WO2020087295A1 - 下行控制信息接收方法、装置及存储介质 - Google Patents

下行控制信息接收方法、装置及存储介质 Download PDF

Info

Publication number
WO2020087295A1
WO2020087295A1 PCT/CN2018/112776 CN2018112776W WO2020087295A1 WO 2020087295 A1 WO2020087295 A1 WO 2020087295A1 CN 2018112776 W CN2018112776 W CN 2018112776W WO 2020087295 A1 WO2020087295 A1 WO 2020087295A1
Authority
WO
WIPO (PCT)
Prior art keywords
subbands
target
access network
terminal
network device
Prior art date
Application number
PCT/CN2018/112776
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN201880001830.2A priority Critical patent/CN109565834B/zh
Priority to PL18939033.9T priority patent/PL3873152T3/pl
Priority to EP18939033.9A priority patent/EP3873152B1/en
Priority to ES18939033T priority patent/ES2941727T3/es
Priority to CN202110826878.0A priority patent/CN113472510B/zh
Priority to PCT/CN2018/112776 priority patent/WO2020087295A1/zh
Publication of WO2020087295A1 publication Critical patent/WO2020087295A1/zh
Priority to US17/242,753 priority patent/US11974292B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communications, and in particular to a DCI (Downlink Control Information) receiving method, sending method, device, and storage medium.
  • DCI Downlink Control Information
  • BWP Bandwidth Part
  • the terminal After acquiring the activated BWP configured by the base station for the terminal, the terminal can monitor the PDCCH (Physical Downlink Control Channel) sent by the base station on the activated BWP and blindly detect DCI. Then, the terminal can receive the downlink data sent by the base station on the PDSCH (Physical Downlink Shared Channel) based on the received DCI, or through the PUSCH (Physical Uplink Shared Channel) based on the received DCI Send uplink data to the base station.
  • PDCCH Physical Downlink Control Channel
  • the terminal can receive the downlink data sent by the base station on the PDSCH (Physical Downlink Shared Channel) based on the received DCI, or through the PUSCH (Physical Uplink Shared Channel) based on the received DCI Send uplink data to the base station.
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • NR-U New Radio Unlicensed
  • LBT Listen Before Talk, listen first
  • 20MHz may be used as the basic bandwidth for operation. For example, an available bandwidth of 80MHz is divided into four 20MHz carriers. For the four 20MHz carriers, there is no solution to how the NR-U access network equipment and terminals are scheduled and used.
  • Embodiments of the present application provide a method, device, and storage medium for receiving downlink control information.
  • the technical solution is as follows:
  • a method for receiving downlink control information includes:
  • the terminal receives BWP configuration information sent by an access network device, where the BWP configuration information is used to configure a target BWP that includes an unlicensed frequency band and includes m subbands;
  • the terminal determines m subbands of the target BWP according to the BWP configuration information
  • the terminal monitors the target sequence on the m subbands respectively;
  • the terminal After monitoring the target sequence, the terminal monitors downlink control information on all or part of the m subbands;
  • n is a positive integer greater than 1.
  • the m subbands are continuous in the frequency domain.
  • the terminal monitoring the downlink control information on all or part of the m subbands includes:
  • the terminal monitors the downlink control information on each of the m subbands.
  • the terminal monitoring the downlink control information on all or part of the m subbands includes:
  • the terminal determines that n target subbands of the target sequence are monitored, where n is a positive integer not greater than m;
  • the terminal monitors the downlink control information on at least one of the n target subbands
  • the target sequence is sent by the access network device when the LBT on the target subband is successful, or the target sequence is the target used by the access network device to transmit the downlink control information Sent on the subband.
  • the method further includes:
  • the terminal receives the control resource set of the m subbands from the access network device;
  • the terminal monitoring the downlink control information on each of the n target subbands includes:
  • the terminal determines the PDCCH search positions on the n target subbands according to the control resource sets of the m subbands, the search positions have different frequency domain positions and the same time position in the n target subband Domain location
  • the terminal monitors the downlink control information at the PDCCH search position.
  • the terminal separately monitors the target sequence on all or part of the m subbands, including:
  • the terminal monitors the target sequence at a first time domain position on all or part of the m subbands respectively;
  • the first time domain position is a predefined time-frequency position of communication.
  • the BWP configuration information is semi-static configuration information.
  • a method for sending downlink control information includes:
  • the access network device sends BWP configuration information to the terminal, where the BWP configuration information is used to configure the target BWP located in the unlicensed frequency band and including m subbands;
  • the access network device performs LBT on the m subbands, and determines n target subbands according to the LBT result;
  • the access network device sends a target sequence on the n target subbands
  • the access network device sends downlink control information to the terminal on all or part of the m subbands;
  • n is a positive integer not greater than m.
  • the m subbands are continuous in the frequency domain.
  • the access network device performs LBT on the m subbands, and determines n target subbands according to the LBT result, further including:
  • the access network device performs LBT on the m subbands, and determines the n subbands where the LBT succeeds as the n target subbands.
  • the access network device performs LBT on the m subbands, and determines n target subbands according to the LBT result, further including:
  • the access network device performs LBT on the m subbands, and determines k subbands where LBT succeeds;
  • the access network device determines n target subbands for transmitting the downlink control information among the k subbands.
  • the access network device sending downlink control information to the terminal on all or part of the m subbands includes:
  • the access network device sends downlink control information to the terminal on each subband of the m subbands.
  • the access network device sending downlink control information to the terminal on all or part of the m subbands includes:
  • the access network device sends downlink control information to the terminal on all or part of the n target subbands.
  • the access network device sending downlink control information to the terminal on all or part of the m subbands includes:
  • the access network device sends downlink control information to the terminal on each subband of the n target subbands, where the downlink control information is used to schedule time-frequency resources on the k subbands.
  • the method further includes:
  • the access network device sends the control resource set of the m subbands to the terminal.
  • the access network device sending the target sequence on the n target subbands includes:
  • the access network device respectively sends the target sequence at the first time domain position on the n subbands
  • the first time domain position is a pre-determined time-frequency position of the communication protocol or a pre-configured position of the access network device in the configuration process of the target BWP.
  • a downlink control information receiving apparatus including:
  • the receiving module is configured to receive the BWP configuration information sent by the access network device.
  • the BWP configuration information is used to configure the target BWP located in the unlicensed frequency band and including m subbands;
  • the processing module is configured to determine m subbands of the target BWP according to the BWP configuration information
  • the processing module is configured to monitor the target sequence on the m subbands respectively;
  • the processing module is configured to monitor downlink control information on all or part of the m subbands after monitoring the target sequence;
  • n is a positive integer greater than 1.
  • the m subbands are continuous in the frequency domain.
  • the processing module is configured to monitor the downlink control information on each of the m subbands.
  • the processing module is configured to determine n target subbands that have heard the target sequence, where n is a positive integer not greater than m; in the n target subbands Monitoring the downlink control information on at least one subband;
  • the target sequence is sent by the access network device when the LBT on the target subband is successful, or the target sequence is the target used by the access network device to transmit the downlink control information Sent on the subband.
  • the receiving module is configured to receive the control resource set of the m subbands from the access network device;
  • the processing module is configured to determine a PDCCH search position on the n target subbands according to the control resource set of the m subbands, the search position having different frequency domains located in the n target subbands Position and the same time domain position; monitoring the downlink control information at the PDCCH search position.
  • the processing module is configured to monitor the target sequence at the first time domain position on all or part of the m subbands respectively;
  • the first time domain position is a pre-determined time-frequency position of the communication protocol or a pre-configured position of the access network device in the configuration process of the target BWP.
  • the BWP configuration information is semi-static configuration information.
  • a device for sending downlink control information includes:
  • the sending module is configured to send BWP configuration information to the terminal, where the BWP configuration information is used to configure a target BWP located in the unlicensed frequency band and including m subbands;
  • the processing module is configured to perform LBT on the m subbands, and determine n target subbands according to the LBT result;
  • the sending module is configured to send a target sequence on the n target subbands
  • the sending module is configured to send downlink control information to the terminal on all or part of the m subbands;
  • n is a positive integer not greater than m.
  • the m subbands are continuous in the frequency domain.
  • the processing module is configured to perform LBT on the m sub-bands, and determine n sub-bands where LBT is successful as the n target sub-bands.
  • the processing module is configured to perform LBT on the m subbands by the access network device, and determine k subbands where LBT succeeds; the access network device is in the Among the k subbands, n target subbands for transmitting the downlink control information are determined.
  • the sending module is configured to send downlink control information to the terminal on each of the m subbands.
  • the sending module is configured to send downlink control information to the terminal on all or part of the n target subbands.
  • the sending module is configured to send downlink control information to the terminal on each of the n target subbands, and the downlink control information is used to schedule the k Time-frequency resources on each subband.
  • the sending module is configured to send the control resource set of the m subbands to the terminal.
  • the sending module is configured to send the target sequence at the first time domain position on the n subbands respectively;
  • the first time-domain position is a time-frequency position predefined by a communication protocol or a time-domain position pre-configured by the access network device in the configuration process of the target BWP.
  • a terminal including:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • the receiving module is configured to receive BWP configuration information sent by the access network device,
  • the processing module is configured to determine a target BWP located in the unlicensed frequency band according to the BWP configuration information, where the target BWP includes m subbands;
  • the processing module is configured to monitor the target sequence on the m subbands respectively;
  • the processing module is configured to monitor downlink control information on all or part of the m subbands after monitoring the target sequence;
  • n is a positive integer greater than 1.
  • an access network device includes:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • a sending module configured to send BWP configuration information to a terminal, where the BWP configuration information is used to configure a target BWP, and the target BWP includes m subbands;
  • the processing module is configured to perform LBT on the m subbands, and determine n target subbands according to the LBT result;
  • the sending module is configured to send a target sequence on the n target subbands
  • the sending module is configured to send downlink control information to the terminal on all or part of the m subbands;
  • n is a positive integer not greater than m.
  • a non-transitory computer-readable storage medium on which a computer program is stored, which when executed by a processor implements the DCI receiving method or DCI transmitting method as described above.
  • a computer program product on which a computer program is stored, which when executed by a processor implements the DCI receiving method or DCI sending method as described above.
  • the target sequence is sent on the n subbands where LBT succeeds, and then DCI is sent.
  • Monitoring DCI on all or part of the subbands of the band can effectively reduce the number of PDCCH searches and search power consumption of the terminal, and avoid unnecessary power and power consumption by the terminal.
  • Fig. 1 is a schematic diagram of a communication system according to an exemplary embodiment
  • Fig. 2 is a flowchart of a DCI receiving method according to an exemplary embodiment
  • Fig. 3 is a schematic diagram of a BWP according to an exemplary embodiment
  • Fig. 4 is a block diagram of a DCI receiving device according to an exemplary embodiment
  • Fig. 5 is a schematic diagram of an implementation of a DCI receiving method according to an exemplary embodiment
  • Fig. 6 is a schematic diagram of an implementation of a DCI receiving method according to an exemplary embodiment
  • Fig. 7 is a block diagram of a DCI receiving device according to an exemplary embodiment
  • Fig. 8 is a schematic diagram of an implementation of a DCI receiving method according to an exemplary embodiment
  • Fig. 9 is a block diagram of a DCI receiving device according to an exemplary embodiment
  • Fig. 10 is a schematic diagram of an implementation of a DCI receiving method according to an exemplary embodiment
  • Fig. 11 is a block diagram of a DCI receiving device according to an exemplary embodiment
  • Fig. 12 is a block diagram of a DCI sending device according to an exemplary embodiment
  • Fig. 13 is a schematic structural diagram of an access network device according to an exemplary embodiment
  • Fig. 14 is a schematic structural diagram of a terminal according to an exemplary embodiment.
  • Fig. 1 is a schematic diagram of a mobile communication system according to an exemplary embodiment.
  • the mobile communication system may include: an access network device 110 and a terminal 120.
  • the access network device 110 is deployed in the access network.
  • the access network in the 5G NR system can be called NG-RAN (New Generation-Radio Access Network, a new generation wireless access network).
  • the access network device 110 and the terminal 120 communicate with each other through some air interface technology, for example, they can communicate with each other through cellular technology.
  • the access network device 110 is a device deployed in the access network to provide the terminal 120 with a wireless communication function.
  • the access network device 110 may include various forms of macro base stations, micro base stations, relay stations, access points, and so on.
  • the names of devices with base station functions may be different.
  • gNodeB In systems using different wireless access technologies, the names of devices with base station functions may be different.
  • base station As the communication technology evolves, the name "base station" may change.
  • the above devices that provide a wireless communication function for the terminal 120 are collectively referred to as a base station.
  • the number of terminals 120 is usually multiple, and one or more terminals 120 may be distributed in the cell managed by each access network device 110.
  • the terminal 120 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to a wireless modem, as well as various forms of user equipment (User Equipment, UE), mobile stations ( Mobile Station, MS), Terminal Device, etc.
  • UE User Equipment
  • MS Mobile Station
  • Terminal Device etc.
  • terminals the above-mentioned devices are collectively referred to as terminals.
  • the "5G NR system" in the embodiments of the present application may also be referred to as a 5G system or an NR system, but those skilled in the art can understand the meaning.
  • the technical solutions described in the embodiments of the present application may be applicable to the 5G NR system, and may also be applicable to the subsequent evolution system of the 5G NR system.
  • the unlicensed spectrum can be used for communication between the access network device 110 and the terminal 120. That is, the access network device 110 and the terminal 120 may be the access network device 110 and the terminal 120 in the NR-U independent networking scenario.
  • FIG. 2 shows a flowchart of a DCI receiving method provided by an exemplary embodiment of the present application. This method can be applied to the communication system shown in FIG. 1.
  • the method includes:
  • Step 201 the access network device sends BWP configuration information to the terminal;
  • the BWP configuration information is used to configure the target BWP located in the unlicensed spectrum and including m subbands.
  • the target BWP is a BWP, and the target BWP may be an upstream BWP and / or a downstream BWP.
  • the target BWP is a BWP belonging to an unlicensed band.
  • the target BWP includes m subbands, and m is a positive integer greater than 1.
  • m is 2, 3, 4, 5, 6, 8, etc.
  • the target BWP includes four subbands: subband 1, subband 2, subband 3, and subband 4, each subband occupying 20 kHZ.
