is the distance between the transducer and the bottom
  • C is the average sound velocity of the water body
  • t is the two-way travel time of the sound wave
  • the position information of the single-beam echo sounder given by the satellite positioning system can calculate the three-dimensional spatial coordinates of the seabed terrain.
  • the towed sounding device includes a connecting rod connected to the rear end of the carrier vehicle, two encoders are arranged at the front end of the connecting rod, and a roller is arranged at the rear end of the connecting rod.
  • the roller moves up and down, left, and right in different terrains, and is transmitted to the connecting rod.
  • the front encoder with two degrees of freedom, vertical and horizontal, can calculate the three-dimensional space coordinates of shallows and intertidal terrain through vertical and horizontal angle changes, the length of the connecting rod, satellite positioning system, and inertial navigation system. ;
  • ( ⁇ x, ⁇ y, ⁇ h) are the coordinates of the feature points in the drag sounding coordinate system
  • L is the length of the connecting rod
  • is the angle between the vertical direction of the connecting rod and the Y axis of the drag sounding coordinate system
  • is the connecting rod The angle between the horizontal direction and the Y axis of the drag sounding coordinate system.
  • the laser scanner provides accurate position information of the carrier through the satellite positioning system, and the spatial attitude information of the carrier provided by the inertial navigation system to measure the three-dimensional spatial coordinates of the water terrain.
  • Step 3 Convert the data coordinates collected under the laser scanner coordinate system, single beam coordinate system and drag sounding coordinate system to the WGS84 coordinate system.
  • Step 3 specifically includes:
  • the data conversion model is as follows:
  • h is the seafloor depth measured by a single beam echo sounder
  • C is the average sound velocity of the water body
  • t is the two-way travel time of the sound wave
  • Is the WGS84 coordinate of the underwater topography measured by the single beam sounder Is the rotation matrix from the single beam coordinate system to the inertial navigation system coordinate system, Is the coordinates of the underwater terrain in a single beam coordinate system, Is the coordinate of the phase center of the transducer of the single beam echo sounder in the coordinate system of the inertial navigation system, Is the rotation matrix from the inertial navigation system coordinate system to the local horizontal coordinate system, Is the rotation matrix of the local horizontal coordinate system, Is the coordinates of the center of the inertial navigation system in the WGS84 coordinate system;
  • the data conversion model is as follows:
  • L is the length of the connecting rod
  • is the angle between the horizontal direction of the connecting rod and the Y axis of the drag sounding coordinate system
  • is the angle between the vertical direction of the connecting rod and the Y axis of the drag sounding coordinate system
  • To drag the sounding coordinate system to the rotation matrix of the inertial navigation system coordinate system Is the coordinates of the shoal terrain in the towed bathymetry system coordinate system
  • To tow the coordinates of the phase center of the sounding device in the coordinate system of the inertial navigation system Is the rotation matrix from the inertial navigation system coordinate system to the local horizontal coordinate system
  • the data conversion model is as follows:
  • Is the WGS84 coordinates of the laser foot point Is the rotation matrix from the laser scanner coordinate system to the inertial navigation system coordinate system, Is the coordinates of the laser foot point in the laser scanner coordinate system, Is the coordinate of the laser scanner center in the coordinate system of the inertial navigation system, Is the rotation matrix from the inertial navigation system coordinate system to the local horizontal coordinate system, Is the rotation matrix of the local horizontal coordinate system, It is the coordinates of the center of the inertial navigation system in the WGS84 coordinate system.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Navigation (AREA)

Abstract

本发明提供了一种潮间带一体化测绘的多传感器数据融合方法,包括载体车,载体车上设置有传感器,传感器包括卫星定位系统、惯性导航系统、激光扫描仪、单波束测深仪和拖曳测深装置。本方法采用精密工业测量系统对各传感器相位中心及轴系进行标定;分别使用单波束测深装置在浅水区采集数据,使用拖曳测深装置在浅滩区采集数据,使用激光扫描仪在陆地采集数据,将激光扫描仪坐标系、单波束坐标系及拖曳测深坐标系下采集的数据坐标转换到WGS84坐标系下。本方法解决了潮间带地形测绘不完整的问题,能够快速、准确的完成潮间带的地形测绘。

