WO2020151001A1 - Procédé de préparation d'un matériau adsorbant polymère microporeux super hydrophobe à surface spécifique élevée - Google Patents

Procédé de préparation d'un matériau adsorbant polymère microporeux super hydrophobe à surface spécifique élevée Download PDF

Info

Publication number
WO2020151001A1
WO2020151001A1 PCT/CN2019/073203 CN2019073203W WO2020151001A1 WO 2020151001 A1 WO2020151001 A1 WO 2020151001A1 CN 2019073203 W CN2019073203 W CN 2019073203W WO 2020151001 A1 WO2020151001 A1 WO 2020151001A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface area
specific surface
high specific
trinaphthylbenzene
preparation
Prior art date
Application number
PCT/CN2019/073203
Other languages
English (en)
Chinese (zh)
Inventor
杨坤
龚俐
任柳芬
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to PCT/CN2019/073203 priority Critical patent/WO2020151001A1/fr
Publication of WO2020151001A1 publication Critical patent/WO2020151001A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the invention relates to a preparation method of a superhydrophobic high specific surface area microporous polymer adsorption material, which belongs to the technical field of polymer materials.
  • VOCs Volatile organic compounds
  • Adsorption technology has become the preferred method of VOCs treatment due to its economic and high efficiency advantages.
  • the core of adsorption technology is to select adsorption materials with high specific surface area and high adsorption capacity.
  • Activated carbon as a traditional VOCs adsorption material, has disadvantages such as pore blockage and small adsorption capacity, and due to the existence of oxygen-containing functional groups on the surface, water molecules will compete for the adsorption sites of biochar for VOCs under actual conditions (relative humidity>5%) , Thereby reducing the adsorption capacity of biochar for VOCs. Therefore, the development of adsorbents with high specific surface area and hydrophobic surface is of great significance for the treatment of VOCs.
  • Hypercrosslinked polymers have a wide range of applications in the fields of adsorption and separation of gas and water compounds and heterogeneous catalysis due to their high specific surface area, low skeleton density, and stable physical and chemical properties.
  • organic molecules such as benzene, biphenyl and triphenylbenzene are used as monomers, and HCPs are synthesized by adding dimethyl formal (FDA) as crosslinking agents. Due to the introduction of alkoxy groups in the crosslinking agent, Reduce the hydrophobicity of the material. Wang et al.
  • the object of the present invention is to provide a method for preparing a microporous polymer absorbent material with superhydrophobicity and high specific surface area.
  • the present invention adopts the following technical scheme: a preparation method of superhydrophobic high specific surface area microporous polymer adsorbent material, the method is: 1,3,5-trinaphthylbenzene, chloroalkane, and Lewis acid are mixed uniformly in proportion, Polymerize at 0°C ⁇ 400°C for 15min ⁇ 100h, cool to room temperature, soak, wash, filter, and then soak with organic solvent, wash, filter, and dry to obtain superhydrophobic micropores with high specific surface area. Polymer absorbent material.
  • the ratio of the mass of 1,3,5-trinaphthylbenzene (g) to the volume (mL) of chloroalkanes is 1:1 ⁇ 1:500, and the molar ratio of Lewis acid to 1,3,5-trinaphthylbenzene is 1 :1 ⁇ 200:1.
  • chloroalkane is selected from methylene chloride, 1,2-dichloroethane, chloroform, and carbon tetrachloride.
  • the Lewis acid is selected from anhydrous aluminum chloride, anhydrous ferric chloride, and anhydrous tin chloride.
  • the concentration of the hydrochloric acid is 0.001 mol/L to 10 mol/L.
  • the organic solvent is selected from methanol, ethanol, acetone, acetonitrile, and n-hexane.
  • the beneficial effect of the present invention is that: the present invention is based on the Fuchs alkylation reaction, and the one-step method does not require an external crosslinking agent, and obtains a superhydrophobic high specific surface area microporous (average pore diameter of 1.69nm) polymer adsorbent material, which not only has a high specific surface area (The specific surface area of Langmuir is up to 2800m 2 /g), and it is super-hydrophobic (water contact angle can reach 160°).
  • the material can be used as a potential adsorbent for the adsorption and separation of gas molecules and compounds in water.
  • Figure 2 The water contact angle diagram of the absorbent material obtained in Example 3.
  • the naphthyl group is used as the monomer building group to increase the reactive sites of the monomer and the ⁇ - ⁇ conjugation effect.
  • 1,3,5-trinaphthylbenzene is used as the monomer
  • the chloroalkane is used as the solvent and crosslinking agent.
  • a superhydrophobic high specific surface area microporous polymer adsorbent (average pore diameter of 1.69nm) was synthesized by a one-step method without the need for an external crosslinking agent in high yield. It not only has a high specific surface area (Langmuir The specific surface area is up to 2800m 2 /g), and it is superhydrophobic (water contact angle up to 160°).
  • the material can be used as a potential adsorbent for the adsorption and separation of gas molecules and compounds in water. The present invention will be further described below in conjunction with embodiments and drawings.
  • the obtained product is soaked and washed with 5 mol/L hydrochloric acid and acetonitrile, filtered and dried to obtain a superhydrophobic high specific surface area microporous polymer adsorption material.
  • the obtained product is soaked and washed with 9 mol/L hydrochloric acid and n-hexane, filtered and dried to obtain a superhydrophobic high specific surface area microporous polymer adsorption material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

