WO2020147088A1 - 非授权频段上的随机接入方法、装置和存储介质 - Google Patents

非授权频段上的随机接入方法、装置和存储介质 Download PDF

Info

Publication number
WO2020147088A1
WO2020147088A1 PCT/CN2019/072242 CN2019072242W WO2020147088A1 WO 2020147088 A1 WO2020147088 A1 WO 2020147088A1 CN 2019072242 W CN2019072242 W CN 2019072242W WO 2020147088 A1 WO2020147088 A1 WO 2020147088A1
Authority
WO
WIPO (PCT)
Prior art keywords
domain resource
time domain
terminal
base station
prach
Prior art date
Application number
PCT/CN2019/072242
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN201980000071.2A priority Critical patent/CN109952805B/zh
Priority to US17/298,920 priority patent/US11991747B2/en
Priority to PCT/CN2019/072242 priority patent/WO2020147088A1/zh
Publication of WO2020147088A1 publication Critical patent/WO2020147088A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present disclosure relate to the field of communication technologies, and in particular, to a random access method, device, and storage medium on an unlicensed frequency band.
  • the 5G NR (New Radio) system not only occupies the licensed frequency band for transmission, but also occupies the unlicensed frequency band for transmission to improve the utilization of spectrum resources.
  • Unlicensed frequency bands are spectrum resources that can be used directly as long as they comply with the regulations of the regulatory agency without requiring the license of the regulatory agency.
  • Terminals that transmit on unlicensed frequency bands need to follow the LBT (Listen Before Talk) mechanism. That is, a terminal using an unlicensed frequency band for transmission, before occupying a certain time-frequency resource on the unlicensed frequency band to transmit information, it must first execute the corresponding LBT process for channel detection according to certain channel access rules, if the channel detection result is When idle, the terminal can use the time-frequency resources to be occupied to transmit information.
  • LBT Listen Before Talk
  • the terminal will establish a connection with the base station in the cell that uses the unlicensed frequency band through a random access process.
  • the terminal will determine the target time-frequency resources required to send random access information according to the PRACH (Physical Random Access Channel) configuration information broadcast by the base station. After that, the terminal first executes the LBT process for channel detection before occupying the target time-frequency resource to send random access information. If the channel detection result is idle, the terminal occupies the target time-frequency resource to send random access information to the base station. In addition, if the channel detection result is not idle, the terminal needs to perform LBT detection again and select an appropriate time to initiate random access.
  • PRACH Physical Random Access Channel
  • the embodiments of the present disclosure provide a random access method, device and storage medium on an unlicensed frequency band.
  • the technical solution is as follows:
  • a random access method on an unlicensed frequency band including:
  • the terminal receives the PRACH configuration information sent by the base station of the unlicensed frequency band cell;
  • the terminal determines the first time domain resource occupied by PRACH according to the PRACH configuration information; wherein, the first time domain resource is located in the second time domain resource occupied by the discovery signal sent by the base station to the terminal after that;
  • the terminal performs channel detection according to the target channel access mechanism, and sends random access information to the base station according to the channel detection result.
  • the first time slot to which the first time domain resource belongs is a time slot after the second time slot to which the second time domain resource belongs; or, the first time domain resource and the first time slot The two time domain resources belong to the same time slot.
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • the interval between the first time domain resource and the second time domain resource is not greater than 25 us.
  • the terminal determining the target channel access mechanism to be used according to the interval time between the first time domain resource and the second time domain resource includes:
  • the terminal determines that the target channel access mechanism is the LBT Cat.1 mechanism
  • the terminal determines that the target channel access mechanism is the LBT Cat.2 mechanism
  • the first threshold is less than the second threshold.
  • the method further includes:
  • the terminal determines from the interval length between the first time domain resource and the second time domain resource to use The steps of the target channel access mechanism start to execute;
  • the terminal performs channel detection according to a default channel access mechanism, and sends the random access information to the base station according to the channel detection result.
  • a random access method on an unlicensed frequency band which is applied to a base station of an unlicensed frequency band cell, and the method includes:
  • the base station sends PRACH configuration information to the terminal, where the PRACH configuration information is used to indicate the first time domain resource occupied by PRACH, where the first time domain resource is located at the location of the discovery signal sent by the base station to the terminal. After the occupied second time domain resource;
  • the base station receives, according to the first time domain resource, random access information sent by the terminal after channel detection using a target channel access mechanism; wherein, the target channel access mechanism is based on the first time domain
  • the interval duration between the resource and the second time domain resource is determined.
  • the first time slot to which the first time domain resource belongs is a time slot after the second time slot to which the second time domain resource belongs; or, the first time domain resource and the first time slot The two time domain resources belong to the same time slot.
  • the interval between the first time domain resource and the second time domain resource is not greater than 25 us.
  • a random access device on an unlicensed frequency band which is applied to a terminal, and the device includes:
  • An information receiving module configured to receive PRACH configuration information sent by a base station of an unlicensed frequency band cell
  • the resource determining module is configured to determine the first time domain resource occupied by PRACH according to the PRACH configuration information; wherein, the first time domain resource is located at the first time domain resource occupied by the discovery signal sent by the base station to the terminal 2. After time domain resources;
  • a mechanism determining module configured to determine the target channel access mechanism to be adopted according to the interval time between the first time domain resource and the second time domain resource;
  • the information sending module is configured to perform channel detection according to the target channel access mechanism, and send random access information to the base station according to the channel detection result.
  • the mechanism determining module is configured to:
  • the target channel access mechanism is the LBT Cat.2 mechanism
  • the first threshold is less than the second threshold.
  • the device further includes:
  • a period obtaining module configured to obtain the period corresponding to the discovery signal and the period corresponding to the PRACH;
  • the mechanism determining module is further configured to, when the period corresponding to the discovery signal and the period corresponding to the PRACH overlap, according to the interval duration between the first time domain resource and the second time domain resource , Determine the target channel access mechanism to be adopted;
  • the information sending module is further configured to perform channel detection according to the default channel access mechanism when the period corresponding to the discovery signal and the period corresponding to the PRACH do not overlap, and send to the base station according to the channel detection result The random access information.
  • a random access device on an unlicensed frequency band which is applied to a base station of an unlicensed frequency band cell, and the device includes:
  • the information sending module is configured to send PRACH configuration information to the terminal, where the PRACH configuration information is used to indicate the first time domain resource occupied by PRACH, where the first time domain resource is located at the base station and sends it to the terminal After the second time domain resource occupied by the discovery signal;
  • the information receiving module is configured to receive random access information sent by the terminal after channel detection using a target channel access mechanism according to the first time domain resource; wherein, the target channel access mechanism is based on the The interval duration between the first time domain resource and the second time domain resource is determined.
  • a random access device on an unlicensed frequency band which is applied to a terminal, and the device includes:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • the first time domain resource is located after the second time domain resource occupied by the discovery signal sent by the base station to the terminal;
  • Channel detection is performed according to the target channel access mechanism, and random access information is sent to the base station according to the channel detection result.
  • a random access device on an unlicensed frequency band which is applied to a base station of an unlicensed frequency band cell, and the device includes:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • the PRACH configuration information is used to indicate the first time domain resource occupied by PRACH, where the first time domain resource is located at the first time domain resource occupied by the discovery signal sent by the base station to the terminal 2.
  • the first time domain resource receive random access information sent by the terminal after channel detection using a target channel access mechanism; wherein, the target channel access mechanism is based on the relationship between the first time domain resource and the The interval duration between the second time domain resources is determined.
  • a non-transitory computer-readable storage medium on which a computer program is stored characterized in that, when the computer program is executed by a processor, the implementation is as described in the first aspect.
  • the terminal After configuring the first time domain resource occupied by PRACH to the second time domain resource occupied by the discovery signal, the terminal will determine the relationship between the first time domain resource and the second time domain resource after receiving this PRACH configuration. Determine the target channel access mechanism to be used, and then perform channel detection according to the target channel access mechanism, and send random access information to the base station according to the channel detection result; provides a way to dynamically adjust the channel according to the PRACH configuration
  • the scheme of the access mechanism so that the terminal can select an appropriate channel access mechanism, helps to reduce the power consumption required for the random access process and improve the success rate.
  • Fig. 1 is a schematic diagram of a network architecture according to an exemplary embodiment
  • Fig. 2 is a flowchart showing a random access method on an unlicensed frequency band according to an exemplary embodiment
  • Figure 3 exemplarily shows a schematic diagram of the time-domain positional relationship occupied by PRACH and discovery signals
  • Fig. 4 is a block diagram showing a random access device on an unlicensed frequency band according to an exemplary embodiment
  • Fig. 5 is a block diagram showing a random access device on an unlicensed frequency band according to another exemplary embodiment
  • Fig. 6 is a schematic structural diagram of a terminal according to an exemplary embodiment
  • Fig. 7 is a schematic structural diagram showing a base station according to an exemplary embodiment.
  • Channel access mechanisms usually include the following 4 types:
  • the first type (Cat.1): Does not contain LBT (Listen before talk), that is, the device does not need to perform channel detection before transmitting information, and directly sends information.
  • LBT can also be called a monitoring avoidance mechanism, which is used to realize the effective sharing of unlicensed spectrum. LBT requires that the channel be monitored before information is transmitted, and CCA (Clear Channel Assessment) is performed, and transmission is performed when the channel is guaranteed to be free.
  • the second type LBT Cat.2: LBT mechanism without random backoff process.
  • the device only needs to detect a time granularity before transmitting information.
  • the time granularity can be 25us. If the channel is idle within this time granularity, the device can transmit information. Otherwise, the LBT execution fails and the device cannot transmit information.
  • the third type (LBT Cat.3): CWS (Contention Window Size, contention window size) fixed random backoff LBT mechanism, the sending device first checks whether the channel is idle at the first time granularity. If it detects that the channel is idle, The random number value N is selected in a competition window, and the channel detection is performed with the second time granularity as the time granularity; if the channel is detected to be idle at the second time granularity and the value of the random number is not 0, the random number is Decrease the value by 1, and continue channel detection with the second time granularity as the time granularity; if the channel is detected to be busy at the second time granularity, the channel detection will be performed again with the first time granularity as the time granularity; if the channel is detected again at the first time granularity The granularity detects that the channel is idle and the value of the random number is not 0, then the value of the random number is reduced by 1, and the second time granularity is the time granular
  • the fourth type (LBT Cat.4): CWS variable random back-off LBT mechanism. That is, on the basis of LBT Cat.3, the sending device can adjust the CWS according to the result of the previous transmission. For example, in the data transmitted within a reference time during the previous transmission, the proportion of data that was not received correctly is X. When X is greater than a threshold, the CWS value increases.
  • four priority levels are set in LBT Cat.4, each priority level corresponds to a different parameter configuration, and data transmission of different service types corresponds to different priority levels.
  • LBT Cat.4 The principle of LBT Cat.4 is as follows: the device first detects whether the channel is idle at the first time granularity. If it detects that the channel is idle, it selects the value of a random number N in the first contention window and uses the second time granularity as the time granularity.
  • Channel detection if the channel is detected to be idle at the second time granularity and the value of the random number is not 0, then the value of the random number is reduced by 1, and the channel detection is continued with the second time granularity as the time granularity; if at the first time granularity Second, if the channel is detected to be busy at the time granularity, channel detection is performed again with the first time granularity as the time granularity; if the channel is detected to be idle again at the first time granularity and the value of the random number is not 0, the random number Decrease the value by 1, and resume channel detection with the second time granularity as the time granularity; until the value of the random number is decreased to 0, the channel is idle.
