WO2020149142A1 - 立体画像表示体 - Google Patents

立体画像表示体 Download PDF

Info

Publication number
WO2020149142A1
WO2020149142A1 PCT/JP2019/051307 JP2019051307W WO2020149142A1 WO 2020149142 A1 WO2020149142 A1 WO 2020149142A1 JP 2019051307 W JP2019051307 W JP 2019051307W WO 2020149142 A1 WO2020149142 A1 WO 2020149142A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
stereoscopic
background
adjustment range
main subject
Prior art date
Application number
PCT/JP2019/051307
Other languages
English (en)
French (fr)
Inventor
匠真 河本
那緒子 吉田
徹 鴨崎
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2020149142A1 publication Critical patent/WO2020149142A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/24Stereoscopic photography by simultaneous viewing using apertured or refractive resolving means on screens or between screen and eye
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/122Improving the 3D impression of stereoscopic images by modifying image signal contents, e.g. by filtering or adding monoscopic depth cues
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/282Image signal generators for generating image signals corresponding to three or more geometrical viewpoints, e.g. multi-view systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/293Generating mixed stereoscopic images; Generating mixed monoscopic and stereoscopic images, e.g. a stereoscopic image overlay window on a monoscopic image background
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects

Definitions

  • the present disclosure relates to a stereoscopic image display body.
  • a technique for displaying a three-dimensional image is known. For example, a three-dimensional image drawn by a perspective method is displayed as a two-dimensional image including an object image, and the object is stereoscopically observed by observing through a microlens array. There is known a technique for visually confirming (see, for example, Japanese Patent Laid-Open No. 2004-151646).
  • a stereoscopic image display using a lenticular lens sheet is known as a technique of combining multi-viewpoint images obtained from different positions of the same subject and stereoscopically utilizing parallax (for example, JP (See 2011-154300, JP 2010-224200 A, etc.).
  • the lenticular lens sheet is a sheet in which a plurality of convex cylindrical lenses are arranged and which has a flat surface on the side opposite to the convex shape.
  • a stereoscopic image display using a lenticular lens sheet is arranged by sequentially arranging the divided images for each viewpoint generated from the multi-viewpoint image corresponding to each lens of the lenticular lens sheet, and observing through the lenticular sheet for stereoscopic viewing. Is possible.
  • Multi-view images can be acquired by shooting the same subject from different positions using multiple cameras. Further, a technique for making a three-dimensional object in a two-dimensional image three-dimensional so as to look three-dimensional, or a technique for converting it into image data for three-dimensional display has been developed (for example, Japanese Patent No. 6024110, or JP-A-2010-154422).
  • stereoscopic viewing using parallax is possible.
  • a three-dimensional object in the image may look so natural that the three-dimensional effect is emphasized, and a technique therefor has been demanded.
  • the present disclosure aims to provide a three-dimensional image display body that further improves the three-dimensional effect of a three-dimensional object in an image and that provides a stereoscopic and more natural-looking visual effect.
  • the stereoscopic image display body of the present disclosure has a lens sheet in which a plurality of lenses having a convex shape are arranged, and which has a flat surface on the side opposite to the convex shape,
  • An image forming layer provided on the flat surface side including an image forming layer having a stereoscopic composite image including a plurality of viewpoint images obtained from a plurality of different viewpoints for the same three-dimensional object,
  • Each of the plurality of viewpoint images is composed of a plurality of divided images, and one of the plurality of divided images of each of the plurality of viewpoint images is arranged in a unit area corresponding to the lens in the composite image
  • a composite image is a main subject including a three-dimensional object that is positioned on the front side in the ups and downs direction of the image in the stereoscopic image that is visually observed by observing the composite image through a lens sheet, and a deeper than the main subject in the ups and downs direction. Including the background located on the side, In the composite image,
  • the background color adjustment range is preferably within the main subject color adjustment range.
  • the lens sheet is a lenticular lens sheet in which a plurality of cylindrical lenses are arranged as a plurality of lenses, and the plurality of divided images forming the viewpoint image are divided into strips.
  • the unit area corresponding to the cylindrical lens in the composite image one of the plurality of divided images of each of the plurality of viewpoint images is arranged along the arrangement direction of the cylindrical lenses. It is preferable.
  • the composite image includes, in the stereoscopic image, a continuous image object extending from the front side to the back side in the ups and downs direction, It is preferable that the continuous image object has a color adjustment range that gradually narrows from the front side to the back side in the ups and downs direction.
  • the color of the continuous image object when a continuous image object is included, it is preferable that the color of the continuous image object gradually approaches the background color from the front side to the back side in the ups and downs direction.
  • the background may include an image in which a partial area of the main subject is enlarged.
  • the stereoscopic effect of the stereoscopic object in the image is further improved, and a visual effect that looks more stereoscopic and more natural can be obtained.
  • FIG. 3 is a cross-sectional view of a main part obtained by cutting the stereoscopic image display body along the arrangement direction of the cylindrical lenses, and a diagram showing lines of sight of the right eye and the left eye at the time of observation.
  • It is an example of a two-dimensional image for creating a three-dimensional image display body.
  • It is a figure for demonstrating the adjustment range of the color in a two-dimensional image.
  • It is a figure which shows the example which pseudo-disposed the object in a 2-dimensional image in 3-dimensional space.
  • the stereoscopic image display body 10 is a stereoscopic image display sheet including a lenticular lens sheet 11 and an image forming layer 13.
  • the image forming layer 13 and the lenticular lens sheet 11 are shown as separated, but in reality, the image forming layer 13 is formed on one surface of the lenticular lens sheet 11.
  • the lenticular lens sheet 11 is composed of a plurality of cylindrical lenses 15.