  • m subbands are continuous in the frequency domain. That is, the m subbands are m consecutive subbands in the frequency domain.
  • the access network device sends a radio resource control (Radio Resource Control, RRC) message to the terminal, where the RRC message carries BWP configuration information.
  • RRC Radio Resource Control
  • the BWP configuration information is semi-static configuration information.
  • Semi-static configuration information refers to the information that keeps using this configuration before receiving the configuration information sent next time.
  • Step 202 The terminal receives the BWP configuration information sent by the access network device, and determines m subbands of the target BWP according to the BWP configuration information;
  • the terminal receives the RRC message sent by the access network device, and obtains BWP configuration information from the RRC message.
  • the terminal determines the target BWP in the unlicensed band according to the BWP configuration information.
  • the terminal also determines m subbands according to the BWP configuration information.
  • the division information of the m subbands is carried in the BWP configuration information, or the division information of the m subbands is predefined by the communication protocol, or the division information of the m subbands is performed by the access network device through other control information send.
  • Step 203 the access network device performs LBT on m subbands, and determines n target subbands according to the LBT result;
  • the access network device Since the m subbands are unlicensed spectrum, the access network device needs to perform LBT on the m subbands to determine whether each of the m subbands is occupied.
  • the access network device After obtaining the LBT result, the access network device determines n target subbands.
  • the n target subbands are all subbands in which the LBT succeeds in the m subbands.
  • the n target subbands are subbands used for sending downlink DCI, and the n target subbands are all or part of the subbands where LBT succeeds.
  • Step 204 the access network device sends a target sequence on n target subbands
  • the target sequence may be a pseudo-random sequence, and the pseudo-random sequence occupies relatively few time-frequency resources. For example, the target sequence occupies only one symbol in the time domain.
  • the time-domain position used to transmit the target sequence is predetermined by the communication protocol. For example, when transmission is required, transmission is performed on the first symbol of each subframe.
  • Step 205 the terminal monitors the target sequence on the m subbands respectively;
  • the terminal monitors the target sequence on each of the m sub-bands separately, and determines that several sub-bands of the target sequence are successfully monitored.
  • Step 206 the access network device sends DCI to the terminal on n target subbands
  • Step 207 After monitoring the target sequence, the terminal monitors the downlink control information on all or part of the m subbands.
  • the DCI receiving method provided in this embodiment divides a BWP into m subbands, and the access network device performs LBT on the m subbands, and then sends the target sequence on the n subbands where LBT succeeds.
  • the terminal monitors the DCI on all or part of the m subbands after listening to the target sequence, which can effectively reduce the number of PDCCH searches and search power consumption of the terminal, and avoid unnecessary power and power consumption by the terminal.
  • the target sequence may have different meanings:
  • the target sequence is used to trigger the terminal to receive the DCI in the PDCCH.
  • the target sequence is used to identify the subbands where LBT succeeds, that is, the available subbands.
  • the target sequence is used to identify the subband with DCI sent.
  • FIG. 4 shows a flowchart of a DCI receiving method provided by another exemplary embodiment of the present application. This method can be applied to the communication system shown in FIG. 1.
  • the method includes:
  • Step 401 the access network device sends BWP configuration information to the terminal;
  • the BWP configuration information is used to configure the target BWP located in the unlicensed spectrum and including m subbands.
  • the target BWP is a BWP, and the target BWP may be an upstream BWP and / or a downstream BWP.
  • the target BWP is a BWP belonging to an unlicensed band.
  • the target BWP includes m subbands, and m is a positive integer greater than 1.
  • m is 2, 3, 4, 5, 6, 8, etc.
  • m subbands are continuous in the frequency domain. That is, the m subbands are m consecutive subbands in the frequency domain.
  • the access network device sends an RRC message to the terminal, where the RRC message carries BWP configuration information.
  • the BWP configuration information is semi-static configuration information.
  • Semi-static configuration information refers to the information that keeps using this configuration before receiving the configuration information sent next time.
  • Step 402 the terminal receives the BWP configuration information sent by the access network device, and determines m subbands of the target BWP according to the BWP configuration information;
  • the terminal receives the RRC message sent by the access network device, and obtains BWP configuration information from the RRC message.
  • the terminal determines the target BWP in the unlicensed band according to the BWP configuration information.
  • the terminal also determines m subbands according to the BWP configuration information.
  • the division information of the m subbands is carried in the BWP configuration information, or the division information of the m subbands is predefined by the communication protocol, or the division information of the m subbands is performed by the access network device through other control information send.
  • Step 403 the access network device performs LBT on m subbands, and determines n target subbands according to the LBT result;
  • the access network device Since the m subbands are unlicensed spectrum, the access network device needs to perform LBT on the m subbands to determine whether each of the m subbands is occupied.
  • the access network device determines at least one subband among the m subbands as the target subband.
  • the access network device determines n target subbands among the k subbands where LBT succeeds.
  • m, k, n are all positive integers, k is not greater than m, n is not greater than k.
  • the access network device determines a certain subband (or part of subbands) among the k subbands as the target subband, for example, determines any subband as the target subband and determines the first subband Is the target subband, and the last subband is determined as the target subband.
  • the access network device determines all subbands in the k subbands as target subbands.
  • Step 404 the access network device sends the target sequence at the first time domain position of the n target subbands
  • the target sequence may be a pseudo-random sequence, and the pseudo-random sequence occupies relatively few time-frequency resources. For example, the target sequence occupies only one symbol in the time domain.
  • the first time domain position used for sending the target sequence is predefined by the communication protocol. For example, when transmission is required, transmission is performed on the first symbol of each subframe.
  • the first time domain location is pre-configured by the access network device during the configuration process of the target BWP. For example, the first time domain location is carried in BWP configuration information.
  • Step 405 the terminal monitors the target sequence at the first time domain position on the m subbands respectively;
  • Step 406 the access network device sends DCI to the terminal on n target subbands
  • the access network device sends m-subband control resource sets (Control-Resource SET, CORESET) to the terminal in advance.
  • the CORESET carries information on the location of candidate time-frequency resources for sending the PDCCH on each subband, for example, information such as the frequency band occupied in the PDCCH frequency domain and the number of OFDM symbols occupied in the time domain.
  • Step 407 after monitoring the target sequence, the terminal monitors DCI on each of the m subbands;
  • the terminal monitors the DCI on all subbands of the m subbands.
  • the terminal receives CORESETs of m subbands sent by the access network device in advance, determines candidate time-frequency resource positions of the PDCCH according to CORESET, so as to determine a search space of the PDCCH, and then performs blind detection reception on DCI according to the search space of the PDCCH.
  • the access network device configures 4 subbands to the terminal, and then LBT succeeds in subband 2 and subband 4, that is, subband 2 and subband 4 are not occupied, and subband 1 and subband 3 is occupied, at this time, the access network device may determine the subband 2 as the target subband, and send the target sequence 41 on the first symbol of the subband 2, the first symbol is a pre-defined time domain position of the communication protocol. After listening to the target sequence 41 on the subband 2, the terminal is ready to receive DCI.
  • the access network device sends DCI 1 on subband 2, and after receiving the DCI 1 on subband 2, the terminal receives or sends data 1 on subband 2 according to DCI; on the other hand, the access network device DCI 2 is sent on sub-band 4. After receiving DCI 2 on sub-band 4, the terminal receives or sends data 2 on sub-band 4 according to DCI 2.
  • the terminal after the target sequence is sent on the target subband through the access network device, the terminal prepares to receive DCI after listening to the target sequence, that is, the target sequence is used to trigger the terminal to start receiving DCI , So that the access network device and the terminal only need to activate one BWP, and when the access network device fails LBT in all subbands and does not send the target sequence, the terminal does not need to perform blind detection on the PDCCH, thereby effectively reducing the terminal ’s search on the PDCCH Times and search power consumption to avoid unnecessary power and power consumption by the terminal.
  • FIG. 6 shows a flowchart of a DCI receiving method provided by another exemplary embodiment of the present application. This method can be applied to the communication system shown in FIG. 1. The method includes:
  • Step 601 the access network device sends BWP configuration information to the terminal;
  • the BWP configuration information is used to configure the target BWP located in the unlicensed spectrum and including m subbands.
  • the target BWP is a BWP, and the target BWP may be an upstream BWP and / or a downstream BWP.
  • the target BWP is a BWP belonging to an unlicensed band.
  • m subbands are continuous in the frequency domain. That is, the m subbands are m consecutive subbands in the frequency domain.
  • the target BWP includes m subbands, and m is a positive integer greater than 1.
  • the access network device sends an RRC message to the terminal, where the RRC message carries BWP configuration information.
  • the BWP configuration information is semi-static configuration information.
  • Semi-static configuration information refers to the information that keeps using this configuration before receiving the configuration information sent next time.
  • Step 602 the terminal receives the BWP configuration information sent by the access network device, and determines m subbands of the target BWP according to the BWP configuration information;
  • the terminal receives the RRC message sent by the access network device, and obtains BWP configuration information from the RRC message.
  • the terminal determines the target BWP in the unlicensed band according to the BWP configuration information.
  • the terminal also determines m subbands according to the BWP configuration information.
  • the division information of the m subbands is carried in the BWP configuration information, or the division information of the m subbands is predefined by the communication protocol, or the division information of the m subbands is performed by the access network device through other control information send.
  • Step 603 the access network device sends m subband CORESET to the terminal;
  • the access network device sends CORESET of m subbands to the terminal in advance.
  • the CORESET carries information on the location of candidate time-frequency resources for sending the PDCCH on each subband, for example, information such as the frequency band occupied in the PDCCH frequency domain and the number of OFDM symbols occupied in the time domain.
  • Step 604 The terminal receives CORESETs of m subbands sent by the access network device;
  • the terminal receives CORESETs of m subbands sent by the access network device, and determines the candidate time-frequency resource positions of the PDCCH according to CORESET.
  • Step 605 the access network device performs LBT on m subbands, and determines the n subbands where the LBT succeeds as n target subbands;
  • the access network device Since the m subbands are unlicensed spectrum, the access network device needs to perform LBT on the m subbands to determine whether each of the m subbands is occupied.
  • the access network device determines all the n subbands as target subbands.
  • Step 606 The access network device sends the target sequence at the first time domain position of the n target subbands
  • the target sequence may be a pseudo-random sequence, and the pseudo-random sequence occupies relatively few time-frequency resources. For example, the target sequence occupies only one symbol in the time domain.
  • the first time domain position used for transmitting the target sequence is predefined by the communication protocol, for example, when transmission is required, transmission is performed on the first symbol of each subframe.
  • the first time domain location is pre-configured by the access network device during the configuration process of the target BWP.
  • the first time domain location is carried in BWP configuration information.
  • Step 607 The terminal monitors the target sequence at the first time domain position on the m subbands respectively, and determines n subbands where the target sequence is monitored;
  • the terminal monitors the target sequence at the first time domain position on the m sub-bands respectively, and determines n sub-bands where the target sequence is monitored.
  • the terminal determines that the target sub-band is a successful LBT sub-band.
  • Step 608 The access network device sends DCI to the terminal on at least one subband of the n target subbands;
  • the access network device sends DCI on each of the n target subbands.
  • the DCI on each subband carries scheduling information of time-frequency resources on the subband.
  • the access network device sends DCI only on a part of the n target subbands, and the DCI carries n target subbands Scheduling information on time-frequency resources.
  • Step 609 After monitoring the target sequence, the terminal monitors DCI on at least one subband of the n target subbands;
  • the terminal determines the search space of the PDCCH on n target subbands according to CORESET. According to the search space of the PDCCH, blindly detect and receive DCI on n target subbands.
  • the access network device configures 4 subbands to the terminal, and then LBT succeeds in subband 2 and subband 4, that is, subband 2 and subband 4 are not occupied, and subband 1 and subband 3 is occupied, at this time, the access network device can determine subband 2 and subband 4 as the target subband, and send the target sequence 41 on the first symbol of subband 2 and subband 4, the first symbol is predefined by the communication protocol Time domain position. After listening to the target sequence 41 on the subband 2 and the subband 4, the terminal prepares to receive DCI on the subband 2 and the subband 4.
  • the access network device sends DCI 1 on subband 2, and the terminal receives or sends data 1 on subband 2 according to DCI 1 after receiving DCI 1 on subband 2; DCI 2 is sent on sub-band 4. After receiving DCI 2 on sub-band 4, the terminal receives or sends data 2 on sub-band 4 according to DCI 2.
  • the access network device configures 4 subbands to the terminal, and then LBT succeeds on subband 2 and subband 4, that is, subband 2 and subband 4 are not occupied, and subband 1 and subband 3 is occupied, at this time, the access network device can determine subband 2 and subband 4 as the target subband, and send the target sequence 41 on the first symbol of subband 2 and subband 4, the first symbol is predefined by the communication protocol Time domain position. After listening to the target sequence 41 on the subband 2 and the subband 4, the terminal prepares to receive DCI on the subband 2 and the subband 4.
  • the access network device sends DCI 1 on sub-band 2 (or sub-band 4), and after the terminal receives DCI 1 on sub-band 2, it transmits the sub-band according to DCI 1. 2 on and subband 4 to receive or send data.
  • the target sequence is sent on the n target subbands, and the terminal can learn that the LBT succeeds after listening to the target sequence Of n target subbands, only DCI is ready to receive DCI on the n target subbands, so that the access network device and the terminal only need to activate one BWP, and the access network device only needs to send the target sequence on the n target subbands,
  • the terminal also only needs to perform blind detection on the PDCCH on n target subbands, thereby effectively reducing the number of PDCCH searches and search power consumption of the terminal, and avoiding unnecessary power and power consumption by the terminal.
  • FIG. 9 shows a flowchart of a DCI receiving method provided by another exemplary embodiment of the present application. This method can be applied to the communication system shown in FIG. 1.
  • the method includes:
  • Step 901 the access network device sends BWP configuration information to the terminal;
  • the BWP configuration information is used to configure the target BWP located in the unlicensed frequency band and including m subbands.
  • the target BWP is a BWP, and the target BWP may be an upstream BWP and / or a downstream BWP.
  • the target BWP is a BWP belonging to an unlicensed band.
  • m subbands are continuous in the frequency domain. That is, the m subbands are m consecutive subbands in the frequency domain.
  • the target BWP includes m subbands, and m is a positive integer greater than 1.
  • the access network device sends an RRC message to the terminal, where the RRC message carries BWP configuration information.
  • the BWP configuration information is semi-static configuration information.
  • Semi-static configuration information refers to the information that keeps using this configuration before receiving the configuration information sent next time.