  • the first time granularity is 16us+M*9us
  • the second time granularity is 9us
  • first check whether the channel within 16us+M*9us is free if the channel is free, select the random number value N in the competition window , And then use 9us as the granularity for detection, if the channel is idle, then N-1, and continue to use 9us as the granularity for detection; otherwise, use 16us+M*9us as the granularity for channel detection, when the detection channel is idle, then N-1, And resume the detection with 9us as the granularity until the random number is 0, it means the channel is idle and can be used.
  • the value of the above M is determined by m p in Table-1 and Table-2, the channel access priority value p is different, and the value of M is different.
  • Table-1 shows the four priority parameter configurations of the downstream LBT Cat.4, and Table-2 shows the four priority parameter configurations of the upstream LBT Cat.4. The two are only slightly different in their configuration values.
  • m p is the number of ECCA (Extended Clear Channel) included in a delay time.
  • Each delay time is composed of a fixed 16us duration and m p ECCAs, which is the first time introduced above granularity.
  • CW min,p and CW max,p are the minimum competition window value and the maximum competition window value.
  • the randomly generated back-off counter N determines the length of back-off time in the LBT channel detection process, and T mcot,p is the maximum length of time that the channel can be occupied after the LBT Cat.4 corresponding to each priority is successfully executed.
  • the comparison can be seen from the above table. In terms of priority 1, 2, the execution time of the LBT process of priority 3, 4 is longer, and the chance of obtaining channel access is relatively low. In order to ensure fairness, data transmission using these two priorities can occupy The maximum transmission time is also relatively long.
  • Fig. 1 is a schematic diagram of a network architecture according to an exemplary embodiment.
  • the network architecture may include: a base station 110 and a terminal 120.
  • the base station 110 is deployed in the access network.
  • the access network in the 5G NR system can be called NG-RAN (New Generation-Radio Access Network, a new generation wireless access network).
  • the base station 110 and the terminal 120 communicate with each other through some air interface technology, for example, they can communicate with each other through cellular technology.
  • the base station 110 is a device deployed in an access network to provide a wireless communication function for the terminal 120.
  • the base station 110 may include various forms of macro base stations, micro base stations, relay stations, access points, and so on.
  • the names of devices with base station functions may be different.
  • gNodeB in a 5G NR system
  • gNB gNodeB
  • the name "base station” may change.
  • the above devices that provide a wireless communication function for the terminal 120 are collectively referred to as a base station.
  • the number of terminals 120 is usually multiple, and one or more terminals 120 may be distributed in the cell managed by each base station 110.
  • the terminal 120 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to a wireless modem, as well as various forms of user equipment (User Equipment, UE), mobile stations ( Mobile Station, MS), terminal device, etc.
  • UE User Equipment
  • MS Mobile Station
  • the "5G NR system" in the embodiments of the present disclosure may also be referred to as a 5G system or an NR system, but those skilled in the art can understand the meaning.
  • the technical solutions described in the embodiments of the present disclosure may be applicable to 5G NR systems, and may also be applicable to subsequent evolution systems of 5G NR systems.
  • Fig. 2 is a flow chart showing a random access method on an unlicensed frequency band according to an exemplary embodiment. This method can be applied to the network architecture shown in FIG. 1. The method may include the following steps (steps 201 to 205).
  • step 201 the base station sends PRACH configuration information to the terminal.
  • the base station is a base station of an unlicensed spectrum cell.
  • An unlicensed spectrum cell refers to a cell that allows a terminal to use an unlicensed frequency band (or called an unlicensed spectrum) to communicate with a base station.
  • the PRACH configuration information is used to indicate the target time-frequency resource occupied by the PRACH, and the target time-frequency resource includes a first time domain resource and a first frequency domain resource.
  • the PRACH configuration information includes a PRACH configuration index, which indicates the target time-frequency resource occupied by the PRACH, such as PRACH frequency domain resource index, time domain radio frame, half frame, and subframe resource occupation .
  • the PRACH configuration information may also include configuration parameters such as zero correlation configuration, root sequence index, high-speed status, frequency offset, etc., which are not limited in the embodiment of the present disclosure.
  • the base station can select a certain PRACH configuration to be used from the multiple PRACH configurations specified in the protocol, and then send the PRACH configuration information corresponding to the selected PRACH configuration to the terminal.
  • the base station broadcasts PRACH configuration information to the terminals in the cell in the form of a system message.
  • the PRACH configuration specified in the relevant protocol can be modified to increase the target PRACH configuration.
  • the target PRACH configuration stipulates that the first time domain resource occupied by the PRACH is located after the second time domain resource occupied by the discovery signal sent by the base station to the terminal.
  • the discovery signal includes SSB (SS/PBCH block, synchronization signal block), and optionally also includes a reference signal or some other downlink signals.
  • the discovery signal may not include the SSB, for example, the discovery signal includes the reference signal and/or some other downlink signals.
  • the base station If the base station chooses to adopt the above-mentioned target PRACH configuration from the multiple PRACH configurations specified in the protocol, the base station sends PRACH configuration information corresponding to the target PRACH configuration to the terminal.
  • the PRACH configuration information corresponding to the target PRACH configuration includes the PRACH configuration index corresponding to the target PRACH configuration.
  • the terminal After receiving the PRACH configuration information corresponding to the target PRACH configuration, the terminal determines to use the target PRACH configuration to initiate random access.
  • the relationship between the first time domain resource occupied by the PRACH configured in the target PRACH configuration and the second time domain resource occupied by the discovery signal may have the following situations.
  • the first time slot to which the first time domain resource belongs is one time slot after the second time slot to which the second time domain resource belongs.
  • the first time domain resource and the second time domain resource belong to the same time slot.
  • there may be no spaced OFDM symbols between the first time domain resource and the second time domain resource that is, there is no space duration between the first time domain resource and the second time domain resource.
  • there is an interval duration between the first time domain resource and the second time domain resource and the interval duration is not greater than 25 us.
  • there is an OFDM symbol with an interval between the first time domain resource and the second time domain resource and the length of the OFDM symbol is not greater than 25 us.
  • FIG. 3 it exemplarily shows several positional relationships between the first time domain resource occupied by the PRACH and the second time domain resource occupied by the discovery signal.
  • the first time domain resource occupied by PRACH and the second time domain resource occupied by the discovery signal belong to the same time slot, and the first time domain resource and the second time domain resource can There are no spaced OFDM symbols.
  • the first time domain resource occupied by PRACH (shown by the black dots in the figure) and the second time domain resource occupied by the discovery signal (shown by the oblique lines in the figure) belong to slot 0, the second time domain resource The second to fifth OFDM symbols in slot 0 are occupied, and the first time domain resource occupies the 6th OFDM symbol in slot 0. There is no spaced OFDM symbol between the first time domain resource and the second time domain resource.
  • the first time domain resource occupied by PRACH and the second time domain resource occupied by the discovery signal belong to the same time slot, and there is a gap between the first time domain resource and the second time domain resource One spaced OFDM symbol, and the length of the OFDM symbol is not greater than 25 us.
  • the first time domain resource occupied by PRACH (shown by the black dots in the figure) and the second time domain resource occupied by the discovery signal (shown by the oblique lines in the figure) belong to slot 0, the second time domain resource Occupy the 2nd to 5th OFDM symbols in slot 0, the first time domain resource occupies the 7th OFDM symbol in slot 0, there is an interval of OFDM symbols between the first time domain resource and the second time domain resource .
  • the first time domain resource occupied by PRACH and the second time domain resource occupied by the discovery signal belong to different time slots, and the first time domain resource and the second time domain resource can be There are no spaced OFDM symbols.
  • the first time domain resource occupied by PRACH (shown by the black dot filling in the figure) belongs to slot 1
  • the second time domain resource occupied by the discovery signal belongs to slot 0.
  • the second time domain resource occupies the 2nd to 7th OFDM symbols in slot 0, for example, SSB occupies the 2nd to 5th OFDM symbols in slot 0, and other reference signals occupy the 6th to 7th OFDM symbols in slot 0.
  • the first time domain resource occupies the first OFDM symbol in slot 1. There is no spaced OFDM symbol between the first time domain resource and the second time domain resource.
  • the first time domain resource occupied by PRACH and the second time domain resource occupied by the discovery signal belong to different time slots, and there is a gap between the first time domain resource and the second time domain resource One spaced OFDM symbol, and the length of the OFDM symbol is not greater than 25 us.
  • the first time domain resource occupied by PRACH (shown by the black dot filling in the figure) belongs to slot 1
  • the second time domain resource occupied by the discovery signal belongs to slot 0.
  • the second time domain resource occupies the 2nd to 6th OFDM symbols in the slot 0, for example, the SSB occupies the 2nd to 5th OFDM symbols in the slot 0, and other reference signals occupy the 6th OFDM symbol in the slot 0.
  • the first time domain resource occupies the first OFDM symbol in slot 1. There is an interval of OFDM symbols between the first time domain resource and the second time domain resource.
  • the first time domain resource occupied by PRACH is configured from the 6th or 12th OFDM symbols. OFDM symbol starts.
  • step 202 the terminal determines the first time domain resource occupied by the PRACH according to the PRACH configuration information.
  • the terminal After receiving the PRACH configuration information, the terminal determines the target time-frequency resource occupied by the PRACH according to the PRACH configuration information. Optionally, the terminal determines the first time domain resource and the first frequency domain resource occupied by the PRACH according to the PRACH configuration information. For example, the terminal obtains the PRACH configuration index included in the PRACH configuration information, and then determines the target time-frequency resource occupied by the PRACH according to the PRACH configuration index. Exemplarily, assuming that the PRACH configuration information includes the PRACH configuration index corresponding to the target PRACH configuration introduced above, the terminal uses the target PRACH configuration to initiate random access.
  • step 203 the terminal determines the target channel access mechanism to be used according to the interval time between the first time domain resource and the second time domain resource.
  • the terminal calculates the first time domain based on the first time domain resource occupied by PRACH and the second time domain resource occupied by the discovery signal The interval duration between the domain resource and the second time domain resource, and then the target channel access mechanism to be adopted is determined according to the interval duration.
  • the terminal determines that the target channel access mechanism is LBT Cat.1 mechanism; if the interval duration is greater than the first threshold and not greater than the second threshold, the terminal determines that the target channel is accessed The mechanism is the LBT Cat.2 mechanism; where the first threshold is less than the second threshold. Optionally, the first threshold is 16 us and the second threshold is 25 us. In addition, if the interval duration is greater than the second threshold, the terminal determines that the target channel access mechanism is the LBT Cat.4 mechanism.
  • the terminal can select the LBT Cat.2 mechanism as the target channel access mechanism; otherwise, the terminal selects the LBT Cat.4 mechanism as the target channel access mechanism. Entry mechanism. Further, if it is found that the sum of the length of the second time domain resource occupied by the signal and the length of the first time domain resource occupied by the PRACH is not greater than 1 ms, the terminal can select the LBT Cat.1 mechanism as the target channel access mechanism.
  • step 204 the terminal performs channel detection according to the target channel access mechanism, and sends random access information to the base station according to the channel detection result.
  • the terminal does not perform the LBT detection process, and directly sends random access information to the base station. If the target channel access mechanism determined by the terminal is the LBT Cat.2 mechanism, the terminal will perform channel detection according to the LBT detection process specified by the LBT Cat.2 mechanism, and send random access to the base station when the channel detection result is idle. ⁇ Entry information. If the target channel access mechanism determined by the terminal is the LBT Cat.4 mechanism, the terminal will perform channel detection according to the LBT detection process specified by the LBT Cat.4 mechanism, and send random access to the base station when the channel detection result is idle. ⁇ Entry information.
  • the random access information includes a random access preamble sequence
  • the random access preamble sequence may be selected by the terminal according to the preamble format indicated by the base station in the PRACH configuration information.
  • the terminal initiates a random access request to the base station through the random access information to request to establish a connection with the base station.
  • step 205 the base station receives the random access information sent by the terminal after channel detection using the target channel access mechanism according to the first time domain resource.
  • the base station receives the random access information sent by the terminal on the target time-frequency resource according to the target PRACH configuration configured for the terminal. For example, the base station receives the random access information sent by the terminal on the first time domain resource and the first frequency domain resource.
