WO2020145096A1 - 濾過フィルタ - Google Patents

濾過フィルタ Download PDF

Info

Publication number
WO2020145096A1
WO2020145096A1 PCT/JP2019/050159 JP2019050159W WO2020145096A1 WO 2020145096 A1 WO2020145096 A1 WO 2020145096A1 JP 2019050159 W JP2019050159 W JP 2019050159W WO 2020145096 A1 WO2020145096 A1 WO 2020145096A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
surface layer
filtration filter
pdni
intermediate layer
Prior art date
Application number
PCT/JP2019/050159
Other languages
English (en)
French (fr)
Inventor
萬壽 優
近藤 孝志
秀輔 横田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201980086078.0A priority Critical patent/CN113301979B/zh
Priority to EP19908550.7A priority patent/EP3845288A4/en
Priority to JP2020565677A priority patent/JP7111184B2/ja
Publication of WO2020145096A1 publication Critical patent/WO2020145096A1/ja
Priority to US17/323,125 priority patent/US11986757B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2027Metallic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/14Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus with filters, sieves or membranes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/02Separating microorganisms from the culture medium; Concentration of biomass
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/12Purification
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/18Acidic compositions for etching copper or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/44Compositions for etching metallic material from a metallic material substrate of different composition
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/20Separation of the formed objects from the electrodes with no destruction of said electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0471Surface coating material
    • B01D2239/0478Surface coating material on a layer of the filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/08Perforated or foraminous objects, e.g. sieves
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/567Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of platinum group metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/022Electroplating of selected surface areas using masking means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer

Definitions

  • the present invention relates to a filtration filter.
  • a filter for capturing a biological substance described in Patent Document 1 As a filtration filter, for example, a filter for capturing a biological substance described in Patent Document 1 is known.
  • the surface of a filter for capturing a biological substance made of a metal other than gold is plated with gold, and the gold plating is electroless gold plating.
  • the present invention aims to provide a filtration filter capable of improving corrosion resistance.
  • the filtration filter of one embodiment of the present invention is Surface, A base material formed on the inner side of the surface layer, An intermediate layer formed between the surface layer and the base material, Equipped with The surface layer contains Pd as a main component,
  • the base material is mainly composed of PdNi alloy,
  • the intermediate layer is mainly composed of a PdNi alloy in which the composition ratio of Pd and Ni changes from the surface layer side toward the base material side.
  • FIG. 1 It is a partial schematic perspective view of an example of the filtration filter of Embodiment 1 according to the present invention. It is the schematic which looked at some filtration filters of FIG. 1 from the thickness direction. It is a schematic diagram which shows a part of example of a structure of the filtration filter of Embodiment 1 which concerns on this invention. It is a figure which shows an example of the manufacturing process of the filtration filter of Embodiment 1 which concerns on this invention. It is a figure which shows an example of the manufacturing process of the filtration filter of Embodiment 1 which concerns on this invention. It is a figure which shows an example of the manufacturing process of the filtration filter of Embodiment 1 which concerns on this invention. It is a figure which shows an example of the manufacturing process of the filtration filter of Embodiment 1 which concerns on this invention.
  • FIG. 5 is a table showing the results of component analysis of the surface layer of the filter base body of Example 2.
  • 7 is a diagram showing the analysis results of Ni elution concentration in Example 3.
  • FIG. 5 is a diagram showing the analysis results of Pd elution concentration in Example 3.
  • FIG. 5 is a diagram showing the analysis results of Ni elution concentration in Example 4.
  • FIG. 5 is a diagram showing the analysis results of Pd elution concentration in Example 4.
  • FIG. 10 is a diagram showing an example of the relationship between the Pd concentration ratio of the plating film and the Pd concentration ratio in Example 5.
  • FIG. 9 is a diagram showing analysis results of Ni components in the surface layer of the PdNi plated film at each composition ratio in Example 5.
  • FIG. 9 is a diagram showing analysis results of Ni components in the surface layer of the PdNi plated film at each composition ratio in Example 5.
  • FIG. 8 is a diagram showing analysis results of Ni elution concentration in Example 6.
  • FIG. 8 is a diagram showing the results of analysis of the Ni component on the surface layer of the filtration filter in Example 7.
  • FIG. 10 is a diagram showing EDX mapping of sample A1 in Example 8.
  • FIG. 11 is a diagram showing EDX mapping of sample A2 in Example 8.
  • 7 is a schematic diagram showing a part of an example of the configuration of a filtration filter of Comparative Example 1.
  • FIG. It is a schematic partial cross section of an example of the mesh of Embodiment 2 according to the present invention. It is a figure which shows an example of the manufacturing process of the mesh of Embodiment 2 which concerns on this invention.
  • a filtration filter for capturing a biological substance is known (see, for example, Patent Document 1).
  • the surface of a base material formed of a base metal is coated with a noble metal by plating or the like, and a surface layer of the noble metal is formed on the surface of the base metal of the base metal. This suppresses dissolution of the base material when the filtration filter comes into contact with an electrolyte solution such as physiological saline.
  • defects may occur in the surface layer coating the base material.
  • the coating material does not adhere to the location and defects that may expose the base material surface may occur. is there.
  • the electrolyte solution comes into contact with the base material through defects on the surface layer, and the base material is eluted from the defects.
  • the base material when the base material is coated with a noble metal, it is formed so that the surface layer of the noble metal is laminated on the surface of the base metal of the base metal. Therefore, a continuous interface is formed between the surface layer of the noble metal and the base material of the base metal.
  • the present inventors when the electrolyte solution flows into the inside of the filtration filter through the defects of the surface layer, a local battery is formed at the interface between the surface layer and the base material by contacting the surface layer and the base material via the electrolyte solution. , And newly found the problem that the base metal is corroded.
  • a filtration filter in which a base metal of a base metal is coated with a noble metal is brought into contact with an electrolyte solution
  • the electrolyte solution flows into the filtration filter from a defect in the surface layer, and the electrolyte solution is added to the interface between the surface layer and the base material. May come into contact.
  • a local battery is formed by the surface layer of the noble metal, the base material of the base metal, and the electrolyte solution in contact with the interface between the surface layer and the base material.
  • an anode reaction occurs on the surface of the base metal base material, and the base material is corroded.
  • the present inventors have found that an intermediate layer containing a PdNi alloy as a main component in which the component ratio of Pd and Ni changes between a surface layer containing Pd as a main component and a base material containing a PdNi alloy as a main component.
  • the inventors of the present invention have found a filtration filter provided with, and have reached the following invention.
  • the filtration filter of one embodiment of the present invention is Surface, A base material formed on the inner side of the surface layer, An intermediate layer formed between the surface layer and the base material, Equipped with The surface layer contains Pd as a main component,
  • the base material is mainly composed of PdNi alloy,
  • the intermediate layer is mainly composed of a PdNi alloy in which the composition ratio of Pd and Ni changes from the surface layer side toward the base material side.
  • the ratio of Ni to Pd in the intermediate layer may increase in the depth direction of the filtration filter.
  • the thickness of the intermediate layer may be larger than the thickness of the surface layer.
  • the intermediate layer may be formed in a region where the depth from the surface of the filtration filter is more than 10 nm and 35 nm or less.
  • the component ratio of Pd and Ni in the base material is 80:20,
  • the component ratio of Pd and Ni in the intermediate layer may be changed in the range of 100:0 or more and 80:20 or less.
  • the component ratio of Pd and Ni in the base material is 75:25 or more and 85:15 or less, The component ratio of Pd and Ni in the intermediate layer may be changed in the range of 100:0 or more and 75:25 or less.
  • FIG. 1 is a schematic perspective view of a part of an example of the filtration filter 10 according to the first embodiment of the present invention.
  • FIG. 2 is a schematic view of a part of the filtration filter 10 of FIG. 1 viewed from the thickness direction.
  • the X, Y, and Z directions in the figure respectively indicate the vertical direction, the horizontal direction, and the thickness direction of the filtration filter 10.
  • 1 and 2 show a part of the filtration filter 10 in an enlarged manner.
  • the filtration filter 10 includes a filter base portion 12 having a plurality of through holes 11.
  • the filtration filter 10 is a plate-like structure having a first main surface PS1 on which a filtration target contained in a liquid is captured and a second main surface PS2 facing the first main surface PS1.
  • the “object to be filtered” means an object to be filtered out of the objects contained in the liquid.
  • the object to be filtered may be a biological substance contained in the liquid.
  • the "biological substance” means a substance derived from an organism such as a cell (eukaryote), a bacterium (eubacteria), a virus and the like.
  • cells include induced pluripotent stem cells (iPS cells), ES cells, stem cells, mesenchymal stem cells, mononuclear cells, single cells, cell clusters, floating cells, adhesive cells, nerves.
  • Bacteria include, for example, Escherichia coli and Mycobacterium tuberculosis.
  • the “liquid” is, for example, an electrolyte solution, a cell suspension, a cell culture medium, or the like.
  • the plurality of through holes 11 are periodically arranged in the filter base portion 12 on the first main surface PS1 and the second main surface PS2 of the filtration filter 10. Specifically, the plurality of through holes 11 are provided in the filter base portion 12 in a matrix at equal intervals.
  • the through hole 11 has a square shape when viewed from the first main surface PS1 side of the filtration filter 10, that is, the Z direction.
  • the shape of the through-hole 11 is not limited to a square when viewed from the thickness direction (Z direction) of the filtration filter 10, and may be a shape such as a rectangle, a polygon, a circle, or an ellipse.
  • the shape (cross-sectional shape) of the through hole 11 projected on the plane perpendicular to the first main surface PS1 of the filtration filter 10 is a rectangle.
  • the length of one side of the through hole 11 in the vertical direction (X direction) and the horizontal direction (of the Y direction) of the filtration filter 10 is the depth of the through hole 11 in the thickness direction (Z direction) of the filtration filter 10. Longer than that.
  • the cross-sectional shape of the through hole 11 is not limited to a rectangular shape, and may be, for example, a tapered shape such as a parallelogram or a trapezoid, a symmetric shape, or an asymmetric shape. ..
  • the plurality of through holes 11 are arranged in two array directions parallel to each side of the square when viewed from the first main surface PS1 side (Z direction) of the filtration filter 10, that is, in the X direction in FIG. They are provided at equal intervals in the Y direction.
  • the aperture ratio can be increased, and the liquid passage resistance to the filtration filter 10 can be reduced. With such a configuration, it is possible to shorten the filtration time and reduce the stress on the filtration target.
  • the array of the plurality of through holes 11 is not limited to the square lattice array, and may be, for example, a quasi-periodic array or a periodic array.
  • the periodic array if it is a square array, it may be a rectangular array in which the intervals in the two array directions are not equal, or a triangular lattice array or a regular triangular lattice array.
  • the through holes 11 may be provided in plural in the filter base portion 12, and the arrangement is not limited.
  • Intervals b between the plurality of through holes 11 are appropriately designed according to the type (size, morphology, property, elasticity) or amount of cells to be filtered.
  • the interval b between the through holes 11 refers to the through holes 11 as seen from the first main surface PS1 side of the filtration filter 10 as shown in FIG. Means the distance from the center of.
  • the spacing b between the through holes 11 is, for example, more than 1 time and not more than 10 times the one side d of the through holes 11, and preferably not more than 3 times the one side d of the through holes 11.
  • the aperture ratio of the filtration filter 10 is 10% or more, and preferably the aperture ratio is 25% or more.
  • the aperture ratio is calculated by (area occupied by through hole 11)/(projected area of first main surface PS1 assuming that through hole 11 is not vacant).
  • the thickness of the filtration filter 10 is preferably more than 0.1 times the size of the through hole 11 (one side d) and 100 times or less. More preferably, the thickness of filtration filter 10 is more than 0.5 times and not more than 10 times the size (one side d) of through hole 11. With such a configuration, the resistance of the filtration filter 10 to the liquid can be reduced, and the filtration time can be shortened. As a result, stress on the object to be filtered can be reduced.
  • the first main surface PS1 in contact with the liquid containing the object to be filtered has a small surface roughness.
  • the surface roughness means the average value of the difference between the maximum value and the minimum value measured by the stylus profilometer at any 5 points on the first main surface PS1.
  • the surface roughness is preferably smaller than the size of the object to be filtered, and more preferably smaller than half the size of the object to be filtered.
  • the openings of the plurality of through holes 11 on the first main surface PS1 of the filtration filter 10 are formed on the same plane (XY plane).
  • the filter base portion 12 that is a portion where the through hole 11 is not formed is connected and integrally formed. With such a configuration, it is possible to reduce the adhesion of the filtration target to the surface (first main surface PS1) of the filtration filter 10 and reduce the resistance of the liquid.
  • the through hole 11 communicates with a wall surface in which an opening on the first main surface PS1 side and an opening on the second main surface PS2 side are continuous. Specifically, the through hole 11 is provided so that the opening on the first main surface PS1 side can be projected onto the opening on the second main surface PS2 side. That is, when the filtration filter 10 is viewed from the first main surface PS1 side, the through hole 11 is provided such that the opening on the first main surface PS1 side overlaps with the opening on the second main surface PS2 side. In the first embodiment, through hole 11 is provided such that its inner wall is perpendicular to first main surface PS1 and second main surface PS2.
  • FIG. 3 is a schematic diagram showing a part of an example of the configuration of the filtration filter 10 according to the first embodiment of the present invention.
  • FIG. 3 illustrates a part of an example of the configuration of the filter base portion 12.
  • the filter substrate 12 includes a surface layer 21, a base material 22 formed on the inner side of the surface layer 21, and an intermediate layer 23 formed between the surface layer 21 and the base material 22.
  • Prepare The surface layer 21 contains Pd as a main component.
  • the base material 22 has a PdNi alloy as a main component.
  • the intermediate layer 23 is mainly composed of a PdNi alloy whose component ratio of Pd and Ni changes from the surface layer 21 side toward the base material 22 side.
  • “In the surface layer 21, “having Pd as a main component” means that the ratio of the number of Pd atoms in the surface layer 21 is more than 90%.
  • “having PdNi alloy as a main component” means that the ratio of the number of Pd atoms in the base material 22 is 70% or more.
  • “mainly containing PdNi alloy” means that the ratio of the number of Pd atoms in the intermediate layer 23 is 50% or more.
  • the “PdNi alloy in which the component ratio of Pd and Ni changes” means that the Pd component amount and the Ni component amount change stepwise or continuously toward the depth direction D1 of the filtration filter 10.
  • SIMS Single Ion Mass Spectrometry
  • the component ratio of Pd and Ni can be confirmed by performing component analysis from the surface of the filtration filter 10 in the depth direction D1 at a predetermined pitch using SIMS.
  • the surface layer 21 may include components other than Pd.
  • the surface layer 21 may include, for example, Au, Pt, Fe, Cu, Ti, C, and oxides thereof.
  • the base material 22 and the intermediate layer 23 may include a component other than PdNi.
  • the base material 22 and the intermediate layer 23 may include, for example, Au, Pt, Fe, Cu, Ti, Co, Mo, C, and oxides thereof.
  • the surface layer 21 is a layer on the surface of the filtration filter 10.
  • the surface layer 21 covers the base material 22 via the intermediate layer 23.
  • the surface layer 21 contains Pd as a main component and does not contain Ni. That is, in the surface layer 21, the component ratio of Pd and Ni is 100:0.
  • the base material 22 is a main material of the filtration filter 10, and is covered with the surface layer 21 via the intermediate layer 23.
  • the base material 22 is mainly composed of a PdNi alloy having a constant component ratio of Pd and Ni.
  • the base material 22 is thicker than the surface layer 21 and the intermediate layer 23.
  • the component ratio of Pd and Ni in the base material 22 is 75:25 or more and 85:15 or less. In the first embodiment, the component ratio of Pd and Ni of the PdNi alloy forming the base material 22 is 80:20.
  • the intermediate layer 23 is a layer formed between the surface layer 21 and the base material 22.
  • the intermediate layer 23 is mainly composed of a PdNi alloy in which the composition ratio of Pd and Ni changes.
  • the component ratio of Pd and Ni changes in the depth direction D1 of the filtration filter 10.
