WO2020144859A1 - 絶縁構造製造方法、絶縁構造製造装置、および回転電機 - Google Patents

絶縁構造製造方法、絶縁構造製造装置、および回転電機 Download PDF

Info

Publication number
WO2020144859A1
WO2020144859A1 PCT/JP2019/000733 JP2019000733W WO2020144859A1 WO 2020144859 A1 WO2020144859 A1 WO 2020144859A1 JP 2019000733 W JP2019000733 W JP 2019000733W WO 2020144859 A1 WO2020144859 A1 WO 2020144859A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating
winding
insulation
nanoparticles
tape
Prior art date
Application number
PCT/JP2019/000733
Other languages
English (en)
French (fr)
Inventor
直輝 岡島
伸夫 浦川
哲夫 吉満
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to JP2019537408A priority Critical patent/JPWO2020144859A1/ja
Priority to PCT/JP2019/000733 priority patent/WO2020144859A1/ja
Publication of WO2020144859A1 publication Critical patent/WO2020144859A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties

Definitions

  • the present invention relates to an insulating structure manufacturing method, an insulating structure manufacturing apparatus, and a rotating electric machine.
  • An electric field is applied to the insulator of the rotating electric machine, and a minute defect inside the insulating structure causes an unequal electric field portion. If the electric field at that portion exceeds the insulation strength limit, local breakdown due to partial discharge occurs. This local breakdown progresses into a dendritic form called an electrical tree inside the insulating structure.
  • the electric tree is considered to start from a high electric field concentration portion such as an air gap between the electrode and the insulator, a foreign substance, a foreign substance/protrusion/void in the insulator.
  • INV inverter
  • AC conventional commercial frequency
  • the structure of the coil used in the rotating electric machine is to make a plurality of insulated conductors having an insulating material around them as one bundle to form a coil turn that is wound multiple times.
  • a coil turn may be formed by applying a new insulator around a plurality of insulated conductors in one bundle, but the insulating structure between these turns is called a turn insulating part. Since the coil is exposed to high temperatures during operation, the turn insulation section uses mica, which is a type of silicate mineral, as paper as an insulating material with a high insulation class that can withstand high temperatures, and it is Often constructed as a complex.
  • the insulation structure of a rotating electrical machine is usually a mica insulation in which mica is paper-shaped on the coil conductor with these turn insulation parts and is combined with glass cloth or polymer film (hereinafter, mica tape lining material). It consists of winding the tape multiple times to form the insulating part called the main insulation.
  • mica insulating structure For example, in the stator of a high-voltage wound rotary electric machine, it is the above-mentioned main insulation and turn insulation parts arranged inside the stator core that determine the insulation life. As described above, an insulating structure containing mica (hereinafter referred to as mica insulating structure) is often used for these.
  • the mica insulation structure is often formed by finally impregnating it with an epoxy resin.
  • the path of the electrical tree in the mica insulating structure thus configured is, for example, a mica insulating layer rather than linearly penetrating the mica insulating layer with respect to the mica tape layer in the main insulating mica insulating structure. It was possible to confirm from the results of the test that the layers were formed along each layer of the existing Mycatep layer. Furthermore, in more detail, it was found that the mica paper portion forming the mica tape could not progress, and the weak point portion was inside or around the mya tape lining material to which the mica paper was pasted.
  • the present invention has been made on the basis of such knowledge, and an object thereof is to suppress the development of an electrical tree in an insulating structure.
  • an insulating structure manufacturing method is a method of manufacturing an insulating structure covering an outer surface of an insulating object, wherein a main insulating tape is wound around the insulating object. After the taping step, the taping step, the nanoparticle adhesion step of immersing the insulating object wound with the main insulating tape in solid nanoparticles, and the main insulating tape is wound a predetermined number of times.
  • a determining step for determining whether or not it has been performed a vacuuming step for vacuuming the object to be insulated after it is determined that the main insulating tape has been wound a predetermined number of times in the determining step, and the vacuuming After the step, an impregnation step of press-fitting and impregnating a high molecular polymer for impregnation into the object to be insulated is included.
  • the rotating electric machine includes a rotor having an axially extending rotor shaft and a rotor core provided radially outside the rotor shaft, and a gap radially outside the rotor core.
  • a cylindrical stator core provided with an opening, and a plurality of slots formed in the inner surface of the stator core at intervals in the circumferential direction and extending to both axial ends of the stator core and the stator.
  • a stator having a stator winding conductor arranged on the outer side in the axial direction of the iron core, and an insulating structure applied to the stator winding conductor to electrically insulate the stator winding conductor,
  • a rotating electrical machine comprising: two bearings that rotatably support the rotor shaft on both sides of the rotor shaft in the axial direction of the rotor core; and a frame that houses the rotor core and the stator.
  • the insulating structure is formed in the backing member, a main insulating portion that spreads in a plane along the surface of the insulating object, an insulating backing member that extends along the main insulating portion, and The main insulating portion and the backing member, a high-molecular polymer portion that is joined to each other, the high-molecular polymer portion, nanoparticles are scattered, the concentration of the nanoparticles on the surface of the backing member. Characterized by the highest.
  • the progress of the electrical tree in the insulating structure can be suppressed.
  • FIG. 1 It is a perspective view which shows the state in the winding step of the main insulating tape in the insulating structure manufacturing method which concerns on 1st Embodiment. It is a perspective view showing the state at the time of ending winding of the tape for main insulation in the insulating structure manufacturing method concerning a 1st embodiment. It is a perspective view showing a state at the time of immersion in the individual nanoparticle in the upper open storage tank of the insulating object in the insulating structure manufacturing method according to the first embodiment. It is a transverse cross section showing the flow including the state at the time of rotation of the insulation subject set in the insulation structure manufacturing method concerning a 1st embodiment, and (a) is the 1st support of the 1st insulation subject.
  • (B) is a state after removing the support of the first insulating object
  • (c) is a state in which the first insulating object is immersed in the upper open storage tank
  • ( d) is a state in which the support of the first support portion of the insulating object set is restored and the support of the second support portion is removed
  • (e) is a state during rotation in the circumferential direction
  • (f) is the second The figure shows a state in which the object to be insulated is immersed in the upper open storage tank.
  • (a) is a sectional view taken along the line IXa-IXa of FIG. 7
  • (c) is a sectional view taken along the line IXc-IXc of FIG. 8.
  • the state before removing the support of the first and second supporting portions of the insulating object (b) the state after removing the first and second supporting portions, (c) the first and second insulating objects A state in which the inside of the upper open storage tank is inserted between the object and the first and second support portions, (d) a state in which the first and second insulating objects are immersed in the upper open storage tank, (e) Indicates the restored status.
  • FIG. 6 is a vertical cross-sectional view showing a state of a vacuum drawing step in the insulating structure manufacturing method according to the first embodiment.
  • FIG. 3 is a vertical cross-sectional view showing a state of a high-molecular polymer press-fitting step in the insulating structure manufacturing method according to the first embodiment. It is sectional drawing which shows typically the structure of the insulation structure which concerns on 1st Embodiment.
  • FIG. 1 It is a flowchart which shows the detailed procedure of the impregnation step of the winding integrated body of the insulating structure manufacturing method which concerns on 2nd Embodiment. It is an elevation sectional view showing the state of the press-in step of the impregnated high molecular polymer containing nanoparticles in the insulating structure manufacturing method concerning a 2nd embodiment. It is a front view which shows the state at the time of finishing winding of the main insulation tape in the insulating structure manufacturing method which concerns on 3rd Embodiment. It is a perspective view which shows the state at the time of finishing the winding of the main insulating tape in the insulating structure manufacturing method which concerns on 3rd Embodiment. FIG.
  • 25 is a side view taken along the line XXV-XXV of FIG. 24, showing a state at the time when the winding of the main insulating tape in the insulating structure manufacturing method according to the third embodiment is finished. It is a flowchart which shows the whole procedure of the insulating structure manufacturing method which concerns on 3rd Embodiment.
  • FIG. 1 is a vertical cross-sectional view showing the configuration of the rotary electric machine according to the first embodiment.
  • the rotary electric machine 100 has a rotor 10, a stator 20, a frame 6 surrounding these radial outsides, and bearing brackets 7 attached to both ends of the frame 6 in the axial direction.
  • the rotor 10 has a rotor shaft 11 extending in the longitudinal direction and a rotor core 12 provided on the outer side in the radial direction of the rotor shaft 11.
  • the rotor shaft 11 is rotatably supported by bearings 5 on both outer sides of the rotor core 12 in the axial direction.
  • the bearings 5 are fixedly supported by bearing brackets 7, respectively.
  • the stator 20 has a cylindrical stator core 21 arranged radially outside the rotor core 12 with a gap, and a stator winding 22 penetrating the inside of the stator core 21.
  • stator slots are formed at intervals in the circumferential direction and penetrate in the axial direction.
  • a stator winding conductor 24 (FIG. 2) for the stator winding 22 is arranged in the stator slot.
  • FIG. 2 is a perspective view illustrating the insulating structure and the tape winding conductor according to the first embodiment.
  • the insulating structure 20 has a turn insulating portion 25 and a main insulating portion 49.
  • stator winding conductors 24 constituting the stator winding 22 are laminated, and the stator winding conductors 24 are arranged in two rows to form the laminated conductor 23 by 14 bodies.
  • the number of stacked layers is 7 and the number of rows is 2 is an example, and the number of stacked layers is not limited to 7 and the number of rows may be 1 or 3 or more.
  • Each of the stator winding conductors 24 is provided with a turn insulating portion 25 on the outer side thereof and is covered with the turn insulating portion 25. Therefore, the outer surface of the laminated conductor 23 is also covered with the turn insulating portion 25.
  • a main insulating tape 40 is wound as main insulation on the outer side of the laminated conductor 23 provided with the turn insulating portion 25, and a main insulating portion 49 is formed on the outer side of the laminated conductor 23. 50.
  • the width of the main insulating tape 40 is W.
  • the main insulating tape 40 is spirally wound around the laminated conductor 23 in the longitudinal direction.
  • FIG. 2 shows the case of the half-wrap method in which the spiral pitch is W/2, which is half the width W of the main insulating tape 40. That is, it is wound so as to half overlap with the main insulating tape 40 wound in the previous turn.
  • the winding method is not limited to the half-wrap method.
  • the overlapping width may be changed. Further, it may be a method in which the layers are wound adjacently without a gap without overlapping. In this case, the second winding is performed by shifting the main insulating tape 40 by half the width in the longitudinal direction.
  • the main insulating tape 40 is not limited to be wound twice.
  • the number of windings may be three or more or one, and the number of windings is selected depending on the required insulation performance.
  • each of the stator winding conductors 24 may be individually insulated, and mica insulation may be performed from the outside.
  • FIG. 3 is a sectional view schematically showing the structure of the main insulating tape having the insulating structure according to the first embodiment.
  • the main insulating tape 40 that constitutes the main insulating portion 49 includes the mica insulating layer 41, the backing member 42, and the bonding polymer material 43 that penetrates into the backing member 42 and bonds the backing member 42 and the mica insulating layer 41.
  • the mica insulating layer 41 is a part basically having an insulating function.
  • the backing member 42 is a portion having a function of ensuring strength as the main insulating tape 40 by supporting the mica insulating layer 41 along the mica insulating layer 41.
  • the material of the mica insulating layer 41 is, for example, mica, asbestos, or porcelain.
  • the material of the backing member 42 is, for example, glass fiber or the like, and is usually woven in a mesh shape.
  • the material of the mica insulating layer 41 may be, for example, a film-shaped polymer compound.
  • the joining polymer material 43 is, for example, a polymer such as an unsaturated polyester resin or an epoxy resin.
  • the thickness of the mica insulating layer 41 is, for example, about 100 ⁇ m.
  • the thickness of the backing member 42 is thinner than this, for example, about 30 ⁇ m.
  • the backing member 42, the bonding polymer material 43, and the mica insulating layer 41 are shown as the components of the main insulating tape 40.
  • the bonding polymer material 43 penetrates into the backing member 42 and , And has a role of joining the mica insulating layer 41 and the backing member 42. Therefore, there is almost no thickness of only the bonding polymer material 43, and the mica insulating layer 41 and the backing member 42 are usually in almost contact with each other.
  • the main insulating tape 40 is wound with the mica insulating layer 41 side on the laminated conductor side, which is the object to be insulated, and the backing member 42 on the front side.
  • FIG. 4 is a flowchart showing the overall procedure of the insulating structure manufacturing method according to the first embodiment.
  • FIG. 5 is a flow chart showing a detailed procedure of a step of applying main insulation to the laminated conductor.
  • the upper open storage tank 241 (FIG. 8) storing the individual nanoparticles 242 (FIG. 8) is installed below the position where the insulating object set 53 (FIG. 7) is attached (step S11).
  • the solid nanoparticles 242 stored in the upper open storage tank 241 for example, silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), magnesium oxide (MgO), boron nitride (BN), carbon Nanotubes (CNT) or the like can be used.
  • SiO 2 silicon dioxide
  • Al 2 O 3 aluminum oxide
  • MgO magnesium oxide
  • BN boron nitride
  • CNT carbon Nanotubes
  • -Nanoparticles are generally said to include particles with a particle size of about several hundreds of nm.
  • the solid nanoparticles 242 used in the first embodiment have a particle size of about several tens of nm to about 100 nm.
  • a manufacturing method of a particle size of about several tens of nm to about 100 nm there is a method of chemically growing and manufacturing from a finer particle.
  • particles having a particle size sufficiently larger than 100 nm may be crushed to produce particles having a particle size of around 100 nm or less.