La présente invention concerne un procédé de préparation d'un matériau adsorbant polymère microporeux super hydrophobe à surface spécifique élevée : le 1,3,5-trinaphtylbenzène est utilisé comme monomère, un acide de Lewis est utilisé comme catalyseur, un chloroalcane est utilisé comme solvant, et un procédé en une étape qui ne nécessite pas d'agent de réticulation externe est utilisé à des fins de réaction pour préparer le matériau adsorbant polymère microporeux super hydrophobe à surface spécifique élevée. Le diamètre moyen des pores du matériau adsorbant obtenu est de 1,69 nm, la surface spécifique de Langmuir atteint 2800 m2/g, et l'angle de contact avec l'eau peut atteindre 160°. Le matériau adsorbant présente non seulement une surface spécifique élevée, mais aussi une super hydrophobicité. Le matériau décrit peut être utilisé en tant qu'agent adsorbant potentiel et être appliqué à l'adsorption et à la séparation de composés et de molécules de gaz dans l'eau.
PCT/CN2019/073203 2019-01-25 2019-01-25 Procédé de préparation d'un matériau adsorbant polymère microporeux super hydrophobe à surface spécifique élevée WO2020151001A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/073203 WO2020151001A1 (fr) 2019-01-25 2019-01-25 Procédé de préparation d'un matériau adsorbant polymère microporeux super hydrophobe à surface spécifique élevée

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/073203 WO2020151001A1 (fr) 2019-01-25 2019-01-25 Procédé de préparation d'un matériau adsorbant polymère microporeux super hydrophobe à surface spécifique élevée

Publications (1)

Publication Number Publication Date
WO2020151001A1 true WO2020151001A1 (fr) 2020-07-30

Family

ID=71736039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073203 WO2020151001A1 (fr) 2019-01-25 2019-01-25 Procédé de préparation d'un matériau adsorbant polymère microporeux super hydrophobe à surface spécifique élevée

Country Status (1)