  • Each cylindrical lens 15 has a semi-cylindrical convex shape 15A, and the side opposite to the convex shape 15A is flat.
  • the longitudinal direction of each cylindrical lens 15 extends in the Y direction, and the cylindrical lenses 15 are arranged in parallel with the adjacent cylindrical lenses 15. That is, the cylindrical lenses 15 are arranged at a constant pitch in the X direction orthogonal to the Y direction.
  • the X direction is the arrangement direction of the plurality of cylindrical lenses 15.
  • the lenticular lens sheet 11 has a flat surface 11A on the side opposite to the convex shape 15A.
  • a transparent resin material such as PET (polyethylene terephthalate), PP (polypropylene), PETG (glycol-modified polyethylene terephthalate), polycarbonate, acrylic, acrylate resin is used.
  • the image forming layer 13 is provided on the flat surface 11A side of the lenticular lens sheet 11.
  • the image forming layer 13 is directly formed on the flat surface 11A by printing or transferring an image on the flat surface 11A.
  • the material of the image forming layer 13 is not particularly limited as long as it is a material that can adhere to the flat surface 11A of the lenticular lens sheet 11, and a known paint or the like is used.
  • the image forming layer 13 does not have to be directly formed on the lenticular lens sheet 11.
  • the image forming layer 13 may be formed on a sheet different from the lenticular lens sheet 11, and the sheet on which the image forming layer is formed may be joined to the lenticular lens sheet 11 by a method such as adhesion or adhesion.
  • a bonding agent such as an adhesive or a pressure-sensitive adhesive, a transparent material is preferably used so that the image forming layer 13 can be observed through the lenticular lens sheet 11.
  • the image forming layer 13 is formed with a stereoscopic composite image 14 including a stereoscopic object stereoscopically viewed through the lenticular lens sheet.
  • the stereoscopic composite image is referred to as a stereoscopic composite image or simply a composite image.
  • the stereoscopic composite image 14 includes a plurality of viewpoint images obtained by observing an object including a three-dimensional object from a plurality of different viewpoints.
  • a plurality of viewpoint images are collectively referred to as a multi-viewpoint image.
  • FIG. 2 illustrates a case where the stereoscopic composite image 114 is composed of four viewpoint images P1 to P4 obtained by observing a truncated pyramid from four different viewpoints.
  • the first viewpoint image P1 to the fourth viewpoint image P4 are viewpoint images obtained by viewing the quadrangular truncated pyramid, which is a three-dimensional object, from slightly different viewpoints.
  • the first viewpoint image P1 to the fourth viewpoint image P4 are images whose viewpoints change in this order.
  • the first viewpoint image P1 and the second viewpoint image P2, the second viewpoint image P2 and the third viewpoint image P3, and the third viewpoint image P3 and the fourth viewpoint image P4 are equivalent to each other. It is assumed to have parallax.
  • Each of the first viewpoint image P1 to the fourth viewpoint image P4 is composed of a plurality of divided images divided into strips. That is, the first viewpoint image P1 is composed of a plurality of first divided images SP1, the second viewpoint image P2 is composed of a plurality of second divided images SP2, and the third viewpoint image P3 is composed of a plurality of third divided viewpoint images P3. Of the third divided image SP3, and the fourth viewpoint image P4 is formed of a plurality of fourth divided images SP4.
  • the first divided image SP1 is arranged with the longitudinal direction along the Y direction.
  • the longitudinal direction of the first divided image SP1 is arranged along the longitudinal direction of the cylindrical lens 15 (here, the Y direction).
  • the first divided image SP1, the second divided image SP2, the third divided image SP3, and the fourth divided image SP4 are provided one by one in each unit region UR of the stereoscopic compound image 114 corresponding to each cylindrical lens 15. It is arranged. That is, in each unit area UR, a set of four divided images of the first divided image SP1, the second divided image SP2, the third divided image SP3, and the fourth divided image SP4 is arranged.
  • the first divided image, the second divided image, the third divided image, and the fourth divided image are arranged in this order in the arrangement direction of the cylindrical lenses. That is, the divided images are arranged in the UR in the order of viewpoints.
  • the width of the unit area UR in the X direction corresponds to the width of the cylindrical lens 15 in the X direction.
  • the width W of each of the first divided image SP1, the second divided image SP2, the third divided image SP3, and the fourth divided image SP4 is the same.
  • FIG. 3 shows a cross section in the X direction of the stereoscopic image display body 10 in which the stereoscopic composite image 114 is formed on the image forming layer 13.
  • the stereoscopic image display body 10 is observed from the side of the lenticular lens sheet 11 having the convex shape 15A.
  • the convex shape 15 ⁇ /b>A of the cylindrical lens 15 has a curvature set such that the focus thereof is located on the image forming layer 13.
  • the first divided image SP1, the second divided image SP2, the third divided image SP3, and the fourth divided image SP4 are arranged in order from the left side.
  • the right eye RE recognizes the third viewpoint image P3
  • the left eye LE recognizes the second viewpoint image P2. Due to the parallax between the two viewpoint images, a three-dimensional object in the image, here, a quadrangular pyramid, is stereoscopically viewed.
  • the image visually recognized by the observer is It changes depending on the viewing direction.
  • the right eye RE observes the fourth viewpoint image P4 and the left eye LE observes the third viewpoint image P3, or the right eye RE observes the second viewpoint image P2 and the left eye LE observes the first viewpoint image P1.
  • the observer stereoscopically recognizes the three-dimensional object in the image due to the parallax between the viewpoint images.
  • the stereoscopic composite image 14 is located on the near side in the up/down direction of the image in the stereoscopic image visually observed through the lenticular lens sheet 11. It includes a subject Ob 1 and a background Ob 2 whose position in the up/down direction is located behind the main subject Ob 1 .
  • the main subject Ob 1 is a three-dimensional object including a jockey and a horse, and is a main object that is stereoscopically recognized in a stereoscopic image.
  • the background Ob 2 is a background image object in which a partial area of the main subject Ob 1 is enlarged.
  • the color adjustment range of the main subject Ob 1 is set wider than the color adjustment range of the background Ob 2 .
  • a "color” is generally composed of three elements: hue, lightness, and saturation.
  • the color adjustment range refers to a range of hue, brightness, and saturation of a color used for each target object, for example, a main subject or a background.
