WO2020149314A1 - 流量センサ装置及びカバー付き流量センサ装置 - Google Patents

流量センサ装置及びカバー付き流量センサ装置 Download PDF

Info

Publication number
WO2020149314A1
WO2020149314A1 PCT/JP2020/001112 JP2020001112W WO2020149314A1 WO 2020149314 A1 WO2020149314 A1 WO 2020149314A1 JP 2020001112 W JP2020001112 W JP 2020001112W WO 2020149314 A1 WO2020149314 A1 WO 2020149314A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
substrate
light emitting
sensor device
emitting element
Prior art date
Application number
PCT/JP2020/001112
Other languages
English (en)
French (fr)
Inventor
洋治 小林
智一 池野
泰幸 片瀬
Original Assignee
Koa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa株式会社 filed Critical Koa株式会社
Priority to US17/421,913 priority Critical patent/US20220026460A1/en
Priority to DE112020000447.3T priority patent/DE112020000447T5/de
Priority to CN202080009692.XA priority patent/CN113302501A/zh
Publication of WO2020149314A1 publication Critical patent/WO2020149314A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/26Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting optical wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/661Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/698Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/06Indicating or recording devices
    • G01F15/068Indicating or recording devices with electrical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/10Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables
    • G01P5/12Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables using variation of resistance of a heated conductor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/18Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance
    • G01P5/20Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance using particles entrained by a fluid stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to a flow sensor device for detecting a flow rate of a fluid and a flow sensor device with a cover.
  • Patent Document 1 has a light emitting element as a light source and an optical element, and the light emitted from the light source is taken out in a straight traveling direction of the light by the optical element, thereby improving the utilization efficiency of the light from the light source.
  • the invention of an LED module is disclosed.
  • Patent Document 1 discloses a structure of an LED module, it does not improve the visibility of light in a module including a light emitting element and a sensor element.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a flow rate sensor device and a flow rate sensor device with a cover that have a light emitting element and a sensor element and that improve the visibility of light. Let's do it.
  • a flow rate sensor device includes a substrate, a sensor element electrically connected to the substrate, a light emitting element located behind the sensor element and disposed on a surface of the substrate, and the light emitting element.
  • a light transmitting case that is housed inside between the substrate and the light transmitting case, wherein the light transmitting case has a light diffusing member protruding from a ceiling portion toward the light emitting element,
  • the light diffusing member is configured to have a light incident surface facing the light emitting element and a wall surface connecting the light incident surface and the ceiling portion, and at least a part of the wall surface is a relative surface.
  • the dimension between the facing wall surfaces is formed by an inclined surface that gradually expands from the light incident surface side toward the ceiling portion.
  • the visibility of light can be enhanced in a module including a light emitting element and a sensor element.
  • FIG. 6A is a vertical cross-sectional view of the light transmitting case portion according to the present embodiment taken along a direction orthogonal to the longitudinal direction of the substrate
  • FIG. 6B is a book taken along the longitudinal direction of the substrate.
  • FIG. 6A is a vertical cross-sectional view of the light transmitting case portion according to the present embodiment taken along a direction orthogonal to the longitudinal direction of the substrate
  • FIG. 6B is a book taken along the longitudinal direction of the substrate.
  • It is a longitudinal cross-sectional view of the light transmission case portion according to the embodiment. It is a side surface schematic diagram of the flow sensor apparatus with a cover which concerns on this Embodiment.
  • FIG. 1 is a perspective view of a flow rate sensor device according to the present embodiment.
  • FIG. 2 is a vertical cross-sectional view of the flow rate sensor device according to the present embodiment cut along the longitudinal direction of the substrate.
  • the “vertical sectional view” refers to a sectional view taken along the thickness direction of the substrate.
  • a flow sensor is described as an example of the sensor device, but the detection target is not particularly limited as long as the sensor device can detect a change in flow rate.
  • the sensor elements 3 and 4 are demonstrated as a wind speed sensor.
  • the flow rate sensor device 1 is configured by arranging sensor elements 3 and 4 on a tip portion 2 a of a substrate 2.
  • the sensor elements 3 and 4 detect the flow rate change, and the light emitting elements 8a and 8b provided on the front end side of the substrate 2 emit light based on the detection information.
  • the substrate 2 is housed in the light transmissive case 6 and the housing 5 except for the tip 2 a, and the tip 2 a of the substrate 2 projects forward from the tip of the light transmissive case 6 and It is exposed to.
  • the substrate 2 has a flat plate shape.
  • the substrate 2 has a shape in which the length dimension in the Y direction is longer than the width dimension in the X direction, but the present invention is not limited to this.
  • the Y direction which is the longitudinal direction of the substrate 2, is defined as “axial direction O”.
  • the substrate 2 is an insulating substrate and is not particularly limited, but is preferably a general printed circuit board in which glass cloth is impregnated with an epoxy resin, and for example, an FR4 board can be presented.
  • a pair of sensor elements 3 and 4 electrically connected to the substrate 2 are arranged at the tip 2a of the substrate 2 protruding from the light transmitting case 6.
  • the sensor elements 3 and 4 are arranged apart from each other toward the front of the substrate 2 along the Y direction, and the sensor elements 3 and 4 and the substrate 2 are connected via lead wires 11 and 12.
  • light emitting elements 8a and 8b (light emitting element 8b is not shown in FIG. 1) are arranged on the front end side of the substrate 2, and the light emitting elements 8a and 8b are the sensor elements 3 and 4. 4, and is housed in the light transmission cases 6a and 6f.
  • the sensor elements 3 and 4 and the light emitting elements 8a and 8b are arranged at positions close to each other in distance.
  • the sensor element 3 includes a flow rate detecting resistance element 13 as a temperature sensitive resistance element.
  • the sensor element 4 includes a temperature compensating resistance element 14 as a temperature sensitive resistance element.
  • the flow rate detection resistance element 13 and the temperature compensation resistance element 14 form the circuit shown in FIG. As shown in FIG. 3, the flow detection resistance element 13, the temperature compensation resistance element 14, and the resistors 16 and 17 form a bridge circuit 18. As shown in FIG. 3, the flow rate detecting resistance element 13 and the resistor 16 constitute a first series circuit 19, and the temperature compensating resistance element 14 and the resistor 17 constitute a second series circuit 20. ing. The first series circuit 19 and the second series circuit 20 are connected in parallel to form the bridge circuit 18.
  • the output section 21 of the first series circuit 19 and the output section 22 of the second series circuit 20 are connected to a differential amplifier (amplifier) 23, respectively.
  • a feedback circuit 24 including a differential amplifier 23 is connected to the bridge circuit 18.
  • the feedback circuit 24 includes a transistor (not shown) and the like.
  • the resistors 16 and 17 have a smaller resistance temperature coefficient (TCR) than the flow rate detecting resistance element 13 and the temperature compensating resistance element 14.
  • the flow rate detection resistance element 13 has a predetermined resistance value Rs1 in a heating state controlled to be higher than a predetermined ambient temperature by a predetermined value
  • the temperature compensation resistance element 14 is, for example, , Is controlled to have a predetermined resistance value Rs2 at the ambient temperature.
  • the resistance value Rs1 is smaller than the resistance value Rs2.
  • the resistor 16 that constitutes the flow rate detecting resistance element 13 and the first series circuit 19 is, for example, a fixed resistor having a resistance value R1 similar to the resistance value Rs1 of the flow rate detecting resistance element 13.
  • the resistor 17 that forms the temperature compensating resistance element 14 and the second series circuit 20 is, for example, a fixed resistor having a resistance value R2 similar to the resistance value Rs2 of the temperature compensating resistance element 14.
  • the sensor element 3 is set to a temperature higher than the ambient temperature, and when it receives a wind, the temperature of the flow detection resistance element 13, which is a heat generation resistance, decreases. Therefore, the potential of the output section 21 of the first series circuit 19 to which the flow rate detecting resistance element 13 is connected fluctuates. As a result, a differential output is obtained by the differential amplifier 23. Then, the feedback circuit 24 applies a drive voltage to the flow rate detecting resistance element 13 based on the differential output. Then, the wind speed can be converted and output by a microcomputer (not shown) based on the change in the voltage required to heat the flow rate detecting resistance element 13.
  • the microcomputer is installed on the surface of the substrate 2 in the housing 5, for example, and is electrically connected via the sensor elements 3 and 4, the lead wires 11 and 12, and a wiring pattern (not shown) on the surface of the substrate 2. Connected to each other.
  • the temperature compensating resistance element 14 provided in the sensor element 4 detects the temperature of the fluid itself and compensates for the influence of the temperature change of the fluid. As described above, by including the temperature compensating resistance element 14, it is possible to reduce the influence of the temperature change of the fluid on the flow rate detection, and it is possible to accurately perform the flow rate detection. As described above, the resistance element 14 for temperature compensation has a sufficiently higher resistance than the resistance element 13 for flow rate detection, and the temperature is set near the ambient temperature. Therefore, even if the sensor element 4 receives wind, the potential of the output section 22 of the second series circuit 20 to which the temperature compensating resistance element 14 is connected hardly changes. Therefore, the differential output based on the resistance change of the flow rate detecting resistance element 13 can be accurately obtained with the potential of the output unit 22 as the reference potential.
