WO2020147063A1 - 一种滤波器 - Google Patents
一种滤波器 Download PDFInfo
- Publication number
- WO2020147063A1 WO2020147063A1 PCT/CN2019/072152 CN2019072152W WO2020147063A1 WO 2020147063 A1 WO2020147063 A1 WO 2020147063A1 CN 2019072152 W CN2019072152 W CN 2019072152W WO 2020147063 A1 WO2020147063 A1 WO 2020147063A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- filter
- coupling
- partition wall
- resonators
- resonator
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/207—Hollow waveguide filters
- H01P1/208—Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/201—Filters for transverse electromagnetic waves
- H01P1/205—Comb or interdigital filters; Cascaded coaxial cavities
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/12—Coupling devices having more than two ports
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P7/00—Resonators of the waveguide type
- H01P7/06—Cavity resonators
Definitions
- the present invention relates to a filter, in particular to a filter with a smaller size.
- the patent application number: CN201710149229.5 discloses a filter with a frame structure.
- the two sides of the square frame are open structures, and the partition wall divides the inside of the frame into two spaces.
- Vertical to this partition wall there is an integrated resonator.
- the resonator is bent into an L-shape or a T-shape to reduce the space requirement, but such a form still has limitations on the miniaturization of the filter, and it is difficult to meet the design requirements of the small size of the filter.
- the above-mentioned resonator is bent into an L-shaped or T-shaped structure, which also has limitations on the coupling between the resonators.
- the signal path is transmitted in a U shape.
- a conductor In order to achieve cross-coupling in the U-shaped transmission path, a conductor must be added to two non-adjacent resonators.
- the resonator and the conductor In order to realize the capacitive cross-coupling, the resonator and the conductor must be fixed in an open circuit form, and for this purpose, the conductor is fixed in the insulator first, and then the accessory is fixed in the housing.
- inductive cross-coupling If inductive cross-coupling is to be realized, two non-adjacent resonators should be short-circuited to fix the conductors. At this time, the conductor is short-circuited and fixed on the resonator by welding, and the conductor used is bent to a specific size and then bonded to the resonator.
- the structure of adding sheet or wire conductors in the form of open circuit or short circuit between non-adjacent resonators requires fixing an insulator on the frame or welding conductors in the form of wires to the resonators.
- This kind of structure will incur processing costs and processing tolerances, and when the resonator is directly welded or other forms of fixed chip conductors are used, the strength of cross-coupling becomes very sensitive due to factors such as position tolerance and spacing. Therefore, the complexity of the process and the increase in sensitivity lead to an increase in production costs and a decrease in production capacity.
- the arrangement direction of the resonators is limited.
- the transmission path of the signal can only be a word or U shape, so the position of the input and output ports is not changeable, which makes it impossible to meet the diversity System requirements, and additional structural parts are needed to change the port position.
- the purpose of the present invention is to overcome the defects of the prior art and provide a filter with a smaller size.
- a filter including:
- a filter frame with a receiving space formed therein;
- At least two resonators arranged in the accommodation space and distributed along a signal transmission path are coupled and connected between two adjacent resonators on the signal transmission path, and each resonator includes The main body and the bending portion, one end of the main body is integrally formed with the inner wall of the filter frame to be grounded, the bending portion includes a first bending portion and a final bending portion, the first bending portion and the final bending portion Connected to form a resonator structure circling in a counterclockwise or clockwise direction, or the bending portion includes a first bending portion, at least one middle bending portion, and a final bending portion, and the middle bending portion connects the first bending portion It is connected with the end-bending part to form a resonator structure that spirals in a counterclockwise or clockwise direction.
- the first bending portion is formed by bending the other end of the main body portion in one direction or two directions.
- At least one partition wall is further provided in the filter, a coupling gap is formed between the partition wall and the inner wall of the filter frame and is integrally formed with the filter frame, and the partition wall separates the accommodation space
- the main body of the resonator is integrally formed with the partition wall for grounding, and/or is integrally formed with the inner wall of the filter frame for grounding.
- the signal transmission path in the filter is transmitted in a U-shape or S-shape according to the partition wall.
- a partition wall is provided in the filter, the partition wall is integrally formed in the middle of the filter frame, and the signal transmission path in the filter is transmitted in a U-shape according to the partition wall.
- the filter is provided with a plurality of partition walls distributed at intervals, and two adjacent partition walls respectively form a coupling gap with the inner walls of the two opposed filter frames, and the signal transmission path in the filter is based on the The dividing wall is transmitted in S-shape.
- the partition wall is provided with a coupling opening, and two adjacent resonators of different accommodation chambers are coupled and connected through the coupling opening to form a cross coupling.
- the main bodies of two adjacent resonators in different accommodation chambers are directly connected together through a coupling opening to achieve inductive cross coupling.
- the bent portions of two adjacent resonators in different accommodating chambers are spaced at a distance to achieve capacitive cross coupling through the coupling opening.
- the filter further includes an upper cover plate arranged at the upper end of the filter frame and a lower cover plate arranged at the lower end of the filter frame.
- the upper and lower cover plates close the containing space and are perpendicular to the upper and lower ends. In the direction of the lower cover plate, the thickness of the bent portion of the resonator is greater than the thickness of the main body portion.
- the filter further includes a signal input port and a signal output port which are arranged outside the filter frame and communicate with the accommodation space, and the signal input port and the signal output port are respectively located in the signal transmission path The two ends.
- the upper and lower cover plates are respectively assembled on the upper and lower ends of the filter frame by screw fixing, soldering or laser welding.
- An integrally formed resonator with multiple bends (at least two bends) is arranged in the filter frame, which has a significant effect on the miniaturization of the filter, and the resonator and the frame are an integrated structure, which reduces The cost of assembly man-hours reduces cumulative tolerances and assembly tolerances, and reduces contact loss. At the same time, the filter has better PIM (Passive Inter-Modulation) performance.