  • the ratio of Ni to Pd of the PdNi alloy increases from the surface layer 21 toward the base material 22.
  • the component ratio of Pd and Ni in the intermediate layer 23 changes in the range of 100:0 or more and 75:25 or less.
  • the component ratio of Pd and Ni forming the intermediate layer 23 changes from 100:0 to 80:20 in the depth direction D1 of the filtration filter 10.
  • Ni is dispersed in the intermediate layer 23. For this reason, in the intermediate layer 23, the interface between Pd and Ni is not continuously connected and formed, but is formed in a dispersed manner.
  • the thickness of the intermediate layer 23 is larger than the thickness of the surface layer 21. Thereby, the interface between Pd and Ni is easily dispersed in the thickness direction (Z direction) of the filtration filter 10. As a result, corrosion at the interface between Pd and Ni can be suppressed.
  • FIGS. 4A to 4G show an example of a manufacturing process of the filtration filter 10 according to the first embodiment of the present invention.
  • a substrate 31 such as silicon is prepared.
  • the substrate 31 may be surface-cleaned, for example.
  • a Cu film 32 having a thickness of 500 nm is formed on the substrate 31.
  • the Cu film 32 is formed by sputtering with a sputtering film forming apparatus.
  • the Cu film 32 may be formed by vapor deposition with a vapor deposition device.
  • a Ti film having a thickness of 50 nm may be formed between the substrate 31 and the Cu film 32.
  • a resist is applied on the Cu film 32 and dried to form a resist film 33 having a thickness of 2 ⁇ m.
  • a photosensitive positive liquid resist (Pfi-3A manufactured by Sumitomo Chemical Co., Ltd.) is applied onto the Cu film 32 using a spin coater.
  • the conditions of the spin coater are, for example, 1140 rpm and 30 sec.
  • the resist is heated and dried using a hot plate to form a resist film 33 having a thickness of 2.0 ⁇ m.
  • the conditions of the hot plate are, for example, a heating temperature of 90° C. and a heating time of 90 seconds.
  • the resist film 33 is exposed and developed to remove the resist film 33 at a portion corresponding to the filter base portion 12.
  • an i-line stepper Pfi-37A manufactured by Canon
  • Development is carried out using a paddle developing device.
  • TMAH Tetramethylammonium hydroxide
  • electrolytic plating is performed by performing a PdNi plating bath using an electrolytic plating apparatus.
  • the PdNi plating film 34 is formed on the portion where the resist film 33 is removed.
  • the conditions of electrolytic plating are, for example, a current density of 1 A/dm, an electric quantity of 4 AM, a plating solution pH of 7.5, and a plating thickness of 1.6 ⁇ m.
  • the resist film 33 is stripped by a stripping solution NMP (N-methyl-2-pyrrolidone) using a resist stripping device capable of high-pressure spray processing. Then, the PdNi plating film 34 is washed with IPA (Isopropoxy alcohol) and washed with water, and dried.
  • NMP N-methyl-2-pyrrolidone
  • the Cu film 32 is removed by etching for 48 hours.
  • the PdNi plating film 34 is peeled off from the substrate 31 and Ni on the surface layer of the PdNi plating film 34 is dissolved, whereby the filter base portion 12 is manufactured.
  • Ni By dipping the PdNi plated film 34 in acetic acid-hydrogen peroxide mixture, Ni can be gradually dissolved from the surface of the PdNi plated film 34 toward the inside. In the vicinity of the surface of the PdNi plated film 34, Ni of the PdNi plated film 34 is likely to come into contact with acetic acid/hydrogen peroxide, so that Ni is easily dissolved. On the other hand, as the inside of the PdNi plated film 34 is approached, the Ni of the PdNi plated film 34 is less likely to come into contact with acetic acid-hydrogen peroxide and the Ni is less likely to be dissolved. That is, the amount of Ni dissolved gradually decreases from the surface of the PdNi plated film 34 toward the inside.
  • Ni is dissolved by acetic acid/hydrogen peroxide and the surface layer 21 containing Pd as a main component is formed.
  • the amount of Ni dissolved by acetic acid-hydrogen peroxide gradually decreases from the surface layer 21 of the filter substrate 12 toward the depth direction D1, and the intermediate ratio is mainly PdNi alloy in which the component ratio of Pd and Ni changes.
  • Layer 23 is formed. Then, the PdNi plating film 34 in which Ni was not dissolved by acetic acid-hydrogen peroxide becomes the base material 22.
  • the surface layer 21 containing Pd as a main component, the base material 22 containing a PdNi alloy as a main component, and the base layer 21 and the base material 22 are formed, and the component ratio of Pd and Ni changes.
  • the filtration filter 10 including the intermediate layer 23 containing a PdNi alloy as a main component can be manufactured.
  • Example 1 will be described.
  • a part of the filter base portion 12 manufactured by the above-described manufacturing method was used as a measurement sample, and the component ratios of Pd and Ni with respect to the depth direction D1 of the filter base portion 12 were analyzed.
  • the filter substrate portion 12 was manufactured by immersing the PdNi plating film 34 having a Pd/Ni component ratio of 80:20 in acetic acid-hydrogen peroxide mixture.
  • SIMS Single Ion Mass Spectrometry: two-dimensional ion mass spectrometry
  • Measuring device PHI ADEPT1010 (quadrupole secondary ion mass spectrometer)
  • ULVAC-PHI CORPORATION primary ion species Cs + Primary acceleration voltage: 5.0kV Detection area: 75 ⁇ m ⁇ 75 ⁇ m
  • Analytical element Pd, Ni
  • Example 1 the surface having a depth of 0 nm is defined as the surface of the filter base portion 12.
  • FIG. 5 is analysis data showing the component ratios of Pd and Ni with respect to the depth direction D1 of the filter base portion 12 of Example 1.
  • the surface layer 21 is formed in a region having a depth of 0 nm or more and 10 nm or less from the surface of the filter base portion 12. That is, the thickness of the surface layer 21 is 10 nm.
  • the Pd component is 100% and the Ni component is 0%. That is, in the surface layer 21, the component ratio of Pd and Ni is 100:0.
  • the intermediate layer 23 is formed in a region where the depth from the surface of the filter base portion 12 is more than 10 nm and 30 nm or less. More preferably, the intermediate layer 23 is formed in a region having a depth of 20 nm or more and 30 nm or less from the surface of the filtration filter 10. That is, the thickness of the intermediate layer 23 is 10 nm or more and 20 nm or less.
  • the Pd component is reduced from 100% to 80%, and the Ni component is increased from 0% to 20%. That is, in the intermediate layer 23, the component ratio of Pd and Ni changes in the range of 100:0 to 80:20.
  • the intermediate layer 23 has been described as being formed in a region having a depth from the surface of the filter base portion 12 of more than 10 nm and 30 nm or less, but the region where the intermediate layer 23 is formed is not formed. It is not limited to Example 1.
  • the intermediate layer 23 may be formed at least in a region having a depth of 20 nm or more and 30 nm or less from the surface of the filtration filter 10.
  • the intermediate layer 23 may be formed in a region where the depth from the surface of the filter base portion 12 is greater than 10 nm and 40 nm or less.
  • the intermediate layer 23 may be formed in a region having a depth from the surface of the filter base portion 12 of more than 10 nm and 35 nm or less.
  • the ratio of Ni to Pd of the PdNi alloy in the intermediate layer 23 increases in the depth direction D1 of the filtration filter 10. That is, the ratio of Ni to Pd of the PdNi alloy in the intermediate layer 23 increases from the surface layer 21 side toward the base material 22 side.
  • the base material 22 is formed in a region larger than 30 nm in depth from the surface of the filter base portion 12.
  • the Pd component is 80% and the Ni component is 20%.
  • the component ratio of Pd and Ni is constant at 80:20.
  • Example 1 the component analysis of the surface of the filter base portion 12 was performed.
  • the analysis was performed by XPS (X-ray Photoelectron Spectroscopy).
  • XPS X-ray Photoelectron Spectroscopy
  • FIG. 6 is a table showing the results of component analysis on the surface of the filter substrate 12 of Example 1. As shown in FIG. 6, in Example 1, the Ni component was 7% and the Pd component was 93% on the surface of the PdNi plating film 34 before being immersed in the acetic acid-hydrogen peroxide mixture.
  • Example 1 when the PdNi plating film 34 is immersed in acetic acid/hydrogen peroxide to form the filter base portion 12, the Ni component becomes 0% and the Pd component becomes 100% on the surface of the filter base portion 12. There is.
  • Example 1 As can be seen from the analysis result of Example 1, by immersing the PdNi plated film 34 in acetic acid/hydrogen peroxide, Ni on the surface layer of the PdNi plated film 34 can be removed. As a result, the filter base portion 12 having the surface layer 21 containing Pd as a main component could be manufactured.
  • Example 2 As Example 2, the component analysis of the filter substrate portion 12 was performed under the condition that the component ratio of Pd and Ni was different from that of Example 1. In Example 2, the filter substrate portion 12 was produced by immersing the PdNi plating film 34 having a Pd:Ni component ratio of 50:50 in acetic acid-hydrogen peroxide mixture. The analysis method and analysis conditions of Example 2 are the same as those of Example 1.
  • FIG. 7 is a table showing the results of component analysis of the surface of the filter substrate 12 of Example 2. As shown in FIG. 7, in Example 2, the Ni component was 11% and the Pd component was 89% on the surface of the PdNi plating film 34 before being immersed in acetic acid-hydrogen peroxide mixture.
  • Example 2 when the PdNi plating film 34 is immersed in acetic acid-hydrogen peroxide mixture to form the filter base portion 12, the Ni component becomes 0% and the Pd component becomes 100% on the surface of the filter base portion 12. ing.
  • Example 2 Also in the analysis results of Example 2, by dipping the PdNi plating film 34 in acetic acid-hydrogen peroxide mixture, Ni on the surface layer of the PdNi plating film 34 is removed, and the filter substrate portion 12 having the surface layer 21 containing Pd as a main component is obtained.
  • Ni on the surface layer of the PdNi plating film 34 is removed, and the filter substrate portion 12 having the surface layer 21 containing Pd as a main component is obtained.
  • Example 3 Example 3 will be described.
  • the filtration filter 10 was manufactured by changing the pH value of the plating solution for the PdNi plating bath in the manufacturing method described above.
  • the pH values of the plating solutions were 7.2, 7.5 and 7.9.
  • the elution test was performed on the manufactured filtration filter 10.
  • a portion having a surface area of 1 cm 2 of the filtration filter 10 was immersed in 10 ml of PBS and kept at 37° C. and stored for 1 week in the incubator.
  • the elution concentrations of Pd and Ni were analyzed using ICP-MS (manufactured by Agilent Technologies).
  • the lower limit of detection of Pd and Ni of ICP-MS is 0.005 ⁇ g/ml.
  • FIG. 8 is a diagram showing the analysis result of the elution concentration of Ni in Example 3.
  • 9 is a figure which shows the analysis result of the elution density
  • FIG. 8 and FIG. 9 the elution concentration of Pd and the elution concentration of Ni were lower than the lower detection limits of Pd and Ni of ICP-MS. From this, it can be seen that Pd and Ni were not eluted in Example 3.
  • the pH value of the plating solution is preferably 7.0 or more and 8.5 or less. More preferably, the plating solution has a pH value of 7.2 or more and 7.9 or less.
  • Example 4 Example 4 will be described.
  • the filtration filter 10 was manufactured by changing the current density when performing the PdNi plating bath in the manufacturing method described above. The current density was 2.9 [A/dm 2 ] or more and 14.5 [A/dm 2 ] or less.
  • an elution test was performed on the manufactured filtration filter 10. In the elution test, a portion having a surface area of 1 cm 2 of the filtration filter 10 was immersed in 10 ml of PBS and kept at 37° C. and stored for 1 week in the incubator. Then, as in Example 3, the elution concentrations of Pd and Ni were analyzed using ICP-MS (manufactured by Agilent Technologies).
  • FIG. 10 is a diagram showing the analysis results of the elution concentration of Ni in Example 4.
  • 11 is a figure which shows the analysis result of the elution density
  • FIG. 10 and FIG. 11 the elution concentration of Pd and the elution concentration of Ni were lower than the lower detection limits of Pd and Ni of ICP-MS. From this, it can be seen that Pd and Ni were not eluted in Example 4.
  • the current density is 0.5 [A/dm 2 ] or more and 30 [A/dm 2 ] or less. More preferably, the current density is 2.9 [A/dm 2 ] or more and 14.5 [A/dm 2 ] or less.
  • Example 5 A fifth embodiment will be described.
  • the PdNi plating film 34 was formed by changing the concentration ratio of Pd and Ni in the PdNi plating bath in the manufacturing method described above.
  • the Pd concentration ratio was changed from 52% to 80%.
  • the Pd concentration ratio is calculated by the formula Pd/(Pd+Ni).
  • the Ni concentration ratio is calculated by the formula of Ni/(Pd+Ni).
  • the Pd concentration ratio of the PdNi plating film 34 formed by changing the Pd concentration ratio was analyzed. did.
  • FIG. 12 is a diagram showing an example of the relationship between the Pd concentration ratio in Example 5 and the Pd concentration ratio of the plating film 34. As shown in FIG. 12, when the PdNi plated film 34 is formed, the composition ratio of the PdNi plated film 34 can be changed by controlling the concentration ratio of Pd and Ni in the plating bath.
  • Example 5 for each of the PdNi platings 34 formed with the Pd concentration ratio shown in FIG. 12, the surface layer component analysis was performed using XPS.
  • FIG. 13 is a diagram showing the analysis results of the Ni component of the surface layer of the PdNi plating film 34 in each composition ratio in Example 5. Note that ND shown in FIG. 13 indicates that it is equal to or lower than the XPS detection lower limit value.
  • Example 6 Example 6 will be described.
  • the filtration filter 10 was manufactured by changing the surface roughness Ra of the PdNi plating film 34 in the manufacturing method described above.
  • the surface roughness Ra was changed by adjusting the pH value of the plating solution, the current density, the substrate substrate, and the film thickness conditions when the PdNi plating bath was used.
  • the surface roughness Ra was 0.02, 0.94 and 1.98 ⁇ m.
  • the elution test was performed on the manufactured filtration filter 10. In the elution test, a portion having a surface area of 1 cm 2 of the filtration filter 10 was immersed in 10 ml of PBS and kept at 37° C. and stored for 1 week in the incubator. Then, as in Examples 3 and 4, ICP-MS (manufactured by Agilent Technologies) was used to analyze the elution concentration of Ni.
  • FIG. 14 is a diagram showing the analysis results of Ni elution concentration in Example 6. As shown in FIG. 14, the elution concentration of Ni was lower than the lower detection limit of Ni in ICP-MS. From this, it can be seen that Ni was not eluted in Example 6.
  • the surface roughness Ra is 2.5 ⁇ m or less. More preferably, the surface roughness Ra is 1.98 ⁇ m or less.
  • the surface layer 21 becomes Pd-rich.
  • the elution concentration of Ni becomes the detection lower limit value (0.01 ⁇ g/ml) or less.
  • the surface roughness Ra is 2.5 ⁇ m or less, the surface of the PdNi plating film 34 is sufficiently liquid-exchanged with acetic acid/hydrogen peroxide by immersion in acetic acid/hydrogen peroxide, so that Ni is completely lost in the surface layer 21 and becomes Pd-rich. Become.
  • the surface roughness Ra is larger than 2.5 ⁇ m, a portion where the acetic acid/hydrogen peroxide mixture is not sufficiently distributed in a part of the fine irregularities of the surface layer 21, that is, a portion where liquid exchange is difficult to occur occurs. It is assumed that Ni in the surface layer 21 is unlikely to disappear and Pd-rich is unlikely to occur in this portion. It is considered that when the PdNi plated film 34 in this state is subjected to an elution test, the Ni concentration partially rises due to the elution of Ni that is partially left on the surface layer 21.
  • Example 7 will be described.
  • the filtration filter 10 was manufactured by changing the time for immersing the PdNi plating film 34 in acetic acid/hydrogen peroxide in the manufacturing method described above.
  • the Pd:Ni composition ratio in the PdNi plated film 34 in Example 7 was 9:1.
  • the immersion time was 0 second, 10 seconds, 30 seconds, 1 minute, 5 minutes, 30 minutes, 1 hour, and 2 hours at room temperature.
  • the acetic acid-hydrogen peroxide mixture was 5% acetic acid: 5% hydrogen peroxide: 90% pure water.
  • Example 7 the components of the surface layer of the filtration filter 10 manufactured at each immersion time were analyzed by XPS. 15: is a figure which shows the analysis result of Ni component of the surface layer of the filtration filter 10 in Example 7.
  • FIG. 15 when the immersion time is 1 minute or more, the Ni component in the surface layer of the filtration filter 10 can be set to 0%.
  • Example 8 will be described.
