WO2018194214A1 - Fixed-wing drone using variable pitch propeller - Google Patents

Fixed-wing drone using variable pitch propeller Download PDF

Info

Publication number
WO2018194214A1
WO2018194214A1 PCT/KR2017/005533 KR2017005533W WO2018194214A1 WO 2018194214 A1 WO2018194214 A1 WO 2018194214A1 KR 2017005533 W KR2017005533 W KR 2017005533W WO 2018194214 A1 WO2018194214 A1 WO 2018194214A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
body portion
blades
flight
fixed
Prior art date
Application number
PCT/KR2017/005533
Other languages
French (fr)
Korean (ko)
Inventor
유창범
Original Assignee
(주)창성에프티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)창성에프티 filed Critical (주)창성에프티
Publication of WO2018194214A1 publication Critical patent/WO2018194214A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/34In-flight charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/30Blade pitch-changing mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/02Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis vertical when grounded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/20Vertical take-off and landing [VTOL] aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/296Rotors with variable spatial positions relative to the UAV body
    • B64U30/297Tilting rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U80/00Transport or storage specially adapted for UAVs
    • B64U80/20Transport or storage specially adapted for UAVs with arrangements for servicing the UAV
    • B64U80/25Transport or storage specially adapted for UAVs with arrangements for servicing the UAV for recharging batteries; for refuelling

Definitions

  • the present invention relates to a fixed-wing drone using a variable pitch propeller, and a technique for controlling vertical takeoff and landing and horizontal flight using one propeller is disclosed.
  • Unmanned drones can be classified into fixed wing drones, which are driven by propeller rotation and lifted through fixed wings, and rotorcraft drones that fly using thrust generated by the rotation of rotors.
  • Fixed wing drones do not have vertical takeoffs and landings, which require runways, do not allow stationary flight, high accidents during takeoff and landing, and rotorcraft drones have to use multiple propellers, resulting in complicated control and high battery consumption. There is a limit to inefficiency.
  • Republic of Korea Patent No. 10-1663814 (2016. 10. 07 announcement) of the prior art relates to a "tail take-off and landing aircraft", during take-off and landing rotates around the body of the aircraft serves as a rotor, when cruising It discloses a technique for forming a variable wing that is fixed to the body portion of the aircraft to perform a fixed wing role.
  • the technical problem to be solved by the present invention is to provide a fixed-wing drone using a variable pitch propeller that can change the pitch of the propeller to enable vertical take-off, landing, in-flight and turning flight only by the rotation of a single propeller responsible for thrust in the fixed-wing drone. For sake.
  • a fixed-wing drone using a variable pitch propeller capable of stable takeoff and landing and flight posture control by converting into a vertical wing during turning flight while serving as a support during vertical takeoff and landing.
  • the body portion formed in the longitudinal direction from the front end to the rear end, the wing portion formed in the form of a fixed blade on both sides of the body portion, and is formed at the rear end of the body portion
  • a control unit for moving in the vertical direction, in the flight mode, by varying and rotating the plurality of blades to a second pitch to generate a propulsion force from the front end to the rear end, thereby moving the body from the ground in the horizontal direction.
  • the rotating unit may include a propeller in which a pair of blades having an airfoil shape in cross section is connected in a straight line through a hub at a center thereof, and a first driving unit connected by the hub and a drive shaft to rotate the pair of blades. And a plate moving along the driving shaft and connected to the pair of blades through a plurality of first links, and connected through the plate and the plurality of second links to vary the pitch of the pair of blades. And, it may include a second drive for changing the inclination of the rotation surface of the pair of blades.
  • the apparatus may further include a sensing unit configured to sense at least one or more of a position, an altitude, a speed, an acceleration, and an inclination of the body unit, wherein the wing unit is formed to rotate at a predetermined angle on one side of the wing unit to generate reaction torque according to the rotating unit.
  • a rotational auxiliary blade to offset and a flight auxiliary wing which is formed to rotate at a predetermined angle on the other side of the wing part to assist flight, and the control unit has a front end of the body part in accordance with an operation mode of the body part through the sensing part.
  • the rotational auxiliary wing or the flight auxiliary wing can be controlled to control the posture when flying in the vertical direction toward the ground or the body portion is flying in the horizontal direction with the ground.
  • the apparatus may further include an image acquisition unit formed at the front end of the body unit to acquire an image, and the controller may drive the image acquisition unit when the body unit switches to vertical flight among horizontal flights.
  • the apparatus may further include a sensing unit configured to detect at least one or more of a position, an altitude, a speed, an acceleration, and an inclination of the body unit, wherein the controller is configured to charge when the body unit is less than a predetermined value during vertical flight at the first position.
  • the controller may return to the second position wherever possible and control to return to the first position to perform vertical flight when the charging is completed.
  • the pitch of the propeller can be varied to enable vertical takeoff, landing, in-flight, and turning flight by only rotating the single propeller that is responsible for the thrust in the fixed-wing drone, thereby efficiently increasing the flight time.
  • FIG. 1 is a block diagram of a fixed-wing drone using a variable pitch propeller according to an embodiment of the present invention
  • FIG. 2 is a detailed configuration diagram of a rotating part of a fixed-wing drone using a variable pitch propeller according to FIG. 1,
  • FIG. 3 is an exemplary diagram for explaining a flight mode of a fixed wing drone using a variable pitch propeller according to FIG. 1;
  • FIG. 4 is an exemplary view for explaining a relationship between a fixed-wing drone and a docking station using a variable pitch propeller according to FIG. 1;
  • 5 and 6 are exemplary views for explaining that the support is added to the fixed wing drone using the variable pitch propeller according to FIG. 1.
  • FIG. 1 is a block diagram of a fixed wing drone using a variable pitch propeller according to an embodiment of the present invention
  • Figure 2 is a detailed configuration diagram of a rotating part of the fixed wing drone using a variable pitch propeller according to Figure 1
  • Figure 3 It is an exemplary view for explaining the flight mode of the fixed-wing drone using a variable pitch propeller according to.
  • the fixed wing drone 100 using the variable pitch propeller includes a body part 110, a wing part 120, a rotating part 130, and a controller 140. Include.
  • Body portion 110 is formed in the longitudinal direction from the front end to the rear end.
  • the body unit 110 may be formed of a lightweight synthetic resin material, and a rechargeable battery (not shown), a part of the rotating unit 130 to be described later, and a controller 140 may be mounted therein.
  • Body 110 is possible to take off and landing in the vertical direction, it is possible to fly in the horizontal direction.
  • the wing portion 120 is formed in the form of a fixed blade, the rear end is rotated 130 is shaped. In this case, the rotating surface of the rotating unit 130 and the wing surface of the wing 120 is formed in a vertical direction to each other.
  • the rotating part 130 is formed on a central axis along the longitudinal direction of the body part 110.
  • the wing portion 120 is formed in a fixed blade shape on both sides of the body portion 110.
  • the wing portion 120 may be formed to have an area wider from the front end to the rear end of the body portion 110.
  • the wing 120 itself is formed in the form of a fixed wing that does not move during take-off and landing.
  • the wing 120 may be formed in an airfoil shape in cross section.
  • a solar panel is formed on the surface of the wing 120 to convert solar energy into electrical energy.
  • LED display unit is formed on the surface of the wing 120, it is also possible to display a variety of information in the form of symbols, letters, figures.
  • the wing 120 may further include an auxiliary wing (121).
  • the auxiliary wing 121 is formed on one side of the wing portion 120 located at the rear end of the body portion 110 to face the rotating portion 130 to be described later.
  • the auxiliary wing 121 serves to cancel the reaction torque acting as the body portion 110 by the rotation unit 130.
  • the auxiliary wing 121 is controlled to rotate at a predetermined angle on one side of the wing 120.
  • the auxiliary wing 121 may be set to a different angle of rotation from the wing 120 according to the speed, rotation direction, etc. of the rotating unit 130. Accordingly, the fixed wing drone 100 may minimize a phenomenon in which the body is distorted by the rotating unit 130 even during vertical take-off and landing flight, stop flight, and horizontal flight.
  • the auxiliary wing 121 may be formed in the shape of an airfoil cross section.
  • the rotating part 130 is formed at the rear end of the body part 110 to rotate the propeller 131 composed of a plurality of blades (131-1) having a variable pitch.
  • the rotating surface of the rotating unit 130 is made perpendicular to the body portion 110, it can move the body portion 110 in the vertical direction.
  • the rotation unit 130 may control the inclination of the body portion 110 by varying the pitch of the blade 131-1, and may move in the horizontal direction with the ground.
  • the rotating unit 130 adjusts the variable pitch of the blade 131-1 of the propeller 131 differently according to the case where the fixed wing drone 100 is in the vertical take-off and landing mode, in the stationary flight mode, or in the horizontal flight mode. Can be.
  • the rotating unit 130 specifically includes a propeller 131, a first driving unit 132, a plate 133, and a second driving unit 134.
  • Propeller 131 has a pair of blades (131-1) formed in the shape of an airfoil cross-section is connected in a straight line through the hub (131-2) in the center.
  • the number of blades 131-1 may vary according to a user setting, and the description will be made in the minimum unit.
  • the pair of blades 131-1 are formed to have a variable pitch.
  • the lower portion of the hub 131-2 is connected to the first driving unit 132 through the driving shaft 132-1 to rotate the pair of blades 131-1.
  • the first driving unit 132 is connected to the hub 131-2 of the propeller 131 through a central axis to rotate the pair of blades 131-1.
  • the first drive unit 132 may be implemented as an electric motor, it is possible to accelerate and decelerate, it is preferable that the forward and reverse rotation.
  • the first driver 132 is fixed to the inside of the body portion 110 and is connected to a battery inside the body portion 110 to receive power. The rotational speed of the first driver 132 is controlled by the controller 140.
  • the plate 133 is a disk shape with a hole formed at the center thereof and moves along the drive shaft 132-1.
  • the plate 133 is connected to the pair of blades 131-1 through the plurality of first links 133-1.
  • the plate 133 is connected to the second driver 134 described later through the plurality of second links 133-2.
  • the plurality of first links 133-1 are connected to one side of the plate 133, and the plurality of second links 133-2 are connected to the other side of the plate 133.
  • the plate 133 serves as an intermediate to transfer the driving force of the second driver 134 to the pair of blades 131-1.
  • the second driver 134 is connected to the plate 133 through the plurality of second links 133-2.
  • the second driver 134 may be formed in plural, and for example, may implement a three-servo system.
  • the second driving unit 134 varies the height and inclination of the plate 133 through the second link 133-2, and changes the plate 133 through the first link 133-1 in cooperation with the plate 133.
  • the pitch of the pair of blades 131-1 is variable. In this case, the pitch of the pair of blades 131-1 and the inclination of the rotating surface can also be varied.
  • the controller 140 is formed inside the body part 110 and rotates the plurality of blades 131-1 at a first pitch in a take-off and landing mode.
  • propulsion force is generated while air moves from the rear end of the body part 110 to the front end.
  • Fixed wing drone 100 of the present invention is the rear end facing the sky, the front end is to take off and landing vertically facing the ground. Therefore, the fixed wing drone 100 may take off and land or stop flight while the body 110 moves in the vertical direction.
  • the controller 140 rotates the plurality of blades 131-1 to the second pitch in the flight mode.
  • the pair of blades 131-1 is changed to a second pitch, propulsion force is generated while air moves from the front end of the body part 110 to the rear end.
  • the attitude of the fixed wing drone 100 is changed while the pair of blades 131-1 varies from the first pitch to the second pitch. In the first pitch, the body part 110 moves up, down, or stops in the vertical direction, and in the second pitch, the body part 110 moves in the horizontal direction.
  • control unit 140 may control the angle of the auxiliary wing 121 of the wing 120.
  • the auxiliary wing 121 may be adjusted in angle by a drive means that operates separately from the rotating unit 130.
  • the control unit 140 is the angle of the auxiliary wing 121 to adjust the flight itself while removing the anti-torque by the rotary unit 130 while the fixed wing drone 100 is vertical takeoff and landing, stationary flight, or turning flight.
  • the angle of the pair of auxiliary wings 121 may be varied according to the inclination of the body 110 of the fixed wing drone (! 00), the direction of the wind around, the rotational speed of the rotating unit 130, and the like.
  • control unit 140 may include a communication module to transmit and receive a control signal through wireless communication with an external user terminal.
  • the controller 140 may transmit and receive a control signal for a flight path, a flight posture, a battery, and the like of the fixed wing drone 100 using RF communication, network communication, or satellite communication.
  • the fixed wing drone 100 of the present invention may take off and land in the vertical direction as shown in (a) of FIG. 3 or may stop in the air.
  • the fixed wing drone 100 of the present invention is able to fly in the horizontal direction as shown in FIG.
  • one propeller 131 is used, and the attitude of the fixed blade drone 100 may be changed by varying the pitch of the pair of blades 131-1.
  • the pitch of the blade 131-1 when the fixed wing drone 100 moves in the vertical direction as shown in (a) and the blade when the fixed wing drone 100 moves in the horizontal direction as shown in (b) ( 131-1) can be controlled in the opposite direction.
  • the fixed wing drone 100 using a variable pitch propeller may further include a detector 150 and the image acquisition unit 160.
  • the detector 150 detects at least one of the position, altitude, speed, acceleration, and tilt of the body 110.
  • the sensing unit 150 transmits the sensing information to the control unit 140 at a preset time period.
  • the control unit 140 is the front end of the body portion 110 toward the ground in accordance with the operation mode of the body portion 110 through the sensing unit 150, or the body portion 110 and the ground Control your attitude when flying in the horizontal direction.
  • the controller 140 may control the auxiliary rotor 121 to correct the posture of the fixed wing drone 100.
  • the image acquisition unit 160 is formed at the tip of the body unit 110 to acquire an image.
  • the image acquisition unit 160 photographs the ground because the distal end of the body 110 faces the ground.
  • the image acquisition unit 160 may monitor the ground situation.
  • Image information obtained from the image acquisition unit 160 may be transmitted to an external server at a predetermined time period.
  • the controller 140 may drive the image acquisition unit 160 when the body 110 switches to vertical flight of horizontal flight.
  • the body portion 110 moves horizontally while moving to the target point, and then the posture is changed so that the body portion 110 becomes vertical flight again at the target point.
  • the image acquisition unit 160 is driven. This is to ensure that the fixed-wing drone 100 obtains an image only at a selected point when having a mission of reconnaissance.
  • FIG. 4 is an exemplary view for explaining the relationship between a fixed-wing drone and a docking station using a variable pitch propeller according to FIG. 1.
  • the fixed wing drone 100 of the present invention may land on the docking station 1000 on the ground to transmit data and charge / discharge the battery.
  • An identification unit 1100 is formed at an upper portion of the docking station 1000 so that the fixed wing drone 100 may authenticate with the docking station 1000 through radio waves.
  • the fixed wing drone 100 may be recognized by photographing the upper portion of the docking station (1000).
  • the fixed wing drone 100 may automatically return to the docking station 1000 to charge the battery when the remaining battery level during the flight is less than the preset value at the preset target point. When the battery is charged, the fixed wing drone 100 may automatically move back to the final target point.
  • 5 and 6 are exemplary views for explaining that the support is added to the fixed wing drone using the variable pitch propeller according to FIG. 1.
  • the fixed wing drone 100 using the variable pitch propeller may further include a support 170.
  • the support part 170 is formed at the rear end of the body part. When the fixed-wing drone 100 is taken off and landed, the support 170 is deployed as shown in FIGS. 5A and 5B, and during flight, the fixed wing drone 100 closely contacts the body 110 as shown in FIGS. 6A and 6B. do.
  • the support 170 is preferably formed to be accommodated in the receiving groove (not shown) formed on the outer peripheral surface of the body portion 110 to minimize the resistance of the wind during the flight.
  • the support unit 170 is formed in a structure that can be stably mounted on the ground in order to take off and landing in a state in which the fixed wing drone 100 is not held by a person by hand.
  • the wing unit 120 may further include an additional auxiliary wing 122 in addition to the auxiliary wing 121.
  • Additional auxiliary wing 122 is formed to rotate at a predetermined angle on the other side of the wing portion 120 to assist the flight.
  • the additional auxiliary wing 122 is arranged side by side with the auxiliary wing 121.
  • the auxiliary wing 121 and the additional auxiliary wing 122 are arranged in the wing 120 located at the rear end of the body 110.
  • the additional auxiliary wing 122 serves to facilitate the fine-tuning of the posture change, the change of altitude, and the offset of the anti-torque while the fixed wing drone 100 is in flight.
  • the additional auxiliary wing 122 may be controlled independently of the auxiliary wing 121.
  • the additional auxiliary wing 122 may be formed in an airfoil shape in cross section.
  • the support unit 170 includes a support 171, a connection unit 172, and a third driving unit 173.
  • the support 171 is formed in plural, preferably three or more. Support 171 is rotated at a predetermined angle from the outer peripheral surface of the body portion (110).
  • the plurality of supports 171 are connected to one side by the fixing part 171-1 to be rotatable. In other words, one side of the support 171 is connected to the fixing portion 171-1, the other side is in contact with the ground. It is also possible to form a buffer member at the other end of the support (171).
  • a vertical wing 171-2 may be formed at one side of the support 171.
  • Vertical wing 171-2 is a wing formed in a direction perpendicular to the body portion (110).
  • the support 171 is deployed outward as shown in FIGS. 5A and 5B.
  • the vertical wing 171-2 as shown in (a) and (b) of Figure 6 when the fixed wing drone 100 is flying in the horizontal direction and the ground surface, such as turning flight, while being folded to the body portion 110 side serves as a wing. do. Accordingly, it is possible to facilitate the flight attitude control of the fixed wing drone 100.
  • connection part 172 may be connected so that one side may be rotatable with one side of the support 171, and the other side may be connected to the moving part 172-1.
  • the connecting portion 172 may be formed in the same number as the support 171, but is not necessarily limited thereto.
  • the connection part 172 serves to expand or fold the support 171 as the moving part 172-1 moves.
  • the third driving unit 173 is connected to the moving unit 172-1 using the moving rod 173-1 as the output shaft.
  • the third driving unit 173 may allow the support 171 to be deployed or folded while varying the position of the moving unit 172-1 by adjusting the length of the moving rod 173-1.
  • the third driving unit 173 moves the moving unit 172-1 to the fixing unit 171-1, the support 171 is folded to the outer peripheral surface of the body unit 110, and the moving unit 172-1 is fixed to the moving unit 172-1. Moving in the opposite direction of (171-1), the support 171 is deployed to expand from the outer peripheral surface of the body portion (110).
  • a buffer part (not shown) is formed between the fixing part 171-1 and the moving part 172-1 to maintain a gap between the fixing part 171-1 and the moving part 172-1. It can also play a role.
  • the shock absorbing part serves to absorb the shock transmitted through the support 171 when the support 171 lands on the ground in a deployed state.
  • the buffer part may be formed in a spring shape, but it is also possible to use a hydraulic damper structure.
  • the controller 140 controls the support unit 170 according to the flight mode of the fixed wing drone 110.
  • the deployment angle of the support 171 may be variably adjusted according to the weight of the body 110 or the material of the ground surface.
  • the auxiliary wing 121 or the additional auxiliary wing 122 of the wing 120 can be controlled simultaneously or separately to minimize the impact during landing.
  • the subsidiary wing 122 may be driven to finely control the anti-torque, thereby inducing precise takeoff and landing of the fixed wing drone 100.