  • surface modification may be performed in order to prevent aggregation in the bonding polymer material 43.
  • particles having a particle size of about several tens of nm to about 100 nm and not existing in the medium, that is, existing as a set of nanoparticles are referred to as individual nanoparticles.
  • step S12 the insulation object set 53 is attached to the insulation structure manufacturing apparatus 200 (FIGS. 7 and 8) (step S12).
  • the main insulating tape 40 is used to wind the outer surface of the laminated conductor 23, which is an object to be insulated, in one direction along the longitudinal direction (step S13).
  • the tape winding conductor 50 (FIG. 2) is formed.
  • FIG. 6 is a perspective view showing the state of the main insulating tape 40 in the winding step S13.
  • the main insulating tape 40 is wound around the laminated conductor 23 by rotating the winding head 201 that pays out the main insulating tape 40 while moving in the longitudinal direction of the laminated conductor 23 that is the object of insulation.
  • FIG. 7 is a perspective view showing a state when the winding of the main insulating tape is completed.
  • FIG. 8 is a perspective view which shows the state at the time of immersion in the solid nanoparticle in the upper open storage tank of an insulated object.
  • FIG. 9 is a cross-sectional view showing a flow including a state when the insulation target set is rotated in the circumferential direction, and FIG. 9A is before removing the support of the first support part of the first insulation target.
  • the wound insulation target set 53 includes a stator winding conductor as the first insulation target 54 and a stator winding as the second insulation target 55.
  • the stator winding conductor as the first insulating object 54 includes a straight portion 54a arranged in a stator slot formed on the inner surface of the stator core 21 and an outer portion in the axial direction of the stator core 21. It has non-linear portions 54b and 54c.
  • the stator winding conductor as the second object to be insulated 55 has a linear portion 55a arranged in the stator slot and non-linear portions 55b, 55c on the outer side in the axial direction of the stator core 21.
  • the non-linear portion 54b of the stator winding conductor as the first insulation object 54 and the non-linear portion 55b of the stator winding conductor as the second insulation object 55 are electrically and physically connected at the connection portion 51. Connected to each other. Further, the non-linear portion 54c of the stator winding conductor serving as the first insulation target 54 is electrically connected to another conductor at the mating portion 52a. The non-linear portion 55c of the stator winding conductor as the second insulating object 55 is electrically connected to another conductor at the mating portion 52b.
  • the insulation object set 53 having the first insulation object 54 and the second insulation object 55 is integrated, and the linear portion 54 a of the first insulation object 54 and the second insulation object 55 are integrated.
  • the straight line portions 55a are parallel to each other.
  • the insulating structure manufacturing apparatus 200 includes a winding head 201, a guide 202, a driving section 203, a first supporting section 221, a second supporting section 222, rotating devices 230a and 230b, an upper open storage tank 241, and an upper open storage tank supporting section 243. Have.
  • the guide 202 extends along the longitudinal direction of the insulation target set 53, and is wound when the winding head 201 moves along the first insulation target 54 or the second insulation target 55.
  • the head 201 is supported and guided.
  • the driving unit 203 drives the rotation of the winding head 201 and the movement along the guide 202.
  • the winding head 201 moves so as to cover the linear portion 54a and a part of the non-linear portions 54b and 54c adjacent to the linear portion 54a.
  • FIG. 7 and FIG. 9A each show a state in which the first insulating object 54 and the second insulating object 55 are supported.
  • the first insulation object 54 and the second insulation object 55 are attached to the insulation structure manufacturing apparatus 200 in a substantially horizontal state.
  • the rotating device 230a supports the connecting portion 51 of the insulation target set 53.
  • the rotating device 230b supports the mating portions 52a and 52b of the insulation target set 53.
  • the rotating device 230a and the rotating device 230b cooperate with each other to rotate the insulating object set 53 around the longitudinal direction, that is, in the circumferential direction, as shown in FIG. 9(e).
  • the upper open storage tank 241 has a rectangular parallelepiped shape and stores solid nanoparticles 242.
  • the upper part of the upper open storage tank 241 is opened so that the straight part 54a of the first insulating object 54 or the straight part 55a of the second insulating object 55 can be immersed in the solid nanoparticles 242 from above. ing.
  • the upper opening has a size and shape such that each of them can be inserted from above. is there.
  • the upper open storage tank 241 is supported by the two upper open storage tank support portions 243 and moves, for example, in the vertical direction.
  • step S13 the main insulating tape 40 is wound in one direction along the longitudinal direction, and then the upper open storage tank 241 is raised to immerse the object to be insulated, and then lowered to return to the original position.
  • Step S14 solid nanoparticles 242 are stored in the upper open storage tank 241, but they have a liquid-like appearance in appearance, and when the insulating object is lowered from above. , It behaves as if it were dropped into the liquid, and if the insulation target is immersed, it will adhere to the surroundings like a liquid.
  • FIG. 8 a state in which the first insulation target object 54 as the insulation target object is immersed in the solid nanoparticles 242 stored in the upper open storage tank 241 after the winding of the main insulation tape 40 is completed. Showing.
  • the second insulation object 55 is outside the upper open storage tank 241.
  • the first support portion 221 is moved downward, for example, or moved laterally, and the upper open storage tank 241 is moving into the empty space.
  • the connection part 51 is supported by the rotating device 230a
  • the mating parts 52a and 52b are supported by the rotating device 230b
  • the second insulation target 55 is supported by the second supporting part 222.
  • the upper open storage tank 241 is relatively moved by the two upper open storage tank support parts 243 so that the first insulating object 54 is immersed in the solid nanoparticles 242 stored in the upper open storage tank 241. It is moving upwards.
  • the solid nanoparticles 242 adhere to the surface of the wound main insulating tape 40.
  • the solid nanoparticles 242 adhere to the surface of the main insulating tape 40 while aggregating due to Van der Waals force or the like, so that solid nanoparticles 242 having a sufficient density can be expected to adhere.
  • the solid nanoparticles 242 may be attached to a portion of the first insulating object 54 inside the stator core 21. Since the first insulating object 54 is in a substantially horizontal state, if the entire straight line portion of the first insulating object 54 is dipped, it is attached to a necessary range. It should be noted that if all the linear portions of the first insulation object 54 are immersed, the first insulation object 54 does not have to be completely horizontal, but may be in a state close to horizontal. These substantially horizontal states are collectively referred to as the horizontal state.
  • step S15 it is determined whether taping of the laminated conductor 23, that is, winding of the main insulating tape 40 is completed. Specifically, it is determined whether or not the main insulation tape 40 has been wound a predetermined number of times on the first insulation target 54 or the second insulation target 55. When it is determined that the winding of the main insulating tape 40 is not completed (NO in step S15), the winding head 201 is further wound while moving in the opposite direction (step S13), and until step S15. repeat. Therefore, the immersion in the individual nanoparticles 242 stored in the upper open storage tank 241 is performed the same number of times as the number of times the main insulating tape 40 is wound in the longitudinal direction.
  • the number of times is, for example, one when the winding head 201 moves from the side of the connecting portions 52a and 52b to the side of the connecting portion 51. Next, when the winding head 201 moves from the connecting portion 51 side to the connecting portions 52a and 52b side, the total number of times becomes two.
  • step S15 it is determined whether taping in the insulation object set 53 is completed (step S16). That is, the second insulation target object 55 is also wound after the first insulation target object 54 of the insulation target object set 53 wound by the insulation structure manufacturing apparatus 200 has been wound a predetermined number of times. , It is determined whether or not the winding has been completed a predetermined number of times.
  • step S16 If it is determined that taping in the insulation target set 53 is not completed (NO in step S16), the insulation target set 53 is wound in the circumferential direction in order to wind the second insulation target 55. It is rotated (step S17). After this, steps S13 to S16 are repeated.
  • FIG. 9E shows the rotation of the insulating object set 53 in the circumferential direction.
  • the rotation is performed by the rotation device 230a and the rotation device 230b, and the angle is changed in the circumferential direction around the axis connecting these centers. Therefore, by providing the upper open storage tank 241 below this axis, both the first insulation target 54 and the second insulation target 55 are immersed in the solid nanoparticles 242 stored in the upper open storage tank 241. Can be made.
  • FIG. 10 is a cross-sectional view showing a flow including a modified example of immersion of the set of insulation objects in the upper open storage tank, wherein (a) shows the first and second insulation objects. 2 is a state before removing the support of the second supporting portion, (b) is a state after removing the first and second supporting portions, and (c) is the first and second insulating objects and the first and second insulating objects. The state in which the inside of the upper open storage tank is inserted between the support and the support portion, (d) the state in which the first and second insulating objects are immersed in the upper open storage tank, and (e) show the restored state.
  • the upper open storage tank 241 has a size such that the first insulation target object 54 and the second insulation target object 55 are immersed at the same time, and is configured to be insertable.
  • the procedure of dipping each of the first and second insulation objects shown in FIG. 9 in the upper open storage tank 241 sequentially as shown in FIG. A method of immersing in the upper open storage tank 241 can be adopted.
  • step S16 When it is determined that taping in the insulation target object set 53 is completed (step S16: YES), it is determined whether taping is completed for all insulation object sets 53 (step S18). That is, it is determined whether or not the winding of the main insulating tape 40 has been completed for all the laminated conductors 23 used for the stator windings 22 that configure the rotating electric machine 100.
  • step S18 NO
  • another insulation object set is attached to the insulation structure manufacturing apparatus 200 (step S12), Repeat steps up to step S18.
  • step S10 of applying main insulation to the laminated conductor 23 is ended, and the tape-wound conductor 50 whose tape is completed is removed. It is incorporated in the stator core 21, the wiring for the stator winding 22 is performed, and the winding-integrated body 90 (FIG. 11) is assembled (step S20).
  • FIG. 11 is a vertical cross-sectional view showing the configuration of an integrated winding assembly of the rotating electric machine according to the first embodiment.
  • the integrated winding assembly 90 has a stator core 21, a stator winding 22, and a frame 6 arranged radially outside them.
  • step S30 After the integrated winding assembly 90 is assembled in step S20, the integrated winding assembly 90 is impregnated (step S30).
  • FIG. 12 is a flow chart showing the detailed procedure of the impregnation step of the winding-integrated integrated body of the insulating structure manufacturing method.
  • FIG. 13 is a vertical cross-sectional view showing the state of the evacuation step.
  • the winding-integrated integrated body 90 is stored in the impregnation container 61 of the impregnation device 60.
  • the integrated winding assembly 90 can be taken in and out by dividing the upper and lower sides of the impregnation container 61 with the flange 64 and opening the same.
  • FIG. 14 is a vertical cross-sectional view showing a state of a step of press-fitting a high molecular polymer.
  • step S31 After the inside of the impregnation container 61 is evacuated in step S31, the vacuum exhaust valve 62a on the vacuum exhaust pipe 62 is closed, and the high molecular polymer supply valve 63a on the high polymer supply pipe 63 is closed. Open and supply the impregnating polymer 44 into the container. The supply of the impregnating high molecular weight polymer 44 is continued until the inside of the winding-integrated body 90 is sufficiently immersed in the impregnating high molecular weight polymer 44.
  • a pressurized gas 65 is supplied from the polymer polymer supply pipe 63 into the impregnation container 61 to pressurize the inside of the impregnation container 61. ..
  • the pressurizing gas 65 for example, an inert gas which is not reactive with the impregnating high molecular weight polymer 44 is used.
  • the impregnating high molecular polymer 44 penetrates into the main insulating tape 40 provided around the laminated conductor 23, and the main insulating tape 40 impregnates the impregnating high molecular polymer 44.
  • the polymer portion 45 (FIG. 15) is formed.
  • the solid nanoparticles 242 attached to the surface of the main insulating tape 40 directly touch the impregnating polymer polymer 44, resulting in solid nano particles.
  • the particles 242 are dispersed around the surface of the backing member 42 having the highest concentration and spread throughout the high molecular polymer portion 45 of the main insulating tape 40.
  • the high molecular polymer 44 for impregnation is solidified (step S33). Specifically, the winding integrated body 90 is taken out from the impregnation container 61, and the high molecular weight polymer portion 45 (FIG. 15) mainly containing the high molecular weight polymer for impregnation 44 is solidified.
  • the polymer is a thermosetting resin such as an epoxy resin, it is cured by heating or the like.
  • the high molecular weight polymer is a thermoplastic resin, it is cooled and solidified.
  • FIG. 15 is a sectional view schematically showing the configuration of the insulating structure according to the first embodiment. The cross section along the longitudinal direction of the laminated conductor 23 which is an insulating object is shown.
  • FIG. 15 shows a case where the main insulating tape 40 is wound twice, and two layers are formed: a taping layer A formed by the first winding and a taping layer B formed by the second winding. Indicates.
  • the insulating structure 30 has a mica insulating layer 41 which is a main insulating portion of the main insulating tape 40 (FIG. 3), a backing member 42 (FIG. 3), and a polymer portion 45.
  • the impregnating high molecular weight polymer 44 penetrates into the high molecular weight material 43 for bonding existing in the backing member 42 and between the backing member 42 and the mica insulating layer 41. It was formed.
  • the high molecular polymer portion 45 is formed by the high molecular polymer 44 for impregnation adhered during the impregnation treatment, and not only the inside of the backing member 42 but also the mica insulating layer On the surface of the layer 41, as shown in FIG. 15, a high molecular weight polymer portion 45 is integrally formed.
  • the impregnating high molecular polymer 44 contacts the main insulating tape 40 the solid nanoparticles 242 adhering to the surface of the main insulating tape 40 are dispersed, and the high polymer of the main insulating tape 40 is dispersed. It spreads over the entire inside of the portion 45, and becomes a state as shown in FIG.