  • Step 902 the terminal receives the BWP configuration information sent by the access network device, and determines m subbands of the target BWP according to the BWP configuration information;
  • the terminal receives the RRC message sent by the access network device, and obtains BWP configuration information from the RRC message.
  • the terminal determines the target BWP in the unlicensed band according to the BWP configuration information.
  • the terminal also determines m subbands according to the BWP configuration information.
  • the division information of the m subbands is carried in the BWP configuration information, or the division information of the m subbands is predefined by the communication protocol, or the division information of the m subbands is performed by the access network device through other control information send.
  • Step 903 The access network device sends m subband CORESET to the terminal;
  • the access network device sends m-subband control resource sets (Control-Resource SET, CORESET) to the terminal in advance.
  • the CORESET carries information on the location of candidate time-frequency resources for sending the PDCCH on each subband, for example, information such as the frequency band occupied in the PDCCH frequency domain and the number of OFDM symbols occupied in the time domain.
  • Step 904 the terminal receives CORESETs of m subbands sent by the access network device;
  • the terminal receives CORESETs of m subbands sent by the access network device, and determines the candidate time-frequency resource positions of the PDCCH according to CORESET.
  • Step 905 the access network device performs LBT on m subbands, and determines k subbands where LBT succeeds;
  • the access network device Since the m subbands are unlicensed spectrum, the access network device needs to perform LBT on the m subbands to determine whether each of the m subbands is occupied.
  • the LBT result is that there are k subbands that are unoccupied subbands.
  • Step 906 the access network device determines n target subbands for transmitting DCI among the k subbands;
  • the access network device determines all or part of the k subbands as n target subbands.
  • the access network device determines to determine all or part of the k subbands as n target subbands according to the data amount of DCI to be transmitted.
  • the access network device determines n target subbands among the k subbands where LBT succeeds.
  • m, k, n are all positive integers, k is not greater than m, n is not greater than k.
  • the n target subbands are subbands used to transmit DCI.
  • Step 907 The access network device sends the target sequence at the first time domain position of the n target subbands
  • the target sequence may be a pseudo-random sequence, and the pseudo-random sequence occupies relatively few time-frequency resources. For example, the target sequence occupies only one symbol in the time domain.
  • the first time domain position used for transmitting the target sequence is predefined by the communication protocol, for example, when transmission is required, transmission is performed on the first symbol of each subframe.
  • the first time domain location is pre-configured by the access network device during the configuration process of the target BWP.
  • the first time domain location is carried in BWP configuration information.
  • step 908 the terminal monitors the target sequence at the first time domain position on the m subbands respectively, and determines n subbands where the target sequence is monitored;
  • the terminal monitors the target sequence at the first time domain position on the m sub-bands respectively, and determines n sub-bands where the target sequence is monitored.
  • the terminal determines that the target sub-band is a successful LBT sub-band.
  • Step 909 the access network device sends DCI to the terminal on n target subbands
  • the access network device sends DCI on each of the n target subbands.
  • the DCI on each subband carries scheduling information of time-frequency resources on the subband.
  • the DCI on the n target subbands carries scheduling information of time-frequency resources on the k target subbands.
  • Step 910 after monitoring the target sequence, the terminal monitors DCI on n target subbands;
  • the terminal determines the search space of the PDCCH on n target subbands according to CORESET. According to the search space of the PDCCH, blindly detect and receive DCI on n target subbands.
  • the access network device configures 4 subbands to the terminal, and then LBT succeeds in subband 2, subband 3, and subband 4, that is, subband 2, subband 3, and subband 4 are not Occupied, and subband 1 is occupied, at this time, the access network device can determine subband 3 and subband 4 as the target subband, and send the target sequence 41 on the first symbol of subband 3 and subband 4, the first symbol is The predefined time domain position of the communication protocol. After listening to the target sequence 41 on the subband 3 and the subband 4, the terminal prepares to receive DCI on the subband 3 and the subband 4. The access network device sends DCI on subband 3 and subband 4, and after receiving DCI on subband 3 and subband 4, the terminal receives or sends data on subband 2, subband 3, and subband 4 according to the DCI.
  • the method provided in this embodiment determines n target subbands out of the k subbands where LBT succeeds through the access network device, sends the target sequence on the n target subbands, and the terminal monitors the target sequence After that, it is possible to know the n target subbands where LBT succeeds, and only prepare to receive DCI on the n target subbands, so that the access network device and the terminal only need to activate one BWP, and the access network device only needs to be in the n target subbands When the target sequence is transmitted, the terminal only needs to perform blind detection on the PDCCH on n target subbands, thereby effectively reducing the number of PDCCH searches and search power consumption of the terminal, and avoiding unnecessary power and power consumption by the terminal.
  • steps related to the access network device in the above embodiments can be implemented separately as the DCI sending method on the access network device side, and the steps related to the terminal can be implemented separately as the DCI receiving method on the terminal side.
  • Fig. 11 is a block diagram of a DCI receiving device according to an exemplary embodiment.
  • the DCI receiving device may be implemented as part or all of a terminal through software, hardware, or a combination of the two.
  • the DCI receiving device may include:
  • the receiving module 1120 is configured to receive BWP configuration information sent by an access network device, where the BWP configuration information is used to configure a target BWP that is located in an unlicensed band and includes m subbands;
  • the processing module 1140 is configured to determine a target BWP according to the BWP configuration information, where the target BWP includes m subbands;
  • the processing module 1140 is configured to monitor target sequences on the m subbands respectively;
  • the processing module 1140 is configured to monitor downlink control information on all or part of the m subbands after monitoring the target sequence;
  • n is a positive integer greater than 1.
  • m subbands are continuous in the frequency domain.
  • the processing module 1140 is configured to monitor the downlink control information on each of the m subbands.
  • the processing module 1140 is configured to determine n target subbands that have heard the target sequence, where n is a positive integer not greater than m; in the n target subbands Monitoring the downlink control information on at least one subband of
  • the target sequence is sent by the access network device when the LBT on the target subband is successful, or the target sequence is the target used by the access network device to transmit the downlink control information Sent on the subband.
  • the receiving module is configured to receive the control resource set of the m subbands from the access network device;
  • the processing module 1140 is configured to determine PDCCH search positions on the n target subbands according to the control resource set of the m subbands, the search positions having different frequencies located in the n target subbands Domain position and the same time domain position; monitoring the downlink control information at the PDCCH search position.
  • the processing module 1140 is configured to monitor the target sequence at the first time domain position on all or part of the m subbands respectively;
  • the first time-domain position is a time-frequency position predefined by the communication protocol or a time-domain position pre-configured by the access network device during the configuration process of the target BWP.
  • the BWP configuration information is semi-static configuration information.
  • Fig. 12 is a block diagram of a DCI sending device according to an exemplary embodiment.
  • the DCI receiving device may be implemented as part or all of a server through software, hardware, or a combination of the two.
  • the DCI sending device may include:
  • the sending module 1220 is configured to send BWP configuration information to the terminal, where the BWP configuration information is used to configure a target BWP that is located in an unlicensed band and includes m subbands;
  • the processing module 1240 is configured to perform LBT on the m subbands, and determine n target subbands according to the LBT result;
  • the sending module 1220 is configured to send a target sequence on the n target subbands
  • the sending module 1220 is configured to send downlink control information to the terminal on all or part of the m subbands;
  • n is a positive integer not greater than m.
  • m subbands are continuous in the frequency domain.
  • the processing module 1240 is configured to perform LBT on the m sub-bands, and determine n sub-bands where LBT succeeds as the n target sub-bands.
  • the processing module 1240 is configured to perform LBT on the m subbands by the access network device, and determine k subbands where LBT succeeds; the access network device is located in all Among the k subbands, n target subbands for transmitting the downlink control information are determined.
  • the sending module 1220 is configured to send downlink control information to the terminal on each of the m subbands.
  • the sending module 1220 is configured to send downlink control information to the terminal on all or part of the n target subbands.
  • the sending module 1220 is configured to send downlink control information to the terminal on each of the n target subbands, and the downlink control information is used to schedule the Time-frequency resources on k subbands.
  • the sending module 1220 is configured to send the control resource set of the m subbands to the terminal.
  • the sending module 1220 is configured to send the target sequence at the first time domain position on the n subbands respectively;
  • the first time-domain position is a time-frequency position predefined by the communication protocol or a time-domain position pre-configured by the access network device during the configuration process of the target BWP.
  • the access network device and the terminal include a hardware structure and / or a software module corresponding to each function.
  • the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed by hardware or computer software driven hardware depends on the specific application and design constraints of the technical solution. A person skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be considered to exceed the scope of the technical solutions of the embodiments of the present disclosure.
  • Fig. 13 is a schematic structural diagram of an access network device according to an exemplary embodiment.
  • the access network device 1300 includes a transmitter / receiver 1301 and a processor 1302.
  • the processor 1302 may also be a controller, which is represented as "controller / processor 1302" in FIG.
  • the transmitter / receiver 1301 is used to support sending and receiving information between the access network device and the terminal in the foregoing embodiment, and to support communication between the access network device and other network entities.
  • the processor 1302 performs various functions for communicating with the terminal.
  • the uplink signal from the terminal is received via an antenna, demodulated by the receiver 1301 (for example, demodulating a high-frequency signal into a baseband signal), and further processed by the processor 1302 to recover the terminal Send to business data and signaling messages.
  • the service data and signaling messages are processed by the processor 1302 and modulated by the transmitter 1301 (for example, modulating the baseband signal to a high-frequency signal) to generate a downlink signal and transmitted to the terminal via the antenna .
  • the above demodulation or modulation function may also be completed by the processor 1302.
  • the processor 1302 is further configured to execute various steps on the access network device side in the foregoing method embodiments, and / or other steps of the technical solutions described in the embodiments of the present disclosure.
  • the access network device 1300 may further include a memory 1303, and the memory 1303 is used to store the program code and data of the access network device 1300.
  • the access network device 1300 may further include a communication unit 1304.
  • the communication unit 1304 is used to support the access network device 1300 to communicate with other network entities (such as network devices in the core network).
  • the communication unit 1304 may be an NG-U interface for supporting the access network device 1300 to communicate with a UPF (User Plane Function) entity; or, the communication unit 1304 may also It is an NG-C interface, used to support the access network device 1300 to communicate with the AMF (Access and Mobility Management Function, access and mobility management function) entity.
  • UPF User Plane Function
  • AMF Access and Mobility Management Function, access and mobility management function
  • FIG. 13 only shows a simplified design of the access network device 1300.
  • the access network device 1300 may include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all access network devices that can implement the embodiments of the present disclosure are included in the present disclosure Within the scope of protection of the embodiment.
  • Fig. 14 is a schematic structural diagram of a terminal according to an exemplary embodiment.
  • the terminal 1400 includes a transmitter 1401, a receiver 1402, and a processor 1403.
  • the processor 1403 may also be a controller, which is represented as “controller / processor 1403” in FIG. 6.
  • the terminal 1400 may further include a modem processor 1405, where the modem processor 1405 may include an encoder 1406, a modulator 1407, a decoder 1408, and a demodulator 1409.
  • the transmitter 1401 adjusts (eg, analog conversion, filtering, amplification, and up-conversion, etc.) the output sample and generates an uplink signal, which is transmitted via the antenna to the connection described in the above embodiment.
  • Network access equipment On the downlink, the antenna receives the downlink signal transmitted by the access network device in the above embodiment.
  • the receiver 1402 adjusts (eg, filters, amplifies, down-converts, digitizes, etc.) the signal received from the antenna and provides input samples.
  • the encoder 1406 receives service data and signaling messages to be sent on the uplink, and processes the service data and signaling messages (eg, formatting, encoding, and interleaving).
  • the modulator 1407 further processes (eg, symbol mapping and modulation) the encoded service data and signaling messages and provides output samples.
  • the demodulator 1409 processes (e.g., demodulates) the input samples and provides symbol estimates.
  • the decoder 1408 processes (eg, deinterleaves and decodes) the symbol estimate and provides the decoded data and signaling messages sent to the terminal 1400.
  • the encoder 1406, the modulator 1407, the demodulator 1409, and the decoder 1408 may be implemented by a synthesized modem processor 1405. These units are processed according to the radio access technology adopted by the radio access network (for example, the access technology of LTE and other evolved systems). It should be noted that, when the terminal 1400 does not include the modem processor 1405, the above functions of the modem processor 1405 may also be completed by the processor 1403.
  • the processor 1403 controls and manages the operations of the terminal 1400, and is used to execute the processing procedure performed by the terminal 1400 in the foregoing embodiment of the present disclosure.
  • the processor 1403 is further configured to execute various steps on the terminal side in the foregoing method embodiments, and / or other steps of the technical solution described in the embodiments of the present disclosure.
  • the terminal 1400 may further include a memory 1404, and the memory 1404 is used to store program codes and data for the terminal 1400.
  • FIG. 14 only shows a simplified design of the terminal 1400.
  • the terminal 1400 may include any number of transmitters, receivers, processors, modem processors, memories, etc., and all terminals that can implement the embodiments of the present disclosure are within the protection scope of the embodiments of the present disclosure Inside.
  • An embodiment of the present disclosure also provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor of an access network device, the computer program is implemented as described above on the access network device side. DCI sending method.
  • An embodiment of the present disclosure also provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by the processor of the terminal, the DCI receiving method on the terminal side as described above is implemented.
  • An embodiment of the present disclosure also provides a computer program product on which a computer program is stored, and when the computer program is executed by a processor of an access network device, implements the DCI sending method on the access network device side as described above.
  • An embodiment of the present disclosure also provides a computer program product on which a computer program is stored, and when the computer program is executed by the processor of the terminal, the DCI receiving method on the terminal side as described above is implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请是关于一种下行控制信息接收方法、装置及存储介质,属于通信领域。所述方法包括:终端接收接入网设备发送的BWP配置信息;所述终端根据所述BWP配置信息确定位于免授权频段的目标BWP,所述目标BWP包括m个子带;所述终端在所述m个子带上分别监听目标序列;所述终端在监听到所述目标序列后,在所述m个子带上的全部或部分子带上监听下行控制信息。本申请通过终端在监听到目标序列后才在m个子带的全部或部分子带上监听DCI,能够有效地降低终端在PDCCH搜索次数和搜索功耗,避免终端进行不必要的功率和电量消耗。