  • a wide color adjustment range is synonymous with high color contrast. That is, it can be said that the color contrast of the main subject Ob 1 is larger than the color contrast of the background Ob 2 .
  • the brightness adjustment range is a range from the highest brightness (that is, the maximum brightness) to the lowest brightness (that is, the minimum brightness) in the image of interest.
  • the brightness contrast means the difference between the maximum brightness and the minimum brightness, that is, the difference in brightness. Higher brightness approaches white, and lower brightness approaches black.
  • FIG. 4 shows the axis of lightness in the case of monochrome.
  • the main subject Ob 1 is an image of the lightness of the adjustment range from the lightness L 1 to the lightness L 2 indicated by the double-headed arrow A
  • the lightness L 1 is the minimum lightness of the main subject
  • the lightness L 2 is the maximum of the main subject. It is lightness.
  • the brightness contrast of the main subject Ob 1 is a lightness difference [Delta] L 12 between the maximum brightness L 2 and minimum brightness L 1.
  • the background Ob 2 the brightness of the adjustment range from the brightness L 3 to the brightness L 4 indicated by the double-headed arrow B is used, the brightness L 3 is the minimum brightness in the background Ob 2 , and the brightness L 4 is the maximum in the background Ob 2 . It is lightness.
  • the contrast of the background Ob 2 is the brightness difference ⁇ L 34 between the maximum brightness L 4 and the minimum brightness L 3 .
  • the brightness contrast of the background Ob 2 is smaller than the brightness contrast of the main subject Ob 1 , that is, ⁇ L 34 ⁇ L 12 is set.
  • the lightness adjustment range B of the background Ob 2 is preferably within the lightness adjustment range A of the main subject Ob 1 , but is not limited to within the adjustment range A. That is, as in the adjustment range B shown by the broken line on the left side of FIG. 4, the brightness outside the adjustment range A may be included, and further, the range including only the brightness outside the range of the adjustment range A. May be.
  • the "color" including the lightness can be measured by a commercially available colorimeter.
  • the stereoscopic composite image 14 includes a linear first continuous image object Ob 3 extending from the front side to the back side in the stereoscopic image, and a continuous character extending from the front side to the back side. And includes a second continuous image object Ob 4 .
  • Each of the continuous image objects Ob 3 and Ob 4 is configured so as to approach the color of the background Ob 2 as it goes deeper in the up and down direction.
  • the background color is changed to the background color at the end closest to the background Ob2. It is a state in which it can be visually perceived as if it melts.
  • the line-shaped first continuous image object Ob 3 has a black color in the foreground, and the color thereof is changed so as to gradually approach the gray color of the background Ob 2 toward the back side.
  • the character arranged in the foreground is white, and the character arranged in the rear is changed in color so that the character is closer to the gray color of the background. ..
  • the continuous image objects Ob 3 and Ob 4 are configured to be closer to the color of the background Ob 2 as they go deeper in the ups and downs direction, the perspective is further emphasized, and the main subject Ob 1 becomes more natural. It gives a visual effect that enhances the three-dimensional effect.
  • a method of creating the stereoscopic composite image 14 in the present embodiment will be described.
  • an original image for creating the stereoscopic composite image 14 a two-dimensional image including the main subject Ob 1 and the background Ob 2 is used by using graphic software (for example, Photoshop (registered trademark) of Adobe Systems Incorporated). create.
  • graphic software for example, Photoshop (registered trademark) of Adobe Systems Incorporated.
  • create for example, the two-dimensional image 20 shown in FIG. 5 is created.
  • a main subject Ob 1 including a horse and a jockey a partial region of the main subject Ob 1 is enlarged, and a background Ob 2 formed by an image in which the contrast is reduced and a front side to a back side in a stereoscopic image are formed.
  • the first continuous image object Ob 3 having a line shape extending toward the front and the second continuous image object Ob 4 including continuous characters extending from the front side toward the rear side are included.
  • the color contrast of the main subject Ob 1 is set to be larger than the color contrast of the background Ob 2.
  • the color adjustment range of the main subject Ob 1 is made wider than the color adjustment range of the background Ob 2 .
  • the continuous image objects Ob 3 and Ob 4 are adjusted so as to approach the background color from the front to the back in the stereoscopic image.
  • the objects Ob 1 to Ob 4 in the two-dimensional image 20 are transferred into the three-dimensional space 30 having the depth D as shown in FIG.
  • This processing can be performed using commercially available three-dimensional design software (for example, Humanayes 3D manufactured by Humanayes Technologies) for moving an object in a two-dimensional image to a three-dimensional space.
  • the main subject Ob 1 , the background Ob 2 , and the continuous image objects Ob 3 and Ob 4 in the two-dimensional image 20 are designed at desired positions in the depth direction.
  • each viewpoint image PV 1 obtained by observing the main subject Ob 1 in the three-dimensional space 30 from the viewpoints V 1 , V 2 , V 3 ... Of the plurality of viewpoints V 1 to V 12. , PV 2 , PV 3, ... are created.
  • the plurality of viewpoint images PV 1 to PV 12 obtained in this way are a plurality of viewpoint images obtained from different viewpoints with respect to the main subject Ob 1 which is the same three-dimensional object.
  • a stereoscopic composite image is created using the viewpoint images PV 1 to PV 12 .
  • Each of the viewpoint images PV 1 to PV 12 is divided into a plurality of strip-shaped divided images, and each of the plurality of divided images of the plurality of viewpoint images is divided into a plurality of divided images in a unit area corresponding to one cylindrical lens.
  • the stereoscopic composite image 14 shown in FIG. 8 is created. That is, the stereoscopic composite image 14 is composed of a plurality of viewpoint images PV 1 to PV 12, and is composed of fine band-shaped divided images as shown in a partially enlarged view 14a.
  • the lenticular lens sheet is taken as an example in the above embodiment, but the lens sheet may be a microlens array in which convex lenses are arranged in an array. ..
  • the shape and arrangement of the divided images are different from the case of using the lenticular lens sheet, but they may be provided in a shape and arrangement that allows stereoscopic viewing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