  • the thickness of the mica insulating layer 41 is displayed extremely thin, and the backing member 42 is displayed. Omitted.
  • the mica insulating layers 41 adjacent to each other in the longitudinal direction of the laminated conductor 23 overlap each other by half the width. This is a result of how the main insulating tape 40 is wound by the half-wrap method described above.
  • the high-molecular polymer portion 45 around the mica insulating layer 41 has individual nanoparticles 242 scattered by being immersed in the individual nanoparticles in step S14.
  • FIG. 16 is a cross-sectional view schematically showing the progress of the electric tree in the conventional insulation structure.
  • the curved line with a thick arrow schematically shows the evolution path of the electrical tree.
  • the high molecular weight polymer portion 45a does not contain nanoparticles.
  • the electrical tree emitted from the laminated conductor 23 reaches the surface while passing through the high molecular polymer portion 45a between the mica insulating layers 41 by the shortest route.
  • FIG. 17 is a cross-sectional view schematically showing the effect of the insulating structure according to the first embodiment.
  • the nanoparticles 48 are scattered in the polymer portion 45 between the mica insulating layers 41.
  • FIG. 17 shows the case where the backing member 42 is made of glass fiber, and the nanoparticles 48 in the high-molecular polymer portion 45 on the front side of the backing member 42 pass through the glass fiber to form a single layer inside the mica insulating layer 41. The department has penetrated. If the backing member 42 is, for example, a film-shaped polymer compound, it does not penetrate into the mica insulating layer 41.
  • the electric tree is different from the shortest route in the absence of the nanoparticles 48. Make progress. As a result, the growth rate is significantly reduced as compared with the case where the nanoparticles 48 are not provided. Or the progress stops halfway.
  • FIG. 18 is a vertical cross-sectional view schematically showing the first test system of the insulating structure according to the first embodiment.
  • the first test body 70 simulates a state in which a plurality of mica tapes are laminated. Therefore, the material of the mica insulating layer 41 is mica, the backing member 42 is glass fiber, and the material of the high molecular polymer portion 45 is epoxy resin. The epoxy resin does not contain nanoparticles.
  • a plurality of mica insulating layers 41 are laminated almost parallel to each other.
  • a backing member 42 and a polymer portion 45 are arranged between the mica insulating layers 41 adjacent to each other.
  • the thickness of the mica insulating layer 41 was 100 to 140 ⁇ m per layer, and the thickness of the layers of the backing member 42 and the high molecular polymer portion 45 was 10 to 40 ⁇ m per layer. However, in FIG. 18, as described above, the thickness of the mica insulating layer 41 is displayed extremely thin in order to emphasize the high molecular weight polymer portion 45 formed by entering the backing member 42. 42 and the high molecular weight polymer portion 45 are shown as one body.
  • a first test system was set in which a needle electrode 71 was inserted at a position substantially centrally in plan of the first test body 70. With this system, an AC voltage of 50 Hz was applied between the needle electrode 71 and the ground plate 72, and the partial discharge inception voltage was measured. After detecting the partial discharge inception voltage, the applied voltage was increased at a boosting rate of 600 V/sec until the sample was dielectrically broken down.
  • FIG. 19 is a partial vertical cross-sectional view of the periphery of the needle electrode, which schematically shows the test results of the insulating structure according to the first embodiment.
  • the electric tree 75 is sewn between the mica insulating layers 41 that are vertically adjacent to each other and progresses in the direction in which the mica insulating layer 41 spreads, as shown by the dashed arrows in FIG. Further, the electric tree 75 originates not from the tip portion 71a of the needle electrode 71 having the highest electric field strength, but from a position slightly off the tip portion 71a (a portion slightly closer to the tip side than the tip portion 71a in FIG. 19). The electric tree 75 extends in a direction in which the mica insulating layer 41 spreads.
  • FIG. 20 is a vertical sectional view schematically showing a second test system of the insulating structure according to the first embodiment.
  • a needle electrode is inserted into the glass cloth portion between the mica layers adjacent to each other, and when the nanoparticles are not present in the polymer portion 45, Each test was performed where present.
  • the second test body 70a simulates a state in which a plurality of mica tapes are laminated. Therefore, the material of the mica insulating layer 41 is mica, the backing member 42 is glass fiber, and the material of the high molecular polymer portion 45 is epoxy resin.
  • the epoxy resin may or may not contain nanoparticles.
  • a plurality of mica insulating layers 41 are laminated almost parallel to each other.
  • a backing member 42 and a polymer portion 45 are arranged between the mica insulating layers 41 adjacent to each other.
  • a ground plate 72 is provided at the end portion where the mica insulating layer 41 and the backing member 42 extend.
  • the needle electrode 71 is inserted in the region of the backing member 42 and the high polymer portion 45 sandwiched between the mica insulating layers 41 adjacent to each other.
  • the test was conducted in a system in which the width W of the ground plate is about 4 mm, the depth is about 25 mm, and the distance D between the needle electrode 71 and the ground plate 72 is about 3 mm.
  • the time until dielectric breakdown when the state of 15 kV was maintained was compared with the case where nanoparticles were not present in the polymer portion 45. Compared to when present.
  • the test results were, for example, about 1.9 hours in the absence of nanoparticles, whereas 3 weeks or more in the presence of nanoparticles.
  • the average particle diameter of the nanoparticles was 10 to 20 nm, and the mixing ratio of the nanoparticles was 10 wt %.
  • the thermal conductivity was about 0.25 W/m ⁇ K when nanoparticles were not mixed in the high-molecular polymer portion 45, but was 0.40 W/m ⁇ K, for example. Rise to a degree. As a result, since the heat radiation effect can be further increased and a larger amount of current can be passed, the storage output, that is, the output per unit volume can be increased.
  • the increased mechanical strength simplifies what used to require temporary reinforcement for fixing the winding wire in the past, and improves the efficiency of the assembly work.
  • the solid nanoparticles are attached by immersing the insulating object in the solid nanoparticles, the solid nanoparticles are not scattered and the solid nanoparticles are wasted. There is nothing to do. Moreover, since the solid nanoparticles are attached only to almost necessary portions of the stator winding conductor and not to the other portions, the amount of solid nanoparticles used can be significantly suppressed.
  • the presence of nanoparticles can enhance the insulation performance against the progress of the electrical tree, so the number of windings of the main insulating tape should be reduced compared to the conventional case where nanoparticles are not present.
  • the increase in the total time required to manufacture the insulating structure due to the increase in the time required to move the upper open storage tank up and down and the decrease in the total time required to manufacture the insulating structure due to the decrease in the number of windings of the main insulating tape If the two are offset, it may be possible to manufacture the insulating structure in the same time as or shorter than the conventional time.
  • FIG. 21 is a flowchart showing the detailed procedure of the step of impregnating the integrated winding assembly in the method for manufacturing an insulating structure according to the second embodiment.
  • the present embodiment is a modification of the first embodiment.
  • the impregnating high molecular polymer in which the nanoparticles are kneaded is pressed in (step S132).
  • FIG. 22 is a vertical cross-sectional view showing a state of a press-fitting step of the nanoparticle-containing impregnating high-molecular polymer in the insulating structure manufacturing method according to the second embodiment.
  • step S133 the impregnated polymer aggregate containing nanoparticles is solidified.
  • the particle size distribution of the nanoparticles in the impregnated high molecular polymer 47 containing nanoparticles is different from the particle size distribution of the solid nanoparticles 242 for immersion stored in the upper open storage tank 241. May be.
  • the nanoparticles can be arranged in the tape wound conductor 50 most effectively.
  • the solid nanoparticles 242 for immersion stored in the upper open storage tank 241 are attached to the surface of the main insulating tape 40 for each winding in step S10 (FIG. 5) before the impregnation step S130. Therefore, the solid nanoparticles 242 for dipping have a particle size of, for example, about 100 nm so that they are not easily affected by the flow of the impregnating high molecular polymer 47 for impregnation in the impregnation step S130.
  • the nanoparticles contained in the impregnated high-molecular polymer 47 for impregnation have a particle size of less than 100 nm, for example, 10 nm to several tens of nm so that the nanoparticles can easily penetrate into the tape winding conductor 50 in the impregnation step S130. To do. For example, it is effective to appropriately combine the particle size distributions of the two in this way.
  • the nanoparticles are also included in the impregnating polymer 44, it is possible to secure the dispersed state of the nanoparticles in a wide range. As a result, the effect of the first embodiment can be further ensured.
  • the third embodiment is a modification of the first embodiment, is different from the first embodiment in the points described below, and is otherwise the same as the first embodiment. ..
  • FIG. 23 is a perspective view showing a state at the time when the winding of the main insulating tape in the insulating structure manufacturing method according to the third embodiment is finished.
  • the third embodiment is a case where the rotary electric machine 100 is a generator.
  • the insulation target 300 (FIG. 24) is the laminated conductor 310 for the stator winding
  • the main insulating tape 40 is wound by the winding head 201
  • the tape wound conductor 320 is used.
  • FIG. 24 is a front view showing a state at the time when the winding of the main insulating tape in the insulating structure manufacturing method according to the third embodiment is finished
  • FIG. 25 is a side view taken along the line XXV-XXV in FIG. It is a figure.
  • the laminated conductor 310 integrally extends in a longitudinal direction, and has a linear portion 301 and non-linear portions 302 and 303 connected to both ends of the linear portion 301.
  • the non-linear portion 302 and the non-linear portion 303 are bent so as to form an angle with respect to the extending direction of the linear portion 301.
  • the non-linear portion 302 and the non-linear portion 303 extend in different ways so as to form an angle with each other when seen in a direction in which the straight portion 301 extends.
  • the end of the non-linear portion 302 on the side opposite to the connecting portion with the linear portion is connected to the mating portion 304. Further, the end of the non-linear portion 303 on the opposite side of the connection portion with the linear portion is connected to the connection portion 305.
  • the insulating structure manufacturing apparatus 200 includes a winding head 201, a guide 202, a drive unit 203, a support unit 223, an upper open storage tank 241 (FIGS. 9 and 10), and an upper open storage tank support unit 243.
  • a support part 223 for a single insulation object 300 is provided instead of the first support part 221 and the second support part 222. Further, in the first embodiment, the turning devices 230a and 230b for switching between the first insulation target 54 and the second insulation target 55 are provided, but in the third embodiment, Since it does not need to be rotated, it is not installed.
  • FIG. 26 is a flowchart showing the overall procedure of the insulating structure manufacturing method according to the third embodiment.
  • the first embodiment has a step S16 of determining whether or not the first insulation object 54 and the second insulation object 55 have been completed, and a rotation step S17 for switching between the both.
  • the procedure does not include step S16 and step S17.
  • the tape winding conductor 320 is assembled before assembling the laminated conductor 310 which is the insulation target 300 determined to be completed in step S15, that is, the tape winding conductor 320 to the stator core 20 (step S120). Impregnation is performed for each of these (step S111).
  • a system similar to the system shown in FIGS. 13 and 14 can be used.
  • a smaller impregnation container 61 can be used.
  • step S112 it is determined whether or not the impregnation is performed on all the laminated conductors 310 (step S112), and when it is not determined that the impregnation is performed on all the laminated conductors 310 (step S112 NO), steps S12 to S112 are performed. repeat.
  • step S112 YES If it is determined that all the laminated conductors 310 have been implemented (step S112 YES), the impregnated tape winding conductor 320 is incorporated into the stator core 21 and assembled into the winding-integrated unit 90. At this stage, since the tape winding conductor 320, which is each element of the stator winding 22, has already been impregnated, it is not necessary to impregnate the winding winding integrated body 90.
  • the embodiments of the present invention have been described above, the embodiments are presented as examples and are not intended to limit the scope of the invention.
  • the case where the insulating object is fixed to the insulating structure manufacturing apparatus and the insulating object is immersed in the solid nanoparticles by raising the upper open storage tank is shown as an example, but the present invention is not limited to this. ..
  • the upper open storage tank may be fixed and the insulating object may be moved downward to immerse the insulating object in the solid nanoparticles. Alternatively, both may be moved.
  • the insulation target set 53 has the first insulation target 54 and the second insulation target 55 is shown as an example, but the present invention is not limited to this.
  • it may be a single insulating object.
  • it may have three or more insulating objects.
  • the present invention is not limited to this.
  • a winding method may be used in which the ends of the main insulating tape are adjacent to each other in the longitudinal direction.
  • the case where the object to be insulated is the conductor for the stator winding has been described as an example, but the present invention is not limited to this.
  • the impregnation step the impregnation may be performed in the state of the elements of each rotor winding, that is, the state of the conductor for the rotor winding, instead of the integral body assembled to the rotor.
  • First insulation target 54a... Straight part, 54b, 54c... Non-linear part, 55... Second insulation target, 55a... Straight part, 55b, 55c... Non-linear portion, 60... Impregnation device, 61... Impregnation container, 62... Vacuum exhaust pipe, 62a... Vacuum exhaust valve, 63... High molecular polymer supply pipe, 63a... High molecular polymer supply valve, 64... Flange, 65... Pressurized gas, 70... First test body, 70a... Second test body, 71... Needle electrode, 71a... Tip portion, 72... Ground plate, 75... Electric tree, 80... Spraying device, 81 ... Ring, 82... Nozzle, 83... Supply pipe, 85... Microcapsule, 90...
  • Winding built-in integrated object 100... Rotating electric machine, 200... Insulation structure manufacturing device, 201... Winding head, 202... Guide, 203... Drive Part, 221... First support part, 222... Second support part, 223... Support part, 230a, 230b... Rotating device, 241... Top open storage tank, 242... Solid nanoparticles, 243... Top open storage tank support part, 300 ... Insulation object, 301... Straight part, 302, 303... Non-linear part, 304... Interfacing part, 305... Connection part, 310... Laminated conductor, 320... Tape winding conductor

Landscapes

  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

絶縁対象物の外表面を覆う絶縁構造の製造方法は、絶縁対象物の外側に主絶縁用テープを巻回するテーピングステップ(S13)と、テーピングステップ(S13)の後に、主絶縁用テープを巻回された絶縁対象物を個体ナノ粒子中に浸漬させるナノ粒子付着ステップ(S14)と、主絶縁用テープの巻回が所定の回数行われたかを判定する判定ステップ(S15)と、判定ステップ(S15)で主絶縁用テープの巻回が所定の回数行われたと判定された後に、絶縁対象物を真空引きする真空引きステップと、真空引きステップの後に、絶縁対象物に、含浸用高分子重合体を圧入して含浸させる含浸ステップを有する。

Description

絶縁構造製造方法、絶縁構造製造装置、および回転電機
 本発明は、絶縁構造製造方法、絶縁構造製造装置、および回転電機に関する。
 回転電機の絶縁体に電界が加わり、絶縁構造内部の微小欠陥で不平等電界部分が生じ、その部分の電界が絶縁強度限界を超えると、部分放電による局部破壊が生ずる。この局部破壊が絶縁構造内部に電気トリーと呼ばれる樹枝状形態に進展していく。電気トリーは、電極と絶縁体との間のエア・ギャップや、異物、絶縁体中の異物・突起物・ボイドなど、高電界集中部が起点となると考えられている。
 近年、インバータ(以降INVと記載)の利用が進んでいるが、INV駆動回転電機では、繰り返し、INVサージを含む繰り返しインパルス電圧が作用する状態で運転されるため、従来の商用周波数(以降ACと記載)による駆動回転電機に比べ、電気トリーの発生進展が加速され、回転電機コイル導体の絶縁構造の寿命が大幅に低下する可能性がある。このため、たとえば、AC定格電圧3.3kV用のINV駆動回転電機には、AC格電圧6.6kV用の絶縁を使用するような仕様とせざるを得ない等の状況が生じている。
 回転電機に使用されるコイルの構造は、まず、絶縁材料を周囲に有する幾つかの複数の絶縁導体を一つの束として、複数回巻き回しコイルターンを構成する。また一つの束とされた複数の絶縁導体周囲に新たな絶縁体を施しながらコイルターンを構成する場合もあるが、これらターン間の絶縁構造をターン絶縁部と呼ぶ。コイルは運転中に高温にさらされるため、ターン絶縁部は、高温に耐える絶縁階級の高い絶縁材料として、たとえばケイ酸塩鉱物の一種であるマイカ(雲母)をペーパ状にし、他の材料との複合体として、構成されている場合が多い。回転電機の絶縁構造は、通常、これらターン絶縁部が施されたコイル導体の上に、更に、マイカをペーパ状にし、ガラスクロスや高分子フィルム(以降、マイカテープ裏打ち材)と組み合わせたマイカ絶縁テープを複数回巻きつけ、主絶縁と呼ばれる絶縁部分を構成することで成り立っている。
 電気トリーがこれらターン絶縁部と主絶縁で構成される絶縁構造内部を進展していけば、最終的に絶縁構造部が破壊する。絶縁構造の中において、電気トリーがどのように発生し、進展していくのかを把握することは、電気トリーの発生・進展を防止し、健全な回転電機を維持する上で、きわめて重要な事項である。
米国特許出願公開第2015/0101845号明細書
 たとえば、高圧型巻き回転電機の固定子において、その絶縁寿命を決定するのは、固定子鉄心の内部に配された上記、主絶縁とターン絶縁部である。これらには、前述のようにいずれもマイカを含む絶縁構造(以下、マイカ絶縁構造)が多用されている。
 また、マイカ絶縁構造は、最終的にエポキシ樹脂で含浸することにより形成される場合が多い。
 このように構成されたマイカ絶縁構造における電気トリーのパスは、例えば主絶縁マイカ絶縁構造内をマイカテープ層に対し、直線的にマイカ絶縁層を貫通するのではなく、マイカ絶縁構造を構成しているマイカテ-プ層の各層間に沿って形成されることを、試験の結果から確認することができた。また更に詳細には、マイカテープを構成しているマイカペーパ部分では進展しえず、弱点部分、マイカペーパが貼り合わせられているマイアテープ裏打ち材の内部あるいはその周囲であることが判明した。
 本発明は、このような知見に基づいてなされたものであり、絶縁構造における電気トリーの進展を抑制することを目的とする。
 上述の目的を達成するため、本発明に係る絶縁構造製造方法は、絶縁対象物の外表面を覆う絶縁構造の製造方法であって、前記絶縁対象物の外側に主絶縁用テープを巻回するテーピングステップと、前記テーピングステップの後に、前記主絶縁用テープを巻回された前記絶縁対象物を個体ナノ粒子中に浸漬させるナノ粒子付着ステップと、前記主絶縁用テープの巻回が所定の回数行われたかを判定する判定ステップと、前記判定ステップで前記主絶縁用テープの巻回が所定の回数行われたと判定された後に、前記絶縁対象物を真空引きする真空引きステップと、前記真空引きステップの後に、前記絶縁対象物に、含浸用高分子重合体を圧入して含浸させる含浸ステップと、を有することを特徴とする。
 また、本発明に係る回転電機は、軸方向に延びたロータシャフトと、前記ロータシャフトの径方向外側に設けられた回転子鉄心とを有する回転子と、前記回転子鉄心の径方向外側に間隙をあけて設けられた円筒状の固定子鉄心と、前記固定子鉄心の内面に周方向に互いに間隔をあけて形成され前記固定子鉄心の軸方向の両端まで延びる複数のスロット内および前記固定子鉄心の軸方向外側に配された固定子巻線導体と、前記固定子巻線導体を電気的に絶縁するために前記固定子巻線導体に施された絶縁構造と、を有する固定子と、前記ロータシャフトの前記回転子鉄心の軸方向の両側のそれぞれで前記ロータシャフトを回転可能に支持する2つの軸受と、前記回転子鉄心および前記固定子を収納するフレームと、を備えた回転電機であって、前記絶縁構造は、絶縁対象物の表面に沿って平面的に広がった主絶縁部と、前記主絶縁部に沿って広がった絶縁性の裏打ち部材と、前記裏打ち部材内に形成されて前記主絶縁部と前記裏打ち部材とを互いに接合する高分子重合体部と、を有し、前記高分子重合体部は、ナノ粒子が散在し、前記ナノ粒子の濃度は前記裏打ち部材の表面において最も高いことを特徴とする。
 本発明によれば、絶縁構造における電気トリーの進展を抑制することができる。
第1の実施形態に係る回転電機の構成を示す縦断面図である。 第1の実施形態に係る回転電機の絶縁構造およびテープ巻き導体を説明する斜視図である。 第1の実施形態に係る絶縁構造の主絶縁用テープの構成を模式的に示す断面図である。 第1の実施形態に係る絶縁構造製造方法の全体の手順を示すフロー図である。 第1の実施形態に係る絶縁構造製造方法の積層導体への主絶縁部の施工ステップの詳細な手順を示すフロー図である。 第1の実施形態に係る絶縁構造製造方法における主絶縁用テープの巻回ステップでの状態を示す斜視図である。 第1の実施形態に係る絶縁構造製造方法における主絶縁用テープの巻回を終了した時点の状態を示す斜視図である。 第1の実施形態に係る絶縁構造製造方法における絶縁対象物の上部開放貯槽内の個体ナノ粒子中への浸漬時の状態を示す斜視図である。 第1の実施形態に係る絶縁構造製造方法における絶縁対象物セットの周方向への回転時の状態を含む流れを示す横断面図であり、(a)は第1の絶縁対象物の第1支持部の支持を外す前の状態、(b)は第1の絶縁対象物の支持を外した後の状態、(c)は第1の絶縁対象物を上部開放貯槽内に浸漬させた状態、(d)は絶縁対象物セットの第1支持部の支持を復活させ第2支持部の支持を外した状態、(e)は、周方向への回転時の状態、(f)は、第2の絶縁対象物を上部開放貯槽内に浸漬させた状態を示す。ここで、(a)は、図7のIXa-IXa線矢視断面図であり、(c)は、図8のIXc-IXc線矢視断面図である。 第1の実施形態に係る絶縁構造製造方法における絶縁対象物セットの上部開放貯槽内への浸漬の変形例の状態を含む流れを示す横断面図であり、(a)は第1および第2の絶縁対象物の第1および第2の支持部の支持を外す前の状態、(b)は第1および第2の支持部を外した後の状態、(c)第1および第2の絶縁対象物と第1および第2の支持部との間に上部開放貯槽内を挿入した状態、(d)第1および第2の絶縁対象物を上部開放貯槽内に浸漬させた状態、(e)は復旧した状態を示す。 第1の実施形態に係る回転電機の巻線組み込み一体物の構成を示す縦断面図である。 第1の実施形態に係る絶縁構造製造方法の巻線組み込み一体物の含浸ステップの詳細な手順を示すフロー図である。 第1の実施形態に係る絶縁構造製造方法における真空引きステップの状態を示す立断面図である。 第1の実施形態に係る絶縁構造製造方法における高分子重合体の圧入ステップの状態を示す立断面図である。 第1の実施形態に係る絶縁構造の構成を模式的に示す断面図である。 従来方式の絶縁構造における電気トリーの進展を模式的に示す断面図である。 第1の実施形態に係る絶縁構造の効果を模式的に示す断面図である。 第1の実施形態に係る絶縁構造の第1の試験体系を模式的に示す縦断面図である。 第1の実施形態に係る絶縁構造の試験結果を模式的に示す針電極周辺の部分縦断面図である。 第1の実施形態に係る絶縁構造の第2の試験体系を模式的に示す縦断面図である。 第2の実施形態に係る絶縁構造製造方法の巻線組み込み一体物の含浸ステップの詳細な手順を示すフロー図である。 第2の実施形態に係る絶縁構造製造方法におけるナノ粒子入り含浸用高分子重合体の圧入ステップの状態を示す立断面図である。 第3の実施形態に係る絶縁構造製造方法における主絶縁用テープの巻回を終了した時点の状態を示す正面図である。 第3の実施形態に係る絶縁構造製造方法における主絶縁用テープの巻回を終了した時点の状態を示す斜視図である。 第3の実施形態に係る絶縁構造製造方法における主絶縁用テープの巻回を終了した時点の状態を示す図24のXXV-XXV線矢視側面図である。 第3の実施形態に係る絶縁構造製造方法の全体の手順を示すフロー図である。
 以下、図面を参照して、本発明の第1の実施形態に係る絶縁構造、絶縁構造製造方法およびこれを用いた回転電機について説明する。ここで、互いに同一または類似の部分には、共通の符号を付して、重複説明は省略する。
 以下では、回転電機の固定子巻線導体に絶縁構造を適用した場合を例にとって説明するが、絶縁対象物は固定子巻線導体に限定されない。すなわち、導体の外表面を覆う絶縁構造であれば適用可能である。
 [第1の実施形態]
 図1は、第1の実施形態に係る回転電機の構成を示す縦断面図である。回転電機100は、回転子10、固定子20、これらの径方向外側を囲うフレーム6およびフレーム6の軸方向の両端にそれぞれ取り付けられた軸受ブラケット7を有する。
 回転子10は、長手方向に延びたロータシャフト11と、ロータシャフト11の径方向外側に設けられた回転子鉄心12を有する。ロータシャフト11は、回転子鉄心12の軸方向の両外側をそれぞれ軸受5によって回転可能に支持されている。軸受5は、それぞれ軸受ブラケット7により固定支持されている。
 固定子20は、回転子鉄心12の径方向外側に間隙をあけて配された円筒状の固定子鉄心21と、固定子鉄心21内を貫通する固定子巻線22を有する。
 固定子鉄心21の内側表面に沿って、互いに周方向に間隔をあけて軸方向に貫通する複数の固定子スロット(図示せず)が形成されている。固定子スロット内には、固定子巻線22用の固定子巻線導体24(図2)が配されている。
 図2は、第1の実施形態に係る絶縁構造およびテープ巻き導体を説明する斜視図である。絶縁構造20は、ターン絶縁部25および主絶縁部49を有する。
 固定子巻線22を構成する複数の固定子巻線導体24は、7体が積層され、それが2列に並んで、14体で積層導体23を形成している。なお、積層数が7体、列数が2列は一例であり、これに限定されず、積層数が7体以外、列数が1列あるいは3列以上でもよい。それぞれの固定子巻線導体24には、その外側にターン絶縁部25が施され、ターン絶縁部25により覆われている。したがって、積層導体23の外面もターン絶縁部25により覆われている。
 ターン絶縁部25が施された積層導体23の外側には、主絶縁として主絶縁用テープ40が巻回され、積層導体23の外側に主絶縁部49が形成されており、全体としてテープ巻き導体50となる。