Description

下行控制信息接收方法、装置及存储介质 技术领域
本申请涉及通信领域,特别涉及一种DCI(Downlink Control Information,下行控制信息)接收方法、发送方法、装置及存储介质。
背景技术
在5G NR(New Radio,新空口)系统中,引入了BWP(Bandwidth Part,带宽分片)的概念,即对于一个终端而言,一个频带被划分成若干个BWP,终端在一个时段内被配置多个BWP,但同一时间只有一个激活(activate)BWP,终端仅监听该激活BWP上的DCI信令。
终端在获取到基站为其配置的激活BWP之后,可以在该激活BWP上监听基站发送的PDCCH(Physical Downlink Control Channel,物理下行控制信道)并盲检DCI。而后,终端可以根据接收到的DCI去接收基站在PDSCH(Physical Downlink Shared Channel,物理下行共享信道)上发送的下行数据,或者根据接收到的DCI通过PUSCH(Physical Uplink Shared Channel,物理上行共享信道)向基站发送上行数据。
另外,相关标准组织还提出了5G免授权频段(New Radio Unlicensed,NR-U)技术,用于在免授权频谱上使用NR技术进行通信。由于在使用免授权频谱之前,要先通过LBT(Listen Before Talk,先听后说)机制进行信道检测,若检测结果为信道处于空闲状态,才能使用该免授权频谱。
考虑多载波操作和NR-U的特点,可能采用20MHz为基本带宽来操作,比如一个80MHz的可用带宽分为4个20MHz的载波。而针对4个20MHz的载波,NR-U的接入网设备和终端之间如何进行调度使用,尚不存在解决方案。
发明内容
本申请实施例提供了一种下行控制信息接收方法、装置及存储介质。所述技术方案如下:
根据本申请实施例的一个方面,提供了一种下行控制信息接收方法,所述 方法包括:
终端接收接入网设备发送的BWP配置信息,所述BWP配置信息用于配置包括位于免授权频段且包括m个子带的目标BWP;
所述终端根据所述BWP配置信息确定所述目标BWP的m个子带;
所述终端在所述m个子带上分别监听目标序列;
所述终端在监听到所述目标序列后,在所述m个子带上的全部或部分子带上监听下行控制信息;
其中,m为大于1的正整数。
在一个可选的实施例中,所述m个子带在频域上连续。
在一个可选的实施例中,所述终端在所述m个子带上的全部或部分子带上监听下行控制信息,包括:
所述终端在所述m个子带中的每个子带上监听所述下行控制信息。
在一个可选的实施例中,所述终端在所述m个子带上的全部或部分子带上监听下行控制信息,包括:
所述终端确定监听到所述目标序列的n个目标子带,n为不大于m的正整数;
所述终端在所述n个目标子带中的至少一个子带上监听所述下行控制信息;
其中,所述目标序列是所述接入网设备在所述目标子带上LBT成功时发送的,或者,所述目标序列是所述接入网设备在用于传输所述下行控制信息的目标子带上发送的。
在一个可选的实施例中,所述方法还包括:
所述终端从所述接入网设备接收所述m个子带的控制资源集;
终端在所述n个目标子带中的每个子带上监听所述下行控制信息,包括:
所述终端根据所述m个子带的控制资源集,确定所述n个目标子带上的PDCCH搜索位置,所述搜索位置具有位于所述n个目标子带的不同频域位置和相同的时域位置;
所述终端在所述PDCCH搜索位置上监听所述下行控制信息。
在一个可选的实施例中,所述终端在所述m个子带的全部或部分子带上分别监听目标序列,包括:
所述终端在所述m个子带的全部或部分子带上的第一时域位置分别监听 所述目标序列;
其中,所述第一时域位置是通信预定义的时频位置。
在一个可选的实施例中,所述BWP配置信息为半静态配置信息。
根据本申请的另一方面,提供了一种下行控制信息发送方法,所述方法包括:
接入网设备向终端发送BWP配置信息,所述BWP配置信息用于配置位于免授权频段且包括m个子带的目标BWP;
所述接入网设备在所述m个子带上进行LBT,根据LBT结果确定n个目标子带;
所述接入网设备在所述n个目标子带上发送目标序列;
所述接入网设备在所述m个子带的全部或部分子带上向所述终端发送下行控制信息;
其中,m为大于1的正整数,n为不大于m的正整数。
在一个可选的实施例中,所述m个子带在频域上连续。
在一个可选的实施例中,所述接入网设备在所述m个子带上进行LBT,根据LBT结果确定n个目标子带,还包括:
所述接入网设备在所述m个子带上进行LBT,将LBT成功的n个子带确定为所述n个目标子带。
在一个可选的实施例中,所述接入网设备在所述m个子带上进行LBT,根据LBT结果确定n个目标子带,还包括:
所述接入网设备在所述m个子带上进行LBT,确定LBT成功的k个子带;
所述接入网设备在所述k个子带中确定出用于传输所述下行控制信息的n个目标子带。
在一个可选的实施例中,所述接入网设备在所述m个子带的全部或部分子带上向所述终端发送下行控制信息,包括:
所述接入网设备在所述m个子带的每个子带上向所述终端发送下行控制信息。
在一个可选的实施例中,所述接入网设备在所述m个子带的全部或部分子带上向所述终端发送下行控制信息,包括:
所述接入网设备在所述n个目标子带的全部或部分子带上向所述终端发送下行控制信息。
在一个可选的实施例中,所述接入网设备在所述m个子带的全部或部分子带上向所述终端发送下行控制信息,包括:
所述接入网设备在所述n个目标子带的每个子带上向所述终端发送下行控制信息,所述下行控制信息用于调度所述k个子带上的时频资源。
在一个可选的实施例中,所述方法还包括:
所述接入网设备向所述终端发送所述m个子带的控制资源集。
在一个可选的实施例中,所述接入网设备在所述n个目标子带上发送目标序列,包括:
所述接入网设备在所述n个子带上的第一时域位置分别发送所述目标序列;
其中,所述第一时域位置是通信协议预定义(Pre-determined)的时频位置或者所述接入网设备在所述目标BWP的配置过程预配置(Pre-configured)的位置。
根据本公开的另一方面,提供了一种下行控制信息接收装置,所述装置包括:
接收模块,被配置为接收接入网设备发送的BWP配置信息,BWP配置信息用于配置位于免授权频段且包括m个子带的目标BWP;
处理模块,被配置为根据所述BWP配置信息确定所述目标BWP的m个子带;
所述处理模块,被配置为在所述m个子带上分别监听目标序列;
所述处理模块,被配置为在监听到所述目标序列后,在所述m个子带上的全部或部分子带上监听下行控制信息;
其中,m为大于1的正整数。
在一个可选的实施例中,所述m个子带在频域上连续。
在一个可选的实施例中,所述处理模块,被配置为在所述m个子带中的每个子带上监听所述下行控制信息。
在一个可选的实施例中,所述处理模块,被配置为确定监听到所述目标序列的n个目标子带,n为不大于m的正整数;在所述n个目标子带中的至少一个子带上监听所述下行控制信息;
其中,所述目标序列是所述接入网设备在所述目标子带上LBT成功时发送的,或者,所述目标序列是所述接入网设备在用于传输所述下行控制信息的 目标子带上发送的。
在一个可选的实施例中,所述接收模块,被配置为从所述接入网设备接收所述m个子带的控制资源集;
所述处理模块,被配置为根据所述m个子带的控制资源集,确定所述n个目标子带上的PDCCH搜索位置,所述搜索位置具有位于所述n个目标子带的不同频域位置和相同的时域位置;在所述PDCCH搜索位置上监听所述下行控制信息。
在一个可选的实施例中,所述处理模块,被配置为在所述m个子带的全部或部分子带上的第一时域位置分别监听所述目标序列;
其中,所述第一时域位置是通信协议预定义(Pre-determined)的时频位置或者所述接入网设备在所述目标BWP的配置过程预配置(Pre-configured)的位置。
在一个可选的实施例中,所述BWP配置信息为半静态配置信息。
根据本申请的另一方面,提供了一种下行控制信息发送装置,所述装置包括:
发送模块,被配置为向终端发送BWP配置信息,所述BWP配置信息用于配置位于免授权频段且包括m个子带的目标BWP;
所述处理模块,被配置为在所述m个子带上进行LBT,根据LBT结果确定n个目标子带;
所述发送模块,被配置为在所述n个目标子带上发送目标序列;
所述发送模块,被配置为在所述m个子带的全部或部分子带上向所述终端发送下行控制信息;
其中,m为大于1的正整数,n为不大于m的正整数。
在一个可选的实施例中,所述m个子带在频域上连续。
在一个可选的实施例中,所述处理模块,被配置为在所述m个子带上进行LBT,将LBT成功的n个子带确定为所述n个目标子带。
在一个可选的实施例中,所述处理模块,被配置为所述接入网设备在所述m个子带上进行LBT,确定LBT成功的k个子带;所述接入网设备在所述k个子带中确定出用于传输所述下行控制信息的n个目标子带。
在一个可选的实施例中,所述发送模块,被配置为在所述m个子带的每个子带上向所述终端发送下行控制信息。
在一个可选的实施例中,所述发送模块,被配置为在所述n个目标子带的全部或部分子带上向所述终端发送下行控制信息。
在一个可选的实施例中,所述发送模块,被配置为在所述n个目标子带的每个子带上向所述终端发送下行控制信息,所述下行控制信息用于调度所述k个子带上的时频资源。
在一个可选的实施例中,所述发送模块,被配置为向所述终端发送所述m个子带的控制资源集。
在一个可选的实施例中,所述发送模块,被配置为在所述n个子带上的第一时域位置分别发送所述目标序列;
其中,所述第一时域位置是通信协议预定义的时频位置或者所述接入网设备在所述目标BWP的配置过程预配置的时域位置。
根据本申请的一个方面,提供了一种终端,所述终端包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
接收模块,被配置为接收接入网设备发送的BWP配置信息,;
处理模块,被配置为根据所述BWP配置信息确定位于免授权频段的目标BWP,所述目标BWP包括m个子带;
所述处理模块,被配置为在所述m个子带上分别监听目标序列;
所述处理模块,被配置为在监听到所述目标序列后,在所述m个子带上的全部或部分子带上监听下行控制信息;
其中,m为大于1的正整数。
根据本申请的一个方面,提供了一种接入网设备,所述接入网设备包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
发送模块,被配置为向终端发送BWP配置信息,所述BWP配置信息用于配置目标BWP,所述目标BWP包括m个子带;
所述处理模块,被配置为在所述m个子带上进行LBT,根据LBT结果确定n个目标子带;
所述发送模块,被配置为在所述n个目标子带上发送目标序列;
所述发送模块,被配置为在所述m个子带的全部或部分子带上向所述终端发送下行控制信息;
其中,m为大于1的正整数,n为不大于m的正整数。
根据本申请的一个方面,提供了一种非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的DCI接收方法或DCI发送方法。
根据本申请的一个方面,提供了一种计算机程序产品,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的DCI接收方法或DCI发送方法。
本申请实施例提供的技术方案至少包括以下有益效果:
通过将一个BWP划分为m个子带,接入网设备在m个子带上进行LBT后,在LBT成功的n个子带上先发送目标序列再发送DCI,终端在监听到目标序列后才在m个子带的全部或部分子带上监听DCI,能够有效地降低终端在PDCCH搜索次数和搜索功耗,避免终端进行不必要的功率和电量消耗。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1是根据一示例性实施例示出的一种通信系统的示意图;
图2是根据一示例性实施例示出的一种DCI接收方法的流程图;
图3是根据一示例性实施例示出的BWP的示意图;
图4是根据一示例性实施例示出的一种DCI接收装置的框图;
图5是根据一示例性实施例示出的一种DCI接收方法的实施示意图;
图6是根据一示例性实施例示出的一种DCI接收方法的实施示意图;
图7是根据一示例性实施例示出的一种DCI接收装置的框图;
图8是根据一示例性实施例示出的一种DCI接收方法的实施示意图;
图9是根据一示例性实施例示出的一种DCI接收装置的框图;
图10是根据一示例性实施例示出的一种DCI接收方法的实施示意图;
图11是根据一示例性实施例示出的一种DCI接收装置的框图;
图12是根据一示例性实施例示出的一种DCI发送装置的框图;
图13是根据一示例性实施例示出的一种接入网设备的结构示意图;
图14是根据一示例性实施例示出的一种终端的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
图1是根据一示例性实施例示出的一种移动通信系统的示意图。该移动通信系统可以包括:接入网设备110和终端120。
接入网设备110部署在接入网中。5G NR系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。接入网设备110与终端120之间通过某种空口技术互相通信,例如可以通过蜂窝技术相互通信。
接入网设备110是一种部署在接入网中用以为终端120提供无线通信功能的装置。接入网设备110可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一名称可能会变化。为方便描述,本申请实施例中,上述为终端120提供无线通信功能的装置统称为基站。
终端120的数量通常为多个,每一个接入网设备110所管理的小区内可以分布一个或多个终端120。终端120可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(Terminal Device)等等。为方便描述,本申请实施例中,上面提到的设备统称为终端。
本申请实施例中的“5G NR系统”也可以称为5G系统或者NR系统,但本领域技术人员可以理解其含义。本申请实施例描述的技术方案可以适用于 5G NR系统,也可以适用于5G NR系统后续的演进系统。