  • the circuit configuration shown in FIG. 3 is an example, and the present invention is not limited to this.
  • the sensor element 3 and the sensor element 4 are separated from the substrate 2 and are arranged obliquely with respect to the axial direction O (Y direction) of the substrate 2. There is.
  • the sensor elements 3 and 4 are arranged to be inclined with respect to the axial direction O in the XY plane.
  • the sensor element 3 is inclined with respect to the horizontal direction a parallel to the X direction and the vertical direction b parallel to the axial direction O (Y direction). And the wind in the vertical direction b as well. Therefore, it is possible to accurately detect the flow rate of the fluid with respect to the wind direction in the horizontal direction a and the vertical direction b.
  • the sensor elements 3 and 4 are arranged separately in front of the substrate 2 along the axial direction O (Y direction). That is, the sensor elements 3 and 4 do not face the substrate 2 in the height direction (Z direction). As a result, it is possible to prevent the turbulence of the airflow caused by the obstruction of the substrate 2 and the housing 5, stabilize the airflow in the vicinity of the sensor elements 3, 4, and improve the wind detection accuracy.
  • the sensor element 4 and the sensor element 3 are inclined at the same inclination angle with respect to the axial direction O of the substrate 2 and face each other while being separated in the Z direction.
  • the temperature change of the fluid observed by the sensor element 4 can be regarded as the ambient temperature of the sensor element 3, Can accurately compensate for the temperature change.
  • the sensor element 3 and the sensor element 4 have the same inclination angle, turbulence of the air flow is unlikely to occur near the sensor element 3, and the detection surface of the sensor element 3 is uniformly exposed to wind. Can be contacted. As described above, the detection accuracy can be improved more effectively.
  • the sensor element 3 and the sensor element 4 are inclined at the same inclination angle with respect to the axial direction O of the substrate 2 and face each other while being spaced apart in the Z direction. It may be arranged at a position where temperature changes can be observed.
  • the sensor element 4 may be arranged at a position facing the substrate 2.
  • the lead wires (lead terminals) 11 and 12 connected to the sensor elements 3 and 4 will be described.
  • the lead wires 11 and 12 are covered with an insulator.
  • the lead wire 11 connected to the sensor element 3 and the lead wire 12 connected to the sensor element 4 are fixed to the tip portion 2 a of the substrate 2, respectively.
  • Notched recesses are formed on both side surfaces of the tip 2a of the substrate 2, and the lead wires 11 and 12 are fixed to the notches with an adhesive or the like.
  • a wiring pattern (not shown) is formed on the surface of the substrate 2, and the lead wires 11 and 12 are electrically connected to the wiring pattern.
  • a plurality of holes are formed in the tip portion 2a of the substrate 2, and the lead wires 11 and 12 are inserted and fixed in the holes.
  • the lead wire 11 extends upward from the upper surface (one surface) 2b of the substrate 2 and further toward the front of the tip 2a of the substrate 2 along the Y direction.
  • the lead wire 11 is bent at the front position of the tip 2a so that the sensor element 3 has a predetermined inclination angle.
  • the lead wire 12 extends downward from the lower surface (the other surface) 2c of the substrate 2 and further toward the front of the tip 2a of the substrate 2 along the Y direction. Then, the lead wire 12 is bent at the front position of the tip portion 2 a so that the sensor element 4 has the same inclination angle as the sensor element 3. In this way, by bending the lead wires 11 and 12, the sensor elements 3 and 4 can be simply and appropriately arranged in front of the tip 2a of the substrate 2 along the Y direction at the same inclination angle. , Z direction can be spaced apart.
  • the sensor elements 3 and 4 and the substrate 2 are separated from each other and are connected via the lead wires 11 and 12, so that the heat of the sensor elements 3 and 4 is directly applied to the substrate 2. It can be prevented from being transmitted. Thereby, the thermal influence from the sensor elements 3 and 4 can be weakened to the light emitting elements 8a and 8b.
  • a through hole 10 is formed in the tip 2a of the substrate 2.
  • the thermal resistance of the substrate 2 can be secured, and the sensor elements 3 and 4 are protected from thermal influences from the microcomputer arranged on the substrate 2 and a light emitting element 31 described later. On the other hand, it can be reduced. Further, by providing the through hole 10, even when a shock is applied to the flow rate sensor device 1, the shock is mitigated and the influence of the shock on the sensor elements 3 and 4 can be weakened.
  • the light emitting element 8a is arranged on the upper surface 2b of the substrate 2.
  • the light emitting element 8 a is located behind the through hole 10.
  • a light emitting element 8b is arranged on the lower surface 2c of the substrate 2.
  • These light emitting elements 8a and 8b are preferably arranged at the same positions on the upper and lower surfaces (front and back surfaces) of the substrate 2.
  • the light emitting elements 8a and 8b are covered with the first light transmissive case 6a and the second light transmissive case 6f, which are transparent.
  • the light emitting elements 8a and 8b are, for example, LEDs, and the light emitting elements 8a and 8b are controlled so that the display changes based on the wind detection information from the sensor elements 3 and 4. For example, the emission color can be controlled to change based on the wind speed. Light from the light emitting elements 8a and 8b is transmitted through the light transmission cases 6a and 6f and emitted to the outside.
  • the light transmitting case 6 is located behind the sensor elements 3 and 4, and houses the light emitting elements 8 a and 8 b inside the substrate 2.
  • the light transmitting case 6 is divided into a light transmitting case 6a and a light transmitting case 6f.
  • the light transmitting case 6a covers the upper surface 2b of the substrate 2 and the light transmitting case 6f covers the lower surface 2c of the substrate 2.
  • Light diffusion members 7a and 7e described later are formed inside the light transmission cases 6a and 6f.
  • a housing 5 that accommodates the substrate 2 is arranged on the rear end side of the light transmission case 6, a housing 5 that accommodates the substrate 2 is arranged.
  • the housing 5 is divided into a first housing (5a, 5b) and a second housing (5g, 5h), and the first housing (5a, 5b) covers the upper surface 2b of the substrate 2,
  • the second housing (5g, 5h) covers the lower surface 2c of the substrate 2.
  • the first housing (5a, 5b) and the second housing (5g, 5h) have front housing front portions 5a, 5g and rear housing rear portions 5b, 5h, respectively.
  • the widths 5b and 5h are wider in the X direction and higher in the Z direction than the housing front portions 5a and 5g.
  • the first casing (5a, 5b) and the second casing (5g, 5h) are each formed of a non-transparent colored case. Therefore, the light from the light emitting elements 8a and 8b does not pass through the first housing (5a, 5b) and the second housing (5g, 5h), and the first light transmitting case 6a and the second light transmitting case 6f. The light is emitted from the part.
  • the light emitting elements 8a and 8b arranged on the substrate 2 and elements can be appropriately protected from the outside.
  • the first light transmission case 6a and the first housing (5a, 5b) and the second light transmission case 6f and the second housing (5g, 5h) are in a state in which the tip portion 2a of the substrate 2 is projected to the outside (penetration).
  • the holes 10 are also exposed to the outside), and the substrates 2, the housings (5a, 5b, 5g, 5h) and the light transmissions are respectively arranged on the front and back surfaces of the substrate 2 by fastening members 15 such as screws.
  • the cases 6a and 6f are fixed.
  • the light transmission cases 6a and 6f are respectively formed with notches 6b and 6g on the front surface thereof so as to project a part of the substrate 2 forward.
  • a through hole composed of the notches 6b and 6g is formed. Then, by passing the substrate 2 through the through hole, the substrate 2 can be extended from the inside of the light transmitting case 6 to the outside of the light transmitting case 6.
  • connection portions 6c and 6h that are connected to the housing front portions 5a and 5g are formed.
  • Extension portions 6d and 6i extending rearward along the substrate 2 are formed in the connection portions 6c and 6h, and the tips of the extension portions 6d and 6i extend in a direction perpendicular to the substrate 2, Connection recesses 6e and 6j are formed.
  • connection parts 5c and 5i are formed in front of the respective housing front parts 5a and 5g, and connection projections 5d and 5j are formed in the connection parts 5c and 5i so as to enter the connection recesses 6e and 6j.
  • Recesses 5e and 5k are formed near the rear parts 5b and 5h of the front parts 5a and 5g of the housing, and bottom walls 5f and 5l of the recesses 5e and 5k are in contact with the upper surface 2b and the lower surface 2c of the substrate 2, respectively. There is.
  • Through holes for inserting the fastening member 15 are formed in the bottom walls 5f, 5l of the depressions 5e, 5k and the substrate 2 in contact with the bottom walls 5f, 5l.
  • the bottom walls 5f and 5l of the depressions 5e and 5k are in contact with the upper surface 2b and the lower surface 2c of the substrate 2, respectively, and the connection portions 6c and 6h of the light transmission cases 6a and 6f are connected to the housing front portions 5a and 5g.
  • the parts 5c and 5i are engaged, and the light transmission cases 6a and 6f and the housing front parts 5a and 5g are connected flush with each other.
  • connection concave portions 6e, 6j of the light transmitting cases 6a, 6f are connected to the connection convex portions 5d, 5j of the housing front portions 5a, 5g, and the light transmitting cases 6a, 6f are covered with the light emitting elements 8a, 8b of the substrate 2, and The positions of the through holes of the depressions 5e and 5k and the through holes of the substrate 2 are aligned.
  • the fastening member 15 is inserted from the recess 5e located on the upper surface 2b side of the substrate 2 into the through holes formed on the substrate 2 and the recesses 5e, 5k, and the recess 5k located on the lower surface 2c side of the substrate 2 is inserted.
  • the fastening member 15 is screwed into the nut portion 16.