Abstract

A fixed-wing drone using a variable pitch propeller, according to an embodiment of the present invention, comprises: a body section formed in a lengthwise direction from a front end to a rear end; wing sections formed on both sides of the body portion in the form of fixed wings; a rotating section for rotating a propeller formed of a plurality of blades formed at the rear end of the body portion and having a variable pitch; and a control section for, when in a take-off and landing mode, varying the plurality of blades to a first pitch and rotating the same to generate driving force from the rear end to the front end of the body section, thereby moving the body section in a vertical direction with respect to the ground, and when in a flight mode, varying the plurality of blades to a second pitch and rotating the same to generate driving force from the front end to the rear end of the body section, thereby moving the body section in a horizontal direction with respect to the ground.

Description

가변 피치 프로펠러를 이용한 고정익 드론Fixed-wing drones with variable pitch propellers
본 발명은 가변 피치 프로펠러를 이용한 고정익 드론에 관한 것으로, 하나의 프로펠러를 이용하여 수직이착륙 및 수평비행을 제어하는 기술이 개시된다.The present invention relates to a fixed-wing drone using a variable pitch propeller, and a technique for controlling vertical takeoff and landing and horizontal flight using one propeller is disclosed.
무인드론은 크게 프로펠러의 회전으로 추진력을 얻고 고정된 날개를 통해 양력을 얻어 비행하는 고정익 무인드론과, 오로지 로터의 회전으로 인해 발생되는 추력을 이용해 비행하는 회전익 무인드론으로 구분할 수 있다. 고정익 무인드론은 수직 이착륙을 할 수 없어 활주로를 필요로 하고, 정지비행을 할 수 없으며, 이착륙시 사고 발생이 크며, 회전익 무인드론은 복수의 프로펠러를 이용하여야 하므로 제어가 복잡하며, 배터리 소모가 커서 효율성이 떨어진다는 한계가 있다.Unmanned drones can be classified into fixed wing drones, which are driven by propeller rotation and lifted through fixed wings, and rotorcraft drones that fly using thrust generated by the rotation of rotors. Fixed wing drones do not have vertical takeoffs and landings, which require runways, do not allow stationary flight, high accidents during takeoff and landing, and rotorcraft drones have to use multiple propellers, resulting in complicated control and high battery consumption. There is a limit to inefficiency.
이러한 문제점을 해결하기 위한 방안으로, 고정익 무인드론을 수직이착륙하도록 하는 틸트로터 방식이나 여러 개의 멀티로터를 날개에 장착하는 방법을 사용하고 있는데 제어의 기술적 어려움과 유지보수의 어려움, 무거워지는 기체로 인한 효율성 저하 등이 수직이착륙 고정익 드론 개발을 막고 있는 가장 큰 문제이다.As a solution to this problem, it uses a tilt rotor method to vertically take off and land a fixed-wing drone, or a method of mounting a plurality of multi-rotors on a wing, which is difficult due to technical difficulties of control, maintenance difficulty, and heavy gas. Deterioration is the biggest problem preventing the development of vertical take-off and landing fixed-wing drones.
종래의 기술 중 대한민국 등록특허 제10-1663814호(2016. 10. 07 공고)는 "꼬리 이착륙형 항공기"에 관한 것으로, 이착륙 시에는 항공기의 몸체부를 중심으로 회전하여 로터 역할을 수행하고, 순항 시에는 항공기의 몸체부에 고정되어 고정익 역할을 수행하는 가변형 날개부를 형성하는 기술이 개시되어 있다.Republic of Korea Patent No. 10-1663814 (2016. 10. 07 announcement) of the prior art relates to a "tail take-off and landing aircraft", during take-off and landing rotates around the body of the aircraft serves as a rotor, when cruising It discloses a technique for forming a variable wing that is fixed to the body portion of the aircraft to perform a fixed wing role.
그러나, 상기 종래의 기술의 경우에는 복수의 프로펠러를 사용하여야 하며, 메인 날개를 가변시키는 것으로 효율성이 저하되는 한계를 극복하지 못하고 있는 실정이다.However, in the case of the conventional technology, a plurality of propellers must be used, and a situation in which the efficiency of the efficiency is lowered by varying the main blade is not overcome.
본 발명의 해결하고자 하는 기술적 과제는 고정익 드론에서 추력을 담당하는 단일 프로펠러의 회전만으로 수직이착륙, 제자리 비행 및 선회비행이 가능하도록 프로펠러의 피치를 가변시킬 수 있는 가변 피치 프로펠러를 이용한 고정익 드론을 제공하기 위함이다.The technical problem to be solved by the present invention is to provide a fixed-wing drone using a variable pitch propeller that can change the pitch of the propeller to enable vertical take-off, landing, in-flight and turning flight only by the rotation of a single propeller responsible for thrust in the fixed-wing drone. For sake.
또한, 수직이착륙과 선회비행시 발생하는 반토크를 효과적으로 상쇄하여 안정적인 비행이 가능하도록 하는 가변 피치 프로펠러를 이용한 고정익 드론을 제공하기 위함이다.In addition, it is to provide a fixed-wing drone using a variable pitch propeller to effectively cancel the anti-torque generated during vertical takeoff and landing and turning flight.
또한, 수직이착륙시 지지대 역할을 하면서 선회비행시 수직날개로 변환되도록 하여 안정적인 이착륙 및 비행자세 제어가 가능한 가변 피치 프로펠러를 이용한 고정익 드론을 제공하기 위함이다.In addition, it is to provide a fixed-wing drone using a variable pitch propeller capable of stable takeoff and landing and flight posture control by converting into a vertical wing during turning flight while serving as a support during vertical takeoff and landing.
본 발명의 실시예에 따른 가변 피치 프로펠러를 이용한 고정익 드론은, 선단으로부터 후단으로 길이 방향으로 형성되는 몸체부와, 상기 몸체부의 양측에 고정익 형태로 형성되는 날개부와, 상기 몸체부의 후단에 형성되어 피치가 가변되는 복수의 블레이드로 구성되는 프로펠러를 회전시키는 회전부와, 이착륙모드인 경우 상기 복수의 블레이드를 제1 피치로 가변하여 회전시켜 상기 몸체부의 후단으로부터 선단으로 추진력을 발생시켜 상기 몸체부를 지면으로부터 수직방향으로 이동시키고, 비행모드인 경우 상기 복수의 블레이드를 제2 피치로 가변하여 회전시켜 상기 몸체부의 선단으로부터 후단으로 추진력을 발생시켜 상기 몸체부를 지면으로부터 수평방향으로 이동시키는 제어부를 포함한다.Fixed wing drone using a variable pitch propeller according to an embodiment of the present invention, the body portion formed in the longitudinal direction from the front end to the rear end, the wing portion formed in the form of a fixed blade on both sides of the body portion, and is formed at the rear end of the body portion A rotating part for rotating the propeller consisting of a plurality of blades of variable pitch, and in the take-off and landing mode, by rotating the plurality of blades to the first pitch to generate a propulsion force from the rear end to the front end of the body portion from the ground And a control unit for moving in the vertical direction, in the flight mode, by varying and rotating the plurality of blades to a second pitch to generate a propulsion force from the front end to the rear end, thereby moving the body from the ground in the horizontal direction.
또한, 상기 회전부는, 단면이 에어포일 형상으로 형성된 한 쌍의 블레이드가 중앙에 허브를 통해 일직선 상으로 연결되는 프로펠러와, 상기 허브와 구동축에 의해 연결되어 상기 한 쌍의 블레이드를 회전시키는 제1 구동부와, 상기 구동축을 따라 이동하며 복수의 제1 링크를 통해 상기 한 쌍의 블레이드와 연결되는 플레이트와, 상기 플레이트와 복수의 제2 링크를 통해 연결되어, 상기 한 쌍의 블레이드의 피치를 가변시키거나, 상기 한 쌍의 블레이드의 회전면의 기울기를 가변시키는 제2 구동부를 포함할 수 있다.The rotating unit may include a propeller in which a pair of blades having an airfoil shape in cross section is connected in a straight line through a hub at a center thereof, and a first driving unit connected by the hub and a drive shaft to rotate the pair of blades. And a plate moving along the driving shaft and connected to the pair of blades through a plurality of first links, and connected through the plate and the plurality of second links to vary the pitch of the pair of blades. And, it may include a second drive for changing the inclination of the rotation surface of the pair of blades.
또한, 상기 몸체부의 위치, 고도, 속도, 가속도, 기울기 중 적어도 하나 이상을 감지하는 감지부를 더 포함하고, 상기 날개부는 상기 날개부의 일측에 기 설정된 각도로 회동하도록 형성되어 상기 회전부에 따른 반작용 토크를 상쇄시키는 회전보조날개와, 상기 날개부의 타측에 기 설정된 각도로 회동하도록 형성되어 비행을 보조하는 비행보조날개를 포함하고, 상기 제어부는 상기 감지부를 통해 상기 몸체부의 동작모드에 따라 상기 몸체부의 선단이 지면을 향하여 수직방향으로 비행하거나, 상기 몸체부가 지면과 수평방향으로 비행시 자세를 제어하도록 상기 회전보조날개 또는 상기 비행보조날개를 제어할 수 있다.The apparatus may further include a sensing unit configured to sense at least one or more of a position, an altitude, a speed, an acceleration, and an inclination of the body unit, wherein the wing unit is formed to rotate at a predetermined angle on one side of the wing unit to generate reaction torque according to the rotating unit. A rotational auxiliary blade to offset and a flight auxiliary wing which is formed to rotate at a predetermined angle on the other side of the wing part to assist flight, and the control unit has a front end of the body part in accordance with an operation mode of the body part through the sensing part. The rotational auxiliary wing or the flight auxiliary wing can be controlled to control the posture when flying in the vertical direction toward the ground or the body portion is flying in the horizontal direction with the ground.
또한, 상기 몸체부의 선단에 형성되어 영상을 획득하는 영상획득부를 더 포함하고, 상기 제어부는 상기 몸체부가 수평비행 중 수직비행으로 전환하면 상기 영상획득부를 구동시킬 수 있다.The apparatus may further include an image acquisition unit formed at the front end of the body unit to acquire an image, and the controller may drive the image acquisition unit when the body unit switches to vertical flight among horizontal flights.
또한, 상기 몸체부의 위치, 고도, 속도, 가속도, 기울기 중 적어도 하나 이상을 감지하는 감지부를 더 포함하고, 상기 제어부는 상기 몸체부가 제1 위치에서 수직비행 중 배터리의 잔량이 기 설정치 미만인 경우 충전이 가능한 제2 위치로 복귀하고, 충전이 완료되면 상기 제1 위치로 복귀하여 수직비행을 하도록 제어할 수 있다.The apparatus may further include a sensing unit configured to detect at least one or more of a position, an altitude, a speed, an acceleration, and an inclination of the body unit, wherein the controller is configured to charge when the body unit is less than a predetermined value during vertical flight at the first position. The controller may return to the second position wherever possible and control to return to the first position to perform vertical flight when the charging is completed.
이에 따라, 고정익 드론에서 추력을 담당하는 단일 프로펠러의 회전만으로 수직이착륙, 제자리 비행 및 선회평비행이 가능하도록 프로펠러의 피치를 가변시킬 수 있어 효율적으로 비행시간을 늘릴 수 있다.Accordingly, the pitch of the propeller can be varied to enable vertical takeoff, landing, in-flight, and turning flight by only rotating the single propeller that is responsible for the thrust in the fixed-wing drone, thereby efficiently increasing the flight time.
또한, 수직이착륙과 선회비행시 발생하는 반토크를 효과적으로 상쇄하여 안정적인 비행이 가능하도록 할 수 있다.In addition, it is possible to effectively offset the anti-torque generated during vertical takeoff and landing and turning flight to enable a stable flight.
또한, 수직이착륙시 지지대 역할을 하면서 선회비행시 수직날개로 변환되도록 하여 안정적인 이착륙 및 비행자세 제어가 가능하다.In addition, it functions as a support during vertical take-off and landing, so that it can be converted into vertical wings during turning flight, and stable take-off and landing control is possible.
도 1은 본 발명의 일 실시예에 따른 가변 피치 프로펠러를 이용한 고정익 드론의 구성도,1 is a block diagram of a fixed-wing drone using a variable pitch propeller according to an embodiment of the present invention,
도 2는 도 1에 따른 가변 피치 프로펠러를 이용한 고정익 드론 중 회전부의 세부 구성도,2 is a detailed configuration diagram of a rotating part of a fixed-wing drone using a variable pitch propeller according to FIG. 1,
도 3은 도 1에 따른 가변 피치 프로펠러를 이용한 고정익 드론의 비행모드를 설명하기 위한 예시도,3 is an exemplary diagram for explaining a flight mode of a fixed wing drone using a variable pitch propeller according to FIG. 1;
도 4는 도 1에 따른 가변 피치 프로펠러를 이용한 고정익 드론과 도킹스테이션의 관계를 설명하기 위한 예시도,4 is an exemplary view for explaining a relationship between a fixed-wing drone and a docking station using a variable pitch propeller according to FIG. 1;
도 5 및 도 6은 도 1에 따른 가변 피치 프로펠러를 이용한 고정익 드론에 지지부가 추가된 것을 설명하기 위한 예시도이다.5 and 6 are exemplary views for explaining that the support is added to the fixed wing drone using the variable pitch propeller according to FIG. 1.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세하게 설명한다. 사용되는 용어들은 실시예에서의 기능을 고려하여 선택된 용어들로서, 그 용어의 의미는 사용자, 운용자의 의도 또는 판례 등에 따라 달라질 수 있다. 그러므로 후술하는 실시예들에서 사용된 용어의 의미는, 본 명세서에 구체적으로 정의된 경우에는 그 정의에 따르며, 구체적인 정의가 없는 경우는 당업자들이 일반적으로 인식하는 의미로 해석되어야 할 것이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The terms used are terms selected in consideration of functions in the embodiments, and the meaning of the terms may vary depending on the intention or precedent of the user or operator. Therefore, the meaning of the terms used in the embodiments to be described later, according to the definition if specifically defined herein, and if there is no specific definition should be interpreted to mean generally recognized by those skilled in the art.
도 1은 본 발명의 일 실시예에 따른 가변 피치 프로펠러를 이용한 고정익 드론의 구성도이고, 도 2는 도 1에 따른 가변 피치 프로펠러를 이용한 고정익 드론 중 회전부의 세부 구성도이고, 도 3은 도 1에 따른 가변 피치 프로펠러를 이용한 고정익 드론의 비행모드를 설명하기 위한 예시도이다.1 is a block diagram of a fixed wing drone using a variable pitch propeller according to an embodiment of the present invention, Figure 2 is a detailed configuration diagram of a rotating part of the fixed wing drone using a variable pitch propeller according to Figure 1, Figure 3 It is an exemplary view for explaining the flight mode of the fixed-wing drone using a variable pitch propeller according to.
도 1 내지 도 3을 참조하면, 본 발명의 일 실시예에 따른 가변 피치 프로펠러를 이용한 고정익 드론(100)은 몸체부(110), 날개부(120), 회전부(130) 및 제어부(140)를 포함한다.1 to 3, the fixed wing drone 100 using the variable pitch propeller according to the exemplary embodiment of the present invention includes a body part 110, a wing part 120, a rotating part 130, and a controller 140. Include.
몸체부(110)는 선단으로부터 후단으로 길이 방향으로 형성된다. 몸체부(110)는 경량형의 합성수지재로 형성될 수 있으며, 내부에는 충전형 배터리(도시하지 않음), 후술하는 회전부(130)의 일부 구성과 제어부(140) 등이 탑재될 수 있다. 몸체부(110)는 수직방향으로 이착륙이 가능하며, 수평방향으로도 비행이 가능하다. 몸체부(110)의 양측면에는 고정익 형태의 날개부(120)가 형성되고, 후단에는 회전부(130)가 형선된다. 이 경우, 회전부(130)의 회전면과 날개부(120)의 날개면은 서로 수직방향으로 형성된다. 회전부(130)는 몸체부(110)의 길이방향에 따른 중심축 상에 형성된다. Body portion 110 is formed in the longitudinal direction from the front end to the rear end. The body unit 110 may be formed of a lightweight synthetic resin material, and a rechargeable battery (not shown), a part of the rotating unit 130 to be described later, and a controller 140 may be mounted therein. Body 110 is possible to take off and landing in the vertical direction, it is possible to fly in the horizontal direction. On both sides of the body portion 110, the wing portion 120 is formed in the form of a fixed blade, the rear end is rotated 130 is shaped. In this case, the rotating surface of the rotating unit 130 and the wing surface of the wing 120 is formed in a vertical direction to each other. The rotating part 130 is formed on a central axis along the longitudinal direction of the body part 110.
날개부(120)는 몸체부(110)의 양측에 고정익 형태로 형성된다. 날개부(120)는 몸체부(110)의 선단에서 후단으로 갈수록 면적이 넓어지도록 형성될 수 있다. 날개부(120) 자체는 이착륙이나 비행시 움직이지 않는 고정익 형태로 형성된다. 날개부(120)는 단면이 에어포일 형상으로 형성되는 것도 가능하다. 날개부(120)의 표면에는 태양전지판이 형성되어 태양에너지를 전기에너지로 변환시키는 것도 가능하다. 날개부(120)의 표면에는 LED 표시부가 형성되어 각종 정보를 기호, 문자, 도형 등으로 표시하도록 하는 것도 가능하다.The wing portion 120 is formed in a fixed blade shape on both sides of the body portion 110. The wing portion 120 may be formed to have an area wider from the front end to the rear end of the body portion 110. The wing 120 itself is formed in the form of a fixed wing that does not move during take-off and landing. The wing 120 may be formed in an airfoil shape in cross section. A solar panel is formed on the surface of the wing 120 to convert solar energy into electrical energy. LED display unit is formed on the surface of the wing 120, it is also possible to display a variety of information in the form of symbols, letters, figures.
또한, 날개부(120)는 보조날개(121)를 더 포함할 수 있다. 보조날개(121)는 몸체부(110)의 후단에 위치한 날개부(120)의 일측에 후술하는 회전부(130)와 대향하여 형성된다. 보조날개(121)는 회전부(130)에 의해 몸체부(110)로 작용하는 반작용 토크를 상쇄시키는 역할을 한다. 보조날개(121)는 날개부(120)의 일측에 기 설정된 각도로 회동하도록 제어된다. 보조날개(121)는 회전부(130)의 속도, 회전방향 등에 따라 날개부(120)로부터 회동하는 각도가 다르게 설정될 수 있다. 이에 따라, 고정익 드론(100)이 수직이착륙비행, 정지비행, 수평비행 중에도 회전부(130)에 의해 몸체가 뒤틀리는 현상을 최소화할 수 있다. 보조날개(121)는 단면이 에어포일 형상으로 형성될 수도 있다.In addition, the wing 120 may further include an auxiliary wing (121). The auxiliary wing 121 is formed on one side of the wing portion 120 located at the rear end of the body portion 110 to face the rotating portion 130 to be described later. The auxiliary wing 121 serves to cancel the reaction torque acting as the body portion 110 by the rotation unit 130. The auxiliary wing 121 is controlled to rotate at a predetermined angle on one side of the wing 120. The auxiliary wing 121 may be set to a different angle of rotation from the wing 120 according to the speed, rotation direction, etc. of the rotating unit 130. Accordingly, the fixed wing drone 100 may minimize a phenomenon in which the body is distorted by the rotating unit 130 even during vertical take-off and landing flight, stop flight, and horizontal flight. The auxiliary wing 121 may be formed in the shape of an airfoil cross section.
회전부(130)는 몸체부(110)의 후단에 형성되어 피치가 가변되는 복수의 블레이드(131-1)로 구성되는 프로펠러(131)를 회전시킨다. 회전부(130)의 회전면은 몸체부(110)와 수직으로 이뤄지며, 몸체부(110)를 수직방향으로 이동시킬 수 있다. 또한, 회전부(130)는 블레이드(131-1)의 피치를 가변시켜 몸체부(110)의 기울기를 다르게 제어할 수 있으며, 지면과 수평방향으로 이동시킬 수 있다. 다시 말해, 회전부(130)는 고정익 드론(100)이 수직이착륙 모드인 경우, 정지비행 모드인 경우, 수평비행 모드인 경우에 따라 프로펠러(131)의 블레이드(131-1)의 가변피치를 다르게 조절할 수 있다.The rotating part 130 is formed at the rear end of the body part 110 to rotate the propeller 131 composed of a plurality of blades (131-1) having a variable pitch. The rotating surface of the rotating unit 130 is made perpendicular to the body portion 110, it can move the body portion 110 in the vertical direction. In addition, the rotation unit 130 may control the inclination of the body portion 110 by varying the pitch of the blade 131-1, and may move in the horizontal direction with the ground. In other words, the rotating unit 130 adjusts the variable pitch of the blade 131-1 of the propeller 131 differently according to the case where the fixed wing drone 100 is in the vertical take-off and landing mode, in the stationary flight mode, or in the horizontal flight mode. Can be.
도 2를 참조하면, 회전부(130)는 구체적으로 프로펠러(131), 제1 구동부(132), 플레이트(133) 및 제2 구동부(134)를 포함한다. 프로펠러(131)는 단면이 에어포일 형상으로 형성된 한 쌍의 블레이드(131-1)가 중앙에 허브(131-2)를 통해 일직선 상으로 연결된다. 이 경우, 블레이드(131-1)의 개수는 사용자 설정에 따라 달라질 수 있으며, 여기서는 최소 단위로 설명하도록 한다. 한 쌍의 블레이드(131-1)는 피치가 가변될 수 있도록 형성된다. 허브(131-2)의 하부에는 구동축(132-1)을 통해 제1 구동부(132)와 연결되어 한 쌍의 블레이드(131-1)가 회전하게 된다.Referring to FIG. 2, the rotating unit 130 specifically includes a propeller 131, a first driving unit 132, a plate 133, and a second driving unit 134. Propeller 131 has a pair of blades (131-1) formed in the shape of an airfoil cross-section is connected in a straight line through the hub (131-2) in the center. In this case, the number of blades 131-1 may vary according to a user setting, and the description will be made in the minimum unit. The pair of blades 131-1 are formed to have a variable pitch. The lower portion of the hub 131-2 is connected to the first driving unit 132 through the driving shaft 132-1 to rotate the pair of blades 131-1.
제1 구동부(132)는 프로펠러(131)의 허브(131-2)와 중심축을 통해 연결되어 한 쌍의 블레이드(131-1)를 회전시킨다. 제1 구동부(132)는 전동모터로 구현할 수 있으며, 가감속이 가능하며 정역회전이 가능한 것이 바람직하다. 제1 구동부(132)는 몸체부(110)의 내측에 위치하여 고정되며, 몸체부(110) 내부의 배터리와 연결되어 전원을 공급받는다. 제1 구동부(132)의 회전속도는 제어부(140)에 의해 제어된다.The first driving unit 132 is connected to the hub 131-2 of the propeller 131 through a central axis to rotate the pair of blades 131-1. The first drive unit 132 may be implemented as an electric motor, it is possible to accelerate and decelerate, it is preferable that the forward and reverse rotation. The first driver 132 is fixed to the inside of the body portion 110 and is connected to a battery inside the body portion 110 to receive power. The rotational speed of the first driver 132 is controlled by the controller 140.
플레이트(133)는 중앙에 구멍이 형성된 원반형상으로, 구동축(132-1)을 따라 이동한다. 플레이트(133)는 복수의 제1 링크(133-1)를 통해 한 쌍의 블레이드(131-1)와 연결된다. 또한, 플레이트(133)는 복수의 제2 링크(133-2)를 통해 후술하는 제2 구동부(134)와 연결된다. 다시 말해, 플레이트(133) 일측에는 복수의 제1 링크(133-1)가 연결되고, 타측에는 복수의 제2 링크(133-2)가 연결된다. 플레이트(133)는 제2 구동부(134)의 구동력을 한 쌍의 블레이드(131-1)로 전달하는 중간체 역할을 한다.The plate 133 is a disk shape with a hole formed at the center thereof and moves along the drive shaft 132-1. The plate 133 is connected to the pair of blades 131-1 through the plurality of first links 133-1. In addition, the plate 133 is connected to the second driver 134 described later through the plurality of second links 133-2. In other words, the plurality of first links 133-1 are connected to one side of the plate 133, and the plurality of second links 133-2 are connected to the other side of the plate 133. The plate 133 serves as an intermediate to transfer the driving force of the second driver 134 to the pair of blades 131-1.
제2 구동부(134)는 플레이트(133)와 복수의 제2 링크(133-2)를 통해 연결된다. 제2 구동부(134)는 복수로 형성될 수 있으며, 예를 들어 3-서보시스템을 구현할 수도 있다. 제2 구동부(134)는 제2 링크(133-2)를 통해 플레이트(133)의 높이, 기울기를 가변시키며, 플레이트(133)가 가변되면서 이와 연동하여 제1 링크(133-1)를 통해 한 쌍의 블레이드(131-1)의 피치가 가변되는 것이다. 이 경우, 한 쌍의 블레이드(131-1)의 피치 및 회전면의 기울기도 가변시킬 수 있다.The second driver 134 is connected to the plate 133 through the plurality of second links 133-2. The second driver 134 may be formed in plural, and for example, may implement a three-servo system. The second driving unit 134 varies the height and inclination of the plate 133 through the second link 133-2, and changes the plate 133 through the first link 133-1 in cooperation with the plate 133. The pitch of the pair of blades 131-1 is variable. In this case, the pitch of the pair of blades 131-1 and the inclination of the rotating surface can also be varied.
제어부(140)는 몸체부(110) 내부에 형성되어 이착륙모드인 경우 복수의 블레이드(131-1)를 제1 피치로 가변하여 회전시킨다. 한 쌍의 블레이드(131-1)가 제1 피치로 가변되면 몸체부(110)의 후단으로부터 선단으로 공기가 이동하면서 추진력이 발생한다. 본 발명의 고정익 드론(100)은 후단이 하늘과 대향하고, 선단이 지면이 대향하면서 수직 이착륙을 하게 된다. 따라서, 몸체부(110)가 수직방향으로 이동하면서 고정익 드론(100)은 이착륙을 하거나 정지비행을 할 수 있다.The controller 140 is formed inside the body part 110 and rotates the plurality of blades 131-1 at a first pitch in a take-off and landing mode. When the pair of blades 131-1 is changed to the first pitch, propulsion force is generated while air moves from the rear end of the body part 110 to the front end. Fixed wing drone 100 of the present invention is the rear end facing the sky, the front end is to take off and landing vertically facing the ground. Therefore, the fixed wing drone 100 may take off and land or stop flight while the body 110 moves in the vertical direction.
또한, 제어부(140)는 비행모드인 경우 복수의 블레이드(131-1)를 제2 피치로 가변하여 회전시킨다. 한 쌍의 블레이드(131-1)가 제2 피치로 가변되면 몸체부(110)의 선단으로부터 후단으로 공기가 이동하면서 추진력이 발생한다. 본 발명의 고정익 드론(100)은 한 쌍의 블레이드(131-1)가 제1 피치에서 제2 피치로 가변되면서 고정익 드론(100)의 자세가 변경된다. 제1 피치에서는 몸체부(110)가 수직방향으로 상승, 하강 또는 정지하고, 제2 피치에서는 몸체부(110)가 수평방향으로 이동하게 된다.In addition, the controller 140 rotates the plurality of blades 131-1 to the second pitch in the flight mode. When the pair of blades 131-1 is changed to a second pitch, propulsion force is generated while air moves from the front end of the body part 110 to the rear end. In the fixed wing drone 100 of the present invention, the attitude of the fixed wing drone 100 is changed while the pair of blades 131-1 varies from the first pitch to the second pitch. In the first pitch, the body part 110 moves up, down, or stops in the vertical direction, and in the second pitch, the body part 110 moves in the horizontal direction.
또한, 제어부(140)는 날개부(120) 중 보조날개(121)의 각도를 제어할 수 있다. 이 경우, 보조날개(121)는 회전부(130)와는 별개로 동작하는 구동수단에 의해 각도가 조절될 수 있다. 제어부(140)는 고정익 드론(100)이 수직 이착륙을 하거나, 정지비행을 하거나, 선회비행을 하는 동안에 회전부(130)에 의한 반토크를 제거하면서 비행자체를 조절하기 위해 보조날개(121)의 각도를 제어한다. 이 경우, 고정익 드론(!00)의 몸체부(110)의 기울기, 주변의 바람의 방향, 회전부(130)의 회전속도 등에 따라 한 쌍의 보조날개(121)의 각도는 가변될 수 있다.In addition, the control unit 140 may control the angle of the auxiliary wing 121 of the wing 120. In this case, the auxiliary wing 121 may be adjusted in angle by a drive means that operates separately from the rotating unit 130. The control unit 140 is the angle of the auxiliary wing 121 to adjust the flight itself while removing the anti-torque by the rotary unit 130 while the fixed wing drone 100 is vertical takeoff and landing, stationary flight, or turning flight. To control. In this case, the angle of the pair of auxiliary wings 121 may be varied according to the inclination of the body 110 of the fixed wing drone (! 00), the direction of the wind around, the rotational speed of the rotating unit 130, and the like.
또한, 제어부(140)는 통신모듈을 포함하여 외부의 사용자 단말과 무선통신을 통해 제어신호를 송수신할 수 있다. 제어부(140)는 RF 통신이나, 네트워크 통신, 위성 통신을 이용하여 고정익 드론(100)의 비행경로, 비행자세, 배터리 등에 대한 제어신호를 송수신할 수 있다.In addition, the control unit 140 may include a communication module to transmit and receive a control signal through wireless communication with an external user terminal. The controller 140 may transmit and receive a control signal for a flight path, a flight posture, a battery, and the like of the fixed wing drone 100 using RF communication, network communication, or satellite communication.
본 발명의 고정익 드론(100)은 도 3의 (a)에서와 같이 수직방향으로 이륙 및 착륙을 하거나 공중에서 정지비행을 할 수 있다. 또한, 본 발명의 고정익 드론(100)은 도 3의 (b)와 같이 수평방향으로 비행을 할 수 있게 된다. 이 경우, 하나의 프로펠러(131)를 이용하며, 한 쌍의 블레이드(131-1)의 피치를 가변시켜 고정익 드론(100)의 자세를 변경할 수 있다. 다시 말해, (a)와 같이 고정익 드론(100)이 수직방향으로 이동하는 경우의 블레이드(131-1)의 피치와 (b)와 같이 고정익 드론(100)이 수평방향으로 이동하는 경우의 블레이드(131-1)의 피치는 반대 방향으로 제어될 수 있다.The fixed wing drone 100 of the present invention may take off and land in the vertical direction as shown in (a) of FIG. 3 or may stop in the air. In addition, the fixed wing drone 100 of the present invention is able to fly in the horizontal direction as shown in FIG. In this case, one propeller 131 is used, and the attitude of the fixed blade drone 100 may be changed by varying the pitch of the pair of blades 131-1. In other words, the pitch of the blade 131-1 when the fixed wing drone 100 moves in the vertical direction as shown in (a) and the blade when the fixed wing drone 100 moves in the horizontal direction as shown in (b) ( 131-1) can be controlled in the opposite direction.
한편, 본 발명의 실시예에 따른 가변 피치 프로펠러를 이용한 고정익 드론(100)은 감지부(150) 및 영상획득부(160)를 더 포함할 수 있다.On the other hand, the fixed wing drone 100 using a variable pitch propeller according to an embodiment of the present invention may further include a detector 150 and the image acquisition unit 160.
감지부(150)는 몸체부(110)의 위치, 고도, 속도, 가속도, 기울기 중 적어도 하나 이상을 감지한다. 감지부(150)는 기 설정된 시간주기로 감지정보를 제어부(140)로 전송한다. 이 경우, 제어부(140)는 감지부(150)를 통해 몸체부(110)의 동작모드에 따라 몸체부(110)의 선단이 지면을 향하여 수직방향으로 비행하거나, 몸체부(110)가 지면과 수평방향으로 비행시 자세를 제어하도록 한다. 또한, 제어부(140)는 회전보조날개(121)를 제어하여 고정익 드론(100)의 자세를 보정하도록 하는 것도 가능하다.The detector 150 detects at least one of the position, altitude, speed, acceleration, and tilt of the body 110. The sensing unit 150 transmits the sensing information to the control unit 140 at a preset time period. In this case, the control unit 140 is the front end of the body portion 110 toward the ground in accordance with the operation mode of the body portion 110 through the sensing unit 150, or the body portion 110 and the ground Control your attitude when flying in the horizontal direction. In addition, the controller 140 may control the auxiliary rotor 121 to correct the posture of the fixed wing drone 100.
영상획득부(160)는 몸체부(110)의 선단에 형성되어 영상을 획득한다. 영상획득부(160)는 몸체부(110)의 선단이 지면을 대향하고 있으므로 지면을 촬영하게 된다. 영상획득부(160)에 의해 지상의 상황을 감시할 수 있다. 영상획득부(160)로부터 획득한 영상정보는 기 설정된 시간주기로 외부의 서버로 전송될 수 있다. 이 경우, 제어부(140)는 몸체부(110)가 수평비행 중 수직비행으로 전환하면 영상획득부(160)를 구동시킬 수 있다. 다시 말해, 고정익 드론(100)이 수직 이착륙을 한 뒤 목표지점으로 이동하면서 몸체부(110)가 수평비행이 되도록 한 뒤, 목표지점에서 다시 몸체부(110)가 수직비행이 되도록 자세를 전환하면 영상획득부(160)를 구동시킨다. 이는 고정익 드론(100)이 정찰의 임무를 가지는 경우 선택된 지점에서만 영상을 획득하도록 하기 위함이다.The image acquisition unit 160 is formed at the tip of the body unit 110 to acquire an image. The image acquisition unit 160 photographs the ground because the distal end of the body 110 faces the ground. The image acquisition unit 160 may monitor the ground situation. Image information obtained from the image acquisition unit 160 may be transmitted to an external server at a predetermined time period. In this case, the controller 140 may drive the image acquisition unit 160 when the body 110 switches to vertical flight of horizontal flight. In other words, after the fixed-wing drone 100 makes vertical landing and landing, the body portion 110 moves horizontally while moving to the target point, and then the posture is changed so that the body portion 110 becomes vertical flight again at the target point. The image acquisition unit 160 is driven. This is to ensure that the fixed-wing drone 100 obtains an image only at a selected point when having a mission of reconnaissance.
도 4는 도 1에 따른 가변 피치 프로펠러를 이용한 고정익 드론과 도킹스테이션의 관계를 설명하기 위한 예시도이다.4 is an exemplary view for explaining the relationship between a fixed-wing drone and a docking station using a variable pitch propeller according to FIG. 1.
도 4를 참조하면, 본 발명의 고정익 드론(100)은 지상의 도킹스테이션(1000)에 착륙하여 데이터를 전송하고, 배터리를 충방전할 수 있다. 도킹스테이션(1000)의 상부에는 식별부(1100)가 형성되어 고정익 드론(100)이 전파를 통해 도킹스테이션(1000)과 인증을 할 수 있다. 또한, 고정익 드론(100)은 도킹스테이션(1000)의 상부를 촬영하여 인식하는 것도 가능하다. 고정익 드론(100)은 기 설정된 목표지점에서 비행 중 배터리 잔량이 기 설정치 미만이면 도킹스테이션(1000)으로 자동 복귀하여 배터리를 충전할 수 있다. 배터리가 충전되면 고정익 드론(100)은 다시 최종 목표지점으로 자동으로 이동할 수도 있다.Referring to FIG. 4, the fixed wing drone 100 of the present invention may land on the docking station 1000 on the ground to transmit data and charge / discharge the battery. An identification unit 1100 is formed at an upper portion of the docking station 1000 so that the fixed wing drone 100 may authenticate with the docking station 1000 through radio waves. In addition, the fixed wing drone 100 may be recognized by photographing the upper portion of the docking station (1000). The fixed wing drone 100 may automatically return to the docking station 1000 to charge the battery when the remaining battery level during the flight is less than the preset value at the preset target point. When the battery is charged, the fixed wing drone 100 may automatically move back to the final target point.
도 5 및 도 6은 도 1에 따른 가변 피치 프로펠러를 이용한 고정익 드론에 지지부가 추가된 것을 설명하기 위한 예시도이다.5 and 6 are exemplary views for explaining that the support is added to the fixed wing drone using the variable pitch propeller according to FIG. 1.
도 5 및 도 6을 참조하면, 본 발명의 실시예에 따른 가변 피치 프로펠러를 이용한 고정익 드론(100)은 지지부(170)를 더 포함할 수 있다. 지지부(170)는 몸체부의 후단에 형성된다. 고정익 드론(100)이 이착륙시에는 도 5의 (a)와 (b)와 같이 지지부(170)가 전개되고, 비행중에는 도 6의 (a)와 (b)와 같이 몸체부(110) 측으로 밀착된다. 이 경우, 지지부(170)는 몸체부(110)의 외주면에 형성된 수용홈(도시하지 않음)에 수용되어 비행시 바람의 저항을 최소화할 수 있도록 형성되는 것이 바람직하다. 지지부(170)는 고정익 드론(100)을 사람이 손으로 파지하지 않은 상태에서 이착륙을 시키기 위해 지면에 안정적으로 거치될 수 있는 구조로 형성된다.5 and 6, the fixed wing drone 100 using the variable pitch propeller according to the exemplary embodiment of the present invention may further include a support 170. The support part 170 is formed at the rear end of the body part. When the fixed-wing drone 100 is taken off and landed, the support 170 is deployed as shown in FIGS. 5A and 5B, and during flight, the fixed wing drone 100 closely contacts the body 110 as shown in FIGS. 6A and 6B. do. In this case, the support 170 is preferably formed to be accommodated in the receiving groove (not shown) formed on the outer peripheral surface of the body portion 110 to minimize the resistance of the wind during the flight. The support unit 170 is formed in a structure that can be stably mounted on the ground in order to take off and landing in a state in which the fixed wing drone 100 is not held by a person by hand.
이 경우, 날개부(120)는 보조날개(121) 외에 추가보조날개(122)를 더 포함할 수 있다. 추가보조날개(122)는 날개부(120)의 타측에 기 설정된 각도로 회동하도록 형성되어 비행을 보조한다. 추가보조날개(122)는 보조날개(121)와 나란하게 배열된다. 다시 말해 몸체부(110)의 후단에 위치한 날개부(120)에는 보조날개(121)와 추가보조날개(122)가 각각 배열된다. 추가보조날개(122)는 고정익 드론(100)이 비행중에 자세 변환이나, 고도의 변화, 반토크의 상쇄의 미세 조절을 용이하게 하는 역할을 한다. 추가보조날개(122)는 보조날개(121)와 독립되어 제어될 수 있다. 추가보조날개(122)는 단면이 에어포일 형상으로 형성될 수도 있다.In this case, the wing unit 120 may further include an additional auxiliary wing 122 in addition to the auxiliary wing 121. Additional auxiliary wing 122 is formed to rotate at a predetermined angle on the other side of the wing portion 120 to assist the flight. The additional auxiliary wing 122 is arranged side by side with the auxiliary wing 121. In other words, the auxiliary wing 121 and the additional auxiliary wing 122 are arranged in the wing 120 located at the rear end of the body 110. The additional auxiliary wing 122 serves to facilitate the fine-tuning of the posture change, the change of altitude, and the offset of the anti-torque while the fixed wing drone 100 is in flight. The additional auxiliary wing 122 may be controlled independently of the auxiliary wing 121. The additional auxiliary wing 122 may be formed in an airfoil shape in cross section.
구체적으로 지지부(170)는 지지대(171), 연결부(172) 및 제3 구동부(173)를 포함한다.In detail, the support unit 170 includes a support 171, a connection unit 172, and a third driving unit 173.
지지대(171)는 복수로 형성되며, 바라직하게는 3개 이상으로 형성될 수 있다. 지지대(171)는 몸체부(110)의 외주면으로부터 기 설정된 각도로 회동하게 된다. 복수의 지지대(171)는 고정부(171-1)에 의해 일측이 회동 가능하도록 연결된다. 다시 말해, 지지대(171)의 일측은 고정부(171-1)에 연결되고, 타측은 지면과 맞닿게 된다. 지지대(171)의 타측 말단에는 완충부재를 형성하는 것도 가능하다.The support 171 is formed in plural, preferably three or more. Support 171 is rotated at a predetermined angle from the outer peripheral surface of the body portion (110). The plurality of supports 171 are connected to one side by the fixing part 171-1 to be rotatable. In other words, one side of the support 171 is connected to the fixing portion 171-1, the other side is in contact with the ground. It is also possible to form a buffer member at the other end of the support (171).
또한, 지지대(171)의 일측에는 수직날개(171-2)가 형성될 수 있다. 수직날개(171-2)는 몸체부(110)와 수직한 방향으로 형성되는 날개이다. 수직날개(171-2)는 고정익 드론(100)이 수직 이착륙시에는 지지대(171)가 도 5의 (a) 및 (b)와 같이 외측으로 전개되다. 수직날개(171-2)는 도 6의 (a) 및 (b)와 같이 고정익 드론(100)이 선회비행 등의 지표면과 수평방향으로 비행시에는 몸체부(110) 측으로 접혀지면서 날개의 역할을 한다. 이에 따라, 고정익 드론(100)의 비행 자세 제어가 용이하도록 할 수 있다.In addition, a vertical wing 171-2 may be formed at one side of the support 171. Vertical wing 171-2 is a wing formed in a direction perpendicular to the body portion (110). In the vertical wing 171-2, when the fixed wing drone 100 is vertically taken off and landed, the support 171 is deployed outward as shown in FIGS. 5A and 5B. The vertical wing 171-2, as shown in (a) and (b) of Figure 6 when the fixed wing drone 100 is flying in the horizontal direction and the ground surface, such as turning flight, while being folded to the body portion 110 side serves as a wing. do. Accordingly, it is possible to facilitate the flight attitude control of the fixed wing drone 100.
연결부(172)는 일측이 지지대(171)의 일측과 회동가능하도록 연결되고, 타측은 이동부(172-1)와 연결될 수 있다. 연결부(172)는 지지대(171)와 동일한 개수로 형성될 수도 있으나, 반드시 이에 한정하는 것은 아니다. 연결부(172)는 이동부(172-1)가 이동함에 따라 지지대(171)를 전개시키거나 접혀지도록 하는 역할을 한다.The connection part 172 may be connected so that one side may be rotatable with one side of the support 171, and the other side may be connected to the moving part 172-1. The connecting portion 172 may be formed in the same number as the support 171, but is not necessarily limited thereto. The connection part 172 serves to expand or fold the support 171 as the moving part 172-1 moves.
제3 구동부(173)는 이동로드(173-1)를 출력축으로 하여 이동부(172-1)와 연결된다. 제3 구동부(173)는 이동로드(173-1)의 길이를 조절하여 이동부(172-1)의 위치를 가변시키면서 지지대(171)를 전개시키거나 접히도록 할 수 있다. 제3 구동부(173)가 이동부(172-1)를 고정부(171-1) 측으로 이동시키면 지지대(171)가 몸체부(110) 외주면으로 접혀지고, 이동부(172-1)를 고정부(171-1)의 반대방향으로 이동시키면 지지대(171)가 몸체부(110)의 외주면으로부터 전개되어 펼쳐지게 된다.The third driving unit 173 is connected to the moving unit 172-1 using the moving rod 173-1 as the output shaft. The third driving unit 173 may allow the support 171 to be deployed or folded while varying the position of the moving unit 172-1 by adjusting the length of the moving rod 173-1. When the third driving unit 173 moves the moving unit 172-1 to the fixing unit 171-1, the support 171 is folded to the outer peripheral surface of the body unit 110, and the moving unit 172-1 is fixed to the moving unit 172-1. Moving in the opposite direction of (171-1), the support 171 is deployed to expand from the outer peripheral surface of the body portion (110).
한편, 고정부(171-1)와 이동부(172-1) 사이에는 완충부(도시하지 않음)가 형성되어 고정부(171-1)와 이동부(172-1) 사이의 간격을 유지시키는 역할을 할 수도 있다. 완충부는 지지대(171)가 전개된 상태로 지면에 착륙하는 경우 지지대(171)를 통해 전달되는 충격을 흡수하는 역할을 한다. 완충부는 스프링 형태로 형성될 수도 있으나, 유압댐퍼 구조를 이용하는 것도 가능하다.Meanwhile, a buffer part (not shown) is formed between the fixing part 171-1 and the moving part 172-1 to maintain a gap between the fixing part 171-1 and the moving part 172-1. It can also play a role. The shock absorbing part serves to absorb the shock transmitted through the support 171 when the support 171 lands on the ground in a deployed state. The buffer part may be formed in a spring shape, but it is also possible to use a hydraulic damper structure.
제어부(140)는 고정익 드론(110)의 비행모드에 따라 지지부(170)를 제어한다. 이 경우, 몸체부(110)의 무게나 지표면의 재질에 따라 지지대(171)의 전개 각도를 가변적으로 조절할 수 있다. 또한, 날개부(120)의 보조날개(121) 또는 추가보조날개(122)를 동시 또는 개별적으로 제어하여 착륙시 충격을 최소화할 수 있다. 이 경우, 추가보조날개(122)를 구동시켜 반토크를 미세하게 제어함에 따라 고정익 드론(100)의 정밀 이착륙을 유도시킬 수 있다.The controller 140 controls the support unit 170 according to the flight mode of the fixed wing drone 110. In this case, the deployment angle of the support 171 may be variably adjusted according to the weight of the body 110 or the material of the ground surface. In addition, the auxiliary wing 121 or the additional auxiliary wing 122 of the wing 120 can be controlled simultaneously or separately to minimize the impact during landing. In this case, the subsidiary wing 122 may be driven to finely control the anti-torque, thereby inducing precise takeoff and landing of the fixed wing drone 100.
이상에서 본 발명은 도면을 참조하면서 기술되는 바람직한 실시예를 중심으로 설명되었지만 이에 한정되는 것은 아니다. 따라서 본 발명은 기재된 실시예로부터 도출 가능한 자명한 변형예를 포괄하도록 의도된 특허청구범위의 기재에 의해 해석되어져야 한다.The present invention has been described above with reference to the preferred embodiments described with reference to the drawings, but is not limited thereto. Accordingly, the invention should be construed by the description of the claims, which are intended to cover obvious variations that can be derived from the described embodiments.

Claims (5)

  1. 선단으로부터 후단으로 길이 방향으로 형성되는 몸체부;Body portion formed in the longitudinal direction from the front end to the rear end;
    상기 몸체부의 양측에 고정익 형태로 형성되는 날개부;Wing parts formed in a fixed blade shape on both sides of the body portion;
    상기 몸체부의 후단에 형성되어 피치가 가변되는 복수의 블레이드로 구성되는 프로펠러를 회전시키는 회전부; 및A rotation part formed at a rear end of the body part to rotate a propeller composed of a plurality of blades having a variable pitch; And
    이착륙모드인 경우 상기 복수의 블레이드를 제1 피치로 가변하여 회전시켜 상기 몸체부의 후단으로부터 선단으로 추진력을 발생시켜 상기 몸체부를 지면으로부터 수직방향으로 이동시키고, 비행모드인 경우 상기 복수의 블레이드를 제2 피치로 가변하여 회전시켜 상기 몸체부의 선단으로부터 후단으로 추진력을 발생시켜 상기 몸체부를 지면으로부터 수평방향으로 이동시키는 제어부를 포함하는 가변 피치 프로펠러를 이용한 고정익 드론.In the take-off and landing mode, the plurality of blades are variably rotated to a first pitch to generate propulsion force from the rear end of the body portion to the tip, thereby moving the body portion from the ground in the vertical direction, and in the flight mode, the plurality of blades are moved to the second direction. A fixed-wing drone using a variable pitch propeller comprising a control unit for varying the pitch to rotate to generate a driving force from the front end to the rear end to move the body in the horizontal direction from the ground.
  2. 제1항에 있어서,The method of claim 1,
    상기 회전부는,The rotating part,
    단면이 에어포일 형상으로 형성된 한 쌍의 블레이드가 중앙에 허브를 통해 일직선 상으로 연결되는 프로펠러;A propeller in which a pair of blades formed in an airfoil shape in cross section are connected in a straight line through a hub at a center thereof;
    상기 허브와 구동축에 의해 연결되어 상기 한 쌍의 블레이드를 회전시키는 제1 구동부;A first driver connected to the hub and a drive shaft to rotate the pair of blades;
    상기 구동축을 따라 이동하며 복수의 제1 링크를 통해 상기 한 쌍의 블레이드와 연결되는 플레이트; 및A plate moving along the drive shaft and connected to the pair of blades through a plurality of first links; And
    상기 플레이트와 복수의 제2 링크를 통해 연결되어, 상기 한 쌍의 블레이드의 피치를 가변시키거나, 상기 한 쌍의 블레이드의 회전면의 기울기를 가변시키는 제2 구동부를 포함하는 가변 피치 프로펠러를 이용한 고정익 드론.Fixed wing drone using a variable pitch propeller connected to the plate through a plurality of second links, the second drive unit for varying the pitch of the pair of blades, or the inclination of the rotational surface of the pair of blades .
  3. 제1항에 있어서,The method of claim 1,
    상기 몸체부의 위치, 고도, 속도, 가속도, 기울기 중 적어도 하나 이상을 감지하는 감지부를 더 포함하고,Further comprising a sensing unit for sensing at least one or more of the position, altitude, speed, acceleration, tilt of the body portion,
    상기 날개부는,The wing portion,
    상기 날개부의 일측에 기 설정된 각도로 회동하도록 형성되어 상기 회전부에 따른 반작용 토크를 상쇄시키는 회전보조날개; 및A rotating auxiliary blade which is formed to rotate at a predetermined angle on one side of the wing to offset the reaction torque according to the rotating part; And
    상기 날개부의 타측에 기 설정된 각도로 회동하도록 형성되어 비행을 보조하는 비행보조날개를 포함하고,It is formed to rotate at a predetermined angle on the other side of the wing comprises a flight auxiliary wing to assist the flight,
    상기 제어부는,The control unit,
    상기 감지부를 통해 상기 몸체부의 동작모드에 따라 상기 몸체부의 선단이 지면을 향하여 수직방향으로 비행하거나, 상기 몸체부가 지면과 수평방향으로 비행시 자세를 제어하도록 상기 회전보조날개 또는 상기 비행보조날개를 제어하는 가변 피치 프로펠러를 이용한 고정익 드론.According to the operation mode of the body portion through the sensing unit to control the rotational auxiliary wing or the flight auxiliary wing so that the front end of the body portion to fly in the vertical direction toward the ground, or the body portion to control the attitude when flying in the horizontal direction with the ground. Fixed-wing drones with variable pitch propellers.
  4. 제1항에 있어서,The method of claim 1,
    상기 몸체부의 선단에 형성되어 영상을 획득하는 영상획득부를 더 포함하고,It is formed on the front end of the body portion further comprises an image acquisition unit for obtaining an image,
    상기 제어부는,The control unit,
    상기 몸체부가 수평비행 중 수직비행으로 전환하면 상기 영상획득부를 구동시키는 가변 피치 프로펠러를 이용한 고정익 드론.Fixed wing drone using a variable pitch propeller to drive the image acquisition unit when the body portion is switched to vertical flight of the horizontal flight.
  5. 제1항에 있어서,The method of claim 1,
    상기 몸체부의 위치, 고도, 속도, 가속도, 기울기 중 적어도 하나 이상을 감지하는 감지부를 더 포함하고,Further comprising a sensing unit for sensing at least one or more of the position, altitude, speed, acceleration, tilt of the body portion,
    상기 제어부는,The control unit,
    상기 몸체부가 제1 위치에서 수직비행 중 배터리의 잔량이 기 설정치 미만인 경우 충전이 가능한 제2 위치로 복귀하고, 충전이 완료되면 상기 제1 위치로 복귀하여 수직비행을 하도록 제어하는 가변 피치 프로펠러를 이용한 고정익 드론.Using a variable pitch propeller to control the body to return to the second position that can be charged when the remaining capacity of the battery during the vertical flight in the first position is less than the preset value, and to return to the first position to perform vertical flight when the charging is completed Fixed wing drones.
PCT/KR2017/005533 2017-04-18 2017-05-26 Fixed-wing drone using variable pitch propeller WO2018194214A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170049648A KR20180116849A (en) 2017-04-18 2017-04-18 Fixed wing drone using variable pitch propeller
KR10-2017-0049648 2017-04-18

Publications (1)

Publication Number Publication Date
WO2018194214A1 true WO2018194214A1 (en) 2018-10-25

Family

ID=63857041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005533 WO2018194214A1 (en) 2017-04-18 2017-05-26 Fixed-wing drone using variable pitch propeller

Country Status (2)

Country Link
KR (1) KR20180116849A (en)
WO (1) WO2018194214A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114206723A (en) * 2019-08-02 2022-03-18 盐城辉空科技有限公司 Flying object and flying method for flying object

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113056422A (en) * 2018-11-07 2021-06-29 昌仁航空株式会社 Vertical take-off and landing aircraft using hybrid electric propulsion system and control method thereof
KR20210115881A (en) * 2020-03-16 2021-09-27 한화에어로스페이스 주식회사 Blade-stator system and vertical take-off and landing aerial apparatus including the same
KR20220108309A (en) 2021-01-27 2022-08-03 김재현 A glider drone capable of vertical take-off and landing with a variable main wing
CN113212745A (en) * 2021-04-26 2021-08-06 南方科技大学 Rotor unmanned aerial vehicle and endurance prolonging method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289128A (en) * 2004-03-31 2005-10-20 Nagasaki Prefecture Pitch angle variable mechanism for double inversion wing, and flying device having double inversion wing equipped with the same
KR20070045216A (en) * 2004-07-02 2007-05-02 시미콘 에이에스 Hybrid aircraft
KR101287624B1 (en) * 2013-02-25 2013-07-23 주식회사 네스앤텍 Unmanned aerial vehicle for easily landing
KR20160126650A (en) * 2015-04-24 2016-11-02 주식회사 에스원 System and method for non-contact charging of unmanned air vehicle
US20170057632A1 (en) * 2015-08-27 2017-03-02 Martin Uav, Llc Vertical take off aircraft

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289128A (en) * 2004-03-31 2005-10-20 Nagasaki Prefecture Pitch angle variable mechanism for double inversion wing, and flying device having double inversion wing equipped with the same
KR20070045216A (en) * 2004-07-02 2007-05-02 시미콘 에이에스 Hybrid aircraft
KR101287624B1 (en) * 2013-02-25 2013-07-23 주식회사 네스앤텍 Unmanned aerial vehicle for easily landing
KR20160126650A (en) * 2015-04-24 2016-11-02 주식회사 에스원 System and method for non-contact charging of unmanned air vehicle
US20170057632A1 (en) * 2015-08-27 2017-03-02 Martin Uav, Llc Vertical take off aircraft

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114206723A (en) * 2019-08-02 2022-03-18 盐城辉空科技有限公司 Flying object and flying method for flying object

Also Published As

Publication number Publication date
KR20180116849A (en) 2018-10-26

Similar Documents

Publication Publication Date Title
WO2018194214A1 (en) Fixed-wing drone using variable pitch propeller
EP3621877B1 (en) Modular aircraft with vertical takeoff and landing capability
US10259577B2 (en) Vertical takeoff and landing (VTOL) air vehicle
EP3140188B1 (en) Vertical takeoff and landing (vtol) unmanned aerial vehicle (uav)
US8146854B2 (en) Dual rotor vertical takeoff and landing rotorcraft
WO2014129761A1 (en) Easy landing drone
WO2014081082A1 (en) Multi-stage tilting and multi-rotor flying car
US20180281941A1 (en) Unmanned Aerial Vehicle With Monolithic Wing and Twin-Rotor Propulsion/Lift Modules
EP3087003B1 (en) An unmanned aerial vehicle
WO2011081683A1 (en) Lightweight vertical take-off and landing aircraft and flight control paradigm using thrust differentials
CN110466752B (en) Control method of tilt rotor unmanned aerial vehicle and tilt rotor unmanned aerial vehicle
US20190225332A1 (en) Aeronautical Apparatus
CN105947192A (en) Tilting double-duct unmanned aerial vehicle
CN210391552U (en) Vertical take-off and landing fixed wing unmanned aerial vehicle
EP4098567B1 (en) External power assist systems for evtol aircraft
KR102375492B1 (en) Module Type Tail-Sitter Vtol UAV Drone
CN112722264B (en) Tail sitting type vertical take-off and landing unmanned aerial vehicle
EP3838751B1 (en) Convertiplane
CN210122194U (en) Vertical take-off and landing fixed wing aircraft
CN108001678B (en) A variable rotor connecting device for unmanned aerial vehicle
CN207208450U (en) Course of new aircraft and aerocraft system
CN110203387A (en) VTOL Fixed Wing AirVehicle
KR20160067010A (en) Fixed Rotor type dron
KR102328559B1 (en) Transformable drone and operation method therefor
KR102241710B1 (en) Module type Unmanned Aerial Vehicle Capable of High Speed Movement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.02.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17905957

Country of ref document: EP

Kind code of ref document: A1