Country Link
WO (1) WO2020151001A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102093539A (zh) * 2010-11-24 2011-06-15 华中科技大学 一种多孔聚合物材料及其制备方法
CN102887991A (zh) * 2012-09-28 2013-01-23 华中科技大学 一种有机微孔聚合物及其制备方法和应用
US20130267616A1 (en) * 2010-09-15 2013-10-10 University College Cardiff Consultants Limited Polymerisation Method
KR20140112775A (ko) * 2013-03-14 2014-09-24 한서대학교 산학협력단 미세다공성 고분자 및 이의 제조방법
CN108912312A (zh) * 2018-07-11 2018-11-30 吴慈 一种疏水性多孔有机聚合物材料的制备及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130267616A1 (en) * 2010-09-15 2013-10-10 University College Cardiff Consultants Limited Polymerisation Method
CN102093539A (zh) * 2010-11-24 2011-06-15 华中科技大学 一种多孔聚合物材料及其制备方法
CN102887991A (zh) * 2012-09-28 2013-01-23 华中科技大学 一种有机微孔聚合物及其制备方法和应用
KR20140112775A (ko) * 2013-03-14 2014-09-24 한서대학교 산학협력단 미세다공성 고분자 및 이의 제조방법
CN108912312A (zh) * 2018-07-11 2018-11-30 吴慈 一种疏水性多孔有机聚合物材料的制备及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, BUYI ET AL.: "Multifunctional microporous organic polymers", JOURNAL OF MATERIALS CHEMISTRY A, no. 2, 21 May 2014 (2014-05-21), XP055723413, ISSN: 2050-7496, DOI: 20191012150653X *
XU, SHUJUN ET AL.: "Research Progress on Microporous Organic Polymers", PROGRESS IN CHEMISTRY, vol. 23, no. 10, 31 October 2011 (2011-10-31), ISSN: 1005-281X, DOI: 20191012152256A *

Similar Documents

Publication Publication Date Title
Zhang et al. Polyimide-based carbon nanofibers: A versatile adsorbent for highly efficient removals of chlorophenols, dyes and antibiotics
CN109880150B (zh) 一种超疏水高比表面积微孔聚合物吸附材料的制备方法
Yu et al. Microporous cyanate resins: synthesis, porous structure, and correlations with gas and vapor adsorptions
Heybet et al. Adsorption of methylene blue dye on sodium alginate/polypyrrole nanotube composites
Cai et al. Preparation of hyper-crosslinked polymers with hierarchical porous structure from hyperbranched polymers for adsorption of naphthalene and 1-naphthylamine
US4263407A (en) Polymeric adsorbents from macroreticular polymer beads
Deng et al. Triptycene-based microporous cyanate resins for adsorption/separations of benzene/cyclohexane and carbon dioxide gas
JP2021063223A (ja) 多孔質シクロデキストリンポリマー
Zeng et al. Anisole-modified hyper-cross-linked resins for efficient adsorption of aniline from aqueous solution
WO2019072105A1 (fr) Polymère réticulé à base de déchets de polystyrène, procédé de préparation s'y rapportant et son application
Yao et al. Microporous polyimide networks constructed through a two-step polymerization approach, and their carbon dioxide adsorption performance
Wang et al. Carbonyl-incorporated aromatic hyper-cross-linked polymers with microporous structure and their functional materials for CO2 adsorption
Lee et al. Tunable pore size and porosity of spherical polyimide aerogel by introducing swelling method based on spherulitic formation mechanism
Wang et al. Porous organic frameworks with mesopores and [Ru (bpy) 3] 2+ ligand built-in as a highly efficient visible-light heterogeneous photocatalyst
Cao et al. Effect of pore structure on the adsorption capacities to different sizes of adsorbates by ferrocene-based conjugated microporous polymers
Wu et al. Preparation and characterization of highly hydrophobic fluorinated polyimide aerogels cross-linked with 2, 2′, 7, 7′-Tetraamino-9, 9′-spirobifluorene
Lan et al. Conjugated porous polymers for gaseous toluene adsorption in humid atmosphere
Liu et al. Synthesis and facile functionalization of siloxane based hyper-cross-linked porous polymers and their applications in water treatment
CN105412936B (zh) 一种刺激响应型聚吡咯纳米管靶向药物载体及制备方法
Peng et al. Ferrocene-based hypercrosslinked polymers derived from phenolic polycondensation with unexpected H2 adsorption capacity
WO2020151001A1 (fr) Procédé de préparation d'un matériau adsorbant polymère microporeux super hydrophobe à surface spécifique élevée
Zhang et al. Construction of ionic porous organic polymers (iPOPs) via pyrylium mediated transformation
EP0007792B1 (fr) Adsorbants polymères et résines échangeuses d'ions, leur fabrication et leur utilisation
Cao et al. Fabrication of the hyper-crosslinked polymers chemically functionalized by 8-hydroxyquinoline and their efficient adsorptive removal of 2-naphthol from water
CN105582902B (zh) 一种用于重金属污水处理的复合凝胶材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911548

Country of ref document: EP

Kind code of ref document: A1