WO2020145061A1 - 生体音測定装置 - Google Patents

生体音測定装置 Download PDF

Info

Publication number
WO2020145061A1
WO2020145061A1 PCT/JP2019/049684 JP2019049684W WO2020145061A1 WO 2020145061 A1 WO2020145061 A1 WO 2020145061A1 JP 2019049684 W JP2019049684 W JP 2019049684W WO 2020145061 A1 WO2020145061 A1 WO 2020145061A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
measuring device
connecting member
sound measuring
contact surface
Prior art date
Application number
PCT/JP2019/049684
Other languages
English (en)
French (fr)
Inventor
荻原 剛
湯本 将彦
皓介 井上
有紀 詫間
Original Assignee
オムロンヘルスケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロンヘルスケア株式会社 filed Critical オムロンヘルスケア株式会社
Priority to DE112019005994.7T priority Critical patent/DE112019005994T5/de
Priority to CN201980082178.6A priority patent/CN113226188A/zh
Publication of WO2020145061A1 publication Critical patent/WO2020145061A1/ja
Priority to US17/305,566 priority patent/US20210330282A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/46Special adaptations for use as contact microphones, e.g. on musical instrument, on stethoscope

Definitions

  • the present invention relates to a body sound measuring device which measures a body sound by contacting the body surface of a subject such as an animal or a person.
  • the sound source is the respiratory sound, which is a physiological sound generated by the flow of air generated in the airway due to breathing, the auxiliary noise, which is an abnormal sound that occurs in a pathological state such as wheezing or pleural rub noise, or the cardiovascular system.
  • the respiratory sound which is a physiological sound generated by the flow of air generated in the airway due to breathing
  • the auxiliary noise which is an abnormal sound that occurs in a pathological state such as wheezing or pleural rub noise
  • the cardiovascular system a device that extracts a body sound including a heartbeat sound and the like as an electric signal using a microphone or the like.
  • Patent Documents 1 to 3 do not consider the problem of maintaining such a contact state.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a body sound measurement device capable of maintaining contact with a body surface in a good state and improving the accuracy of body sound measurement.
  • a body sound measuring device for measuring body sound of a subject,
  • a sound measurement unit including a sound detector for detecting the body sound and including a contact surface that is in contact with the body surface of the subject, A gripping part to be gripped by a measurer,
  • a body sound measuring device comprising: an elastic connecting member that connects the grip portion and the sound measuring unit.
  • the gripping part and the sound measuring unit are connected by the elastic connecting member, the gripping part with respect to the sound measuring unit with the contact surface in contact with the body surface of the subject. Even if it moves, the movement of the contact surface can be prevented by absorbing this movement by the deformation of the connecting member. Therefore, it becomes possible to easily maintain the contact state between the contact surface and the body surface, and improve the measurement accuracy of the body sound. In addition, the burden on the measurer can be reduced.
  • the connecting member and the wiring are separated from each other, even if the connecting member is deformed, the contact between the wiring and the connecting member can be prevented. As a result, it is possible to prevent noise from being mixed into the sound detected by the sound detector. Further, since the wiring is surrounded by the connecting member, it is possible to protect the wiring and improve the design.
  • the force applied from the grip to the sound measurement unit can be stabilized. Therefore, it becomes easy to maintain the contact state between the contact surface and the body surface. Further, since the wiring can be covered, the airtightness and design of the device can be improved.
  • the connecting member has an opening through which the wiring is formed, and is connected to the two cylindrical members that are spaced apart in the direction perpendicular to the contact surface and connects the two cylindrical members to each other.
  • a body sound measuring device comprising a plurality of columnar members arranged around each other and spaced apart from each other.
  • the amount of deformation of the connecting member is small, and this work can be performed stably. Further, when a force is applied to the connecting member in a direction parallel to the contact surface, the amount of deformation of the connecting member becomes large, so that the gripping portion is held while the contact surface and the body surface are kept in contact with each other. Can be easily moved horizontally
  • a body sound measurement device capable of maintaining contact with the body surface in a good state and improving the accuracy of body sound measurement.
  • FIG. 1 It is a side view which shows typically the schematic structure of the biological sound measuring device 1 which is one Embodiment of the biological sound measuring device of this invention. It is the schematic diagram which looked at the body sound measuring device 1 shown in FIG. 1 from the measurer side in the direction B. It is a cross-sectional schematic diagram near the head part of the biological sound measuring device 1 shown in FIG. It is a perspective view which shows typically the connection member 40 shown in FIG. It is a figure which shows the structure of the biological sound measuring apparatus 1A which is a modification of the biological sound measuring apparatus 1 of FIG. It is a figure which shows the structure of the modification of the biological sound measuring device 1 shown in FIG. It is a perspective view which shows typically the connection member 40A shown in FIG. It is a perspective view which shows typically the modification of the connection member 40A shown in FIG.
  • the living body sound measuring apparatus of the embodiment measures lung sound, which is an example of living body sound, from a subject such as a person, and, when it is determined that the measurement sound includes wheezing, notifies that effect. By doing so, it is possible to support the determination as to whether or not medication should be given to the person to be measured, or whether to bring the person to be measured to the hospital.
  • the living body sound measuring device of the embodiment connects a sound measuring unit including a contact surface that comes into contact with a body surface of a subject such as a person, a gripping part gripped by a measurer, and the gripping part and the sound measuring unit. And a connecting member having elasticity.