 ここで、主絶縁用テープ40の幅をWとする。主絶縁用テープ40は、積層導体23の長手方向にらせん状に巻回されている。図2では、らせんのピッチが、主絶縁用テープ40の幅Wの半分のW/2であるハーフラップ方式の場合を示している。すなわち、前回のターンで巻かれた主絶縁用テープ40と半分重なるようにして巻かれている。なお、巻回方式は、ハーフラップ方式に限らない。たとえば、重ね合わせの幅を変更してもよい。また、重ね合わせることなく、隣接して隙間なく巻回する方式でもよい。この場合は、2回目の巻回は、たとえば、主絶縁用テープ40の幅の半分だけ長手方向にずらせるようにして巻回する。
 一通り積層導体23の長手方向に巻回されると、さらのその上から2回目の巻回がなされ、主絶縁用テープ40は、層状をなす。なお、主絶縁用テープ40の巻回は2回に限らない。たとえば、3回以上でもよいし、1回でもよく、必要な絶縁性能により巻回の回数が選択される。
 なお、固定子巻線導体24のそれぞれには、個別の絶縁処理が施され、その外側から、マイカ絶縁処理を行う場合もある。
 図3は、第1の実施形態に係る絶縁構造の主絶縁用テープの構成を模式的に示す断面図である。主絶縁部49を構成する主絶縁用テープ40は、マイカ絶縁層41、裏打ち部材42、および、裏打ち部材42に浸透し、裏打ち部材42とマイカ絶縁層41を接合させる接合用高分子材43を有する。マイカ絶縁層41は、基本的に絶縁機能を担う部分である。また、裏打ち部材42は、マイカ絶縁層41に沿ってマイカ絶縁層41を支持することにより主絶縁用テープ40としての強度を確保する機能を有する部分である。
 ここで、マイカ絶縁層41の材質は、たとえば、マイカ、石綿、あるいは磁器などである。また、裏打ち部材42の材料は、たとえば、ガラス繊維などであり、通常は、網目状に編み込まれている。なお、マイカ絶縁層41の材質は、たとえば、フィルム状の高分子化合物の場合であってもよい。
 接合用高分子材43は、たとえば、不飽和ポリエステル樹脂、あるいはエポキシ樹脂などの高分子重合体である。
 マイカ絶縁層41の厚みは、たとえば100μm程度である。また、裏打ち部材42の厚みは、これより薄くたとえば30μm程度である。図3において、主絶縁用テープ40の構成部分として裏打ち部材42、接合用高分子材43およびマイカ絶縁層41を図示したが、接合用高分子材43については、裏打ち部材42に浸み込むとともに、マイカ絶縁層41と裏打ち部材42を接合する役割を有する。このため、接合用高分子材43のみの部分の厚みは殆どなく、マイカ絶縁層41と裏打ち部材42は通常は互いに殆ど接している状態である。
 主絶縁用テープ40は、マイカ絶縁層41側を絶縁対象物である積層導体側に、裏打ち部材42を表側にして巻回される。
 図4は、第1の実施形態に係る絶縁構造製造方法の全体の手順を示すフロー図である。
 まず、積層導体23への主絶縁の施工を行う(ステップS10)。図5は、積層導体への主絶縁の施工ステップの詳細な手順を示すフロー図である。
 まず、個体ナノ粒子242(図8)を貯蔵した上部開放貯槽241(図8)を、絶縁対象物セット53(図7)を取り付ける位置の下方に設置する(ステップS11)。
 ここで、上部開放貯槽241内に貯蔵される個体ナノ粒子242としては、たとえば、二酸化ケイ素(SiO)、酸化アルミニウム(Al)、酸化マグネシウム(MgO)、窒化ホウ素(BN)、カーボンナノチューブ(CNT)などを用いることができる。
 ナノ粒子は、一般的に、粒径が数百nm程度のものまでを含むといわれている。本第1の実施形態で用いる個体ナノ粒子242は、数十nm程度から100nm前後の粒径のものである。
 数十nm程度から100nm前後の粒径のものの製法としては、化学的に、より微細なものから成長させて製造する方法がある。あるいは、100nmより十分に大きな粒径のものを粉砕して100nm前後あるいはそれ以下のものを製造してもよい。また、接合用高分子材43内での凝集を防止するために、表面修飾を行ってもよい。
 以下の説明においては、数十nm程度から100nm前後の粒径で、媒体中ではない状態、すなわちナノ粒子の集合として存在するものを個体ナノ粒子と呼ぶこととする。
 次に絶縁対象物セット53を絶縁構造製造装置200(図7、図8)に取り付ける(ステップS12)。
 次に、主絶縁用テープ40を用いて、絶縁対象物である積層導体23の外表面に、長手方向に沿って一方向に巻回を行う(ステップS13)。この結果、テープ巻き導体50(図2)が形成される。
 図6は、主絶縁用テープ40の巻回ステップS13での状態を示す斜視図である。主絶縁用テープ40を繰り出す巻回ヘッド201が絶縁対象である積層導体23の長手方向に移動しながら回転することにより、主絶縁用テープ40が積層導体23の周囲に巻回される。
 図7は、主絶縁用テープの巻回を終了した時点の状態を示す斜視図である。図8は、絶縁対象物の上部開放貯槽内の個体ナノ粒子中への浸漬時の状態を示す斜視図である。また、図9は、絶縁対象物セットの周方向への回転時の状態を含む流れを示す横断面図であり、(a)は第1の絶縁対象物の第1支持部の支持を外す前の状態、(b)は第1の絶縁対象物の支持を外した後の状態、(c)は第1の絶縁対象物を上部開放貯槽内に浸漬させた状態、(d)は絶縁対象物セットの第1支持部の支持を復活させ第2支持部の支持を外した状態、(e)は、周方向への回転時の状態、(f)は、第2の絶縁対象物を上部開放貯槽内に浸漬させた状態を示す。ここで、図9の(a)は、図7のIXa-IXa線矢視断面図であり、(c)は、図8のIXc-IXc線矢視断面図である。
 図7ないし図9に示す例では、巻回される絶縁対象物セット53は、第1の絶縁対象物54としての固定子巻線導体、および第2の絶縁対象物55としての固定子巻線導体を有する。第1の絶縁対象物54としての固定子巻線導体は、固定子鉄心21の内側表面に形成された固定子スロット内に配される直線部54aと、固定子鉄心21の軸方向の外側の非直線部分54b、54cを有する。また、第2の絶縁対象物55としての固定子巻線導体は、固定子スロット内に配される直線部55aと、固定子鉄心21の軸方向の外側の非直線部分55b、55cを有する。
 第1の絶縁対象物54としての固定子巻線導体の非直線部54bと、第2の絶縁対象物55としての固定子巻線導体の非直線部55bは、接続部51において電気的、物理的に接続されている。また、第1の絶縁対象物54としての固定子巻線導体の非直線部54cは、取り合い部52aにおいて他の導体と電気的に接続する。第2の絶縁対象物55としての固定子巻線導体の非直線部55cは取り合い部52bにおいて他の導体と電気的に接続する。
 第1の絶縁対象物54および第2の絶縁対象物55を有する絶縁対象物セット53は、一体となっており、第1の絶縁対象物54の直線部54aと第2の絶縁対象物55の直線部55aとは、互いに平行である。
 絶縁構造製造装置200は、巻回ヘッド201、ガイド202、駆動部203、第1支持部221、第2支持部222、回動装置230a、230b、上部開放貯槽241、および上部開放貯槽支持部243を有する。
 ガイド202は、絶縁対象物セット53の長手方向に沿って延びており、巻回ヘッド201が、第1の絶縁対象物54あるいは第2の絶縁対象物55に沿って移動する際に、巻回ヘッド201を支持し、ガイドする。駆動部203は、巻回ヘッド201の回転およびガイド202に沿っての移動を駆動する。巻回ヘッド201は、たとえば第1の絶縁対象物54の場合であれば、直線部54aおよび直線部54aに隣接する非直線部54b、54cの一部をカバーするように移動する。
 第1支持部221、第2支持部222は、それぞれ、第1の絶縁対象物54および第2の絶縁対象物55を支持する。図7および図9(a)は、それぞれが、第1の絶縁対象物54および第2の絶縁対象物55を支持している状態を示している。第1の絶縁対象物54および第2の絶縁対象物55はそれぞれ、ほぼ水平な状態で絶縁構造製造装置200に取り付けられている。
 回動装置230aは、絶縁対象物セット53の接続部51を支持する。回動装置230bは、絶縁対象物セット53の取り合い部52a、52bを支持する。回動装置230aと回動装置230bは互いに相俟って、図9(e)に示すように、絶縁対象物セット53を長手方向の周り、すなわち周方向に回動させる。
 上部開放貯槽241は、直方体形状であり、個体ナノ粒子242を収納する。上方から、第1の絶縁対象物54の直線部54aあるいは第2の絶縁対象物55の直線部55aを個体ナノ粒子242内に浸漬させることができるように、上部開放貯槽241の上部は開放されている。第1の絶縁対象物54および第2の絶縁対象物55をそれぞれ内部の個体ナノ粒子242中に浸漬させるために、上部の開口は、上方からこれらのそれぞれを挿入可能なような寸法、形状である。上部開放貯槽241は、2つの上部開放貯槽支持部243により支持され、たとえば上下方向に移動する。
 ステップS13で、主絶縁用テープ40を、長手方向に沿って一方向に巻回した後に、上部開放貯槽241を上昇させ、絶縁対象物を浸漬し、その後、下降させて元の位置に復帰させる(ステップS14)。図8に示すように、上部開放貯槽241内には、個体ナノ粒子242が貯留されているが、これらは、外観的には、液体のような性状であり、絶縁対象物を上方から下ろすと、液中に下ろしたように振る舞い、絶縁対象物を浸漬させれば周囲に液体のように密着する。
 図8では、絶縁対象物として、第1の絶縁対象物54が、主絶縁用テープ40の巻回を終えて、上部開放貯槽241に貯留された個体ナノ粒子242中に浸漬している状態を示している。なお、第2の絶縁対象物55は、上部開放貯槽241の外にある。
 この状態では、第1支持部221は、たとえば下方に移動、あるいは、横方向に移動し、その空いた空間に上部開放貯槽241が移動してきている。絶縁対象物セット53は、接続部51を回動装置230aにより、取り合い部52a、52bを回動装置230bにより、また第2の絶縁対象物55を第2支持部222により支持されているため、第1支持部221による支持がなくとも問題ない。なお、一方向の巻回を終えた巻回ヘッド201は、接続部51の近傍まで移動している。
 この後に、上部開放貯槽241は、相対的に、第1の絶縁対象物54が、上部開放貯槽241の貯留された個体ナノ粒子242内に浸漬するように、2つの上部開放貯槽支持部243により上方に移動している。
 第1の絶縁対象物54を個体ナノ粒子242中に浸漬すると、個体ナノ粒子242は、巻回された主絶縁用テープ40の表面に付着する。この場合、ファンデルワールス力などにより、個体ナノ粒子242が主絶縁用テープ40の表面に凝集しながら付着するため、十分な密度の個体ナノ粒子242の付着が期待できる。
 また、個体ナノ粒子242の付着は、第1の絶縁対象物54のうち固定子鉄心21内にある部分についてなされていればよい。第1の絶縁対象物54はほぼ水平状態であるので、第1の絶縁対象物54の直線部分が全て浸漬されれば、必要な範囲に付着される。なお、第1の絶縁対象物54の直線部分が全て浸漬されれば、第1の絶縁対象物54は完全に水平である必要はなく、水平に近い状態であればよい。これらの実質的に水平と同じ状態を総称して、水平な状態ということとする。
 次に、積層導体23のテーピング、すなわち、主絶縁用テープ40の巻回が完了したか否かを判定する(ステップS15)。具体的には、第1の絶縁対象物54あるいは第2の絶縁対象物55について、主絶縁用テープ40の巻回が、所定の回数、実施されたか否かを判定する。主絶縁用テープ40の巻回が完了していないと判定された場合(ステップS15 NO)には、巻回ヘッド201が逆方向に移動しながらさらに巻回を行い(ステップS13)、ステップS15までを繰り返す。したがって、上部開放貯槽241に貯留された個体ナノ粒子242内への浸漬は、主絶縁用テープ40の巻回の長手方向に沿って進んだ回数と同じ回数、実施されることになる。回数は、たとえば、巻回ヘッド201が取り合い部52a、52b側から接続部51側に移動したのを、1回と数える。次に、巻回ヘッド201が接続部51側から取り合い部52a、52b側に移動したら、合計回数は2回となる。
 主絶縁用テープ40の巻回が完了したと判定された場合(ステップS15 YES)には、絶縁対象物セット53内のテーピングが完了したか否かを判定する(ステップS16)。すなわち、絶縁構造製造装置200で巻回している絶縁対象物セット53のうちの第1の絶縁対象物54について所定の回数の巻回を終えた後に、第2の絶縁対象物55の方についても、所定の回数の巻回が終了したか否かを判定する。
 絶縁対象物セット53内のテーピングが完了していないと判定された場合(ステップS16 NO)には、第2の絶縁対象物55について巻回を行うために、絶縁対象物セット53を周方向に回動させる(ステップS17)。こののち、ステップS13からステップS16までを繰り返す。
 図9の(e)に、絶縁対象物セット53の周方向への回動を示している。回動は、回動装置230aおよび回動装置230bにより行われ、これらの中心を結んだ軸の周りを周方向に角度を変える。したがって、上部開放貯槽241をこの軸の下方に設けることにより、第1の絶縁対象物54および第2の絶縁対象物55のいずれも、上部開放貯槽241に貯留された個体ナノ粒子242内に浸漬させることができる。
 図10は、絶縁対象物セットの上部開放貯槽内への浸漬の変形例の状態を含む流れを示す横断面図であり、(a)は第1および第2の絶縁対象物の第1および第2の支持部の支持を外す前の状態、(b)は第1および第2の支持部を外した後の状態、(c)第1および第2の絶縁対象物と第1および第2の支持部との間に上部開放貯槽内を挿入した状態、(d)第1および第2の絶縁対象物を上部開放貯槽内に浸漬させた状態、(e)は復旧した状態を示す。
 このように、上部開放貯槽241が、第1の絶縁対象物54および第2の絶縁対象物55を同時に浸漬させる大きさを有し、かつ、これを挿入可能な構成である場合には、図9に示した第1および第2の絶縁対象物のそれぞれを順次、上部開放貯槽241内に浸漬する手順に代えて、図10に示すように、第1および第2の絶縁対象物を同時に、上部開放貯槽241内に浸漬する方法をとることができる。
 絶縁対象物セット53内のテーピングが完了したと判定された場合(ステップS16 YES)には、全ての絶縁対象物セット53について、テーピングを完了したか否かを判定する(ステップS18)。すなわち、回転電機100を構成する固定子巻線22に用いられるすべての積層導体23について、主絶縁用テープ40の巻回が完了したか否かを判定する。
 全ての絶縁対象物セット53について、テーピングを完了したとはいえないと判定された場合(ステップS18 NO)には、他の絶縁対象物セットを絶縁構造製造装置200に取り付けて(ステップS12)、ステップS18までを繰り返す。
 全ての絶縁対象物セット53について、テーピングを完了したと判定された場合(ステップS18 YES)には、積層導体23への主絶縁の施工ステップS10を終了し、テーピングを終了したテープ巻き導体50を固定子鉄心21に組み込み、固定子巻線22のための結線を施し、巻線組み込み一体物90(図11)に組み立てる(ステップS20)。
 図11は、第1の実施形態に係る回転電機の巻線組み込み一体物の構成を示す縦断面図である。巻線組み込み一体物90は、固定子鉄心21、固定子巻線22およびこれらの径方向外側に配されたフレーム6を有する。
 ステップS20で巻線組み込み一体物90を組み立てた後に、巻線組み込み一体物90の含浸を行う(ステップS30)。
 図12は、絶縁構造製造方法の巻線組み込み一体物の含浸ステップの詳細な手順を示すフロー図である。
 まず、巻線組み込み一体物90の真空引きを行う(ステップS31)。図13は、真空引きステップの状態を示す立断面図である。
 具体的には、まず、巻線組み込み一体物90を、含浸装置60の含浸容器61内に収納する。なお、巻線組み込み一体物90の出し入れは、フランジ64で含浸容器61上下に分割し開放して行うことができる。
 高分子重合体供給配管63上の高分子重合体供給弁63aおよび真空排気配管62上の真空排気弁62aを閉じて、含浸容器61を密閉状態とした後に、たとえば、真空ポンプ(図示せず)に接続された真空排気配管62上の真空排気弁62aを開き、含浸容器61内を真空引きする。この結果、含浸容器61内に収納された巻線組み込み一体物90内のテープ巻き導体50の主絶縁用テープ40内の各空間部も真空引きされる。
 次に、含浸用高分子重合体44を圧入、含浸する(含浸ステップS32)。図14は、高分子重合体の圧入ステップの状態を示す立断面図である。
 具体的には、ステップS31で含浸容器61内が真空引きされた後に、真空排気配管62上の真空排気弁62aを閉じて、高分子重合体供給配管63上の高分子重合体供給弁63aを開き、含浸用高分子重合体44を容器内に供給する。含浸用高分子重合体44の供給は、巻線組み込み一体物90内が含浸用高分子重合体44に十分に浸漬するまで行う。
 テープ巻き導体50が含浸用高分子重合体44に十分に浸漬する状態となったら、高分子重合体供給配管63から加圧ガス65を含浸容器61内に供給し、含浸容器61内を加圧する。ここで、加圧ガス65は、含浸用高分子重合体44と反応性のないたとえば不活性ガスなどを用いる。
 この結果、含浸用高分子重合体44が、積層導体23の周囲に施された主絶縁用テープ40内に浸透し、主絶縁用テープ40が含浸用高分子重合体44を含浸し、高分子重合体部45(図15)を形成する状態となる。含浸用高分子重合体44が、主絶縁用テープ40に浸透すると、主絶縁用テープ40の表面に付着している個体ナノ粒子242が、含浸用高分子重合体44に直接触れる結果、個体ナノ粒子242は、最も濃度の高い裏打ち部材42の表面を中心に、分散して、主絶縁用テープ40の高分子重合体部45内の全体に広がる。
 次に、含浸用高分子重合体44の固化を行う(ステップS33)。具体的には、巻線組み込み一体物90を含浸容器61から取り出し、含浸用高分子重合体44を主に含む高分子重合体部45(図15)を固化させる。なお、高分子重合体がエポキシ樹脂などの熱硬化性樹脂の場合は、加熱等により硬化させる。また、高分子重合体が熱可塑性樹脂の場合は冷却し固化させる。
 図15は、第1の実施形態に係る絶縁構造の構成を模式的に示す断面図である。絶縁対象物である積層導体23の長手方向に沿った断面を示している。図15は、主絶縁用テープ40の巻回が2回なされ、第1回目の巻回によるテーピング層Aと、第2回目の巻回によるテーピング層Bと、2つの層が形成されている場合を示す。
 絶縁構造30は、主絶縁用テープ40(図3)の主絶縁部分であるマイカ絶縁層41と、裏打ち部材42(図3)と、高分子重合体部45を有する。ここで、高分子重合体部45は、裏打ち部材42内および裏打ち部材42とマイカ絶縁層41との間に存在していた接合用高分子材43に含浸用高分子重合体44が浸透して形成されたものである。また、マイカ絶縁層41の外側にも、含浸処理の際に付着した含浸用高分子重合体44により、高分子重合体部45が形成されており、裏打ち部材42の内部のみならず、マイカ絶縁層41の表面には、図15に示すように高分子重合体部45が一体的に形成されている。含浸用高分子重合体44が、主絶縁用テープ40に接触すると、主絶縁用テープ40の表面に付着していた個体ナノ粒子242は、分散して、主絶縁用テープ40の高分子重合体部45内の全体に広がり、図15に示すような状態となる。
 なお、図15においては、裏打ち部材42に入り込んで形成された高分子重合体部45を強調するために、マイカ絶縁層41の厚さを極端に薄く表示し、また、裏打ち部材42の表示を省略している。
 テーピング層Aおよびテーピング層Bのそれぞれにおいては、積層導体23の長手方向に互いに隣接するマイカ絶縁層41同士は、幅の半分ずつ、互いに重なり合っている。これは、前述したハーフラップ方式による主絶縁用テープ40の巻き方による結果である。
 マイカ絶縁層41の周囲の高分子重合体部45には、ステップS14において個体ナノ粒子内に浸漬することにより付着した個体ナノ粒子242が散在した状態となっている。
 図16は、従来方式の絶縁構造における電気トリーの進展を模式的に示す断面図である。太い矢印付の曲線は、電気トリーの進展パスを模式的に示したものである。高分子重合体部45aはナノ粒子を含んでいない。積層導体23から発した電気トリーは、マイカ絶縁層41の間の高分子重合体部45aをほぼ最短ルートで抜けながら、表面に到達する。
 図17は、第1の実施形態に係る絶縁構造の効果を模式的に示す断面図である。本第1の実施形態による絶縁構造30においては、マイカ絶縁層41間の高分子重合体部45にナノ粒子48が散在している。なお、図17は、裏打ち部材42が、ガラス繊維の場合を示しており、裏打ち部材42の表側の高分子重合体部45中のナノ粒子48が、ガラス繊維を通して、マイカ絶縁層41内部に一部浸透している。なお、裏打ち部材42が、たとえば、フィルム状の高分子化合物の場合は、マイカ絶縁層41内部には浸透しない。
 図17に示すように、本実施形態に係る絶縁構造30においては、ナノ粒子48が無い場合に電気トリーが最短ルートで進展するのとは様相が異なり、ナノ粒子48の存在によって方向を変えながら進展する。この結果、ナノ粒子48が無い場合に比べて進展速度が大幅に低下する。あるいは、途中でその進展が停止する。
 ナノ粒子の存在下での電気トリーの進展の様子を確認する試験を行った。以下にこの試験の結果を説明する。
 図18は、第1の実施形態に係る絶縁構造の第1の試験体系を模式的に示す縦断面図である。第1の試験体70は、複数のマイカテープを積層した状態を模擬している。したがって、マイカ絶縁層41の材質はマイカ、裏打ち部材42はガラス繊維、高分子重合体部45の材質はエポキシ樹脂である。エポキシ樹脂は、ナノ粒子を含まない。
 複数のマイカ絶縁層41が互いにほぼ平行に積層されている。互いに隣接するマイカ絶縁層41の間には、裏打ち部材42と高分子重合体部45が配されている。
 マイカ絶縁層41の厚みは、1層当たり100~140μmであり、裏打ち部材42と高分子重合体部45の層の厚みは、1層当たり10~40μmであった。但し、図18では、前述のように、裏打ち部材42に入り込んで形成された高分子重合体部45を強調するために、マイカ絶縁層41の厚さを極端に薄く表示し、また、裏打ち部材42と高分子重合体部45は、一体で表示している。
 第1の試験体70の平面的にほぼ中央の位置に針電極71を差し込んだ第1の試験体系を設定した。この体系で、針電極71と接地板72との間に50Hzの交流電圧を印加し、部分放電開始電圧を測定した。部分放電開始電圧を検出した後に、サンプルが絶縁破壊するまで、600V/secの昇圧速度で印加電圧を上昇させた。
 図19は、第1の実施形態に係る絶縁構造の試験結果を模式的に示す針電極周辺の部分縦断面図である。試験の結果、電気トリー75は、図19に破線矢印で示すように、上下に互いに隣接するマイカ絶縁層41の間を縫ってマイカ絶縁層41の広がる方向に進展している。また、電気トリー75は、電界強度の最も高い針電極71の先端部分71aではなく、先端部分71aを少し外れた位置(図19の先端部分71aより少し根本側の部分)から発している。電気トリー75は、マイカ絶縁層41の広がる方向に、広がりをもって進展している。
 以上の第1の試験体70を用いた第1の試験体系での試験の結果、互いに隣接したマイカ絶縁層41の間の裏打ち部材42中の樹脂部分が弱いということが確認できた。
 図20は、第1の実施形態に係る絶縁構造の第2の試験体系を模式的に示す縦断面図である。第1の試験体系での試験結果を受けて、互いに隣接したマイカ層の間のガラスクロス部に針電極を挿入して、高分子重合体部45にナノ粒子が存在しない場合と、ナノ粒子が存在する場合について、それぞれ試験を行った。
 第2の試験体70aは、第1の試験体70と同様に複数のマイカテープを積層した状態を模擬している。したがって、マイカ絶縁層41の材質はマイカ、裏打ち部材42はガラス繊維、高分子重合体部45の材質はエポキシ樹脂である。エポキシ樹脂は、ナノ粒子を含む場合と、含まない場合とがある。
 複数のマイカ絶縁層41が互いにほぼ平行に積層されている。互いに隣接するマイカ絶縁層41の間には、裏打ち部材42と高分子重合体部45が配されている。マイカ絶縁層41および裏打ち部材42が延びた端部に接地板72が設けられている。針電極71は、互いに隣接するマイカ絶縁層41に挟まれた裏打ち部材42と高分子重合体部45の領域に挿入されている。接地板の幅Wは約4mm、奥行きは約25mm、針電極71と接地板72との間隔Dは約3mmの体系で試験を行った。
 試験は、電圧を、1kVから1kVずつ15kVまで段階的に上昇した後に、15kVの状態を保った場合の絶縁破壊に至るまでの時間を、高分子重合体部45にナノ粒子が存在しない場合と存在する場合とを比較した。試験結果では、たとえば、ナノ粒子が存在しない場合は約1.9時間であったのに対して、ナノ粒子が存在する場合は3週間以上であった。この場合、ナノ粒子の平均粒径は10ないし20nm、ナノ粒子の混在率は10wt%であった。
 以上のように、高分子重合体部45にナノ粒子を混在させた場合は、電気的な絶縁寿命が大幅に増加する。
 また、高分子重合体部45にナノ粒子を混在させた場合は、熱伝導率が上昇すること、および機械的強度が高くなることが知られている。
 たとえば、熱伝導率は、高分子重合体部45にナノ粒子が混在していない場合には、たとえば、0.25W/m・K程度であったものが、たとえば、0.40W/m・K程度まで上昇する。この結果、放熱効果をより大きくできることから電流をより多く流すことができるため、収納出力、すなわち単位体積当たりの出力を高めることができる。
 また、機械的強度が高くなることにより、従来は巻線の固定作業に仮の補強等を要していたものが簡素化され、組立作業の効率化を図ることができる。
 本第1の実施形態によれば、個体ナノ粒子の付着は、個体ナノ粒子の中に絶縁対象物を浸漬させることにより行うため、個体ナノ粒子が散逸することがなく、個体ナノ粒子を無駄にすることがない。また、固定子巻線導体のうちのほぼ必要な部分にのみ個体ナノ粒子を付着させ、他の部分には付着させないことから、個体ナノ粒子の使用量を大幅に抑制することができる。
 このように、必要最小限の量のナノ粒子を用いて、絶縁構造における電気トリーの進展を抑制することができ、さらに収納出力の向上、組立作業の効率化を図ることができる。また、ナノ粒子入り高分子重合体を直接付着させる方式であるため、たとえば、含浸の場合だとナノ粒子を浸透させることが難しい高濃度の場合を含めて、任意の濃度のナノ粒子を付与することが可能である。
 さらに、ナノ粒子の存在により、電気トリーの進展に対しての絶縁性能を強化できることから、主絶縁用テープの巻回の所定の回数を、従来のナノ粒子が存在しない場合に比べて減少させることもできる。この場合、上部開放貯槽を上下する時間が増えることによる絶縁構造製造に要する全体の時間の増加分と、主絶縁用テープの巻回の回数の減少による絶縁構造製造に要する全体の時間の減少分とが、相殺されれば、従来の時間と同程度、あるいはそれ以下の時間で絶縁構造の製造が可能となる場合もある。
 以上のように、本実施形態によれば、絶縁構造における電気トリーの進展を抑制することができる。
 [第2の実施形態]
 図21は、第2の実施形態に係る絶縁構造製造方法の巻線組み込み一体物の含浸ステップの詳細な手順を示すフロー図である。
 本実施形態は、第1の実施形態の変形である。本第2の実施形態においては、第1の実施形態における含浸用高分子重合体を圧入するステップS32に代えて、ナノ粒子を混練した含浸用高分子重合体を圧入する(ステップS132)。
 図22は、第2の実施形態に係る絶縁構造製造方法におけるナノ粒子入り含浸用高分子重合体の圧入ステップの状態を示す立断面図である。含浸装置60の含浸用含浸容器61内を真空にしたステップS31の後に、ナノ粒子入り含浸用高分子重合体47に巻線組み込み一体物90を浸漬させる。この後に、含浸用含浸容器61内を加圧し、ナノ粒子入り含浸用高分子重合体47を巻線組み込み一体物90内のテープ巻き導体50に圧入する。
 次に、ナノ粒子入り含浸用高分子集合体を固化する(ステップS133)。
 なお、本実施形態において、ナノ粒子入り含浸用高分子重合体47中のナノ粒子の粒径分布は、上部開放貯槽241に貯留された浸漬用の個体ナノ粒子242の粒径分布とは異なっていてもよい。両者の粒径分布を適切に組み合わせることにより、最も効果的にナノ粒子を、テープ巻き導体50中に配置することができる。
 上部開放貯槽241に貯留された浸漬用の個体ナノ粒子242は、含浸ステップS130より前に、ステップS10(図5)において、各巻回ごとに主絶縁用テープ40の表面に付着するものである。したがって、含浸ステップS130で含浸用のナノ粒子入り含浸用高分子重合体47の流れの影響を受けにくいように、浸漬用の個体ナノ粒子242は、たとえば100nm前後の粒径とする。一方、ナノ粒子入り含浸用高分子重合体47に含まれるナノ粒子は、含浸ステップS130においてテープ巻き導体50内に浸透しやすいように、100nm未満のたとえば、10nmないし数十nm程度の粒径とする。たとえば、このように、両者の粒径分布を適切に組み合わせることが効果的である。
 以上のような本実施形態では、ナノ粒子が含浸用高分子重合体44にも含まれるため、広い範囲で、ナノ粒子の散在状態を確保することができる。この結果、第1の実施形態の効果をさらに確実にすることができる。
 [第3の実施形態]
 本第3の実施形態は、第1の実施形態の変形であり、以下に記載する点において第1の実施形態と異なっており、それ以外の点においては、第1の実施形態と同様である。
 図23は、第3の実施形態に係る絶縁構造製造方法における主絶縁用テープの巻回を終了した時点の状態を示す斜視図である。本第3の実施形態は、回転電機100が発電機の場合である。本実施形態における発電機の例では、絶縁対象物300(図24)は、固定子巻線用の積層導体310であり、巻回ヘッド201により主絶縁用テープ40を巻回し、テープ巻き導体320とする。
 図24は、第3の実施形態に係る絶縁構造製造方法における主絶縁用テープの巻回を終了した時点の状態を示す正面図であり、図25は、図24のXXV-XXV線矢視側面図である。
 積層導体310は、図24に示すように、一体となって長手方法に延びており、直線部301と、直線部301の両端に接続する非直線部302、303を有する。非直線部302と非直線部303は、直線部301の延びる方向に対して角度を形成するように曲がっている。また、図25に示すように、非直線部302と非直線部303は、直線部301の延びる方向から透視すると、互いに角度を形成するように異なる方法に延びている。
 非直線部302の、直線部との接続部と反対側の端部は、取り合い部304に接続している。また、非直線部303の、直線部との接続部と反対側の端部は、接続部305に接続している。
 絶縁構造製造装置200は、巻回ヘッド201、ガイド202、駆動部203、支持部223、上部開放貯槽241(図9、図10)、および上部開放貯槽支持部243を有する。
 第1の実施形態と異なるのは、第1支持部221および第2支持部222に代えて、単一の絶縁対象物300のための支持部223が設けられている。また、第1の実施形態では、第1の絶縁対象物54と第2の絶縁対象物55とを切り替えるための回動装置230a、230bが設けられているが、本第3の実施形態においては、回動が不要であるため、設置されていない。
 図26は、第3の実施形態に係る絶縁構造製造方法の全体の手順を示すフロー図である。第1の実施形態においては、第1の絶縁対象物54と第2の絶縁対象物55の両者について完了したかの判定ステップS16と、両者間を切り替えるための回動ステップS17を有する。一方、本第3の実施形態に係る絶縁構造製造方法おいては、回動が不要であることから、手順は、ステップS16とステップS17を有しない。
 本実施形態においては、ステップS15において積層を完了したと判定された絶縁対象物300である積層導体310、すなわちテープ巻導体320を固定子鉄心20に組み立てる(ステップS120)前に、テープ巻導体320のそれぞれについて、含浸を行う(ステップS111)。含浸については、たとえば、第1の実施形態において、図13および図14に示すような体系と同様な体系を用いて実施することができる。ただし、固定子として一体に組み立てられていないため、含浸容器61はより小さいもので対応可能である。
 次に、すべての積層導体310について含浸が実施されたか否かを判定し(ステップS112)、すべての積層導体310について実施されたと判定されない場合(ステップS112 NO)には、ステップS12からステップS112までを繰り返す。
 すべての積層導体310について実施されたと判定された場合(ステップS112 YES)には、含浸を実施したテープ巻導体320を固定子鉄心21に組み込み、巻線組み込み一体物90に組み立てる。なお、この段階で、固定子巻線22の各要素であるテープ巻導体320は、すでに含浸を施されているため、巻線組み込み一体物90として含浸を施す必要はない。
 以上のように、本実施形態によれば、前述のような発電機の固定子巻線の例の場合においても、絶縁構造における電気トリーの進展を抑制することができる。
 [その他の実施形態]
 以上、本発明の実施形態を説明したが、実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。たとえば、実施形態では、絶縁対象物が絶縁構造製造装置に固定されており、上部開放貯槽を上昇させることにより絶縁対象物を個体ナノ粒子に浸漬させる場合を例にとって示したが、これに限定されない。たとえば、上部開放貯槽を固定して、絶縁対象物を下方に移動することにより絶縁対象物を個体ナノ粒子に浸漬させることでもよい。あるいは、両者を移動させてもよい。
 また、実施形態では、絶縁対象物セット53が第1の絶縁対象物54と第2の絶縁対象物55を有する場合を例にとって示したが、これに限定されない。たとえば、単一の絶縁対象物の場合でもよい。あるいは、3つ以上の絶縁対象物を有する場合でもよい。
 また、実施形態では、主絶縁の巻回がハーフラップ方式の場合を示したが、これに限定されない。たとえば、長手方向に主絶縁用テープの端部同士が隣接するような巻回方式であってもよい。
 また、実施形態においては、絶縁対象物が固定子巻線用の導体である場合を例にとって示したが、これに限定されない。たとえば、巻線型誘導回転電機あるいは同期回転電機の回転子巻線用の導体の絶縁構造にも適用可能である。この場合、含浸ステップでは、回転子に回転子に組み上げた一体物ではなく、それぞれの回転子巻線の要素、すなわち、回転子巻線用の導体の状態で含浸を行うことでもよい。
 さらに、実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。
 実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 5…軸受、6…フレーム、7…軸受ブラケット、10…回転子、11…ロータシャフト、12…回転子鉄心、20…固定子、21…固定子鉄心、22…固定子巻線、23…積層導体、24…固定子巻線導体、25…ターン絶縁部、30…絶縁構造、40…主絶縁用テープ、41…マイカ絶縁層、42…裏打ち部材、43…接合用高分子材、44…含浸用高分子重合体、45、45a…高分子重合体部、47…ナノ粒子入り含浸用高分子重合体、48…ナノ粒子、49…主絶縁部、50…テープ巻き導体、51…接続部、52a、52b…取り合い部、53…絶縁対象物セット、54…第1の絶縁対象物、54a…直線部、54b、54c…非直線部、55…第2の絶縁対象物、55a…直線部、55b、55c…非直線部、60…含浸装置、61…含浸容器、62…真空排気配管、62a…真空排気弁、63…高分子重合体供給配管、63a…高分子重合体供給弁、64…フランジ、65…加圧ガス、70…第1の試験体、70a…第2の試験体、71…針電極、71a…先端部分、72…接地板、75…電気トリー、80…吹き付け装置、81…リング、82…ノズル、83…供給配管、85…マイクロカプセル、90…巻線組み込み一体物、100…回転電機、200…絶縁構造製造装置、201…巻回ヘッド、202…ガイド、203…駆動部、221…第1支持部、222…第2支持部、223…支持部、230a、230b…回動装置、241…上部開放貯槽、242…個体ナノ粒子、243…上部開放貯槽支持部、300…絶縁対象物、301…直線部、302、303…非直線部、304…取り合い部、305…接続部、310…積層導体、320…テープ巻き導体

Claims (8)

  1.  絶縁対象物の外表面を覆う絶縁構造の製造方法であって、
     前記絶縁対象物の外側に主絶縁用テープを巻回するテーピングステップと、
     前記テーピングステップの後に、前記主絶縁用テープを巻回された前記絶縁対象物を個体ナノ粒子中に浸漬させるナノ粒子付着ステップと、
     前記主絶縁用テープの巻回が所定の回数行われたかを判定する判定ステップと、
     前記判定ステップで前記主絶縁用テープの巻回が所定の回数行われたと判定された後に、前記絶縁対象物を真空引きする真空引きステップと、
     前記真空引きステップの後に、前記絶縁対象物に、含浸用高分子重合体を圧入して含浸させる含浸ステップと、
     を有することを特徴とする絶縁構造製造方法。
  2.  前記絶縁対象物は、長手方向に延びており、
     前記ナノ粒子付着ステップは、水平に取り付けられた前記絶縁対象物を、前記個体ナノ粒子を収納した上部開放貯槽内の個体ナノ粒子中に浸漬させる浸漬ステップを有することを特徴とする請求項1に記載の絶縁構造製造方法。
  3.  前記絶縁対象物は回転電機の固定子巻線の積層導体であって、
     前記ナノ粒子付着ステップの後であって前記真空引きステップの前に、巻回された積層導体を固定子鉄心に組み込み、巻線組み込み一体物に組み立てる組み立てステップをさらに有し、
     前記真空引きステップは、前記巻線組み込み一体物を真空引きすることにより、前記テーピングされた前記絶縁対象物を真空引きする、
     ことを特徴とする請求項1または請求項2に記載の絶縁構造製造方法。
  4.  前記テーピングステップは、前記主絶縁用テープの幅の半分ずつずらすハーフラップ方式により前記主絶縁用テープを巻回することを特徴とする請求項1ないし請求項3のいずれか一項に記載の絶縁構造製造方法。
  5.  前記個体ナノ粒子は、二酸化ケイ素、酸化アルミニウム、酸化マグネシウム、窒化ホウ素およびカーボンナノチューブの少なくとも一つを用いることを特徴とする請求項1ないし請求項4のいずれか一項に記載の絶縁構造製造方法。
  6.  前記含浸ステップで圧入する含浸用高分子重合体にはナノ粒子が混練されていることを特徴とする請求項1ないし請求項5のいずれか一項に記載の絶縁構造製造方法。
  7.  絶縁対象物の外表面を覆って当該絶縁対象物を電気的に絶縁するために前記絶縁対象物の外表面を覆う絶縁構造の製造装置であって、
     前記絶縁対象物の表面に沿って主絶縁用テープを巻回する巻回ヘッドと、
     前記絶縁対象物に付着させる個体ナノ粒子を収納する上部開放貯槽と、
     を有することを特徴とする絶縁構造製造装置。
  8.  軸方向に延びたロータシャフトと、前記ロータシャフトの径方向外側に設けられた回転子鉄心とを有する回転子と、
     前記回転子鉄心の径方向外側に間隙をあけて設けられた円筒状の固定子鉄心と、前記固定子鉄心の内面に周方向に互いに間隔をあけて形成され前記固定子鉄心の軸方向の両端まで延びる複数のスロット内および前記固定子鉄心の軸方向外側に配された固定子巻線導体と、前記固定子巻線導体を電気的に絶縁するために前記固定子巻線導体に施された絶縁構造と、を有する固定子と、
     前記ロータシャフトの前記回転子鉄心の軸方向の両側のそれぞれで前記ロータシャフトを回転可能に支持する2つの軸受と、
     前記回転子鉄心および前記固定子を収納するフレームと、
     を備えた回転電機であって、
     前記絶縁構造は、
     絶縁対象物の表面に沿って平面的に広がった主絶縁部と、
     前記主絶縁部に沿って広がった絶縁性の裏打ち部材と、
     前記裏打ち部材内に形成されて前記主絶縁部と前記裏打ち部材とを互いに接合する高分子重合体部と、
     を有し、
     前記高分子重合体部は、ナノ粒子が散在し、前記ナノ粒子の濃度は前記裏打ち部材の表面において最も高いことを特徴とする回転電機。
PCT/JP2019/000733 2019-01-11 2019-01-11 絶縁構造製造方法、絶縁構造製造装置、および回転電機 WO2020144859A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019537408A JPWO2020144859A1 (ja) 2019-01-11 2019-01-11 絶縁構造製造方法、絶縁構造製造装置、および回転電機
PCT/JP2019/000733 WO2020144859A1 (ja) 2019-01-11 2019-01-11 絶縁構造製造方法、絶縁構造製造装置、および回転電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/000733 WO2020144859A1 (ja) 2019-01-11 2019-01-11 絶縁構造製造方法、絶縁構造製造装置、および回転電機

Publications (1)

Publication Number Publication Date
WO2020144859A1 true WO2020144859A1 (ja) 2020-07-16

Family

ID=71521124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000733 WO2020144859A1 (ja) 2019-01-11 2019-01-11 絶縁構造製造方法、絶縁構造製造装置、および回転電機

Country Status (2)

Country Link
JP (1) JPWO2020144859A1 (ja)
WO (1) WO2020144859A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306508A (ja) * 2005-04-26 2006-11-09 Mitsubishi Electric Corp テーピング装置
WO2018002973A1 (ja) * 2016-07-01 2018-01-04 東芝三菱電機産業システム株式会社 絶縁構造製造方法、絶縁構造および回転電機
WO2018002972A1 (ja) * 2016-07-01 2018-01-04 東芝三菱電機産業システム株式会社 絶縁構造製造方法、絶縁構造および回転電機
WO2018002970A1 (ja) * 2016-07-01 2018-01-04 東芝三菱電機産業システム株式会社 絶縁構造製造方法、絶縁構造および回転電機
WO2018002971A1 (ja) * 2016-07-01 2018-01-04 東芝三菱電機産業システム株式会社 絶縁構造製造方法、絶縁構造および回転電機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032554A (ja) * 1983-07-29 1985-02-19 Mitsubishi Electric Corp 回転電機のコイル絶縁処理方法
SE455246B (sv) * 1986-10-22 1988-06-27 Asea Ab Herva for anordnande i spar i en stator eller rotor i en elektrisk maskin och sett att tillverka en sadan herva

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306508A (ja) * 2005-04-26 2006-11-09 Mitsubishi Electric Corp テーピング装置
WO2018002973A1 (ja) * 2016-07-01 2018-01-04 東芝三菱電機産業システム株式会社 絶縁構造製造方法、絶縁構造および回転電機
WO2018002972A1 (ja) * 2016-07-01 2018-01-04 東芝三菱電機産業システム株式会社 絶縁構造製造方法、絶縁構造および回転電機
WO2018002970A1 (ja) * 2016-07-01 2018-01-04 東芝三菱電機産業システム株式会社 絶縁構造製造方法、絶縁構造および回転電機
WO2018002971A1 (ja) * 2016-07-01 2018-01-04 東芝三菱電機産業システム株式会社 絶縁構造製造方法、絶縁構造および回転電機

Also Published As

Publication number Publication date
JPWO2020144859A1 (ja) 2021-09-09

Similar Documents

Publication Publication Date Title
JP6864683B2 (ja) 絶縁構造製造方法
US10931159B2 (en) Electrical insulating structure producing method, electrical insulating structure and rotating electrical machine
JP6830958B2 (ja) 絶縁構造製造方法
US10903710B2 (en) Producing method for electrical insulating structure, electrical insulating structure and rotating electrical machine
WO2020144859A1 (ja) 絶縁構造製造方法、絶縁構造製造装置、および回転電機
JP2014203923A (ja) 樹脂モールドコイル及びモールド変圧器
US20190149006A1 (en) Method for producing corona discharge-preventing structure, corona discharge-preventing structure, and rotating electrical machine
JP5262923B2 (ja) ワニス含浸前処理方法及びその装置
JP7360561B1 (ja) 回転電機及び絶縁テープ
CN114502619B (zh) 制备树脂的方法和制备绝缘结构的方法
KR20230041098A (ko) 레진 제조 방법 및 절연 구조 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019537408

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909606

Country of ref document: EP

Kind code of ref document: A1