  • the compositions of Sample A1 and Sample A2 of the filtration filter 10 manufactured by the above manufacturing method were examined.
  • TEM observation and EDX mapping were performed.
  • the TEM observation was performed using FE-TEM (JEOL Ltd.: JEM-F200).
  • the TEM measurement conditions were: acceleration voltage: 200 kV, focusing lens diaphragm: #2, pretreatment: Pt coating.
  • the EDX mapping was performed using Noran system 7 (Wakken Co., Ltd.).
  • the EDX measurement conditions were: spot diameter: ⁇ 1.0 nm, time constant: Rate1, and number of integrations: 100 times.
  • the sample A1 of the filtration filter 10 was produced at a current density of 2.9 [A/dm 2 ].
  • the sample A2 was produced at a current density of 14.5 [A/dm 2 ]. Further, in the production of the filtration filter 10 in each of the samples A1 and A2, the immersion time of the PdNi plating film with acetic acid/hydrogen peroxide (acetic acid 5%:hydrogen peroxide 5%:pure water 90%) was set to 2 hours.
  • FIG. 16A is a diagram showing EDX mapping of sample A1 in Example 8.
  • the M1 portion indicates the surface layer 21 portion of the sample A1
  • the M2 portion indicates the base material portion of the sample A1.
  • the intermediate layer 23 of sample A1 shown in FIG. 16A is formed in a region near 32 nm from the surface.
  • the M2 portion which is the portion of the base material 22 shown in FIG. 16A, is a region near 106 nm from the surface.
  • FIG. 16B is a diagram showing EDX mapping of Sample A2 in Example 8.
  • the M3 portion indicates the surface layer 21 portion of the sample A2
  • the M4 portion indicates the base material 22 portion of the sample A2.
  • the intermediate layer 23 of the sample A2 shown in FIG. 16B is formed in a region near 22.5 nm from the surface.
  • the M4 portion which is the portion of the base material 22 shown in FIG. 16B, was 97 nm from the surface.
  • the filtration filter 10 includes a surface layer 21, a base material 22 formed inside the surface layer 21, and an intermediate layer 23 formed between the surface layer 21 and the base material 22.
  • the surface layer 21 has Pd as a main component
  • the base material 22 has a PdNi alloy as a main component
  • the intermediate layer 23 has a PdNi alloy in which the component ratio of Pd and Ni changes from the surface layer 21 side toward the base material 22 side. Is the main component. With such a configuration, the corrosion resistance of the filtration filter 10 can be improved.
  • the configuration of the filtration filter of Comparative Example 1 will be described.
  • the surface of the base material 122 formed of a base metal is coated with a precious metal by plating, and the surface layer 121 of the precious metal is formed on the surface of the base metal 122 of the base metal.
  • the surface layer 121 has Pd as a main component
  • the base material 122 has Ni as a main component.
  • FIG. 17 is a schematic diagram showing a part of an example of the configuration of the filtration filter 110 of Comparative Example 1.
  • the surface layer 121 containing Pd which is a noble metal as a main component is formed on the base material 122 containing Ni that is a base metal as a main component. Therefore, a continuous interface is formed between the surface layer 121 and the base material 122. Further, on the surface layer 121, a defect 150 is generated due to impurities attached to the surface of the base material 122 and/or surface roughness during plating.
  • the liquid such as the electrolyte solution is likely to come into contact with the base material 122 through the defect 150 of the surface layer 121. This makes it difficult to prevent the base material 122 from eluting from the defect 150.
  • a local battery is easily formed by the surface layer 121, the base material 122, and the electrolyte solution in contact with the interface between the surface layer 121 and the base material 122, and an anode reaction occurs on the surface of the base material 122 of the base metal (Ni),
  • the base material 122 may be corroded. Further, since the interface between the surface layer 121 and the base material 122 is continuously connected, when the base material 122 is corroded, the corrosion easily progresses over the entire base material 122.
  • the base material 122 is easily exposed, and when contacted with the electrolyte solution, the base material is easily eluted.
  • the intermediate layer 23 is formed between the surface layer 21 and the base material 22.
  • the component ratios of Pd and Ni change from the surface layer 21 side toward the base material 22 side. Therefore, in the intermediate layer 23 of the filtration filter 10, the interface between Pd and Ni is formed dispersedly.
  • Ni can be suppressed from being eluted from defects in the surface layer 21.
  • the elution of the base material 22 can be suppressed by forming the intermediate layer 23 between the surface layer 21 and the base material 22.
  • the ratio of Ni to Pd in the intermediate layer 23 increases in the depth direction D1 of the filtration filter 10.
  • most of Ni components can be kept away from the surface layer 21, and Ni elution and corrosion due to contact with the electrolyte solution can be suppressed. Thereby, the corrosion resistance of the filtration filter 10 can be further improved.
  • the thickness of the intermediate layer 23 is larger than the thickness of the surface layer 21.
  • the intermediate layer 23 is formed in a region where the depth from the surface of the filtration filter 10 is greater than 10 nm and 30 nm or less. More preferably, the intermediate layer 23 is formed in a region having a depth of 20 nm or more and 30 nm or less from the surface of the filtration filter 10. With such a configuration, the corrosion resistance of the filtration filter 10 can be further improved.
  • the base material 22 is formed at a position deeper than the intermediate layer 23. Generally, since the electrolyte solution is less likely to enter depending on the depth, the opportunity for the electrolyte solution to come into contact with the base material is reduced. Therefore, the corrosion resistance of the filtration filter 10 can be improved.
  • the component ratio of Pd and Ni in the base material 22 is 80:20, and the component ratio of Pd and Ni in the intermediate layer 23 changes in the range of 100:0 to 80:20. With such a configuration, the corrosion resistance of the filtration filter 10 can be further improved.
  • the filtration filter 10 may be made of a metal or alloy containing a noble metal other than Pd and a base metal other than Ni.
  • the intermediate layer 23 may include a portion where the ratio of Ni to Pd of the PdNi alloy is constant and/or a portion where the ratio of Ni is decreased. Even with such a configuration, the corrosion resistance of the filtration filter 10 can be improved.
  • the thickness of the intermediate layer 23 is larger than the thickness of the surface layer 21
  • the present invention is not limited to this.
  • the thickness of the intermediate layer 23 may be smaller than or the same as the thickness of the surface layer 21. Even with such a configuration, the corrosion resistance of the filtration filter 10 can be improved.
  • the filtration filter of the first embodiment is used as the mesh of the mesh type nebulizer.
  • the second embodiment will mainly describe differences from the first embodiment.
  • configurations that are the same as or equivalent to those in the first embodiment will be described using the same reference numerals. Further, in the second embodiment, the description overlapping with the first embodiment will be omitted.
  • the second embodiment aims to improve the corrosion resistance of the mesh of the mesh type nebulizer.
  • FIG. 18 is a schematic partial cross-sectional view of an example of the mesh 50 according to the second embodiment of the present invention.
  • the mesh 50 includes a first base portion 12 and a second base portion 13.
  • the first through hole 11 and the first base portion 12 described in the second embodiment correspond to the through hole 11 and the filter base portion 12 in the first embodiment.
  • the second base portion 13 is provided on the first main surface PS1 side of the first base portion 12.
  • the second base portion 13 is a plate-shaped member having a third main surface PS3 and a fourth main surface PS4 that faces the third main surface PS3.
  • the thickness of the second base portion 13 is smaller than the thickness of the first base portion 12.
  • the second base portion 13 is formed integrally with the first base portion 12.
  • the second base portion 13 is provided with a plurality of second through holes 14.
  • the plurality of second through holes 14 are periodically provided in the second base portion 13 on the third main surface PS3 and the fourth main surface PS4. Specifically, the plurality of second through holes 14 are provided in the second base portion 13 in a matrix at equal intervals.
  • the plurality of second through holes 14 are provided in a square lattice array when viewed from the third main surface PS3 side (Z direction).
  • the array of the plurality of second through holes 14 is not limited to the square lattice array, and may be, for example, a quasi-periodic array or a periodic array.
  • the periodic array if it is a square array, it may be a rectangular array in which the intervals in the two array directions are not equal, or a triangular lattice array or a regular triangular lattice array.
  • a plurality of second through holes 14 may be provided in the second base portion 13, and the arrangement is not limited.
  • the second through hole 14 has a square shape when viewed from the third main surface PS3 side (Z direction).
  • the shape of the second through hole 14 is not limited to a square when viewed from the third main surface PS3 side (Z direction), and may be a shape such as a rectangle, a polygon, a circle, or an ellipse.
  • the shape (cross-sectional shape) of the second through hole 14 projected on the plane perpendicular to the third main surface PS3 of the second base portion 13 is rectangular.
  • the cross-sectional shape of the second through hole 14 is not limited to a rectangular shape, and may be a tapered shape such as a parallelogram or a trapezoid, a symmetric shape, or an asymmetric shape. May be.
  • the size of the second through hole 14 is smaller than the size of the first through hole 11.
  • the second through hole 14 has a square shape
  • the length of one side of the second through hole 14 in the vertical direction (X direction) and the horizontal direction (of the Y direction) of the mesh 50 is one side of the first through hole 11.
  • the diameter of the second through hole 14 is smaller than the diameter of the first through hole 11.
  • the plurality of second through holes 14 are connected to the plurality of first through holes 11, respectively. In other words, the plurality of second through holes 14 are in communication with the plurality of first through holes 11, respectively.
  • the mesh 50 includes a surface layer 21, a base material 22 formed inside the surface layer 21, and an intermediate layer 23 formed between the surface layer 21 and the base material 22.
  • the surface layer 21 of the mesh 50 contains Pd as a main component.
  • the base material 22 of the mesh 50 has a PdNi alloy as a main component.
  • the intermediate layer 23 of the mesh 50 is mainly composed of a PdNi alloy whose component ratio of Pd and Ni changes from the surface layer 21 side toward the base material 22 side.
  • FIGS. 19A to 19K show an example of a manufacturing process of the mesh 50 according to the second embodiment of the present invention.
  • a substrate 41 such as silicon is prepared.
  • the surface of the substrate 41 may be cleaned, for example.
  • a Cu film 42 having a thickness of 500 nm is formed on the substrate 41.
  • the Cu film 42 is formed by sputtering with a sputtering film forming apparatus.
  • the Cu film 42 may be formed by vapor deposition using a vapor deposition device.
  • a Ti film having a thickness of 50 nm may be formed between the substrate 41 and the Cu film 42.
  • a resist film 43 having a thickness of 2 ⁇ m is formed by applying a resist on the Cu film 42 and drying it.
  • a photosensitive positive liquid resist Pfi-3A manufactured by Sumitomo Chemical Co., Ltd.
  • the conditions of the spin coater are, for example, 1140 rpm and 30 sec.
  • the resist is heated and dried using a hot plate to form a resist film 43 having a thickness of 2.0 ⁇ m.
  • the conditions of the hot plate are, for example, a heating temperature of 90° C. and a heating time of 90 seconds.
  • the resist film 43 is exposed and developed to remove the resist film 43 at a portion corresponding to the second base portion 13.
  • an i-line stepper Pfi-37A manufactured by Canon
  • Development is carried out using a paddle developing device.
  • TMAH Tetramethylammonium hydroxide
  • electrolytic plating is performed by performing a PdNi plating bath using an electrolytic plating apparatus.
  • the PdNi plating film 44 is formed on the portion where the resist film 43 has been removed.
  • the conditions of electrolytic plating are, for example, a current density of 1 A/dm, an electric quantity of 4 AM, a plating solution pH of 7.5, and a plating thickness of 1.6 ⁇ m.
  • the resist film 43 is stripped by a stripping solution NMP (N-methyl-2-pyrrolidone) using a resist stripping device capable of high-pressure spray processing. Thereafter, the PdNi plating film 44 is subjected to IPA (Isopropoxy alcohol) cleaning, water cleaning, and dried.
  • NMP N-methyl-2-pyrrolidone
  • IPA Isopropoxy alcohol
  • a dry film resist 45 is attached on the PdNi plated film 44 by a laminating process.
  • the dry film resist 45 has a thickness of 50 ⁇ m.
  • the temperature of the upper and lower rolls in the laminating process is 100° C., and the feed rate is 0.4 m/s.
  • the dry film resist 45 is exposed and developed to remove the dry film resist 45 at a portion corresponding to the first base portion 12. For example, it is processed by aligner exposure and developed by spray development.
  • the developer is a 3% sodium carbonate solution.
  • electrolytic plating is performed by using a PdNi plating bath using an electrolytic plating apparatus.
  • the PdNi plating film 46 is formed on the portion where the dry film resist 45 is removed.
  • the plate was immersed in 5% hydrochloric acid for 1 minute and washed with water. After washing with water, PdNi electroplating was performed with an electroplating apparatus.
  • the electrolytic plating conditions are, for example, a current density of 1 A/dm 2 , an electric quantity of 4 AM, a plating solution pH of 7.5, and a plating thickness of 1.6 ⁇ m.
  • a resist stripping apparatus is used to strip the resist film 45 with a stripping solution NMP (N-methyl-2-pyrrolidone).
  • acetic acid:hydrogen peroxide:water 5:5:90, room temperature
  • the stirrer was stirred.
  • the Cu film 42 is removed by etching by immersion treatment for 48 hours.
  • the PdNi plated films 44 and 46 are peeled off from the substrate 41, and Ni on the surface layers of the PdNi plated films 44 and 46 is dissolved, whereby the first base portion 12 and the second base portion 13 are manufactured.
  • Ni is gradually dissolved from the surface of the PdNi plated films 44 and 46 toward the inside.
  • the Ni of the PdNi plated films 44, 46 is likely to come into contact with acetic acid/hydrogen peroxide, so that the Ni is easily dissolved.
  • Ni is dissolved by acetic acid-hydrogen peroxide mixture and the surface layer 21 containing Pd as a main component is formed. Further, the amount of Ni dissolved by acetic acid-hydrogen peroxide gradually decreases from the surface layer 21 of the first base portion 12 and the second base portion 13 toward the depth direction D1, and the component ratio of Pd and Ni changes.
  • the intermediate layer 23 whose main component is an alloy is formed. Then, the PdNi plating films 44 and 46 in which Ni is not dissolved by acetic acid-hydrogen peroxide serve as the base material 22.
  • the surface layer 21 containing Pd as a main component, the base material 22 containing a PdNi alloy as a main component, and the surface layer 21 and the base material 22 are formed, and the component ratio of Pd and Ni changes.
  • the mesh 50 including the intermediate layer 23 containing a PdNi alloy as a main component can be manufactured.
  • the mesh 50 includes a surface layer 21, a base material 22 formed inside the surface layer 21, and an intermediate layer 23 formed between the surface layer 21 and the base material 22.
  • the surface layer 21 has Pd as a main component
  • the base material 22 has a PdNi alloy as a main component
  • the intermediate layer 23 has a PdNi alloy in which the component ratio of Pd and Ni changes from the surface layer 21 side toward the base material 22 side. Is the main component. With such a configuration, the corrosion resistance of the mesh 50 can be improved.
  • the present invention is not limited to this.
  • the mesh 50 may be formed of elements including the surface layer 21, the base material 22, and the intermediate layer 23.
  • the mesh 50 does not have to include the second base portion 13.
  • the filtration filter of the present invention is useful for the purpose of filtering an object to be filtered in a liquid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Molecular Biology (AREA)
  • Geology (AREA)
  • Electrochemistry (AREA)
  • Filtering Materials (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本発明の濾過フィルタは、表層と、前記表層より内部側に形成される母材と、前記表層と前記母材との間に形成される中間層と、を備え、前記表層は、Pdを主成分とし、前記母材は、PdNi合金を主成分とし、前記中間層は、前記表層側から前記母材側に向かってPdとNiとの成分比率が変化するPdNi合金を主成分とする。このような構成により、濾過フィルタの腐食耐性を向上させることができる。