  • FIG. 1 is a side view schematically showing a schematic configuration of a body sound measuring device 1 which is an embodiment of the body sound measuring device of the present invention.
  • FIG. 2 is a schematic view of the body sound measuring device 1 shown in FIG. 1 as viewed in the direction B from the side of the measurer.
  • FIG. 3 is a schematic cross-sectional view in the vicinity of the head portion of the body sound measuring device 1 shown in FIG.
  • FIG. 4 is a perspective view schematically showing the connecting member 40 shown in FIG.
  • the body sound measuring device 1 has a columnar grip portion 10 formed of a housing made of resin or metal and extending in the direction A, and one end side of the grip portion 10 is provided. A head portion 11 is provided.
  • the grip portion 10 is a portion gripped by a measurer.
  • a substrate (not shown) on which an overall control unit that integrally controls the entire body sound measurement device 1 is formed, a battery (not shown) that supplies a voltage necessary for operation, and a display unit ( (Not shown) is provided.
  • the integrated control unit includes various processors, a RAM (Random Access Memory), a ROM (Read Only Memory), etc., and controls each hardware of the biological sound measurement device 1 according to a program.
  • the overall control unit performs, for example, a process of analyzing a lung sound detected by a sound detector 33 described later, a process of notifying a result of the analysis, and the like.
  • the head portion 11 has a connecting member 40 and a sound measuring unit that project to one side (the lower side in FIGS. 1 and 3) in a direction intersecting the longitudinal direction A of the grip portion 10. 3 is provided.
  • the connection member 40 is a member that connects the head unit 11 and the sound measurement unit 3.
  • a contact surface 30 that comes into contact with the body surface S of the measurement subject is provided at the tip of the sound measurement unit 3.
  • the contact surface 30 is, for example, a circular pressure receiving region 3a which is a plane required to receive the pressure from the body surface S, and the periphery of the pressure receiving region 3a provided to increase the contact area with the body surface S.
  • the expansion region 3b which is a flat surface formed in, for example, an annular shape. In the example of FIGS. 1 and 3, the pressure receiving region 3a slightly protrudes to the body surface S side from the expansion region 3b, but may be formed on the same surface as the expansion region 3b.
  • the direction B shown in FIG. 1 is a direction perpendicular to the contact surface 30 and intersects the longitudinal direction A of the grip portion 10.
  • the surface of the grip portion 10 opposite to the sound measuring unit 3 side 10a is located at a portion overlapping with the sound measuring unit 3 by a measurer.
  • a concave portion 12 for placing, for example, the index finger F of the hand Ha is formed.
  • the body sound measuring device 1 has a contact area including a pressure receiving area 3 a of the sound measuring unit 3 in a state where the index finger F of the measurer's hand Ha is placed in the recess 12 of the grip 10.
  • the surface 30 is used by being pressed against the body surface S by the index finger F.
  • the sound measurement unit 3 forms a sound detector 33 such as a MEMS (Micro Electro Mechanical Systems) type microphone or a capacitance type microphone, and an accommodation space 32b for accommodating the sound detector 33.
  • a bottomed cylindrical housing 32 having an opening 32a, a cover 34 that closes the opening 32a from the outside of the accommodation space 32b to form a pressure receiving region 3a that receives pressure from the body surface S, and a state in which the cover 34 is exposed.
  • a casing 31 having a bottomed cylindrical shape for housing the housing 32 and the cover 34.
  • the housing 32 is made of a material having a higher acoustic impedance and a higher rigidity than air, such as resin or metal.
  • the housing 32 is preferably made of a material that reflects the sound in the detection frequency band of the sound detector 33 so that the sound is not transmitted from the outside into the housing space 32b in the sealed state.
  • the cover 34 is a cylindrical member having a bottom, and the shape of its hollow portion is substantially the same as the outer wall shape of the housing 32.
  • the cover 34 is made of a material whose acoustic impedance is close to that of a human body, air, or water and which is flexible and has good biocompatibility.
  • the material of the cover 34 for example, silicone or elastomer is used.
  • the housing 31 is made of, for example, resin or the like.
  • An opening 31a is formed in the housing 31 at an end opposite to the grip portion 10 side, and a part of the cover 34 projects from the opening 31a and is exposed.
  • the surface of the cover 34 exposed from the housing 31 forms the pressure receiving area 3a.
  • the body sound measuring device 1 has a wiring SG for electrically connecting the sound detector 33 and the above-mentioned substrate built in the grip portion 10.
  • the wiring SG is drawn out from the housing 32 and the housing 31.
  • the wiring SG passes through the inside of the connecting member 40 described later and is connected to the substrate in the grip portion 10.
  • the connecting member 40 is a tubular (cylindrical in the example of FIGS. 3 and 4) and elastic member.
  • the connecting member 40 is a member that is softer than the grip portion 10, the housing 31, and the housing 32, and is made of, for example, silicone, rubber, elastomer, resin, or the like. It is preferable that the connecting member 40 be made of a material that does not easily generate a sound when it expands and contracts.
  • the wiring SG drawn from the housing 31 is inserted into the hollow portion of the connecting member 40, and the wiring SG is drawn into the inside of the grip portion 10 and connected to the above-described substrate.
  • the amount of deformation of the connecting member 40 with respect to the force applied in the direction B (referred to as the first amount of deformation) is zero or very small, and the amount of deformation with respect to the force applied in the direction C parallel to the contact surface 30 is less than the first amount of deformation. Is also configured to be sufficiently large. Further, the inner peripheral surface of the connecting member 40 is separated from the wiring SG, and even when the connecting member 40 is deformed to the maximum extent in the direction C, the inner peripheral surface and the wiring SG do not contact each other. The size of the hollow portion of the connecting member 40 and the height in the direction B are determined.
  • FIG. 5 is a schematic diagram for explaining the positional relationship between the sound measuring unit 3, the connecting member 40, and the grip portion 10 when viewed in the direction B.