在本申请实施例中,接入网设备110和终端120之间可采用免授权频谱进行通信。也即,接入网设备110和终端120可以是NR-U独立组网场景下的接入网设备110和终端120。
请参考图2,其示出了本申请一个示意性实施例提供的DCI接收方法的流程图。该方法可以应用于图1所示的通信系统中,该方法包括:
步骤201,接入网设备向终端发送BWP配置信息;
BWP配置信息用于配置位于免授权频谱且包括m个子带的目标BWP。目标BWP是一个BWP,目标BWP可以是上行BWP和/或下行BWP。该目标BWP是属于免授权频段的BWP。
该目标BWP包括m个子带,m为大于1的正整数。可选地,m为2、3、4、5、6、8等。本实施例以m=4来举例说明。如图3所示,假设目标BWP所占用的带宽为80kHZ,目标BWP包括4个子带:子带1、子带2、子带3和子带4,每个子带占用20kHZ。可选地,m个子带在频域上连续。也即,m个子带是频域上连续的m个子带。
可选地,接入网设备向终端发送无线资源控制(Radio Resource Control,RRC)消息,该RRC消息中携带有BWP配置信息。
可选地,BWP配置信息是半静态配置信息。半静态配置信息是指在未收到下次发送的配置信息之前,保持使用本次配置的信息。
步骤202,终端接收接入网设备发送的BWP配置信息,根据BWP配置信息确定目标BWP的m个子带;
可选地,终端接收接入网设备发送的RRC消息,从该RRC消息中获取BWP配置信息。
终端根据BWP配置信息确定位于免授权频段的目标BWP。可选地,终端还根据该BWP配置信息确定m个子带。
可选地,m个子带的划分信息携带在BWP配置信息中,或者,m个子带的划分信息是通信协议预定义的,或者,m个子带的划分信息由接入网设备通过其他控制信息进行发送。
步骤203,接入网设备在m个子带上进行LBT,根据LBT结果确定n个目标子带;
由于m个子带是免授权频谱,接入网设备需要在m个子带上分别进行LBT,以确定该m个子带中的每个子带是否被占用。
接入网设备在得到LBT结果后,确定出n个目标子带。
可选地,该n个目标子带是m个子带中LBT成功的全部子带。或者,该n个目标子带是用于发送下行DCI的子带,这n个目标子带是LBT成功的子带中的全部或一部分。
步骤204,接入网设备在n个目标子带上发送目标序列;
目标序列可以是伪随机序列,该伪随机序列所占用的时频资源相对较少。比如,该目标序列在时域上仅占用一个符号(symbol)。
可选地,用于发送目标序列的时域位置由通信协议预先约定。比如,在需要发送时,在每个子帧的第一个符号上进行发送。
步骤205,终端在m个子带上分别监听目标序列;
终端在m个子带的每个子带上分别监听目标序列,并确定成功监听到目标序列的若干个子带。
步骤206,接入网设备在n个目标子带上向终端发送DCI;
步骤207,终端在监听到目标序列后,在m个子带的全部或部分子带上监听下行控制信息。
综上所述,本实施例提供的DCI接收方法,通过将一个BWP划分为m个子带,接入网设备在m个子带上进行LBT后,在LBT成功的n个子带上先发送目标序列再发送DCI,终端在监听到目标序列后才在m个子带的全部或部分子带上监听DCI,能够有效地降低终端在PDCCH搜索次数和搜索功耗,避免终端进行不必要的功率和电量消耗。
在本申请的不同实施例中,目标序列可以存在不同含义:
第一,目标序列用于触发终端接收PDCCH中的DCI。
第二,目标序列用于标识LBT成功的子带,也即可用的子带。
第三,目标序列用于标识发送有DCI的子带。
下面采用不同的实施例来分别阐述上述三种情况。
请参考图4,其示出了本申请另一个示意性实施例提供的DCI接收方法的流程图。该方法可以应用于图1所示的通信系统中,该方法包括:
步骤401,接入网设备向终端发送BWP配置信息;
BWP配置信息用于配置位于免授权频谱且包括m个子带的目标BWP。目标BWP是一个BWP,目标BWP可以是上行BWP和/或下行BWP。该目标BWP是属于免授权频段的BWP。
该目标BWP包括m个子带,m为大于1的正整数。可选地,m为2、3、4、5、6、8等。本实施例以m=4来举例说明。可选地,m个子带在频域上连续。也即,m个子带是频域上连续的m个子带。
可选地,接入网设备向终端发送RRC消息,该RRC消息中携带有BWP配置信息。
可选地,BWP配置信息是半静态配置信息。半静态配置信息是指在未收到下次发送的配置信息之前,保持使用本次配置的信息。
步骤402,终端接收接入网设备发送的BWP配置信息,根据BWP配置信息确定目标BWP的m个子带;
可选地,终端接收接入网设备发送的RRC消息,从该RRC消息中获取BWP配置信息。
终端根据BWP配置信息确定位于免授权频段的目标BWP。可选地,终端还根据该BWP配置信息确定m个子带。
可选地,m个子带的划分信息携带在BWP配置信息中,或者,m个子带的划分信息是通信协议预定义的,或者,m个子带的划分信息由接入网设备通过其他控制信息进行发送。
步骤403,接入网设备在m个子带上进行LBT,根据LBT结果确定n个目标子带;
由于m个子带是免授权频谱,接入网设备需要在m个子带上分别进行LBT,以确定该m个子带中的每个子带是否被占用。
接入网设备在LBT结果为存在一个子带是未被占用的子带时,将m个子带中的至少一个子带确定为目标子带。
可选地,接入网设备在LBT成功的k个子带中确定出n个目标子带。m、k、n均为正整数,k不大于m,n不大于k。
可选地,接入网设备将k个子带中的某一个子带(或一部分子带)确定为目标子带,比如,将任意一个子带确定为目标子带、将第一个子带确定为目标子带、将最后一个子带确定为目标子带。
可选地,接入网设备将k个子带中的全部子带确定为目标子带。
步骤404,接入网设备在n个目标子带的第一时域位置上发送目标序列;
目标序列可以是伪随机序列,该伪随机序列所占用的时频资源相对较少。比如,该目标序列在时域上仅占用一个符号(symbol)。
可选地,用于发送目标序列的第一时域位置由通信协议预定义的。比如,在需要发送时,在每个子帧的第一个符号上进行发送。或者,第一时域位置是接入网设备在目标BWP的配置过程中预配置的。比如,第一时域位置携带在BWP配置信息中。
步骤405,终端在m个子带上的第一时域位置分别监听目标序列;
步骤406,接入网设备在n个目标子带上向终端发送DCI;
可选地,接入网设备预先向终端发送m个子带的控制资源集(Control-Resource SET,CORESET)。该CORESET中携带有每个子带上用于发送PDCCH的候选时频资源位置,比如,将PDCCH频域上占据的频段&时域上占用的OFDM符号数等信息。
步骤407,终端在监听到目标序列后,在m个子带的每个子带上监听DCI;
当终端监听到目标序列后,在m个子带中的全部子带上监听DCI。可选地,终端预先接收接入网设备发送的m个子带的CORESET,根据CORESET确定PDCCH的候选时频资源位置,以便确定PDCCH的搜索空间,然后根据PDCCH的搜索空间对DCI进行盲检接收。
示意性的参考图5,假设接入网设备向终端配置了4个子带,然后在子带2和子带4上LBT成功,也即子带2和子带4未被占用,而子带1和子带3被占用,此时接入网设备可以将子带2确定为目标子带,在子带2的第一符号上发送目标序列41,第一符号是通信协议预定义的时域位置。终端在子带2上监听到目标序列41后,准备接收DCI。一方面,接入网设备在子带2上发送DCI 1,终端在子带2上接收到DCI 1后,根据DCI 1在子带2上接收或发送数据1;另一方面,接入网设备在子带4上发送DCI 2,终端在子带4上接收到DCI 2后,根据DCI 2在子带4上接收或发送数据2。
综上所述,本实施例提供的方法,通过接入网设备在目标子带上发送目标序列后,终端在监听到目标序列后才准备接收DCI,也即目标序列用于触发终端开始接收DCI,使得接入网设备和终端仅需要激活一个BWP,同时接入网设备在所有子带均LBT失败而未发送目标序列时,终端不需要对PDCCH进行 盲检,从而有效地降低终端在PDCCH搜索次数和搜索功耗,避免终端进行不必要的功率和电量消耗。
请参考图6,其示出了本申请另一个示意性实施例提供的DCI接收方法的流程图。该方法可以应用于图1所示的通信系统中,该方法包括:
步骤601,接入网设备向终端发送BWP配置信息;
BWP配置信息用于配置位于免授权频谱且包括m个子带的目标BWP。目标BWP是一个BWP,目标BWP可以是上行BWP和/或下行BWP。该目标BWP是属于免授权频段的BWP。可选地,m个子带在频域上连续。也即,m个子带是频域上连续的m个子带。
该目标BWP包括m个子带,m为大于1的正整数。可选地,m为2、3、4、5、6、8等。本实施例以m=4来举例说明。
可选地,接入网设备向终端发送RRC消息,该RRC消息中携带有BWP配置信息。
可选地,BWP配置信息是半静态配置信息。半静态配置信息是指在未收到下次发送的配置信息之前,保持使用本次配置的信息。
步骤602,终端接收接入网设备发送的BWP配置信息,根据BWP配置信息确定目标BWP的m个子带;
可选地,终端接收接入网设备发送的RRC消息,从该RRC消息中获取BWP配置信息。
终端根据BWP配置信息确定位于免授权频段的目标BWP。可选地,终端还根据该BWP配置信息确定m个子带。
可选地,m个子带的划分信息携带在BWP配置信息中,或者,m个子带的划分信息是通信协议预定义的,或者,m个子带的划分信息由接入网设备通过其他控制信息进行发送。
步骤603,接入网设备向终端发送m个子带的CORESET;
接入网设备预先向终端发送m个子带的CORESET。该CORESET中携带有每个子带上用于发送PDCCH的候选时频资源位置,比如,将PDCCH频域上占据的频段&时域上占用的OFDM符号数等信息。
步骤604,终端接收接入网设备发送的m个子带的CORESET;
终端接收接入网设备发送的m个子带的CORESET,根据CORESET确定 PDCCH的候选时频资源位置。
步骤605,接入网设备在m个子带上进行LBT,将LBT成功的n个子带确定为n个目标子带;
由于m个子带是免授权频谱,接入网设备需要在m个子带上分别进行LBT,以确定该m个子带中的每个子带是否被占用。
接入网设备在LBT结果为存在n个子带是未被占用的子带时,将n个子带全部确定为目标子带。
步骤606,接入网设备在n个目标子带的第一时域位置上发送目标序列;
目标序列可以是伪随机序列,该伪随机序列所占用的时频资源相对较少。比如,该目标序列在时域上仅占用一个符号。
可选地,用于发送目标序列的第一时域位置由通信协议预定义的,比如,在需要发送时,在每个子帧的第一个符号上进行发送。或者,第一时域位置是接入网设备在目标BWP的配置过程中预配置的。比如,第一时域位置携带在BWP配置信息中。
步骤607,终端在m个子带上的第一时域位置分别监听目标序列,确定出监听到目标序列的n个子带;
终端在m个子带上的第一时域位置上分别监听目标序列,并且确定出监听到目标序列的n个子带。
当在某一个子带上监听到目标序列时,终端确定该目标子带是LBT成功的子带。
步骤608,接入网设备在n个目标子带的至少一个子带上向终端发送DCI;
在一种可能的实现方式中,接入网设备在n个目标子带的每个子带上分别发送DCI。可选地,每个子带上的DCI携带有该子带上的时频资源的调度信息。
在另一种可能的实现方式中,若DCI所需要携带的信息量较少,接入网设备仅在n个目标子带的一部分子带上发送DCI,该DCI上携带有n个目标子带上的时频资源的调度信息。
步骤609,终端在监听到目标序列后,在n个目标子带的至少一个子带上监听DCI;
当终端根据CORESET,确定n个目标子带上的PDCCH的搜索空间。根据PDCCH的搜索空间对n个目标子带上的DCI进行盲检接收。
示意性的参考图7,假设接入网设备向终端配置了4个子带,然后在子带 2和子带4上LBT成功,也即子带2和子带4未被占用,而子带1和子带3被占用,此时接入网设备可以将子带2和子带4确定为目标子带,在子带2和子带4的第一符号上发送目标序列41,第一符号是通信协议预定义的时域位置。终端在子带2和子带4上监听到目标序列41后,准备在子带2和子带4上接收DCI。一方面,接入网设备在子带2上发送DCI 1,终端在子带2上接收到DCI 1后,根据DCI 1在子带2上接收或发送数据1;另一方面,接入网设备在子带4上发送DCI 2,终端在子带4上接收到DCI 2后,根据DCI 2在子带4上接收或发送数据2。
示意性的参考图8,假设接入网设备向终端配置了4个子带,然后在子带2和子带4上LBT成功,也即子带2和子带4未被占用,而子带1和子带3被占用,此时接入网设备可以将子带2和子带4确定为目标子带,在子带2和子带4的第一符号上发送目标序列41,第一符号是通信协议预定义的时域位置。终端在子带2和子带4上监听到目标序列41后,准备在子带2和子带4上接收DCI。当仅需要一个DCI即可携带全部调度信息时,接入网设备在子带2(或子带4)上发送DCI 1,终端在子带2上接收到DCI 1后,根据DCI 1在子带2上和子带4上接收或发送数据。
综上所述,本实施例提供的方法,通过接入网设备将LBT成功的n个目标子带时,在n个目标子带上发送目标序列,终端在监听到目标序列后能够获知LBT成功的n个目标子带,仅在n个目标子带上准备接收DCI,使得接入网设备和终端仅需要激活一个BWP,同时接入网设备只需要在n个目标子带上发送目标序列,终端也仅需要在n个目标子带上对PDCCH进行盲检,从而有效地降低终端在PDCCH搜索次数和搜索功耗,避免终端进行不必要的功率和电量消耗。
请参考图9,其示出了本申请另一个示意性实施例提供的DCI接收方法的流程图。该方法可以应用于图1所示的通信系统中,该方法包括:
步骤901,接入网设备向终端发送BWP配置信息;
BWP配置信息用于配置位于免授权频段且包括m个子带的目标BWP。目标BWP是一个BWP,目标BWP可以是上行BWP和/或下行BWP。该目标BWP是属于免授权频段的BWP。可选地,m个子带在频域上连续。也即,m个子带是频域上连续的m个子带。
该目标BWP包括m个子带,m为大于1的正整数。可选地,m为2、3、4、5、6、8等。本实施例以m=4来举例说明。
可选地,接入网设备向终端发送RRC消息,该RRC消息中携带有BWP配置信息。
可选地,BWP配置信息是半静态配置信息。半静态配置信息是指在未收到下次发送的配置信息之前,保持使用本次配置的信息。