  • the terminal may also obtain the period corresponding to the discovery signal and the period corresponding to the PRACH. If it is found that the period corresponding to the signal and the period corresponding to PRACH overlap, the terminal starts to perform step 203; if it is found that the period corresponding to the signal does not overlap with the period corresponding to PRACH, the terminal performs channel detection according to the default channel access mechanism, and Send random access information to the base station according to the channel detection result.
  • the default channel access mechanism is the LBT Cat.4 mechanism. That is, the terminal only selects the LBT Cat.1 mechanism or the LBT Cat.2 mechanism for channel detection when it finds that the period corresponding to the signal and the period corresponding to the PRACH overlap.
  • the PRACH transmission process is described above, and the PRACH retransmission process may also use the method flow introduced above, which is not limited in the embodiment of the present disclosure.
  • the terminal after the first time domain resource occupied by PRACH is configured to the second time domain resource occupied by the discovery signal, after the terminal receives this PRACH configuration, According to the interval between the first time domain resource and the second time domain resource, the target channel access mechanism to be used is determined, and then channel detection is performed according to the target channel access mechanism, and the channel detection result is sent to the base station Random access information: Provides a solution for dynamically adjusting the channel access mechanism according to the PRACH configuration, so that the terminal can select an appropriate channel access mechanism, which helps to reduce the power consumption required for the random access process and increase the success rate.
  • the terminal can select the LBT Cat.1 mechanism or the LBT Cat.2 mechanism for channel detection, that is, select A more efficient channel access mechanism reduces the power consumption required for the random access process.
  • the technical solutions of the present disclosure are introduced and explained only from the perspective of interaction between the terminal and the base station.
  • the steps performed by the relevant terminal above can be separately implemented as a random access method on the unlicensed frequency band on the terminal side; the steps performed by the relevant base station described above can be separately implemented as a random access method on the unlicensed frequency band on the base station side.
  • Fig. 4 is a block diagram showing a random access device on an unlicensed frequency band according to an exemplary embodiment.
  • the device has a function to realize the above-mentioned method example on the terminal side, and the function may be realized by hardware, or may be realized by hardware executing corresponding software.
  • the device may be the terminal described above, or set in the terminal.
  • the apparatus 400 may include: an information receiving module 410, a resource determining module 420, a mechanism determining module 430, and an information sending module 440.
  • the information receiving module 410 is configured to receive PRACH configuration information sent by the base station.
  • the base station is a base station of an unlicensed frequency band cell.
  • the resource determining module 420 is configured to determine the first time domain resource occupied by PRACH according to the PRACH configuration information; wherein, the first time domain resource is located in the first time domain resource occupied by the discovery signal sent by the base station to the terminal After the second time domain resource.
  • the mechanism determining module 430 is configured to determine the target channel access mechanism to be adopted according to the interval time between the first time domain resource and the second time domain resource.
  • the information sending module 440 is configured to perform channel detection according to the target channel access mechanism, and send random access information to the base station according to the channel detection result.
  • the terminal after the first time domain resource occupied by PRACH is configured to the second time domain resource occupied by the discovery signal, after the terminal receives this PRACH configuration, According to the interval between the first time domain resource and the second time domain resource, the target channel access mechanism to be used is determined, and then channel detection is performed according to the target channel access mechanism, and the channel detection result is sent to the base station Random access information: Provides a solution for dynamically adjusting the channel access mechanism according to the PRACH configuration, so that the terminal can select an appropriate channel access mechanism, which helps to reduce the power consumption required for the random access process and increase the success rate.
  • the mechanism determining module 430 is configured to:
  • the target channel access mechanism is the LBT Cat.2 mechanism
  • the first threshold is less than the second threshold.
  • the device 400 further includes: a period acquisition module (not shown in FIG. 4).
  • the period obtaining module is configured to obtain the period corresponding to the discovery signal and the period corresponding to the PRACH.
  • the mechanism determining module 430 is further configured to, when the period corresponding to the discovery signal overlaps with the period corresponding to the PRACH, according to the interval between the first time domain resource and the second time domain resource Duration, determine the target channel access mechanism to be adopted.
  • the information sending module 440 is also configured to perform channel detection according to the default channel access mechanism when the period corresponding to the discovery signal and the period corresponding to the PRACH do not overlap, and to report the channel detection result to the base station Sending the random access information.
  • Fig. 5 is a block diagram showing a random access device on an unlicensed frequency band according to another exemplary embodiment.
  • the device has a function to realize the above method example on the base station side, and the function may be realized by hardware, or may be realized by hardware executing corresponding software.
  • the device may be the base station described above, or set in the base station.
  • the device 500 may include: an information sending module 510 and an information receiving module 520.
  • the information sending module 510 is configured to send PRACH configuration information to the terminal, where the PRACH configuration information is used to indicate a first time domain resource occupied by PRACH, where the first time domain resource is located at the base station and sends it to the terminal. After the second time domain resource occupied by the sent discovery signal.
  • the information receiving module 520 is configured to receive random access information sent by the terminal after channel detection using a target channel access mechanism according to the first time domain resource; wherein the target channel access mechanism is The interval duration between the first time domain resource and the second time domain resource is determined.
  • the terminal after the first time domain resource occupied by PRACH is configured to the second time domain resource occupied by the discovery signal, after the terminal receives this PRACH configuration, According to the interval between the first time domain resource and the second time domain resource, the target channel access mechanism to be used is determined, and then channel detection is performed according to the target channel access mechanism, and the channel detection result is sent to the base station Random access information: Provides a solution for dynamically adjusting the channel access mechanism according to the PRACH configuration, so that the terminal can select an appropriate channel access mechanism, which helps to reduce the power consumption required for the random access process and increase the success rate.
  • An exemplary embodiment of the present disclosure also provides a random access device on an unlicensed frequency band.
  • the device may be the terminal described above, or set in the terminal.
  • the device can implement the random access method on the unlicensed frequency band on the terminal side provided by the present disclosure.
  • the device may include a processor and a memory for storing executable instructions of the processor. Among them, the processor is configured as:
  • the first time domain resource is located after the second time domain resource occupied by the discovery signal sent by the base station to the terminal;
  • Channel detection is performed according to the target channel access mechanism, and random access information is sent to the base station according to the channel detection result.
  • the processor is configured to:
  • the target channel access mechanism is the LBT Cat.2 mechanism
  • the first threshold is less than the second threshold.
  • the processor is further configured to:
  • the target channel to be used is determined from the interval duration between the first time domain resource and the second time domain resource The steps of the access mechanism are executed;
  • channel detection is performed according to the default channel access mechanism, and the random access information is sent to the base station according to the channel detection result.
  • the terminal and the base station include hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driven hardware depends on the specific application of the technical solution and design constraints. A person skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be considered to exceed the scope of the technical solutions of the embodiments of the present disclosure.
  • Fig. 6 is a schematic structural diagram of a terminal according to an exemplary embodiment.
  • the terminal 600 includes a transmitter 601, a receiver 602, and a processor 603.
  • the processor 603 may also be a controller, which is represented as "controller/processor 603" in FIG. 6.
  • the terminal 600 may further include a modem processor 605, where the modem processor 605 may include an encoder 606, a modulator 607, a decoder 608, and a demodulator 609.
  • the transmitter 601 adjusts (eg, analog conversion, filtering, amplification, and upconversion, etc.) the output samples and generates an uplink signal, which is transmitted to the base station via an antenna.
  • the antenna receives the downlink signal transmitted by the base station.
  • the receiver 602 conditions (e.g., filters, amplifies, downconverts, and digitizes, etc.) the signal received from the antenna and provides input samples.
  • the encoder 606 receives service data and signaling messages to be transmitted on the uplink, and processes the service data and signaling messages (for example, formatting, encoding, and interleaving).
  • the modulator 607 further processes (eg, symbol mapping and modulation) the encoded service data and signaling messages and provides output samples.
  • the demodulator 609 processes (e.g., demodulates) the input samples and provides symbol estimates.
  • the decoder 608 processes (e.g., deinterleaves and decodes) the symbol estimation and provides decoded data and signaling messages sent to the terminal 600.
  • the encoder 606, the modulator 607, the demodulator 609, and the decoder 608 may be implemented by a synthesized modem processor 605. These units are processed according to the radio access technology adopted by the radio access network (for example, 5G NR and access technologies of other evolved systems). It should be noted that when the terminal 600 does not include the modem processor 605, the foregoing functions of the modem processor 605 may also be performed by the processor 603.
  • the processor 603 controls and manages the actions of the terminal 600, and is used to execute the processing procedure performed by the terminal 600 in the foregoing embodiment of the present disclosure.
  • the processor 603 is further configured to execute various steps on the terminal side in the foregoing method embodiments, and/or other steps of the technical solutions described in the embodiments of the present disclosure.
  • the terminal 600 may further include a memory 604, and the memory 604 is configured to store program codes and data for the terminal 600.
  • FIG. 6 only shows a simplified design of the terminal 600.
  • the terminal 600 may include any number of transmitters, receivers, processors, modem processors, memories, etc., and all terminals that can implement the embodiments of the present disclosure are within the protection scope of the embodiments of the present disclosure.
  • Fig. 7 is a schematic structural diagram showing a base station according to an exemplary embodiment.
  • the base station 700 includes a transmitter/receiver 701 and a processor 702.
  • the processor 702 may also be a controller, which is represented as "controller/processor 702" in FIG. 7.
  • the transmitter/receiver 701 is used to support the sending and receiving of information between the base station and the terminal in the foregoing embodiment, and to support communication between the base station and other network entities.
  • the processor 702 performs various functions for communicating with the terminal.
  • the uplink signal from the terminal is received via an antenna, demodulated by the receiver 701 (for example, demodulating a high-frequency signal into a baseband signal), and further processed by the processor 702 to restore the terminal Send to service data and signaling information.
  • service data and signaling messages are processed by the processor 702, and modulated by the transmitter 701 (for example, the baseband signal is modulated into a high-frequency signal) to generate a downlink signal, which is transmitted to the terminal via an antenna .
  • the processor 702 is further configured to execute various steps on the base station side in the foregoing method embodiments, and/or other steps of the technical solutions described in the embodiments of the present disclosure.
  • the base station 700 may further include a memory 703, and the memory 703 is used to store program codes and data of the base station 700.
  • the base station may further include a communication unit 704.
  • the communication unit 704 is used to support the base station to communicate with other network entities (for example, network devices in the core network, etc.).
  • the communication unit 704 may be an NG-U interface to support communication between the base station and a UPF (User Plane Function) entity; or, the communication unit 704 may also be an NG-C
  • the interface is used to support access to AMF (Access and Mobility Management Function) entities for communication.
  • AMF Access and Mobility Management Function
  • FIG. 7 only shows a simplified design of the base station 700.
  • the base station 700 may include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all base stations that can implement the embodiments of the present disclosure are within the protection scope of the embodiments of the present disclosure.
  • An exemplary embodiment of the present disclosure also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by the processor of the terminal, the random operation on the unlicensed frequency band on the terminal side is implemented. Steps of the access method.
  • Another exemplary embodiment of the present disclosure also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor of a base station, the above-mentioned unlicensed frequency band on the base station side Steps of random access method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种非授权频段上的随机接入方法、装置和存储介质,所述方法包括:非授权频段小区的基站向终端发送PRACH配置信息;其中,该PRACH配置信息指示的PRACH所占用的第一时域资源,位于基站向终端发送的包含SSB的发现信号所占用的第二时域资源之后;终端根据该PRACH配置信息,确定PRACH所占用的第一时域资源;终端根据第一时域资源与第二时域资源之间的间隔时长,确定所要采用的目标信道接入机制;终端按照目标信道接入机制进行信道检测,并根据信道检测结果向基站发送随机接入信息。本公开提供了一种根据PRACH配置动态调整信道接入机制的方案,以便终端选择合适的信道接入机制,有助于降低随机接入过程所需的功耗,且提升成功率。

Description

非授权频段上的随机接入方法、装置和存储介质 技术领域
本公开实施例涉及通信技术领域,特别涉及一种非授权频段上的随机接入方法、装置和存储介质。
背景技术
5G NR(New Radio,新空口)系统除了占用授权频段进行传输之外,还会占用非授权频段进行传输,以提高频谱资源的利用率。
非授权频段是不需要管理机构的许可,只要符合管理机构的法规(Regulation)就可以直接使用的频谱资源。在非授权频段上进行传输的终端,需要遵循LBT(Listen before Talk,先听后说)机制。也即,使用非授权频段传输的终端,在占用该非授权频段上的某一时频资源传输信息之前,要先按照一定的信道接入规则执行相应的LBT流程进行信道检测,如果信道检测结果为空闲,则终端可以使用要占用的时频资源传输信息。
另外,在非授权频段独立组网的系统里,终端会通过随机接入过程与使用非授权频段的小区中的基站建立连接。终端在发起随机接入的过程中,会根据基站广播的PRACH(Physical Random Access Channel,物理随机接入信道)配置信息,确定发送随机接入信息所需占用的目标时频资源。之后,终端在占用该目标时频资源发送随机接入信息之前,先执行LBT流程进行信道检测,如果信道检测结果为空闲,则终端占用该目标时频资源向基站发送随机接入信息。另外,如果信道检测结果为不空闲,则终端需要重新进行LBT检测并选择合适的时机发起随机接入。
针对使用非授权频段传输的终端来说,随机接入过程所需的功耗较大,且成功率较低。
发明内容
本公开实施例提供了一种非授权频段上的随机接入方法、装置和存储介质。所述技术方案如下:
根据本公开实施例的第一方面,提供了一种非授权频段上的随机接入方法,所述方法包括:
终端接收非授权频段小区的基站发送的PRACH配置信息;
所述终端根据所述PRACH配置信息,确定PRACH所占用的第一时域资源;其中,所述第一时域资源位于所述基站向所述终端发送的发现信号所占用的第二时域资源之后;
所述终端根据所述第一时域资源与所述第二时域资源之间的间隔时长,确定所要采用的目标信道接入机制;
所述终端按照所述目标信道接入机制进行信道检测,并根据信道检测结果向所述基站发送随机接入信息。
可选地,所述第一时域资源所属的第一时隙是所述第二时域资源所属的第二时隙之后的一个时隙;或者,所述第一时域资源和所述第二时域资源属于同一时隙。
可选地,所述第一时域资源和所述第二时域资源之间不存在间隔的OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
可选地,所述第一时域资源和所述第二时域资源之间的间隔时长不大于25us。
可选地,所述终端根据所述第一时域资源与所述第二时域资源之间的间隔时长,确定所要采用的目标信道接入机制,包括:
所述终端计算所述第一时域资源与所述第二时域资源之间的所述间隔时长;
若所述间隔时长不大于第一阈值,则所述终端确定所述目标信道接入机制为LBT Cat.1机制;
若所述间隔时长大于所述第一阈值且不大于第二阈值,则所述终端确定所述目标信道接入机制为LBT Cat.2机制;
其中,所述第一阈值小于所述第二阈值。
可选地,所述方法还包括:
所述终端获取所述发现信号对应的周期和所述PRACH对应的周期;
若所述发现信号对应的周期和所述PRACH对应的周期存在重合,则所述终端从所述根据所述第一时域资源与所述第二时域资源之间的间隔时长,确定所要采用的目标信道接入机制的步骤开始执行;
若所述发现信号对应的周期和所述PRACH对应的周期不存在重合,则所述终端按照默认信道接入机制进行信道检测,并根据信道检测结果向所述基站发送所述随机接入信息。
根据本公开实施例的第二方面,提供了一种非授权频段上的随机接入方法,应用于非授权频段小区的基站中,所述方法包括:
所述基站向终端发送PRACH配置信息,所述PRACH配置信息用于指示PRACH所占用的第一时域资源,其中,所述第一时域资源位于所述基站向所述终端发送的发现信号所占用的第二时域资源之后;
所述基站根据所述第一时域资源,接收所述终端在采用目标信道接入机制进行信道检测后发送的随机接入信息;其中,所述目标信道接入机制根据所述第一时域资源与所述第二时域资源之间的间隔时长确定。
可选地,所述第一时域资源所属的第一时隙是所述第二时域资源所属的第二时隙之后的一个时隙;或者,所述第一时域资源和所述第二时域资源属于同一时隙。
可选地,所述第一时域资源和所述第二时域资源之间不存在间隔的OFDM符号。
可选地,所述第一时域资源和所述第二时域资源之间的间隔时长不大于25us。
根据本公开实施例的第三方面,提供了一种非授权频段上的随机接入装置,应用于终端中,所述装置包括:
信息接收模块,被配置为接收非授权频段小区的基站发送的PRACH配置信息;
资源确定模块,被配置为根据所述PRACH配置信息,确定PRACH所占用的第一时域资源;其中,所述第一时域资源位于所述基站向所述终端发送的发现信号所占用的第二时域资源之后;
机制确定模块,被配置为根据所述第一时域资源与所述第二时域资源之间的间隔时长,确定所要采用的目标信道接入机制;
信息发送模块,被配置为按照所述目标信道接入机制进行信道检测,并根据信道检测结果向所述基站发送随机接入信息。
可选地,所述机制确定模块,被配置为:
计算所述第一时域资源与所述第二时域资源之间的所述间隔时长;
当所述间隔时长不大于第一阈值时,确定所述目标信道接入机制为LBT Cat.1机制;
当所述间隔时长大于所述第一阈值且不大于第二阈值时,确定所述目标信道接入机制为LBT Cat.2机制;
其中,所述第一阈值小于所述第二阈值。
可选地,所述装置还包括:
周期获取模块,被配置为获取所述发现信号对应的周期和所述PRACH对应的周期;
所述机制确定模块,还被配置为当所述发现信号对应的周期和所述PRACH对应的周期存在重合时,根据所述第一时域资源与所述第二时域资源之间的间隔时长,确定所要采用的目标信道接入机制;
所述信息发送模块,还被配置为当所述发现信号对应的周期和所述PRACH对应的周期不存在重合时,按照默认信道接入机制进行信道检测,并根据信道检测结果向所述基站发送所述随机接入信息。
根据本公开实施例的第四方面,提供了一种非授权频段上的随机接入装置,应用于非授权频段小区的基站中,所述装置包括:
信息发送模块,被配置为向终端发送PRACH配置信息,所述PRACH配置信息用于指示PRACH所占用的第一时域资源,其中,所述第一时域资源位于所述基站向所述终端发送的发现信号所占用的第二时域资源之后;
信息接收模块,被配置为根据所述第一时域资源,接收所述终端在采用目标信道接入机制进行信道检测后发送的随机接入信息;其中,所述目标信道接入机制根据所述第一时域资源与所述第二时域资源之间的间隔时长确定。
根据本公开实施例的第五方面,提供了一种非授权频段上的随机接入装置,应用于终端中,所述装置包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
接收非授权频段小区的基站发送的PRACH配置信息;
根据所述PRACH配置信息,确定PRACH所占用的第一时域资源;其中,所述第一时域资源位于所述基站向所述终端发送的发现信号所占用的第二时域资源之后;
根据所述第一时域资源与所述第二时域资源之间的间隔时长,确定所要采用的目标信道接入机制;
按照所述目标信道接入机制进行信道检测,并根据信道检测结果向所述基站发送随机接入信息。
根据本公开实施例的第六方面,提供了一种非授权频段上的随机接入装置,应用于非授权频段小区的基站中,所述装置包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
向终端发送PRACH配置信息,所述PRACH配置信息用于指示PRACH所占用的第一时域资源,其中,所述第一时域资源位于所述基站向所述终端发送的发现信号所占用的第二时域资源之后;
根据所述第一时域资源,接收所述终端在采用目标信道接入机制进行信道检测后发送的随机接入信息;其中,所述目标信道接入机制根据所述第一时域资源与所述第二时域资源之间的间隔时长确定。
根据本公开实施例的第七方面,提供了一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如第一方面所述方法的步骤,或者实现如第二方面所述方法的步骤。
本公开实施例提供的技术方案可以包括以下有益效果:
通过将PRACH所占用的第一时域资源配置到发现信号所占用的第二时域资源之后,终端在接收到这种PRACH配置之后,会根据第一时域资源与第二时域资源之间的间隔时长,确定出所要采用的目标信道接入机制,然后按照该目标信道接入机制进行信道检测,并根据信道检测结果向基站发送随机接入信息;提供了一种根据PRACH配置动态调整信道接入机制的方案,以便终端选择合适的信道接入机制,有助于降低随机接入过程所需的功耗,且提升成功率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种网络架构的示意图;
图2是根据一示例性实施例示出的一种非授权频段上的随机接入方法的流程图;
图3示例性示出了PRACH和发现信号所占用的时域位置关系的示意图;
图4是根据一示例性实施例示出的一种非授权频段上的随机接入装置的框图;
图5是根据另一示例性实施例示出的一种非授权频段上的随机接入装置的框图;
图6是根据一示例性实施例示出的一种终端的结构示意图;
图7是根据一示例性实施例示出的一种基站的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在对本公开实施例进行介绍说明之前,首先对本公开中涉及的信道接入机制进行解释说明。
信道接入机制通常可以包括以下4种:
第一种(Cat.1):不含LBT(Listen before talk,先听后说),即设备在传输信息之前不需要进行信道检测,直接发送信息。LBT也可以称为监听避让机制,用于实现非授权频谱的有效共享。LBT要求在传输信息前先监听信道,进行CCA(Clear Channel Assessment,空闲信道评估),在确保信道空闲的情况下再进行传输。
第二种(LBT Cat.2):不含随机退避过程的LBT机制。设备在传输信息之前,只需要检测一个时间粒度即可,例如时间粒度可以是25us,如果在该时间粒度内信道空闲,那么设备就可以传输信息,否则,LBT执行失败,设备不可以传输信息。
第三种(LBT Cat.3):CWS(Contention Window Size,竞争窗口大小)固 定的随机退避型LBT机制,发送设备首先在第一时间粒度检测信道是否空闲,若检测到该信道空闲,在第一竞争窗口内选取随机数的值N,并以第二时间粒度为时间粒度进行信道检测;如果在第二时间粒度检测到该信道空闲,且随机数的值不为0,则将随机数的值减1,并继续以第二时间粒度为时间粒度进行信道检测;如果在第二时间粒度检测到该信道忙,则再次以第一时间粒度为时间粒度进行信道检测;如果再次在第一时间粒度检测到该信道空闲,且随机数的值不为0,则将随机数的值减1,并恢复以第二时间粒度为时间粒度进行信道检测;直至随机数的值减为0,才表示信道空闲。可选地,该种LBT方式仅限于WIFI场景,在LAA以及NRU下都不会使用。
第四种(LBT Cat.4):CWS可变的随机退避型LBT机制。即在LBT Cat.3的基础上,发送设备可以根据前一次传输的结果调整CWS。比如前一次传输过程中的一个参考时间内传输的数据中,没有被正确接收的比例为X,当X大于一个门限时,则CWS值增加。为了细化LBT过程中的参数设置,在LBT Cat.4中设置了四种优先级,每种优先级对应不同的参数配置,不同业务类型的数据传输对应不同的优先级。
LBT Cat.4的原理如下:设备首先在第一时间粒度检测信道是否空闲,若检测到该信道空闲,在第一竞争窗口内选取随机数的值N,并以第二时间粒度为时间粒度进行信道检测;如果在第二时间粒度检测到该信道空闲,且随机数的值不为0,则将随机数的值减1,并继续以第二时间粒度为时间粒度进行信道检测;如果在第二时间粒度检测到该信道忙,则再次以第一时间粒度为时间粒度进行信道检测;如果再次在第一时间粒度检测到该信道空闲,且随机数的值不为0,则将随机数的值减1,并恢复以第二时间粒度为时间粒度进行信道检测;直至随机数的值减为0,才表示信道空闲。
举例来说,第一时间粒度为16us+M*9us,第二时间粒度为9us,则先检测16us+M*9us内信道是否空闲,若信道空闲,则在竞争窗口内选取随机数的值N,再以9us为粒度进行检测,若信道空闲,则N-1,并继续以9us为粒度检测;否则,以16us+M*9us为粒度进行信道检测,当检测信道空闲,则N-1,并恢复以9us为粒度检测直到随机数为0才表示信道空闲,可以使用。
其中,上述M的取值由表-1和表-2里的m p决定,信道接入优先级值p不同,M取值不同。表-1为下行LBT Cat.4四种优先级参数配置,表-2为上行LBT Cat.4四种优先级参数配置,两者只是配置的数值略有不同。
表-1
Figure PCTCN2019072242-appb-000001
表-2
Figure PCTCN2019072242-appb-000002
上述表-1和表-2所示的四种信道接入优先级中,p值越小,对应的优先级越高。m p是一个延迟时间中所包含ECCA(Extended Clear Channel,延长空闲信道评估)的个数,每个延迟时间是由固定的16us时长和m p个ECCA组成的,即上文介绍的第一时间粒度。CW min,p和CW max,p是最小竞争窗口值和最大竞争窗口值,在LBT过程中的CWS便是在这两个值之间生成的,然后再由0到生成的竞争窗口CW p中随机生成的退避计数器N来决定LBT信道检测过程中退避的时间长短,而T mcot,p是每种优先级对应的LBT Cat.4执行成功之后能占用信道的最大时长,由上表可知相较于优先级1,2而言,优先级3,4的LBT过程的执行时间较长,获得信道接入的机会相对较低,为了保证公平性,使用这两种优先级的数据传输能占用的最大传输时间也相对较长。
需要说明的是,上述4种信道接入机制只是示例性介绍说明,随着通信技术的演进,上述4种信道接入机制可能有所变化,或者有新的信道接入机制产生,但都是适用于本公开描述的技术方案。
本公开实施例描述的网络架构以及业务场景是为了更加清楚地说明本公开实施例的技术方案,并不构成对本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
图1是根据一示例性实施例示出的一种网络架构的示意图。该网络架构可以包括:基站110和终端120。
基站110部署在接入网中。5G NR系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。基站110与终端120之间通过某种空口技术互相通信,例如可以通过蜂窝技术相互通信。
基站110是一种部署在接入网中用以为终端120提供无线通信功能的装置。基站110可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一名称可能会变化。为方便描述,本公开实施例中,上述为终端120提供无线通信功能的装置统称为基站。
终端120的数量通常为多个,每一个基站110所管理的小区内可以分布一个或多个终端120。终端120可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,本公开实施例中,上面提到的设备统称为终端。
本公开实施例中的“5G NR系统”也可以称为5G系统或者NR系统,但本领域技术人员可以理解其含义。本公开实施例描述的技术方案可以适用于5G NR系统,也可以适用于5G NR系统后续的演进系统。
图2是根据一示例性实施例示出的一种非授权频段上的随机接入方法的流程图。该方法可应用于图1所示的网络架构中。该方法可以包括如下几个步骤(步骤201~205)。
在步骤201中,基站向终端发送PRACH配置信息。
可选地,该基站是非授权频谱小区的基站。非授权频谱小区是指允许终端使用非授权频段(或称为非授权频谱)与基站进行通信的小区。
PRACH配置信息用于指示PRACH所占用的目标时频资源,该目标时频资源包括第一时域资源和第一频域资源。可选地,PRACH配置信息包括PRACH配置索引,该PRACH配置索引指示了PRACH所占用的目标时频资源,如PRACH的频域资源索引、时域的无线帧、半帧、子帧的资源占用情况。 PRACH配置索引确定之后,PRACH所占用的目标时频资源即可确定,同时也确定了所采用的前导格式。另外,PRACH配置信息还可以包括零相关配置、根序列索引、是否为高速状态、频率偏移等配置参数,本公开实施例对此不作限定。
基站可以从协议规定的多种PRACH配置中,选择所要采用的某种PRACH配置,然后将该种选择的PRACH配置对应的PRACH配置信息发送给终端。可选地,基站以系统消息的形式,向小区内的终端广播PRACH配置信息。
另外,结合本公开提供的技术方案,可以对相关协议中规定的PRACH配置进行修改,增加目标PRACH配置。该目标PRACH配置规定,PRACH所占用的第一时域资源,位于基站向终端发送的发现信号所占用的第二时域资源之后。其中,发现信号包含SSB(SS/PBCH block,同步信号块),可选地还包括参考信号或者其它一些下行信号。当然,在一些其它实施例中,发现信号也可以不包含SSB,如发现信号包含参考信号和/或其它一些下行信号。
如果基站从协议规定的多种PRACH配置中,选择采用上述目标PRACH配置,则基站向终端发送目标PRACH配置对应的PRACH配置信息。例如,该目标PRACH配置对应的PRACH配置信息中包含目标PRACH配置对应的PRACH配置索引。终端在接收到目标PRACH配置对应的PRACH配置信息之后,确定采用该目标PRACH配置发起随机接入。
可选地,目标PRACH配置中配置的PRACH所占用的第一时域资源与发现信号所占用的第二时域资源之间的关系,可以有如下几种情况。在一个示例中,第一时域资源所属的第一时隙是第二时域资源所属的第二时隙之后的一个时隙。在另一个示例中,第一时域资源和第二时域资源属于同一时隙。另外,第一时域资源和第二时域资源之间可以不存在间隔的OFDM符号,也即第一时域资源和第二时域资源之间无间隔时长。或者,第一时域资源和第二时域资源之间存在间隔时长,且该间隔时长不大于25us。例如,第一时域资源和第二时域资源之间存在一个间隔的OFDM符号,且该OFDM符号的长度不大于25us。
如图3所示,其示例性示出了PRACH所占用的第一时域资源与发现信号所占用的第二时域资源之间的几种位置关系。
在图3的(a)部分中,PRACH所占用的第一时域资源和发现信号所占用的第二时域资源属于同一时隙,且第一时域资源和第二时域资源之间可以不存 在间隔的OFDM符号。例如,PRACH所占用的第一时域资源(图中黑点填充所示)和发现信号所占用的第二时域资源(图中斜线填充所示)同属于slot 0,第二时域资源占用该slot 0中的第2至5个OFDM符号,第一时域资源占用该slot 0中的第6个OFDM符号。第一时域资源和第二时域资源之间不存在间隔的OFDM符号。
在图3的(b)部分中,PRACH所占用的第一时域资源和发现信号所占用的第二时域资源属于同一时隙,且第一时域资源和第二时域资源之间存在一个间隔的OFDM符号,且该OFDM符号的长度不大于25us。例如,PRACH所占用的第一时域资源(图中黑点填充所示)和发现信号所占用的第二时域资源(图中斜线填充所示)同属于slot 0,第二时域资源占用该slot 0中的第2至5个OFDM符号,第一时域资源占用该slot 0中的第7个OFDM符号,第一时域资源和第二时域资源之间存在一个间隔的OFDM符号。
在图3的(c)部分中,PRACH所占用的第一时域资源和发现信号所占用的第二时域资源属于不同时隙,且第一时域资源和第二时域资源之间可以不存在间隔的OFDM符号。例如,PRACH所占用的第一时域资源(图中黑点填充所示)属于slot 1,发现信号所占用的第二时域资源(图中斜线填充所示)属于slot 0。第二时域资源占用该slot 0中的第2至7个OFDM符号,比如SSB占用slot 0中的第2至5个OFDM符号,其它参考信号占用slot 0中的第6至7个OFDM符号。第一时域资源占用slot 1中的第1个OFDM符号。第一时域资源和第二时域资源之间不存在间隔的OFDM符号。
在图3的(d)部分中,PRACH所占用的第一时域资源和发现信号所占用的第二时域资源属于不同时隙,且第一时域资源和第二时域资源之间存在一个间隔的OFDM符号,且该OFDM符号的长度不大于25us。例如,PRACH所占用的第一时域资源(图中黑点填充所示)属于slot 1,发现信号所占用的第二时域资源(图中斜线填充所示)属于slot 0。第二时域资源占用该slot 0中的第2至6个OFDM符号,比如SSB占用slot 0中的第2至5个OFDM符号,其它参考信号占用slot 0中的第6个OFDM符号。第一时域资源占用slot 1中的第1个OFDM符号。第一时域资源和第二时域资源之间存在一个间隔的OFDM符号。
在一些可能的实施例中,考虑到SSB占用的是第2至5个OFDM符号,或者第8至11个OFDM符号,因此PRACH所占用的第一时域资源配置到从 第6个或者第12个OFDM符号开始。
在步骤202中,终端根据PRACH配置信息,确定PRACH所占用的第一时域资源。
终端在接收到PRACH配置信息之后,根据该PRACH配置信息确定PRACH所占用的目标时频资源。可选地,终端根据该PRACH配置信息确定PRACH所占用的第一时域资源和第一频域资源。例如,终端获取PRACH配置信息中包含的PRACH配置索引,然后根据该PRACH配置索引确定出PRACH所占用的目标时频资源。示例性地,假设PRACH配置信息中包含上文介绍的目标PRACH配置对应的PRACH配置索引,则终端采用该目标PRACH配置发起随机接入。
在步骤203中,终端根据第一时域资源与第二时域资源之间的间隔时长,确定所要采用的目标信道接入机制。
在PRACH配置信息所指示采用的PRACH配置为上文介绍的目标PRACH配置的情况下,终端根据PRACH所占用的第一时域资源与发现信号所占用的第二时域资源,计算出第一时域资源与第二时域资源之间的间隔时长,然后根据该间隔时长确定所要采用的目标信道接入机制。
可选地,若该间隔时长不大于第一阈值,则终端确定目标信道接入机制为LBT Cat.1机制;若间隔时长大于第一阈值且不大于第二阈值,则终端确定目标信道接入机制为LBT Cat.2机制;其中,第一阈值小于第二阈值。可选地,第一阈值为16us,第二阈值为25us。另外,若间隔时长大于第二阈值,则终端确定目标信道接入机制为LBT Cat.4机制。
另外,在发现信号所占用的第二时域资源的长度不大于1ms的情况下,终端可以选择LBT Cat.2机制作为目标信道接入机制;否则,终端选择LBT Cat.4机制作为目标信道接入机制。进一步地,若发现信号所占用的第二时域资源的长度与PRACH所占用的第一时域资源的长度之和不大于1ms,则终端可以选择LBT Cat.1机制作为目标信道接入机制。
在步骤204中,终端按照目标信道接入机制进行信道检测,并根据信道检测结果向基站发送随机接入信息。
如果终端确定出的目标信道接入机制为LBT Cat.1机制,则终端不执行LBT检测流程,直接向基站发送随机接入信息。如果终端确定出的目标信道接入机制为LBT Cat.2机制,则终端按照LBT Cat.2机制所规定的LBT检测流程 进行信道检测,并在信道检测结果为空闲的情况下向基站发送随机接入信息。如果终端确定出的目标信道接入机制为LBT Cat.4机制,则终端按照LBT Cat.4机制所规定的LBT检测流程进行信道检测,并在信道检测结果为空闲的情况下向基站发送随机接入信息。
可选地,随机接入信息中包括随机接入前导序列,该随机接入前导序列可以是终端根据基站在PRACH配置信息中指示的前导格式选择的。终端通过该随机接入信息向基站发起随机接入请求,以请求与基站建立连接。
在步骤205中,基站根据第一时域资源,接收终端在采用目标信道接入机制进行信道检测后发送的随机接入信息。
基站按照给终端配置的目标PRACH配置,在目标时频资源上接收终端发送的随机接入信息。例如,基站在第一时域资源和第一频域资源上接收终端发送的随机接入信息。
可选地,终端在执行上述步骤203之前,还可以获取发现信号对应的周期和PRACH对应的周期。若发现信号对应的周期和PRACH对应的周期存在重合,则终端上述步骤203开始执行;若发现信号对应的周期和PRACH对应的周期不存在重合,则终端按照默认信道接入机制进行信道检测,并根据信道检测结果向基站发送随机接入信息。可选地,默认信道接入机制为LBT Cat.4机制。也即,终端只有在发现信号对应的周期和PRACH对应的周期存在重合的情况下,才选择LBT Cat.1机制或LBT Cat.2机制进行信道检测。
另外,上文介绍了PRACH的发送过程,PRACH的重发过程也可以采用上文介绍的方法流程,本公开实施例对此不作限定。
综上所述,本公开实施例提供的技术方案中,通过将PRACH所占用的第一时域资源配置到发现信号所占用的第二时域资源之后,终端在接收到这种PRACH配置之后,会根据第一时域资源与第二时域资源之间的间隔时长,确定出所要采用的目标信道接入机制,然后按照该目标信道接入机制进行信道检测,并根据信道检测结果向基站发送随机接入信息;提供了一种根据PRACH配置动态调整信道接入机制的方案,以便终端选择合适的信道接入机制,有助于降低随机接入过程所需的功耗,且提升成功率。
另外,当第一时域资源和所述第二时域资源之间无间隔时长,或者间隔时长较短时,终端可以选择LBT Cat.1机制或LBT Cat.2机制进行信道检测,也即选择更为高效的信道接入机制,降低随机接入过程所需的功耗。
需要说明的一点是,在本公开方法实施例中,仅从终端和基站交互的角度,对本公开技术方案进行了介绍说明。上述有关终端执行的步骤,可以单独实现成为终端侧的非授权频段上的随机接入方法;上述有关基站执行的步骤,可以单独实现成为基站侧的非授权频段上的随机接入方法。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图4是根据一示例性实施例示出的一种非授权频段上的随机接入装置的框图。该装置具有实现上述终端侧的方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文介绍的终端,或者设置在终端中。如图4所示,该装置400可以包括:信息接收模块410、资源确定模块420、机制确定模块430和信息发送模块440。
信息接收模块410,被配置为接收基站发送的PRACH配置信息。可选地,该基站是非授权频段小区的基站。
资源确定模块420,被配置为根据所述PRACH配置信息,确定PRACH所占用的第一时域资源;其中,所述第一时域资源位于所述基站向所述终端发送的发现信号所占用的第二时域资源之后。
机制确定模块430,被配置为根据所述第一时域资源与所述第二时域资源之间的间隔时长,确定所要采用的目标信道接入机制。
信息发送模块440,被配置为按照所述目标信道接入机制进行信道检测,并根据信道检测结果向所述基站发送随机接入信息。
综上所述,本公开实施例提供的技术方案中,通过将PRACH所占用的第一时域资源配置到发现信号所占用的第二时域资源之后,终端在接收到这种PRACH配置之后,会根据第一时域资源与第二时域资源之间的间隔时长,确定出所要采用的目标信道接入机制,然后按照该目标信道接入机制进行信道检测,并根据信道检测结果向基站发送随机接入信息;提供了一种根据PRACH配置动态调整信道接入机制的方案,以便终端选择合适的信道接入机制,有助于降低随机接入过程所需的功耗,且提升成功率。
在一个可能的示例中,所述机制确定模块430,被配置为:
计算所述第一时域资源与所述第二时域资源之间的所述间隔时长;
当所述间隔时长不大于第一阈值时,确定所述目标信道接入机制为LBT Cat.1机制;
当所述间隔时长大于所述第一阈值且不大于第二阈值时,确定所述目标信道接入机制为LBT Cat.2机制;
其中,所述第一阈值小于所述第二阈值。
在另一个可能的示例中,所述装置400还包括:周期获取模块(图4中未示出)。
周期获取模块,被配置为获取所述发现信号对应的周期和所述PRACH对应的周期。
所述机制确定模块430,还被配置为当所述发现信号对应的周期和所述PRACH对应的周期存在重合时,根据所述第一时域资源与所述第二时域资源之间的间隔时长,确定所要采用的目标信道接入机制。
所述信息发送模块440,还被配置为当所述发现信号对应的周期和所述PRACH对应的周期不存在重合时,按照默认信道接入机制进行信道检测,并根据信道检测结果向所述基站发送所述随机接入信息。
图5是根据另一示例性实施例示出的一种非授权频段上的随机接入装置的框图。该装置具有实现上述基站侧的方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文介绍的基站,或者设置在基站中。如图5所示,该装置500可以包括:信息发送模块510和信息接收模块520。
信息发送模块510,被配置为向终端发送PRACH配置信息,所述PRACH配置信息用于指示PRACH所占用的第一时域资源,其中,所述第一时域资源位于所述基站向所述终端发送的发现信号所占用的第二时域资源之后。
信息接收模块520,被配置为根据所述第一时域资源,接收所述终端在采用目标信道接入机制进行信道检测后发送的随机接入信息;其中,所述目标信道接入机制根据所述第一时域资源与所述第二时域资源之间的间隔时长确定。
综上所述,本公开实施例提供的技术方案中,通过将PRACH所占用的第一时域资源配置到发现信号所占用的第二时域资源之后,终端在接收到这种PRACH配置之后,会根据第一时域资源与第二时域资源之间的间隔时长,确定出所要采用的目标信道接入机制,然后按照该目标信道接入机制进行信道检 测,并根据信道检测结果向基站发送随机接入信息;提供了一种根据PRACH配置动态调整信道接入机制的方案,以便终端选择合适的信道接入机制,有助于降低随机接入过程所需的功耗,且提升成功率。
本公开一示例性实施例还提供了一种非授权频段上的随机接入装置。该装置可以是上文介绍的终端,或者设置在终端中。该装置能够实现本公开提供的终端侧的非授权频段上的随机接入方法。该装置可以包括:处理器,以及用于存储处理器的可执行指令的存储器。其中,处理器被配置为:
接收基站发送的PRACH配置信息;
根据所述PRACH配置信息,确定PRACH所占用的第一时域资源;其中,所述第一时域资源位于所述基站向所述终端发送的发现信号所占用的第二时域资源之后;
根据所述第一时域资源与所述第二时域资源之间的间隔时长,确定所要采用的目标信道接入机制;
按照所述目标信道接入机制进行信道检测,并根据信道检测结果向所述基站发送随机接入信息。
可选地,所述处理器被配置为:
计算所述第一时域资源与所述第二时域资源之间的所述间隔时长;
当所述间隔时长不大于第一阈值时,确定所述目标信道接入机制为LBT Cat.1机制;
当所述间隔时长大于所述第一阈值且不大于第二阈值时,确定所述目标信道接入机制为LBT Cat.2机制;
其中,所述第一阈值小于所述第二阈值。
可选地,所述处理器还被配置为:
获取所述发现信号对应的周期和所述PRACH对应的周期;
当所述发现信号对应的周期和所述PRACH对应的周期存在重合时,从所述根据所述第一时域资源与所述第二时域资源之间的间隔时长,确定所要采用的目标信道接入机制的步骤开始执行;
当所述发现信号对应的周期和所述PRACH对应的周期不存在重合时,按照默认信道接入机制进行信道检测,并根据信道检测结果向所述基站发送所述随机接入信息。
上述主要从终端和基站的角度,对本公开实施例提供的方案进行了介绍。可以理解的是,终端和基站为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开中所公开的实施例描述的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图6是根据一示例性实施例示出的一种终端的结构示意图。
所述终端600包括发射器601,接收器602和处理器603。其中,处理器603也可以为控制器,图6中表示为“控制器/处理器603”。可选的,所述终端600还可以包括调制解调处理器605,其中,调制解调处理器605可以包括编码器606、调制器607、解码器608和解调器609。
在一个示例中,发射器601调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给基站。在下行链路上,天线接收基站发射的下行链路信号。接收器602调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在调制解调处理器605中,编码器606接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器607进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器609处理(例如,解调)该输入采样并提供符号估计。解码器608处理(例如,解交织和解码)该符号估计并提供发送给终端600的已解码的数据和信令消息。编码器606、调制器607、解调器609和解码器608可以由合成的调制解调处理器605来实现。这些单元根据无线接入网采用的无线接入技术(例如,5G NR及其他演进系统的接入技术)来进行处理。需要说明的是,当终端600不包括调制解调处理器605时,调制解调处理器605的上述功能也可以由处理器603完成。
处理器603对终端600的动作进行控制管理,用于执行上述本公开实施例中由终端600进行的处理过程。例如,处理器603还用于执行上述方法实施例中的终端侧的各个步骤,和/或本公开实施例所描述的技术方案的其它步骤。
进一步的,终端600还可以包括存储器604,存储器604用于存储用于终端600的程序代码和数据。
可以理解的是,图6仅仅示出了终端600的简化设计。在实际应用中,终端600可以包含任意数量的发射器,接收器,处理器,调制解调处理器,存储器等,而所有可以实现本公开实施例的终端都在本公开实施例的保护范围之内。
图7是根据一示例性实施例示出的一种基站的结构示意图。
基站700包括发射器/接收器701和处理器702。其中,处理器702也可以为控制器,图7中表示为“控制器/处理器702”。所述发射器/接收器701用于支持基站与上述实施例中的所述终端之间收发信息,以及支持所述基站与其它网络实体之间进行通信。所述处理器702执行各种用于与终端通信的功能。在上行链路,来自所述终端的上行链路信号经由天线接收,由接收器701进行解调(例如将高频信号解调为基带信号),并进一步由处理器702进行处理来恢复终端所发送到业务数据和信令信息。在下行链路上,业务数据和信令消息由处理器702进行处理,并由发射器701进行调制(例如将基带信号调制为高频信号)来产生下行链路信号,并经由天线发射给终端。需要说明的是,上述解调或调制的功能也可以由处理器702完成。例如,处理器702还用于执行上述方法实施例中基站侧的各个步骤,和/或本公开实施例所描述的技术方案的其它步骤。
进一步的,基站700还可以包括存储器703,存储器703用于存储基站700的程序代码和数据。此外,基站还可以包括通信单元704。通信单元704用于支持基站与其它网络实体(例如核心网中的网络设备等)进行通信。例如,在5G NR系统中,该通信单元704可以是NG-U接口,用于支持基站与UPF(User Plane Function,用户平面功能)实体进行通信;或者,该通信单元704也可以是NG-C接口,用于支持接入AMF(Access and Mobility Management Function接入和移动性管理功能)实体进行通信。
可以理解的是,图7仅仅示出了基站700的简化设计。在实际应用中,基站700可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本公开实施例的基站都在本公开实施例的保护范围之内。
本公开一示例性实施例还提供了一种非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被终端的处理器执行时实现上述终端侧的非授权频段上的随机接入方法的步骤。
本公开另一示例性实施例还提供了一种非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被基站的处理器执行时实现上述基站侧的非授权频段上的随机接入方法的步骤。
应当理解的是,在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (17)

  1. 一种非授权频段上的随机接入方法,其特征在于,所述方法包括:
    终端接收非授权频段小区的基站发送的物理随机接入信道PRACH配置信息;
    所述终端根据所述PRACH配置信息,确定PRACH所占用的第一时域资源;其中,所述第一时域资源位于所述基站向所述终端发送的发现信号所占用的第二时域资源之后;
    所述终端根据所述第一时域资源与所述第二时域资源之间的间隔时长,确定所要采用的目标信道接入机制;
    所述终端按照所述目标信道接入机制进行信道检测,并根据信道检测结果向所述基站发送随机接入信息。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一时域资源所属的第一时隙是所述第二时域资源所属的第二时隙之后的一个时隙;
    或者,
    所述第一时域资源和所述第二时域资源属于同一时隙。
  3. 根据权利要求1所述的方法,其特征在于,所述第一时域资源和所述第二时域资源之间不存在间隔的OFDM符号。
  4. 根据权利要求1所述的方法,其特征在于,所述第一时域资源和所述第二时域资源之间的间隔时长不大于25us。
  5. 根据权利要求1所述的方法,其特征在于,所述终端根据所述第一时域资源与所述第二时域资源之间的间隔时长,确定所要采用的目标信道接入机制,包括:
    所述终端计算所述第一时域资源与所述第二时域资源之间的所述间隔时长;
    若所述间隔时长不大于第一阈值,则所述终端确定所述目标信道接入机制 为LBT Cat.1机制;
    若所述间隔时长大于所述第一阈值且不大于第二阈值,则所述终端确定所述目标信道接入机制为LBT Cat.2机制;
    其中,所述第一阈值小于所述第二阈值。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述方法还包括:
    所述终端获取所述发现信号对应的周期和所述PRACH对应的周期;
    若所述发现信号对应的周期和所述PRACH对应的周期存在重合,则所述终端从所述根据所述第一时域资源与所述第二时域资源之间的间隔时长,确定所要采用的目标信道接入机制的步骤开始执行;
    若所述发现信号对应的周期和所述PRACH对应的周期不存在重合,则所述终端按照默认信道接入机制进行信道检测,并根据信道检测结果向所述基站发送所述随机接入信息。
  7. 一种非授权频段上的随机接入方法,其特征在于,应用于非授权频段小区的基站中,所述方法包括:
    所述基站向终端发送物理随机接入信道PRACH配置信息,所述PRACH配置信息用于指示PRACH所占用的第一时域资源,其中,所述第一时域资源位于所述基站向所述终端发送的发现信号所占用的第二时域资源之后;
    所述基站根据所述第一时域资源,接收所述终端在采用目标信道接入机制进行信道检测后发送的随机接入信息;其中,所述目标信道接入机制根据所述第一时域资源与所述第二时域资源之间的间隔时长确定。
  8. 根据权利要求7所述的方法,其特征在于,
    所述第一时域资源所属的第一时隙是所述第二时域资源所属的第二时隙之后的一个时隙;
    或者,
    所述第一时域资源和所述第二时域资源属于同一时隙。
  9. 根据权利要求7所述的方法,其特征在于,所述第一时域资源和所述第二时域资源之间不存在间隔的OFDM符号。
  10. 根据权利要求7所述的方法,其特征在于,所述第一时域资源和所述第二时域资源之间的间隔时长不大于25us。
  11. 一种非授权频段上的随机接入装置,其特征在于,应用于终端中,所述装置包括:
    信息接收模块,被配置为接收非授权频段小区的基站发送的物理随机接入信道PRACH配置信息;
    资源确定模块,被配置为根据所述PRACH配置信息,确定PRACH所占用的第一时域资源;其中,所述第一时域资源位于所述基站向所述终端发送的发现信号所占用的第二时域资源之后;
    机制确定模块,被配置为根据所述第一时域资源与所述第二时域资源之间的间隔时长,确定所要采用的目标信道接入机制;
    信息发送模块,被配置为按照所述目标信道接入机制进行信道检测,并根据信道检测结果向所述基站发送随机接入信息。
  12. 根据权利要求11所述的装置,其特征在于,所述机制确定模块,被配置为:
    计算所述第一时域资源与所述第二时域资源之间的所述间隔时长;
    当所述间隔时长不大于第一阈值时,确定所述目标信道接入机制为LBT Cat.1机制;
    当所述间隔时长大于所述第一阈值且不大于第二阈值时,确定所述目标信道接入机制为LBT Cat.2机制;
    其中,所述第一阈值小于所述第二阈值。
  13. 根据权利要求11或12所述的装置,其特征在于,所述装置还包括:
    周期获取模块,被配置为获取所述发现信号对应的周期和所述PRACH对应的周期;
    所述机制确定模块,还被配置为当所述发现信号对应的周期和所述PRACH对应的周期存在重合时,根据所述第一时域资源与所述第二时域资源之间的间隔时长,确定所要采用的目标信道接入机制;
    所述信息发送模块,还被配置为当所述发现信号对应的周期和所述PRACH对应的周期不存在重合时,按照默认信道接入机制进行信道检测,并根据信道检测结果向所述基站发送所述随机接入信息。
  14. 一种非授权频段上的随机接入装置,其特征在于,应用于非授权频段小区的基站中,所述装置包括:
    信息发送模块,被配置为向终端发送物理随机接入信道PRACH配置信息,所述PRACH配置信息用于指示PRACH所占用的第一时域资源,其中,所述第一时域资源位于所述基站向所述终端发送的发现信号所占用的第二时域资源之后;
    信息接收模块,被配置为根据所述第一时域资源,接收所述终端在采用目标信道接入机制进行信道检测后发送的随机接入信息;其中,所述目标信道接入机制根据所述第一时域资源与所述第二时域资源之间的间隔时长确定。
  15. 一种非授权频段上的随机接入装置,其特征在于,应用于终端中,所述装置包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    接收非授权频段小区的基站发送的物理随机接入信道PRACH配置信息;
    根据所述PRACH配置信息,确定PRACH所占用的第一时域资源;其中,所述第一时域资源位于所述基站向所述终端发送的发现信号所占用的第二时域资源之后;
    根据所述第一时域资源与所述第二时域资源之间的间隔时长,确定所要采用的目标信道接入机制;
    按照所述目标信道接入机制进行信道检测,并根据信道检测结果向所述基站发送随机接入信息。
  16. 一种非授权频段上的随机接入装置,其特征在于,应用于非授权频段小区的基站中,所述装置包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    向终端发送物理随机接入信道PRACH配置信息,所述PRACH配置信息用于指示PRACH所占用的第一时域资源,其中,所述第一时域资源位于所述基站向所述终端发送的发现信号所占用的第二时域资源之后;
    根据所述第一时域资源,接收所述终端在采用目标信道接入机制进行信道检测后发送的随机接入信息;其中,所述目标信道接入机制根据所述第一时域资源与所述第二时域资源之间的间隔时长确定。
  17. 一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述方法的步骤,或者实现如权利要求7至10任一项所述方法的步骤。
PCT/CN2019/072242 2019-01-17 2019-01-17 非授权频段上的随机接入方法、装置和存储介质 WO2020147088A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980000071.2A CN109952805B (zh) 2019-01-17 2019-01-17 非授权频段上的随机接入方法、装置和存储介质
US17/298,920 US11991747B2 (en) 2019-01-17 2019-01-17 Method and device for random access on unlicensed band
PCT/CN2019/072242 WO2020147088A1 (zh) 2019-01-17 2019-01-17 非授权频段上的随机接入方法、装置和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/072242 WO2020147088A1 (zh) 2019-01-17 2019-01-17 非授权频段上的随机接入方法、装置和存储介质

Publications (1)

Publication Number Publication Date
WO2020147088A1 true WO2020147088A1 (zh) 2020-07-23

Family

ID=67017228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072242 WO2020147088A1 (zh) 2019-01-17 2019-01-17 非授权频段上的随机接入方法、装置和存储介质

Country Status (3)

Country Link
US (1) US11991747B2 (zh)
CN (1) CN109952805B (zh)
WO (1) WO2020147088A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112601233A (zh) * 2020-11-03 2021-04-02 浙江华云信息科技有限公司 一种应用于智能电网的免授权频段信道接入方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111836400B (zh) * 2019-08-16 2022-09-06 维沃移动通信有限公司 非授权频段的随机接入消息发送方法和终端
CN112566271B (zh) * 2019-09-26 2022-11-25 维沃移动通信有限公司 一种信道接入方法、设备及系统
WO2021056475A1 (zh) * 2019-09-27 2021-04-01 小米通讯技术有限公司 竞争窗长度调整方法及装置、通信设备及存储介质
CN113497650B (zh) * 2020-04-02 2023-07-21 海能达通信股份有限公司 一种基于卫星通信的prach配置方法及基站、终端
CN114258150B (zh) * 2020-09-25 2023-11-24 维沃移动通信有限公司 信道接入选择方法、装置、通信设备及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105682232A (zh) * 2016-01-08 2016-06-15 宇龙计算机通信科技(深圳)有限公司 资源配置方法、资源配置装置和基站
WO2017181124A1 (en) * 2016-04-14 2017-10-19 Intel IP Corporation Low latency physical random access channel design
CN107949067A (zh) * 2016-10-12 2018-04-20 深圳市金立通信设备有限公司 一种信道检测的控制方法及相关装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6381660B2 (ja) * 2014-02-19 2018-09-05 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 免許不要周波数域がリリースされた後にデータを処理するための方法、およびユーザ機器
US10313889B2 (en) * 2015-01-13 2019-06-04 Acer Incorporated Method of sharing radio resources for licensed assisted access in unlicensed spectrum and related devices using the same
US9648616B2 (en) * 2015-01-15 2017-05-09 Nokia Solutions And Networks Oy Method and apparatus for implementing efficient low-latency uplink access
CN106162695B (zh) * 2015-04-10 2020-04-28 上海诺基亚贝尔股份有限公司 用于非授权频段的干扰测量的方法及装置
JP6654690B2 (ja) * 2015-08-26 2020-02-26 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America アンライセンスセルにおける改良されたランダムアクセス手順
EP3350952A1 (en) * 2015-09-18 2018-07-25 Nokia Solutions and Networks Oy Method, system and apparatus for determining physical random access channel resources
US10485000B2 (en) * 2016-09-28 2019-11-19 Sharp Kabushiki Kaisha User equipment, base stations and methods
WO2018229731A1 (en) * 2017-06-16 2018-12-20 Telefonaktiebolaget Lm Ericsson (Publ) System and methods for configuring user equipments with overlapping pucch resources for transmitting scheduling requests
CN109150475A (zh) * 2017-06-27 2019-01-04 深圳市金立通信设备有限公司 一种信息传输方法、基站及终端
CN114449673A (zh) * 2018-02-02 2022-05-06 北京小米移动软件有限公司 信息传输方法、装置、系统及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105682232A (zh) * 2016-01-08 2016-06-15 宇龙计算机通信科技(深圳)有限公司 资源配置方法、资源配置装置和基站
WO2017181124A1 (en) * 2016-04-14 2017-10-19 Intel IP Corporation Low latency physical random access channel design
CN107949067A (zh) * 2016-10-12 2018-04-20 深圳市金立通信设备有限公司 一种信道检测的控制方法及相关装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA; NOKIA SHANGHAI BELL: "Feature Lead’s Summary on Channel Access Procedures", 3GPP DRAFT; R1-1813994, 16 November 2018 (2018-11-16), Spokane, US, pages 1 - 22, XP051494436 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112601233A (zh) * 2020-11-03 2021-04-02 浙江华云信息科技有限公司 一种应用于智能电网的免授权频段信道接入方法
CN112601233B (zh) * 2020-11-03 2023-10-20 浙江华云信息科技有限公司 一种应用于智能电网的免授权频段信道接入方法

Also Published As

Publication number Publication date
US11991747B2 (en) 2024-05-21
US20220070931A1 (en) 2022-03-03
CN109952805B (zh) 2023-08-25
CN109952805A (zh) 2019-06-28

Similar Documents

Publication Publication Date Title
WO2020147088A1 (zh) 非授权频段上的随机接入方法、装置和存储介质
EP3952355A1 (en) Communication method and device
WO2020082276A1 (zh) 非授权频谱上的信道检测方法、装置和存储介质
CN109496457B (zh) Dci的接收方法、发送方法、装置及存储介质
CN108605291B (zh) 一种发送和接收wur帧的方法及设备
CN110166182B (zh) 一种竞争窗管理的方法及发送设备
JP2018518868A (ja) Wlanにおけるサブチャネル化送信方式のための方法およびデバイス
WO2020168946A1 (zh) 传输数据的方法和通信装置
WO2020087295A1 (zh) 下行控制信息接收方法、装置及存储介质
CN111133828B (zh) 上行信道侦听的方法和装置
JP6177437B2 (ja) チャネルアクセス方法、装置及びシステム
WO2020191588A1 (zh) 信道检测方法、装置及存储介质
CN110267226B (zh) 信息发送的方法和装置
US11464000B2 (en) Information indication method, terminal device, and network device
WO2020133055A1 (zh) 非授权频段的资源占用方法、装置、终端和存储介质
WO2020191586A1 (zh) 随机接入方法、装置及存储介质
US20220248466A1 (en) Resource configuration method and device
WO2020156180A1 (zh) 通信方法及终端设备、接入网设备
CN114389722A (zh) 信道占用时长共享方法、设备、系统和存储介质
CN113692060B (zh) 多天线mimo场景下随机接入资源的配置与更新方法
WO2020258048A1 (zh) 下行传输的检测方法、装置、设备及存储介质
WO2019157919A1 (zh) 一种竞争窗管理的方法及发送设备
US20240015711A1 (en) Communication method, terminal apparatus, and system
WO2020047765A1 (zh) 针对免授权的上行传输的反馈方法、装置及存储介质
WO2021159297A1 (zh) 上下行传输冲突解决方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19910434

Country of ref document: EP

Kind code of ref document: A1