  • the body sound measuring device 1 of FIG. It is the figure seen in the direction B.
  • the connecting member 40 is arranged inside the sound measurement unit 3 and inside the grip 10.
  • the longitudinal direction (direction A) of the grip portion 10 and the contact surface 30 intersect. Therefore, when the contact surface 30 is in contact with the body surface S, the grip portion 10 is not parallel to the body surface S. In such a configuration, since the hand of the measurer is separated from the body surface S of the subject, the effect of holding the contact state due to the deformation of the connecting member 40 can be more significantly obtained.
  • the inner peripheral surface of the connecting member 40 and the wiring SG are separated from each other. Therefore, even if the connecting member 40 is deformed, the contact between the wiring SG and the connecting member 40 can be prevented. As a result, it is possible to prevent noise from being mixed into the sound detected by the sound detector 33. Further, since the wiring SG is surrounded by the connecting member 40, the wiring SG can be protected and the designability of the device can be improved.
  • the connecting member 40 is arranged inside the sound measuring unit 3, an object such as the finger of the measurer can be attached to the connecting member 40. It becomes difficult to touch. Therefore, it is possible to suppress the generation of noise due to the contact between the connecting member 40 and the object. Further, as shown in FIG. 5, since the connecting member 40 is arranged inside the grip portion 10, it becomes more difficult for an object such as the finger of the measurer to come into contact with the connecting member 40, and noise is generated. It can be further suppressed.
  • connection member 40 is configured such that the deformation amount with respect to the force applied in the direction C parallel to the contact surface 30 is larger than the deformation amount with respect to the force applied in the direction B perpendicular to the contact surface 30. is there. According to this configuration, when the contact surface 30 of the sound measuring unit 3 is pressed against the body surface S, the amount of deformation of the connecting member 40 is small, and thus stable pressing can be performed. Further, when a force is applied to the connecting member 40 in the direction C parallel to the contact surface 30, the amount of deformation of the connecting member 40 increases. Therefore, the grip portion 10 can be easily moved in the direction C while maintaining the state where the contact surface 30 and the body surface S are in contact with each other, and it becomes easy to respond to the movement of the person to be measured and the like. ..
  • FIG. 6 is a diagram showing a configuration of a modified example of the body sound measuring device 1 shown in FIG. 1, and is a diagram corresponding to FIG. 3.
  • the body sound measuring device 1A shown in FIG. 6 has the same configuration as the body sound measuring device 1 except that the connecting member 40 is changed to the connecting member 40A.
  • FIG. 7 is a perspective view schematically showing the connecting member 40A shown in FIG. In FIG. 7, a cylindrical member 41, which will be described later, is indicated by a chain double-dashed line for ease of viewing the drawing.
  • the connecting member 40A includes a tubular member 41, a tubular member 43, and a plurality (six in the example of FIG. 7) of columnar members 42 that connect the tubular member 41 and the tubular member 43.
  • the tubular member 41 is a tubular member such as a rectangular tube or a cylinder having the direction B as the axial direction, and is a cylindrical member in the example of FIG. 7.
  • the tubular member 41 is fixed to the grip portion 10 with an adhesive or the like.
  • the tubular member 43 is a tubular member such as a rectangular tube or a cylinder having the direction B as the axial direction, and is a cylindrical member in the example of FIG. 7.
  • the tubular member 43 is spaced apart from the tubular member 41 in the direction B.
  • the housing 31 of the sound measuring unit 3 is fixed to the surface of the tubular member 43 opposite to the tubular member 41 side with an adhesive or the like.
  • the tubular member 41 and the tubular member 43 have the same shape, and the center of the opening 41a of the tubular member 41 and the center of the opening 43a of the tubular member 43 are aligned when viewed in the direction B. ing.
  • the columnar member 42 is a columnar member such as a prismatic column or a columnar column having the direction B as the axial direction, and is a columnar member in the example of FIG. 7. As shown in FIG. 7, when viewed from the direction B, the six columnar members 42 are arranged so as to surround each of the opening 41a of the tubular member 41 and the opening 43a of the tubular member 43 and are spaced apart from each other.
  • the wiring SG in the body sound measurement device 1A is inserted from the housing 31 side into the opening 43a of the tubular member 43.
  • the wiring SG inserted through the opening 43 a passes through the space surrounded by the six columnar members 42 and is inserted through the opening 41 a of the tubular member 41.
  • the wiring SG inserted through the opening 41 a is drawn inside the grip portion 10.
  • the columnar member 42 is a member having elasticity.
  • the amount of deformation of each columnar member 42 with respect to the force applied in the direction C is larger than the amount of deformation with respect to the force applied in the direction B.
  • the distances from the openings 41a and 43a of the six columnar members 42 in the direction C are values such that the respective columnar members 42 and the wiring SG do not contact each other even when the six columnar members 42 are deformed to the maximum extent in the direction C. Is set to.
  • the tubular member 41, the columnar member 42, and the tubular member 43 may be integrally molded, or separately molded and fixed to each other.
  • the connecting member 40A is configured to be deformable by the six columnar members 42 arranged so as to be separated from each other, the flexibility of the connecting member 40A can be enhanced. Therefore, the contact state between the contact surface 30 and the body surface S can be maintained more easily and continuously.
  • the columnar member 42 of the connecting member 40A extends in the direction B in the example of FIG. 7, it may be configured to extend in a direction intersecting with the direction B as shown in FIG. According to the configuration shown in FIG. 8, the flexibility of the connecting member 40A can be further increased.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