  • the substrate 2 is sandwiched between the front and back surfaces by the light transmitting case 6 and the housing 5 in a state where the tip 2a of the substrate 2 is projected from the through hole formed by the notches 6b and 6g of the light transmitting cases 6a and 6f. .. Then, the substrate 2, the housing 5, and the light transmission case 6 are integrally assembled.
  • the substrate 2, the light transmitting case 6, and the housing 5 can be integrally configured by using only the fastening member 15, so that the assembly is easy and the configuration is simple. it can.
  • External input terminals 30 for input and output are provided at the rear end of the flow rate sensor device 1 (see FIG. 1).
  • the external connection terminal 30 is, for example, a USB terminal having a different shape type. Since the plurality of flow rate sensor devices 1 are electrically connected to each other on the external connection terminal 30 side via the communication cable, a multiple sensor unit can be configured. By using the multiple sensor unit, the light emitting elements 8a and 8b can emit light at multiple points, and can be applied to various applications. For example, it can be used for indoor or outdoor illumination, or for wind speed analysis.
  • the light emitting elements 8a and 8b are caused to emit light in order to notify the detection information of the sensor elements 3 and 4 by light.
  • Light emitted from the light emitting elements 8a and 8b formed of LEDs or the like has a straight traveling property but a low diffusing property. Therefore, in the present embodiment, the straight light is diffused in a predetermined direction to improve the visibility.
  • FIG. 4 is a perspective view of the light transmission case in the flow rate sensor device according to the present embodiment.
  • FIG. 5 is a view of the light transmission case according to the present embodiment as viewed from the inside.
  • FIG. 6A is a vertical cross-sectional view of the light transmission case portion according to the present embodiment taken along a direction orthogonal to the longitudinal direction of the substrate.
  • FIG. 6B is a vertical cross-sectional view of the light transmitting case portion according to the present embodiment cut along the longitudinal direction of the substrate. That is, FIG. 6A is a sectional view taken along the line AA of FIGS. 4 and 5.
  • FIG. 6B is a sectional view taken along the line BB of FIGS. 4 and 5.
  • the light transmission cases 6a and 6f are arranged on the rear surface of the substrate 2 with the front end 2a of the substrate 2 protruding from the notches 6b and 6g formed on the front surface.
  • the connecting portions 6c and 6h are connected to the connecting portions 5c and 5i (see FIG. 2) of the housing front portions 5a and 5g.
  • the light transmission cases 6a and 6f house the light emitting elements 8a and 8b arranged on the front end side of the substrate 2 with the substrate 2.
  • a light diffusion member is provided from the ceiling portion C toward the light emitting elements 8a and 8b arranged on the substrate 2. 7a and 7e are formed to project.
  • the light incident surface (opposing surface) S of the light diffusing members 7a and 7e facing the light emitting elements 8a and 8b is formed to be substantially parallel to the irradiation surface of the light emitting elements 8a and 8b. Further, it is preferable that the light incident surface S has an area larger than the irradiation surfaces of the light emitting elements 8a and 8b.
  • the light emitted from the light emitting elements 8a and 8b can be effectively introduced into the light diffusing members 7a and 7e, and the light incident efficiency to the light diffusing members 7a and 7e can be improved.
  • the light emitting elements 8a and 8b arranged on the substrate 2 and the light diffusing members 7a and 7e are arranged apart from each other. That is, there is a gap between the irradiation surface of the light emitting elements 8a and 8b and the light incident surface S of the light diffusion members 7a and 7e.
  • the irradiation surfaces of the light emitting elements 8a and 8b and the light incident surface S of the light diffusing members 7a and 7e are in contact with each other. May be.
  • the first light transmission case 6a is shown in FIG. 5, the second light transmission case 6f has the same shape.
  • the light diffusing members 7a and 7e are provided on both sides in the lateral direction (X direction) orthogonal to the longitudinal direction (Y direction) of the substrate 2, and side wall surfaces 7b connecting the light incident surface S and the ceiling portion C, respectively. 7f, and the side wall surfaces 7b and 7f are inclined surfaces whose dimension in the lateral direction (X direction) between the side wall surfaces 7b and 7f gradually expands from the light incident surface S side toward the ceiling portion C. ing.
  • the light diffusing members 7a and 7e are provided on the front and rear wall surfaces 7c and 7g and the rear wall surface 7d on both sides of the longitudinal direction (Y direction) of the substrate 2, respectively. , 7h.
  • the dimension in the vertical direction (Y direction) between the front wall surfaces 7c and 7g and the rear wall surfaces 7d and 7h is an inclined surface that gradually expands from the light incident surface S side toward the ceiling portion C.
  • the front wall surfaces 7c and 7g and the rear wall surfaces 7d and 7h are inclined surfaces that are steeper than the side wall surfaces 7b and 7f.
  • the front wall surfaces 7c and 7g and the rear wall surfaces 7d and 7h may be vertical surfaces with respect to the light incident surface S.
  • the inclination angles of the side wall surfaces 7b and 7f are defined by an angle ⁇ 1 between the extension line of the light incident surface S and the side wall surfaces 7b and 7f, and the inclination angle ⁇ 1 is, for example, For example, it is preferably 45°, and more preferably matched with the directivity angles of the light emitting elements 8a and 8b. Further, as shown in FIG.
  • the inclination angle of the front wall surfaces 7c, 7g and the rear wall surfaces 7d, 7h is an angle ⁇ 2 between the extension line of the light incident surface S and the front wall surfaces 7c, 7g and the rear wall surface 7d. It is defined that the inclination angle ⁇ 2 >the inclination angle ⁇ 1 . Further, the inclination angle ⁇ 2 is preferably, for example, 45° or more, and more preferably an angle larger than the directivity angle of the light emitting elements 8a and 8b.
  • the light transmission cases 6a and 6f are preferably transparent, and examples of the material thereof include thermoplastic resins such as acrylic resin and polycarbonate resin, and glass.
  • the light transmission cases 6a and 6f and the light diffusion members 7a and 7e are formed of the same member, but they may be formed of different members.
  • the light transmission cases 6a and 6f may be semitransparent instead of transparent, as long as they transmit light.
  • the light diffusing operation by the light diffusing members 7a and 7e will be described with reference to FIGS. 6A and 6B.
  • the light emitting elements 8a and 8b are arranged at the same positions on the upper and lower surfaces 2b and 2c of the substrate 2 on the front end side of the substrate 2.
  • the light transmission cases 6a and 6f are arranged so as to cover the light emitting elements 8a and 8b from the upper and lower surfaces 2b and 2c of the substrate 2, and are combined on both sides of the substrate 2 in the width direction (X direction).
  • Light diffusion members 7a and 7e are formed on the light transmission cases 6a and 6f so as to project from the ceiling portion C toward the light emitting elements 8a and 8b.
  • the light diffusing members 7a and 7e on both sides in the lateral direction (X direction) orthogonal to the longitudinal direction (Y direction) of the substrate 2, the side gradually expanding from the light emitting elements 8a and 8b side toward the ceiling portion C. Wall surfaces 7b and 7f are formed.
  • FIGS. 6A and 6B are schematic diagrams showing the states of the lights L1 to L6 in the light diffusion members 7a and 7e.
  • a part of the light L1 emitted vertically (in the vertical direction shown in FIG. 6A) from the emission surfaces of the light emitting elements 8a and 8b goes straight in the Z direction and is emitted from the light transmission cases 6a and 6f. Is emitted.
  • the lights L2 and L3 that are obliquely incident on the light incident surface S of the light diffusion members 7a and 7e the light L2 whose incident angle is less than the critical angle of the light diffusion members 7a and 7e with respect to air is transmitted. The light is refracted from the surfaces of the cases 6a and 6f and emitted to the outside.
  • the light L3 whose incident angle exceeds the critical angle of the light diffusing members 7a and 7e is reflected in the light transmitting cases 6a and 6f, then refracted from the light transmitting cases 6a and 6f, and emitted to the outside.
  • the light L3 reflected in the light transmission cases 6a and 6f reaches the side wall surfaces 7b and 7f formed of inclined surfaces, the light L3 is transmitted in a substantially lateral direction (generally the X direction). Light is also emitted from the side surfaces of the cases 6a and 6f.
  • the lights L2 and L3 of the light emitting elements 8a and 8b are spread in the X direction by the light diffusing members 7a and 7e, and the straight light can be diffused.
  • the light from the light emitting elements 8a and 8b can be emitted to the outside not only from the surface of the light transmission cases 6a and 6f but also from the side surfaces. Thereby, the visibility of light can be improved.
  • the front end portion 2a (see FIG. 1) of the substrate 2 is projected forward from the notches 6b and 6g formed in the front surface, and the rear surface is formed.
  • the housing front portions 5a and 5g are connected to the connecting portions 6c and 6h (see FIG. 2).
  • the light diffusing members 7a and 7e formed on the light transmitting cases 6a and 6f on both sides in the longitudinal direction, which is the longitudinal direction (Y direction) of the substrate 2, the light emitting elements 8a and 8b gradually move from the side toward the ceiling portion C.
  • the front wall surfaces 7c and 7g and the rear wall surfaces 7d and 7h are formed to have a steeper slope than the side wall surfaces 7b and 7f. As described above, the front wall surfaces 7c and 7g and the rear wall surfaces 7d and 7h may be surfaces perpendicular to the light incident surface S.
  • the lights L5 and L6 obliquely incident on the light incident surface S of the light diffusing members 7a and 7e the light L5 whose incident angle is less than the critical angle of the light diffusing members 7a and 7e with respect to air is a light transmitting case.
  • the light is refracted and emitted from the surfaces of 6a and 6f.
  • the light L6 is reflected by the front wall surfaces 7c, 7g and the rear wall surfaces 7d, 7h of the light diffusion members 7a, 7e and emitted from the surfaces of the light transmission cases 6a, 6f.
  • the inclinations of the front wall surfaces 7c, 7g and the rear wall surfaces 7d, 7h are steeper than those in FIG. 6A, so that the light reflected in the light transmission cases 6a, 6f is the front wall surfaces 7c, 7g and the rear wall surfaces 7d, 7h. 6B, it is difficult to transmit light in the front-back direction (Y direction), and in FIG. 6B, light is emitted to the outside from the surfaces of the light transmission cases 6a and 6f.
  • the light of the light emitting elements 8a and 8b can be emitted to the outside mainly from the surfaces of the light transmitting cases 6a and 6f and the lateral direction.
  • the straight traveling direction (Z direction) of the emitted light of the light emitting elements 8a and 8b can be diffused at a predetermined angle in the lateral direction (X direction) orthogonal to the longitudinal direction (Y direction) of the substrate 2.
  • the front wall surfaces 7c and 7g and the rear wall surfaces 7d and 7h which are vertical surfaces have a steeper inclination than the side wall surfaces 7b and 7f, the spread of light in the Y direction is suppressed, and thus the longitudinal direction of the substrate 2 (Y direction).
  • the light emitted from the light emitting elements 8a and 8b is diffused in a horizontal direction (X direction) orthogonal to the vertical direction with respect to the vertical direction (Y direction) which is the longitudinal direction of the substrate 2.
  • X direction horizontal direction
  • Y direction vertical direction
  • light can be diffused in the lateral direction (X direction), and the intensity of outgoing light in the lateral direction can be increased, and the diffusion direction of the light can be widened as compared with the conventional case. Therefore, the visibility of light can be improved.
  • the flow rate sensor device 1 includes the substrate 2, the sensor elements 3 and 4 electrically connected to the substrate 2, and the surface of the substrate 2 located behind the sensor elements 3 and 4. And a light transmitting case 6a that accommodates the light emitting element 8a inside between the light emitting element 8a and the substrate 2.
  • the light diffusion case 7a has a light diffusing member 7a protruding from the ceiling portion C toward the light emitting element 8a.
  • the light diffusing member 7a is configured to have a light incident surface S facing the light emitting element 8a and a wall surface connecting the light incident surface S and the ceiling portion C. Then, at least a part of the wall surface is formed by an inclined surface in which the dimension between the opposed wall surfaces gradually expands from the light incident surface S side toward the ceiling portion C.
  • “at least a part of the wall surface” refers to any of the side wall surface 7b, the front wall surface 7c, and the rear wall surface 7d that configure the light diffusing member 7a in the structure shown in FIG.
  • the dimension between the side wall surfaces 7b gradually expands from the light incident surface S side toward the ceiling portion C, or the dimension between the front wall surface 7c and the rear wall surface 7d increases from the light incident surface S side to the ceiling. It gradually expands toward part C.
  • the light from the light emitting element 8a can be diffused and emitted to the outside from the surface to the side surface of the light transmission case 6a. Therefore, even if the light emitting element 8a having a high straight traveling property such as an LED is used, the diffusibility can be improved through the light transmitting case 6a, and the visibility of light can be improved.
  • the sloped surface formed on a part of the wall surface has a gentler inclination angle than other wall surfaces. In this way, the light can be diffused to the side surface of the light transmission case through the wall surface formed by the gently inclined surface.
  • the light emitting element 8a can be arranged near the sensor elements 3 and 4. Therefore, the change in the flow rate near the light emitting element 8a can be accurately displayed optically. Further, by arranging the sensor elements 3 and 4 in front of the substrate 2 and arranging the light emitting element 8a in the rear of the sensor elements 3 and 4, the optical display can be performed appropriately while maintaining the detection accuracy of the sensor elements 3 and 4. Will be possible. That is, the sensor elements 3 and 4 can be separated forward from the substrate 2 as shown in FIG. 1, and the sensor elements 3 and 4 are separated from the substrate 2 to suppress turbulence of the air flow and the like. The detection accuracy of 3 and 4 can be improved. Further, the light emitting element 8a can be arranged at a position where it does not interfere with the detection of the sensor elements 3 and 4, and as described above, the detection accuracy of the sensor elements 3 and 4 and appropriate optical display are possible.
  • the light diffusing members arranged on both sides in the lateral direction (X direction) orthogonal to the direction in which the sensor elements 3 and 4 and the light emitting element 8a are arranged (axial direction O shown in FIG. 1).
  • the side wall surface 7b of 7a is preferably formed as an inclined surface.
  • the sensor elements 3 and 4 are arranged in front of the light emitting element 8a, and the housing 5 is arranged behind them. Therefore, by diffusing the light in the lateral direction rather than diffusing it in the front-back direction, the obstacle of the light diffusion can be suppressed, the light diffusivity can be improved, and the visibility of the light can be effectively improved.
  • the light diffusing member 7a has a front wall surface 7c and a rear wall surface 7d on both sides in the longitudinal direction which is the longitudinal direction (axial direction O) of the substrate 2.
  • the front wall surface 7c and the rear wall surface 7d are formed as vertical surfaces, or the vertical dimension between the front wall surface 7c and the rear wall surface 7d gradually increases from the light incident surface S side toward the ceiling portion C. It is formed by an inclined surface that spreads over. However, the slopes of the front wall surface 7c and the rear wall surface 7d are steeper than the slopes of the side wall surface 7b.
  • the sensor elements 3 and 4 are arranged in front of the substrate 2 while being separated from each other, and the sensor elements 3 and 4 and the substrate 2 are connected by the lead wires 11 and 12. preferable. As described above, by connecting the sensor elements 3 and 4 with the lead wires 11 and 12, the sensor elements 3 and 4 can be easily and reliably arranged in front of the substrate 2 with a space therebetween.
  • the substrate 2 has a long shape, and the light emitting element 8a is arranged on the front end side of the substrate 2 together with the sensor elements 3 and 4, and the light emitting element 8a is the sensor elements 3 and 4. It is located behind.
  • the light emitting element 8a is housed in the light transmitting case 6a.
  • the light emitting element 8a and the sensor elements 3 and 4 can be easily arranged in the front-rear direction even when the flow rate sensor device 1 is downsized.
  • the housing 5 for housing the substrate 2 is provided at the rear end side of the light transmission case 6a.
  • the light transmission case 6a has a notch 6b formed on the front surface thereof so as to project a part of the substrate 2 forward, and a connection portion 6c connected to the housing 5 provided on the rear surface thereof. There is. Accordingly, the substrate 2 can be projected to the front of the light transmission case 6a, and the light transmission case 6a can be properly connected to the housing 5 located behind the light transmission case 6a.
  • the board 2, the light transmission case 6a, and the housing It becomes possible to integrate the body 5. Actually, as shown in FIG.
  • the housing 5 has a first housing (5a, 5b) and a second housing (5g, 5h), and the light transmissive cases 6a, 6f are also connected via the substrate 2. They are placed one above the other. Thus, by sandwiching the upper and lower sides of the substrate 2 with the first housing (5a, 5b), the second housing (5g, 5h) and the light transmission cases 6a, 6f, it is possible to integrally form with a simple configuration.
  • the light emitting elements 8a and 8b are preferably arranged on the front and back surfaces of the substrate 2.
  • the optical display section can be provided on both sides of the substrate 2.
  • FIG. 7 is a schematic side view of the flow sensor device with a cover according to the present embodiment.
  • the flow rate sensor device 1 is covered with a cover 20 having an opening 20a on the lower side in a state where the sensor elements 3 and 4 (the sensor element 4 is not shown) are arranged downward.
  • the shape of the cover 20 is not limited, but for example, the cover 20 is formed in a truncated cone shape that spreads downward as shown in FIG. 7.
  • the upper portion of the cover 20 is fixed together with the flow rate sensor device by a support plate (not shown).
  • the cover 20 may be transparent or semi-transparent as long as it is light-transmissive, and the light transmittance does not matter.
  • the light transmittance and the material used for the cover 20 can be variously selected according to the intended use.
  • the material of the cover 20 may be, for example, a thermoplastic resin such as an acrylic resin or a polycarbonate resin.
  • the sensor elements 3 and 4 project downward from the opening 20a of the cover 20.
  • the wind can be detected by the sensor elements 3 and 4 without being blocked by the cover 20, and the light emitting elements 8a and 8b can be made to emit light.
  • the light from the light emitting elements 8a and 8b is diffused through the light transmitting cases 6a and 6f.
  • the diffused light emitted from the light transmission cases 6 a and 6 f passes through the cover 20 and is emitted to the outside of the cover 20.
  • the light from the light emitting elements 8a and 8b can be diffused laterally from the surface of the light transmitting cases 6a and 6f. Therefore, the light leaking from the lower side of the cover 20 can be reduced, the periphery of the cover 20 can be illuminated in a wide range, and the visibility of the light can be improved.
  • the cover 20 also functions as a rain shield. Therefore, the flow sensor device with the cover of the present embodiment can be used outdoors.
  • the cover 20 has a truncated cone shape that expands downward.
  • the cover 20 has a truncated cone shape, but can also have a conical shape or the like.
  • the peripheral surface of the cover 20 has a slope that widens downward, such as a truncated cone or a conical shape. It is preferably a surface, but may be a vertical surface.
  • the cover 20 is preferably transparent or translucent.
  • the opening 20a of the cover 20 is closed with a foreign substance intrusion prevention net.
  • the foreign substance intrusion prevention net is a mesh material as an insect repellent net.
  • the sensor elements 3 and 4 are the wind speed sensors, but other than the wind speed, a sensor capable of detecting a gas flow or a change in the flow velocity of a liquid such as water may be used.
  • the present invention can be arranged with a sensor element and a light emitting element, can be applied to various applications as a display mode by utilizing flow rate detection, and can be applied for analysis and the like. It is also possible.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Measuring Volume Flow (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

光の視認性を向上させること。流量センサ装置(1)は、基板(2)と、基板と電気的に接続されたセンサ素子(3、4)と、センサ素子の後方に位置し基板の表面に配置された発光素子(8a、8b)と、発光素子を基板との間で内部に収容する光透過ケース(6a、6f)と、を有して構成され、光透過ケースには、天井部(C)から発光素子の方向に向かって光拡散部材(7a、7e)が突出しており、光拡散部材は、発光素子と対向する光入射面と、光入射面と前記天井部との間を繋ぐ壁面と、を有して構成されており、壁面の少なくとも一部は、相対向する壁面間の寸法が、前記光入射面側から天井部に向かって徐々に広がる傾斜面で形成される。

Description

流量センサ装置及びカバー付き流量センサ装置
 この発明は、流体の流量を検出する流量センサ装置及びカバー付き流量センサ装置に関する。
 特許文献1には、光源としての発光素子と、光学素子とを有し、光源から放射された光を、光学素子によって光の直進方向へ取り出すことにより、光源の光の利用効率を向上させたLEDモジュールの発明が開示されている。
特開2010-238686号公報
 しかしながら、特許文献1には、LEDモジュールの構造について開示があるものの、発光素子とセンサ素子を備えたモジュールにおいて、光の視認性を高めるものではない。
 本発明は、かかる点に鑑みてなされたものであり、発光素子とセンサ素子とを有し、光の視認性を向上させた流量センサ装置及びカバー付き流量センサ装置を提供することを目的の一つとする。
 本発明の一態様の流量センサ装置は、基板と、前記基板と電気的に接続されたセンサ素子と、前記センサ素子の後方に位置し前記基板の表面に配置された発光素子と、前記発光素子を前記基板との間で内部に収容する光透過ケースと、を有して構成され、前記光透過ケースには、天井部から前記発光素子の方向に向かって光拡散部材が突出しており、前記光拡散部材は、前記発光素子と対向する光入射面と、前記光入射面と前記天井部との間を繋ぐ壁面と、を有して構成されており、前記壁面の少なくとも一部は、相対向する壁面間の寸法が、前記光入射面側から前記天井部に向かって徐々に広がる傾斜面で形成されることを特徴とする。
 本発明によれば、発光素子とセンサ素子を備えたモジュールにおいて、光の視認性を高めることができる。
本実施の形態に係る流量センサ装置の斜視図である。 基板の長手方向に沿って切断した本実施の形態に係る流量センサ装置の縦断面図である。 本実施の形態の流量センサ装置の回路図(一例)である。 本実施の形態に係る流量センサ装置における光透過ケースの斜視図である。 本実施の形態に係る光透過ケースを内側から見た図である。 図6Aは、基板の長手方向に対して直交する方向に沿って切断した本実施の形態に係る光透過ケース部分の縦断面図であり、図6Bは、基板の長手方向に沿って切断した本実施の形態に係る光透過ケース部分の縦断面図である。 本実施の形態に係るカバー付き流量センサ装置の側面模式図である。
 以下、添付図面を参照して、本実施の形態に係る流量センサ装置について説明する。図1は、本実施の形態に係る流量センサ装置の斜視図である。図2は、基板の長手方向に沿って切断した本実施の形態に係る流量センサ装置の縦断面図である。本明細書において「縦断面図」とは、基板厚さ方向に沿って切断した断面図を指す。なお、本実施の形態では、センサ装置として流量センサを例示して説明するが、センサ装置は流量変化を検知できれば、検知の対象は特に限定されない。なお、以下では、センサ素子3、4を、風速センサとして説明する。
 図1及び図2に示すように、流量センサ装置1は、基板2の先端部2aにセンサ素子3、4が配置されて構成されている。センサ素子3、4では、流量変化が検知され、この検知情報に基づいて、基板2の先端側に設けられる発光素子8a、8bが発光される。
 基板2は、先端部2aを除いて、光透過ケース6及び筐体5内に収容されており、基板2の先端部2aは、光透過ケース6の先端から前方に向けて突出しており、外部に露出した状態となっている。図1に示すように、基板2の幅方向(X方向)の両端には、凹み部2dがあり、基板2の先端部2aとは、凹み部2dにより幅が狭くなった部分よりも先端側を指す。
 基板2は、平板形状である。本実施の形態では、基板2はX方向への幅寸法よりもY方向への長さ寸法が長い形状となっているが、これに限定されない。基板2の長手方向であるY方向を「軸方向O」と定める。基板2は、絶縁基板であり、特に限定するものではないが、ガラスクロスにエポキシ樹脂を含浸させた一般的なプリント基板であることが好ましく、例えば、FR4基板を提示することができる。
 光透過ケース6から突出した基板2の先端部2aには、基板2と電気的に接続された一対のセンサ素子3、4が配設されている。各センサ素子3、4は、Y方向に沿った基板2の前方に向かって離間して配置されており、センサ素子3、4と基板2とは、リード線11、12を介して繋がれている。また、このセンサ素子3、4と共に、基板2の先端側には、発光素子8a、8b(図1では発光素子8bは不図示)が配置されており、発光素子8a、8bは、センサ素子3、4の後方に位置して、光透過ケース6a、6f内に収容されている。センサ素子3、4と発光素子8a、8bとが距離的に近い位置に配置される。
 例えば、センサ素子3は、感温抵抗素子としての流量検知用抵抗素子13を備える。また、センサ素子4は、感温抵抗素子としての温度補償用抵抗素子14を備える。
 流量検知用抵抗素子13及び温度補償用抵抗素子14は、図3に示す回路を構成する。図3に示すように、流量検知用抵抗素子13と、温度補償用抵抗素子14と、抵抗器16、17とでブリッジ回路18を構成している。図3に示すように、流量検知用抵抗素子13と抵抗器16とで第1の直列回路19を構成し、温度補償用抵抗素子14と抵抗器17とで第2の直列回路20を構成している。そして、第1の直列回路19と第2の直列回路20とが、並列に接続されてブリッジ回路18を構成している。
 図3に示すように、第1の直列回路19の出力部21と、第2の直列回路20の出力部22とが、夫々、差動増幅器(アンプ)23に接続されている。ブリッジ回路18には、差動増幅器23を含めたフィードバック回路24が接続されている。フィードバック回路24には、トランジスタ(図示せず)等が含まれる。
 抵抗器16、17は、流量検知用抵抗素子13、及び温度補償用抵抗素子14よりも抵抗温度係数(TCR)が小さい。流量検知用抵抗素子13は、例えば、所定の周囲温度よりも所定値だけ高くなるように制御された加熱状態で、所定の抵抗値Rs1を有し、また、温度補償用抵抗素子14は、例えば、前記の周囲温度にて、所定の抵抗値Rs2を有するように制御されている。なお、抵抗値Rs1は、抵抗値Rs2よりも小さい。流量検知用抵抗素子13と第1の直列回路19を構成する抵抗器16は、例えば、流量検知用抵抗素子13の抵抗値Rs1と同様の抵抗値R1を有する固定抵抗器である。また、温度補償用抵抗素子14と第2の直列回路20を構成する抵抗器17は、例えば、温度補償用抵抗素子14の抵抗値Rs2と同様の抵抗値R2を有する固定抵抗器である。
 センサ素子3が、周囲温度よりも高い温度に設定されており、風を受けると、発熱抵抗である流量検知用抵抗素子13の温度は低下する。このため、流量検知用抵抗素子13が接続された第1の直列回路19の出力部21の電位が変動する。これにより、差動増幅器23により差動出力が得られる。そして、フィードバック回路24では、差動出力に基づいて、流量検知用抵抗素子13に駆動電圧を印加する。そして、流量検知用抵抗素子13の加熱に要する電圧の変化に基づき、マイコン(図示せず)にて風速を換算し出力することができる。なお、マイコンは、例えば、筐体5内の基板2の表面に設置され、各センサ素子3、4と、各リード線11、12及び基板2の表面の配線パターン(図示しない)を介して電気的に接続されている。
 また、センサ素子4に設けられた温度補償用抵抗素子14は、流体そのものの温度を検知し、流体の温度変化の影響を補償する。このように、温度補償用抵抗素子14を備えることで、流体の温度変化が流量検知に影響するのを低減でき、流量検知を精度よく行うことができる。上記したように、温度補償用抵抗素子14は、流量検知用抵抗素子13よりも十分に抵抗が高く、且つ、温度が周囲温度付近に設定されている。このため、センサ素子4が風を受けても、温度補償用抵抗素子14が接続された第2の直列回路20の出力部22の電位は、ほとんど変化しない。したがって、出力部22の電位を基準電位として、流量検知用抵抗素子13の抵抗変化に基づく差動出力を精度よく得ることができる。
 なお、図3に示す回路構成は、一例であり、これに限定されるものではない。
 本実施の形態では、図1に示すように、センサ素子3及びセンサ素子4は、基板2から離間すると共に、基板2の軸方向O(Y方向)に対して、斜めに傾いて配置されている。センサ素子3、4は、XY平面内にて、軸方向Oに対して傾斜して配置される。
 このように、センサ素子3は、X方向に平行な横方向a及び軸方向O(Y方向)に平行な縦方向bに対し傾斜しているため、センサ素子3は、横方向aの風、及び縦方向bの風の双方に適切に接触する。よって、横方向a、及び縦方向bの風向きに対する、流体の流量を精度良く検出することが可能である。
 また、上記の通り、センサ素子3、4は、軸方向O(Y方向)に沿った基板2の前方に離れて配置されることが好ましい。すなわち、センサ素子3、4は、基板2と高さ方向(Z方向)にて対向していない。これにより、基板2や筐体5が邪魔することにより生じる気流の乱れを防ぐことができ、センサ素子3、4付近での気流を安定させ、風の検知精度を向上できる。
 センサ素子4は、センサ素子3と共に、基板2の軸方向Oに対して同じ傾斜角度で傾き、且つZ方向に離間して対向することが好ましい。このように、センサ素子3とセンサ素子4とは近接して配置されることで、センサ素子4で観測される流体の温度変化は、センサ素子3の周囲温度と見做すことができ、流体の温度変化を精度よく補償できる。また、センサ素子3とセンサ素子4とは、同じ傾斜角度を有していることで、センサ素子3付近で気流の乱れ等が生じにくく、センサ素子3の検知面に、風を万遍なく当接させることができる。以上により、検出精度をより効果的に向上させることが可能になる。
 このように、センサ素子3及びセンサ素子4は、基板2の軸方向Oに対して同じ傾斜角度で傾き、且つZ方向に離間して対向することが好ましいが、センサ素子4に関しては、流体の温度変化を観測できる位置に配置されていればよい。例えば、センサ素子4は、基板2と対向する位置に配置されてもよい。
 各センサ素子3、4に接続されたリード線(リード端子)11、12について説明する。リード線11、12は、絶縁体により被覆されている。センサ素子3に接続されたリード線11、及び、センサ素子4に接続されたリード線12は、夫々、基板2の先端部2aに固定される。基板2の先端部2aの両側面に、凹む切欠きが形成され、各リード線11、12が、切欠きに接着剤等で固定される。基板2の表面には、配線パターン(図示せず)が形成されており、各リード線11、12と、配線パターンとが電気的に接続されている。好ましくは、基板2の先端部2aに複数の穴を空け、該穴に各リード線11、12を挿入し固定する形態である。
 リード線11は、基板2の上面(一方の面)2bから、上方に延出し、更に、Y方向に沿った基板2の先端部2aの前方に向けて延出している。そして、リード線11は、先端部2aの前方位置で、センサ素子3が、所定の傾斜角度となるように、折り曲げられている。また、リード線12は、基板2の下面(他方の面)2cから、下方に延出し、更に、Y方向に沿った基板2の先端部2aの前方に向けて延出している。そして、リード線12は、先端部2aの前方位置で、センサ素子4がセンサ素子3と同じ傾斜角度となるように、折り曲げられている。このように、リード線11、12を屈曲させることで、簡単且つ適切に、各センサ素子3、4を、Y方向に沿った基板2の先端部2aの前方に、同じ傾斜角度で配置させると共に、Z方向に離間配置することができる。
 このように、センサ素子3、4と、基板2とが離間しており、リード線11、12を介して繋がれていることで、センサ素子3、4の熱が、基板2に直接的に伝わることを防止できる。これにより、センサ素子3、4からの熱的影響を、発光素子8a、8bに対して弱めることができる。
 基板2の先端部2aには、貫通孔10が形成されている。このように、基板2に貫通孔10を設けることで、基板2の熱抵抗を確保でき、基板2に配置されたマイコンや後述する発光素子31からの熱的影響を、センサ素子3、4に対して低減させることができる。また、貫通孔10を設けることで、流量センサ装置1に衝撃が加わった場合でも、衝撃緩和になり、衝撃のセンサ素子3、4への影響を弱めることが可能である。
 基板2の上面2bには、発光素子8aが配置されている。発光素子8aは、貫通孔10よりも後方に位置している。また、基板2の下面2cには、発光素子8bが配置されている。これら発光素子8a、8bは、基板2の上下面(表裏面)の同位置に配置されていることが好ましい。これら発光素子8a、8bは、透過性を有する第1光透過ケース6a及び第2光透過ケース6fの夫々に覆われている。
 発光素子8a、8bとしては、例えば、LEDが挙げられ、発光素子8a、8bは、センサ素子3、4による風検知情報に基づいて表示が変化するように制御されている。例えば、風速に基づいて発光色が変化するように制御することができる。発光素子8a、8bからの光は、光透過ケース6a、6fを透過して外部に発光される。
 光透過ケース6は、センサ素子3、4の後方に位置し、発光素子8a、8bを基板2との間で内部に収容する。光透過ケース6は、光透過ケース6aと光透過ケース6fとに分割されており、光透過ケース6aは、基板2の上面2bを覆い、光透過ケース6fは、基板2の下面2cを覆う。光透過ケース6a、6fの内側には、後述する光拡散部材7a、7eが形成されている。光透過ケース6の後端側には、基板2を収容する筐体5が配設されている。
 筐体5は、第1筐体(5a、5b)と第2筐体(5g、5h)とに分割されており、第1筐体(5a、5b)は、基板2の上面2bを覆い、第2筐体(5g、5h)は、基板2の下面2cを覆う。また、第1筐体(5a、5b)、第2筐体(5g、5h)は夫々、前方が筐体前部5a、5g、後方が筐体後部5b、5hとなっており、筐体後部5b、5hの方が、筐体前部5a、5gより、X方向に幅が広く、Z方向に高さが高くなっている。
 例えば、第1筐体(5a、5b)及び第2筐体(5g、5h)は、夫々、非透過性の有色ケースで形成されている。このため、発光素子8a、8bからの光は、第1筐体(5a、5b)及び第2筐体(5g、5h)を透過せず、第1光透過ケース6a及び第2光透過ケース6fの部分から外部に発光される。
 筐体5及び光透過ケース6で基板2を覆うことで、基板2に配置された発光素子8a、8bや、図示しない素子を適切に外部から保護することができる。
 第1光透過ケース6a及び第1筐体(5a、5b)、第2光透過ケース6f及び第2筐体(5g、5h)は、基板2の先端部2aを外部に突出させた状態(貫通孔10も外部に露出している)で、基板2の表裏面に、夫々配置され、ねじ等の締結部材15により、基板2、各筐体(5a、5b、5g、5h)及び各光透過ケース6a、6fが固定されている。
 図2に示すように、光透過ケース6a、6fには夫々、前方面に、基板2の一部を前方に突出させる切欠き6b、6gが形成されており、各光透過ケース6a、6fを組み合わせることで、切欠き6b、6gからなる貫通穴が形成される。そして、基板2を貫通穴に通すことで、基板2を光透過ケース6内から光透過ケース6の外側に延出させることができる。また、各光透過ケース6a、6fの後方面に、筐体前部5a、5gに接続する接続部6c、6hが形成されている。接続部6c、6hには、基板2に沿って後方に向かって延出する延出部6d、6iが形成され、延出部6d、6iの先端は基板2に対して垂直方向に延びて、接続凹部6e、6jが形成されている。
 また、各筐体前部5a、5gの前方には夫々、接続部5c、5iが形成されており、接続部5c、5iには、接続凹部6e、6jに入り込む接続凸部5d、5jが形成されている。筐体前部5a、5gの筐体後部5b、5h寄りには、窪み5e、5kが形成され、窪み5e、5kの底壁5f、5lは夫々、基板2の上面2b、下面2cに接している。窪み5e、5kの底壁5f、5l及び、底壁5f、5lに接する基板2には、締結部材15が挿入される貫通孔が形成されている。窪み5e、5kの底壁5f、5lが夫々、基板2の上面2b、下面2cに接した状態で、光透過ケース6a、6fの接続部6c、6hと、筐体前部5a、5gの接続部5c、5iが係合され、光透過ケース6a、6fと、筐体前部5a、5gが面一に接続される。
 光透過ケース6a、6fの接続凹部6e、6jに筐体前部5a、5gの接続凸部5d、5jを接続し、光透過ケース6a、6fを基板2の発光素子8a、8bで覆うと共に、窪み5e、5kの貫通孔及び基板2の貫通孔の位置を合わせる。この状態で、基板2及び窪み5e、5kに形成された貫通孔に、基板2の上面2b側に位置する窪み5eから締結部材15を挿入し、基板2の下面2c側に位置する窪み5kで、ナット部16に締結部材15を螺合する。
 これにより、光透過ケース6a、6fの切欠き6b、6gからなる貫通穴から基板2の先端部2aを突出した状態で、光透過ケース6及び筐体5によって、基板2が表裏面から挟み込まれる。そして、基板2と、筐体5と、光透過ケース6とが、一体的に組み立てられる。このように、流量センサ装置1においては、締結部材15のみを用いて、基板2、光透過ケース6、筐体5を、一体として構成できるため、組み立てが容易で且つシンプルな構成とすることができる。
 流量センサ装置1の後端には、入力用と出力用の外部接続端子30が設けられている(図1参照)。外部接続端子30としては、例えば、異なる形状タイプのUSB端子である。複数の流量センサ装置1が、外部接続端子30側にて、通信ケーブルを介して電気的に接続されていることで、多連式のセンサユニットを構成できる。多連式のセンサユニットを用いることで、発光素子8a、8bの多点発光が可能になり、様々なアプリケーションに適用することが可能である。例えば、屋内や屋外のイルミネーションとして用いたり、風速の分析用等として用いることができる。
 ここで、本実施の形態の流量センサ装置1では、センサ素子3、4の検知情報を光で報知するために、発光素子8a、8bを発光させる。LED等からなる発光素子8a、8bからの出射光は、直進性を有するが拡散性は低い。そこで、本実施の形態においては、直進性のある光を所定方向に拡散させて、視認性を向上させている。
 以下、図4から図6A、図6Bを参照して、本実施の形態に係る光透過ケースに形成される光拡散部材の構成について詳細に説明する。図4は、本実施の形態に係る流量センサ装置における光透過ケースの斜視図である。図5は、本実施の形態に係る光透過ケースを内側から見た図である。図6Aは、基板の長手方向に対して直交する方向に沿って切断した本実施の形態に係る光透過ケース部分の縦断面図である。図6Bは、基板の長手方向に沿って切断した本実施の形態に係る光透過ケース部分の縦断面図である。すなわち、図6Aは、図4及び図5のA-A線に沿う断面図となっている。図6Bは、図4及び図5のB-B線に沿う断面図となっている。
 図4及び図6A、図6Bに示すように、光透過ケース6a、6fは、前方面に形成される切欠き6b、6gから、基板2の先端部2aを突出させた状態で、後方面に設けられる接続部6c、6h(図2参照)で、筐体前部5a、5gの接続部5c、5i(図2参照)に接続されている。この際、光透過ケース6a、6fは、基板2との間で、基板2の先端側に配置される発光素子8a、8bを収容する。
 図5及び図6A、図6Bに示すように、光透過ケース6a、6fの内側には、天井部Cから、基板2に配置される発光素子8a、8bの方向に向かうように、光拡散部材7a、7eが突出して形成されている。光拡散部材7a、7eにおける発光素子8a、8bに対向する光入射面(対向面)Sは、発光素子8a、8bの照射面と略平行になるように形成されている。また、光入射面Sは、発光素子8a、8bの照射面以上の面積を有していることが好ましい。これにより、発光素子8a、8bから照射された光を、光拡散部材7a、7eに効果的に導入でき、前記光拡散部材7a、7eへの光入射効率を高めることができる。図6A及び図6Bでは、基板2に配置される発光素子8a、8bと、光拡散部材7a、7eとは、離間して配置されている。すなわち、発光素子8a、8bの照射面と、光拡散部材7a、7eとの光入射面Sとの間には隙間が空いている。ただし、発光素子8a、8bからの出射光を光拡散部材7a、7eを介して拡散できれば、発光素子8a、8bの照射面と、光拡散部材7a、7eの光入射面Sとは、接触していてもよい。なお、図5では、第1光透過ケース6aが示されているが、第2光透過ケース6fも同様の形状である。
 光拡散部材7a、7eは夫々、基板2の長手方向(Y方向)に対して直交する横方向(X方向)の両側に、光入射面Sと天井部Cとの間を繋ぐ側壁面7b、7fを有しており、側壁面7b、7fは、側壁面7b、7f間の横方向(X方向)の寸法が、光入射面S側から天井部Cに向かって徐々に広がる傾斜面となっている。
 また、図4、図5及び図6Bに示すように、光拡散部材7a、7eは夫々、基板2の長手方向(Y方向)である縦方向の両側に、前方壁面7c、7g及び後方壁面7d、7hを有している。前方壁面7c、7gと後方壁面7d、7hとの間の縦方向(Y方向)の寸法は、光入射面S側から天井部Cに向かって徐々に広がる傾斜面となっている。ただし、図5や図6A及び図6Bに示すように、前方壁面7c、7g及び後方壁面7d、7hは、側壁面7b、7fに比べて急な傾斜の傾斜面となっている。或いは、図示しないが、前方壁面7c、7g及び後方壁面7d、7hは、光入射面Sに対し垂直面であってもよい。ここで、図6Aに示すように、側壁面7b、7fの傾斜角度は、光入射面Sの延長線と側壁面7b、7fとの間の角度θで規定され、傾斜角度θ1は、例えば、例えば、45°であることが好ましく、発光素子8a、8bの指向角に合わせることがより好ましい。また、図6Bに示すように、前方壁面7c、7g及び後方壁面7d、7hの傾斜角度は、光入射面Sの延長線と前方壁面7c、7g及び後方壁面7dとの間の角度θで規定され、傾斜角度θ>傾斜角度θとされている。また、傾斜角度θは、例えば、45°以上であることが好ましく、発光素子8a、8bの指向角より大きい角度であることがより好ましい。
 光透過ケース6a、6fは、透明であることが好ましく、材質としては、例えば、アクリル系樹脂やポリカーボネート系樹脂等の熱可塑性樹脂、ガラスが挙げられる。本実施の形態では、光透過ケース6a、6fと光拡散部材7a、7eは、同一部材で形成されているが、異なる部材で形成されていてもよい。なお、光透過ケース6a、6fは、光を透過すればよいため、透明でなく半透明等であってもよい。
 次に、図6A、図6Bを参照して、光拡散部材7a、7eによる光の拡散動作について説明する。図6Aに示すように、基板2の先端側において、基板2の上下面2b、2cの同位置には、発光素子8a、8bが配置されている。光透過ケース6a、6fは、基板2の上下面2b、2cから発光素子8a、8bを覆うように配設され、基板2の幅方向(X方向)の両側で、組み合わされている。このように、基板2の側方では、光透過ケース6a、6fの先端に形成される段差D同士が係合され、光透過ケース6a、6f同士がずれることを防ぐ(図6A参照)。光透過ケース6a、6fには、天井部Cから、発光素子8a、8bに向かって、光拡散部材7a、7eが突出して形成されている。光拡散部材7a、7eにおいて、基板2の長手方向(Y方向)に対して直交する横方向(X方向)の両側には、発光素子8a、8b側から天井部Cに向かって徐々に広がる側壁面7b、7fが形成されている。
 発光素子8a、8bからの出射光は、光拡散部材7a、7eに入射される。直進性(指向性)が高く拡散性が低い光L1~L6は、光拡散部材7a、7e内で屈折を繰り返すなどして、光透過ケース6a、6fの表面及び側面から、拡散光が外部に出射される。光拡散部材7a、7eにおける光L1~L6の様子の模式図を図6A及び図6Bに示す。
 図6Aに示すように、発光素子8a、8bの照射面から垂直(図6Aに示す上下方向)に照射された光L1の一部は、Z方向に直進して、光透過ケース6a、6fから出射される。一方、光拡散部材7a、7eの光入射面Sに対し傾いて入射される光L2、L3のうち、入射角度が空気に対する光拡散部材7a、7eの臨界角に満たない光L2は、光透過ケース6a、6fの表面から屈折して外部に出射される。また、入射角度が光拡散部材7a、7eの臨界角を超える光L3は、光透過ケース6a、6f内で反射された後、光透過ケース6a、6fから屈折して外部に出射される。このとき、光透過ケース6a、6f内で反射された光L3の一部は、傾斜面からなる側壁面7b、7fに到達すると、略横方向(略X方向)に透過し、よって、光透過ケース6a、6fの側面からも光が出射される。このように、発光素子8a、8bの光L2、L3は、光拡散部材7a、7eにより、X方向に広がりを持ち、直進性の光に拡散性を持たせることができる。特に、本実施の形態では、発光素子8a、8bからの光を、光透過ケース6a、6fの表面のみならず側面からも外部に出射させることができる。これにより、光の視認性を向上させることができる。
 また、図6Bに示すように、光透過ケース6a、6fは、前方面に形成される切欠き6b、6gから、基板2の先端部2a(図1参照)を前方に突出させ、後方面で、接続部6c、6hにより筐体前部5a、5gに接続されている(図2参照)。光透過ケース6a、6fに形成される光拡散部材7a、7eにおいて、基板2の長手方向(Y方向)である縦方向の両側には、発光素子8a、8b側から天井部Cに向かって徐々に広がり、側壁面7b、7fに比べて急な傾斜の前方壁面7c、7g及び後方壁面7d、7hが形成されている。上述した通り、前方壁面7c、7g及び後方壁面7d、7hは、光入射面Sに対して垂直面であってもよい。
 発光素子8a、8bの照射面から垂直に照射され、発光素子8a、8bから光拡散部材7a、7eの光入射面Sに垂直に入射された光L4の一部は、Z方向に直進して、光透過ケース6a、6fの表面から出射される。また、光拡散部材7a、7eの光入射面Sに傾いて入射された光L5、L6のうち、入射角度が空気に対する光拡散部材7a、7eの臨界角に満たない光L5は、光透過ケース6a、6fの表面から屈折して出射される。また、光L6は、光拡散部材7a、7eの前方壁面7c、7g及び後方壁面7d、7hで反射して光透過ケース6a、6fの表面から出射される。図6Bでは、前方壁面7c、7g及び後方壁面7d、7hの傾斜が図6Aよりも急なため、光透過ケース6a、6f内で反射した光は、前方壁面7c、7g及び後方壁面7d、7hに到達しても、略前後方向(Y方向)には透過しにくく、図6Bでは、光は、光透過ケース6a、6fの表面から外部に出射される。
 このように、本実施の形態では、発光素子8a、8bの光を、主に、光透過ケース6a、6fの表面及び横方向から外部に出射させることができる。
 以上のように、発光素子8a、8b側から天井部Cに向かって徐々に広がる光拡散部材7a、7eの側壁面7b、7fにより、発光素子8a、8bの出射光の直進方向(Z方向)と共に、基板2の長手方向(Y方向)に対して直交する横方向(X方向)に向かって、所定の角度で光を拡散できる。特に、側壁面7b、7fに比べて急な傾斜、或いは垂直面の前方壁面7c、7g及び後方壁面7d、7hにより光のY方向の広がりが抑えられるため、基板2の長手方向(Y方向)に対して直交する横方向(X方向)に向かって、基板2の長手方向である縦方向(Y方向)よりも、大きな角度で発光素子8a、8bの光が拡散される。これにより、特に、本実施の形態では、光を横方向(X方向)へ拡散させることができ、横方向への出射光の強度を高めながら、従来に比べて、光の拡散方向を広げることができ、光の視認性を向上させることができる。
 以上のように、本実施の形態の流量センサ装置1は、基板2と、基板2と電気的に接続されたセンサ素子3、4と、センサ素子3、4の後方に位置し基板2の表面に配置された発光素子8aと、発光素子8aを基板2との間で内部に収容する光透過ケース6aと、を有して構成される。
 また、本実施の形態では、光透過ケース6aには、天井部Cから発光素子8aの方向に向かって光拡散部材7aが突出している。光拡散部材7aは、発光素子8aと対向する光入射面Sと、光入射面Sと天井部Cとの間を繋ぐ壁面と、を有して構成されている。そして、壁面の少なくとも一部は、相対向する壁面間の寸法が、光入射面S側から天井部Cに向かって徐々に広がる傾斜面で形成される。ここで、「壁面の少なくとも一部」とは、図5に示す構造であれば、光拡散部材7aを構成する側壁面7b、前方壁面7c及び後方壁面7dのいずれかを指す。例えば、側壁面7b間の寸法が、光入射面S側から天井部Cに向かって徐々に広がっており、或いは、前方壁面7c及び後方壁面7dの間の寸法が、光入射面S側から天井部Cに向かって徐々に広がっている。
 この構成により、発光素子8aからの光を、光透過ケース6aの表面から側面にかけて外部に拡散して出射することができる。したがって、LED等のように、直進性の高い発光素子8aを用いても、光透過ケース6aを介して拡散性を向上させることができ、光の視認性を向上させることができる。
 上記において、壁面の一部に形成された傾斜面は、他の壁面よりも傾斜角度が緩やかである。このように、緩やかな傾斜面にて形成された壁面を介して光を光透過ケースの側面へ拡散させることができる。
 また、本実施の形態では、センサ素子3、4の近傍に発光素子8aを配置することができる。したがって、発光素子8a近傍の流量変化を精度よく光表示することができる。また、センサ素子3、4を基板2の前方に配置し、発光素子8aをセンサ素子3、4の後方に配置することで、センサ素子3、4の検出精度を維持しながら、適切に光表示が可能になる。すなわち、センサ素子3、4を、図1に示すような基板2から前方に隔離することが可能になり、センサ素子3、4を基板2から離すことで気流の乱れ等を抑制し、センサ素子3、4の検出精度を高めることができる。また、発光素子8aを、センサ素子3、4の検出に邪魔にならない位置に配置ができ、上記したように、センサ素子3、4の検出精度と、適切に光表示を可能とする。
 また、本実施の形態では、センサ素子3、4と発光素子8aとの並び方向(図1に示す軸方向O)に対して直交する横方向(X方向)の両側に配置された光拡散部材7aの側壁面7bが、傾斜面で形成されることが好ましい。これにより、発光素子8aからの光を、光透過ケース6aの表面から横方向に拡散させて外部に射出することができる。図1に示すように、発光素子8aの前方にはセンサ素子3、4が配置されており、後方には筐体5が配置される。このため、光を前後方向に拡散させるより横方向に拡散させるほうが、光拡散の障害を抑制でき、光拡散性を向上させることができ、光の視認性を効果的に向上させることができる。
 また、本実施の形態では、光拡散部材7aは、基板2の長手方向(軸方向O)である縦方向の両側に、前方壁面7c及び後方壁面7dを有している。前方壁面7c及び後方壁面7dは、垂直面で形成されており、或いは、前方壁面7cと後方壁面7dとの間の縦方向の寸法が、前記光入射面S側から天井部Cに向かって徐々に広がる傾斜面で形成される。ただし、前方壁面7c及び後方壁面7dの傾斜面は、側壁面7bの傾斜面よりも急である。
 これにより、前後方向に拡散する光を抑制しながら、横方向に光を拡散させることができ、横方向への拡散光の強度を高めることが可能になる。このように、傾斜角度を変えることで、簡単な構成で、前後方向に拡散する光を弱めると同時に、横方向への光の拡散を促進することができる。
 また、本実施の形態では、センサ素子3、4は、基板2の前方に離間して配置されており、センサ素子3、4と基板2とがリード線11、12で繋がれていることが好ましい。このように、センサ素子3、4をリード線11、12で繋ぐことで、簡単且つ確実に、センサ素子3、4を基板2の前方に離間して配置することができる。
 また、本実施の形態では、基板2は、長尺状であり、発光素子8aはセンサ素子3、4と共に、基板2の先端側に配置されており、発光素子8aは、センサ素子3、4の後方に位置している。そして、発光素子8aは、光透過ケース6aに収容されている。
 このように、長尺状の基板2を用いることで、流量センサ装置1の小型化においても、発光素子8a及びセンサ素子3、4を無理なく前後方向に配置できる。
 また、本実施の形態では、光透過ケース6aの後端側に位置し、基板2を収容する筐体5が設けられている。また、光透過ケース6aには、前方面に、基板2の一部を前方に突出させる切欠き6bが形成されており、後方面に、筐体5に接続される接続部6cが設けられている。これにより、光透過ケース6aの前方へ基板2を突出させると共に、光透過ケース6aを、その後方に位置する筐体5を適切に接続させることができ、基板2、光透過ケース6a及び、筐体5を一体化することが可能になる。実際には、図1に示すように、筐体5は第1筐体(5a、5b)と第2筐体(5g、5h)を有し、光透過ケース6a、6fも基板2を介して上下に配置される。これにより、基板2の上下を第1筐体(5a、5b)、第2筐体(5g、5h)及び光透過ケース6a、6fで挟み込むことで、簡単な構成で一体形成が可能である。
 図2等に示すように、発光素子8a、8bは、基板2の表裏面に配置されることが好ましい。発光素子8a、8bを、基板2の両面に形成することで、光表示部を基板2の両面に設けることができる。このように、流量センサ装置1の正面のみならず背面にも光装飾が可能であり、このとき、正面と背面とで異なる光装飾(例えば、発光色が異なる等)となるように制御することもできる。
 図7は、本実施の形態に係るカバー付き流量センサ装置の側面模式図である。
 図7に示すように、流量センサ装置1には、センサ素子3、4(センサ素子4は不図示)を下向きにして配置した状態で、下方側に開口部20aを有するカバー20が被せられる。
 本実施の形態では、カバー20の形状を限定するものではないが、例えば、カバー20は、図7に示すように、下方向に向かって広がる円錐台形状で形成される。カバー20の上部は流量センサ装置と共に支持板(不図示)で固定されている。
 また、カバー20は、光透過性であれば、透明であっても半透明であってもよく光透過率を問うものでない。使用用途等に応じて、カバー20に用いられる光透過率や材質を種々選択することができる。なお、カバー20の材質は一例として、アクリル系樹脂やポリカーボネート系樹脂等の熱可塑性樹脂を挙げることができる。
 図7に示すように、センサ素子3、4は、カバー20の開口部20aより下方に突出している。
 これにより、風がカバー20で遮られることなく、センサ素子3、4により風を検知でき、発光素子8a、8bを発光させることができる。本実施の形態では、既に説明したように、発光素子8a、8bからの光は、光透過ケース6a、6fを介して拡散される。光透過ケース6a、6fから出射された拡散光は、カバー20を透過し、カバー20の外部に出射される。
 本実施の形態では、発光素子8a、8bからの光を、光透過ケース6a、6fの表面から横方向に拡散させることができる。したがって、カバー20の下方から漏れる光を少なくでき、カバー20の周囲を広い範囲で光らせることができ、光の視認性を向上させることができる。
 また、カバー20は、雨除けとしても機能する。したがって、本実施の形態のカバー付き流量センサ装置を、屋外でも使用することができる。
 図7に示すように、カバー20は下方向に向かって広がる円錐台形状である。
 カバー20は、円錐台形状としたが、円錐形状等にすることもできる。カバー20から突出するセンサ素子3、4を、カバー20の外側を伝う雨から効果的に除けるために、円錐台、円錐形状等のように、カバー20の周面は下方向に向かって広がる傾斜面であることが好ましいが、垂直面であってもよい。また、カバー20は、透明または半透明であることが好ましい。
 また、本実施の形態では、カバー20の開口部20aは、異物侵入防止ネットで塞がれていることが好ましい。例えば、異物侵入防止ネットは防虫ネットとしてのメッシュ材である。防虫ネットを開口部20aに配置することで、屋外で使用しても、虫が、カバー20内に侵入することを防止でき、故障を引き起こす等の不具合を抑制することができる。
 上記では、センサ素子3、4は風速センサであったが、風速以外に、ガス流や、水等の液体を対象とした流速変化を検知可能なセンサであってもよい。
 以上説明したように、本発明は、センサ素子と発光素子を配置することができ、流量検知を利用して、表示形態としての様々なアプリケーションに適用することができ、また分析用などとして適用することも可能である。
 本出願は、2019年1月17日出願の特願2019-005735に基づく。この内容は全てここに含めておく。
 

Claims (10)

  1.  基板と、前記基板と電気的に接続されたセンサ素子と、前記センサ素子の後方に位置し前記基板の表面に配置された発光素子と、前記発光素子を前記基板との間で内部に収容する光透過ケースと、を有して構成され、
     前記光透過ケースには、天井部から前記発光素子の方向に向かって光拡散部材が突出しており、
     前記光拡散部材は、前記発光素子と対向する光入射面と、前記光入射面と前記天井部との間を繋ぐ壁面と、を有して構成されており、
     前記壁面の少なくとも一部は、相対向する壁面間の寸法が、前記光入射面側から前記天井部に向かって徐々に広がる傾斜面で形成されることを特徴とする流量センサ装置。
  2.  前記センサ素子と前記発光素子との並び方向に対して直交する横方向の両側に配置された前記光拡散部材の側壁面が、前記傾斜面で形成されることを特徴とする請求項1に記載の流量センサ装置。
  3.  前記光拡散部材は、前記基板の長手方向である縦方向の両側に、前方壁面及び後方壁面を有しており、前記前方壁面及び前記後方壁面は、垂直面で形成されており、或いは、前記前方壁面と前記後方壁面との間の前記縦方向の寸法が、前記発光素子側から前記天井部に向かって徐々に広がる、前記側壁面に比べて急な傾斜の傾斜面で形成されることを特徴とする請求項2に記載の流量センサ装置。
  4.  前記センサ素子は、前記基板の前方に離間して配置されており、前記センサ素子と前記基板とがリード線で繋がれていることを特徴とする請求項1から請求項3のいずれかに記載の流量センサ装置。
  5.  前記発光素子は前記センサ素子と共に、前記基板の先端側に配置されており、前記発光素子は、前記センサ素子の後方に位置して、前記光透過ケースに収容されていることを特徴とする請求項1に記載の流量センサ装置。
  6.  前記光透過ケースの後端側に位置し、前記基板を収容する筐体が設けられており、
     前記光透過ケースには、前方面に、前記基板の一部を前方に突出させる切欠きが形成されており、後方面に、前記筐体に接続される接続部が設けられていることを特徴とする請求項5に記載の流量センサ装置。
  7.  前記発光素子は、前記基板の表裏面に配置されることを特徴とする請求項1に記載の流量センサ装置。
  8.  流量センサ装置と、下方側に開口部があるカバーと、を有し、
     前記流量センサ装置は、基板と、前記基板と電気的に接続されたセンサ素子と、前記センサ素子の後方に位置し前記基板の表面に配置された発光素子と、前記発光素子を前記基板との間で内部に収容する光透過ケースと、を有して構成され、前記光透過ケースには、天井部から前記発光素子の方向に向かって光拡散部材が突出しており、前記光拡散部材は、前記発光素子と対向する光入射面と、前記光入射面と前記天井部との間を繋ぐ壁面と、を有して構成されており、前記壁面の少なくとも一部は、相対向する壁面間の寸法が、前記光入射面側から前記天井部に向かって徐々に広がる傾斜面で形成されており、
     前記センサ素子を、下向きにする共に前記開口部から露出するように、前記流量センサ装置が前記カバー内に収容されることを特徴とするカバー付き流量センサ装置。
  9.  前記開口部は、異物侵入防止ネットで塞がれていることを特徴とする請求項8に記載のカバー付き流量センサ装置。
  10.  前記流量センサは、風速を検知する風速センサであることを特徴とする請求項1又は請求項8に記載の流量センサ装置又はカバー付き流量センサ装置。
PCT/JP2020/001112 2019-01-17 2020-01-15 流量センサ装置及びカバー付き流量センサ装置 WO2020149314A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/421,913 US20220026460A1 (en) 2019-01-17 2020-01-15 Flow rate sensor device and flow rate sensor device equipped with cover
DE112020000447.3T DE112020000447T5 (de) 2019-01-17 2020-01-15 Durchflusssensorvorrichtung und durchflusssensorvorrichtung mit abdeckung
CN202080009692.XA CN113302501A (zh) 2019-01-17 2020-01-15 流量传感器装置以及带外罩的流量传感器装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019005735A JP7129746B2 (ja) 2019-01-17 2019-01-17 流量センサ装置及びカバー付き流量センサ装置
JP2019-005735 2019-01-17

Publications (1)

Publication Number Publication Date
WO2020149314A1 true WO2020149314A1 (ja) 2020-07-23

Family

ID=71613885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001112 WO2020149314A1 (ja) 2019-01-17 2020-01-15 流量センサ装置及びカバー付き流量センサ装置

Country Status (5)

Country Link
US (1) US20220026460A1 (ja)
JP (1) JP7129746B2 (ja)
CN (1) CN113302501A (ja)
DE (1) DE112020000447T5 (ja)
WO (1) WO2020149314A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59134178U (ja) * 1983-02-25 1984-09-07 株式会社東芝 発光素子の灯蓋
JPH01102871U (ja) * 1987-12-28 1989-07-11
JP2017207338A (ja) * 2016-05-17 2017-11-24 大阪瓦斯株式会社 ガスメーターの警告表示部
JP2018119926A (ja) * 2017-01-27 2018-08-02 大阪瓦斯株式会社 ガスメーターの警告表示部

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08110317A (ja) * 1994-10-12 1996-04-30 Hitachi Ltd 集積型マイクロセンサ
JP4177183B2 (ja) * 2003-06-18 2008-11-05 株式会社日立製作所 熱式空気流量計
JP4765458B2 (ja) * 2005-07-22 2011-09-07 横河電機株式会社 フローセンサ
JP2009109392A (ja) * 2007-10-31 2009-05-21 Konica Minolta Holdings Inc 流量計測装置およびそれを用いる分析装置
TWI368712B (en) * 2007-12-31 2012-07-21 Foxsemicon Integrated Tech Inc Light emitting diode illuminating device
JP2010238686A (ja) 2009-03-30 2010-10-21 Sharp Corp Ledモジュール
JP5507372B2 (ja) * 2010-07-22 2014-05-28 スタンレー電気株式会社 発光装置
JP5851262B2 (ja) * 2012-01-30 2016-02-03 シャープ株式会社 線状光源装置、面発光装置、および液晶表示装置
JP6054701B2 (ja) * 2012-10-18 2016-12-27 シチズン電子株式会社 発光装置
CN203190948U (zh) * 2013-04-22 2013-09-11 北京京东方光电科技有限公司 一种透明基板厚度检测装置
JP2015081776A (ja) * 2013-10-21 2015-04-27 株式会社アクアテック 流量測定装置
JP6706871B2 (ja) * 2015-10-02 2020-06-10 Koa株式会社 流量センサ
CN107152645A (zh) * 2016-03-02 2017-09-12 法雷奥照明湖北技术中心有限公司 光扩散元件、照明装置以及机动车辆
JP6825821B2 (ja) * 2016-04-26 2021-02-03 Koa株式会社 流量センサ
CN106840287B (zh) * 2017-01-04 2020-02-11 新奥科技发展有限公司 流量传感器、流量计及流量检测方法
JP7012467B2 (ja) 2017-06-29 2022-01-28 株式会社エフテック プリーツタイプフィルタ用スペーサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59134178U (ja) * 1983-02-25 1984-09-07 株式会社東芝 発光素子の灯蓋
JPH01102871U (ja) * 1987-12-28 1989-07-11
JP2017207338A (ja) * 2016-05-17 2017-11-24 大阪瓦斯株式会社 ガスメーターの警告表示部
JP2018119926A (ja) * 2017-01-27 2018-08-02 大阪瓦斯株式会社 ガスメーターの警告表示部

Also Published As

Publication number Publication date
JP7129746B2 (ja) 2022-09-02
JP2020112529A (ja) 2020-07-27
US20220026460A1 (en) 2022-01-27
CN113302501A (zh) 2021-08-24
DE112020000447T5 (de) 2021-10-28

Similar Documents

Publication Publication Date Title
ES2776384T3 (es) Dispositivo de visualización para la visualización de al menos un símbolo, dispositivo de conmutación y método para la fabricación de un dispositivo de visualización
KR101376560B1 (ko) 커버층을 구비한 조명 장치
JP4405522B2 (ja) 光電式煙センサおよび照明機器
KR960035391A (ko) 탑승물내 기기용 표시 패널
JP5060628B2 (ja) 電子機器
US20120099335A1 (en) Light module
KR20110009023A (ko) 외부 리어뷰미러 어셈블리
JP4329824B2 (ja) 表示装置
KR100924856B1 (ko) 엘이디를 도광판에 장착하는 구조를 간소화한 면발광조명장치
US8187024B2 (en) Connector assembly with a light indicative of a connector status
WO2020149314A1 (ja) 流量センサ装置及びカバー付き流量センサ装置
JP2019215163A (ja) 流量センサ装置
JP6160184B2 (ja) 表示装置
JP4782027B2 (ja) 視野角制限機能を備えた信号灯器用ledユニット
KR101049126B1 (ko) 컨트롤 패널의 엘이디 윈도우 구조
WO2011052379A1 (ja) 導光ユニット及び入力装置
CN112739951B (zh) 光学模块,尤其在机动车的照明装置中使用的光学模块
WO2021049647A1 (ja) 流量センサ装置
JP6017054B2 (ja) 表示装置
WO2020059821A1 (ja) 流量センサ装置
WO2022224607A1 (ja) 表示装置
JP4006728B2 (ja) 表示装置
KR102098235B1 (ko) 발광 장치
TWI691761B (zh) 電冰箱
TWI784403B (zh) 電子裝置及其光指示模組

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741223

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20741223

Country of ref document: EP

Kind code of ref document: A1