レンズシートと、レンズシートの平坦面側に設けられた、同一の立体物について異なる複数の視点から得られる複数の視点画像を含む立体視用の複合画像を有する画像形成層とを備えた立体画像表示体において、複合画像は、その複合画像をレンズシートを介して観察して視認される立体画像中の像の浮き沈み方向において手前側に位置する、立体物を含む主要被写体と、浮き沈み方向において主要被写体よりも奥側に位置する背景とを含み、複合画像において、主要被写体の色の調整範囲が、背景の色の調整範囲よりも広い立体画像表示体。

Description

立体画像表示体
 本開示は、立体画像表示体に関する。
 3次元像を表示する技術が知られており、例えば、物体像を含む2次元画像として遠近法にて描画された立体画像を表示し、マイクロレンズアレイを介して観察することにより物体を立体的に視認させる技術が知られている(例えば、特開2004-151646号公報参照。)。
 他方、同一の被写体を異なる位置から取得した多視点画像を組み合わせ、視差を利用して立体視する技術として、例えば、レンチキュラレンズシートを用いた立体画像表示体が知られている(例えば、特開2011-154300号公報、あるいは特開2010-224200号公報等参照。)。レンチキュラレンズシートは、凸形状を有するシリンドリカルレンズが複数配列され、凸形状とは反対側に平坦面を有するシートである。レンチキュラレンズシートを用いた立体画像表示体は、多視点画像から生成された視点毎の分割画像をレンチキュラレンズシートの各レンズに対応させて順次配置し、レンチキュラーシートを介して観察することにより立体視を可能とするものである。
 多視点画像は、同一の被写体を異なる位置から複数のカメラを用いて撮影することにより取得することができる。また、2次元画像における立体物を立体的に見せるため擬似3次元化するための技術、あるいは3次元表示用の画像データに変換する技術も開発されている(例えば、特許第6024110号公報、あるいは特開2010-154422号公報)。
 特開2011-154300号公報、特開2010-224200号公報に記載のようなレンチキュラレンズシートを用いた立体画像表示体によれば、視差を利用した立体視が可能である。こうした立体画像表示体においては、画像内容によっては、画像中の立体物について、立体感が強調されるほど自然に見える場合があり、そのための技術が要望されていた。
 本開示は、画像中の立体物の立体感をさらに向上させて、より立体的に、より自然に見える視覚効果が得られる立体画像表示体を提供することを目的とする。
 本開示の立体画像表示体は、凸形状を有する複数のレンズが配列され、凸形状とは反対側に平坦面を有するレンズシートと、
 平坦面側に設けられた画像形成層であって、同一の立体物について異なる複数の視点から得られる複数の視点画像を含む立体視用の複合画像を有する画像形成層とを備え、
 複数の視点画像の各々は、複数の分割画像で構成され、複合画像におけるレンズに対応する単位領域内に、複数の視点画像の各々の複数の分割画像の1つずつが配置されており、
 複合画像は、その複合画像をレンズシートを介して観察して視認される立体画像中の像の浮き沈み方向において手前側に位置する、立体物を含む主要被写体と、浮き沈み方向において主要被写体よりも奥側に位置する背景とを含み、
 複合画像において、主要被写体の色の調整範囲が、背景の色の調整範囲よりも広い立体画像表示体である。
 本開示の立体画像表示体においては、背景の色の調整範囲が、主要被写体の色の調整範囲内にあることが好ましい。
 本開示の立体画像表示体においては、レンズシートが、複数のレンズとして、複数のシリンドリカルレンズが配列されてなるレンチキュラレンズシートであり、視点画像を構成する複数の分割画像は、帯状に分割された複数の分割画像であり、複合画像における、シリンドリカルレンズに対応する単位領域内には、複数の視点画像の各々の複数の分割画像の1つずつがシリンドリカルレンズの並び方向に沿って配列されていることが好ましい。
 本開示の立体画像表示体においては、複合画像は、立体画像において、浮き沈み方向の手前側から奥側に延在する連続画像オブジェクトを含み、
 連続画像オブジェクトは、浮き沈み方向の手前側から奥側に向けて徐々に色の調整範囲が狭くなるものであることが好ましい。
 本開示の立体画像表示体においては、連続画像オブジェクトを含む場合、連続画像オブジェクトの色は、浮き沈み方向における手前側から奥側に向けて徐々に背景の色に近づくものであることが好ましい。
 本開示の立体画像表示体においては、背景が、主要被写体の一部領域を拡大した画像を含んでもよい。
 本開示の立体画像表示体によれば、画像中の立体物の立体感をさらに向上させて、より立体的に、より自然に見える視覚効果が得られる。
本開示の立体画像表示体の構成を示す斜視図である。 シリンドリカルレンズの単位領域内に配置される複数の分割画像の説明図である。 立体画像表示体をシリンドリカルレンズの配列方向に沿って切断した要部横断面図と観察時の右目および左目による視線を示す図である。 立体画像表示体を作成するための2次元画像の一例である。 2次元画像における色の調整範囲を説明するための図である。 2次元画像中のオブジェクトを擬似的に3次元空間に配置した例を示す図である。 3次元空間に配置されたオブジェクトを複数の視点から観察した場合に、それぞれの視点で得られる画像に例を示す図である。 図7に示す多視点画像から構成される立体視用複合画像を示す図である。
 以下、図面を参照して本開示の立体画像表示体の実施形態を説明する。
 図1に示すように、立体画像表示体10は、レンチキュラレンズシート11と、画像形成層13とを備えた立体画像表示シートである。図1においては、便宜上、画像形成層13とレンチキュラレンズシート11とを分離した形態で示しているが、実際には、画像形成層13はレンチキュラレンズシート11の一面に形成されている。
 レンチキュラレンズシート11は、複数のシリンドリカルレンズ15により構成されている。各シリンドリカルレンズ15は、半円柱形の凸形状15Aを有し、この凸形状15Aとは反対側は平坦である。各シリンドリカルレンズ15は、長手方向がY方向に延びており、隣接するシリンドリカルレンズ15と平行に配列されている。すなわち、シリンドリカルレンズ15は、Y方向と直交するX方向に一定のピッチで配列されている。本例では、X方向は複数のシリンドリカルレンズ15の配列方向である。レンチキュラレンズシート11は、凸形状15Aとは反対側に平坦面11Aを有する。
 レンチキュラレンズシート11の材料としては、PET(ポリエチレンテレフタレート)、PP(ポリプロピレン)、PETG(グリコール変性ポリエチレンテレフタレート)、ポリカーボネート、アクリル、アクリレート系樹脂などの透明な樹脂材料が用いられる。