体表面との接触を良好な状態にて保持可能として生体音の測定精度を向上させることのできる生体音測定装置を提供する。 生体音測定装置(1)は、生体音を検出するための音検出器(33)を含み且つ被検体の体表面Sに接触される接触面(30)を含む音測定ユニット(3)と、測定者によって把持される把持部(10)と、把持部(10)と音測定ユニット(3)とを連結する弾性を持つ円筒状の連結部材(40)と、を備える。連結部材(40)の中空部には、配線SGが挿通されている。

Description

生体音測定装置
 本発明は、動物又は人等の被検体の体表面に接触させて生体音を測定する生体音測定装置に関する。
 呼吸により気道内に生じた空気の流れを音源とする生理的な音である呼吸音、喘鳴又は胸膜摩擦音等の病的状態で発生する異常な音である副雑音、又は心血管系を音源とする心拍音、等を含む生体音を、マイクロフォン等を利用して電気信号として取り出す装置(例えば、特許文献1-3参照)が知られている。
日本国特開2000-60845号公報 日本国特開2013-123493号公報 日本国特開2014-166241号公報
 生体音の測定を精度よく行うためには、生体音測定装置の被接触面と生体の体表面との接触状態を良好な状態にて保持し続ける必要がある。特許文献1から3は、このような接触状態を保持するという課題について考慮していない。
 本発明は、上記事情に鑑みてなされたものであり、体表面との接触を良好な状態にて保持可能として生体音の測定精度を向上させることのできる生体音測定装置を提供することを目的とする。
(1)
 被検体の生体音を測定する生体音測定装置であって、
 前記生体音を検出するための音検出器を含み且つ前記被検体の体表面に接触される接触面を含む音測定ユニットと、
 測定者によって把持される把持部と、
 前記把持部と前記音測定ユニットとを連結する弾性を持つ連結部材と、を備える生体音測定装置。
 (1)によれば、把持部と音測定ユニットとが弾性を持つ連結部材によって連結されているため、接触面を被検体の体表面に接触させた状態で把持部が音測定ユニットに対して動いた場合であっても、この動きを連結部材の変形によって吸収して接触面の移動を防ぐことができる。したがって、接触面と体表面との接触状態を容易に保持し続けることが可能となり、生体音の測定精度を向上させることができる。また、測定者の負担を軽減することができる。
(2)
 (1)記載の生体音測定装置であって、
 前記音検出器と前記把持部に内蔵される基板とを電気的に接続する配線を備え、
 前記連結部材は、前記配線から離間し且つ前記配線を取り囲む構造である生体音測定装置。
 (2)によれば、連結部材と配線とが離間しているため、連結部材が変形した場合でも、配線と連結部材との接触を防ぐことができる。この結果、音検出器によって検出される音にノイズが混入するのを防ぐことができる。また、配線が連結部材によって取り囲まれるため、配線を保護したり、デザイン性を向上させたりすることができる。
(3)
 (2)記載の生体音測定装置であって、
 前記連結部材は、筒状の部材である生体音測定装置。
 (3)によれば、把持部から音測定ユニットへ加わる力を安定させることができる。このため、接触面と体表面との接触状態の維持が容易となる。また、配線を覆うことができるため、装置の気密性やデザイン性を高めることができる。
(4)
 (2)記載の生体音測定装置であって、
 前記連結部材は、前記配線を通すための開口が形成され、前記接触面に垂直な方向に離間して配置された2つの筒状部材と、前記2つの筒状部材を連結し且つ前記配線の周囲に互いに離間して配列された複数の柱状部材と、により構成される生体音測定装置。
 (4)によれば、複数の柱状部材同士の間には空隙があるため、連結部材の柔軟性を高めることができる。したがって、接触面と体表面との接触状態をより容易に保持し続けることが可能となり、生体音の測定精度を向上させることができる。
(5)
 (1)から(4)のいずれか1つに記載の生体音測定装置であって、
 前記連結部材は、前記接触面に垂直な方向から見た状態において前記音測定ユニットよりも内側に位置する生体音測定装置。
 (5)によれば、連結部材に対して指等の物体が触れにくくなる。このため、連結部材と物体が接触することによるノイズの発生を抑制することができる。
(6)
 (1)から(5)のいずれか1つに記載の生体音測定装置であって、
 前記連結部材は、前記接触面に垂直な方向に加わる力に対する変形量よりも、前記接触面に平行な方向に加わる力に対する変形量が大きい生体音測定装置。
 (6)によれば、音測定ユニットの接触面を体表面に押し当てる際には連結部材の変形量が小さいため安定してこの作業を行うことができる。また、連結部材に対し接触面に平行な方向に力が加わった場合には連結部材の変形量が大きくなるため、接触面と体表面とを接触させている状態を維持したまま把持部を該水平な方向に容易に移動させることができる
 本発明によれば、体表面との接触を良好な状態にて保持可能として生体音の測定精度を向上させることのできる生体音測定装置を提供することができる。
本発明の生体音測定装置の一実施形態である生体音測定装置1の概略構成を模式的に示す側面図である。 図1に示す生体音測定装置1を測定者側から方向Bに見た模式図である。 図1に示す生体音測定装置1のヘッド部近傍の断面模式図である。 図1に示す連結部材40を模式的に示す斜視図である。 図1の生体音測定装置1の変形例である生体音測定装置1Aの構成を示す図である。 図1に示す生体音測定装置1の変形例の構成を示す図である。 図6に示す連結部材40Aを模式的に示す斜視図である。 図6に示す連結部材40Aの変形例を模式的に示す斜視図である。
(実施形態の生体音測定装置の概要)
 まず、本発明の生体音測定装置の実施形態の概要について説明する。実施形態の生体音測定装置は、人等の被検体から生体音の一例である肺音を測定し、測定音に喘鳴が含まれると判定した場合に、その旨を報知する。このようにすることで、被測定者への投薬の要否の判断、又は被測定者を病院に連れて行くかどうかの判断等を支援するものである。
 実施形態の生体音測定装置は、人等の被検体の体表面に接触される接触面を含む音測定ユニットと、測定者によって把持される把持部と、把持部と音測定ユニットとを連結する弾性を持つ連結部材と、を備える。この構成により、音測定ユニットの接触面を体表面に接触させた状態において、把持部に対し接触面に平行な方向に力が加わった場合でも、この力を連結部材の変形によって吸収することができ、接触面と体表面との接触状態を維持することができる。したがって、接触面と体表面との接触状態を容易に保持することができ、生体音の測定精度を向上させることが可能となる。
 以下、実施形態の生体音測定装置の具体的な構成例について説明する。
(実施形態)
 図1は、本発明の生体音測定装置の一実施形態である生体音測定装置1の概略構成を模式的に示す側面図である。図2は、図1に示す生体音測定装置1を測定者側から方向Bに見た模式図である。図3は、図1に示す生体音測定装置1のヘッド部近傍の断面模式図である。図4は、図1に示す連結部材40を模式的に示す斜視図である。
 図1及び図2に示すように、生体音測定装置1は、樹脂又は金属等の筐体で構成された方向Aに延びる柱状の把持部10を有し、この把持部10の一端側にはヘッド部11が設けられている。把持部10は、測定者によって把持される部分である。
 把持部10の内部には、生体音測定装置1の全体を統括制御する統括制御部が形成された基板(図示省略)、動作に必要な電圧を供給する電池(図示省略)、及び表示部(図示省略)等が設けられている。
 統括制御部は、各種のプロセッサ、RAM(Random Access Memory)、及びROM(Read Only Memory)等を含み、プログラムにしたがって生体音測定装置1の各ハードウェアの制御等を行う。統括制御部は、例えば、後述の音検出器33によって検出された肺音を解析する処理、その解析の結果を報知する処理等を行う。
 図1及び図3に示すように、ヘッド部11には、把持部10の長手方向Aと交差する方向の一方側(図1及び図3において下方側)へ突出する連結部材40及び音測定ユニット3が設けられている。連結部材40は、ヘッド部11と音測定ユニット3を連結する部材である。音測定ユニット3の先端には、被測定者の体表面Sに接触される接触面30が設けられている。
 接触面30は、体表面Sからの圧力を受けるために必要な平面である例えば円状の受圧領域3aと、体表面Sとの接触面積を大きくするために設けられた、受圧領域3aの周囲に形成された平面である例えば円環状の拡張領域3bと、により構成されている。図1及び図3の例では、受圧領域3aは、拡張領域3bよりも体表面S側に僅かに突出しているが、拡張領域3bと同一面に形成されていてもよい。図1に示す方向Bは、接触面30に垂直な方向であり、把持部10の長手方向Aに対して交差している。
 図2に示すように、接触面30に垂直な方向Bに見た状態において、把持部10の音測定ユニット3側と反対側の面10aには、音測定ユニット3と重なる部分に、測定者の手Haの例えば人差し指Fを置くための凹部12が形成されている。
 図1及び図2に示すように、生体音測定装置1は、把持部10の凹部12に測定者の手Haの人差し指Fが置かれた状態で、音測定ユニット3の受圧領域3aを含む接触面30がこの人差し指Fによって体表面Sに押圧されて使用される。
 図3に示すように、音測定ユニット3は、MEMS(Micro Electro Mechanical Systems)型マイクロフォン又は静電容量型マイクロフォン等の音検出器33と、音検出器33を収容する収容空間32bを形成しかつ開口32aを有する有底筒状のハウジング32と、開口32aを収容空間32bの外側から閉じて体表面Sからの圧力を受ける受圧領域3aを形成するカバー34と、カバー34を露出させた状態にてハウジング32及びカバー34を収容する有底筒状の筐体31と、を備える。
 ハウジング32は、樹脂又は金属等の空気より音響インピーダンスが高くかつ剛性の高い材料によって構成されている。ハウジング32は、密閉状態において、収容空間32bの内部に、外部から音が伝わらないように、音検出器33の検出周波数帯の音を反射する材料にて構成されていることが好ましい。
 カバー34は、有底筒状の部材であり、その中空部の形状は、ハウジング32の外壁形状とほぼ一致している。カバー34は、音響インピーダンスが人体、空気、又は水に近い素材でかつ生体適合性の良い可撓性を有する材料によって構成される。カバー34の材料としては、例えばシリコーン又はエラストマ等が用いられる。
 筐体31は、例えば樹脂等によって構成されている。筐体31には、把持部10側と反対側の端部に開口31aが形成されており、この開口31aからカバー34の一部が突出して露出した状態となっている。この筐体31から露出するカバー34の表面が上記の受圧領域3aを形成している。
 この受圧領域3aが体表面Sに密着した状態になると、生体の肺音によって生じる体表面Sの振動がカバー34を振動させる。カバー34が振動すると、この振動によって収容空間32bの内圧が変動し、この内圧変動によって、肺音に応じた電気信号が音検出器33によって検出されることになる。
 図3に示すように、生体音測定装置1は、音検出器33と、把持部10に内蔵される上記の基板と、を電気的に接続するための配線SGを有している。ハウジング32及び筐体31からは配線SGが引き出されている。配線SGは、後述する連結部材40の内部を通って、把持部10内の基板に接続されている。
 図3及び図4に示すように、連結部材40は、筒状(図3及び図4の例では円筒状)且つ弾性を有する部材である。連結部材40は、把持部10と筐体31及びハウジング32よりも柔らかい部材となっており、例えば、シリコーン、ゴム、エラストマ、又は樹脂等によって構成される。連結部材40は、伸縮する際に音が発生しにくい材料によって構成されていることが好ましい。連結部材40の中空部には、筐体31から引き出された配線SGが挿通されており、この配線SGは把持部10の内部に引き込まれて、上述した基板と接続されている。
 連結部材40は、方向Bに加わる力に対する変形量(第一の変形量という)はゼロ又はごく僅かであり、接触面30に平行な方向Cに加わる力に対する変形量は第一の変形量よりも十分に大きくなるよう構成されている。また、連結部材40の内周面は配線SGからは離間しており、連結部材40が方向Cに最大限変形した場合であっても、この内周面と配線SGとが接触しない程度に、連結部材40の中空部の大きさと方向Bの高さが決められている。
 図5は、方向Bに見た状態における音測定ユニット3、連結部材40、及び把持部10の位置関係を説明するための模式図であり、図1の生体音測定装置1を測定者側から方向Bに見た図である。図5に示すように、方向Bに見た状態において、連結部材40は、音測定ユニット3よりも内側に配置され、且つ、把持部10よりも内側に配置されている。
(生体音測定装置1の効果)
 以上のように、生体音測定装置1によれば、把持部10と音測定ユニット3とが弾性を持つ連結部材40によって連結されている。このため、接触面30が被測定者の体表面Sに接触された状態において、把持部10が音測定ユニット3に対して方向Cに動いた場合であっても、この動きを連結部材40の変形によって吸収して、接触面30の移動を防ぐことができる。したがって、接触面30と体表面Sとの接触状態を容易に保持し続けることが可能となり、生体音の測定精度を向上させることができる。特に、肺音から喘鳴を検出する装置においては、被測定者が乳幼児等であることが想定される。乳幼児は頻繁に動くことが想定されるため、上記の接触状態を容易に保持できることで、測定者の負担を軽減することができる。
 また、生体音測定装置1によれば、把持部10の長手方向(方向A)と接触面30とが交差している。このため、接触面30を体表面Sに接触させている状態においては、把持部10が体表面Sに平行とならない。このような構成においては、測定者の手が被検体の体表面Sから離れた状態になるため、連結部材40の変形による接触状態の保持効果をより顕著に得ることができる。
 また、生体音測定装置1によれば、連結部材40の内周面と配線SGとが離間している。このため、連結部材40が変形した場合でも、配線SGと連結部材40との接触を防ぐことができる。この結果、音検出器33によって検出される音にノイズが混入するのを防ぐことができる。また、配線SGが連結部材40によって取り囲まれているため、配線SGを保護したり、装置のデザイン性を向上させたりすることができる。
 また、生体音測定装置1によれば、図5に示すように、連結部材40が音測定ユニット3よりも内側に配置されているため、連結部材40に対して測定者の指等の物体が触れにくくなる。したがって、連結部材40と物体が接触することによるノイズの発生を抑制することができる。また、図5に示すように、連結部材40が把持部10よりも内側に配置されていることで、連結部材40に対して測定者の指等の物体が更に触れにくくなり、ノイズの発生を更に抑制することができる。
 また、生体音測定装置1では、連結部材40が、接触面30に垂直な方向Bに加わる力に対する変形量よりも、接触面30に平行な方向Cに加わる力に対する変形量が大きくなる構成である。この構成によれば、音測定ユニット3の接触面30を体表面Sに押し当てる際には、連結部材40の変形量が小さいため、安定した押し当てを行うことができる。また、連結部材40に対し接触面30に平行な方向Cに力が加わった場合には連結部材40の変形量が大きくなる。このため、接触面30と体表面Sとを接触させている状態を維持したまま把持部10を方向Cに容易に移動させることができ、被測定者の動き等に対応することが容易となる。
(生体音測定装置1の変形例)
 図6は、図1に示す生体音測定装置1の変形例の構成を示す図であり、図3に対応する図である。図6に示す生体音測定装置1Aは、連結部材40が連結部材40Aに変更された点を除いては、生体音測定装置1と同じ構成である。図7は、図6に示す連結部材40Aを模式的に示す斜視図である。図7においては、図面の見易さのために、後述する筒状部材41を二点鎖線にて示している。
 連結部材40Aは、筒状部材41と、筒状部材43と、筒状部材41と筒状部材43とを連結する複数(図7の例では6つ)の柱状部材42と、を備える。
 筒状部材41は、方向Bを軸方向とする角筒状又は円筒状等の筒状の部材であり、図7の例では円筒状の部材となっている。筒状部材41は、接着剤等によって把持部10に固着されている。
 筒状部材43は、方向Bを軸方向とする角筒状又は円筒状等の筒状の部材であり、図7の例では円筒状の部材となっている。筒状部材43は、筒状部材41に対して方向Bに離間して配置されている。筒状部材43の筒状部材41側と反対側の面には、接着剤等によって音測定ユニット3の筐体31が固着されている。図7の例では、筒状部材41と筒状部材43は同一形状であり、筒状部材41の開口41aの中心と筒状部材43の開口43aの中心とは、方向Bに見て一致している。
 柱状部材42は、方向Bを軸方向とする角柱状又は円柱状等の柱状の部材であり、図7の例では円柱状の部材となっている。図7に示すように、6つの柱状部材42は、方向Bから見て、筒状部材41の開口41aと筒状部材43の開口43aの各々を囲む形で互いに離間して配列されている。
 生体音測定装置1Aにおける配線SGは、筐体31側から筒状部材43の開口43aに挿通されている。開口43aを挿通された配線SGは、6つの柱状部材42で囲まれる空間を通過して、筒状部材41の開口41aに挿通されている。開口41aに挿通された配線SGは、把持部10の内部に引き込まれている。
 連結部材40Aを構成する筒状部材41、柱状部材42、及び筒状部材43のうち、少なくとも柱状部材42は、弾性を有する部材となっている。各柱状部材42は、方向Bに加わる力に対する変形量よりも、方向Cに加わる力に対する変形量が大きくなっている。また、方向Cにおける6つの柱状部材42の開口41a,43aからの距離は、6つの柱状部材42が方向Cに最大限変形した状態でも、各柱状部材42と配線SGとが接触しない程度の値に設定されている。なお、筒状部材41、柱状部材42、及び筒状部材43は、一体成型されたものであってもよいし、別々に成型されたものが互いに固着されたものであってもよい。
(生体音測定装置1Aの効果)
 以上のように、生体音測定装置1Aによれば、把持部10と音測定ユニット3とが弾性を持つ連結部材40Aによって連結されているため、接触面30が被測定者の体表面Sに接触された状態において、把持部10が音測定ユニット3に対して方向Cに動いた場合であっても、この動きを連結部材40Aにおける6つの柱状部材42の変形によって吸収して接触面30の移動を防ぐことができる。したがって、接触面30と体表面Sとの接触状態を容易に保持し続けることが可能となり、生体音の測定精度を向上させることができる。
 また、生体音測定装置1Aによれば、互いに離間して配列された6つの柱状部材42によって連結部材40Aが変形自在に構成されているため、連結部材40Aの柔軟性を高めることができる。したがって、接触面30と体表面Sとの接触状態をより容易に保持し続けることが可能となる。
 なお、連結部材40Aにおける柱状部材42は、図7の例では方向Bに延びるものとしているが、図8に示すように、方向Bに対して交差する方向に延びる構成としてもよい。図8に示す構成によれば、連結部材40Aの柔軟性をより高めることができる。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2019年1月11日出願の日本特許出願(特願2019-003487)に基づくものであり、その内容は本出願の中に参照として援用される。
1、1A 生体音測定装置
3 音測定ユニット
10 把持部
10a 面
11 ヘッド部
12 凹部
3a 受圧領域
3b 拡張領域
30 接触面
31 筐体
31a 開口
32 ハウジング
32b 収容空間
33 音検出器
34 カバー
40、40A 連結部材
S 体表面
Ha 手
F 人差し指
SG 配線

Claims (6)

  1.  被検体の生体音を測定する生体音測定装置であって、
     前記生体音を検出するための音検出器を含み且つ前記被検体の体表面に接触される接触面を含む音測定ユニットと、
     測定者によって把持される把持部と、
     前記把持部と前記音測定ユニットとを連結する弾性を持つ連結部材と、を備える生体音測定装置。
  2.  請求項1記載の生体音測定装置であって、
     前記音検出器と前記把持部に内蔵される基板とを電気的に接続する配線を備え、
     前記連結部材は、前記配線から離間し且つ前記配線を取り囲む構造である生体音測定装置。
  3.  請求項2記載の生体音測定装置であって、
     前記連結部材は、筒状の部材である生体音測定装置。
  4.  請求項2記載の生体音測定装置であって、
     前記連結部材は、前記配線を通すための開口が形成され、前記接触面に垂直な方向に離間して配置された2つの筒状部材と、前記2つの筒状部材を連結し且つ前記配線の周囲に互いに離間して配列された複数の柱状部材と、により構成される生体音測定装置。
  5.  請求項1から4のいずれか1項記載の生体音測定装置であって、
     前記連結部材は、前記接触面に垂直な方向から見た状態において前記音測定ユニットよりも内側に位置する生体音測定装置。
  6.  請求項1から5のいずれか1項記載の生体音測定装置であって、
     前記連結部材は、前記接触面に垂直な方向に加わる力に対する変形量よりも、前記接触面に平行な方向に加わる力に対する変形量が大きい生体音測定装置。
PCT/JP2019/049684 2019-01-11 2019-12-18 生体音測定装置 WO2020145061A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112019005994.7T DE112019005994T5 (de) 2019-01-11 2019-12-18 Vorrichtung zur messung biologischer geräusche
CN201980082178.6A CN113226188A (zh) 2019-01-11 2019-12-18 生物体声音测定装置
US17/305,566 US20210330282A1 (en) 2019-01-11 2021-07-09 Biological sound measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019003487A JP2020110359A (ja) 2019-01-11 2019-01-11 生体音測定装置
JP2019-003487 2019-01-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/305,566 Continuation US20210330282A1 (en) 2019-01-11 2021-07-09 Biological sound measurement device

Publications (1)

Publication Number Publication Date
WO2020145061A1 true WO2020145061A1 (ja) 2020-07-16

Family

ID=71521319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049684 WO2020145061A1 (ja) 2019-01-11 2019-12-18 生体音測定装置

Country Status (5)

Country Link
US (1) US20210330282A1 (ja)
JP (1) JP2020110359A (ja)
CN (1) CN113226188A (ja)
DE (1) DE112019005994T5 (ja)
WO (1) WO2020145061A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4723555A (en) * 1986-09-24 1988-02-09 L'air Liquide Multi-functional radio/wire stethoscopic apparatus
WO1995019136A1 (en) * 1992-07-07 1995-07-20 Under Limited Stethoscope accessory
US20120232427A1 (en) * 2010-06-24 2012-09-13 Cvr Global, Inc. Sensor, Sensor Pad and Sensor Array for Detecting Infrasonic Acoustic Signals
JP2017536867A (ja) * 2014-10-14 2017-12-14 フセイン・アルシル・ネイヤーHUSSAIN, Arsil, Nayyar 身体的特徴に関するデータを取り込んで出力するためのシステム、装置、および方法
JP2018102727A (ja) * 2016-12-27 2018-07-05 オムロンヘルスケア株式会社 生体音測定装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4403588B2 (ja) 1998-08-19 2010-01-27 オムロンヘルスケア株式会社 生体音検出装置
NO306926B1 (no) * 1998-12-03 2000-01-17 Meditron As Sensor for oppfanging av lyd
US8092396B2 (en) * 2005-10-20 2012-01-10 Merat Bagha Electronic auscultation device
US7998091B2 (en) * 2005-11-23 2011-08-16 3M Innovative Properties Company Weighted bioacoustic sensor and method of using same
JP5605204B2 (ja) * 2010-12-15 2014-10-15 ソニー株式会社 呼吸信号処理装置およびその処理方法ならびにプログラム
JP2013123493A (ja) 2011-12-13 2013-06-24 Sharp Corp 情報処理装置、聴診器、情報処理装置の制御方法、制御プログラムおよび記録媒体
JP2014166241A (ja) 2013-02-28 2014-09-11 Shinano Kenshi Co Ltd 振動電気変換装置およびこれを用いた電気式振動増幅装置
CN104739439A (zh) * 2015-03-27 2015-07-01 朱小菊 贴合人体的听诊器
JP2018102849A (ja) * 2016-12-28 2018-07-05 オムロンヘルスケア株式会社 生体音測定装置
CN207561918U (zh) * 2017-05-12 2018-07-03 张腾 一种手持肠鸣音检测仪
JP2019003487A (ja) 2017-06-16 2019-01-10 株式会社オートネットワーク技術研究所 車載通信装置、車両異常検出システム、車両異常通知方法及びコンピュータプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4723555A (en) * 1986-09-24 1988-02-09 L'air Liquide Multi-functional radio/wire stethoscopic apparatus
WO1995019136A1 (en) * 1992-07-07 1995-07-20 Under Limited Stethoscope accessory
US20120232427A1 (en) * 2010-06-24 2012-09-13 Cvr Global, Inc. Sensor, Sensor Pad and Sensor Array for Detecting Infrasonic Acoustic Signals
JP2017536867A (ja) * 2014-10-14 2017-12-14 フセイン・アルシル・ネイヤーHUSSAIN, Arsil, Nayyar 身体的特徴に関するデータを取り込んで出力するためのシステム、装置、および方法
JP2018102727A (ja) * 2016-12-27 2018-07-05 オムロンヘルスケア株式会社 生体音測定装置

Also Published As

Publication number Publication date
DE112019005994T5 (de) 2021-08-12
CN113226188A (zh) 2021-08-06
US20210330282A1 (en) 2021-10-28
JP2020110359A (ja) 2020-07-27

Similar Documents

Publication Publication Date Title
US20180177482A1 (en) Biological sound measurement apparatus
US20180177485A1 (en) Biological sound measurement apparatus
JP2020535855A (ja) 子宮収縮及び胎児心拍数を測定する装置
WO2020145061A1 (ja) 生体音測定装置
US20230019623A1 (en) Wheeze detection device
WO2011083409A1 (en) Medical skin-contact sensor device
CN113242721B (zh) 生物体声音测定装置
WO2020145062A1 (ja) 生体音測定装置
WO2021192862A1 (ja) 喘鳴検出装置
US20210338143A1 (en) Measuring device
JP6612682B2 (ja) 圧力検出装置および生体情報計測システム
WO2020145060A1 (ja) 生体音測定装置
JP2014066584A (ja) 手技動作検出センサ及び手技動作検出装置
JPWO2018180288A1 (ja) 流体圧力検出装置
JP7206928B2 (ja) 生体音測定装置
US20240068865A1 (en) Gyro vibrometer, electronic device, and electronic system
CN111989046B (zh) 生物声音测定装置、辅助方法和存储介质
JP6706039B2 (ja) 生体音聴診装置
JPWO2018180289A1 (ja) 流体圧力検出装置
JP2020156915A (ja) 脈波センサ、電子機器及び脈波測定方法
JP2019187529A (ja) 生体音測定装置、生体音測定装置の作動方法、生体音測定装置の作動プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908737

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19908737

Country of ref document: EP

Kind code of ref document: A1