步骤902,终端接收接入网设备发送的BWP配置信息,根据BWP配置信息确定目标BWP的m个子带;
可选地,终端接收接入网设备发送的RRC消息,从该RRC消息中获取BWP配置信息。
终端根据BWP配置信息确定位于免授权频段的目标BWP。可选地,终端还根据该BWP配置信息确定m个子带。
可选地,m个子带的划分信息携带在BWP配置信息中,或者,m个子带的划分信息是通信协议预定义的,或者,m个子带的划分信息由接入网设备通过其他控制信息进行发送。
步骤903,接入网设备向终端发送m个子带的CORESET;
接入网设备预先向终端发送m个子带的控制资源集(Control-Resource SET,CORESET)。该CORESET中携带有每个子带上用于发送PDCCH的候选时频资源位置,比如,将PDCCH频域上占据的频段&时域上占用的OFDM符号数等信息。
步骤904,终端接收接入网设备发送的m个子带的CORESET;
终端接收接入网设备发送的m个子带的CORESET,根据CORESET确定PDCCH的候选时频资源位置。
步骤905,接入网设备在m个子带上进行LBT,确定LBT成功的k个子带;
由于m个子带是免授权频谱,接入网设备需要在m个子带上分别进行LBT,以确定该m个子带中的每个子带是否被占用。
假设LBT结果为存在k个子带是未被占用的子带。
步骤906,接入网设备在k个子带中确定出用于传输DCI的n个目标子带;
接入网设备将k个子带中的全部或一部分子带确定为n个目标子带。可选地,接入网设备根据待发送的DCI的数据量,确定将k个子带中的全部或一部 分子带确定为n个目标子带。
可选地,接入网设备在LBT成功的k个子带中确定出n个目标子带。m、k、n均为正整数,k不大于m,n不大于k。
n个目标子带是用于传输DCI的子带。
步骤907,接入网设备在n个目标子带的第一时域位置上发送目标序列;
目标序列可以是伪随机序列,该伪随机序列所占用的时频资源相对较少。比如,该目标序列在时域上仅占用一个符号(symbol)。
可选地,用于发送目标序列的第一时域位置由通信协议预定义的,比如,在需要发送时,在每个子帧的第一个符号上进行发送。或者,第一时域位置是接入网设备在目标BWP的配置过程中预配置的。比如,第一时域位置携带在BWP配置信息中。
步骤908,终端在m个子带上的第一时域位置分别监听目标序列,确定出监听到目标序列的n个子带;
终端在m个子带上的第一时域位置上分别监听目标序列,并且确定出监听到目标序列的n个子带。
当在某一个子带上监听到目标序列时,终端确定该目标子带是LBT成功的子带。
步骤909,接入网设备在n个目标子带上向终端发送DCI;
接入网设备在n个目标子带的每个子带上分别发送DCI。
可选地,每个子带上的DCI携带有该子带上的时频资源的调度信息。或者,n个目标子带上的DCI携带有k个目标子带上的时频资源的调度信息。
步骤910,终端在监听到目标序列后,在n个目标子带上监听DCI;
当终端根据CORESET,确定n个目标子带上的PDCCH的搜索空间。根据PDCCH的搜索空间对n个目标子带上的DCI进行盲检接收。
示意性的参考图10,假设接入网设备向终端配置了4个子带,然后在子带2、子带3和子带4上LBT成功,也即子带2、子带3和子带4未被占用,而子带1被占用,此时接入网设备可以将子带3和子带4确定为目标子带,在子带3和子带4的第一符号上发送目标序列41,第一符号是通信协议预定义的时域位置。终端在子带3和子带4上监听到目标序列41后,准备在子带3和子带4上接收DCI。接入网设备在子带3和子带4上发送DCI,终端在子带3和子带4上接收到DCI后,根据DCI在子带2、子带3和子带4上接收或发 送数据。
综上所述,本实施例提供的方法,通过接入网设备将LBT成功的k个子带中确定出n个目标子带,在n个目标子带上发送目标序列,终端在监听到目标序列后能够获知LBT成功的n个目标子带,仅在n个目标子带上准备接收DCI,使得接入网设备和终端仅需要激活一个BWP,同时接入网设备只需要在n个目标子带上发送目标序列,终端也仅需要在n个目标子带上对PDCCH进行盲检,从而有效地降低终端在PDCCH搜索次数和搜索功耗,避免终端进行不必要的功率和电量消耗。
需要说明的是,上述实施例中有关接入网设备的步骤可以单独实现成为接入网设备一侧的DCI发送方法,有关终端的步骤可以单独实现成为终端一侧的DCI接收方法。
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
图11是根据一示例性实施例示出的一种DCI接收装置的框图,该DCI接收装置可以通过软件、硬件或者两者的结合实现成为终端的部分或者全部。该DCI接收装置可以包括:
接收模块1120,被配置为接收接入网设备发送的BWP配置信息,所述BWP配置信息用于配置位于免授权频段且包括m个子带的目标BWP;
处理模块1140,被配置为根据所述BWP配置信息确定目标BWP,所述目标BWP包括m个子带;
所述处理模块1140,被配置为在所述m个子带上分别监听目标序列;
所述处理模块1140,被配置为在监听到所述目标序列后,在所述m个子带上的全部或部分子带上监听下行控制信息;
其中,m为大于1的正整数。
在一个可选的实施例中,m个子带在频域上连续。
在一个可选的实施例中,所述处理模块1140,被配置为在所述m个子带中的每个子带上监听所述下行控制信息。
在一个可选的实施例中,所述处理模块1140,被配置为确定监听到所述目标序列的n个目标子带,n为不大于m的正整数;在所述n个目标子带中的至 少一个子带上监听所述下行控制信息;
其中,所述目标序列是所述接入网设备在所述目标子带上LBT成功时发送的,或者,所述目标序列是所述接入网设备在用于传输所述下行控制信息的目标子带上发送的。
在一个可选的实施例中,所述接收模块,被配置为从所述接入网设备接收所述m个子带的控制资源集;
所述处理模块1140,被配置为根据所述m个子带的控制资源集,确定所述n个目标子带上的PDCCH搜索位置,所述搜索位置具有位于所述n个目标子带的不同频域位置和相同的时域位置;在所述PDCCH搜索位置上监听所述下行控制信息。
在一个可选的实施例中,所述处理模块1140,被配置为在所述m个子带的全部或部分子带上的第一时域位置分别监听所述目标序列;
其中,所述第一时域位置是通信协议预定义的时频位置或者接入网设备在目标BWP的配置过程预配置的时域位置。
在一个可选的实施例中,所述BWP配置信息为半静态配置信息。
图12是根据一示例性实施例示出的一种DCI发送装置的框图,该DCI接收装置可以通过软件、硬件或者两者的结合实现成为服务器的部分或者全部。该DCI发送装置可以包括:
发送模块1220,被配置为向终端发送BWP配置信息,所述BWP配置信息用于配置位于免授权频段且包括m个子带的目标BWP;
所述处理模块1240,被配置为在所述m个子带上进行LBT,根据LBT结果确定n个目标子带;
所述发送模块1220,被配置为在所述n个目标子带上发送目标序列;
所述发送模块1220,被配置为在所述m个子带的全部或部分子带上向所述终端发送下行控制信息;
其中,m为大于1的正整数,n为不大于m的正整数。
在一个可选的实施例中,m个子带在频域上连续。
在一个可选的实施例中,所述处理模块1240,被配置为在所述m个子带上进行LBT,将LBT成功的n个子带确定为所述n个目标子带。
在一个可选的实施例中,所述处理模块1240,被配置为所述接入网设备在 所述m个子带上进行LBT,确定LBT成功的k个子带;所述接入网设备在所述k个子带中确定出用于传输所述下行控制信息的n个目标子带。
在一个可选的实施例中,所述发送模块1220,被配置为在所述m个子带的每个子带上向所述终端发送下行控制信息。
在一个可选的实施例中,所述发送模块1220,被配置为在所述n个目标子带的全部或部分子带上向所述终端发送下行控制信息。
在一个可选的实施例中,所述发送模块1220,被配置为在所述n个目标子带的每个子带上向所述终端发送下行控制信息,所述下行控制信息用于调度所述k个子带上的时频资源。
在一个可选的实施例中,所述发送模块1220,被配置为向所述终端发送所述m个子带的控制资源集。
在一个可选的实施例中,所述发送模块1220,被配置为在所述n个子带上的第一时域位置分别发送所述目标序列;
其中,所述第一时域位置是通信协议预定义的时频位置或者接入网设备在目标BWP的配置过程预配置的时域位置。
上述主要从接入网设备和终端交互的角度,对本公开实施例提供的方案进行了介绍。可以理解的是,接入网设备、终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开中所公开的实施例描述的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图13是根据一示例性实施例示出的一种接入网设备的结构示意图。
接入网设备1300包括发射器/接收器1301和处理器1302。其中,处理器1302也可以为控制器,图13中表示为“控制器/处理器1302”。所述发射器/接收器1301用于支持接入网设备与上述实施例中的所述终端之间收发信息,以及支持所述接入网设备与其它网络实体之间进行通信。所述处理器1302执行各种用于与终端通信的功能。在上行链路,来自所述终端的上行链路信号经由天线接收,由接收器1301进行解调(例如将高频信号解调为基带信号),并进 一步由处理器1302进行处理来恢复终端所发送到业务数据和信令消息。在下行链路上,业务数据和信令消息由处理器1302进行处理,并由发射器1301进行调制(例如将基带信号调制为高频信号)来产生下行链路信号,并经由天线发射给终端。需要说明的是,上述解调或调制的功能也可以由处理器1302完成。例如,处理器1302还用于执行上述方法实施例中接入网设备侧的各个步骤,和/或本公开实施例所描述的技术方案的其它步骤。
进一步的,接入网设备1300还可以包括存储器1303,存储器1303用于存储接入网设备1300的程序代码和数据。此外,接入网设备1300还可以包括通信单元1304。通信单元1304用于支持接入网设备1300与其它网络实体(例如核心网中的网络设备等)进行通信。例如,在5G NR系统中,该通信单元1304可以是NG-U接口,用于支持接入网设备1300与UPF(User Plane Function,用户平面功能)实体进行通信;或者,该通信单元1304也可以是NG-C接口,用于支持接入网设备1300与AMF(Access and Mobility Management Function,接入和移动性管理功能)实体进行通信。
可以理解的是,图13仅仅示出了接入网设备1300的简化设计。在实际应用中,接入网设备1300可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本公开实施例的接入网设备都在本公开实施例的保护范围之内。
图14是根据一示例性实施例示出的一种终端的结构示意图。
所述终端1400包括发射器1401,接收器1402和处理器1403。其中,处理器1403也可以为控制器,图6中表示为“控制器/处理器1403”。可选的,所述终端1400还可以包括调制解调处理器1405,其中,调制解调处理器1405可以包括编码器1406、调制器1407、解码器1408和解调器1409。
在一个示例中,发射器1401调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的接入网设备。在下行链路上,天线接收上述实施例中接入网设备发射的下行链路信号。接收器1402调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在调制解调处理器1405中,编码器1406接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器1407进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器1409处 理(例如,解调)该输入采样并提供符号估计。解码器1408处理(例如,解交织和解码)该符号估计并提供发送给终端1400的已解码的数据和信令消息。编码器1406、调制器1407、解调器1409和解码器1408可以由合成的调制解调处理器1405来实现。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。需要说明的是,当终端1400不包括调制解调处理器1405时,调制解调处理器1405的上述功能也可以由处理器1403完成。
处理器1403对终端1400的动作进行控制管理,用于执行上述本公开实施例中由终端1400进行的处理过程。例如,处理器1403还用于执行上述方法实施例中的终端侧的各个步骤,和/或本公开实施例所描述的技术方案的其它步骤。
进一步的,终端1400还可以包括存储器1404,存储器1404用于存储用于终端1400的程序代码和数据。
可以理解的是,图14仅仅示出了终端1400的简化设计。在实际应用中,终端1400可以包含任意数量的发射器,接收器,处理器,调制解调处理器,存储器等,而所有可以实现本公开实施例的终端都在本公开实施例的保护范围之内。
本公开实施例还提供了一种非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被接入网设备的处理器执行时实现如上文介绍的接入网设备侧的DCI发送方法。
本公开实施例还提供了一种非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被终端的处理器执行时实现如上文介绍的终端侧的DCI接收方法。
本公开实施例还提供了一种计算机程序产品,其上存储有计算机程序,所述计算机程序被接入网设备的处理器执行时实现如上文介绍的接入网设备侧的DCI发送方法。
本公开实施例还提供了一种计算机程序产品,其上存储有计算机程序,所述计算机程序被终端的处理器执行时实现如上文介绍的终端侧的DCI接收方法。
应当理解的是,在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示: 单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (34)