 画像形成層13は、レンチキュラレンズシート11の平坦面11A側に設けられている。画像形成層13は、平坦面11Aに画像を印刷または転写することにより、平坦面11Aに直接形成されている。画像形成層13の材料は、レンチキュラレンズシート11の平坦面11Aに密着可能な材料であれば特に限定されず、公知の塗料等が用いられる。
 なお、画像形成層13をレンチキュラレンズシート11に直接形成しなくてもよい。例えば、レンチキュラレンズシート11とは別のシートに画像形成層13を形成し、画像形成層が形成されたシートを接着または粘着などの方法を用いてレンチキュラレンズシート11と接合してもよい。接着剤や粘着剤などの接合剤としては、レンチキュラレンズシート11を介して画像形成層13が観察できるように、透明な材料が用いられることが好ましい。
 画像形成層13には、レンチキュラレンズシートを介して立体視される立体物を含む立体視用の複合画像14が形成されている。以下において、立体視用の複合画像を、立体視用複合画像、あるいは単に、複合画像という。
 立体視用複合画像14は、立体物を含む対象物を複数の異なる視点から観察した複数の視点画像を含む。本明細書においては、複数の視点画像をまとめて多視点画像ともいう。
 ここで、図2を参照して、多視点画像をからなる立体視用複合画像の構成と、立体視用複合画像をシリンドリカルレンズを介して観察した場合の立体視の原理について説明する。
 図2においては、容易のため、立体視用複合画像114が四角錐台を異なる4視点から観察した4枚の視点画像P1~P4からなる場合について例示している。第1の視点画像P1~第4の視点画像P4は、それぞれが立体物である四角錐台を少しずつ異なる視点から見た視点画像である。第1の視点画像P1~第4の視点画像P4は視点がこの順に変化している画像である。ここでは、第1の視点画像P1と第2の視点画像P2、第2の視点画像P2と第3の視点画像P3、および、第3の視点画像P3と第4の視点画像P4はそれぞれ同等の視差を有するものとしている。
 第1の視点画像P1~第4の視点画像P4の各々は、それぞれ帯状に分割された複数の分割画像で構成されている。すなわち、第1の視点画像P1は複数の第1分割画像SP1から構成されており、第2の視点画像P2は複数の第2分割画像SP2から構成されており、第3の視点画像P3は複数の第3分割画像SP3から構成されており、第4の視点画像P4は複数の第4分割画像SP4から構成されている。
 レンチキュラレンズシート11の平坦面11A上において、第1分割画像SP1は、長手方向をY方向に沿って配置される。言い換えると、第1分割画像SP1は、長手方向が、シリンドリカルレンズ15の長手方向(ここでは、Y方向)に沿って配置される。第2分割画像SP2、第3分割画像SP3、第4分割画像SP4についても同様である。
 立体視用複合画像114の、個々のシリンドリカルレンズ15に対応する各単位領域URには、第1分割画像SP1、第2分割画像SP2、第3分割画像SP3、第4分割画像SP4が1つずつ配置されている。すなわち、1つの単位領域URには、第1分割画像SP1、第2分割画像SP2、第3分割画像SP3、第4分割画像SP4の4つ1組の分割画像が配置されている。
 各単位領域UR内においては、第1分割画像、第2分割画像、第3分割画像および第4分割画像の順にシリンドリカルレンズの並び方向に配置されている。すなわち、UR内において視点順に分割画像が配列されている。
 単位領域URのX方向の幅は、シリンドリカルレンズ15のX方向の幅に対応している。本例では、第1分割画像SP1、第2分割画像SP2、第3分割画像SP3、および第4分割画像SP4のそれぞれの幅Wは同じである。Wは単位領域URのX方向の幅の1/4であり、単位領域URのX方向の幅を、Wを用いて表せば、4×W=4Wとなる。
 図3に、立体視用複合画像114が画像形成層13に形成されてなる立体画像表示体10のX方向の断面を示す。図3に示すように、立体画像表示体10は、レンチキュラレンズシート11の凸形状15Aを有する側から観察される。シリンドリカルレンズ15の凸形状15Aは、その焦点が画像形成層13に位置するように曲率が設定されている。
 図3に示す各単位領域UR内において、第1分割画像SP1、第2分割画像SP2、第3分割画像SP3、および第4分割画像SP4は、左側から順に配列されている。例えば、この立体画像表示体10を画像形成層13に垂直な方向から観察した場合、右目REと左目LEで異なる画像が認識される。ここでは、右目REで認識されるのは第3の視点画像P3であり、左目LEで認識されるのは第2の視点画像P2である。この二つの視点画像の視差によって、画像中の立体物、ここでは四角錐台が立体視されることとなる。
 なお、シリンドリカルレンズ15の作用により、各単位領域UR内の第1分割画像SP1、第2分割画像SP2、第3分割画像SP3、および第4分割画像SP4のうち、観察者に視認される画像は観察方向に応じて変化する。例えば、右目REで第4の視点画像P4、左目LEで第3の視点画像P3を観察する、あるいは、右目REで第2の視点画像P2、左目LEで第1の視点画像P1を観察する、などである。いずれの場合も左右の目で異なる視点画像を認識することによって、両視点画像の視差によって、観察者には画像中の立体物が立体的に認識される。
 本開示の技術においては、図1に示すように、立体視用複合画像14は、レンチキュラレンズシート11を介して観察して視認される立体画像中の像の浮き沈み方向における手前側に位置する主要被写体Obと、浮き沈み方向における位置が主要被写体Obよりも奥側に位置する背景Obとを含む。ここで、主要被写体Obは騎手と馬からなる立体物であり、立体画像中において立体的に認識される主要オブジェクトである。ここで、背景Obは、主要被写体Obの一部の領域を拡大した背景画像オブジェクトである。立体視用複合画像14において、主要被写体Obの色の調整範囲は背景Obの色の調整範囲よりも広く設定されている。「色」とは、一般に、色相、明度および彩度という3つの要素から構成される。色の調整範囲とは、それぞれの対象とするオブジェクト、例えば、主要被写体あるいは背景など、に使用されている色の色相、明度および彩度の範囲をいう。なお、色の調整範囲が広いことは、色のコントラストが高いことと同義である。すなわち、主要被写体Obの色のコントラストは、背景Obの色のコントラストよりも大きい、ということができる。
 主要被写体Obの色の調整範囲が背景Obの色の調整範囲よりも広いことから、主要被写体Obが際立って認識され、遠近感が増して観察者に主要被写体Obの立体感をより強く感じさせることができる。
 ここでは、色のうち明度に注目し、主要被写体Obの明度の調整範囲を背景Obの明度の調整範囲よりも広くしている場合について、例示する。