Description

一种潮间带一体化测绘的多传感器数据融合方法 技术领域
本发明涉及潮间带测绘领域,具体涉及一种潮间带一体化测绘的多传感器数据融合方法。
背景技术
随着科技的发展,人们对海洋的了解越来越深,潮间带位于海陆之间,如何快速的集成海陆一体化数据的融合成为热点。单一传感器只能获得环境和被测对象的部分信息段,而多传感器经过融合后能够完善地、准确地反映环境特征。潮间带地区地形受人为和自然因素影响较大,地形数据难以获得。由于单波束及激光扫描仪不能在浅滩区域获取数据,因此引入拖曳测深系统,将水上水下地形数据完整融合在一起。
潮间带移动测量系统主要集成了卫星定位系统、惯性导航系统、三维激光扫描仪、拖曳车等多种传感器,因多传感器所测得的数据在不同坐标系统下,所以需要进行坐标转换,首先获取转换参数,再将点云进行融合,最后生成潮间带一体化地形图。
发明内容
为了更加准确的完成潮间带测绘,本发明提供一种潮间带一体化测绘的多传感器数据融合方法,结合各传感器的精确标定,完成多传感器数据空间坐标的转化。
本发明采用以下的技术方案:
一种潮间带一体化测绘的多传感器数据融合方法,包括载体车,载体车上设置有传感器,传感器包括卫星定位系统、惯性导航系统、激光扫描仪、单波束测深仪和拖曳测深装置;
坐标系有单波束坐标系、拖曳测深坐标系、激光扫描仪坐标系,卫星定位系统坐标系和惯性导航系统坐标系,还需要当地水平坐标系和WGS84坐标系;
多传感器数据融合方法包括以下步骤:
步骤1:采用精密工业测量系统对各传感器相位中心及轴系进行标定;
步骤2:分别使用单波束测深装置在浅水区采集数据,使用拖曳测深装置在浅滩区采集数据,使用激光扫描仪在陆地采集数据。
步骤3:将激光扫描仪坐标系、单波束坐标系及拖曳测深坐标系下采集的数据坐标转换到WGS84坐标系下。
优选地,所述步骤1具体包括以下子步骤:
步骤1.1:利用两个经纬仪进行定向测量,确定两个经纬仪之间的相对位置,以此建立空间直角坐标系;
步骤1.2:利用空间前方交会测量原理,确定惯性导航系统、激光扫描仪的相位中心以 及姿态信息,卫星定位系统、单波束测深仪以及拖曳测深装置的相位中心位置。
优选地,所述步骤2具体包括:
单波束测深仪包括换能器,通过换能器垂直向下发射短脉冲波,在海底经过反射被换能器接收,通过声波在水中的传播速度以及传播时间,来计算出水深;
公式:
Figure PCTCN2019098771-appb-000001
式中,h为换能器与水底间的距离,C为水体的平均声速,t为声波的双程旅行时间;
通过卫星定位系统赋予单波束测深仪位置信息,能求算出海底地形的三维空间坐标;
拖曳测深装置包括连接在载体车后端设置有连接杆,连接杆的前端设置有两个编码器,连接杆的后端设置有滚轮,通过滚轮在不同地形上下左右的移动,传导到连接杆前部的具有垂直和水平两个自由度的编码器,通过垂直和水平方向的角度变化、连接杆的长度以及卫星定位系统、惯性导航系统,求算出浅滩、潮间带地形的三维空间坐标;
公式:
Figure PCTCN2019098771-appb-000002
(Δx,Δy,Δh)为拖曳测深坐标系下的地物点的坐标,L为连接杆的长度,β为连接杆垂直方向与拖曳测深坐标系Y轴的夹角,α为连接杆水平方向与拖曳测深坐标系Y轴的夹角;
激光扫描仪,通过卫星定位系统提供载体精确的位置信息,惯性导航系统提供的载体的空间姿态信息,测得水上地形三维空间坐标。
优选地,所述步骤3具体包括:
将单波束测深数据转换到WGS84坐标系下的数据;
数据转换模型如下:
Figure PCTCN2019098771-appb-000003
Figure PCTCN2019098771-appb-000004
Figure PCTCN2019098771-appb-000005
其中,h为单波束测深仪测得的海底深度,C为水体的平均声速,t为声波的双程旅行时间,