  1. 一种下行控制信息接收方法,其特征在于,所述方法包括:
    终端接收接入网设备发送的BWP配置信息,所述BWP配置信息用于配置位于免授权频段且包括m个子带的目标BWP;
    所述终端根据所述BWP配置信息确定位于所述目标BWP的m个子带;
    所述终端在所述m个子带上分别监听目标序列;
    所述终端在监听到所述目标序列后,在所述m个子带上的全部或部分子带上监听下行控制信息;
    其中,m为大于1的正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述终端在所述m个子带上的全部或部分子带上监听下行控制信息,包括:
    所述终端在所述m个子带中的每个子带上监听所述下行控制信息。
  3. 根据权利要求1所述的方法,其特征在于,所述终端在所述m个子带上的全部或部分子带上监听下行控制信息,包括:
    所述终端确定监听到所述目标序列的n个目标子带,n为不大于m的正整数;
    所述终端在所述n个目标子带中的至少一个子带上监听所述下行控制信息;
    其中,所述目标序列是所述接入网设备在所述目标子带上LBT成功时发送的,或者,所述目标序列是所述接入网设备在用于传输所述下行控制信息的目标子带上发送的。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述终端从所述接入网设备接收所述m个子带的控制资源集;
    终端在所述n个目标子带中的每个子带上监听所述下行控制信息,包括:
    所述终端根据所述m个子带的控制资源集,确定所述n个目标子带上的PDCCH搜索位置,所述搜索位置具有位于所述n个目标子带的不同频域位置和相同的时域位置;
    所述终端在所述PDCCH搜索位置上监听所述下行控制信息。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述终端在所述m个子带的全部或部分子带上分别监听目标序列,包括:
    所述终端在所述m个子带的全部或部分子带上的第一时域位置分别监听所述目标序列;
    其中,所述第一时域位置是通信协议预定义的时频位置,或,所述第一时域位置是所述接入网设备在所述目标BWP的配置过程中预配置的时域位置。
  6. 根据权利要求1至4任一所述的方法,其特征在于,所述BWP配置信息为半静态配置信息。
  7. 根据权利要求1至4任一所述的方法,其特征在于,所述m个子带在频域上连续。
  8. 一种下行控制信息发送方法,其特征在于,所述方法包括:
    接入网设备向终端发送BWP配置信息,所述BWP配置信息用于配置位于免授权频段且包括m个子带的目标BWP;
    所述接入网设备在所述m个子带上进行LBT,根据LBT结果确定n个目标子带;
    所述接入网设备在所述n个目标子带上发送目标序列;
    所述接入网设备在所述m个子带的全部或部分子带上向所述终端发送下行控制信息;
    其中,m为大于1的正整数,n为不大于m的正整数。
  9. 根据权利要求8所述的方法,其特征在于,所述接入网设备在所述m个子带上进行LBT,根据LBT结果确定n个目标子带,还包括:
    所述接入网设备在所述m个子带上进行LBT,将LBT成功的n个子带确定为所述n个目标子带。
  10. 根据权利要求8所述的方法,其特征在于,所述接入网设备在所述m个子带上进行LBT,根据LBT结果确定n个目标子带,还包括:
    所述接入网设备在所述m个子带上进行LBT,确定LBT成功的k个子带;
    所述接入网设备在所述k个子带中确定出用于传输所述下行控制信息的n个目标子带。
  11. 根据权利要求9所述的方法,其特征在于,所述接入网设备在所述m个子带的全部或部分子带上向所述终端发送下行控制信息,包括:
    所述接入网设备在所述m个子带的每个子带上向所述终端发送下行控制信息。
  12. 根据权利要求9所述的方法,其特征在于,所述接入网设备在所述m个子带的全部或部分子带上向所述终端发送下行控制信息,包括:
    所述接入网设备在所述n个目标子带的全部或部分子带上向所述终端发送下行控制信息。
  13. 根据权利要求10所述的方法,其特征在于,所述接入网设备在所述m个子带的全部或部分子带上向所述终端发送下行控制信息,包括:
    所述接入网设备在所述n个目标子带的每个子带上向所述终端发送下行控制信息,所述下行控制信息用于调度所述k个子带上的时频资源。
  14. 根据权利要求8至13任一所述的方法,其特征在于,所述方法还包括:
    所述接入网设备向所述终端发送所述m个子带的控制资源集。
  15. 根据权利要求8至13任一所述的方法,其特征在于,所述接入网设备在所述n个目标子带上发送目标序列,包括:
    所述接入网设备在所述n个子带上的第一时域位置分别发送所述目标序列;
    其中,所述第一时域位置是通信协议预定义的时频位置,或,所述第一时域位置是所述接入网设备在所述目标BWP的配置过程中预配置的时域位置。
  16. 根据权利要求8至13任一所述的方法,其特征在于,所述m个子带在频域上连续。
  17. 一种下行控制信息接收装置,其特征在于,所述装置包括:
    接收模块,被配置为接收接入网设备发送的BWP配置信息,所述BWP配置信息用于配置位于免授权频段且包括m个子带的目标BWP;
    处理模块,被配置为根据所述BWP配置信息确定所述目标BWP的m个子带;
    所述处理模块,被配置为在所述m个子带上分别监听目标序列;
    所述处理模块,被配置为在监听到所述目标序列后,在所述m个子带上的全部或部分子带上监听下行控制信息;
    其中,m为大于1的正整数。
  18. 根据权利要求17所述的装置,其特征在于,
    所述处理模块,被配置为在所述m个子带中的每个子带上监听所述下行控制信息。
  19. 根据权利要求17所述的装置,其特征在于,所述处理模块,被配置为确定监听到所述目标序列的n个目标子带,n为不大于m的正整数;在所述n个目标子带中的至少一个子带上监听所述下行控制信息;
    其中,所述目标序列是所述接入网设备在所述目标子带上LBT成功时发送的,或者,所述目标序列是所述接入网设备在用于传输所述下行控制信息的目标子带上发送的。
  20. 根据权利要求18所述的装置,其特征在于,
    所述接收模块,被配置为从所述接入网设备接收所述m个子带的控制资源集;
    所述处理模块,被配置为根据所述m个子带的控制资源集,确定所述n个目标子带上的PDCCH搜索位置,所述搜索位置具有位于所述n个目标子带的不同频域位置和相同的时域位置;在所述PDCCH搜索位置上监听所述下行控制信息。
  21. 根据权利要求17至20任一所述的装置,其特征在于,
    所述处理模块,被配置为在所述m个子带的全部或部分子带上的第一时域 位置分别监听所述目标序列;
    其中,所述第一时域位置是通信协议预定义的时频位置,或,所述第一时域位置是所述接入网设备在所述目标BWP的配置过程中预配置的时域位置。
  22. 根据权利要求17至20任一所述的装置,其特征在于,所述BWP配置信息为半静态配置信息。
  23. 根据权利要求17至20任一所述的装置,其特征在于,所述m个子带在频域上连续。
  24. 一种下行控制信息发送装置,其特征在于,所述装置包括:
    发送模块,被配置为向终端发送BWP配置信息,所述BWP配置信息用于配置位于免授权频段且包括m个子带的目标BWP;
    所述处理模块,被配置为在所述m个子带上进行先听后说LBT,根据LBT结果确定n个目标子带;
    所述发送模块,被配置为在所述n个目标子带上发送目标序列;
    所述发送模块,被配置为在所述m个子带的全部或部分子带上向所述终端发送下行控制信息;
    其中,m为大于1的正整数,n为不大于m的正整数。
  25. 根据权利要求24所述的装置,其特征在于,
    所述处理模块,被配置为在所述m个子带上进行LBT,将LBT成功的n个子带确定为所述n个目标子带。
  26. 根据权利要求24所述的装置,其特征在于,
    所述处理模块,被配置为所述接入网设备在所述m个子带上进行LBT,确定LBT成功的k个子带;所述接入网设备在所述k个子带中确定出用于传输所述下行控制信息的n个目标子带。
  27. 根据权利要求25所述的装置,其特征在于,
    所述发送模块,被配置为在所述m个子带的每个子带上向所述终端发送下 行控制信息。
  28. 根据权利要求25所述的装置,其特征在于,
    所述发送模块,被配置为在所述n个目标子带的全部或部分子带上向所述终端发送下行控制信息。
  29. 根据权利要求26所述的装置,其特征在于,
    所述发送模块,被配置为在所述n个目标子带的每个子带上向所述终端发送下行控制信息,所述下行控制信息用于调度所述k个子带上的时频资源。
  30. 根据权利要求25至29任一所述的装置,其特征在于,
    所述发送模块,被配置为向所述终端发送所述m个子带的控制资源集。
  31. 根据权利要求25至29任一所述的装置,其特征在于,
    所述发送模块,被配置为在所述n个子带上的第一时域位置分别发送所述目标序列;
    其中,所述第一时域位置是通信协议预定义的时频位置,或,所述第一时域位置是所述接入网设备在所述目标BWP的配置过程中预配置的时域位置。
  32. 一种终端,其特征在于,所述终端包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    接收模块,被配置为接收接入网设备发送的BWP配置信息,所述BWP配置信息用于位于免授权频段且包括m个子带的目标BWP;
    处理模块,被配置为根据所述BWP配置信息确定所述目标BWP的m个子带;
    所述处理模块,被配置为在所述m个子带上分别监听目标序列;
    所述处理模块,被配置为在监听到所述目标序列后,在所述m个子带上的全部或部分子带上监听下行控制信息;
    其中,m为大于1的正整数。
  33. 一种接入网设备,其特征在于,所述接入网设备包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    发送模块,被配置为向终端发送BWP配置信息,所述BWP配置信息用于配置位于免授权频段且包括m个子带的目标BWP;
    所述处理模块,被配置为在所述m个子带上进行先听后说LBT,根据LBT结果确定n个目标子带;
    所述发送模块,被配置为在所述n个目标子带上发送目标序列;
    所述发送模块,被配置为在所述m个子带的全部或部分子带上向所述终端发送下行控制信息;
    其中,m为大于1的正整数,n为不大于m的正整数。
  34. 一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述方法的步骤,或者实现如权利要求8至16任一项所述方法的步骤。
PCT/CN2018/112776 2018-10-30 2018-10-30 下行控制信息接收方法、装置及存储介质 WO2020087295A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201880001830.2A CN109565834B (zh) 2018-10-30 2018-10-30 下行控制信息接收方法、装置及存储介质
PL18939033.9T PL3873152T3 (pl) 2018-10-30 2018-10-30 Sposób odbierania informacji sterowania łącza pobierania, sposób przesyłania i urządzenia
EP18939033.9A EP3873152B1 (en) 2018-10-30 2018-10-30 Downlink control information receiving method, transmitting method and apparatuses
ES18939033T ES2941727T3 (es) 2018-10-30 2018-10-30 Método y aparatos de recepción y de transmisión de información de control de enlace descendente
CN202110826878.0A CN113472510B (zh) 2018-10-30 2018-10-30 下行控制信息接收方法、装置及存储介质
PCT/CN2018/112776 WO2020087295A1 (zh) 2018-10-30 2018-10-30 下行控制信息接收方法、装置及存储介质
US17/242,753 US11974292B2 (en) 2018-10-30 2021-04-28 Downlink control information receiving method and apparatus, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/112776 WO2020087295A1 (zh) 2018-10-30 2018-10-30 下行控制信息接收方法、装置及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/242,753 Continuation US11974292B2 (en) 2018-10-30 2021-04-28 Downlink control information receiving method and apparatus, and storage medium