 ここで、明度の調整範囲とは注目する画像中における最も高い明度(つまり、最大明度)から最も低い明度(つまり、最小明度)までの範囲である。明度のコントラストという場合には、最大明度と最小明度との差、すなわち明暗の差を意味する。明度は高くなれば白に近づき、低くなれば黒に近づく。図4に、モノクロの場合の明度の軸を示す。例えば、主要被写体Obは、明度Lから明度Lの両矢印Aで示す調整範囲の明度の画像であり、明度Lが主要被写体における最小明度であり、明度Lが主要被写体における最大明度である。従って、主要被写体Obの明度のコントラストは最大明度Lと最小明度Lとの明度差ΔL12である。背景Obは、明度Lから明度Lの両矢印Bで示す調整範囲の明度が用いられており、明度Lが背景Obにおける最小明度であり、明度Lが背景Obにおける最大明度である。したがって、背景Obのコントラストは最大明度Lと最小明度Lとの明度差ΔL34である。図4に示すように、背景Obの明度のコントラストは主要被写体Obの明度のコントラストよりも小さく、すなわちΔL34<ΔL12に設定されている。背景Obの明度の調整範囲Bは、主要被写体Obの明度の調整範囲Aの範囲内にあることが好ましいが、調整範囲A内に限るものではない。すなわち、図4の左側の破線で示す調整範囲Bのように、調整範囲Aの範囲外の明度を含んでいてもよいし、さらには、調整範囲Aの範囲外の明度のみからなる範囲であってもよい。なお、明度を含む「色」は、市販の測色計により測定することができる。
 また、立体視用複合画像14は、立体画像において手前側から奥側に向かって延在するライン状の第1の連続画像オブジェクトObおよび、手前側から奥側に向かって延在する連続文字からなる第2の連続画像オブジェクトObを含む。連続画像オブジェクトOb、Obはいずれもが浮き沈み方向の奥側ほど、背景Obの色に近づくように構成されている。
 ここで、「背景の色に近づく」とは連続画像オブジェクトの色相、明度および彩度の少なくとも一つが奥行方向に向かって変化することにより、結果として最も背景Ob2に近い端部において背景の色に溶け込むように視覚的にとらえられる状態をいう。図1においては、ライン状の第1の連続画像オブジェクトObは手前が黒く、奥側に向かって徐々に背景Obのグレー色に近づくように色を変化させている。また、連続文字からなる第2の連続画像オブジェクトObは、手前に配置される文字は白く、奥側に配置されている文字ほど背景のグレー色に近づくように文字の色を変化させている。
 このように、連続画像オブジェクトOb、Obが浮き沈み方向の奥側ほど、背景Obの色に近づくように構成されているので、遠近感がさらに強調され、主要被写体Obが、より自然に浮き上がって見え、さらに立体感を高める視覚効果が得られる。
 次に、本実施形態における立体視用複合画像14の作成方法について説明する。
 まず、立体視用複合画像14を作成するための原画像として、主要被写体Obおよび背景Obを含む2次元画像をグラフィックソフト(例えば、アドビシステムズインコーポレイテッドのPhotoshop(登録商標))を用いて作成する。ここでは、例えば、図5に示す2次元画像20を作成する。2次元画像20には、馬と騎手からなる主要被写体Ob、主要被写体Obの一部の領域を拡大し、コントラストを低下させた画像からなる背景Obおよび立体画像において手前側から奥側に向かって延在するライン状の第1の連続画像オブジェクトObおよび、手前側から奥側に向かって延在する連続文字からなる第2の連続画像オブジェクトObを含む。
 ここで、背景Obとして、主要被写体Obの一部を拡大し、コントラストを低下させた画像を用いることにより、主要被写体Obの色のコントラストは背景Obの色のコントラストよりも大きく設定される。すなわち、主要被写体Obの色の調整範囲を背景Obの色の調整範囲よりも広くする。また連像画像オブジェクトOb、Obは、いずれも立体画像における手前から奥に向かって背景の色に近づくように調整する。
 上記のような原画像である2次元画像20を作成した後、この2次元画像20中のオブジェクトOb~Obを図6に示すような奥行Dを有する3次元空間30中に移行する。この処理は、2次元画像中のオブジェクトを3次元空間に移行するための市販の3次元デザインソフト(例えば、Humaneyes Technologies社のHumaneyes 3D)を用いて行うことができる。
 3次元デザインソフトを用いて、2次元画像20中の主要被写体Ob、背景Ob、および連続画像オブジェクトOb、Obの奥行方向の位置をそれぞれ所望の位置に設計する。
 その後、図7に示すように、3次元空間30における主要被写体Obを複数の視点V~V12の各視点V,V,V…から観察して得られる各視点画像PV,PV、PV…を作成する。このようにして得られた複数の視点画像PV~PV12は、同一の立体物である主要被写体Obについて異なる視点から得られる複数の視点画像である。
 図2を参照して説明したように、各視点画像PV~PV12を用いて立体視用複合画像を作成する。各視点画像PV~PV12を各々複数の帯状の分割画像に分割し、1つのシリンドリカルレンズに対応する単位領域に、複数の視点画像の各々の複数の分割画像の1つずつ、シリンドリカルレンズの並び方向に、視点V~V12の順に配列することにより、図8に示す立体視用複合画像14を作成する。すなわち、立体視用複合画像14は、複数の視点画像PV~PV12から構成されており、一部拡大図14aに示されているように、微細な帯状の分割画像から構成されている。
 このような立体視用複合画像14を、レンチキュラレンズシート11を介して観察すると、図3を参照して説明した通り、右目と左目で異なる視点画像が認識されるので、両視点画像の視差によって、立体物、ここでは騎手と馬を立体視することが可能となる。既述の通り、主要被写体Obに対して、背景Obのコントラストが小さいことから、主要被写体Obが際立って認識され、遠近感が増して観察者に主要被写体Obの立体感をより強く感じさせることができる。また、連続画像オブジェクトObおよびObが浮き沈み方向の奥側ほど、背景Obの色に近づくように構成されているので、遠近感がさらに強調され、主要被写体Obが、より自然に浮き上がって見え、さらに立体感を高める効果が得られる。
 凸形状を有する複数のレンズが配列されたレンズシートとして、上記実施形態においてはレンチキュラレンズシートを例に挙げたが、レンズシートとしては凸レンズがアレイ状に配列されたマイクロレンズアレイを用いてもよい。なお、この場合、分割画像の形状および配置がレンチキュラレンズシートを用いた場合と異なるが、適宜、立体視可能な形状および配置で設ければよい。
 2019年1月15日に出願された日本国特許出願特願2019-004719号の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (6)

  1.  凸形状を有する複数のレンズが配列され、前記凸形状とは反対側に平坦面を有するレンズシートと、
     前記平坦面側に設けられた画像形成層であって、同一の立体物について異なる複数の視点から得られる複数の視点画像を含む立体視用の複合画像を有する画像形成層とを備え、
     該複数の視点画像の各々は、複数の分割画像で構成され、前記複合画像における前記レンズに対応する単位領域内に、前記複数の視点画像の各々の前記複数の分割画像の1つずつが配置されており、
     前記複合画像は、該複合画像を前記レンズシートを介して観察して視認される立体画像中の像の浮き沈み方向において手前側に位置する、立体物を含む主要被写体と、前記浮き沈み方向において前記主要被写体よりも奥側に位置する背景とを含み、
     前記複合画像において、前記主要被写体の色の調整範囲が、前記背景の色の調整範囲よりも広い立体画像表示体。
  2.  前記背景の色の調整範囲が、前記主要被写体の色の調整範囲内にある請求項1に記載の立体画像表示体。
  3.  前記レンズシートが、前記複数のレンズとして、複数のシリンドリカルレンズが配列されてなるレンチキュラレンズシートであり、
     前記視点画像を構成する前記複数の分割画像は、帯状に分割された複数の分割画像であり、前記複合画像における前記シリンドリカルレンズに対応する前記単位領域内には、前記複数の視点画像の各々の前記複数の分割画像の1つずつが前記シリンドリカルレンズの並び方向に沿って配列されている請求項1または2に記載の立体画像表示体。
  4.  前記複合画像は、前記立体画像において、前記浮き沈み方向の前記手前側から前記奥側に延在する連続画像オブジェクトを含み、
     前記連続画像オブジェクトは、前記浮き沈み方向の手前側から奥側に向けて徐々に色の調整範囲が狭くなる請求項1から3のいずれか1項に記載の立体画像表示体。
  5.  前記連続画像オブジェクトの色は、前記浮き沈み方向における手前側から奥側に向けて徐々に前記背景の色に近づく請求項4に記載の立体画像表示体。
  6.  前記背景が、前記主要被写体の一部領域を拡大した画像を含む請求項1から5のいずれか1項に記載の立体画像表示体。
PCT/JP2019/051307 2019-01-15 2019-12-26 立体画像表示体 WO2020149142A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-004719 2019-01-15
JP2019004719 2019-01-15