- PIM Passive Inter-Modulation
- each resonator can be changed and designed as required, and the coupling method between the resonators can be freely designed according to the shape of the resonator; in addition, the signal transmission path can be freely changed in combination with the partition wall, and the transmission path can be freely changed Furthermore, the design position of the signal input/output port can be freely selected, which improves the overall design flexibility of the filter.
- the opening of the partition wall can be used to realize the cross coupling between non-adjacent resonators without adding structural parts. Therefore, the processing and assembly tolerances caused by the structural parts can be reduced, and the processing difficulty of the product can be reduced. Assembly costs can also be greatly reduced.
- Figure 1 is a three-dimensional schematic diagram of Embodiment 1 of the present invention.
- Embodiment 1 of the present invention is a schematic top view of the structure of Embodiment 1 of the present invention.
- Embodiment 3 is a schematic diagram of the principle of a signal transmission path in Embodiment 1 of the present invention.
- Figure 4 is a schematic diagram of the structure of the resonator of the present invention.
- Example 6 is a schematic diagram of the corresponding electrical performance curve of Example 1 of the present invention.
- Figure 7 is a three-dimensional schematic diagram of the second embodiment of the present invention.
- FIG. 8 is a schematic diagram of a three-dimensional structure of Embodiment 3 of the present invention.
- FIG. 9 is a schematic top view of the structure of Embodiment 3 of the present invention.
- Filter frame 11, containment space, 111, containment chamber, 2/21 ⁇ 26, resonator, 211, main body, 212, first bending section, 213, final bending section, 214, middle bending Section, 3.
- Upper cover 4. Adjustable structure, 5.
- an integrally formed resonator with multiple bending structures is arranged in the filter frame, so that the size of the filter is smaller, and the coupling mode between the resonators and the signal are also realized.
- the diversification of the design of transmission paths and signal port positions improves the flexibility of filter design; and realizes cross-coupling between non-adjacent resonators through openings in the partition wall, simplifying the structure and processing of the filter.
- the filter disclosed in the present invention includes a filter frame 1 and at least two resonators 2, wherein the upper and lower ends of the filter frame 1 are open, of course, it can also be replaced by only It is an opening at the upper end.
- a hollow accommodating space 11 for the resonator is formed in the filter frame 1.
- the openings on the upper and lower sides of the filter frame 1 can be packaged with an upper cover 3 and a lower cover (not shown) respectively, so that A sealed accommodating space 11 is formed therein; when only the upper end is open, only the upper cover 3 is required to encapsulate.
- the upper and lower cover plates can be fixed by screws or assembled by soldering or laser welding.
- an adjustable structure 4 for adjusting the frequency and/or coupling amount can be added on the upper cover 3.
- the adjustable structure 4 may include the cooperation of a screw and a nut, or other forms that extend into the conductor through the cover surface Wait.
- the upper and lower cover plates can also be replaced by PCB boards.
- a plurality of resonators 2 are arranged in the containing space 11 and are integrally formed with the filter frame 1.
- the resonator 2 can form a variety of signal transmission paths in the accommodation space 11, such as in-line, U-shaped or S-shaped.
- a plurality of resonators 2 are distributed in the same row in the accommodating space 11, distributed from one side wall of the filter frame 1 to the opposite side wall, forming a signal transmission path That is, it is in a straight shape, and the plane on which the resonator 2 is located is parallel or approximately parallel to the upper and lower surfaces of the filter frame 1, that is, it is arranged laterally in the filter frame 1.
- At least one partition wall 5 integrally formed with the filter frame 1 may be provided in the filter frame 1.
- the partition wall 5 divides the accommodating space 11 into a plurality of accommodating spaces.
- the cavity 111, each containing cavity 111 is provided with at least two of the resonators 2, and the distribution of the resonators 2 in each containing cavity 111 is the same as or similar to the above-mentioned linear distribution of the resonators 2 , Please refer to the above description, not to repeat it here.
- the signal transmission path formed by the filters 2 in the plurality of accommodating chambers 111 may be U-shaped or S-shaped or others.
- the partition wall 5 is arranged between two adjacent accommodating cavities 111 to isolate the resonators 2 of different accommodating cavities 111.
- the partition wall 5 is integrally formed with the filter frame 1.
- the partition wall 5 is located in the middle of the filter frame 1, and divides the accommodating space 11 into two accommodating chambers 111, each of which is provided with multiple accommodating chambers 111.
- Two resonators 2 (as shown in FIG. 2 and FIG. 3, resonators 21 to 23 are arranged in the upper accommodating cavity, and resonators 24 to 26 are arranged in the lower accommodating cavity).
- the partition wall 5 is not in contact with the right side wall of the filter frame 1, and a coupling gap 6 is formed therebetween. As shown in FIG.
- the coupling gap 6 makes two adjacent resonators (ie, resonator 23 and 24) can produce coupling.
- the partition wall 5 forms a signal transmission path between the resonators 21 to 26.
- the signal transmission path is U-shaped. In other words, the signal transmission path can be freely designed according to the installation position and the installation number of the partition wall 5.
- each resonator 2 specifically includes a main body portion 211 and a bending portion. One end of the main body portion 211 is grounded.
- the grounding end can be connected with Any side wall of the filter frame 1 is integrally formed, such as integrally formed with the rear side wall of the filter frame 1, and the other end extends toward the front side wall close to the filter frame 1, and for example, can be integrated with the left side of the filter frame 1.
- the wall is integrally formed, and the other end extends to the right side wall close to the filter frame 1.
- the ground terminal can be integrally formed with the partition wall 5 and/or with any side wall of the filter frame 1 as required.
- the ground terminals of the filters 21, 22, 25, and 26 are integrally formed with the partition wall 5, while the ground terminals of the filters 23 and 24 are connected to the right of the filter frame 1.
- the side wall is integrally formed. That is to say, the ground terminal of the main body 211 can be freely changed in design up, down, left and right in the filter frame 1.
- the bending part is connected to the other end of the main body 211 and formed by bending.
- the bending shape of the bending part can be freely changed and designed according to actual needs. There is no restriction here, which means that the shape of the resonator 2 can be formed by bending as required Various designs.
- the bending portion includes a first bending portion 212 and an end bending portion 213, wherein the first bending portion 212 is formed by bending the other end of the main body portion 211 in one or two directions;
- the first bending portion 212 and the last bending portion 213 are connected to form a resonator structure that spirals counterclockwise or clockwise.
- the bending portion may include at least one intermediate bending portion 214 in addition to the first bending portion 212 and the final bending portion 213, wherein the first bending portion 212 is formed by the other end of the main body 211 It is formed by bending in one or two directions, and the middle bending portion 214 connects the first bending portion 212 and the last bending portion 213 to form a resonator structure that spirals in a counterclockwise or clockwise direction.
- the bending portion is connected to the other end of the main body portion 211 to form at least three bends in a clockwise or counterclockwise direction.
- the resonator structure designed in the present invention can realize the smaller size of the filter, and the frequency of the filter is lower.
- the bending portion is thickened in the direction perpendicular to the upper and lower ends of the filter frame, even if the thickness of the bending portion is greater than the thickness of the main body portion 211, the volume of the resonator can be further reduced under the requirement of the same frequency.
- Electromagnetic hybrid coupling between two adjacent resonators 2 on the signal transmission path The specific main coupling mode is determined by the shape and arrangement of the resonators 2. The amount of coupling between the resonators 2 can be determined by the resonator 2 The coupling area and spacing can be adjusted. It should be noted that the coupling of a general TEM mode filter is the coexistence of electrical coupling (namely capacitive coupling) and magnetic coupling (namely inductive coupling). Among the two couplings, the larger coupling is called dominant coupling, and the present invention The dominant coupling mode in the filter can be freely selected by the shape of the resonator 2. As in the integrated 6-order filter in the first embodiment, the signal transmission path formed is a U-shaped path formed by the resonators 21 to 26.
- At least one group of two adjacent resonators in the plurality of groups of adjacent two resonators in different accommodating chambers is coupled and connected to achieve cross coupling.
- two adjacent resonators in different containing chambers form a cross-coupling transmission path through the corresponding coupling opening 51 on the partition wall 5.
- the amount of cross-coupling coupling is adjusted according to the area of the coupling opening 51, and/or the shape and coupling distance of the resonator coupled through the coupling opening 51, and the coupling mode selection of the cross-coupling is determined according to the dominant coupling mode.
- a coupling opening 51 is provided on the partition wall 5 corresponding to the resonators 22 and 25, and the resonator 22 and the main body 211 of the resonator 25 are directly connected together through the coupling opening 51 to achieve inductive cross coupling, namely The inductive cross coupling is added to form two transmission zero points; and a coupling opening 51 is also provided on the partition wall 5 at the position corresponding to the resonators 21 and 26, so that the bending parts of the resonators 21 and 26 are separated by a certain distance.
- the opening 51 forms capacitive coupling, that is, capacitive cross-coupling is added.
- a cross-coupling is used in the high frequency band of the passband, and the low frequency band generates two zeros with opposite phases. Therefore, the two cross-couplings produce a total of 4 transmissions. Zero point.
- the cross coupling between the resonators 22 and 25 is inductive coupling
- the cross coupling between the resonators 21 and 26 is capacitive coupling.
- Fig. 6 shows the corresponding electrical performance curve.
- the inductive cross-coupling and capacitive cross-coupling formed by the two coupling openings 51 form a total of 4 zeros, so a high-performance filter with good attenuation characteristics can be realized.
- the strength and position of each zero point can be controlled independently.
- the filter further includes a signal input port 7 and a signal output port 8.
- the two ports 7, 8 are respectively arranged at the two ends of the signal transmission path, and the signal input,
- the positions of output ports 7 and 8 are determined according to the direction of the signal transmission path. That is to say, according to the different signal transmission paths, their setting positions can be different accordingly. Therefore, changing the signal transmission path can change the signal input and output ports 7, 8
- the location as can be seen from the above description, the signal transmission path can be freely designed by the location of the partition wall 5.
- the signal input port 7 is arranged outside the filter frame 1 at a position close to the resonator 21, and the signal output port 8 is arranged outside the filter frame 1 at a position close to the resonator 26.
- the signal input port 7 and the signal output port 8 can also have various forms.
- the signal input and output ports 7 and 8 are in the form of inner cores, which can also be changed into connectors, or combined with PCB boards at the upper and lower ends (That is, the upper cover and the lower cover) form signal input and output ports 7, 8.
- the filter frame 1 is provided with three partition walls 5 distributed in the same row (for example, distributed along the left side wall of the filter frame 1 to the right side wall of the filter frame 1), and the three partition walls 5 will accommodate the space 11 It is divided into four accommodating chambers 111, and each accommodating chamber 111 is provided with two resonators 2.
- the shape and grounding position of the resonators 2 refer to the description of the above-mentioned embodiment 1, which will not be repeated here. And according to the shape of the resonators 2 and the position of mutual coupling, it is controlled whether the dominant coupling mode between the resonators 2 in the second embodiment is an electrical coupling mode or a magnetic coupling mode.
- the two coupling gaps 6 of two adjacent partition walls 5 are located on different sides, so that the signal transmission path in the filter 2 is transmitted in an S-shape according to the partition wall 5.
- the positions of signal input and output ports 7, 8 can be controlled.
- the signal input and output ports 7 and 8 are respectively at the two ends of the signal transmission path, and the direction of the signal transmission path determines the positions of the signal input and output ports 7, 8.
- the signal transmission path of the resonator in Embodiment 2 can also be U-shaped.
- a partition wall 5 is provided in the middle of the filter frame 1.
- the shape and grounding position of the resonator 2 of the present invention can be freely designed, and the dominant coupling mode between the resonators 2 can be determined by the coupling position of the coupled resonators 2, so it can also be freely designed;
- the installation position of the partition wall 5 can be freely designed, and the signal transmission path is determined by the installation position of the partition wall 5, so it can also be designed freely, and the signal input and output ports 7 and 8 are determined by the signal transmission path, so they can also be free Design;
- the cross-coupling between the resonators 2 is determined according to the performance requirements of the filter, so it can also be freely designed.
- the shape of the resonator 2, the coupling mode between the resonators 2, the design of the signal transmission path, the signal input and output ports 7, 8, and the filter cross-coupling mode can be freely designed as required, and are not limited to the above three implementations. Example described.
- the present invention has no additional assembly structure except for the joint, and the processing and assembly costs can be greatly reduced. And there are no additional structural parts when forming cross-coupling between non-adjacent resonators. Cross-coupling can be realized only by opening the partition wall, so the processing and assembly tolerances caused by structural parts can be reduced, and the product cost can be reduced. Difficulty.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
一种滤波器,包括滤波器框架(1)和至少两个谐振器(2),相邻两个谐振器(2)之间耦合连接,每个谐振器(2)包括主体部(211)和折弯部(212、213、214),主体部(211)的一端与滤波器框架(1)一体成型接地,折弯部(212、213、214)由主体部(211)的另一端折弯形成。通过谐振器的特定结构实现了滤波器的体积更小型化,同时也使得滤波器实现交叉耦合的方式更简洁,对产品的整体性能更有益。
Description
本发明涉及一种滤波器,尤其是涉及一种体积更小型化的滤波器。
随着通信技术日新月异的发展,对滤波器的体积要求越来越苛刻。往往需要在有限的微小空间内设计谐振器以及抑制零点来满足带内带外插损抑制要求,而传统的几种滤波器已很难满足这种微小体积下的设计要求。
如申请号为:CN201710149229.5的专利中,公开了一种框架结构方式的滤波器,在该方案中,口字型的框架两面为开放结构,分隔壁将框架内部分成两个空间。垂直于这个分隔壁,有一体型的谐振器。谐振器折弯为L型或T型来缩小空间要求,但是这样的形式对滤波器小型化体积还是有着局限性,难以满足滤波器微小体积的设计要求。
并且,上述谐振器折弯为L型或T型的结构,对谐振器之间的耦合方式也有局限性。具体地,在由分隔壁分割的两个空间内,信号路径以U字形态传输。U字型的传输路径中为了实现交叉耦合,需要在非相邻的两个谐振器中加入导体。此时为了实现容性交叉耦合就要将谐振器和导体以开路形式固定,并为此先将导体固定在绝缘体,再将此配件固定在壳体中。如果要实现感性交叉耦合,就在非相邻的两个谐振器以短路的形势固定导体。此时以焊接的方式将导体短路形式固定在谐振器上,所用的导体以特定的尺寸折弯后结合在谐振器上。
但是上述为了形成交叉耦合,在非相邻的谐振器之间按开路或短路的形式加入片状或线状导体的结构,需要在框架固定添加绝缘体或在谐振器焊接导线形式的导体。此类结构会产生加工费用以及加工公差,并且在谐 振器直接焊接或使用其他形式固定片状导体时因位置公差以及间距等因素导致交叉耦合强弱变得非常敏感。所以工序复杂及敏感度增加导致制作成本提高以及产能下降。
另外,因为要保证谐振器之间传输耦合,所以谐振器的排列方向是被限制的,一般信号的传输路径只能是一字或U型,所以输入输出端口位置也不可变,导致无法满足多样化的系统要求,并且为了改变端口位置也需要额外增加结构件。
发明内容
本发明的目的在于克服现有技术的缺陷,提供一种体积更小型化的滤波器。
为实现上述目的,本发明提出如下技术方案:一种滤波器,包括:
滤波器框架,其内形成有容纳空间;
设置于所述容纳空间内的且沿一条信号传输路径分布的至少两个谐振器,在所述信号传输路径上的相邻两个所述谐振器之间耦合连接,每个所述谐振器包括主体部和折弯部,所述主体部的一端与滤波器框架的内壁一体成型接地,所述折弯部包括首折弯部和末折弯部,所述首折弯部和末折弯部连接形成沿逆时针或顺时针方向盘旋的谐振器结构,或所述折弯部包括首折弯部、至少一中间折弯部和末折弯部,所述中间折弯部将首折弯部和末折弯部连接形成沿逆时针或顺时针方向盘旋的谐振器结构。
优选地,所述首折弯部由主体部的另一端向一个方向或两个方向折弯形成。
优选地,所述滤波器内还设置有至少一个分隔壁,所述分隔壁与滤波器框架的内壁之间形成有耦合间隙且与滤波器框架一体成型,所述分隔壁将所述容纳空间分隔为多个容纳腔室,所述谐振器的主体部与所述分隔壁一体成型接地,和/或与滤波器框架的内壁一体成型接地。
优选地,所述滤波器内的信号传输路径根据所述分隔壁按U字型或S 型传输。
优选地,所述滤波器内设置一个分隔壁,所述分隔壁一体成型于所述滤波器框架的中部,所述滤波器内的信号传输路径根据所述分隔壁按U字型传输。
优选地,所述滤波器内设置多个间隔分布的分隔壁,且相邻两个分隔壁分别与相对的两个滤波器框架内壁形成耦合间隙,所述滤波器内的信号传输路径根据所述分隔壁按S字型传输。
优选地,所述分隔壁上设置有耦合开口,不同所述容纳腔室的相邻两个谐振器通过所述耦合开口耦合连接,形成交叉耦合。
优选地,不同所述容纳腔室的相邻两个谐振器的主体部通过耦合开口直接连接在一起实现电感交叉耦合。
优选地,不同所述容纳腔室的相邻两个谐振器的折弯部间隔一段距离通过耦合开口实现电容交叉耦合。
优选地,所述滤波器还包括设置于滤波器框架上端的上盖板和设置于滤波器框架下端的下盖板,所述上、下盖板使所述容纳空间封闭,在垂直于上、下盖板方向上,所述谐振器折弯部的厚度大于主体部的厚度。
优选地,所述滤波器还包括设置于所述滤波器框架外且与所述容纳空间相通的信号输入端口和信号输出端口,且所述信号输入端口和信号输出端口分别位于所述信号传输路径的两个末端。
优选地,所述上、下盖板采用螺钉固定或焊锡或激光焊接方式分别装配于所述滤波器框架的上、下端。
本发明的有益效果是:
1、在滤波器框架中设置一体成型的具有多个折弯(至少有两个折弯部)的谐振器,对于滤波器的小型化有显著效果,且谐振器与框架为一体结构,减少了装配工时费用,减少了累计公差和装配公差,并减少了接触损耗,同时也使滤波器具有较好的PIM(Passive Inter-Modulation,无源互调)性 能。
2、每个谐振器的形状可根据需要变更设计,根据谐振器的形状可相应自由设计谐振器之间的耦合方式;此外,结合分隔壁可自由地变化信号的传输路径,传输路径的自由变化进而可以自由选择信号输入/输出端口的设计位置,提高了滤波器整体的设计灵活性。
3、利用分隔壁的开口部位无需增加结构件就可实现非相邻谐振器之间的交叉耦合,因此可减少因结构件带来的加工及装配公差,减少了产品的加工难度,且加工及装配费用也可大大减少。
图1是本发明实施例1的立体结构示意图;
图2是本发明实施例1的俯视结构示意图;
图3是本发明实施例1信号传输路径的原理示意图;
图4是本发明谐振器的结构示意图;
图5是本发明实施例1等效电路的原理示意图;
图6是本发明实施例1对应电性能曲线示意图;
图7是本发明实施例2的立体结构示意图
图8是本发明实施例3的立体结构示意图;
图9是本发明实施例3的俯视结构示意图。
附图标记:
1、滤波器框架,11、容纳空间,111、容纳腔室,2/21~26、谐振器,211、主体部,212、首折弯部,213、末折弯部,214、中间折弯部,3、上盖板,4、可调式结构,5、分隔壁,51、耦合开口,6、耦合间隙,7、信号输入端口,8、信号输出端口。
下面将结合本发明的附图,对本发明实施例的技术方案进行清楚、完整的描述。
本发明所揭示的一种滤波器,通过在滤波器框架中设置一体成型的具有多个折弯结构的谐振器,实现滤波器体积更小型化的同时,也实现了谐振器间耦合方式、信号传输路径、信号端口位置等设计的多样化,提高滤波器设计的灵活性;且通过分隔壁上开口的方式实现非相邻谐振器之间的交叉耦合,简化滤波器的结构及加工工序。
结合图1~图3所示,本发明所揭示的一种滤波器,包括滤波器框架1和至少两个谐振器2,其中,滤波器框架1的上下两端开口,当然也可替换为仅是上端开口,滤波器框架1内形成中空的供谐振器容纳的容纳空间11,滤波器框架1的上下两面的开口可以分别采用上盖板3和下盖板(图未示)来封装,使其内形成密封的容纳空间11;仅为上端开口时,则只要用上盖板3封装。实施时,上下盖板可以采用螺钉固定或采用焊锡或激光焊接等装配方式。另外,上盖板3上可以增加调节频率和/或耦合量的可调式结构4,实施时,可调试结构4可以包含螺杆和螺母的配合,也可以采用通过盖板面伸入导体的其他形式等。且上下盖板也可以用PCB板来代替。
多个谐振器2设置于该容纳空间11内,且与滤波器框架1一体成型。谐振器2在该容纳空间11内可以形成多种信号传输路径,如一字型,U型或S型等。如形成一字型信号传输路径时,多个谐振器2在容纳空间11内呈同排分布,从滤波器框架1的一侧壁向相对的另一侧壁的方向分布,形成的信号传输路径即为一字型,且谐振器2所在的平面与滤波器框架1的上下面平行或近似平行,即横向设置于滤波器框架1内。
作为可替换的,滤波器框架1内还可以设置至少一个与滤波器框架1一体成型的分隔壁5,结合图1~图3所示,所述分隔壁5将容纳空间11分隔为多个容纳腔室111,每个容纳腔室111内设置至少两个所述谐振器2,且每个容纳腔室111内的谐振器2分布与上述谐振器2按一字型分布的分 布方式相同或类似,可参考上述描述,这里不做赘述。这样,多个容纳腔室111内的滤波器2形成的信号传输路径可以为U型或S型或其他。
分隔壁5设置于相邻两个容纳腔室111之间,用于隔离不同容纳腔室111的谐振器2。分隔壁5与滤波器框架1一体成型,本实施例1中,分隔壁5位于滤波器框架1的中部,将容纳空间11分为两个容纳腔室111,每个容纳腔室111内设置多个谐振器2(如图2和图3所示,上容纳腔室内设置谐振器21~23、下容纳腔室内设置谐振器24~26)。分隔壁5与滤波器框架1的右侧壁不接触,之间形成有耦合间隙6,如图1所示,该耦合间隙6使位于不同容纳腔室的相邻两个谐振器(即谐振器23和24)能够产生耦合。该分隔壁5形成了谐振器21~26之间的信号传输路径,如本实施例1中,信号传输路径为U型。也就是说信号传输路径可以根据分隔壁5的设置位置和设置数量等自由设计。
如图4所示,每个谐振器2具体包括主体部211和折弯部,其中,主体部211的一端接地,在滤波器框架1内不设置分隔壁5时,该接地端可以根据需要与滤波器框架1的任意侧壁一体成型,如与滤波器框架1的后侧壁一体成型,另一端则向靠近滤波器框架1的前侧壁延伸,又如可以与滤波器框架1的左侧壁一体成型,另一端则向靠近滤波器框架1的右侧壁延伸。在设置分隔壁5时,该接地端可以根据需要与分隔壁5一体成型,和/或与滤波器框架1的任意侧壁一体成型。如图1~3所示,本实施例1中,滤波器21、22、25、26的接地端均与分隔壁5一体成型,而滤波器23、24的接地端则与滤波器框架1右侧壁一体成型。也就是说主体部211的接地端在滤波器框架1内可以上下左右随意变更设计。
折弯部与主体部211的另一端相连且折弯形成,折弯部的折弯形状可根据实际需要自由变更设计,这里不做限制,也就是说谐振器2的形状可以根据需要折弯形成多种设计。具体地,如图4所示,折弯部包括首折弯部212和末折弯部213,其中,首折弯部212由主体部211的另一端向一个 方向或两个方向折弯形成;首折弯部212和末折弯部213连接形成沿逆时针或顺时针方向盘旋的谐振器结构。或者,作为可替换的,折弯部除包括首折弯部212和末折弯部213外,还可包括至少一个中间折弯部214,其中,首折弯部212由主体部211的另一端向一个方向或两个方向折弯形成,中间折弯部214将首折弯部212和末折弯部213连接形成沿逆时针或顺时针方向盘旋的谐振器结构。
如图4所示,本实施例1中,折弯部与主体部211的另一端相连形成沿顺时针或逆时针方向垂直折弯形成了至少三个折弯,即折弯部包括首折弯部212、中间折弯部214和末折弯部213,其中,首折弯部212与主体部211的另一端相连,形成垂直折弯,中间折弯部与首折弯部212的末端相连,形成垂直折弯,末折弯部213与中间折弯部214的末端相连,形成垂直折弯。与现有L型和T型谐振器相比,本发明设计的谐振器结构可实现滤波器的更小型化,且滤波器的频率更低。优选地,在垂直于滤波器框架的上下端的方向,将折弯部增厚,即使折弯部的厚度大于主体部211的厚度,这样可以在同频率的要求下进一步减小谐振器的体积。
在信号传输路径上的相邻两个谐振器2之间电磁混合耦合,具体主耦合方式由谐振器2的形状及排布位置决定,谐振器2之间的耦合量可通过谐振器2之间的耦合面积和间距来调整。需要说明的是,一般的TEM模滤波器的耦合为电耦合(即电容耦合)和磁耦合(即电感耦合)共存,这两种耦合中耦合量大的一种称为主导耦合,而本发明滤波器中的主导耦合的模式可以由谐振器2的形状自由选择。如本实施例1中的一体式6阶滤波器,形成的信号传输路径为谐振器21~26所形成的U型路径。
优选地,不同容纳腔室的多组相邻两个谐振器中至少有一组相邻两个谐振器之间耦合连接,实现交叉耦合。如图1~图3所示,不同容纳腔室的相邻两个谐振器之间通过分隔壁5上对应增设的耦合开口51形成交叉耦合传输路径。根据耦合开口51的面积,和/或通过耦合开口51耦合的谐振器 形状及耦合间距来调整交叉耦合的耦合量,且交叉耦合的耦合模式选择根据主导耦合的模式来决定。本实施例1中,分隔壁5上对应谐振器22和25的位置设置一耦合开口51,谐振器22和谐振器25的主体部211通过该耦合开口51直接连接在一起实现电感交叉耦合,即增加了电感交叉耦合,形成了2个传输零点;及分隔壁5上对应谐振器21和26的位置也设置一耦合开口51,使得谐振器21和26的折弯部间隔一段距离,通过该耦合开口51形成电容耦合,即又增加了电容交叉耦合,本实施例中通过一个交叉耦合在通带的高频段,低频段各产生相反相位的两个零点,因此两个交叉耦合产生共4个传输零点。如图5所示的原理图,谐振器22和25之间的交叉耦合为电感耦合,谐振器21和26之间的交叉耦合为电容耦合。如图6所示为对应电性能曲线,通过两个耦合开口51形成的电感交叉耦合和电容交叉耦合,共形成4个零点,因此可实现良好衰减特性的高性能滤波器。每个零点的强弱,位置可独立控制。
进一步地,如图1~图3所示,所述滤波器还包括信号输入端口7和信号输出端口8,这两个端口7、8分别设置在上述信号传输路径的两个末端,信号输入、输出端口7、8位置是根据信号传输路径的方向来决定的,也就是说根据信号传输路径的不同,其设置位置也可以相应不同,所以改变信号传输路径就可以变化信号输入输出接口7、8位置,由上述描述可知,信号传输路径又可以由分隔壁5的设置位置自由设计。在实施例1中,信号输入端口7设置于滤波器框架1外的靠近谐振器21的位置处,信号输出端口8设置于滤波器框架1外的靠近谐振器26的位置处。实施时,信号输入端口7和信号输出端口8也可以有多种形式,本实施例中,信号输入输出端口7、8为内芯形式,也可变化为接头,或在上端,下端结合PCB板(即上盖板和下盖板)形成信号输入输出端口7、8。
又如图7所示,一个滤波器框架1中有8个一体谐振器2,组成4腔带通滤波器。其中,滤波器框架1中设置了3个同排分布(如沿滤波器框 架1的左侧壁往滤波器框架1的右侧壁分布)的分隔壁5,3个分隔壁5将容纳空间11分隔为4个容纳腔室111,每个容纳腔室111内设置两个谐振器2,谐振器2的形状、接地位置等参照上述实施例1的描述,这里不做赘述。且根据谐振器2的形状及相互耦合的位置来控制实施例2中谐振器2之间的主导耦合模式为电耦合模式还是磁耦合模式。
相邻两个分隔壁5的两个耦合间隙6位于异侧,这样滤波器2内的信号传输路径根据该分隔壁5按S字型传输。根据该S型信号传输路径可以控制信号输入输出端口7、8位置。信号输入输出端口7、8分别在信号传输路径的两个末端,信号传输路径的方向又决定了信号输入输出端口7、8的位置。当然,实施例2中谐振器的信号传输路径也可以是U型,如图8、9所示,滤波器框架1的中部设置一分隔壁5。
也就是说,本发明谐振器2的形状和接地位置可以自由设计,而谐振器2之间的主导耦合模式可以由相耦合的谐振器2的耦合位置所决定,所以也可以自由设计;另外,分隔壁5的设置位置可以自由设计,而信号传输路径由分隔壁5的设置位置来决定,所以也可以自由设计,还有信号输入输出端口7、8又由信号传输路径决定,所以也可以自由设计;进一步地,谐振器2之间的交叉耦合根据滤波器的性能要求来决定,所以也可以自由设计。本发明中谐振器2的形状、谐振器2之间的耦合模式、信号传输路径、信号输入输出端口7、8的设计,滤波器交叉耦合模式等可以根据需要自由设计,不限于上述三个实施例所描述的。
由图1、图7和图8可以看出,除了接头以外本发明没有额外的装配结构件,加工及装配费用可大大减少。并且在非相邻谐振器之间形成交叉耦合时没有额外的结构件,仅通过在分隔壁上开口就可实现交叉耦合,因此可减少因结构件带来的加工及装配公差,减少了产品的难度。
本发明的技术内容及技术特征已揭示如上,然而熟悉本领域的技术人员仍可能基于本发明的教示及揭示而作种种不背离本发明精神的替换及修 饰,因此,本发明保护范围应不限于实施例所揭示的内容,而应包括各种不背离本发明的替换及修饰,并为本专利申请权利要求所涵盖。
Claims (10)
- 一种滤波器,其特征在于,包括:滤波器框架,其内形成有容纳空间;设置于所述容纳空间内的且沿一条信号传输路径分布的至少两个谐振器,在所述信号传输路径上的相邻两个所述谐振器之间耦合连接,每个所述谐振器包括主体部和折弯部,所述主体部的一端与滤波器框架一体成型接地,所述折弯部包括首折弯部和末折弯部,所述首折弯部和末折弯部连接形成沿逆时针或顺时针方向盘旋的谐振器结构,或所述折弯部包括首折弯部、至少一中间折弯部和末折弯部,所述中间折弯部将首折弯部和末折弯部连接形成沿逆时针或顺时针方向盘旋的谐振器结构。
- 根据权利要求1所述的滤波器,其特征在于,所述首折弯部由主体部的另一端向一个方向或两个方向折弯形成。
- 根据权利要求1所述的滤波器,其特征在于,所述滤波器内还设置有至少一个分隔壁,所述分隔壁与滤波器框架的内壁之间形成有耦合间隙且与滤波器框架一体成型,所述分隔壁将所述容纳空间分隔为多个容纳腔室,所述谐振器的主体部与所述分隔壁一体成型接地,和/或与滤波器框架的内壁一体成型接地。
- 根据权利要求3所述的滤波器,其特征在于,所述滤波器内的信号传输路径根据所述分隔壁按U字型或S型传输。
- 根据权利要求3所述的滤波器,其特征在于,所述滤波器内设置一个分隔壁,所述分隔壁一体成型于所述滤波器框架的中部,所述滤波器内的信号传输路径根据所述分隔壁按U字型传输。
- 根据权利要求3所述的滤波器,其特征在于,所述滤波器内设置多个间隔分布的分隔壁,且相邻两个分隔壁分别与相对的两个滤波器框架内壁形成耦合间隙,所述滤波器内的信号传输路径根据所述分隔壁按S字型传 输。
- 根据权利要求3~6任意一项所述的滤波器,其特征在于,所述分隔壁上设置有耦合开口,不同所述容纳腔室的相邻两个谐振器通过所述耦合开口耦合连接,形成交叉耦合。
- 根据权利要求7所述的滤波器,其特征在于,不同所述容纳腔室的相邻两个谐振器的主体部通过耦合开口直接连接在一起实现电感交叉耦合。
- 根据权利要求7所述的滤波器,其特征在于,不同所述容纳腔室的相邻两个谐振器的折弯部间隔一段距离通过耦合开口实现电容交叉耦合。
- 根据权利要求1所述的滤波器,其特征在于,所述滤波器还包括设置于滤波器框架上端的上盖板和设置于滤波器框架下端的下盖板,所述上、下盖板使所述容纳空间封闭,在垂直于上、下盖板方向上,所述谐振器折弯部的厚度大于主体部的厚度。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/072152 WO2020147063A1 (zh) | 2019-01-17 | 2019-01-17 | 一种滤波器 |
EP19910258.3A EP3913735A4 (en) | 2019-01-17 | 2019-01-17 | FILTERED |
US17/377,929 US11984635B2 (en) | 2019-01-17 | 2021-07-16 | Filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/072152 WO2020147063A1 (zh) | 2019-01-17 | 2019-01-17 | 一种滤波器 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/377,929 Continuation US11984635B2 (en) | 2019-01-17 | 2021-07-16 | Filter |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020147063A1 true WO2020147063A1 (zh) | 2020-07-23 |
Family
ID=71614197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/072152 WO2020147063A1 (zh) | 2019-01-17 | 2019-01-17 | 一种滤波器 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11984635B2 (zh) |
EP (1) | EP3913735A4 (zh) |
WO (1) | WO2020147063A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7304554B2 (en) * | 2004-05-28 | 2007-12-04 | New Japan Radio Co., Ltd. | U-shaped microwave and millimeter wave resonator filter |
CN101599569A (zh) * | 2009-07-17 | 2009-12-09 | 华为技术有限公司 | 耦合结构和同轴腔体滤波器 |
CN201868548U (zh) * | 2010-12-07 | 2011-06-15 | 丹凤常兴科技实业有限公司 | 大功率l波段四频合路器 |
JP5341121B2 (ja) * | 2011-02-22 | 2013-11-13 | 島田理化工業株式会社 | 共振器 |
CN107196023A (zh) * | 2016-03-14 | 2017-09-22 | 凯瑟雷恩工厂两合公司 | 框架结构方式的同轴滤波器 |
CN108232397A (zh) * | 2018-03-26 | 2018-06-29 | 青岛理工大学 | 一种小型化功分器 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4757285A (en) * | 1986-07-29 | 1988-07-12 | Siemens Aktiengesellschaft | Filter for short electromagnetic waves formed as a comb line or interdigital line filters |
FI104591B (fi) * | 1998-02-04 | 2000-02-29 | Adc Solitra Oy | Suodatin ja suodattimen valmistusmenetelmä sekä suodattimen kotelorakenteen osa |
FR2938378B1 (fr) * | 2008-11-07 | 2015-09-04 | Commissariat Energie Atomique | Ligne a retard bi-ruban differentielle coplanaires, filtre differentiel d'ordre superieur et antenne filtrante munis d'une telle ligne |
CN102820505A (zh) * | 2012-09-11 | 2012-12-12 | 成都赛纳赛德科技有限公司 | 一种小型化窄带滤波器 |
CN104241753B (zh) * | 2014-09-03 | 2017-01-25 | 华南理工大学 | 一种采用两路反相滤波电路的ltcc滤波巴伦 |
CN107086347A (zh) * | 2016-02-16 | 2017-08-22 | 青岛海尔电子有限公司 | 四模缺陷地式谐振器 |
CN107086338B (zh) * | 2016-02-16 | 2019-05-21 | 青岛海尔电子有限公司 | 四模缺陷地式滤波器 |
CN207426092U (zh) * | 2017-10-16 | 2018-05-29 | 宁波华瓷通信技术有限公司 | 一种超薄滤波器 |
-
2019
- 2019-01-17 EP EP19910258.3A patent/EP3913735A4/en active Pending
- 2019-01-17 WO PCT/CN2019/072152 patent/WO2020147063A1/zh unknown
-
2021
- 2021-07-16 US US17/377,929 patent/US11984635B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7304554B2 (en) * | 2004-05-28 | 2007-12-04 | New Japan Radio Co., Ltd. | U-shaped microwave and millimeter wave resonator filter |
CN101599569A (zh) * | 2009-07-17 | 2009-12-09 | 华为技术有限公司 | 耦合结构和同轴腔体滤波器 |
CN201868548U (zh) * | 2010-12-07 | 2011-06-15 | 丹凤常兴科技实业有限公司 | 大功率l波段四频合路器 |
JP5341121B2 (ja) * | 2011-02-22 | 2013-11-13 | 島田理化工業株式会社 | 共振器 |
CN107196023A (zh) * | 2016-03-14 | 2017-09-22 | 凯瑟雷恩工厂两合公司 | 框架结构方式的同轴滤波器 |
CN108232397A (zh) * | 2018-03-26 | 2018-06-29 | 青岛理工大学 | 一种小型化功分器 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3913735A4 |
Also Published As
Publication number | Publication date |
---|---|
US20210344093A1 (en) | 2021-11-04 |
EP3913735A1 (en) | 2021-11-24 |
EP3913735A4 (en) | 2022-09-07 |
US11984635B2 (en) | 2024-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111446524B (zh) | 一种单层交叉耦合滤波器 | |
CN209169350U (zh) | 一种滤波器 | |
US10116026B2 (en) | Coaxial filter having first to fifth resonators, where the fourth resonator is an elongated resonator | |
RU2487448C2 (ru) | Вставка и способ сборки такой вставки | |
JP2005197163A (ja) | コネクタ | |
JP2007519211A (ja) | 改良された電気信号伝達システム | |
WO2013183354A1 (ja) | 帯域通過フィルタ | |
KR101386941B1 (ko) | 조립식 대역 저지 필터 | |
WO2024179370A1 (zh) | Btb连接器母座及btb连接器 | |
WO2020147063A1 (zh) | 一种滤波器 | |
CN111446529A (zh) | 一种滤波器 | |
CN111952700B (zh) | 一种交叉耦合滤波器 | |
US5563561A (en) | Dielectric block apparatus having two opposing coaxial resonators separated by an electrode free region | |
CN114937856B (zh) | 一种基于混合电磁耦合的基片集成波导带通滤波器 | |
EP4037093A1 (en) | Ceramic dielectric filter | |
US7140923B2 (en) | Multiple port electrical connector | |
EP0982792B1 (en) | Antenna duplexer and communication apparatus | |
WO2020147064A1 (zh) | 一种单层交叉耦合滤波器 | |
CN111585113A (zh) | 模组连接器 | |
JPH02159102A (ja) | マイクロ波フィルター装置 | |
WO1999018630A1 (en) | Slot line band pass filter | |
WO2024215032A1 (ko) | 통신기기용 필터 | |
CN114678669B (zh) | 带通滤波器 | |
JP2002111312A (ja) | 導波管フィルタ | |
US20240222832A1 (en) | Filters including dual cross-couplings and related combiners |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19910258 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019910258 Country of ref document: EP Effective date: 20210817 |