Publications (1)

Publication Number Publication Date
WO2020087295A1 true WO2020087295A1 (zh) 2020-05-07

Family

ID=65872603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112776 WO2020087295A1 (zh) 2018-10-30 2018-10-30 下行控制信息接收方法、装置及存储介质

Country Status (6)

Country Link
US (1) US11974292B2 (zh)
EP (1) EP3873152B1 (zh)
CN (2) CN109565834B (zh)
ES (1) ES2941727T3 (zh)
PL (1) PL3873152T3 (zh)
WO (1) WO2020087295A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3873152T3 (pl) * 2018-10-30 2023-05-08 Beijing Xiaomi Mobile Software Co., Ltd. Sposób odbierania informacji sterowania łącza pobierania, sposób przesyłania i urządzenia
CN110536447A (zh) * 2019-07-01 2019-12-03 中兴通讯股份有限公司 一种发送、接收方法以及发送、接收装置
EP3979719B1 (en) * 2019-07-01 2023-09-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication methods, network device and terminal device
BR112022000387A2 (pt) * 2019-07-11 2022-03-03 Beijing Xiaomi Mobile Software Co Ltd Método e aparelho para indicação de comutação de parte de largura de banda, e, meio de armazenamento legível por computador não transitório
CN113196851B (zh) * 2019-07-18 2023-06-13 Oppo广东移动通信有限公司 信息上报方法及相关设备
CN112584497B (zh) * 2019-09-27 2022-08-12 维沃移动通信有限公司 先听后发lbt子带划分方法、装置、设备及介质
WO2021064888A1 (ja) * 2019-10-02 2021-04-08 株式会社Nttドコモ 端末及び通信方法
US20230047505A1 (en) * 2019-12-30 2023-02-16 Lenovo (Beijing) Ltd. Method and apparatus for downlink data reception
CN115349289A (zh) * 2020-04-02 2022-11-15 华为技术有限公司 数据传输的方法和装置
CN113632522A (zh) * 2021-07-07 2021-11-09 北京小米移动软件有限公司 一种监测方法、监测装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282872A (zh) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 下行控制资源位置指示方法、确定方法及相关设备
CN108282291A (zh) * 2017-01-06 2018-07-13 电信科学技术研究院 一种dci传输方法、ue和网络侧设备
CN108370573A (zh) * 2017-08-10 2018-08-03 北京小米移动软件有限公司 调整信息传输的方法、基站及用户设备
CN108366413A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 终端、网络设备和通信方法
CN108513360A (zh) * 2018-04-02 2018-09-07 珠海市魅族科技有限公司 下行控制信息的调度和接收方法、调度和接收装置
WO2018175577A1 (en) * 2017-03-24 2018-09-27 Sharp Laboratories Of America, Inc. Systems and methods for an enhanced scheduling request for 5g nr

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030417A1 (ko) * 2015-08-20 2017-02-23 엘지전자 주식회사 비면허 대역을 지원하는 무선접속시스템에서 경쟁윈도우크기를 조정하는 방법 및 장치
CN106162900B (zh) * 2016-08-15 2020-03-17 宇龙计算机通信科技(深圳)有限公司 非授权频段上的d2d通信方法、d2d通信装置、终端和基站
US10595283B2 (en) * 2016-11-22 2020-03-17 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data of terminal
US10674485B2 (en) * 2016-12-22 2020-06-02 Qualcomm Incorporated Common control resource set with user equipment-specific resources
US10868649B2 (en) * 2016-12-27 2020-12-15 FG Innovation Company Limited Method for signaling bandwidth part (BWP) indicators and radio communication equipment using the same
CN113115443B (zh) * 2017-02-27 2022-12-23 维沃软件技术有限公司 一种资源分配指示方法、基站及终端
US20180279289A1 (en) * 2017-03-23 2018-09-27 Huawei Technologies Co., Ltd. System and Method for Signaling for Resource Allocation for One or More Numerologies
CN108632789A (zh) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 下行控制信道的传输方法、装置、基站和用户设备
US10912110B2 (en) 2017-03-24 2021-02-02 Sharp Kabushiki Kaisha Systems and methods for an enhanced scheduling request for 5G NR
US10805941B2 (en) 2017-03-24 2020-10-13 Sharp Kabushiki Kaisha Radio resource control (RRC) messages for enhanced scheduling request
CN107948988B (zh) * 2017-11-16 2021-02-23 宇龙计算机通信科技(深圳)有限公司 一种资源控制方法及相关设备
CN111869307B (zh) * 2018-02-13 2024-04-09 交互数字专利控股公司 用于非授权资源选择的方法
US11323989B2 (en) * 2018-02-26 2022-05-03 Huawei Technologies Co., Ltd. Method and apparatus for bandwidth indication in unlicensed spectrum
US11363630B2 (en) * 2018-03-01 2022-06-14 Qualcomm Incorporated Bandwidth part (BWP) configuration for subband access in new radio-unlicensed (NR-U)
JP7085868B2 (ja) * 2018-03-15 2022-06-17 シャープ株式会社 端末装置、基地局装置、および、通信方法
CN112189353A (zh) * 2018-04-06 2021-01-05 诺基亚技术有限公司 用于对新无线电可用的未许可频带的宽带pdcch
US11223532B2 (en) * 2018-10-05 2022-01-11 Qualcomm Incorporated Subband usage dependent downlink signals and channels
PL3873152T3 (pl) * 2018-10-30 2023-05-08 Beijing Xiaomi Mobile Software Co., Ltd. Sposób odbierania informacji sterowania łącza pobierania, sposób przesyłania i urządzenia

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282872A (zh) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 下行控制资源位置指示方法、确定方法及相关设备
CN108282291A (zh) * 2017-01-06 2018-07-13 电信科学技术研究院 一种dci传输方法、ue和网络侧设备
CN108366413A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 终端、网络设备和通信方法
WO2018175577A1 (en) * 2017-03-24 2018-09-27 Sharp Laboratories Of America, Inc. Systems and methods for an enhanced scheduling request for 5g nr
CN108370573A (zh) * 2017-08-10 2018-08-03 北京小米移动软件有限公司 调整信息传输的方法、基站及用户设备
CN108513360A (zh) * 2018-04-02 2018-09-07 珠海市魅族科技有限公司 下行控制信息的调度和接收方法、调度和接收装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3873152A4 *

Also Published As

Publication number Publication date
CN113472510A (zh) 2021-10-01
EP3873152B1 (en) 2023-01-11
CN109565834A (zh) 2019-04-02
CN109565834B (zh) 2021-08-17
PL3873152T3 (pl) 2023-05-08
US11974292B2 (en) 2024-04-30
ES2941727T3 (es) 2023-05-25
CN113472510B (zh) 2024-05-14
EP3873152A4 (en) 2021-12-01
EP3873152A1 (en) 2021-09-01
US20210250923A1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
WO2020087295A1 (zh) 下行控制信息接收方法、装置及存储介质
WO2020142900A1 (zh) 下行数据接收方法、发送方法、装置和存储介质
US11991712B2 (en) Method and apparatus for DCI receiving and transmitting, and storage medium
EP3499995B1 (en) Resource scheduling method, scheduler, base station, terminal, and system
US20210176017A1 (en) HARQ Feedback Method And Apparatus
CN110167159B (zh) 一种通信方法、装置以及系统
EP3826216A1 (en) Information processing method and communication apparatus
WO2020133055A1 (zh) 非授权频段的资源占用方法、装置、终端和存储介质
CN111867038B (zh) 一种通信方法及装置
WO2020142899A1 (zh) 下行数据接收方法、发送方法、装置和储存介质
CN110972265A (zh) 一种资源确定方法及装置
CN110719648A (zh) 一种信息发送、信息接收方法及装置
US20210250925A1 (en) Indication information transmission method and apparatus
EP3579482B1 (en) Methods and corresponding devices for improved dci detection
WO2020135486A1 (zh) 边链路信息传输方法、用户终端及计算机可读存储介质
WO2020056752A1 (zh) Pdcch的监听方法、装置、设备及系统
WO2020047765A1 (zh) 针对免授权的上行传输的反馈方法、装置及存储介质
WO2021159297A1 (zh) 上下行传输冲突解决方法、装置及存储介质
WO2020237424A1 (zh) 基于非授权频谱的通信方法、装置及存储介质
WO2021003746A1 (zh) 非授权频谱上的信道状态指示方法、装置及存储介质
CN108282279B (zh) 通信方法、通信设备和终端
CN112218391A (zh) 数据传输方法、网络侧设备及移动终端
WO2018082365A1 (zh) 传输控制方法、装置及系统存储介质
US20230188299A1 (en) Resource configuration method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018939033

Country of ref document: EP

Effective date: 20210527