Publications (1)

Publication Number Publication Date
WO2020149142A1 true WO2020149142A1 (ja) 2020-07-23

Family

ID=71614394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051307 WO2020149142A1 (ja) 2019-01-15 2019-12-26 立体画像表示体

Country Status (1)

Country Link
WO (1) WO2020149142A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7335669B1 (ja) 2023-06-23 2023-08-30 株式会社Vrc 情報処理システム、情報処理方法、及びプログラム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001133729A (ja) * 1999-11-02 2001-05-18 Ishikawa Kogaku Zokei Kenkyusho:Kk 空間映像表示装置
JP2007110360A (ja) * 2005-10-13 2007-04-26 Ntt Comware Corp 立体画像処理装置およびプログラム
JP2008077304A (ja) * 2006-09-20 2008-04-03 Namco Bandai Games Inc プログラム、情報記憶媒体及び画像生成システム
JP2009212714A (ja) * 2008-03-03 2009-09-17 Olympus Imaging Corp 撮像装置、画像再生装置、撮影プログラム、画像再生プログラム、撮影制御方法及び画像再生方法
JP2011154300A (ja) * 2010-01-28 2011-08-11 Fujifilm Corp 画像記録装置、画像処理装置及び画像処理方法
JP2012028871A (ja) * 2010-07-20 2012-02-09 Fujifilm Corp 立体画像表示装置、立体画像撮影装置、立体画像表示方法及び立体画像表示プログラム
JP2014003486A (ja) * 2012-06-19 2014-01-09 Sharp Corp 画像処理装置、画像撮像装置、画像表示装置、画像処理方法及びプログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001133729A (ja) * 1999-11-02 2001-05-18 Ishikawa Kogaku Zokei Kenkyusho:Kk 空間映像表示装置
JP2007110360A (ja) * 2005-10-13 2007-04-26 Ntt Comware Corp 立体画像処理装置およびプログラム
JP2008077304A (ja) * 2006-09-20 2008-04-03 Namco Bandai Games Inc プログラム、情報記憶媒体及び画像生成システム
JP2009212714A (ja) * 2008-03-03 2009-09-17 Olympus Imaging Corp 撮像装置、画像再生装置、撮影プログラム、画像再生プログラム、撮影制御方法及び画像再生方法
JP2011154300A (ja) * 2010-01-28 2011-08-11 Fujifilm Corp 画像記録装置、画像処理装置及び画像処理方法
JP2012028871A (ja) * 2010-07-20 2012-02-09 Fujifilm Corp 立体画像表示装置、立体画像撮影装置、立体画像表示方法及び立体画像表示プログラム
JP2014003486A (ja) * 2012-06-19 2014-01-09 Sharp Corp 画像処理装置、画像撮像装置、画像表示装置、画像処理方法及びプログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7335669B1 (ja) 2023-06-23 2023-08-30 株式会社Vrc 情報処理システム、情報処理方法、及びプログラム

Similar Documents

Publication Publication Date Title
Song et al. Light f ield head-mounted display with correct focus cue using micro structure array
EP2524511B1 (en) Method and system for adjusting depth values of objects in a three dimensional (3d) display
JP5224489B2 (ja) 画像表示シート及び画像表示体
KR101248529B1 (ko) 선광원을 사용한 입체영상 표시장치
CN103197428B (zh) 基于弧形背光与透镜的裸眼立体影像显示光学装置
CN110035274B (zh) 基于光栅的三维显示方法
CN103913845A (zh) 一种利用遮罩和时间复用方式的三维全景图像显示方法
US11275255B2 (en) Integral image processing device and vehicular lamp using same
US20210215949A1 (en) Display method
Kakeya Formulation of coarse integral imaging and its applications
CN102364378B (zh) 一种基于液晶光阀幕装置的裸眼立体显示装置
US20110038044A1 (en) Lens array and 3-dimensional display apparatus including the same
WO2020149143A1 (ja) 立体画像表示体
CN102999943B (zh) 图像处理方法及系统
WO2020149142A1 (ja) 立体画像表示体
CN108989787A (zh) 一种立体显示装置和立体显示控制方法
Kakeya Improving image quality of coarse integral volumetric display
KR101897964B1 (ko) 2차원과 3차원 전환이 가능한 3d디스플레이장치
KR20170057713A (ko) 플로팅 홀로그램 장치 및 플로팅 홀로그램 구현 방법
CN101876755B (zh) 一种立体显示器
Javidi et al. Enhanced 3D color integral imaging using multiple display devices
CN203377985U (zh) 多维led显示屏
JP5412655B2 (ja) 3次元画像の表示装置
US20150015679A1 (en) Autostereoscopic display system and method
Sawada et al. Coarse integral volumetric imaging with flat screen and wide viewing angle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP