WO2020145677A1 - Drone - Google Patents

Drone Download PDF

Info

Publication number
WO2020145677A1
WO2020145677A1 PCT/KR2020/000381 KR2020000381W WO2020145677A1 WO 2020145677 A1 WO2020145677 A1 WO 2020145677A1 KR 2020000381 W KR2020000381 W KR 2020000381W WO 2020145677 A1 WO2020145677 A1 WO 2020145677A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
flywheel
fixed wing
vane
present
Prior art date
Application number
PCT/KR2020/000381
Other languages
French (fr)
Korean (ko)
Inventor
최영준
김종성
Original Assignee
최영준
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최영준 filed Critical 최영준
Publication of WO2020145677A1 publication Critical patent/WO2020145677A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C17/00Aircraft stabilisation not otherwise provided for
    • B64C17/02Aircraft stabilisation not otherwise provided for by gravity or inertia-actuated apparatus
    • B64C17/06Aircraft stabilisation not otherwise provided for by gravity or inertia-actuated apparatus by gyroscopic apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air flow over aircraft surfaces, not otherwise provided for
    • B64C23/08Influencing air flow over aircraft surfaces, not otherwise provided for using Magnus effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/25Fixed-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/10Wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to drones or airplanes that increase lift and restore and stabilize flight posture.
  • the drone can be arranged in the horizontal direction of the propeller rotation axis like an airplane, and the propeller rotation axis can be arranged in the vertical direction like a helicopter, so that the runway can be vertically taken off and landed.
  • the drone can be configured to include an electric motor and a battery, the electric motor can operate the propeller with battery power, and the drone can stably fly when the battery power is available.
  • drones can quickly consume battery power, which can lead to very short drone flight times and slow flight speeds.
  • the drone may suddenly fall because the battery power is suddenly lowered, and thus the thrust or lift by the propeller is not sufficiently implemented.
  • the drone When a drone is flying and suddenly falls freely and falls, the drone itself can become a dangerous object, for example, it can cause damage such as injuries or damage to objects.
  • Patent Document 1 KR 10-0747082 B1
  • the technical problem to be achieved by the present invention is to install a flywheel in the form of a disk on one side of the drone, and implement a Magnus effect by rotating the flywheel so that the drone receives force in the upward direction to reinforce lift.
  • the purpose of this is to provide a drone that can significantly reduce the fall rate in the event of an emergency such as a malfunction or battery exhaustion.
  • Another object of the present invention is to provide a drone that can increase the flight time of the drone by reinforcing lift with the Magnus effect.
  • the drone according to an embodiment of the present invention for achieving the above technical problem is fixed to the left and right symmetrically with respect to the vertical center line (a) and is formed in a wide direction in the left or right direction or rear; And a drone according to an embodiment of the present invention for achieving the above technical problem in the fixed wing (2), the left and right symmetrical with respect to the vertical center line (a) and fixed wing (2) formed wide in the left or right direction; And a gyro rotor unit 20 symmetrical to the left and right of the fixed center 2 based on the vertical center line a or disposed on the vertical center line a.
  • the gyro rotor unit 20 includes a bracket 22 installed on the fixed wing 2; A shaft axle 24 installed in the bracket 22 such that the vertical center line (a) and the rotation axis (c) form a right angle; A flywheel 26 installed on the shaft axle 24 and implementing lift in a vertical direction with respect to the traveling direction of the vehicle according to rotation, and restoring to a horizontal posture; And a vane 28 installed on the shaft axle 24 and rotating to rotate the flywheel 26 under the influence of ambient airflow.
  • the flywheel 26 is provided in a plurality, the vane 28 is disposed between any one flywheel 26 and the other flywheel 26; includes can do.
  • the vane 28 when the vane 28 is formed with a part of the outer edge inclined, the vane 28 is rotated to form a cone shape when a rotating body is realized.
  • one flywheel 26 may have a larger diameter or a larger circumferential surface area (w) than the other flywheel 26.
  • the first magnetic 52 is arranged in a circular arrangement in which the polarity is uniformly arranged in the flywheel 26;
  • a magnetic driver 50 installed on the fixed wing 2 to rotate the rotor by an electric motor;
  • the polarities of the magnetic driver 50 are aligned and arranged in a circular arrangement, and when the magnetic driver 50 is operated, magnetic force is applied to the first magnetic 52 so that the flywheel 26 rotates. It may include; a second magnetic (54) acting.
  • the drone control unit 10 disposed on the vertical center line (a) in the main body (1) includes,
  • the drone control unit 10 may provide electric magnetic energy of the battery to the magnetic driver 50 in preference to other electronic devices when the remaining battery detection value is equal to or less than a reference value.
  • the horizontal length (width) is the same as the length of the shaft axle 24 or formed within a range of about 5%, the gyro rotor unit 20 in the fixed wing 2 It may include; an extended fixed wing (4) disposed at the back of the installed portion.
  • the drone according to the embodiment of the present invention made as described above may reinforce the lift by implementing the Magnus effect during the cruise flight, thereby increasing the flight time.
  • the drone according to the embodiment of the present invention can restore the posture of the vehicle by implementing the gyro effect by rotating the flywheel.
  • the drone according to the embodiment of the present invention can force the Magnus effect by rotating the flywheel when the battery power is determined to be below the set level, thereby preventing the drone from suddenly falling without being controlled. This allows the drone to descend at a slower speed, like a parachute, so that it can land safely.
  • the drone according to an embodiment of the present invention can achieve stable flight by rotating the flywheel when flying regardless of the battery level.
  • FIGS. 1 and 2 are front and plan views for explaining a drone according to an embodiment of the present invention.
  • FIG 3 is a view for explaining the configuration of a gyro rotor unit in a drone according to an embodiment of the present invention.
  • FIG. 4 is a view for explaining the configuration of another example gyro rotor unit in a drone according to an embodiment of the present invention.
  • FIG. 5 is a view for explaining the installation configuration of a gyro rotor unit in a drone according to an embodiment of the present invention.
  • 6 to 11 are views for explaining a drone according to another embodiment of the present invention.
  • FIG. 12 is a view for explaining the concept of a drone for electricity generation according to another embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from other components.
  • first component may be referred to as a second component without departing from the scope of the present invention, and similarly, the second component may be referred to as a first component.
  • main body 2 fixed wing
  • FIGS. 1 and 2 are a front view and a plan view for explaining a drone according to an embodiment of the present invention.
  • the drone according to the embodiment of the present invention may include a main body 1, a fixed wing 2, and a gyro rotor unit 20.
  • the main body 1 may be provided in various ways depending on the shape of the aircraft, and the main body 1 may be equipped with electronic equipment for controlling the drone.
  • Electronic equipment is, for example, batteries, electric motors, camera modules, communication modules, and the like.
  • the fixed wing 2 is symmetrical to the left and right based on the vertical center line (a) of the main body 1 in the main body 1 and can be formed wide in the left or right direction or rearward. That is, the shape of the stator blade 2 may be provided in any shape as long as it is a shape symmetrical with respect to the vertical center line a of the main body 1, which shows various examples from FIGS. 2 and 6 to 10 Did.
  • the fixed wing 2 may have a cross-sectional shape of an airfoil shape, and may have a plate shape having a constant thickness.
  • the fixed wing 2 may be a design factor in which the area ratio of the gyro unit to the fixed wing area is important.
  • the area of the gyro unit may be an area obtained by combining the circumferential surface area of the flywheel 26 and the surface area of the vane 28. In the fixed wing 2, the larger the area of the gyro unit with respect to the fixed wing area, the greater the gyro effect.
  • the fixed wing 2 may have an upper half angle (d).
  • the upper half angle d may increase the amount of air reaching the fixed wing of the descending side to increase lift, and decrease the amount of lift by decreasing the amount of air reaching the fixed wing of the climbed side. That is, by forming the upper half (d) on the fixed wing (2) it is possible to quickly and easily restore the drone's flight posture to a stable posture.
  • the gyro rotor unit 20 may be symmetrical to the left and right of the fixed center 2 based on the vertical center line a, or may be disposed on the vertical center line a.
  • the drone according to the embodiment of the present invention configured as described above can implement a Magnus effect by the gyro rotor unit 20 to reinforce lift, and restore a posture by the gyro effect.
  • FIGS. 3 to 5 is a view for explaining the configuration of a gyro rotor unit in a drone according to an embodiment of the present invention.
  • 4 is a view for explaining the configuration of another example gyro rotor unit in a drone according to an embodiment of the present invention.
  • 5 is a view for explaining the installation configuration of a gyro rotor unit in a drone according to an embodiment of the present invention.
  • the gyro rotor unit 20 may include a bracket 22, a shaft axle 24, a flywheel 26, and a vane 28.
  • the bracket 22 may be installed on the fixed wing (2).
  • the bracket 22 may be installed on the upper side of the fixed wing 2 according to the shape of the vehicle or may be integrally formed in front of the main body 1.
  • bracket 22 If the bracket 22 is installed on the upper side of the fixed wing 2, as shown in FIG. 5, it can be installed obliquely toward the front upward direction toward the traveling direction of the vehicle.
  • the angle at which the bracket 22 is inclined forward can form an angle of approximately 45 to 50 degrees from the horizontal reference line, whereby the natural wind flow avoids interference with the bracket 22 as much as possible, while the air flow of the natural wind is with the flywheel 26. It can interact with the vane (28).
  • the vane 28 of the gyro rotor unit 20 installed to face the front side can be fixed at a specific angle, through which, the vane 28 and the fixed wing 2 can achieve a bilobal shape (not shown). have.
  • the shaft axle 24 may be installed such that the horizontal reference line b and the rotation axis c of the main body 1 are parallel to the bracket 22. In other words, the shaft axle 24 may be installed such that the vertical center line (a) and the rotation axis (c) form a right angle.
  • FIGS. 3 and 4 show that the bracket 22 is positioned at the end of the shaft axle 24, but the present invention is not limited thereto, and the bracket 22 is vane 28-first bracket 22. -Flywheel 26-second bracket 22-vane 28 can be configured in order (not shown).
  • the lift force can act in a direction in which the main body 1 maintains a posture and rises.
  • the flywheel 26 may be provided in the form of a disc, may be installed on the shaft axle 24, and may have rotational inertia by applying kinetic energy to the mass.
  • the rotation of the flywheel 26 and the vane 28 can realize lift in the vertical direction with respect to the traveling direction of the vehicle, and it is expected to enhance the gyro effect according to the high-speed rotation of the flywheel 26.
  • the vane 28 may be installed on the shaft axle 24 and rotated under the influence of the surrounding airflow to rotate the flywheel 26.
  • the vane 28 can be fixed so that the cross-sectional shape maintains a horizontal posture according to the user's will, or can remove the load so that the vane 28 can rotate freely.
  • This may be a mutually switchable biplane having both functions of a gyro rotor unit 20 applied aircraft and a biplane, so that the gyro rotor unit 20 to be described later is accommodated in a fixed wing, so that the aircraft enters the high altitude stability zone.
  • a flight like a conventional biplane it is possible to implement a flight like a conventional biplane in order to increase the flight speed.
  • the rotation control of the vane 28 can be implemented by interrupting the shaft axle 24, and more specifically, a braking device can be installed to suppress or cancel the rotation of the shaft axle 24.
  • the braking device uses known technology such as friction and adhesion pressure, and detailed description is omitted.
  • the drone according to an embodiment of the present invention can rotate the vane by an external air flow, thereby realizing a gyro effect by rotating the flywheel to restore the attitude of the air vehicle.
  • the flywheel 26 may be provided in plural, whereby the Magnus effect and the gyro effect are more reliably implemented to increase the lift effect and Posture restoration effect can be increased.
  • a vane 28 may be disposed between any one flywheel 26 and the other flywheel 26, whereby a plurality of vanes 28 are provided to realize the Magnus effect and the gyro effect more reliably, thereby restoring the posture. Can increase.
  • the vanes 28 and flywheel 26 need to be provided in suitable sizes, and aspect ratio can be an important design factor.
  • the circumferential surface area of the flywheel 26 may be 1.4 times or more with respect to the area of the vane 28, and in this case, the flywheel 26 may rotate in a normal rotational direction at an appropriate rotational speed.
  • the circumferential surface area of the flywheel 26 is provided to be less than 1.4 times the area of the vane 28, the flywheel 26 is likely to rotate in reverse, and in this case, the drone may fall due to reverse lifting force. As described above, it is important that the circumferential surface area of the flywheel 26 is designed to be 1.4 times or more with respect to the area of the vane 28.
  • the vane 28, as shown in FIG. 4, may be formed such that a portion of the outer edge is inclined to form a cone when the vane 28 is rotated to form a rotating body.
  • the vane 28 is the main body 1 or the fixed wing ( 2)
  • the vane 28 may be provided in a symmetrical shape such as an oval shape, a rhombus shape, a rectangle, and the like, and may be concavely formed in a bucket shape on one side so as to be sensitive to the influence of airflow, and the bucket shape is rotated. It is formed symmetrically and can rotate in one direction.
  • the vane 28 is not limited to a bucket shape, and can be formed into a flat plate shape, and in this case, an initial rotation starting device may be required.
  • the plate-shaped vane 28 may be required for conversion to the above-described biplane.
  • one flywheel 26 may have a larger diameter than the other flywheel 26, or may have a large circumferential surface area w.
  • the Magnus effect is that when an object moves while rotating, a force acts in a direction perpendicular to the direction of movement.
  • the gyro rotor unit 20 can be operated by power, which will be described with reference to FIG. 5.
  • 5 is a view for explaining the installation configuration of the gyro rotor unit 20 in a drone according to an embodiment of the present invention.
  • a first magnetic 52 may be disposed on the flywheel 26.
  • the first magnetic 52 may be arranged in a circular arrangement close to the surface of the flywheel 26, as shown in FIG. 5, and may be arranged with a constant polarity.
  • the polarity is one in which the N pole and the S pole are aligned in one direction.
  • a magnetic driver 50 may be installed on the fixed wing 2, and the magnetic driver 50 may rotate by a rotor by an electric motor.
  • the electric motor may receive electric energy from a battery mounted on the main body 1 and may be operated under the control of the drone control unit 10.
  • the second magnet 54 may be arranged in a circular arrangement on the rotor of the magnetic driver 50 as shown in FIG. 5.
  • the polarity of the second magnetic 54 may be uniformly aligned, and the polarity is arranged such that the N pole and the S pole have one direction.
  • the second magnetic 54 rotates, and the second magnetic 54 exerts a magnetic force effect on the first magnetic 52 of the flywheel 26.
  • the flywheel 26 can be rotated.
  • the flywheel 26 may be forcibly rotated according to the user's control will, and may be forcibly rotated under the control of the drone control unit 10.
  • the drone according to the embodiment of the present invention can reinforce the lift by forcibly rotating the flywheel 26 at a time when the Magnus effect is required.
  • the propulsion force of the vehicle is weakened by not adding an air resistance generating factor to the propulsion of the vehicle. Can be prevented.
  • the drone according to the embodiment of the present invention may be configured by including the drone control unit 10 on the vertical center line (a) in the main body (1), and the center of gravity is biased to either side. You can balance without hitting and contribute to stable flight.
  • the drone control unit 10 may be equipped with a control unit, a battery, an electric motor, camera equipment, communication equipment, and the like, and a propeller may be installed outside the main body 1.
  • the camera equipment can take images, and the communication equipment can communicate with the drone operator's remote controller, thereby allowing the drone operator to remotely control the drone.
  • the drone control unit 10 may provide the magnetic driver 50 with priority over other electronic devices when the remaining battery detection value is less than or equal to a reference value.
  • the drone control unit 10 may continuously monitor the state of the battery to detect the remaining battery capacity, and determine whether the detected value reaches or falls below a reference value.
  • the drone according to the embodiment of the present invention can force the flywheel 26 to be rotated at high speed when the battery power is determined to be lower than or equal to the set level, thereby forcibly implementing the gyro effect and the Magnus effect, thereby preventing the drone from being controlled. It can be prevented from falling suddenly when not in use.
  • the drone control unit 10 may operate the magnetic driver 50 to reinforce the lift force as described above, thereby delaying the drone from rapidly falling when the drone cannot be normally controlled. .
  • the drone according to the embodiment of the present invention can minimize the personal injury or property damage that may be caused by a drone crash by slowing down the drone's fall rate.
  • the drone according to an embodiment of the present invention can be implemented in various forms, which will be described with reference to FIGS. 2 and 6 to 10.
  • 6 to 10 are views for explaining a drone according to another embodiment of the present invention.
  • the gyro rotor unit 20 may be disposed at positions symmetrical to both sides with respect to the vertical center line a.
  • the gyro rotor unit 20 may be disposed at positions symmetrical to both sides with respect to the vertical center line a.
  • the drone control unit 10 may be disposed on the vertical center line (a).
  • the gyro rotor unit 20 may be disposed at positions symmetrical to both sides with respect to the vertical center line a.
  • the drone control unit 10 may be disposed on the vertical center line (a).
  • the gyro rotor unit 20 may be disposed on the vertical center line (a).
  • the drone control unit 10 may be disposed on the vertical center line (a).
  • the 9A is an example in which the drone is implemented in the form of an apron wing.
  • the gyro rotor unit 20 may be disposed on the vertical center line (a).
  • the drone control unit 10 may be disposed on the vertical center line (a).
  • the drone shown in FIG. 9A may further include a tilt rotor 30. Tilt rotor 30 may be operated to take off and land the drone in the vertical direction. In addition, the tilt rotor 30 can safely implement dangerous tilt rotor operation by the gyro effect of the gyro rotor unit 20.
  • FIG. 9B is an example in which the drone is implemented in a circle wing form.
  • the main body 1 or the fixed wing 2 may be provided in a circular shape.
  • 9C is an example in which the drone is implemented in a heart wing form, and as a modification of FIG. 9A, the main body 1 or the fixed wing 2 may be provided in a heart shape.
  • the drone 10 is an example in which the drone is carried out in the form of a helium balloon.
  • the helium balloon 40 may be disposed at a symmetrical position with respect to the vertical center line (a), and the drone control unit 10 and the gyro rotor unit 20 may be arranged over the vertical center line (a), and the main body A steering wheel 3 may be provided at the rear side of (1), and a wind power generator 42 may be installed under the helium balloon 40.
  • the steering wheel 3 of the drone shown in FIG. 10 can be used as a wind vane or when changing the direction of the drone, the helium balloon 40 allows floating at high altitude, and the wind generator 42 is wind power Can produce electricity.
  • an example of using helium in a helium balloon is shown, but is not limited thereto, and a gas having a specific gravity smaller than that in the atmosphere may be used.
  • the drone shown in FIG. 10 can continuously recharge the electricity consumed by the drone by producing electricity with the wind generator 42, thereby allowing the drone to remain at high altitude for a long time and perform a predetermined purpose or function.
  • a given purpose or a given function can be used, for example, to perform climate observation, security, forest fire monitoring, logistics, pesticide spraying, rescue activities, reconnaissance, remote communication communication, internet signal relay, and the like.
  • the drone shown in FIG. 10 can take off as power, enter power at high altitude, turn off power, and operate with only sunlight and wind energy to generate and accumulate electric energy, and can have an on/off sensor system in the drone, at night or When there is no wind, the high altitude flight can be continued without landing without using the accumulated energy described above.
  • Drones according to embodiments of the present invention may be evolved in the form of a high altitude (High Altitude) wind power airplane.
  • the altitude may be a stratosphere, the height may range from approximately 14 km to 18.5 km, and a height of 18 km or more may be a height that can fly according to the operator's plan without the instructions of the ground controller and a predetermined route.
  • the stratosphere has a very low air density and temperature, making it difficult for ordinary aircraft to fly, but because it has no clouds, it can be advantageous for long-term flight by utilizing sunlight as a power source.
  • the drone according to the embodiment of the present invention may be configured to include an upper half-angle extended fixed wing 4.
  • the extended stator blade 4 may have a horizontal area (width) equal to the length of the shaft axle 24 or similar within a range of about 5% and may have a predetermined area.
  • the extended stator blade 4 may be formed in a form that extends to the rear just behind the stator blade 2 in which the gyro rotor unit 20 is fixed (in the opposite direction to the moving direction of the vehicle).
  • the extended fixed wing 4 can contribute to a drone or a vehicle to realize a more stable flight effect.
  • the gyro rotor unit 20 may be designed and modified to be accommodated in the fixed wing (2). More specifically, a storage space is formed in the fixed wing 2, and the gyro rotor unit 20 can appear and go out of the storage space.
  • the gyro rotor unit 20 may operate linearly using a device such as an LM guide, or folded or unfolded using a white paper device.
  • the power to bring the gyro rotor unit 20 up and down can be operated by a known actuator such as a linear motor or cylinder.
  • the drone according to the embodiment of the present invention while cruising, the gyro rotor unit 20 can operate in a hidden state without protruding outside the main body 1 or the fixed wing 2, thereby reducing air resistance By doing this, you can increase the speed of your drone's flight.
  • the gyro rotor unit 20 can be accommodated inside the main body 1 or the fixed wing 2 to reduce air resistance, thereby increasing the flying speed of the drone.
  • the drone according to the embodiment of the present invention if equipped with gyro rotor units 20 on both sides with respect to the vertical center line (a), it is possible to switch the flight direction of the aircraft while suppressing the rotation of the shaft axle 24 have.
  • the drone according to the embodiment of the present invention can switch the flight direction of the drone even if the steering wheel 3 previously equipped in the vehicle is not used or the steering wheel 3 is not used.
  • a conventional vehicle using a solar cell to charge and fly may have a narrow aspect and a large aspect ratio (Aspect ratio), ultra-light weight, and robust wing production may be a technical problem.
  • the drone it is possible to provide the fixed wing 2 with a long wing in the form of a flat plate rather than an airfoil, and by installing the gyro rotor unit 20 on the long wing, it is possible to simplify the construction of the drone, and is lightweight and durable It has the advantage of being able to be fabricated.
  • the drone according to the embodiment of the present invention by installing a solar panel on the surface of the fixed wing (2) can fly high with only solar energy, thereby continuing to take strong wind energy at high altitude, It can be used as a public radio base station to replace high-altitude wind-powered aircraft or satellites.
  • a drone control unit 10 may be provided with a seat for a person to board, and in this case, the drone can directly control the drone.
  • the present invention can be applied to a Personal Air Vehicle (PAV).
  • PAV Personal Air Vehicle
  • the drone according to the present invention can be applied to a ship that can move at high speed by floating about 1 m above the sea.
  • FIG. 12 is a view for explaining the concept of a drone for electricity generation according to another embodiment of the present invention.
  • a flywheel 26 is disposed to be rotatable on the fixed wing 2, and a power generation unit 43 may be connected to one side of the shaft axle 24 of the flywheel 26, and the power generation unit 43 may be provided with the fixed wing (2) can be installed.
  • the power generation unit 43 may convert the rotational energy of the flywheel 26 into electrical energy.
  • a power transmission connection part 60 may be connected to the power generation part 43.
  • the transmission connection unit 60 may transmit electric energy to the ground or the inside of the drone.
  • the transmission connection unit 60 may be connected to equipment on the ground through a cable to supply power, or may be used to charge through a power storage device provided in the drone.
  • the present invention can stably fly over high altitude while supplying the power generated through rotation of the flywheel 66 to the ground, thereby generating a greater amount of energy than a wind turbine installed on the ground.
  • the drone according to an embodiment of the present invention can be used to prevent the drone from suddenly falling into an uncontrolled state or to restore the flying attitude of the drone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Remote Sensing (AREA)
  • Toys (AREA)
  • Wind Motors (AREA)

Abstract

A drone according to an embodiment of the present invention includes a flywheel (26) and a vane (28) in a gyro rotor unit (20), wherein the flywheel (26) is rotated to generate a lift in a direction perpendicular to a travelling direction of the drone so as to implement the Magnus effect, and thus reinforce the lift, and the flywheel (26) and the vane (28) are rotated together so as to implement the gyroscopic effect, whereby a horizontal orientation can be restored so as to implement stable flight. With the drone according to an embodiment of the present invention, when it is determined that battery power is lower than or equal to a set level, the flywheel is rotated so as to forcibly implement the gyroscopic effect and the Magnus effect, so as to prevent the drone from falling suddenly.

Description

드론drone
본 발명은 양력을 증가시키고 비행 자세를 복원하고 안정화하는 드론 또는 비행기에 관한 것이다.The present invention relates to drones or airplanes that increase lift and restore and stabilize flight posture.
일반적으로 드론은 비행기처럼 프로펠러 회전축의 수평 방향으로 배치할 수 있고, 헬리콥터처럼 프로펠러 회전축이 수직 방향으로 배치될 수 있으며, 이로써 활주로를 수직 이착륙할 수 있다.In general, the drone can be arranged in the horizontal direction of the propeller rotation axis like an airplane, and the propeller rotation axis can be arranged in the vertical direction like a helicopter, so that the runway can be vertically taken off and landed.
드론은 전동 모터와 배터리를 포함하여 구성할 수 있고, 전동 모터는 배터리 전력으로 프로펠러를 작동시킬 수 있으며, 드론은 배터리 전력이 여유가 있을 때 안정적으로 비행할 수 있다.The drone can be configured to include an electric motor and a battery, the electric motor can operate the propeller with battery power, and the drone can stably fly when the battery power is available.
그러나 드론은 배터리 전력을 빠르게 소비할 수 있고 이로써 드론 비행시간이 매우 짧을 수 있으며, 비행 속도가 급격하게 느려질 수 있다.However, drones can quickly consume battery power, which can lead to very short drone flight times and slow flight speeds.
또한, 드론은 배터리 전력이 급격하게 낮아짐으로써 프로펠러에 의한 추력 또는 양력을 충분하게 구현하지 못하여 갑작스럽게 추락할 수 있다.In addition, the drone may suddenly fall because the battery power is suddenly lowered, and thus the thrust or lift by the propeller is not sufficiently implemented.
드론이 비행하다가 갑작스럽게 자유 낙하하여 추락하면 드론 자체가 위험한 물건이 될 수 있고, 예를 들어 사람이 다치거나, 물건이 파손되는 등의 피해를 발생시킬 수 있다.When a drone is flying and suddenly falls freely and falls, the drone itself can become a dangerous object, for example, it can cause damage such as injuries or damage to objects.
[선행기술문헌][Advanced technical literature]
(특허문헌 1) KR 10-0747082 B1(Patent Document 1) KR 10-0747082 B1
따라서 본 발명이 이루고자 하는 기술적 과제는, 드론의 한쪽에 원반 형태의 플라이휠을 설치하고, 플라이휠의 회전으로 마그누스 효과(Magnus effect)를 구현하여 드론이 상승하는 방향으로 힘을 받도록 하여 양력을 보강할 수 있도록 하고, 고장 또는 배터리 소진 등의 비상 상황일 때 추락 속도를 현저하게 낮출 수 있도록 하는 드론을 제공하는데, 그 목적이 있다.Therefore, the technical problem to be achieved by the present invention is to install a flywheel in the form of a disk on one side of the drone, and implement a Magnus effect by rotating the flywheel so that the drone receives force in the upward direction to reinforce lift. The purpose of this is to provide a drone that can significantly reduce the fall rate in the event of an emergency such as a malfunction or battery exhaustion.
본 발명의 다른 목적은 마그누스 효과로 양력을 보강하여 드론의 비행시간을 증가시킬 수 있도록 하는 드론을 제공하는 데 있다.Another object of the present invention is to provide a drone that can increase the flight time of the drone by reinforcing lift with the Magnus effect.
상기 기술적 과제를 달성하기 위한 본 발명의 실시예에 따른 드론은, 수직 중심선(a)을 기준으로 좌우 대칭되고 좌우 방향 또는 후방으로 넓게 형성된 고정익(2); 및 상기 고정익(2)에서상기 기술적 과제를 달성하기 위한 본 발명의 실시예에 따른 드론은, 수직 중심선(a)을 기준으로 좌우 대칭되고 좌우 방향 또는 후방으로 넓게 형성된 고정익(2); 및 상기 고정익(2)에서 상기 수직 중심선(a)을 기준으로 좌우 대칭되거나 상기 수직 중심선(a)에 배치된 자이로 로터 유닛(20);을 포함하고,The drone according to an embodiment of the present invention for achieving the above technical problem is fixed to the left and right symmetrically with respect to the vertical center line (a) and is formed in a wide direction in the left or right direction or rear; And a drone according to an embodiment of the present invention for achieving the above technical problem in the fixed wing (2), the left and right symmetrical with respect to the vertical center line (a) and fixed wing (2) formed wide in the left or right direction; And a gyro rotor unit 20 symmetrical to the left and right of the fixed center 2 based on the vertical center line a or disposed on the vertical center line a.
상기 자이로 로터 유닛(20)은, 상기 고정익(2)에 설치된 브래킷(22); 상기 브래킷(22)에서 상기 수직 중심선(a)과 회전 축선(c)이 직각을 이루도록 설치된 샤프트 액슬(24); 상기 샤프트 액슬(24)에 설치되고 회전에 따라 비행체의 진행 방향에 대하여 수직 방향으로 양력을 구현하고, 수평 자세로 복원하는 플라이휠(26); 및 상기 샤프트 액슬(24)에 설치되고 주변 기류에 영향을 받아 회전하여 상기 플라이휠(26)을 회전시키는 베인(28);을 포함한다.The gyro rotor unit 20 includes a bracket 22 installed on the fixed wing 2; A shaft axle 24 installed in the bracket 22 such that the vertical center line (a) and the rotation axis (c) form a right angle; A flywheel 26 installed on the shaft axle 24 and implementing lift in a vertical direction with respect to the traveling direction of the vehicle according to rotation, and restoring to a horizontal posture; And a vane 28 installed on the shaft axle 24 and rotating to rotate the flywheel 26 under the influence of ambient airflow.
또한, 본 발명의 실시예에 따른 드론은, 상기 플라이휠(26)이 복수로 제공되고, 어느 하나의 플라이휠(26)과 다른 플라이휠(26)의 사이에 베인(28)이 배치된 것;을 포함할 수 있다.In addition, the drone according to an embodiment of the present invention, the flywheel 26 is provided in a plurality, the vane 28 is disposed between any one flywheel 26 and the other flywheel 26; includes can do.
또한, 본 발명의 실시예에 따른 드론은, 상기 베인(28)이 바깥쪽 모서리 일부가 경사지게 형성되어 상기 베인(28)이 회전하여 회전체 형상이 구현될 때 콘 형상을 이룰 수 있다.In addition, in the drone according to an embodiment of the present invention, when the vane 28 is formed with a part of the outer edge inclined, the vane 28 is rotated to form a cone shape when a rotating body is realized.
또한, 본 발명의 실시예에 따른 드론은, 어느 하나의 플라이휠(26)이 다른 하나의 플라이휠(26)보다 지름이 더 크거나 원주 표면적(w)이 넓게 형성될 수 있다.In addition, the drone according to an embodiment of the present invention, one flywheel 26 may have a larger diameter or a larger circumferential surface area (w) than the other flywheel 26.
또한, 본 발명의 실시예에 따른 드론은, 상기 플라이휠(26)에 극성이 일정하게 원형 배열로 정렬되어 배치된 제1 마그네틱(52); 상기 고정익(2)에 설치되어 전동 모터에 의해 회전자가 회전 작동하는 마그네틱 드라이버(50); 및 상기 마그네틱 드라이버(50)의 회전자에 극성이 일정하게 원형 배열로 정렬되어 배치되고, 상기 마그네틱 드라이버(50)가 작동하면 상기 플라이휠(26)이 회전하도록 상기 제1 마그네틱(52)에 자력을 작용하는 제2 마그네틱(54);을 포함할 수 있다.In addition, the drone according to an embodiment of the present invention, the first magnetic 52 is arranged in a circular arrangement in which the polarity is uniformly arranged in the flywheel 26; A magnetic driver 50 installed on the fixed wing 2 to rotate the rotor by an electric motor; And the polarities of the magnetic driver 50 are aligned and arranged in a circular arrangement, and when the magnetic driver 50 is operated, magnetic force is applied to the first magnetic 52 so that the flywheel 26 rotates. It may include; a second magnetic (54) acting.
또한, 본 발명의 실시예에 따른 드론은, 상기 본체(1)에서 상기 수직 중심선(a) 상에 배치된 드론 제어부(10);를 포함하고,In addition, the drone according to an embodiment of the present invention, the drone control unit 10 disposed on the vertical center line (a) in the main body (1); includes,
상기 드론 제어부(10)는, 배터리의 잔량 검출 값이 기준값 이하이면 배터리의 전기 에너지를 다른 전자기기보다 우선하여 상기 마그네틱 드라이버(50)에 제공할 수 있다.The drone control unit 10 may provide electric magnetic energy of the battery to the magnetic driver 50 in preference to other electronic devices when the remaining battery detection value is equal to or less than a reference value.
또한, 본 발명의 실시예에 따른 드론은, 가로 길이(폭)가 상기 샤프트 액슬(24) 길이와 같거나 5% 내외의 범위로 형성되고, 상기 고정익(2)에서 상기 자이로 로터 유닛(20)이 설치된 부분의 뒤쪽에 배치되는 연장 고정익(4);을 포함할 수 있다.In addition, the drone according to an embodiment of the present invention, the horizontal length (width) is the same as the length of the shaft axle 24 or formed within a range of about 5%, the gyro rotor unit 20 in the fixed wing 2 It may include; an extended fixed wing (4) disposed at the back of the installed portion.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.Specific details of other embodiments are included in the detailed description and drawings.
위와 같이 이루어진 본 발명의 실시예에 따른 드론은, 순항 비행을 하는 동안에 마그누스 효과를 구현하면 양력을 보강할 수 있고 이로써 비행시간을 늘릴 수 있다.The drone according to the embodiment of the present invention made as described above may reinforce the lift by implementing the Magnus effect during the cruise flight, thereby increasing the flight time.
또한, 본 발명의 실시예에 따른 드론은, 플라이휠을 회전시킴으로써 자이로 효과를 구현하여 비행체의 자세를 복원할 수 있다.In addition, the drone according to the embodiment of the present invention can restore the posture of the vehicle by implementing the gyro effect by rotating the flywheel.
또한, 본 발명의 실시예에 따른 드론은, 배터리 전력이 설정된 수준의 이하로 판단될 때 플라이휠을 회전시켜 마그누스 효과를 강제로 구현할 수 있고, 이로써 드론이 제어되지 않은 상태에서 급작스럽게 추락하는 것을 방지할 수 있으며, 이로써 낙하산처럼 드론은 느린 속도로 하강시켜 안전하게 착지하도록 할 수 있다.In addition, the drone according to the embodiment of the present invention can force the Magnus effect by rotating the flywheel when the battery power is determined to be below the set level, thereby preventing the drone from suddenly falling without being controlled. This allows the drone to descend at a slower speed, like a parachute, so that it can land safely.
또한, 본 발명의 실시예에 따른 드론은, 배터리 수준과 무관하게 비행할 때 플라이휠을 회전시켜 안정적인 비행을 도모할 수 있다.In addition, the drone according to an embodiment of the present invention can achieve stable flight by rotating the flywheel when flying regardless of the battery level.
도 1 및 도 2도 1 및 도 2는 본 발명의 실시예에 따른 드론을 설명하기 위한 정면도 및 평면도이다.1 and 2 FIGS. 1 and 2 are front and plan views for explaining a drone according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 드론에서 자이로 로터 유닛의 구성을 설명하기 위한 도면이다.3 is a view for explaining the configuration of a gyro rotor unit in a drone according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 드론에서 다른 예의 자이로 로터 유닛의 구성을 설명하기 위한 도면이다.4 is a view for explaining the configuration of another example gyro rotor unit in a drone according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 드론에서 자이로 로터 유닛의 설치 구성을 설명하기 위한 도면이다.5 is a view for explaining the installation configuration of a gyro rotor unit in a drone according to an embodiment of the present invention.
도 6부터 도 11은 본 발명의 다른 실시예에 따른 드론을 설명하기 위한 도면이다.6 to 11 are views for explaining a drone according to another embodiment of the present invention.
도 12는 본 발명의 다른 실시예에 다른 전기 발전을 위한 드론의 개념을 설명하기 위한 도면이다.12 is a view for explaining the concept of a drone for electricity generation according to another embodiment of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예를 참조하면 명확해질 것이다.Advantages and features of the present invention, and methods for achieving them will be clarified with reference to embodiments described below in detail together with the accompanying drawings.
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 대하여 상세하게 설명한다. 이하에서 설명되는 실시예는 본 발명의 이해를 돕기 위하여 예시적으로 나타낸 것이며, 본 발명은 여기서 설명되는 실시예와 다르게 다양하게 변형되어 실시될 수 있음이 이해되어야 할 것이다. 다만, 본 발명을 설명하면서 관련된 공지 기능 혹은 구성요소에 대한 자세한 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명 및 구체적인 도시를 생략한다. 또한, 첨부된 도면은 발명의 이해를 돕기 위하여 실제 축척대로 도시된 것이 아니라 일부 구성요소의 크기가 과장되게 도시될 수 있다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. It should be understood that the embodiments described below are illustratively shown to help understanding of the present invention, and that the present invention can be implemented in various ways different from the embodiments described herein. However, when it is determined that the detailed description of the known functions or components related to the present invention may unnecessarily obscure the subject matter of the present invention, the detailed description and specific illustration will be omitted. In addition, the accompanying drawings may not be drawn to scale in order to aid the understanding of the invention, but the size of some components may be exaggerated.
한편, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.Meanwhile, terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from other components. For example, the first component may be referred to as a second component without departing from the scope of the present invention, and similarly, the second component may be referred to as a first component.
다른 한편, 후술되는 용어들은 본 발명에서의 기능을 고려하여 설정된 용어들로서 이는 생산자의 의도 또는 관례에 따라 달라질 수 있으므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.On the other hand, terms that will be described later are terms that are set in consideration of functions in the present invention, which may vary depending on the intention or custom of the producer, so the definition should be made based on the contents throughout the present specification.
명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.The same reference numerals refer to the same components throughout the specification.
[부호의 설명][Description of codes]
1: 본체 2: 고정익1: main body 2: fixed wing
3: 조향익 4: 연장 고정익3: Steering wing 4: Extended fixed wing
10: 드론 제어부10: drone control
20: 자이로 로터 유닛 22: 브래킷20: gyro rotor unit 22: bracket
24: 샤프트 액슬 26: 플라이휠24: shaft axle 26: flywheel
28: 베인 30: 틸트 로터28: vane 30: tilt rotor
40: 헬륨 풍선 42: 풍력 발전기40: helium balloon 42: wind generator
43: 발전부43: power generation department
50: 마그네틱 드라이버 52, 54: 제1, 2 마그네틱50: magnetic driver 52, 54: first and second magnetic
60 : 송전 연결부60: power transmission connection
이하, 도 1과 도 2를 참조하여 본 발명의 일 실시예에 따른 드론에 관해서 설명한다. 첨부도면 도 1 및 도 2는 본 발명의 실시예에 따른 드론을 설명하기 위한 정면도 및 평면도이다.Hereinafter, a drone according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. 1 and 2 are a front view and a plan view for explaining a drone according to an embodiment of the present invention.
본 발명의 실시예에 따른 드론은, 본체(1), 고정익(2) 및 자이로 로터 유닛(20)을 포함하여 구성할 수 있다.The drone according to the embodiment of the present invention may include a main body 1, a fixed wing 2, and a gyro rotor unit 20.
상기 본체(1)는 비행체의 형상에 따라 다양하게 제공될 수 있고, 본체(1)에 드론을 제어하기 위한 전자 장비가 탑재될 수 있다. 전자 장비는 예를 들면 배터리, 전동 모터, 카메라 모듈, 통신 모듈 등이다.The main body 1 may be provided in various ways depending on the shape of the aircraft, and the main body 1 may be equipped with electronic equipment for controlling the drone. Electronic equipment is, for example, batteries, electric motors, camera modules, communication modules, and the like.
상기 고정익(2)은 상기 본체(1)에서 상기 본체(1)의 수직 중심선(a)을 기준으로 좌우 대칭되고 좌우 방향 또는 후방으로 넓게 형성될 수 있다. 즉, 고정익(2)의 형상은 본체(1)의 수직 중심선(a)을 기준으로 좌우 대칭되는 형상이라면 어떠한 형상으로도 제공될 수 있고, 이는 도 2 및 도 6부터 도 10까지 다양한 예를 나타내었다.The fixed wing 2 is symmetrical to the left and right based on the vertical center line (a) of the main body 1 in the main body 1 and can be formed wide in the left or right direction or rearward. That is, the shape of the stator blade 2 may be provided in any shape as long as it is a shape symmetrical with respect to the vertical center line a of the main body 1, which shows various examples from FIGS. 2 and 6 to 10 Did.
상기 고정익(2)은 단면 형상이 에어포일 형상의 곡면 형상으로 형성될 수 있고, 두께가 일정한 판재 형상으로 형성될 수 있다.The fixed wing 2 may have a cross-sectional shape of an airfoil shape, and may have a plate shape having a constant thickness.
또한, 상기 고정익(2)은 고정익 면적에 대하여 자이로 유닛의 면적 비율이 중요한 설계 요소일 수 있다. 여기서 자이로 유닛의 면적은 플라이휠(26)의 원주 표면적과 베인(28)의 표면적을 합한 면적일 수 있다. 상기 고정익(2)은 고정익 면적에 대하여 자이로 유닛의 면적이 클수록 자이로 효과가 증대될 수 있다.In addition, the fixed wing 2 may be a design factor in which the area ratio of the gyro unit to the fixed wing area is important. Here, the area of the gyro unit may be an area obtained by combining the circumferential surface area of the flywheel 26 and the surface area of the vane 28. In the fixed wing 2, the larger the area of the gyro unit with respect to the fixed wing area, the greater the gyro effect.
또한, 상기 고정익(2)은 도 1에 나타낸 바와 같이, 상반각(d)을 가질 수 있다. 상반각(d)은 드론의 자세가 기울어졌을 때, 내려간 쪽의 고정익에 닿는 공기량이 증가하여 양력이 증가하고, 올라간 쪽의 고정익에 닿는 공기량이 감소하여 양력이 감소할 수 있다. 즉, 고정익(2)에 상반각(d)을 형성함으로써 드론의 비행 자세를 쉽고 신속하게 안정된 자세로 복원시킬 수 있다.In addition, the fixed wing 2, as shown in Figure 1, may have an upper half angle (d). When the drone's posture is tilted, the upper half angle d may increase the amount of air reaching the fixed wing of the descending side to increase lift, and decrease the amount of lift by decreasing the amount of air reaching the fixed wing of the climbed side. That is, by forming the upper half (d) on the fixed wing (2) it is possible to quickly and easily restore the drone's flight posture to a stable posture.
상기 자이로 로터 유닛(20)은, 상기 고정익(2)에서 상기 수직 중심선(a)을 기준으로 좌우 대칭되거나 상기 수직 중심선(a)에 배치될 수 있다.The gyro rotor unit 20 may be symmetrical to the left and right of the fixed center 2 based on the vertical center line a, or may be disposed on the vertical center line a.
위와 같이 구성된 본 발명의 실시예에 따른 드론은, 자이로 로터 유닛(20)에 의하여 마그누스 효과를 구현하여 양력을 보강할 수 있고, 자이로 효과에 의하여 자세를 복원할 수 있다.The drone according to the embodiment of the present invention configured as described above can implement a Magnus effect by the gyro rotor unit 20 to reinforce lift, and restore a posture by the gyro effect.
이하, 자이로 로터 유닛(20)에 대하여 도 3부터 도 5까지 참조하여 설명한다. 도 3은 본 발명의 일 실시예에 따른 드론에서 자이로 로터 유닛의 구성을 설명하기 위한 도면이다. 도 4는 본 발명의 일 실시예에 따른 드론에서 다른 예의 자이로 로터 유닛의 구성을 설명하기 위한 도면이다. 도 5는 본 발명의 일 실시예에 따른 드론에서 자이로 로터 유닛의 설치 구성을 설명하기 위한 도면이다.Hereinafter, the gyro rotor unit 20 will be described with reference to FIGS. 3 to 5. 3 is a view for explaining the configuration of a gyro rotor unit in a drone according to an embodiment of the present invention. 4 is a view for explaining the configuration of another example gyro rotor unit in a drone according to an embodiment of the present invention. 5 is a view for explaining the installation configuration of a gyro rotor unit in a drone according to an embodiment of the present invention.
상기 자이로 로터 유닛(20)은, 브래킷(22), 샤프트 액슬(24), 플라이휠(26) 및 베인(28)을 포함하여 구성할 수 있다.The gyro rotor unit 20 may include a bracket 22, a shaft axle 24, a flywheel 26, and a vane 28.
상기 브래킷(22)은 상기 고정익(2)에 설치될 수 있다. 상기 브래킷(22)은 비행체의 형태에 따라 고정익(2)의 상측에 설치되거나 본체(1)의 전방에 일체로 구성될 수 있다.The bracket 22 may be installed on the fixed wing (2). The bracket 22 may be installed on the upper side of the fixed wing 2 according to the shape of the vehicle or may be integrally formed in front of the main body 1.
상기 브래킷(22)이 고정익(2)의 상측에 설치된다면, 도 5에 나타낸 바와 같이 비행체의 진행 방향을 향하여 전방 상측을 향하도록 경사지게 설치될 수 있다. 브래킷(22)이 전방으로 기울어진 각도는 수평 기준선으로부터 대략 45도부터 50도 각도를 이룰 수 있고, 이로써 자연 풍력이 브래킷(22)과 간섭을 최대한 피하면서 자연 풍력의 기류가 플라이휠(26)과 베인(28)에 상호 작용할 수 있다.If the bracket 22 is installed on the upper side of the fixed wing 2, as shown in FIG. 5, it can be installed obliquely toward the front upward direction toward the traveling direction of the vehicle. The angle at which the bracket 22 is inclined forward can form an angle of approximately 45 to 50 degrees from the horizontal reference line, whereby the natural wind flow avoids interference with the bracket 22 as much as possible, while the air flow of the natural wind is with the flywheel 26. It can interact with the vane (28).
한편, 전방 상측을 향하도록 설치된 자이로 로터 유닛(20)의 베인(28)은 특정 각도에서 고정될 수 있으며, 이를 통해, 베인(28) 및 고정익(2)이 복엽 형태(미도시)를 이룰 수 있다.On the other hand, the vane 28 of the gyro rotor unit 20 installed to face the front side can be fixed at a specific angle, through which, the vane 28 and the fixed wing 2 can achieve a bilobal shape (not shown). have.
상기 샤프트 액슬(24)은 상기 브래킷(22)에서 상기 본체(1)의 수평 기준선(b)과 회전 축선(c)이 평행하도록 설치될 수 있다. 다시 설명하면, 상기 샤프트 액슬(24)은 상기 수직 중심선(a)과 상기 회전 축선(c)이 직각을 이루도록 설치될 수 있다.The shaft axle 24 may be installed such that the horizontal reference line b and the rotation axis c of the main body 1 are parallel to the bracket 22. In other words, the shaft axle 24 may be installed such that the vertical center line (a) and the rotation axis (c) form a right angle.
한편, 도 3 및 도 4는 브래킷(22)이 샤프트 액슬(24)의 종단에 위치하는 것으로 도시되어 있으나 본 발명은 이에 한정되지 않고 브래킷(22)을 베인(28)-제1 브래킷(22)-플라이휠(26)-제2 브래킷(22)-베인(28) 순서(미도시)로 구성할 수 있다.Meanwhile, FIGS. 3 and 4 show that the bracket 22 is positioned at the end of the shaft axle 24, but the present invention is not limited thereto, and the bracket 22 is vane 28-first bracket 22. -Flywheel 26-second bracket 22-vane 28 can be configured in order (not shown).
상기 샤프트 액슬(24)의 배치 방향을 한정함으로써 플라이휠(26)의 회전에 따라 양력이 보강될 때 양력이 본체(1)가 자세를 유지하면서 상승하는 방향으로 작용할 수 있다.By limiting the arrangement direction of the shaft axle 24, when the lift force is reinforced according to the rotation of the flywheel 26, the lift force can act in a direction in which the main body 1 maintains a posture and rises.
또한, 상기 샤프트 액슬(24)의 배치 방향을 한정함으로써 플라이휠(26)의 회전에 따라 자이로 효과가 구현될 때 자이로 효과에 의하여 복원력이 발생하고 그 복원력이 본체(1) 자세를 복원하는 방향으로 작용할 수 있다.In addition, by limiting the arrangement direction of the shaft axle 24, when the gyro effect is realized according to the rotation of the flywheel 26, a restoring force is generated by the gyro effect and the restoring force acts in a direction to restore the body 1 posture. Can.
상기 플라이휠(26)은 디스크 형태로 제공될 수 있고, 상기 샤프트 액슬(24)에 설치될 수 있으며, 질량에 운동 에너지를 가함으로써 회전 관성을 가질 수 있다.The flywheel 26 may be provided in the form of a disc, may be installed on the shaft axle 24, and may have rotational inertia by applying kinetic energy to the mass.
또한, 상기 플라이휠(26)과 베인(28)의 회전은 비행체의 진행 방향에 대하여 수직 방향으로 양력을 구현할 수 있고, 상기 플라이휠(26)의 고속 회전에 따라 자이로 효과의 증강을 기대할 수 있다.In addition, the rotation of the flywheel 26 and the vane 28 can realize lift in the vertical direction with respect to the traveling direction of the vehicle, and it is expected to enhance the gyro effect according to the high-speed rotation of the flywheel 26.
상기 베인(28)은 상기 샤프트 액슬(24)에 설치되고 주변 기류에 영향을 받아 회전하여 상기 플라이휠(26)을 회전시킬 수 있다.The vane 28 may be installed on the shaft axle 24 and rotated under the influence of the surrounding airflow to rotate the flywheel 26.
상기 베인(28)이 고속으로 회전하면 마그누스 효과를 구현하고, 이로써 양력을 발생할 수 있다.When the vane 28 rotates at a high speed, a Magnus effect is realized, and thus lift force can be generated.
한편으로, 상기 베인(28)은 사용자의 의지에 따라 단면 형상이 수평 자세를 유지하도록 고정할 수 있고, 또는 상기 베인(28)이 자유롭게 회전할 수 있도록 부하를 없앨 수 있다.On the other hand, the vane 28 can be fixed so that the cross-sectional shape maintains a horizontal posture according to the user's will, or can remove the load so that the vane 28 can rotate freely.
이는 자이로 로터 유닛(20)이 적용된 비행체와 복엽 비행체의 두 기능을 겸비하는 상호 전환식 복엽기가 될 수 있어, 후술하는 자이로 로터 유닛(20)이 고정익 내에 수납되는 것처럼 구성되어 비행체가 고공 안정권에 진입한 후에 비행속도를 높이기 위하여 종래의 복엽기와 같은 비행을 구현할 수 있다.This may be a mutually switchable biplane having both functions of a gyro rotor unit 20 applied aircraft and a biplane, so that the gyro rotor unit 20 to be described later is accommodated in a fixed wing, so that the aircraft enters the high altitude stability zone. After that, it is possible to implement a flight like a conventional biplane in order to increase the flight speed.
상기 베인(28)의 회전 제어는 상기 샤프트 액슬(24)을 단속함으로써 구현할 수 있고, 좀 더 상세하게는 샤프트 액슬(24)의 회전을 억제하거나 억제를 해제하도록 제동장치를 설치할 수 있다. 상기 제동장치는 마찰, 밀착 압력 등, 알려진 기술을 이용하는 것으로 상세한 설명은 생략한다.The rotation control of the vane 28 can be implemented by interrupting the shaft axle 24, and more specifically, a braking device can be installed to suppress or cancel the rotation of the shaft axle 24. The braking device uses known technology such as friction and adhesion pressure, and detailed description is omitted.
위와 같이 이루어진 본 발명의 실시예에 따른 드론은, 순항 비행을 하는 동안에 자이로 로터 유닛(20)을 회전시켜 마그누스 효과를 구현하고, 이로써 양력을 보강할 수 있고 이로써 비행시간을 늘릴 수 있다.The drone according to the embodiment of the present invention made as described above, rotates the gyro rotor unit 20 during a cruising flight to implement a Magnus effect, thereby enhancing lift and thus increasing flight time.
또한, 본 발명의 실시예에 따른 드론은, 외부 기류에 의하여 베인을 회전시킬 수 있고, 이로써 플라이휠이 회전함으로써 자이로 효과를 구현하여 비행체의 자세를 복원할 수 있다.In addition, the drone according to an embodiment of the present invention can rotate the vane by an external air flow, thereby realizing a gyro effect by rotating the flywheel to restore the attitude of the air vehicle.
한편으로, 본 발명의 실시예에 따른 드론은, 도 3에 나타낸 바와 같이, 상기 플라이휠(26)이 복수로 제공될 수 있고, 이로써 마그누스 효과와 자이로 효과를 더욱 확실하게 구현하여 양력 보강의 효과 및 자세 복원 효과를 증대시킬 수 있다.On the other hand, the drone according to an embodiment of the present invention, as shown in FIG. 3, the flywheel 26 may be provided in plural, whereby the Magnus effect and the gyro effect are more reliably implemented to increase the lift effect and Posture restoration effect can be increased.
어느 하나의 플라이휠(26)과 다른 플라이휠(26)의 사이에 베인(28)이 배치될 수 있고, 이로써 베인(28)이 복수로 제공되어 마그누스 효과와 자이로 효과를 더욱 확실하게 구현하여 자세 복원 효과를 증대시킬 수 있다.A vane 28 may be disposed between any one flywheel 26 and the other flywheel 26, whereby a plurality of vanes 28 are provided to realize the Magnus effect and the gyro effect more reliably, thereby restoring the posture. Can increase.
베인(28)과 플라이휠(26)은 적절한 크기로 제공될 필요가 있고, 종횡 비율이 중요한 설계 요소일 수 있다. 플라이휠(26)의 원주 표면적은 베인(28)의 면적에 대하여 1.4배 이상일 수 있고, 이러하면 플라이휠(26)이 정회전 방향으로 적정한 회전 속도로 회전 운동할 수 있다.The vanes 28 and flywheel 26 need to be provided in suitable sizes, and aspect ratio can be an important design factor. The circumferential surface area of the flywheel 26 may be 1.4 times or more with respect to the area of the vane 28, and in this case, the flywheel 26 may rotate in a normal rotational direction at an appropriate rotational speed.
반면에 플라이휠(26)의 원주 표면적은 베인(28)의 면적에 대하여 1.4배 미만으로 제공되면, 플라이휠(26)이 역회전할 가능성이 있고 이러하면 드론이 양력을 역으로 받아 추락할 수 있으므로, 앞서 설명한 바와 같이, 플라이휠(26)의 원주 표면적은 베인(28)의 면적에 대하여 1.4배 이상이 되도록 설계되는 것이 중요하다.On the other hand, if the circumferential surface area of the flywheel 26 is provided to be less than 1.4 times the area of the vane 28, the flywheel 26 is likely to rotate in reverse, and in this case, the drone may fall due to reverse lifting force. As described above, it is important that the circumferential surface area of the flywheel 26 is designed to be 1.4 times or more with respect to the area of the vane 28.
상기 베인(28)은, 도 4에 나타낸 바와 같이, 바깥쪽 모서리 일부가 경사지게 형성되어 상기 베인(28)이 회전하여 회전체 형상이 구현될 때 콘 형상을 이루도록 할 수 있다.The vane 28, as shown in FIG. 4, may be formed such that a portion of the outer edge is inclined to form a cone when the vane 28 is rotated to form a rotating body.
이로써 드론에 자이로 로터 유닛(20)을 본체(1)의 수직 중심선(a)에 배치하고 특히 본체(1) 또는 고정익(2)보다 높게 설치할 때, 베인(28)이 본체(1) 또는 고정익(2)과 간섭을 최소화하여 베인(28)의 회전에 의한 비정상적인 기류 흐름을 방지하며 비행체의 안정적인 비행 자세 유지에 이바지할 수 있다.Thus, when the gyro rotor unit 20 is placed on the vertical center line a of the main body 1 on the drone and is installed higher than the main body 1 or the fixed wing 2, the vane 28 is the main body 1 or the fixed wing ( 2) By minimizing interference and preventing abnormal air flow due to rotation of the vane 28, it can contribute to maintaining a stable flight posture of the vehicle.
또한, 상기 베인(28)은 타원 형상, 마름모 형상, 장방형 등 좌우 대칭 형상으로 제공될 수 있고, 기류의 영향에 민감하게 반응할 수 있도록 한쪽에 버킷 형태로 오목하게 형성시킬 수 있으며 버킷 형상은 회전 대칭으로 형성되어 한쪽으로 회전 운동할 수 있다.In addition, the vane 28 may be provided in a symmetrical shape such as an oval shape, a rhombus shape, a rectangle, and the like, and may be concavely formed in a bucket shape on one side so as to be sensitive to the influence of airflow, and the bucket shape is rotated. It is formed symmetrically and can rotate in one direction.
그러나 상기 베인(28)은 버킷 형상에 한정하는 것은 아니며, 평판 형상으로 형성이 가능하고 이러하면 초기 회전시동장치가 필요할 수 있다. 평판 형상의 베인(28)은 상술한 복엽기로의 전환에 필요할 수 있다.However, the vane 28 is not limited to a bucket shape, and can be formed into a flat plate shape, and in this case, an initial rotation starting device may be required. The plate-shaped vane 28 may be required for conversion to the above-described biplane.
다른 한편으로, 어느 하나의 플라이휠(26)이 다른 하나의 플라이휠(26)보다 지름이 더 크게 형성되거나 원주 표면적(w)이 넓게 형성될 수 있다.On the other hand, one flywheel 26 may have a larger diameter than the other flywheel 26, or may have a large circumferential surface area w.
마그누스 효과는 물체가 회전하면서 이동할 때, 이동 방향에 대하여 수직 방향으로 힘이 작용하는 것인데, 기류와 상호작용하는 면적이 넓을수록 압력 차이가 크게 발생할 수 있고, 압력 차이가 클수록 양력이 향상할 수 있다.The Magnus effect is that when an object moves while rotating, a force acts in a direction perpendicular to the direction of movement. The larger the area that interacts with the airflow, the larger the pressure difference may be, and the larger the pressure difference, the greater the lift. .
또 다른 한편으로, 자이로 로터 유닛(20)은 동력에 의하여 작동될 수 있고, 이는 도 5를 참조하여 설명한다. 도 5는 본 발명의 일 실시예에 따른 드론에서 자이로 로터 유닛(20)의 설치 구성을 설명하기 위한 도면이다.On the other hand, the gyro rotor unit 20 can be operated by power, which will be described with reference to FIG. 5. 5 is a view for explaining the installation configuration of the gyro rotor unit 20 in a drone according to an embodiment of the present invention.
상기 플라이휠(26)에 제1 마그네틱(52)이 배치될 수 있다. 제1 마그네틱(52)은 도 5에 나타낸 바와 같이, 플라이휠(26)의 표면에 가깝게 원형 배열로 정렬될 수 있고, 극성이 일정하게 정렬되어 배치될 수 있다. 극성은 N극과 S극을 한 방향을 갖도록 정렬한 것이다.A first magnetic 52 may be disposed on the flywheel 26. The first magnetic 52 may be arranged in a circular arrangement close to the surface of the flywheel 26, as shown in FIG. 5, and may be arranged with a constant polarity. The polarity is one in which the N pole and the S pole are aligned in one direction.
고정익(2)에 마그네틱 드라이버(50)가 설치될 수 있고, 마그네틱 드라이버(50)는 전동 모터에 의해 회전자가 회전 작동할 수 있다. 전동 모터는 본체(1)에 탑재된 배터리로부터 전기 에너지를 받을 수 있고, 드론 제어부(10)의 제어에 따라 작동될 수 있다.A magnetic driver 50 may be installed on the fixed wing 2, and the magnetic driver 50 may rotate by a rotor by an electric motor. The electric motor may receive electric energy from a battery mounted on the main body 1 and may be operated under the control of the drone control unit 10.
상기 마그네틱 드라이버(50)의 회전자에 도 5에 나타낸 바와 같이 제2 마그네틱(54)이 원형 배열로 배치될 수 있다. 제2 마그네틱(54)은 극성이 일정하게 정렬될 수 있고, 극성은 N극과 S극을 한 방향을 갖도록 정렬한 것이다.The second magnet 54 may be arranged in a circular arrangement on the rotor of the magnetic driver 50 as shown in FIG. 5. The polarity of the second magnetic 54 may be uniformly aligned, and the polarity is arranged such that the N pole and the S pole have one direction.
이로써, 상기 마그네틱 드라이버(50)가 작동하면 제2 마그네틱(54)이 회전하고, 제2 마그네틱(54)은 상기 플라이휠(26)의 제1 마그네틱(52)에 자력 영향을 끼치며, 자력에 의하여 상기 플라이휠(26)이 회전될 수 있다.Thus, when the magnetic driver 50 is operated, the second magnetic 54 rotates, and the second magnetic 54 exerts a magnetic force effect on the first magnetic 52 of the flywheel 26. The flywheel 26 can be rotated.
즉, 상기 플라이휠(26)은 사용자의 제어 의지에 따라 강제로 회전시킬 수 있고, 드론 제어부(10)의 제어에 따라 강제로 회전할 수 있다.That is, the flywheel 26 may be forcibly rotated according to the user's control will, and may be forcibly rotated under the control of the drone control unit 10.
따라서 본 발명의 실시예에 따른 드론은, 마그누스 효과가 필요한 시점에 플라이휠(26)을 강제로 회전시켜 양력을 보강할 수 있다.Therefore, the drone according to the embodiment of the present invention can reinforce the lift by forcibly rotating the flywheel 26 at a time when the Magnus effect is required.
또한, 플라이휠(26) 또는 베인(28)을 회전시키기 위한 별도의 구동 모터를 본체(1)의 바깥에 설치하지 않음으로써, 비행체의 추진에 공기 저항 발생 요인을 추가하지 않아 비행체의 추진력이 약화하는 것을 방지할 수 있다.In addition, by not installing a separate drive motor for rotating the flywheel 26 or the vane 28 outside the main body 1, the propulsion force of the vehicle is weakened by not adding an air resistance generating factor to the propulsion of the vehicle. Can be prevented.
또 다른 한편으로, 본 발명의 실시예에 따른 드론은, 상기 본체(1)에서 상기 수직 중심선(a) 상에 드론 제어부(10)를 포함하여 구성할 수 있고, 무게 중심이 좌우 어느 한쪽으로 치우치지 않고 균형을 이룰 수 있으며 안정된 비행에 이바지할 수 있다.On the other hand, the drone according to the embodiment of the present invention may be configured by including the drone control unit 10 on the vertical center line (a) in the main body (1), and the center of gravity is biased to either side. You can balance without hitting and contribute to stable flight.
드론 제어부(10)에는, 제어부, 배터리, 전동 모터, 카메라 장비, 통신 장비 등이 갖춰질 수 있고, 본체(1)의 바깥에 프로펠러가 설치될 수 있다. 카메라 장비는 영상을 촬영할 수 있고, 통신 장비는 드론 운영자의 원격 제어기와 통신할 수 있으며 이로써 드론 운영자가 드론을 원격 제어할 수 있다.The drone control unit 10 may be equipped with a control unit, a battery, an electric motor, camera equipment, communication equipment, and the like, and a propeller may be installed outside the main body 1. The camera equipment can take images, and the communication equipment can communicate with the drone operator's remote controller, thereby allowing the drone operator to remotely control the drone.
한편으로, 상기 드론 제어부(10)는, 배터리의 잔량 검출 값이 기준값 이하이면 배터리의 전기 에너지를 다른 전자기기보다 우선하여 상기 마그네틱 드라이버(50)에 제공할 수 있다.On the other hand, the drone control unit 10 may provide the magnetic driver 50 with priority over other electronic devices when the remaining battery detection value is less than or equal to a reference value.
드론 제어부(10)는 배터리의 상태를 계속 모니터링하여 배터리 잔량을 검출할 수 있고, 검출 값이 기준값에 도달하거나 기준값 이하인지를 판단할 수 있다.The drone control unit 10 may continuously monitor the state of the battery to detect the remaining battery capacity, and determine whether the detected value reaches or falls below a reference value.
즉, 본 발명의 실시예에 따른 드론은 배터리 전력이 설정된 수준의 이하로 판단될 때, 플라이휠(26)을 강제로 고속 회전시켜 자이로 효과와 마그누스 효과를 강제로 구현할 수 있고, 이로써 드론이 제어되지 않은 상태에서 급작스럽게 추락하는 것을 방지할 수 있다.That is, the drone according to the embodiment of the present invention can force the flywheel 26 to be rotated at high speed when the battery power is determined to be lower than or equal to the set level, thereby forcibly implementing the gyro effect and the Magnus effect, thereby preventing the drone from being controlled. It can be prevented from falling suddenly when not in use.
좀 더 상세하게는, 배터리 잔량이 낮은 경우에 드론은 계속 비행이 어려울 수 있고, 드론이 목표 착륙 지점에 도착하지 못할 수 있으며, 심지어 드론은 정상적으로 제어할 수 없는 비상 상황에 마주할 수 있다. 이러한 비상 상황이 발생하면 드론 제어부(10)는 앞서 설명한 바와 같이, 마그네틱 드라이버(50)를 작동시켜 양력을 보강하고 이로써 드론을 정상적으로 제어하지 못할 상황일 때 드론이 급격하게 추락하는 것을 지연시킬 수 있다.More specifically, when the battery level is low, the drone may continue to be difficult to fly, the drone may not reach the target landing point, and the drone may even face an emergency that cannot be controlled normally. When such an emergency occurs, the drone control unit 10 may operate the magnetic driver 50 to reinforce the lift force as described above, thereby delaying the drone from rapidly falling when the drone cannot be normally controlled. .
따라서 본 발명의 실시예에 따른 드론은, 드론의 추락 속도를 늦추도록 함으로써 드론 추락으로 발생할 수 있는 인명 피해 또는 재산 피해를 최소화할 수 있다.Therefore, the drone according to the embodiment of the present invention can minimize the personal injury or property damage that may be caused by a drone crash by slowing down the drone's fall rate.
본 발명의 실시예에 따른 드론은, 다양한 형태로 실시할 수 있고, 이는 도 2 및 도 6부터 도 10을 참조하여 설명한다. 도 6부터 도 10은 본 발명의 다른 실시예에 따른 드론을 설명하기 위한 도면이다.The drone according to an embodiment of the present invention can be implemented in various forms, which will be described with reference to FIGS. 2 and 6 to 10. 6 to 10 are views for explaining a drone according to another embodiment of the present invention.
도 2는 드론을 글라이더형으로 실시한 예이고, 도 2에 나타낸 드론은 꼬리 부분에 조향익(3)을 가질 수 있다. 자이로 로터 유닛(20)은 수직 중심선(a)을 기준으로 양쪽에 대칭되는 위치에 배치될 수 있다.2 is an example in which the drone is implemented in a glider type, and the drone shown in FIG. 2 may have a steering wing 3 at a tail portion. The gyro rotor unit 20 may be disposed at positions symmetrical to both sides with respect to the vertical center line a.
도 6은 드론을 본체(1)가 없거나 본체(1)의 크기를 최소화하여 보드 윙(Board wing) 형식으로 실시한 예이다. 자이로 로터 유닛(20)은 수직 중심선(a)을 기준으로 양쪽에 대칭되는 위치에 배치될 수 있다. 드론 제어부(10)는 수직 중심선(a) 상에 배치될 수 있다.6 is an example in which the drone has no body 1 or minimizes the size of the body 1 in a board wing form. The gyro rotor unit 20 may be disposed at positions symmetrical to both sides with respect to the vertical center line a. The drone control unit 10 may be disposed on the vertical center line (a).
도 7은 드론을 삼각 날개(Delta wing) 형식으로 실시한 예이다. 자이로 로터 유닛(20)은 수직 중심선(a)을 기준으로 양쪽에 대칭되는 위치에 배치될 수 있다. 드론 제어부(10)는 수직 중심선(a) 상에 배치될 수 있다.7 is an example in which the drone is implemented in the form of a triangular wing. The gyro rotor unit 20 may be disposed at positions symmetrical to both sides with respect to the vertical center line a. The drone control unit 10 may be disposed on the vertical center line (a).
도 8은 드론을 쉘 윙(Shell wing) 형식으로 실시한 예이다. 자이로 로터 유닛(20)은 수직 중심선(a) 위에 배치될 수 있다. 드론 제어부(10)는 수직 중심선(a) 상에 배치될 수 있다.8 is an example in which the drone is implemented in the form of a shell wing. The gyro rotor unit 20 may be disposed on the vertical center line (a). The drone control unit 10 may be disposed on the vertical center line (a).
도 9a는 드론을 에이프런 윙(Apron wing) 형식으로 실시한 예이다. 자이로 로터 유닛(20)은 수직 중심선(a) 위에 배치될 수 있다. 드론 제어부(10)는 수직 중심선(a) 상에 배치될 수 있다. 또한, 도 9a에 나타낸 드론은 틸트 로터(30)를 더 갖출 수 있다. 틸트 로터(30)는 드론을 수직 방향으로 이착륙할 수 있도록 작동될 수 있다. 또한, 틸트 로터(30)는 자이로 로터 유닛(20)의 자이로 효과에 의해 위험한 틸트 로터 작동을 안전하게 구현할 수 있다.9A is an example in which the drone is implemented in the form of an apron wing. The gyro rotor unit 20 may be disposed on the vertical center line (a). The drone control unit 10 may be disposed on the vertical center line (a). Also, the drone shown in FIG. 9A may further include a tilt rotor 30. Tilt rotor 30 may be operated to take off and land the drone in the vertical direction. In addition, the tilt rotor 30 can safely implement dangerous tilt rotor operation by the gyro effect of the gyro rotor unit 20.
도 9b는 드론을 써클 윙(Circle wing) 형식으로 실시한 예이고, 상기 도 9a를 변형한 것으로써, 본체(1) 또는 고정익(2)이 원형 형상으로 제공될 수 있다.FIG. 9B is an example in which the drone is implemented in a circle wing form. As a modification of FIG. 9A, the main body 1 or the fixed wing 2 may be provided in a circular shape.
도 9c는 드론을 하트 윙(Heart wing) 형식으로 실시한 예이고, 상기 도 9a를 변형한 것으로써, 본체(1) 또는 고정익(2)이 하트 형상으로 제공될 수 있다.9C is an example in which the drone is implemented in a heart wing form, and as a modification of FIG. 9A, the main body 1 or the fixed wing 2 may be provided in a heart shape.
도 10은 드론을 헬륨 풍선 형식으로 실시한 예이다. 또한, 수직 중심선(a)을 기준으로 헬륨 풍선(40)이 대칭된 위치에 배치될 수 있고, 드론 제어부(10)와 자이로 로터 유닛(20)은 수직 중심선(a) 위에 배치될 수 있으며, 본체(1)의 후방에는 조향익(3)이 갖춰질 수 있고, 헬륨 풍선(40)의 하부에는 풍력 발전기(42)가 설치될 수 있다.10 is an example in which the drone is carried out in the form of a helium balloon. In addition, the helium balloon 40 may be disposed at a symmetrical position with respect to the vertical center line (a), and the drone control unit 10 and the gyro rotor unit 20 may be arranged over the vertical center line (a), and the main body A steering wheel 3 may be provided at the rear side of (1), and a wind power generator 42 may be installed under the helium balloon 40.
도 10에 나타낸 드론의 조향익(3)은 풍향계로서, 또는 드론의 진행 방향을 전환할 때 이용될 수 있고, 헬륨 풍선(40)은 고고도에서 떠 있을 수 있게 하며, 풍력 발전기(42)는 풍력에 의하여 전기를 생산할 수 있다.The steering wheel 3 of the drone shown in FIG. 10 can be used as a wind vane or when changing the direction of the drone, the helium balloon 40 allows floating at high altitude, and the wind generator 42 is wind power Can produce electricity.
상기 본 발명의 실시예에서 헬륨 풍선에 헬륨을 사용하는 예시가 나타나 있지만, 이에 한정하는 것은 아니며 대기 중의 기체보다 비중이 작은 기체가 사용될 수 있다.In the embodiment of the present invention, an example of using helium in a helium balloon is shown, but is not limited thereto, and a gas having a specific gravity smaller than that in the atmosphere may be used.
도 10에 나타낸 드론은 풍력 발전기(42)로 전기를 생산함으로써 드론에서 소모되는 전기를 계속 재충전할 수 있으며, 이로써 드론이 고고도에 오래 떠 있으면서 소정의 목적 또는 소정의 기능을 수행할 수 있다.The drone shown in FIG. 10 can continuously recharge the electricity consumed by the drone by producing electricity with the wind generator 42, thereby allowing the drone to remain at high altitude for a long time and perform a predetermined purpose or function.
소정의 목적 또는 소정의 기능은 예를 들면, 기후 관측, 경비, 산불 감시, 물류, 농약 살포, 구조 활동, 정찰, 오지에 통신 중계, 인터넷 신호 중계 등을 실시하는 데에 이용할 수 있다.A given purpose or a given function can be used, for example, to perform climate observation, security, forest fire monitoring, logistics, pesticide spraying, rescue activities, reconnaissance, remote communication communication, internet signal relay, and the like.
도 10에 나타낸 드론은, 동력으로 이륙하여 고공 진입한 후에 동력을 끄고 태양광과 풍력에너지만으로 운항하면서 전기 에너지를 발전하여 축적할 수 있고, 드론에 온/오프 센서 시스템을 갖출 수 있으며, 야간이나 바람이 없을 때 착륙하지 않고 앞서 설명된 축적된 에너지를 이용하여 고공비행을 계속할 수 있다. 본 발명의 실시예에 따른 드론은 고고도(High Altitude) 풍력발전 비행기 형태로 진화될 수 있다.The drone shown in FIG. 10 can take off as power, enter power at high altitude, turn off power, and operate with only sunlight and wind energy to generate and accumulate electric energy, and can have an on/off sensor system in the drone, at night or When there is no wind, the high altitude flight can be continued without landing without using the accumulated energy described above. Drones according to embodiments of the present invention may be evolved in the form of a high altitude (High Altitude) wind power airplane.
상기 고고도는 성층권일 수 있고, 높이는 대략 14km부터 18.5km 범위일 수 있으며 18km 이상의 높이는 지상 관제사의 지시와 정해진 항로 없이 운용자의 계획에 따라 비행할 수 있는 높이일 수 있다. 성층권은 공기밀도와 온도가 매우 낮아 일반 항공기가 비행하기 어렵지만 구름이 없어 태양광을 동력원으로 활용하여 장기 체공하기에 유리할 수 있다.The altitude may be a stratosphere, the height may range from approximately 14 km to 18.5 km, and a height of 18 km or more may be a height that can fly according to the operator's plan without the instructions of the ground controller and a predetermined route. The stratosphere has a very low air density and temperature, making it difficult for ordinary aircraft to fly, but because it has no clouds, it can be advantageous for long-term flight by utilizing sunlight as a power source.
도 11에 나타낸 드론을 참조하면, 본 발명의 실시예에 따른 드론은, 상반각형 연장 고정익(4)을 포함하여 구성할 수 있다. 상기 연장 고정익(4)은 가로 길이(폭)가 샤프트 액슬(24) 길이와 같거나 5% 내외의 범위 내에서 유사할 수 있으며 소정의 면적을 가질 수 있다. 상기 연장 고정익(4)은 자이로 로터 유닛(20)이 고정된 고정익(2)의 바로 뒤쪽(비행체 이동 방향의 반대 방향)으로 길게 연장하는 형태로 형성할 수 있다. 상기 연장 고정익(4)은 드론 또는 비행체가 더욱 안정적인 비행 효과를 구현하는 데에 이바지할 수 있다.Referring to the drone shown in FIG. 11, the drone according to the embodiment of the present invention may be configured to include an upper half-angle extended fixed wing 4. The extended stator blade 4 may have a horizontal area (width) equal to the length of the shaft axle 24 or similar within a range of about 5% and may have a predetermined area. The extended stator blade 4 may be formed in a form that extends to the rear just behind the stator blade 2 in which the gyro rotor unit 20 is fixed (in the opposite direction to the moving direction of the vehicle). The extended fixed wing 4 can contribute to a drone or a vehicle to realize a more stable flight effect.
또 다른 한편으로, 본 발명의 실시예에 따른 드론은, 자이로 로터 유닛(20)을 고정익(2)에 수납되도록 설계 변경할 수 있다. 좀 더 상세하게는, 고정익(2)에 수납공간을 형성하고, 자이로 로터 유닛(20)이 수납공간으로부터 출몰할 수 있다. 자이로 로터 유닛(20)은 LM가이드 등의 장치를 이용하여 선형으로 출몰하거나, 흰지 장치를 이용하여 접히거나 펼쳐지는 형태로 작동할 수 있다.On the other hand, the drone according to the embodiment of the present invention, the gyro rotor unit 20 may be designed and modified to be accommodated in the fixed wing (2). More specifically, a storage space is formed in the fixed wing 2, and the gyro rotor unit 20 can appear and go out of the storage space. The gyro rotor unit 20 may operate linearly using a device such as an LM guide, or folded or unfolded using a white paper device.
자이로 로터 유닛(20)을 출몰시키는 동력은 리니어 모터, 실린더 등의 알려진 액추에이터에 의하여 작동될 수 있다.The power to bring the gyro rotor unit 20 up and down can be operated by a known actuator such as a linear motor or cylinder.
즉, 본 발명의 실시예에 따른 드론은, 순항하는 동안에 자이로 로터 유닛(20)을 본체(1) 또는 고정익(2)의 외부로 돌출되지 않고 감춰진 상태에서 운항할 수 있고, 이로써 공기 저항을 줄임으로써 드론의 비행 속도를 높일 수 있다.That is, the drone according to the embodiment of the present invention, while cruising, the gyro rotor unit 20 can operate in a hidden state without protruding outside the main body 1 or the fixed wing 2, thereby reducing air resistance By doing this, you can increase the speed of your drone's flight.
이후, 드론이 소망하는 고공 안정권에 진입하면, 자이로 로터 유닛(20)을 본체(1) 또는 고정익(2)의 내부로 수납되도록 하여 공기 저항을 줄임으로써 드론의 비행 속도를 높일 수 있다.Thereafter, when the drone enters the desired high altitude stabilization zone, the gyro rotor unit 20 can be accommodated inside the main body 1 or the fixed wing 2 to reduce air resistance, thereby increasing the flying speed of the drone.
다른 한편으로, 본 발명의 실시예에 따른 드론은, 수직 중심선(a)을 기준으로 양쪽에 자이로 로터 유닛(20)을 갖추면, 샤프트 액슬(24)의 회전을 억제하면서 비행체 비행 방향을 전환 할 수 있다.On the other hand, the drone according to the embodiment of the present invention, if equipped with gyro rotor units 20 on both sides with respect to the vertical center line (a), it is possible to switch the flight direction of the aircraft while suppressing the rotation of the shaft axle 24 have.
예를 들면, 어느 한쪽의 샤프트 액슬(24)의 회전 운동을 제동하고, 다른 한쪽의 샤프트 액슬(24)을 자유롭게 회전시키도록 하면, 샤프트 액슬(24)의 회전이 제동된 쪽에 저항이 발생하므로 드론의 비행 방향이 전환될 수 있다.For example, if the rotational motion of one shaft axle 24 is braked and the other shaft axle 24 is freely rotated, a resistance is generated on the side where the rotation of the shaft axle 24 is braked. The flight direction of can be switched.
즉, 본 발명의 실시예에 따른 드론은, 종전에 비행체에 갖춰진 조향익(3)이 없더라도 또는, 조향익(3)을 사용하지 않더라도 드론의 비행 방향을 전환할 수 있다.That is, the drone according to the embodiment of the present invention can switch the flight direction of the drone even if the steering wheel 3 previously equipped in the vehicle is not used or the steering wheel 3 is not used.
또 다른 한편으로, 종래에 태양광을 이용하여 충전하며 비행하도록 하는 비행체는 폭이 좁고 기다란 형태로 큰 종횡 비율(Aspect ratio)과 초경량, 견고한 날개 제작이 기술적 문제일 수 있는데, 본 발명의 실시예에 따른 드론은, 고정익(2)을 에어포일이 아닌 평판 형태의 긴 날개로 제공할 수 있고, 그 긴 날개에 자이로 로터 유닛(20)을 설치함으로써, 드론의 구성을 단순화할 수 있고, 가볍고 튼튼하게 제작할 수 있어 유리한 이점이 있다.On the other hand, a conventional vehicle using a solar cell to charge and fly may have a narrow aspect and a large aspect ratio (Aspect ratio), ultra-light weight, and robust wing production may be a technical problem. According to the drone, it is possible to provide the fixed wing 2 with a long wing in the form of a flat plate rather than an airfoil, and by installing the gyro rotor unit 20 on the long wing, it is possible to simplify the construction of the drone, and is lightweight and durable It has the advantage of being able to be fabricated.
또 다른 한편으로, 본 발명의 실시예에 따른 드론은, 고정익(2)의 표면에 태양전지판을 설치하여 태양광 에너지만으로 고공비행을 할 수 있고, 이로써 고공에서 강력한 풍력에너지를 계속 취할 수 있고, 고고도 풍력발전 비행체 또는 인공위성을 대체할 수 있는 공중 무선기지국으로 이용될 수 있다.On the other hand, the drone according to the embodiment of the present invention, by installing a solar panel on the surface of the fixed wing (2) can fly high with only solar energy, thereby continuing to take strong wind energy at high altitude, It can be used as a public radio base station to replace high-altitude wind-powered aircraft or satellites.
또 다른 한편으로, 본 발명의 실시예에 따른 드론은, 드론 제어부(10)에 사람이 탑승할 수 있는 좌석이 마련될 수 있고, 이러하면 드론을 탑승자가 직접 제어할 수 있다. 예를 들어, 본 발명은 PAV(Personal Air Vehicle)에 적용될 수 있다.On the other hand, in the drone according to an embodiment of the present invention, a drone control unit 10 may be provided with a seat for a person to board, and in this case, the drone can directly control the drone. For example, the present invention can be applied to a Personal Air Vehicle (PAV).
또한, 본 발명에 따른 드론은 바다 위를 1m 정도 떠서 고속으로 이동할 수 있는 선박인 위그선에 적용될 수 있다.In addition, the drone according to the present invention can be applied to a ship that can move at high speed by floating about 1 m above the sea.
본 발명의 다른 실시예를 검토한다. 도 12는 본 발명의 다른 실시예에 다른 전기 발전을 위한 드론의 개념을 설명하기 위한 도면이다.Other embodiments of the present invention are considered. 12 is a view for explaining the concept of a drone for electricity generation according to another embodiment of the present invention.
고정익(2)에 플라이휠(26)이 회전할 수 있게 배치되고, 상기 플라이휠(26)의 샤프트 액슬(24)의 한쪽에 발전부(43)가 연결될 수 있으며, 상기 발전부(43)는 상기 고정익(2)에 설치될 수 있다. 상기 발전부(43)는 상기 플라이휠(26)의 회전 에너지를 전기 에너지로 변환할 수 있다. 상기 발전부(43)에는 송전 연결부(60)가 연결될 수 있다. 상기 송전 연결부(60)는 지상 또는 드론 내부로 전기 에너지를 송전할 수 있다.A flywheel 26 is disposed to be rotatable on the fixed wing 2, and a power generation unit 43 may be connected to one side of the shaft axle 24 of the flywheel 26, and the power generation unit 43 may be provided with the fixed wing (2) can be installed. The power generation unit 43 may convert the rotational energy of the flywheel 26 into electrical energy. A power transmission connection part 60 may be connected to the power generation part 43. The transmission connection unit 60 may transmit electric energy to the ground or the inside of the drone.
상기 송전 연결부(60)는 케이블을 통해 지상의 기구물과 연결되어 전력을 공급할 수 있고, 또는, 드론에 구비된 전력저장장치를 통해 충전하는데 이용될 수 있다.The transmission connection unit 60 may be connected to equipment on the ground through a cable to supply power, or may be used to charge through a power storage device provided in the drone.
이를 통해, 본 발명은 고고도 상공에서 안정적으로 비행하면서 플라이휠(66) 회전을 통해 발생시킨 전력을 지상으로 공급할 수 있어, 지상에 설치되는 풍력발전기에 비해 더 많은 양의 에너지를 발전할 수 있다.Through this, the present invention can stably fly over high altitude while supplying the power generated through rotation of the flywheel 66 to the ground, thereby generating a greater amount of energy than a wind turbine installed on the ground.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야의 해당 업계 종사자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.Although the embodiments of the present invention have been described with reference to the accompanying drawings, those skilled in the art to which the present invention pertains understand that the present invention may be implemented in other specific forms without changing its technical spirit or essential features. Will be able to.
그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Therefore, the embodiments described above are illustrative in all respects and should be understood as non-limiting, and the scope of the present invention is indicated by the following claims, and is derived from the meaning and scope of the claims and equivalent concepts thereof. It is to be understood that all altered or modified forms are included within the scope of the present invention.
본 발명의 실시예에 따른 드론은, 드론이 제어되지 않은 상태로 급격하게 추락하는 것을 방지하거나 드론의 비행 자세를 복원하도록 하는 데에 이용할 수 있다.The drone according to an embodiment of the present invention can be used to prevent the drone from suddenly falling into an uncontrolled state or to restore the flying attitude of the drone.

Claims (9)

  1. 수직 중심선(a)을 기준으로 좌우 대칭되고 좌우 방향 또는 후방으로 넓게 형성된 고정익(2); 및A fixed wing 2 symmetrically left and right with respect to the vertical center line a and formed wide in the left or right direction or rearward; And
    상기 고정익(2)에서 상기 수직 중심선(a)을 기준으로 좌우 대칭되거나 상기 수직 중심선(a)에 배치된 자이로 로터 유닛(20);을 포함하고,Including the; gyro rotor unit 20 symmetrically left and right relative to the vertical center line (a) in the fixed wing (2) or disposed on the vertical center line (a);
    상기 자이로 로터 유닛(20)은,The gyro rotor unit 20,
    상기 고정익(2)에 설치된 브래킷(22);A bracket 22 installed on the fixed wing 2;
    상기 브래킷(22)에서 상기 수직 중심선(a)과 회전 축선(c)이 직각을 이루도록 설치된 샤프트 액슬(24);A shaft axle 24 installed in the bracket 22 such that the vertical center line (a) and the rotation axis (c) form a right angle;
    상기 샤프트 액슬(24)에 설치되고 회전에 따라 비행체의 진행 방향에 대하여 수직 방향으로 양력을 구현하고, 수평 자세로 복원하는 플라이휠(26); 및A flywheel 26 installed on the shaft axle 24 and implementing lift in a vertical direction with respect to the traveling direction of the vehicle according to rotation, and restoring to a horizontal posture; And
    상기 샤프트 액슬(24)에 설치되고 주변 기류에 영향을 받아 회전하여 상기 플라이휠(26)을 회전시키는 베인(28);A vane (28) installed on the shaft axle (24) to rotate the flywheel (26) by rotating under the influence of ambient air flow;
    을 포함하는 드론.Drone containing.
  2. 제1항에 있어서,According to claim 1,
    상기 플라이휠(26)이 복수로 제공되고, 어느 하나의 플라이휠(26)과 다른 플라이휠(26)의 사이에 베인(28)이 배치된 것;을 포함하는 드론.The flywheel 26 is provided in plural, and a vane 28 is disposed between one flywheel 26 and the other flywheel 26.
  3. 제2항에 있어서,According to claim 2,
    상기 베인(28)은, 바깥쪽 모서리 일부가 경사지게 형성되어 상기 베인(28)이 회전하여 회전체 형상이 구현될 때 콘 형상을 이루도록 하는 것;을 포함하는 드론.The vane 28, a part of the outer edge is formed to be inclined so that the vane 28 is rotated to form a cone shape when a rotating body is implemented.
  4. 제2항에 있어서,According to claim 2,
    어느 하나의 플라이휠(26)이 다른 하나의 플라이휠(26)보다 지름이 크게 형성되는 것;을 포함하는 드론.Drone containing; any one of the flywheel 26 is formed to have a larger diameter than the other flywheel 26.
  5. 제2항에 있어서,According to claim 2,
    어느 하나의 플라이휠(26)이 다른 하나의 플라이휠(26)보다 원주 표면적(w)이 넓게 형성되는 것;을 포함하는 드론.A drone comprising a; one flywheel 26 is formed with a larger circumferential surface area (w) than the other flywheel 26.
  6. 제1항 내지 제5항 중에 어느 한 항에 있어서,The method according to any one of claims 1 to 5,
    상기 플라이휠(26)에 극성이 일정하게 원형 배열로 정렬되어 배치된 제1 마그네틱(52);A first magnet 52 having polarities constantly arranged in a circular arrangement on the flywheel 26;
    상기 고정익(2)에 설치되어 전동 모터에 의해 회전자가 회전 작동하는 마그네틱 드라이버(50); 및A magnetic driver 50 installed on the fixed wing 2 to rotate the rotor by an electric motor; And
    상기 마그네틱 드라이버(50)의 회전자에 극성이 일정하게 원형 배열로 정렬되어 배치되고, 상기 마그네틱 드라이버(50)가 작동하면 상기 플라이휠(26)이 회전하도록 상기 제1 마그네틱(52)에 자력을 작용하는 제2 마그네틱(54);The magnetic driver 50 has a polarity arranged in a circular arrangement in a uniform arrangement. When the magnetic driver 50 is operated, a magnetic force is applied to the first magnetic 52 so that the flywheel 26 rotates. A second magnetic 54 to be made;
    을 포함하는 드론.Drone containing.
  7. 제6항에 있어서,The method of claim 6,
    상기 본체(1)에서 상기 수직 중심선(a) 상에 배치된 드론 제어부(10);를 포함하고,Included in the drone control unit 10 disposed on the vertical center line (a) in the body (1),
    상기 드론 제어부(10)는,The drone control unit 10,
    배터리의 잔량 검출 값이 기준값 이하이면 배터리의 전기 에너지를 다른 전자기기보다 우선하여 상기 마그네틱 드라이버(50)에 제공하는 것;Providing the electric driver of the battery to the magnetic driver 50 in preference to other electronic devices when the remaining battery detection value is equal to or less than a reference value;
    을 포함하는 드론.Drone containing.
  8. 제1항에 있어서,According to claim 1,
    가로 길이(폭)가 상기 샤프트 액슬(24) 길이와 같거나 5% 내외의 범위로 형성되고, 상기 고정익(2)에서 상기 자이로 로터 유닛(20)이 설치된 부분의 뒤쪽에 배치되는 연장 고정익(4);The horizontal fixed length (width) is the same as the length of the shaft axle 24 or is formed within a range of about 5%, and the extended fixed wing 4 is disposed at the rear of the portion where the gyro rotor unit 20 is installed in the fixed wing 2 );
    을 포함하는 드론.Drone containing.
  9. 제1항에 있어서,According to claim 1,
    상기 플라이휠(26)의 양측면에 베인(28)이 각각 배치되는 드론.Drones in which vanes 28 are disposed on both sides of the flywheel 26, respectively.
PCT/KR2020/000381 2019-01-11 2020-01-09 Drone WO2020145677A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0003761 2019-01-11
KR1020190003761A KR101967249B1 (en) 2019-01-11 2019-01-11 Drone

Publications (1)

Publication Number Publication Date
WO2020145677A1 true WO2020145677A1 (en) 2020-07-16

Family

ID=66167598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/000381 WO2020145677A1 (en) 2019-01-11 2020-01-09 Drone

Country Status (2)

Country Link
KR (1) KR101967249B1 (en)
WO (1) WO2020145677A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113911317A (en) * 2021-11-08 2022-01-11 河南科技大学 Wing and fixed wing aircraft
WO2022133614A1 (en) * 2020-12-23 2022-06-30 Oqab Dietrich Induction Inc. System and methods for mobile towing and lifting platforms

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101967249B1 (en) * 2019-01-11 2019-04-09 김종성 Drone
CN110435928B (en) * 2019-07-26 2020-12-15 中南大学 Design method for realizing flexible mars capable of vertically taking off and landing
KR102308518B1 (en) 2019-12-11 2021-10-05 (주)시스테크 Simulator system with racing, VR attraction and flight logs
KR20220071356A (en) 2020-11-24 2022-05-31 강석환 disassembled drone

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6231004B1 (en) * 1996-08-20 2001-05-15 Patrick Peebles Fluid dynamic lift generation
WO2005023645A1 (en) * 2003-09-05 2005-03-17 Fanwing Limited Lift augmentation device and method
KR100747082B1 (en) * 2005-09-12 2007-08-09 김종성 The wing combined with the fly wheel-equipped rotate wing for improvement of the wing stability.
DE102009060804A1 (en) * 2009-12-31 2011-07-07 Seifert, Jost, Dr., 81927 Device, particularly flight controller, for controlling or stabilizing aircraft, particularly rotor aircraft or fuselage or chassis frame, by utilizing gyro effect, has rotors, where outer torque is applied vertically to rotor rotating axis
KR101145960B1 (en) * 2011-12-16 2012-05-15 장성호 Vertical take off and landing system of flight object
KR101967249B1 (en) * 2019-01-11 2019-04-09 김종성 Drone

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6231004B1 (en) * 1996-08-20 2001-05-15 Patrick Peebles Fluid dynamic lift generation
WO2005023645A1 (en) * 2003-09-05 2005-03-17 Fanwing Limited Lift augmentation device and method
KR100747082B1 (en) * 2005-09-12 2007-08-09 김종성 The wing combined with the fly wheel-equipped rotate wing for improvement of the wing stability.
DE102009060804A1 (en) * 2009-12-31 2011-07-07 Seifert, Jost, Dr., 81927 Device, particularly flight controller, for controlling or stabilizing aircraft, particularly rotor aircraft or fuselage or chassis frame, by utilizing gyro effect, has rotors, where outer torque is applied vertically to rotor rotating axis
KR101145960B1 (en) * 2011-12-16 2012-05-15 장성호 Vertical take off and landing system of flight object
KR101967249B1 (en) * 2019-01-11 2019-04-09 김종성 Drone

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022133614A1 (en) * 2020-12-23 2022-06-30 Oqab Dietrich Induction Inc. System and methods for mobile towing and lifting platforms
CN113911317A (en) * 2021-11-08 2022-01-11 河南科技大学 Wing and fixed wing aircraft

Also Published As

Publication number Publication date
KR101967249B1 (en) 2019-04-09

Similar Documents

Publication Publication Date Title
WO2020145677A1 (en) Drone
WO2020184934A1 (en) Vertical take-off and landing aircraft using hybrid electric propulsion system
US10994838B2 (en) Vertical takeoff and landing aircraft
EP1628878B1 (en) Method and device for launching aerial vehicles
EP2874875B1 (en) Unmanned aerial vehicle and method of launching
WO2020096254A1 (en) Vertical takeoff and landing aircraft using hybrid electric propulsion system and control method therefor
WO2017213308A1 (en) Flight vehicle operating method and operating system using same
WO2018139982A1 (en) Hybrid airship
WO2013032078A1 (en) Method and system for unmanned airborne collection and transmission of information
JP2013079034A (en) Rotorcraft for aerial photographing
US20120181381A1 (en) Self-righting aerostat and relative takeoff and recovery system
JP7104427B2 (en) Winged drone
CN201710952U (en) Suspension cable type low-altitude flight system
WO2018194214A1 (en) Fixed-wing drone using variable pitch propeller
JP2016179742A (en) Flight body having cable
RU127039U1 (en) AEROBIKE
WO2021242390A3 (en) Blown flying-wing ctol/vtol tailsitter aircraft
CN114109726B (en) Flying device for generating power by utilizing solar energy and wind energy, power generation system and power generation method
WO2017195963A1 (en) Wind power generation system using airship
JPH0224295A (en) Air flying body connected to ground by wire
CN202953165U (en) Mooring rotor lift-off platform system
WO2023132478A1 (en) Vertical takeoff and landing aircraft using hybrid propulsion system, and control method therefor
WO2023101540A1 (en) Aerial vehicle
CN108944470B (en) Small day and night-crossing solar unmanned aerial vehicle and energy management method thereof
JP5811384B1 (en) Air levitation device and its air navigation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20738141

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20738141

Country of ref document: EP

Kind code of ref document: A1