Figure PCTCN2019098771-appb-000006
为单波束测深仪测得的水底地形的WGS84坐标,
Figure PCTCN2019098771-appb-000007
为单波束坐标系到惯 性导航系统坐标系的旋转矩阵,
Figure PCTCN2019098771-appb-000008
为水底地形在单波束坐标系中的坐标,
Figure PCTCN2019098771-appb-000009
为单波束测深仪的换能器相位中心在惯性导航系统坐标系中的坐标,
Figure PCTCN2019098771-appb-000010
为惯性导航系统坐标系到当地水平坐标系的旋转矩阵,
Figure PCTCN2019098771-appb-000011
为当地水平坐标系的旋转矩阵,
Figure PCTCN2019098771-appb-000012
为惯性导航系统中心在WGS84坐标系中的坐标;
将拖曳测深数据转换到WGS84坐标系下的数据;
数据转换模型如下:
Figure PCTCN2019098771-appb-000013
Figure PCTCN2019098771-appb-000014
其中,L为连接杆的长度,α为连接杆水平方向与拖曳测深坐标系Y轴的夹角,β为连接杆垂直方向与拖曳测深坐标系Y轴的夹角,
Figure PCTCN2019098771-appb-000015
为拖曳测深装置测得的浅滩地形的WGS84坐标,
Figure PCTCN2019098771-appb-000016
为拖曳测深坐标系到惯性导航系统坐标系的旋转矩阵,
Figure PCTCN2019098771-appb-000017
为浅滩地形在拖曳测深系统坐标系中的坐标,
Figure PCTCN2019098771-appb-000018
为拖曳测深装置相位中心在惯性导航系统坐标系中的坐标,
Figure PCTCN2019098771-appb-000019
为惯性导航系统坐标系到当地水平坐标系的旋转矩阵,
Figure PCTCN2019098771-appb-000020
为当地水平坐标系的旋转矩阵,
Figure PCTCN2019098771-appb-000021
为惯性导航系统中心在WGS84坐标系中的坐标;
将激光扫描仪数据转换到WGS84坐标系下的数据;
数据转换模型如下:
Figure PCTCN2019098771-appb-000022
其中,
Figure PCTCN2019098771-appb-000023
为激光脚点的WGS84坐标,
Figure PCTCN2019098771-appb-000024
为激光扫描仪坐标系到惯性导航系统坐标系的旋转矩阵,
Figure PCTCN2019098771-appb-000025
为激光脚点在激光扫描仪坐标系中的坐标,
Figure PCTCN2019098771-appb-000026
为激光扫描仪中心在惯性导航系统坐标系中的坐标,
Figure PCTCN2019098771-appb-000027
为惯性导航系统坐标系到当地水平坐标系的旋转矩阵,
Figure PCTCN2019098771-appb-000028
为当地水平坐标系的旋转矩阵,
Figure PCTCN2019098771-appb-000029
为惯性导航系统中心在WGS84坐标系中的坐标。
本发明具有的有益效果是:
本发明提供的潮间带一体化测绘的多传感器数据融合方法,基于空间坐标转换原理,结合各传感器的精确标定,解决了潮间带地形测绘不完整的问题,利用本方法能够快速、准确的完成潮间带的地形测绘,具有极好的应用前景。
附图说明
图1为各传感器坐标系统在载体车上的整体示意图;
图2为单波束测深坐标系示意图;
图3为拖曳测深坐标系示意图;
图4为激光扫描仪坐标系示意图;
图5为卫星定位系统坐标系示意图;
图6为惯性导航系统坐标系示意图;
图7为当地水平坐标系示意图;
图8为WGS84坐标系示意图。
具体实施方式
下面结合附图和具体实施例对本发明的具体实施方式做进一步说明:
结合图1至图8,一种潮间带一体化测绘的多传感器数据融合方法,包括载体车,载体车上设置有传感器,传感器包括卫星定位系统4、惯性导航系统5、激光扫描仪3、单波束测深仪1和拖曳测深装置2。
坐标系有单波束坐标系、拖曳测深坐标系、激光扫描仪坐标系,卫星定位系统坐标系和惯性导航系统坐标系。
另外,还需要当地水平坐标系和WGS84坐标系。
如图2所示,单波束坐标系的坐标原点为换能器的相位中心,Z轴垂直向上,Y轴指向行车方向,X轴满足右手法则。
如图3所示,拖曳测深坐标系的坐标原点为连接杆与车身连接处的编码器的相位中心,Z轴垂直向上,Y轴指向行车方向,X轴满足右手法则。
如图4所示,激光扫描仪坐标系的坐标原点为激光扫描仪的相位中心,Z轴垂直向上,Y轴指向行车方向,X轴满足右手法则。
如图5所示,卫星定位系统坐标系的原点O为GNSS接收机的的相位中心,距离接收机顶部1cm处。
如图6所示,惯性导航系统坐标系的原点为惯性测量单元的中心,三轴指向与惯性测量单元固连,一般在惯性测量单元上标识,不同厂家的惯性测量单元标注的指向不尽相同。
如图7所示,当地水平坐标系一般选取载体车的某一点作为坐标原点,本发明将当地水平坐标系原点选在惯性测量单元中心,选择东北天坐标系。
如图8所示,WGS84坐标系原点位于地球质心,Z轴指向BIHI19844.0定义的协议地球极方向,X轴指向BIHI1984.0的零子午面与赤道的交点,Y轴与X轴Z轴构成右手坐标系。
多传感器数据融合方法包括以下步骤:
步骤1:采用精密工业测量系统对各传感器相位中心及轴系进行标定。
步骤1具体包括以下子步骤:
步骤1.1:利用两个经纬仪进行定向测量,确定两个经纬仪之间的相对位置,以此建立空间直角坐标系;
步骤1.2:利用空间前方交会测量原理,确定惯性导航系统、激光扫描仪的相位中心以及姿态信息,卫星定位系统、单波束测深仪以及拖曳测深装置的相位中心位置。
步骤2:分别使用单波束测深装置在浅水区采集数据,使用拖曳测深装置在浅滩区采集数据,使用激光扫描仪在陆地采集数据。
具体的,步骤2包括:
单波束测深仪包括换能器,通过换能器垂直向下发射短脉冲波,在海底经过反射被换能器接收,通过声波在水中的传播速度以及传播时间,来计算出水深;
公式:
Figure PCTCN2019098771-appb-000030
式中,h为换能器与水底间的距离,C为水体的平均声速,t为声波的双程旅行时间;
通过卫星定位系统赋予单波束测深仪位置信息,可以求算出海底地形的三维空间坐标。
拖曳测深装置包括连接在载体车后端设置有连接杆,连接杆的前端设置有两个编码器,连接杆的后端设置有滚轮,通过滚轮在不同地形上下左右的移动,传导到连接杆前部的具有垂直和水平两个自由度的编码器,通过垂直和水平方向的角度变化、连接杆的长度以及卫星定位系统、惯性导航系统,能求算出浅滩、潮间带地形的三维空间坐标;
公式:
Figure PCTCN2019098771-appb-000031
(Δx,Δy,Δh)为拖曳测深坐标系下的地物点的坐标,L为连接杆的长度,β为连接杆垂直 方向与拖曳测深坐标系Y轴的夹角,α为连接杆水平方向与拖曳测深坐标系Y轴的夹角。
激光扫描仪,通过卫星定位系统提供载体精确的位置信息,惯性导航系统提供的载体的空间姿态信息,测得水上地形三维空间坐标。
步骤3:将激光扫描仪坐标系、单波束坐标系及拖曳测深坐标系下采集的数据坐标转换到WGS84坐标系下。
步骤3具体包括:
将单波束测深数据转换到WGS84坐标系下的数据;
数据转换模型如下:
Figure PCTCN2019098771-appb-000032
Figure PCTCN2019098771-appb-000033
Figure PCTCN2019098771-appb-000034
其中,h为单波束测深仪测得的海底深度,C为水体的平均声速,t为声波的双程旅行时间,
Figure PCTCN2019098771-appb-000035
为单波束测深仪测得的水底地形的WGS84坐标,
Figure PCTCN2019098771-appb-000036
为单波束坐标系到惯性导航系统坐标系的旋转矩阵,
Figure PCTCN2019098771-appb-000037
为水底地形在单波束坐标系中的坐标,
Figure PCTCN2019098771-appb-000038
为单波束测深仪的换能器相位中心在惯性导航系统坐标系中的坐标,
Figure PCTCN2019098771-appb-000039
为惯性导航系统坐标系到当地水平坐标系的旋转矩阵,
Figure PCTCN2019098771-appb-000040
为当地水平坐标系的旋转矩阵,
Figure PCTCN2019098771-appb-000041
为惯性导航系统中心在WGS84坐标系中的坐标;
将拖曳测深数据转换到WGS84坐标系下的数据;
数据转换模型如下:
Figure PCTCN2019098771-appb-000042
Figure PCTCN2019098771-appb-000043
其中,L为连接杆的长度,α为连接杆水平方向与拖曳测深坐标系Y轴的夹角,β为连接杆垂直方向与拖曳测深坐标系Y轴的夹角,
Figure PCTCN2019098771-appb-000044
为拖曳测深装置测得的浅滩地形的WGS84坐标,
Figure PCTCN2019098771-appb-000045
为拖曳测深坐标系到惯性导航系统坐标系的旋转矩阵,
Figure PCTCN2019098771-appb-000046
为浅滩地形在拖曳测深系统坐标系中的坐标,
Figure PCTCN2019098771-appb-000047
为拖曳测深装置相位中心在惯性导航系统坐标系中的坐标,
Figure PCTCN2019098771-appb-000048
为惯性导航系统坐标系到当地水平坐标系的旋转矩阵,
Figure PCTCN2019098771-appb-000049
为当地水平坐标系的旋转矩阵,
Figure PCTCN2019098771-appb-000050
为惯性导航系统中心在WGS84坐标系中的坐标;
将激光扫描仪数据转换到WGS84坐标系下的数据;
数据转换模型如下:
Figure PCTCN2019098771-appb-000051
其中,
Figure PCTCN2019098771-appb-000052
为激光脚点的WGS84坐标,
Figure PCTCN2019098771-appb-000053
为激光扫描仪坐标系到惯性导航系统坐标系的旋转矩阵,
Figure PCTCN2019098771-appb-000054
为激光脚点在激光扫描仪坐标系中的坐标,
Figure PCTCN2019098771-appb-000055
为激光扫描仪中心在惯性导航系统坐标系中的坐标,
Figure PCTCN2019098771-appb-000056
为惯性导航系统坐标系到当地水平坐标系的旋转矩阵,
Figure PCTCN2019098771-appb-000057
为当地水平坐标系的旋转矩阵,
Figure PCTCN2019098771-appb-000058
为惯性导航系统中心在WGS84坐标系中的坐标。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (4)

  1. 一种潮间带一体化测绘的多传感器数据融合方法,其特征在于,包括载体车,载体车上设置有传感器,传感器包括卫星定位系统、惯性导航系统、激光扫描仪、单波束测深仪和拖曳测深装置;
    坐标系有单波束坐标系、拖曳测深坐标系、激光扫描仪坐标系,卫星定位系统坐标系和惯性导航系统坐标系,还需要当地水平坐标系和WGS84坐标系;
    多传感器数据融合方法包括以下步骤:
    步骤1:采用精密工业测量系统对各传感器相位中心及轴系进行标定;
    步骤2:分别使用单波束测深装置在浅水区采集数据,使用拖曳测深装置在浅滩区采集数据,使用激光扫描仪在陆地采集数据。
    步骤3:将激光扫描仪坐标系、单波束坐标系及拖曳测深坐标系下采集的数据坐标转换到WGS84坐标系下。
  2. 根据权利要求1所述的一种潮间带一体化测绘的多传感器数据融合方法,其特征在于,所述步骤1具体包括以下子步骤:
    步骤1.1:利用两个经纬仪进行定向测量,确定两个经纬仪之间的相对位置,以此建立空间直角坐标系;
    步骤1.2:利用空间前方交会测量原理,确定惯性导航系统、激光扫描仪的相位中心以及姿态信息,卫星定位系统、单波束测深仪以及拖曳测深装置的相位中心位置。
  3. 根据权利要求1所述的一种潮间带一体化测绘的多传感器数据融合方法,其特征在于,所述步骤2具体包括:
    单波束测深仪包括换能器,通过换能器垂直向下发射短脉冲波,在海底经过反射被换能器接收,通过声波在水中的传播速度以及传播时间,来计算出水深;
    公式:
    Figure PCTCN2019098771-appb-100001
    式中,h为换能器与水底间的距离,C为水体的平均声速,t为声波的双程旅行时间;
    通过卫星定位系统赋予单波束测深仪位置信息,能求算出海底地形的三维空间坐标;
    拖曳测深装置包括连接在载体车后端设置有连接杆,连接杆的前端设置有两个编码器,连接杆的后端设置有滚轮,通过滚轮在不同地形上下左右的移动,传导到连接杆前部的具有垂直和水平两个自由度的编码器,通过垂直和水平方向的角度变化、连接杆的长度以及卫星定位系统、惯性导航系统,求算出浅滩、潮间带地形的三维空间坐标;
    公式:
    Figure PCTCN2019098771-appb-100002
    (Δx,Δy,Δh)为拖曳测深坐标系下的地物点的坐标,L为连接杆的长度,β为连接杆垂直方向与拖曳测深坐标系Y轴的夹角,α为连接杆水平方向与拖曳测深坐标系Y轴的夹角;
    激光扫描仪,通过卫星定位系统提供载体精确的位置信息,惯性导航系统提供的载体的空间姿态信息,测得水上地形三维空间坐标。
  4. 根据权利要求3所述的一种潮间带一体化测绘的多传感器数据融合方法,其特征在于,所述步骤3具体包括:
    将单波束测深数据转换到WGS84坐标系下的数据;
    数据转换模型如下:
    Figure PCTCN2019098771-appb-100003
    Figure PCTCN2019098771-appb-100004
    Figure PCTCN2019098771-appb-100005
    其中,h为单波束测深仪测得的海底深度,C为水体的平均声速,t为声波的双程旅行时间,
    Figure PCTCN2019098771-appb-100006
    为单波束测深仪测得的水底地形的WGS84坐标,
    Figure PCTCN2019098771-appb-100007
    为单波束坐标系到惯性导航系统坐标系的旋转矩阵,
    Figure PCTCN2019098771-appb-100008
    为水底地形在单波束坐标系中的坐标,
    Figure PCTCN2019098771-appb-100009
    为单波束测深仪的换能器相位中心在惯性导航系统坐标系中的坐标,
    Figure PCTCN2019098771-appb-100010
    为惯性导航系统坐标系到当地水平坐标系的旋转矩阵,
    Figure PCTCN2019098771-appb-100011
    为当地水平坐标系的旋转矩阵,
    Figure PCTCN2019098771-appb-100012
    为惯性导航系统中心在WGS84坐标系中的坐标;
    将拖曳测深数据转换到WGS84坐标系下的数据;
    数据转换模型如下:
    Figure PCTCN2019098771-appb-100013
    Figure PCTCN2019098771-appb-100014
    其中,L为连接杆的长度,α为连接杆水平方向与拖曳测深坐标系Y轴的夹角,β为连接杆垂直方向与拖曳测深坐标系Y轴的夹角,
    Figure PCTCN2019098771-appb-100015
    为拖曳测深装置测得的浅滩地形的WGS84坐标,
    Figure PCTCN2019098771-appb-100016
    为拖曳测深坐标系到惯性导航系统坐标系的旋转矩阵,
    Figure PCTCN2019098771-appb-100017
    为浅滩地形在拖曳测深系统坐标系中的坐标,
    Figure PCTCN2019098771-appb-100018
    为拖曳测深装置相位中心在惯性导航系统坐标系中的坐标,
    Figure PCTCN2019098771-appb-100019
    为惯性导航系统坐标系到当地水平坐标系的旋转矩阵,
    Figure PCTCN2019098771-appb-100020
    为当地水平坐标系的旋转矩阵,
    Figure PCTCN2019098771-appb-100021
    为惯性导航系统中心在WGS84坐标系中的坐标;
    将激光扫描仪数据转换到WGS84坐标系下的数据;
    数据转换模型如下:
    Figure PCTCN2019098771-appb-100022
    其中,
    Figure PCTCN2019098771-appb-100023
    为激光脚点的WGS84坐标,
    Figure PCTCN2019098771-appb-100024
    为激光扫描仪坐标系到惯性导航系统坐标系的旋转矩阵,
    Figure PCTCN2019098771-appb-100025
    为激光脚点在激光扫描仪坐标系中的坐标,
    Figure PCTCN2019098771-appb-100026
    为激光扫描仪中心在惯性导航系统坐标系中的坐标,
    Figure PCTCN2019098771-appb-100027
    为惯性导航系统坐标系到当地水平坐标系的旋转矩阵,
    Figure PCTCN2019098771-appb-100028
    为当地水平坐标系的旋转矩阵,
    Figure PCTCN2019098771-appb-100029
    为惯性导航系统中心在WGS84坐标系中的坐标。
PCT/CN2019/098771 2019-01-22 2019-08-01 一种潮间带一体化测绘的多传感器数据融合方法 WO2020151214A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910056954.7 2019-01-22
CN201910056954.7A CN109631862A (zh) 2019-01-22 2019-01-22 一种潮间带一体化测绘的多传感器数据融合方法

Publications (1)

Publication Number Publication Date
WO2020151214A1 true WO2020151214A1 (zh) 2020-07-30

Family

ID=66062917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098771 WO2020151214A1 (zh) 2019-01-22 2019-08-01 一种潮间带一体化测绘的多传感器数据融合方法

Country Status (2)

Country Link
CN (1) CN109631862A (zh)
WO (1) WO2020151214A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109631862A (zh) * 2019-01-22 2019-04-16 青岛秀山移动测量有限公司 一种潮间带一体化测绘的多传感器数据融合方法
CN112102418B (zh) * 2020-09-16 2022-02-11 上海商汤临港智能科技有限公司 一种标定方法、装置、电子设备及存储介质
CN113445487B (zh) * 2021-09-02 2021-11-12 中国海洋大学 基于超短基线定位的桩基冲刷坑水下探测设备及方法
CN114018224A (zh) * 2021-10-26 2022-02-08 江苏海洋大学 一种海图水深数据检核系统和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2472225A2 (en) * 2010-12-22 2012-07-04 Custom Sensors & Technologies, Inc. Method and system for initial quaternion and attitude estimation
CN105352476A (zh) * 2015-11-23 2016-02-24 青岛秀山移动测量有限公司 船载水岸线水上水下一体化测量系统集成方法
CN105651263A (zh) * 2015-12-23 2016-06-08 国家海洋局第海洋研究所 浅海水深多源遥感融合反演方法
CN107390293A (zh) * 2017-07-05 2017-11-24 国家海洋局第二海洋研究所 一种用于浅水岛礁区的海洋探测系统和控制方法
CN207164267U (zh) * 2017-09-15 2018-03-30 山东省物化探勘查院 一种浅海区海底高精度重力测量系统
CN109631862A (zh) * 2019-01-22 2019-04-16 青岛秀山移动测量有限公司 一种潮间带一体化测绘的多传感器数据融合方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101480172B1 (ko) * 2014-07-11 2015-01-12 (주)지오시스템리서치 카메라 영상을 이용한 해빈 영역 면적 산출 장치 및 그 방법
KR101488214B1 (ko) * 2014-07-11 2015-01-30 (주)지오시스템리서치 카메라 영상을 이용한 조간대 지형 변화 모니터링 장치 및 그 방법
CN105426121B (zh) * 2015-10-30 2018-01-16 山东科技大学 船载多传感器一体化测量数据实时存储方法
CN107883932B (zh) * 2017-11-16 2023-10-27 自然资源部第二海洋研究所 一种适用岛礁与岸滩的测量系统与方法
CN108151715B (zh) * 2018-02-09 2023-09-26 首都师范大学 一种浅水区水下地形测量装置及方法
CN109059746A (zh) * 2018-06-15 2018-12-21 天津大学 一种基于精密pos的海底地形测量方法
CN109029535B (zh) * 2018-08-22 2023-09-29 青岛秀山移动测量有限公司 船载水上水下一体化测量系统的平台装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2472225A2 (en) * 2010-12-22 2012-07-04 Custom Sensors & Technologies, Inc. Method and system for initial quaternion and attitude estimation
CN105352476A (zh) * 2015-11-23 2016-02-24 青岛秀山移动测量有限公司 船载水岸线水上水下一体化测量系统集成方法
CN105651263A (zh) * 2015-12-23 2016-06-08 国家海洋局第海洋研究所 浅海水深多源遥感融合反演方法
CN107390293A (zh) * 2017-07-05 2017-11-24 国家海洋局第二海洋研究所 一种用于浅水岛礁区的海洋探测系统和控制方法
CN207164267U (zh) * 2017-09-15 2018-03-30 山东省物化探勘查院 一种浅海区海底高精度重力测量系统
CN109631862A (zh) * 2019-01-22 2019-04-16 青岛秀山移动测量有限公司 一种潮间带一体化测绘的多传感器数据融合方法

Also Published As

Publication number Publication date
CN109631862A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
WO2020151214A1 (zh) 一种潮间带一体化测绘的多传感器数据融合方法
CN107883932B (zh) 一种适用岛礁与岸滩的测量系统与方法
CN110208812A (zh) 半潜无人航行器海底三维地形探测装置及方法
JP4012233B1 (ja) 水底三次元画像作成システムおよび水底三次元画像作成方法
CN102692217B (zh) 运用地效应飞行器进行河道测量的方法
CN107390177B (zh) 一种基于纯测向的被动水下声学定位方法
CN110319811B (zh) 一种自适应波浪效应的水下单波束高精度探测系统及方法
CN111829512B (zh) 一种基于多传感器数据融合的auv导航定位方法及系统
CN110837086B (zh) 一种基于侧扫声呐的海底目标定位方法和定位系统
CN114488164B (zh) 水下航行器同步定位与建图方法及水下航行器
WO2020151215A1 (zh) 一种潮间带水下地形测绘方法
CN110207695A (zh) 一种适用于深海auv的无速度辅助单信标定位方法
JP2003503717A (ja) 地形ナビゲーション装置
Kimball et al. Sonar-based iceberg-relative navigation for autonomous underwater vehicles
CN105488852B (zh) 一种基于地理编码和多维校准的三维图像拼接方法
WO2020151213A1 (zh) 一种空地结合的潮间带一体化测绘方法
CN113895572A (zh) 一种水上水下一体化无人系统、方法
CN108227744A (zh) 一种水下机器人定位导航系统及定位导航方法
CN117741572B (zh) 一种快速进行海洋潜标锚定点水下定位的方法及系统
JP2004212192A (ja) 操船支援システム、操船支援プログラムおよび操船支援のための三次元像生成方法
CN114234932A (zh) 一种获取海底控制点数据的水下导线测量方法及装置
CN114910024A (zh) 一种水下淤泥厚度探测方法及其系统
CN111522013A (zh) 一种基于侧扫声呐的海底目标定位装置
CN106153014A (zh) 耙吸挖泥船施工位置水下3d地形的制作系统
CN116105685A (zh) 基于声光遥感和滚轮的潮间带地形无缝一体化测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911760

Country of ref document: EP

Kind code of ref document: A1