Description

濾過フィルタ
 本発明は、濾過フィルタに関する。
 濾過フィルタとして、例えば、特許文献1に記載の生体物質捕獲用のフィルタが知られている。特許文献1に記載のフィルタは、金以外の金属で作製された生体物質捕獲用のフィルタの表面に金めっきが施されており、金めっきが無電解金めっきである。
特開2018-88932号公報
 しかしながら、特許文献1のフィルタでは、腐食耐性を向上させるという点で未だ改善の余地がある。
 本発明は、腐食耐性を向上させることができる濾過フィルタを提供することを目的とする。
 本発明の一態様の濾過フィルタは、
 表層と、
 前記表層より内部側に形成される母材と、
 前記表層と前記母材との間に形成される中間層と、
を備え、
 前記表層は、Pdを主成分とし、
 前記母材は、PdNi合金を主成分とし、
 前記中間層は、前記表層側から前記母材側に向かってPdとNiとの成分比率が変化するPdNi合金を主成分とする。
 本発明によれば、腐食耐性を向上させることができる濾過フィルタを提供することができる。
本発明に係る実施の形態1の濾過フィルタの一例の一部の概略斜視図である。 図1の濾過フィルタの一部を厚み方向から見た概略図である。 本発明に係る実施の形態1の濾過フィルタの構成の一例の一部を示す模式図である。 本発明に係る実施の形態1の濾過フィルタの製造工程の一例を示す図である。 本発明に係る実施の形態1の濾過フィルタの製造工程の一例を示す図である。 本発明に係る実施の形態1の濾過フィルタの製造工程の一例を示す図である。 本発明に係る実施の形態1の濾過フィルタの製造工程の一例を示す図である。 本発明に係る実施の形態1の濾過フィルタの製造工程の一例を示す図である。 本発明に係る実施の形態1の濾過フィルタの製造工程の一例を示す図である。 本発明に係る実施の形態1の濾過フィルタの製造工程の一例を示す図である。 実施例1のフィルタ基体部の深さ方向に対するPdとNiの成分比率を示す分析データである。 実施例1のフィルタ基体部の表層の成分分析結果を示す表である。 実施例2のフィルタ基体部の表層の成分分析結果を示す表である。 実施例3におけるNiの溶出濃度の分析結果を示す図である。 実施例3におけるPdの溶出濃度の分析結果を示す図である。 実施例4におけるNiの溶出濃度の分析結果を示す図である。 実施例4におけるPdの溶出濃度の分析結果を示す図である。 実施例5におけるPd濃度比に対するめっき膜のPd濃度比との関係の一例を示す図である。 実施例5における各組成比におけるPdNiめっき膜の表層のNi成分の分析結果を示す図である。 実施例6におけるNiの溶出濃度の分析結果を示す図である。 実施例7における濾過フィルタの表層のNi成分の分析結果を示す図である。 実施例8におけるサンプルA1のEDXマッピングを示す図である。 実施例8におけるサンプルA2のEDXマッピングを示す図である。 比較例1の濾過フィルタの構成の一例の一部を示す模式図である。 本発明に係る実施の形態2のメッシュの一例の概略部分断面図である。 本発明に係る実施の形態2のメッシュの製造工程の一例を示す図である。 本発明に係る実施の形態2のメッシュの製造工程の一例を示す図である。 本発明に係る実施の形態2のメッシュの製造工程の一例を示す図である。 本発明に係る実施の形態2のメッシュの製造工程の一例を示す図である。 本発明に係る実施の形態2のメッシュの製造工程の一例を示す図である。 本発明に係る実施の形態2のメッシュの製造工程の一例を示す図である。 本発明に係る実施の形態2のメッシュの製造工程の一例を示す図である。 本発明に係る実施の形態2のメッシュの製造工程の一例を示す図である。 本発明に係る実施の形態2のメッシュの製造工程の一例を示す図である。 本発明に係る実施の形態2のメッシュの製造工程の一例を示す図である。 本発明に係る実施の形態2のメッシュの製造工程の一例を示す図である。
(本発明に至った経緯)
 濾過フィルタにおいて、生体物質を捕獲するための濾過フィルタが知られている(例えば、特許文献1参照)。このような濾過フィルタにおいては、めっきなどを行うことによって卑金属で形成される母材の表面を貴金属でコーティングし、卑金属の母材の表面に貴金属の表層を形成している。これにより、濾過フィルタが生理食塩水などの電解質溶液に接触したときに、母材が溶解することを抑制している。
 しかしながら、このような濾過フィルタにおいては、母材をコーティングしている表層に欠陥が生じる場合がある。例えば、母材の表面に不純物が付着している場合、あるいは母材表面の表面粗さが大きい場合に当該箇所にコーティング材料が付着せず、母材表面を露出させ得る欠陥が発生することがある。この場合、電解質溶液が表層の欠陥を通じて母材に接触してしまい、欠陥から母材が溶出するという問題がある。
 また、貴金属で母材をコーティングする場合、貴金属の表層が卑金属の母材の表面に積層されるように形成される。このため、貴金属の表層と卑金属の母材との間には、連続して繋がった界面が形成される。
 本発明者らは、表層の欠陥を通じて濾過フィルタの内部に電解質溶液が流入した場合、表層と母材とが電解質溶液を介して接触することによって表層と母材との界面に局部電池が形成され、母材が腐食されるという課題を新たに見出した。
 より詳細に説明すると、卑金属の母材を貴金属でコーティングした濾過フィルタを、電解質溶液に接触させる場合、表層の欠陥から濾過フィルタ内部に電解質溶液が流入し、表層と母材との界面に電解質溶液が接触することがある。これにより、貴金属の表層と、卑金属の母材と、表層と母材の界面に接触した電解質溶液とで局部電池が形成される。その結果、卑金属の母材表面でアノード反応が生じ、母材が腐食される。また、連続して繋がった界面では、表層の欠陥から流入してきた電解質溶液と接触しやすく、腐食が生じやすい。更に、連続して繋がった界面においては、母材の一部で腐食が生じた場合、腐食が母材全体に広がりやすい。
 これらの問題から、濾過フィルタの腐食耐性を向上させることが困難である。そこで、本発明者らは、Pdを主成分とする表層と、PdNi合金を主成分とする母材との間に、PdとNiとの成分比率が変化するPdNi合金を主成分とする中間層を設けた濾過フィルタを見出し、以下の発明に至った。
 本発明の一態様の濾過フィルタは、
 表層と、
 前記表層より内部側に形成される母材と、
 前記表層と前記母材との間に形成される中間層と、
を備え、
 前記表層は、Pdを主成分とし、
 前記母材は、PdNi合金を主成分とし、
 前記中間層は、前記表層側から前記母材側に向かってPdとNiとの成分比率が変化するPdNi合金を主成分とする。
 このような構成により、腐食耐性を向上させることができる。
 前記中間層におけるPdに対するNiの割合は、前記濾過フィルタの深さ方向に向かって増加していてもよい。
 このような構成により、腐食耐性を更に向上させることができる。
 前記中間層の厚さは、前記表層の厚さより大きくてもよい。
 このような構成により、腐食耐性を更に向上させることができる。
 前記中間層は、前記濾過フィルタの表面からの深さ10nmより大きく35nm以下の領域に形成されていてもよい。
 このような構成により、腐食耐性を更に向上させることができる。
 前記母材におけるPdとNiとの成分比率は80:20であり、
 前記中間層におけるPdとNiとの成分比率は100:0以上80:20以下の範囲で変化してもよい。
 このような構成により、腐食耐性を更に向上させることができる。
 前記母材におけるPdとNiとの成分比率は75:25以上85:15以下であり、
 前記中間層におけるPdとNiとの成分比率は100:0以上75:25以下の範囲で変化してもよい。
 このような構成により、腐食耐性を更に向上させることができる。
 以下、本発明に係る実施の形態1について、添付の図面を参照しながら説明する。また、各図においては、説明を容易なものとするため、各要素を誇張して示している。
(実施の形態1)
[全体構成]
 図1は、本発明に係る実施の形態1の濾過フィルタ10の一例の一部の概略斜視図である。図2は、図1の濾過フィルタ10の一部を厚み方向から見た概略図である。図中のX、Y、Z方向は、それぞれ濾過フィルタ10の縦方向、横方向、厚み方向を示している。なお、図1及び2は、濾過フィルタ10の一部を拡大して示している。
 図1及び図2に示すように、濾過フィルタ10は、複数の貫通孔11を有するフィルタ基体部12を備える。濾過フィルタ10は、液体に含まれる濾過対象物が捕捉される第1主面PS1と、第1主面PS1に対向する第2主面PS2とを有する板状構造体である。
 本明細書において、「濾過対象物」とは、液体に含まれる対象物のうち濾過されるべき対象物を意味している。例えば、濾過対象物は、液体に含まれる生物由来物質であってもよい。「生物由来物質」とは、細胞(真核生物)、細菌(真性細菌)、ウィルス等の生物に由来する物質を意味する。細胞(真核生物)としては、例えば、人工多能性幹細胞(iPS細胞)、ES細胞、幹細胞、間葉系幹細胞、単核球細胞、単細胞、細胞塊、浮遊性細胞、接着性細胞、神経細胞、白血球、再生医療用細胞、自己細胞、がん細胞、血中循環がん細胞(CTC)、HL-60、HELA、菌類を含む。細菌(真性細菌)としては、例えば、大腸菌、結核菌を含む。「液体」とは、例えば、電解質溶液、細胞懸濁液、細胞培養培地、などである。
 複数の貫通孔11は、フィルタ基体部12において、濾過フィルタ10の第1主面PS1及び第2主面PS2上に周期的に配置されている。具体的には、複数の貫通孔11は、フィルタ基体部12においてマトリクス状に等間隔で設けられている。
 実施の形態1では、貫通孔11は、濾過フィルタ10の第1主面PS1側、即ちZ方向から見て、正方形の形状を有する。なお、貫通孔11は、濾過フィルタ10の厚み方向(Z方向)から見た形状が正方形に限定されず、例えば長方形、多角形、円形、又は楕円などの形状であってもよい。
 実施の形態1では、濾過フィルタ10の第1主面PS1に対して垂直な面に投影した貫通孔11の形状(断面形状)は、長方形である。具体的には、濾過フィルタ10の縦方向(X方向)及び横方向(Y方向の)における貫通孔11の一辺の長さは、濾過フィルタ10の厚み方向(Z方向)における貫通孔11の深さよりも長い。なお、貫通孔11の断面形状は、長方形に限定されず、例えば、平行四辺形又は台形等のテーパー形状であってもよいし、対称形状であってもよいし、非対称形状であってもよい。
 実施の形態1では、複数の貫通孔11は、濾過フィルタ10の第1主面PS1側(Z方向)から見て正方形の各辺と平行な2つの配列方向、即ち図1中のX方向とY方向に等しい間隔で設けられている。このように、複数の貫通孔11を正方格子配列で設けることによって、開口率を高めることが可能であり、濾過フィルタ10に対する液体の通過抵抗を低減することができる。このような構成により、濾過の時間を短くし、濾過対象物へのストレスを低減することができる。
 なお、複数の貫通孔11の配列は、正方格子配列に限定されず、例えば、準周期配列、又は周期配列であってもよい。周期配列の例としては、方形配列であれば、2つの配列方向の間隔が等しくない長方形配列でもよく、三角格子配列又は正三角格子配列などであってもよい。なお、貫通孔11は、フィルタ基体部12に複数設けられていればよく、配列は限定されない。
 複数の貫通孔11の間隔bは、濾過対象物である細胞の種類(大きさ、形態、性質、弾性)又は量に応じて適宜設計されるものである。ここで、貫通孔11の間隔bとは、図2に示すように、貫通孔11を濾過フィルタ10の第1主面PS1側から見て、任意の貫通孔11の中心と隣接する貫通孔11の中心との距離を意味する。周期配列の構造体の場合、貫通孔11の間隔bは、例えば、貫通孔11の一辺dの1倍より大きく10倍以下であり、好ましくは貫通孔11の一辺dの3倍以下である。あるいは、例えば、濾過フィルタ10の開口率は、10%以上であり、好ましくは開口率は、25%以上である。このような構成により、濾過フィルタ10に対する液体の通過抵抗を低減することができる。そのため、処理時間を短くすることができ、細胞へのストレスを低減することができる。なお、開口率とは、(貫通孔11が占める面積)/(貫通孔11が空いていないと仮定したときの第1主面PS1の投影面積)で計算される。
 濾過フィルタ10の厚みは、貫通孔11の大きさ(一辺d)の0.1倍より大きく100倍以下が好ましい。より好ましくは、濾過フィルタ10の厚みは、貫通孔11の大きさ(一辺d)の0.5倍より大きく10倍以下である。このような構成により、液体に対する濾過フィルタ10の抵抗を低減することができ、濾過の時間を短くすることができる。その結果、濾過対象物へのストレスを低減することができる。
 濾過フィルタ10において、濾過対象物を含む液体が接触する第1主面PS1は、表面粗さが小さいことが好ましい。ここで、表面粗さとは、第1主面PS1の任意の5箇所において触針式段差計で測定された最大値と最小値の差の平均値を意味する。実施の形態1では、表面粗さは、濾過対象物の大きさより小さいことが好ましく、濾過対象物の大きさの半分より小さいことがより好ましい。言い換えると、濾過フィルタ10の第1主面PS1上の複数の貫通孔11の開口が同一平面(XY平面)上に形成されている。また、貫通孔11が形成されていない部分であるフィルタ基体部12は、繋がっており、一体に形成されている。このような構成により、濾過フィルタ10の表面(第1主面PS1)への濾過対象物の付着が低減され、液体の抵抗を低減することができる。
 貫通孔11は、第1主面PS1側の開口と第2主面PS2側の開口とが連続した壁面を通じて連通している。具体的には、貫通孔11は、第1主面PS1側の開口が第2主面PS2側の開口に投影可能に設けられている。即ち、濾過フィルタ10を第1主面PS1側から見た場合に、貫通孔11は、第1主面PS1側の開口が第2主面PS2側の開口と重なるように設けられている。実施の形態1において、貫通孔11は、その内壁が第1主面PS1及び第2主面PS2に対して垂直となるように設けられている。
 図3は、本発明に係る実施の形態1の濾過フィルタ10の構成の一例の一部を示す模式図である。図3は、フィルタ基体部12の構成の一例の一部について例示している。図3に示すように、フィルタ基体部12は、表層21と、表層21より内部側に形成される母材22と、表層21と母材22との間に形成される中間層23と、を備える。表層21は、Pdを主成分とする。母材22は、PdNi合金を主成分とする。中間層23は、表層21側から母材22側に向かってPdとNiとの成分比率が変化するPdNi合金を主成分とする。
 表層21において「Pdを主成分とする」とは、表層21に占めるPdの原子数の割合が90%より多いことを意味する。母材22において「PdNi合金を主成分とする」とは、母材22に占めるPdの原子数の割合が70%以上であることを意味する。中間層23において「PdNi合金を主成分とする」とは、中間層23に占めるPdの原子数の割合が50%以上であることを意味する。
 「PdとNiとの成分比率が変化するPdNi合金」とは、濾過フィルタ10の深さ方向D1に向かって、Pdの成分量及びNiの成分量が段階的に又は連続的に変化するように構成されているPdNi合金を意味する。例えば、PdとNiとの成分比率が変化していることを分析する方法としては、SIMS(Secondary Ion Mass Spectrometry:二次元イオン質量分析法)が用いられる。SIMSを用いて濾過フィルタ10の表面から深さ方向D1に所定のピッチで成分分析を行うことによって、PdとNiの成分比率を確認することができる。
 表層21は、Pd以外の成分を含んでもよい。表層21は、例えば、Au、Pt、Fe、Cu、Ti,C、およびこれらの酸化物などを含んでもよい。母材22及び中間層23は、PdNi以外の成分を含んでもよい。母材22及び中間層23は、例えば、Au、Pt、Fe、Cu、Ti,Co、Mo、C、およびこれらの酸化物などを含んでもよい。
 表層21は、濾過フィルタ10の表面の層である。表層21は、中間層23を介して母材22を覆っている。表層21は、Pdを主成分とし、Niを含んでいない。即ち、表層21において、PdとNiの成分比率は100:0である。
 母材22は、濾過フィルタ10の主要材料であり、中間層23を介して表層21に覆われている。母材22は、PdとNiとの成分比率が一定であるPdNi合金を主成分とする。母材22の厚みは、表層21及び中間層23よりも大きい。母材22におけるPdとNiとの成分比率は75:25以上85:15以下である。実施の形態1において、母材22を形成するPdNi合金のPdとNiとの成分比率は80:20である。
 中間層23は、表層21と母材22との間に形成される層である。中間層23は、PdとNiとの成分比率が変化するPdNi合金を主成分とする。中間層23において、PdとNiとの成分比率は、濾過フィルタ10の深さ方向D1に向かって変化している。具体的には、中間層23において、PdNi合金のPdに対するNiの割合は、表層21から母材22に向かって増加している。中間層23におけるPdとNiとの成分比率は100:0以上75:25以下の範囲で変化する。実施の形態1において、中間層23を形成するPdとNiとの成分比率は、濾過フィルタ10の深さ方向D1に向かって100:0から80:20まで変化する。
 また、中間層23においては、Niが分散している。このため、中間層23においては、PdとNiとの界面が連続して繋がって形成されず、分散して形成されている。
 また、中間層23の厚みは、表層21の厚みより大きい。これにより、PdとNiとの界面が濾過フィルタ10の厚み方向(Z方向)に分散されやすくなる。その結果、PdとNiとの界面における腐食を抑制することができる。
[製造方法の一例]
 濾過フィルタ10の製造方法の一例について図4A~4Gを用いて説明する。図4A~4Gは、本発明に係る実施の形態1の濾過フィルタ10の製造工程の一例を示す。
 図4Aに示すように、シリコンなどの基板31を準備する。基板31は、例えば、表面洗浄されていてもよい。
 図4Bに示すように、基板31上に厚さ500nmのCu膜32を形成する。例えば、Cu膜32は、スパッタ成膜装置によりスパッタリングすることによって形成される。あるいは、Cu膜32は、蒸着装置により蒸着することによって形成されてもよい。このとき、基板31とCu膜32との接着性を向上させるために、基板31とCu膜32との間に厚さ50nmのTi膜を形成してもよい。
 図4Cに示すように、Cu膜32上にレジストを塗布し、乾燥させることで厚さ2μmのレジスト膜33を形成する。例えば、Cu膜32上にスピンコーターを用いて感光性ポジ型液体レジスト(住友化学株式会社製:Pfi-3A)を塗布する。なお、スピンコーターの条件は、例えば、1140rpm、30secである。次に、ホットプレートを用いてレジストを加熱乾燥して、厚さ2.0μmのレジスト膜33を形成する。なお、ホットプレートの条件は、例えば、加熱温度90℃、加熱時間90秒である。
 図4Dに示すように、レジスト膜33を露光および現像処理し、フィルタ基体部12に相当する箇所のレジスト膜33を除去する。例えば、露光機にはi線ステッパー(Canon製Pfi-37A)を使用する。現像はパドル現像装置を使用して行われる。現像液はTMAH(Tetramethylammonium hydroxide)を使用する。露光および現像処理した後、水洗及び乾燥処理を行う。
 図4Eに示すように、電解めっき装置を用いて、PdNiめっき浴を行うことによって電解めっきを行う。これにより、レジスト膜33を除去した部分にPdNiめっき膜34を形成する。なお、電解めっきの条件は、例えば、電流密度は1A/dm、電気量は4AM、めっき液のpHは7.5、めっき厚みは1.6μmである。
 図4Fに示すように、高圧スプレー処理が可能なレジスト剥離装置を用い、剥離液NMP(N-methyl-2-pyrrolidone)でレジスト膜33を剥離する。その後、PdNiめっき膜34をIPA(Isopropyl alcohol)洗浄及び水洗処理し、乾燥させる。
 図4Gに示すように、エッチング液兼PdNiめっき膜34の表層Ni溶解除去液として酢酸過水(酢酸:過酸化水素:水=5:5:90、室温)を調整し、スターラーを攪拌させながら48時間浸漬処理してCu膜32をエッチング除去する。これにより、基板31からPdNiめっき膜34を剥離すると共に、PdNiめっき膜34の表層のNiを溶解することによって、フィルタ基体部12を作製する。
 PdNiめっき膜34を酢酸過水に浸漬処理することによって、PdNiめっき膜34の表面から内部に向かってNiを徐々に溶解することができる。PdNiめっき膜34の表面付近においてはPdNiめっき膜34のNiが酢酸過水に接触しやすいため、Niが溶解しやすい。一方、PdNiめっき膜34の内部に向かうほど、PdNiめっき膜34のNiが酢酸過水に接触しにくくなり、Niが溶解しにくくなる。即ち、PdNiめっき膜34の表面から内部に向かって、Niの溶解量が徐々に少なくなる。
 このように、フィルタ基体部12の表面付近では、酢酸過水によってNiが溶解され、Pdを主成分とする表層21が形成される。また、フィルタ基体部12の表層21から深さ方向D1に向かって、酢酸過水によるNiの溶解量が徐々に少なくなり、PdとNiとの成分比率が変化するPdNi合金を主成分とする中間層23が形成される。そして、酢酸過水によってNiが溶解しなかったPdNiめっき膜34が母材22となる。
 このようにして、Pdを主成分とする表層21と、PdNi合金を主成分とする母材22と、表層21と母材22との間に形成され、PdとNiとの成分比率が変化するPdNi合金を主成分とする中間層23とを備える濾過フィルタ10を作製することができる。
[実施例1]
 実施例1について説明する。実施例1においては、上述した製造方法で製造したフィルタ基体部12の一部を測定試料として用い、フィルタ基体部12の深さ方向D1に対するPdとNiの成分比率を分析した。なお、実施例1においては、PdとNiとの成分比率が80:20のPdNiめっき膜34を酢酸過水に浸漬処理することによって、フィルタ基体部12を作製した。
 分析には、SIMS(Secondary Ion Mass Spectrometry:二次元イオン質量分析法)を用いた。分析条件を以下に示す。
(分析条件)
 測定装置:PHI ADEPT1010(四重極型二次イオン質量分析装置) アルバック・ファイ株式会社製
 一次イオン種 : Cs
 一次加速電圧 : 5.0kV
 検出領域 : 75μm×75μm
 分析元素 : Pd、Ni
 分析においては、一次イオンをフィルタ基体部12の外面に照射し、測定装置によって最初の金属情報が検出された時点を表面とし、深さ0nmとした。したがって、実施例1では、深さ0nmの面をフィルタ基体部12の表面と定義する。
 図5は、実施例1のフィルタ基体部12の深さ方向D1に対するPdとNiの成分比率を示す分析データである。図5に示すように、実施例1において、表層21は、フィルタ基体部12の表面からの深さ0nm以上10nm以下の領域に形成されている。即ち、表層21の厚さは、10nmである。表層21においては、Pdの成分が100%であり、Niの成分が0%である。即ち、表層21においては、PdとNiとの成分比率は100:0となっている。
 中間層23は、フィルタ基体部12の表面からの深さ10nmより大きく30nm以下の領域に形成されている。より好ましくは、中間層23は、濾過フィルタ10の表面からの深さ20nm以上30nm以下の領域に形成される。即ち、中間層23の厚さは、10nm以上20nm以下である。中間層23においては、Pdの成分が100%から80%に減少し、Niの成分が0%から20%に増大している。即ち、中間層23においては、PdとNiとの成分比率が100:0以上80:20以下の範囲で変化している。
 なお、実施例1では、中間層23は、フィルタ基体部12の表面からの深さ10nmより大きく30nm以下の領域に形成されている例について説明したが、中間層23の形成される領域は実施例1に限定されない。中間層23は、少なくとも濾過フィルタ10の表面からの深さ20nm以上30nm以下の領域に形成されていればよい。例えば、中間層23は、フィルタ基体部12の表面からの深さ10nmより大きく40nm以下の領域に形成されていてもよい。あるいは、中間層23は、フィルタ基体部12の表面からの深さ10nmより大きく35nm以下の領域に形成されていてもよい。
 このように、中間層23におけるPdNi合金のPdに対するNiの割合は、濾過フィルタ10の深さ方向D1に向かって増加している。即ち、中間層23におけるPdNi合金のPdに対するNiの割合は、表層21側から母材22側に向かって増加している。
 母材22は、フィルタ基体部12の表面からの深さ30nmより大きい領域に形成されている。母材22においては、Pdの成分が80%であり、Niの成分が20%である。母材22においては、PdとNiとの成分比率は80:20で一定となっている。
 次に、実施例1において、フィルタ基体部12の表面の成分分析を行った。なお、分析は、XPS(X-ray Photoelectron Spectroscopy)によって行った。分析条件として、酢酸過水に浸漬する前(図4F参照)のPdNiめっき膜34の表面と、酢酸過水に浸漬した後(図4G参照)のフィルタ基体部12の表面と、を分析した。
 図6は、実施例1のフィルタ基体部12の表面の成分分析結果を示す表である。図6に示すように、実施例1では、酢酸過水に浸漬する前のPdNiめっき膜34の表面において、Niの成分が7%であり、Pdの成分が93%である。
 実施例1では、PdNiめっき膜34を酢酸過水に浸漬してフィルタ基体部12を形成すると、フィルタ基体部12の表面において、Niの成分が0%となり、Pdの成分が100%となっている。
 実施例1の分析結果からわかるように、PdNiめっき膜34を酢酸過水に浸漬処理することによって、PdNiめっき膜34の表層のNiを除去することができる。これにより、Pdを主成分とする表層21を有するフィルタ基体部12を作製することができた。
[実施例2]
 実施例2として、実施例1とはPdとNiの成分比率が異なる条件で、フィルタ基体部12の成分分析を行った。実施例2では、PdとNiの成分比率が50:50のPdNiめっき膜34を酢酸過水に浸漬処理することによって、フィルタ基体部12を作製した。なお、実施例2の分析方法及び分析条件は、実施例1と同様である。
 図7は、実施例2のフィルタ基体部12の表面の成分分析結果を示す表である。図7に示すように、実施例2では、酢酸過水に浸漬する前のPdNiめっき膜34の表面において、Niの成分が11%であり、Pdの成分が89%である。
 実施例2においても、PdNiめっき膜34を酢酸過水に浸漬してフィルタ基体部12を形成すると、フィルタ基体部12の表面において、Niの成分が0%となり、Pdの成分が100%となっている。
 実施例2の分析結果においても、PdNiめっき膜34を酢酸過水に浸漬処理することによって、PdNiめっき膜34の表層のNiを除去し、Pdを主成分とする表層21を有するフィルタ基体部12を作製することができた。
[実施例3]
 実施例3について説明する。実施例3においては、上述した製造方法においてPdNiめっき浴用のめっき液のpH値を変化させて濾過フィルタ10を製造した。なお、めっき液のpH値は、7.2、7.5、7.9とした。実施例3においては、製造した濾過フィルタ10に対して、溶出試験を行った。溶出試験は、濾過フィルタ10の表面積1cmの部分をPBS10mlに浸漬し、37℃に保った状態で、インキュベータ内で1週間保管した。そして、ICP-MS(アジレント・テクノロジー社製)を用いてPd及びNiの溶出濃度を分析した。なお、ICP-MSのPd及びNiの検出下限値は、0.005μg/mlである。
 図8は、実施例3におけるNiの溶出濃度の分析結果を示す図である。図9は、実施例3におけるPdの溶出濃度の分析結果を示す図である。図8及び図9に示すように、Pdの溶出濃度及びNiの溶出濃度は、ICP-MSのPd及びNiの検出下限値より小さかった。このことから、実施例3においては、Pd及びNiが溶出していないことがわかる。
 好ましくは、めっき液のpH値は、7.0以上8.5以下である。より好ましくは、めっき液のpH値は、7.2以上7.9以下である。
[実施例4]
 実施例4について説明する。実施例4においては、上述した製造方法においてPdNiめっき浴を行う際の電流密度を変化させて濾過フィルタ10を製造した。なお、電流密度は、2.9[A/dm]以上14.5[A/dm]以下とした。実施例4においては、製造した濾過フィルタ10に対して、溶出試験を行った。溶出試験は、濾過フィルタ10の表面積1cmの部分をPBS10mlに浸漬し、37℃に保った状態で、インキュベータ内で1週間保管した。そして、実施例3と同様に、ICP-MS(アジレント・テクノロジー社製)を用いてPd及びNiの溶出濃度を分析した。
 図10は、実施例4におけるNiの溶出濃度の分析結果を示す図である。図11は、実施例4におけるPdの溶出濃度の分析結果を示す図である。図10及び図11に示すように、Pdの溶出濃度及びNiの溶出濃度は、ICP-MSのPd及びNiの検出下限値より小さかった。このことから、実施例4においては、Pd及びNiが溶出していないことがわかる。
 好ましくは、電流密度は、0.5[A/dm]以上30[A/dm]以下である。より好ましくは、電流密度は、2.9[A/dm]以上14.5[A/dm]以下である。
[実施例5]
 実施例5について説明する。実施例5においては、上述した製造方法においてPdNiめっき浴中のPdとNiの濃度比を変化させてPdNiめっき膜34を形成した。実施例5において、Pd濃度比は、52%以上80%以下で変化させた。Pd濃度比は、Pd/(Pd+Ni)の式で算出される。また、Ni濃度比は、Ni/(Pd+Ni)の式で算出される。実施例5においては、めっき浴中にPd濃度比を変化させることによるPdNiめっき膜34の組成に与える影響を調べるため、Pd濃度比を変化させて形成したPdNiめっき膜34のPd濃度比を分析した。
 図12は、実施例5におけるPd濃度比に対するめっき膜34のPd濃度比との関係の一例を示す図である。図12に示すように、PdNiめっき膜34を形成する際に、めっき浴中のPdとNiの濃度比を制御することによって、PdNiめっき膜34の組成比を変化させることができている。
 実施例5においては、図12に示すPd濃度比で形成したPdNiめっき34のそれぞれについて、XPSを用いて表層の成分分析を行った。図13は、実施例5における各組成比におけるPdNiめっき膜34の表層のNi成分の分析結果を示す図である。なお、図13に示すNDは、XPSの検出下限値以下であることを示す。
 図13に示すように、Pd:Niの組成比が、52:48、58:42、66:34、68:32、及び80:20であるとき、PdNiめっき膜34の表層のNi比率はND以下であった。このことから、実施例5においては、PdNiめっき膜34の表層にNiが検出されていないことがわかる。
[実施例6]
 実施例6について説明する。実施例6においては、上述した製造方法においてPdNiめっき膜34の表面粗さRaを変化させて濾過フィルタ10を製造した。なお、表面有粗さRaは、PdNiめっき浴を行う際のめっき液のpH値、電流密度、基板素地、膜厚条件を調整することによって、変化させた。実施例6においては、表面粗さRaは、0.02、0.94及び1.98μmとした。実施例6においては、製造した濾過フィルタ10に対して、溶出試験を行った。溶出試験は、濾過フィルタ10の表面積1cmの部分をPBS10mlに浸漬し、37℃に保った状態で、インキュベータ内で1週間保管した。そして、実施例3及び4と同様に、ICP-MS(アジレント・テクノロジー社製)を用いてNiの溶出濃度を分析した。
 図14は、実施例6におけるNiの溶出濃度の分析結果を示す図である。図14に示すように、Niの溶出濃度は、ICP-MSのNiの検出下限値より小さかった。このことから、実施例6においては、Niが溶出していないことがわかる。
 好ましくは、表面粗さRaは、2.5μm以下である。より好ましくは、表面粗さRaは、1.98μm以下である。
 PdNiめっき膜34は酢酸過水に浸漬することで表層のNiが溶けて消失し、結果的に表層21がPdリッチとなる。この状態のPdNiめっき膜34を使用して溶出試験を行うと、Niの溶出濃度は検出下限値(0.01μg/ml)以下となる。表面粗さRaが2.5μm以下の場合、酢酸過水の浸漬でPdNiめっき膜34の表面に十分な酢酸過水による液交換が行われるので、表層21においてNiは完全に消失しPdリッチとなる。も表面粗さRaが2.5μmより大きい場合、表層21の微細凹凸部の一部に酢酸過水が十分に行き渡らない箇所、即ち液の交換が生じ難い箇所が生じる。当該箇所は表層21のNiが消失しにくく、Pdリッチになりにくいことが想定される。この状態のPdNiめっき膜34に溶出試験を施すと、表層21に一部残った状態のNiが溶出することで、Ni濃度の上昇が生じたと考えられる。
[実施例7]
 実施例7について説明する。実施例7においては、上述した製造方法においてPdNiめっき膜34を酢酸過水に浸漬する時間を変化させて濾過フィルタ10を製造した。実施例7におけるPdNiめっき膜34におけるPd:Niの組成比は、9:1である。実施例7において、浸漬時間は、室温にて0秒、10秒、30秒、1分、5分、30分、1時間、2時間とした。なお、実施例7においては、酢酸過水は、酢酸5%:過酸化水素5%:純水90%である。
 実施例7においては、各浸漬時間において製造した濾過フィルタ10の表層の成分をXPSによって分析した。図15は、実施例7における濾過フィルタ10の表層のNi成分の分析結果を示す図である。図15に示すように、浸漬時間が1分以上である場合に、濾過フィルタ10の表層のNi成分を0%にすることができる。
[実施例8]
 実施例8について説明する。実施例8においては、上記製造方法により製造した濾過フィルタ10のサンプルA1及びサンプルA2の組成を調べた。実施例8では、TEM観察及びEDXマッピングを行った。なお、TEM観察は、FE-TEM(日本電子株式会社:JEM-F200)を用いて行った。TEMの測定条件は、加速電圧:200kV、集束レンズ絞り:#2、前処理:Ptコーティングとした。EDXマッピングは、Noran system 7(和研薬株式会社)を用いて行った。また、EDXの測定条件は、スポット径:φ1.0nm、時定数:Rate1、積算回数:100回とした。
 濾過フィルタ10のサンプルA1は、電流密度2.9[A/dm]で作製した。サンプルA2は、電流密度14.5[A/dm]で作製した。また、サンプルA1及びサンプルA2における濾過フィルタ10の製造では、酢酸過水(酢酸5%:過酸化水素5%:純水90%)によるPdNiめっき膜の浸漬時間はいずれも2時間とした。
 図16Aは、実施例8におけるサンプルA1のEDXマッピングを示す図である。図16Aにおいて、M1部分はサンプルA1の表層21の部分を示し、M2部分はサンプルA1の母材部分を示す。図16Aに示すサンプルA1の中間層23は、表面から32nm付近の領域に形成されている。また、図16Aに示す母材22の部分であるM2部分は、表面から106nm付近の領域である。
 図16Bは、実施例8におけるサンプルA2のEDXマッピングを示す図である。図16Bにおいて、M3部分はサンプルA2の表層21の部分を示し、M4部分はサンプルA2の母材22の部分を示す。図16Bに示すサンプルA2の中間層23は、表面から22.5nm付近の領域に形成されている。また、図16Bに示す母材22の部分であるM4部分は、表面から97nmであった。
 図16Aに示すM1部分においてEDX定量分析を行ったところ、Pd:98.7%、Ni:0.6%、O:0.7%であった。また、図16Aに示すM2部分においてEDX定量分析を行ったところ、Pd:81.6%、Ni:18.4%、O:0%であった。なお、1%未満の値は、ノイズを含んでいる。
 図16Bに示すM3部分においてEDX定量分析を行ったところ、Pd:98.9%、Ni:1.1%、O:0%であった。また、図16Bに示すM4部分においてEDX定量分析を行ったところ、Pd:76.6%、Ni:23.4%、O:0%であった。なお、1%未満の値は、ノイズを含んでいる。
 図16A及び図16Bに示すように、実施例8のサンプルA1及びサンプルA2のいずれの場合においても、表層部分のNiが消失していることが確認できた。即ち、電流密度2.9[A/dm]及び電流密度14.5[A/dm]で作製した濾過フィルタ10のいずれの場合においても、表層部分のNiが消失していることが確認できた。なお、サンプルA1のM2部分(母材部分)とサンプルA2のM4部分(母材部分)において、PdとNiとの組成比が異なる値になっているのは、電流密度の違いによるためと考えられる。
[効果]
 実施の形態1に係る濾過フィルタ10によれば、以下の効果を奏することができる。
 濾過フィルタ10は、表層21と、表層21より内部側に形成される母材22と、表層21と母材22との間に形成される中間層23と、を備える。表層21は、Pdを主成分とし、母材22は、PdNi合金を主成分とし、中間層23は、表層21側から母材22側に向かってPdとNiとの成分比率が変化するPdNi合金を主成分とする。このような構成により、濾過フィルタ10の腐食耐性を向上させることができる。
 ここで、濾過フィルタ10の構成との対比を行うために、比較例1の濾過フィルタの構成について説明する。比較例1の濾過フィルタは、めっきを行うことによって卑金属で形成される母材122の表面を貴金属でコーティングし、卑金属の母材122の表面に貴金属の表層121を形成している。また、比較例1では、表層121はPdを主成分とし、母材122はNiを主成分としている。
 図17は、比較例1の濾過フィルタ110の構成の一例の一部を示す模式図である。図17に示すように、比較例1の濾過フィルタ110では、卑金属であるNiを主成分とする母材122の上に、貴金属であるPdを主成分とする表層121が形成されている。このため、表層121と母材122との間に連続した界面が形成されている。また、表層121には、めっきをする際に、母材122の表面に付着した不純物及び/又は表面粗さに起因して欠陥150が発生している。
 このため、比較例1の濾過フィルタ110では、電解質溶液等の液体が表層121の欠陥150を通じて母材122に接触しやすくなっている。これにより、母材122が欠陥150から溶出することを抑制することが難しくなっている。
 また、表層121と、母材122と、表層121と母材122の界面とに接触した電解質溶液とで局部電池が形成されやすく、卑金属(Ni)の母材122の表面でアノード反応が生じ、母材122が腐食される可能性がある。更に、表層121と母材122との間の界面が連続して繋がっているため、母材122が腐食されると母材122全体にわたって腐食が進行しやすい。
 また、表層121が傷つけられて剥がれた場合、母材122が露出しやすく、電解質溶液に接触した場合に母材が溶出しやすい。
 一方、実施の形態1の濾過フィルタ10では、図3に示すように、表層21と母材22との間に中間層23を形成している。中間層23では、表層21側から母材22側に向かってPdとNiとの成分比率が変化している。このため、濾過フィルタ10の中間層23では、PdとNiとの界面が分散して形成されている。これにより、濾過フィルタ10を電解質溶液などの液体に接触させたとき、表層21の欠陥からNiが溶出することを抑制することができる。
 また、表層21の欠陥を通じて濾過フィルタ10の内部に電解質溶液が流れ込んだ場合であっても、PdとNiとが電解質溶液を介して接触しにくい。このため、PdとNiとの界面で局部電池が形成されにくく、Niが腐食されることを抑制することができる。更に、濾過フィルタ10において、表層21の欠陥から電解質溶液が流入し、PdとNiとが電解質溶液を介して接触してNiが腐食されたとしても、PdとNiの界面とが分散しているため、腐食が母材22全体に拡がりにくい。
 また、表層21が傷つけられて剥がれたとしても、中間層23が露出するだけであるため、母材22が露出することを抑制することができる。このため、母材22が溶出することを抑制することができる。このように、濾過フィルタ10では、表層21と母材22との間に中間層23を形成することによって、母材22の溶出を抑制することができる。
 中間層23におけるPdに対するNiの割合は、濾過フィルタ10の深さ方向D1に向かって増加している。このような構成により、中間層23において、Niの成分の多くを表層21から遠ざけることができ、電解質溶液との接触によるNiの溶出及び腐食を抑制することができる。これにより、濾過フィルタ10の腐食耐性を更に向上させることができる。
 中間層23の厚さは、表層21の厚さより大きい。このような構成により、Niの成分を濾過フィルタ10の深さ方向D1により分散させることができる。また、母材22を表層21からより遠ざけることができるため、母材22の溶出及び腐食をより抑制することができる。これにより、濾過フィルタ10の腐食耐性を更に向上させることができる。
 中間層23は、濾過フィルタ10の表面からの深さ10nmより大きく30nm以下の領域に形成される。より好ましくは、中間層23は、濾過フィルタ10の表面からの深さ20nm以上30nm以下の領域に形成される。このような構成により、濾過フィルタ10の腐食耐性を更に向上させることができる。
 さらに、母材22は中間層23よりも深い位置に形成される。一般に、電解質溶液は深さに応じて侵入し難くなるため、電解質溶液が母材と接触する機会が少なくなる。従って、濾過フィルタ10の腐食耐性を向上させることができる。
 母材22におけるPdとNiとの成分比率は80:20であり、中間層23におけるPdとNiとの成分比率は100:0以上80:20以下の範囲で変化する。このような構成により、濾過フィルタ10の腐食耐性を更に向上させることができる。
 なお、実施の形態1では、Pd及びPdNi合金で構成される濾過フィルタ10の例について説明したが、これに限定されない。濾過フィルタ10は、Pd以外の貴金属、及びNi以外の卑金属を含む金属又は合金で構成されていてもよい。
 中間層23におけるPdに対するNiの割合が濾過フィルタ10の深さ方向D1に向かって増加している例について説明したが、これに限定されない。例えば、中間層23においては、PdNi合金のPdに対するNiの割合が一定である部分及び/又は減少している部分を含んでいてもよい。このような構成であっても、濾過フィルタ10の腐食耐性を向上させることができる。
 実施の形態1では、中間層23の厚さが表層21の厚さより大きい例について説明したが、これに限定されない。例えば、中間層23の厚さは表層21の厚さより小さくてもよいし、同じであってもよい。このような構成であっても、濾過フィルタ10の腐食耐性を向上させることができる。
(実施の形態2)
 本発明の実施の形態2では、実施の形態1の濾過フィルタをメッシュ式ネブライザーのメッシュとして使用している。なお、実施の形態2では、主に実施の形態1と異なる点について説明する。実施の形態2においては、実施の形態1と同一又は同等の構成については同じ符号を付して説明する。また、実施の形態2では、実施の形態1と重複する記載は省略する。
 実施の形態2においては、メッシュ式ネブライザーのメッシュの腐食耐性を向上させることを目的とする。
 実施の形態2のメッシュの一例について、図18を用いて説明する。図18は、本発明に係る実施の形態2のメッシュ50の一例の概略部分断面図である。図18に示すように、メッシュ50は、第1基体部12と、第2基体部13と、を備える。なお、実施の形態2で説明する第1貫通孔11及び第1基体部12は、実施の形態1の貫通孔11及びフィルタ基体部12に対応する。
 第2基体部13は、第1基体部12の第1主面PS1側に設けられている。第2基体部13は、第3主面PS3と、第3主面PS3と対向する第4主面PS4と、を有する板状部材である。第2基体部13の厚みは、第1基体部12の厚みより小さい。
 第2基体部13は、第1基体部12と一体で形成されている。
 第2基体部13には、複数の第2貫通孔14が設けられている。複数の第2貫通孔14は、第2基体部13において第3主面PS3及び第4主面PS4上に周期的に設けられている。具体的には、複数の第2貫通孔14は、第2基体部13においてマトリクス状に等間隔で設けられている。
 例えば、複数の第2貫通孔14は、第3主面PS3側(Z方向)から見て、正方格子配列で設けられている。なお、複数の第2貫通孔14の配列は、正方格子配列に限定されず、例えば、準周期配列、又は周期配列であってもよい。周期配列の例としては、方形配列であれば、2つの配列方向の間隔が等しくない長方形配列でもよく、三角格子配列又は正三角格子配列などであってもよい。あるいは、第2貫通孔14は、第2基体部13に複数設けられていればよく、配列は限定されなくてもよい。
 実施の形態2では、第2貫通孔14は、第3主面PS3側(Z方向)から見て、正方形の形状を有する。なお、第2貫通孔14は、第3主面PS3側(Z方向)から見た形状が正方形に限定されず、例えば長方形、多角形、円形、又は楕円などの形状であってもよい。
 実施の形態2では、第2基体部13の第3主面PS3に対して垂直な面に投影した第2貫通孔14の形状(断面形状)は、矩形状である。なお、第2貫通孔14の断面形状は、矩形状に限定されず、例えば、平行四辺形又は台形等のテーパー形状であってもよいし、対称形状であってもよいし、非対称形状であってもよい。
 第2貫通孔14の大きさは、第1貫通孔11の大きさよりも小さい。第2貫通孔14が正方形状を有する場合、メッシュ50の縦方向(X方向)及び横方向(Y方向の)における第2貫通孔14の一辺の長さは、第1貫通孔11の一辺の長さより小さい。第2貫通孔14が円形状を有する場合、第2貫通孔14の直径は、第1貫通孔11の直径より小さい。
 複数の第2貫通孔14は、それぞれ、複数の第1貫通孔11と繋がっている。言い換えると、複数の第2貫通孔14は、それぞれ、複数の第1貫通孔11と連通している。
 実施の形態1の濾過フィルタ10と同様に、メッシュ50は、表層21と、表層21より内部側に形成される母材22と、表層21と母材22との間に形成される中間層23と、を備える。メッシュ50の表層21は、Pdを主成分とする。メッシュ50の母材22は、PdNi合金を主成分とする。メッシュ50の中間層23は、表層21側から母材22側に向かってPdとNiとの成分比率が変化するPdNi合金を主成分とする。
[メッシュの製造方法の一例]
 メッシュ50の製造方法の一例について図19A~19Kを用いて説明する。図19A~19Kは、本発明に係る実施の形態2のメッシュ50の製造工程の一例を示す。
 図19Aに示すように、シリコンなどの基板41を準備する。基板41は、例えば、表面洗浄されていてもよい。
 図19Bに示すように、基板41上に厚さ500nmのCu膜42を形成する。例えば、Cu膜42は、スパッタ成膜装置によりスパッタリングすることによって形成される。あるいは、Cu膜42は、蒸着装置により蒸着することによって形成されてもよい。このとき、基板41とCu膜42との接着性を向上させるために、基板41とCu膜42との間に厚さ50nmのTi膜を形成してもよい。
 図19Cに示すように、Cu膜42上にレジストを塗布し、乾燥させることで厚さ2μmのレジスト膜43を形成する。例えば、Cu膜42上にスピンコーターを用いて感光性ポジ型液体レジスト(住友化学株式会社製:Pfi-3A)を塗布する。なお、スピンコーターの条件は、例えば、1140rpm、30secである。次に、ホットプレートを用いてレジストを加熱乾燥して、厚さ2.0μmのレジスト膜43を形成する。なお、ホットプレートの条件は、例えば、加熱温度90℃、加熱時間90秒である。
 図19Dに示すように、レジスト膜43を露光および現像処理し、第2基体部13に相当する箇所のレジスト膜43を除去する。例えば、露光機にはi線ステッパー(Canon製Pfi-37A)を使用する。現像はパドル現像装置を使用して行われる。現像液はTMAH(Tetramethylammonium hydroxide)を使用する。露光および現像処理した後、水洗及び乾燥処理を行う。
 図19Eに示すように、電解めっき装置を用いて、PdNiめっき浴を行うことによって電解めっきを行う。これにより、レジスト膜43を除去した部分にPdNiめっき膜44を形成する。なお、電解めっきの条件は、例えば、電流密度は1A/dm、電気量は4AM、めっき液のpHは7.5、めっき厚みは1.6μmである。
 図19Fに示すように、高圧スプレー処理が可能なレジスト剥離装置を用い、剥離液NMP(N-methyl-2-pyrrolidone)でレジスト膜43を剥離する。その後、PdNiめっき膜44をIPA(Isopropyl alcohol)洗浄及び水洗処理し、乾燥させる。
 図19Gに示すように、PdNiめっき膜44の上にドライフィルムレジスト45をラミネート処理によって貼り付ける。ドライフィルムレジスト45の厚さは50μmである。ラミネート処理の上下ロール温度は100℃であり、送り速度は0.4m/sである。
 図19Hに示すように、ドライフィルムレジスト45を露光および現像処理し、第1基体部12に相当する箇所のドライフィルムレジスト45を除去する。例えば、アライナー露光で処理し、スプレー現像で現像する。現像液は炭酸ナトリウム3%溶液である。
 図19Iに示すように、電解めっき装置を用いて、PdNiめっき浴を行うことによって電解めっきを行う。これにより、ドライフィルムレジスト45を除去した部分にPdNiめっき膜46を形成する。なお、めっき前処理として、5%の塩酸に1分間浸漬し、水洗した。水洗後、電解めっき装置によってPdNi電解めっきを行った。なお、電解めっきの条件は、例えば、電流密度は1A/dm、電気量は4AM、めっき液のpHは7.5、めっき厚みは1.6μmである。
 図19Jに示すように、レジスト剥離装置を用い、剥離液NMP(N-methyl-2-pyrrolidone)でレジスト膜45を剥離する。
 図19Kに示すように、エッチング液兼PdNiめっき膜44,46の表層Ni溶解除去液として酢酸過水(酢酸:過酸化水素:水=5:5:90、室温)を調整し、スターラーを攪拌させながら48時間浸漬処理してCu膜42をエッチング除去する。これにより、基板41からPdNiめっき膜44,46を剥離すると共に、PdNiめっき膜44,46の表層のNiを溶解することによって、第1基体部12及び第2基体部13を作製する。
 PdNiめっき膜44,46を酢酸過水に浸漬処理することによって、PdNiめっき膜44,46の表面から内部に向かってNiを徐々に溶解する。PdNiめっき膜44,46の表面付近においてはPdNiめっき膜44,46のNiが酢酸過水に接触しやすいため、Niが溶解しやすい。一方、PdNiめっき膜44,46の内部に向かうほど、PdNiめっき膜44,46のNiが酢酸過水に接触しにくくなり、Niが溶解しにくくなる。即ち、PdNiめっき膜34の表面から内部に向かって、Niの溶解量が徐々に少なくなる。
 このように、第1基体部12及び第2基体部13の表面付近では、酢酸過水によってNiが溶解され、Pdを主成分とする表層21が形成される。また、第1基体部12及び第2基体部13の表層21から深さ方向D1に向かって、酢酸過水によるNiの溶解量が徐々に少なくなり、PdとNiとの成分比率が変化するPdNi合金を主成分とする中間層23が形成される。そして、酢酸過水によってNiが溶解しなかったPdNiめっき膜44,46が母材22となる。
 このようにして、Pdを主成分とする表層21と、PdNi合金を主成分とする母材22と、表層21と母材22との間に形成され、PdとNiとの成分比率が変化するPdNi合金を主成分とする中間層23とを備えるメッシュ50を作製することができる。
[効果]
 実施の形態2に係るメッシュ50によれば、以下の効果を奏することができる。
 メッシュ50は、表層21と、表層21より内部側に形成される母材22と、表層21と母材22との間に形成される中間層23と、を備える。表層21は、Pdを主成分とし、母材22は、PdNi合金を主成分とし、中間層23は、表層21側から母材22側に向かってPdとNiとの成分比率が変化するPdNi合金を主成分とする。このような構成によりメッシュ50の腐食耐性を向上させることができる。
 なお、実施の形態2では、メッシュ50が第1基体部12と第2基体部13とを備える例について説明したが、これに限定されない。メッシュ50は、表層21、母材22及び中間層23を有する要素で形成されていればよい。メッシュ50は、第2基体部13を備えていなくてもよい。
 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した特許請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
 本発明の濾過フィルタは、液体中の濾過対象物を濾過する用途に有用である。
 10 濾過フィルタ
 11 貫通孔(第1貫通孔)
 12 フィルタ基体部(第1基体部)
 13 第2基体部
 14 第2貫通孔
 21 表層
 22 母材
 23 中間層
 31 基板
 32 Cu膜
 33 レジスト膜
 34 PdNiめっき膜
 41 基板
 42 Cu膜
 43 レジスト膜
 44 PdNiめっき膜
 45 ドライフィルムレジスト
 46 PdNiめっき膜
 50 メッシュ

Claims (6)

  1.  表層と、
     前記表層より内部側に形成される母材と、
     前記表層と前記母材との間に形成される中間層と、
    を備え、
     前記表層は、Pdを主成分とし、
     前記母材は、PdNi合金を主成分とし、
     前記中間層は、前記表層側から前記母材側に向かってPdとNiとの成分比率が変化するPdNi合金を主成分とする、濾過フィルタ。
  2.  前記中間層におけるPdに対するNiの割合は、前記表層側から前記母材側に向かって増加している、請求項1に記載の濾過フィルタ。
  3.  前記中間層の厚さは、前記表層の厚さより大きい、請求項1又は2に記載の濾過フィルタ。
  4.  前記中間層は、前記濾過フィルタの表面からの深さ10nmより大きく35nm以下の領域に形成される、請求項3に記載の濾過フィルタ。
  5.  前記母材におけるPdとNiとの成分比率は80:20であり、
     前記中間層におけるPdとNiとの成分比率は100:0以上80:20以下の範囲で変化する、請求項1~4のいずれか一項に記載の濾過フィルタ。
  6.  前記母材におけるPdとNiとの成分比率は75:25以上85:15以下であり、
     前記中間層におけるPdとNiとの成分比率は100:0以上75:25以下の範囲で変化する、請求項1~4のいずれか一項に記載の濾過フィルタ。
PCT/JP2019/050159 2019-01-07 2019-12-20 濾過フィルタ WO2020145096A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980086078.0A CN113301979B (zh) 2019-01-07 2019-12-20 过滤滤除器
EP19908550.7A EP3845288A4 (en) 2019-01-07 2019-12-20 PERCOLATION FILTER
JP2020565677A JP7111184B2 (ja) 2019-01-07 2019-12-20 濾過フィルタ
US17/323,125 US11986757B2 (en) 2019-01-07 2021-05-18 Filtration filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019000490 2019-01-07
JP2019-000490 2019-01-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/323,125 Continuation US11986757B2 (en) 2019-01-07 2021-05-18 Filtration filter

Publications (1)

Publication Number Publication Date
WO2020145096A1 true WO2020145096A1 (ja) 2020-07-16

Family

ID=71521348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050159 WO2020145096A1 (ja) 2019-01-07 2019-12-20 濾過フィルタ

Country Status (5)

Country Link
US (1) US11986757B2 (ja)
EP (1) EP3845288A4 (ja)
JP (1) JP7111184B2 (ja)
CN (1) CN113301979B (ja)
WO (1) WO2020145096A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114630714A (zh) * 2020-10-13 2022-06-14 韩国科学技术院 金属空气过滤器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162810A1 (ja) * 2013-04-04 2014-10-09 日立化成株式会社 生体物質捕獲用のフィルター
JP2015527481A (ja) * 2012-06-11 2015-09-17 スタムフォード・ディバイセズ・リミテッド ネブライザのための開口板を製造する方法
JP2019116653A (ja) * 2017-12-26 2019-07-18 株式会社リコー 金属部材、金属部材の製造方法、ヘッド構成部材、液体吐出ヘッド、液体吐出ユニット、液体を吐出する装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4463060A (en) * 1983-11-15 1984-07-31 E. I. Du Pont De Nemours And Company Solderable palladium-nickel coatings and method of making said coatings
US10022659B2 (en) * 2013-07-24 2018-07-17 Aichi Prefecture Device for isolating periphery circulating tumor cells or rare cells, and method of isolating periphery circulating tumor cells or rare cells
CN107384865A (zh) 2014-07-30 2017-11-24 日立化成株式会社 血中稀少细胞捕获方法
JPWO2016031971A1 (ja) * 2014-08-29 2017-06-08 日立化成株式会社 細胞捕捉方法、特定細胞捕捉済デバイスの製造方法、及び特定細胞含有溶液の製造方法
US20160169781A1 (en) * 2014-12-10 2016-06-16 Hitachi Chemical Company, Ltd. Cell-trapping system
EP3395575B1 (en) 2016-01-28 2020-07-15 KYOCERA Corporation Nozzle member and liquid ejection head using same, and recording apparatus
CN109415674B (zh) * 2017-03-10 2021-10-26 株式会社村田制作所 细胞过滤滤除器
JP6249124B1 (ja) * 2017-04-26 2017-12-20 株式会社村田製作所 有核細胞の濾過用フィルターおよびそれを用いた濾過方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015527481A (ja) * 2012-06-11 2015-09-17 スタムフォード・ディバイセズ・リミテッド ネブライザのための開口板を製造する方法
WO2014162810A1 (ja) * 2013-04-04 2014-10-09 日立化成株式会社 生体物質捕獲用のフィルター
JP2018088932A (ja) 2013-04-04 2018-06-14 日立化成株式会社 生体物質捕獲用のフィルター
JP2019116653A (ja) * 2017-12-26 2019-07-18 株式会社リコー 金属部材、金属部材の製造方法、ヘッド構成部材、液体吐出ヘッド、液体吐出ユニット、液体を吐出する装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3845288A4

Also Published As

Publication number Publication date
CN113301979A (zh) 2021-08-24
US11986757B2 (en) 2024-05-21
EP3845288A4 (en) 2022-06-08
EP3845288A1 (en) 2021-07-07
JP7111184B2 (ja) 2022-08-02
US20210268417A1 (en) 2021-09-02
JPWO2020145096A1 (ja) 2021-11-18
CN113301979B (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
US20080105555A1 (en) Plating Device, Plating Method, Semiconductor Device, And Method For Manufacturing Semiconductor Device
CN105339528B (zh) 金属多孔体、金属多孔体的制造方法和燃料电池
JP5590008B2 (ja) 燃料電池用集電板及びその製造方法
EP3838370A1 (en) Filtration filter and filtration method
WO2020145096A1 (ja) 濾過フィルタ
KR20140047077A (ko) 전착 코팅을 포함하는 인쇄 회로 기판 및 관련 물품
US10960331B2 (en) Cell-capturing filter
WO2017135153A1 (ja) 細胞捕捉フィルター、細胞捕捉デバイス、細胞捕捉方法、細胞観察方法、及び、細胞培養方法
JP6597932B2 (ja) 細胞捕捉用フィルタ、細胞捕捉用フィルタの製造方法、および細胞捕捉用フィルタの劣化判定方法
JP2810554B2 (ja) 回路基板の製造方法
TWI766613B (zh) 電鍍設備和電鍍晶圓的方法
JP6406480B1 (ja) 濾過フィルタ
WO2024180932A1 (ja) フィルタ及びフィルタデバイス
US20230053689A1 (en) Filter
WO2023127526A1 (ja) フィルタ
TWI642807B (zh) 銅箔基板及其製作方法
JP5807889B2 (ja) 金属構造体の形成方法
JP2002235192A (ja) 電解処理方法及びその装置
JPH0447652A (ja) 荷電粒子線鏡筒
JP2009155675A (ja) 電解めっき処理方法と装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019908550

Country of ref document: EP

Effective date: 20210331

Ref document number: 2020565677

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE