WO2020144854A1 - 回転機械 - Google Patents
回転機械 Download PDFInfo
- Publication number
- WO2020144854A1 WO2020144854A1 PCT/JP2019/000705 JP2019000705W WO2020144854A1 WO 2020144854 A1 WO2020144854 A1 WO 2020144854A1 JP 2019000705 W JP2019000705 W JP 2019000705W WO 2020144854 A1 WO2020144854 A1 WO 2020144854A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- turbine
- compressor
- rotary machine
- section
- blade
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present disclosure relates to a rotating machine.
- a supercharger which is a type of rotary machine, includes a compressor provided on one end side of a rotating shaft and a turbine provided on the other end side of the rotating shaft, as described in Patent Document 1, for example. ing.
- the turbine rotates in response to the flow of exhaust gas, the rotational force of the turbine is transmitted to the compressor via the rotating shaft, and the air is compressed by the compressor.
- the compressor is provided on one end side of the rotary shaft and the turbine is provided on the other end side of the rotary shaft, so that the axial dimension tends to be large.
- At least one embodiment of the present invention aims to provide a rotary machine that can be miniaturized in the axial direction.
- a rotary machine is A rotary machine comprising a first compressor section and a first turbine section that share a rotary shaft, The first compressor section, A plurality of first compressor blades provided at intervals in the circumferential direction of the rotating machine and configured to rotate with the rotating shaft; A first compressor flow path in which the plurality of first compressor blades are arranged; Including The first turbine section is A plurality of first turbine moving blades provided at intervals in the circumferential direction and configured to rotate together with the rotating shaft; A first turbine flow path in which the plurality of first turbine blades are arranged; Including The plurality of first compressor blades are arranged outside or inside the plurality of first turbine moving blades in the radial direction of the rotating machine, The first compressor flow path and the first turbine flow path are partitioned by a partition wall portion that connects the plurality of first compressor blades and the plurality of first turbine moving blades.
- the first compressor blade is arranged outside or inside the first turbine blade in the radial direction, and the first compressor blade and the first turbine blade are separated from each other by a partition wall. Connected through the section. Therefore, as compared with the case where the compressor and the turbine are provided on one end side and the other end side of the rotary shaft, respectively, it is possible to realize a rotary machine that is smaller and lighter in the axial direction.
- the partition wall portion that partitions the first compressor flow path and the first turbine flow path is connected to the first compressor blade and the first turbine moving blade, There is no gap between the wing arranged inside in the radial direction and the partition wall portion. Therefore, as compared with the conventional turbocharger, the leakage flow between the tip of the compressor blade (radially outer end) and the flow passage wall or the tip of the turbine blade (radial outer end) and the flow passage wall It is possible to realize a high-performance rotating machine by suppressing the leak flow between and.
- the plurality of first compressor blades are arranged inside the plurality of first turbine rotor blades in the radial direction,
- the partition wall portion is connected to an outer end of the first compressor blade in the radial direction and an inner end of the first turbine blade in the radial direction.
- the rotary machine described in (2) above can be suitably used for a turbocharger.
- the turbine In a turbocharger, the turbine is supplied with hot exhaust gas and is likely to be hotter than the compressor. Therefore, in the rotary machine described in (1) above, if the first turbine blades are arranged radially inward of the first compressor blades, the weight of the first compressor blades is set to the high temperature of the first turbine blades. Since it is necessary to support the blades, the strength of the design of the first turbine rotor blade is likely to be restricted.
- the first compressor blade by disposing the first compressor blade radially inside the first turbine blade as described in (2) above, the first compressor blade having a temperature lower than that of the first turbine blade is used by the first turbine blade. Since the moving blade can be supported, the degree of freedom in designing the first turbine moving blade can be increased.
- the radially outer end of the first compressor blade and the partition wall portion are connected, there is no gap between the first compressor blade and the partition wall portion, and the blade of the compressor is smaller than that of the conventional turbocharger. It is possible to suppress the leak flow between the tip of the nozzle and the flow path wall and improve the turbo efficiency.
- the first compressor section is a radial compressor.
- the first turbine section is an axial flow turbine.
- the pressure at the compressor outlet flow passage it is possible to design the pressure at the compressor outlet flow passage to be higher than the pressure at the turbine outlet flow passage when the rotating machine operates.
- a leak flow is generated from the compressor outlet flow passage portion to the turbine outlet flow passage portion, and this leak flow contributes to the suction of the boundary layer on the inner peripheral surface of the partition wall portion. Therefore, the surge flow on the tip side of the compressor blade that occurs in a normal turbocharger can be mitigated.
- the first turbine section is a radial inflow axial flow turbine.
- the pressure in the compressor inlet flow passage can be designed to be approximately the same as the pressure in the turbine outlet flow passage during operation of the rotary machine.
- a leak flow from the turbine to the turbine outlet channel can be suppressed.
- the pressure in the compressor inlet channel to be slightly higher than the pressure in the turbine outlet channel when the rotating machine is operating, leakage flow from the compressor outlet channel to the turbine inlet channel Occurs, and this leak flow contributes to the suction of the boundary layer on the inner peripheral surface of the partition wall. Therefore, the surge flow on the tip side of the compressor blade that occurs in a normal turbocharger can be mitigated.
- the first turbine section is a mixed flow turbine.
- the rotation speed and the pressure ratio can be adjusted by the first turbine unit configured as a mixed flow turbine.
- the plurality of first compressor blades are arranged outside the plurality of first turbine rotor blades in the radial direction,
- the partition wall portion is connected to an inner end of the first compressor blade in the radial direction and an outer end of the first turbine blade in the radial direction.
- the first turbine section is a radial turbine
- the first compressor section is an axial flow compressor, a mixed flow compressor, or a radial compressor.
- the degree of freedom in designing the first compressor section on the outer circumference side can be increased, and the first compressor section can be adapted to the application. You can decide the shape of the wing.
- the first turbine section is a radial inflow axial flow turbine
- the first compressor section is an axial compressor
- the pressure in the compressor inlet flow passage and the pressure in the turbine outlet flow passage become approximately the same when the rotating machine operates, and the pressure in the compressor outlet flow passage and the turbine inlet flow Since it is possible to design the pressures of the passages to be approximately the same, it is possible to effectively suppress the leak flow between the compressor unit and the turbine unit. Further, since the radial inflow type axial flow turbine has a wide range of pressure ratio that can be operated with respect to the radial turbine, it is possible to cope with a cycle outside the steady operation range of the radial turbine.
- the first turbine section is an axial flow turbine
- the first compressor section is an axial compressor
- the pressure in the compressor inlet channel and the pressure in the turbine outlet channel become substantially the same when the rotary machine operates, and the pressure in the compressor outlet channel and the turbine inlet flow Since it is possible to design the pressures of the passages to be approximately the same, it is possible to effectively suppress the leak flow between the compressor unit and the turbine unit. Further, since the axial flow turbine has a wide range of pressure ratio that can be operated with respect to the radial turbine, it is possible to cope with a cycle outside the normal operation range of the radial turbine.
- the first compressor section and the first turbine section are disposed on one end side of the rotating shaft,
- the rotary machine further includes a second compressor section arranged on the other end side of the rotary shaft.
- the rotor outer diameter on the side of the second compressor is set to be equal to the rotor outer diameter of the compressor of the conventional turbocharger
- the rotor outer diameter on the side of the first turbine section (first compressor section side) is set to that of the turbine of the conventional turbocharger.
- the flow rate can be supplemented by the first compressor.
- the peripheral speed can be increased by downsizing the second compressor part, it is possible to operate at a high rotational speed corresponding to the peripheral speed at which the efficiency of the axial flow turbine reaches its peak, and the turbocharger is improved in performance. can do.
- a flow rate adjusting unit that is provided in at least one of the first flow path and the second flow path and is capable of adjusting the flow rate of the first flow path or the second flow path; Is further provided.
- the flow rate of the gas supplied from the first compressor section to the internal combustion engine via the first flow path and the gas flow supplied from the second compressor section to the internal combustion engine via the second flow path is adjusted by the flow rate adjusting unit, it is possible to function as a variable capacity turbocharger. For example, at the time of a small flow rate such as when starting a rotary machine, only one of the first compressor section and the second compressor section is driven, and at the time of a large flow rate such as a steady operation, both the first compressor section and the second compressor section are driven. Can be used as a variable-capacity turbocharger.
- the rotating machine described in (14) above it is possible to realize a high-performance two-stage supercharging device that is axially downsized.
- a rotary machine configured as a two-stage turbocharger when the first turbine section on the high pressure side is configured as a radial inflow axial flow turbine and the second turbine section on the low pressure side is configured as a mixed flow turbine, Compared with the two-stage supercharging device that conventionally required two housings, only one housing is required, and the two-stage supercharging device can be made smaller and lighter.
- the first turbine section includes a plurality of turbine stages including the first turbine moving blade and a turbine stationary blade provided on the upstream side of the first turbine moving blade.
- the rotating machine described in (15) above it can be applied to, for example, a small gas turbine.
- it is possible to reduce the size and weight of the gas turbine in the axial direction without changing the existing turbine speed ratio U/CO and the flow rate characteristic.
- the first compressor blade and the partition wall portion are connected and there is no gap between the compressor blade and the partition wall portion, there is a gap between the tip of the compressor blade and the flow path wall. It is possible to realize a highly efficient gas turbine by suppressing the leak flow of the gas turbine.
- the first compressor section and the first turbine section are disposed on one end side of the rotating shaft,
- the rotary machine further includes a motor connected to the other end of the rotary shaft,
- the first compressor section includes a first guide section for guiding the gas passing through the first compressor blade to an object to be cooled,
- the first turbine unit includes a second guide unit for guiding the gas used for cooling the cooling target to the first turbine moving blade.
- the fluid guided to the cooling target by the first guide unit is guided to the first turbine unit after cooling the cooling target.
- the exhaust heat of the cooling target can be used to recover the power by the first turbine rotor blade and assist the driving force of the motor. Therefore, it is possible to reduce the electric power consumption of the motor by effectively utilizing the waste heat that has been conventionally discarded.
- the rotary machine according to any one of (1) to (16) above, The first compressor blade and the first turbine moving blade are integrally formed of the same material.
- the exhaust gas of the gasoline engine is at a high temperature, and therefore, as described in (17) above.
- the first compressor blade and the turbine rotor blade may be integrally formed of the same material using a general turbine material in consideration of heat resistance. Further, if the required heat resistance is satisfied, the compressor blade and the turbine rotor blade may be integrally formed of the same material using a general compressor material.
- the first compressor blade and the first turbine rotor blade are made of different materials.
- the rotary machine according to any one of (1) to (16) is used for recovering exhaust heat at a relatively low temperature (for example, exhaust heat recovery of a fuel cell or a diesel engine, exhaust heat temperature in a binary cycle, etc.
- a relatively low temperature for example, exhaust heat recovery of a fuel cell or a diesel engine, exhaust heat temperature in a binary cycle, etc.
- processing by the three-dimensional metal additive manufacturing method can be preferably used.
- a rotary machine that can be miniaturized in the axial direction is provided.
- FIG. 2 It is a schematic sectional drawing of rotary machine 2 (2A) concerning one embodiment. It is a figure which shows arrangement
- expressions such as “identical”, “equal”, and “homogeneous” that indicate that they are in the same state are not limited to a state in which they are exactly equal. It also represents the existing state.
- the representation of a shape such as a quadrangle or a cylindrical shape does not only represent a shape such as a quadrangle or a cylindrical shape in a strict geometric sense, but also an uneven portion or a chamfer within a range in which the same effect can be obtained.
- the shape including parts and the like is also shown.
- the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one element are not exclusive expressions excluding the existence of other elements.
- FIG. 1 is a schematic sectional view of a rotary machine 2 (2A) according to an embodiment.
- FIG. 2A is a diagram showing the arrangement of the first compressor blades, the first turbine moving blades, and the stationary blades as viewed in the radial direction of the rotary machine 2 (2A).
- FIG. 2B is a diagram showing the motor 21 connected to the rotary shaft 4 of the rotary machine 2 (2A).
- FIG. 3 is a schematic cross-sectional view of the rotary machine 2 (2B) according to the embodiment.
- FIG. 4 is a diagram showing the arrangement of the first compressor blades and the first turbine rotor blades as seen in the radial direction of the rotary machine 2 (2B).
- FIG. 5 is a schematic cross-sectional view of the rotary machine 2 (2C) according to the embodiment.
- FIG. 6 is a diagram showing the arrangement of the first compressor blades and the first turbine moving blades as viewed in the radial direction of the rotary machine 2 (2C).
- FIG. 7 is a schematic cross-sectional view of the rotary machine 2 (2D) according to the embodiment.
- FIG. 8 is a figure which shows arrangement
- FIG. 9 is a schematic cross-sectional view of the rotary machine 2 (2E) according to the embodiment.
- FIG. 10 is a diagram showing the arrangement of the first compressor blades and the first turbine rotor blades as seen in the radial direction of the rotary machine 2 (2E).
- FIG. 11 is a schematic cross-sectional view of the rotary machine 2 (2F) according to the embodiment.
- FIG. 12 is a schematic cross-sectional view of the rotary machine 2 (2G) according to the embodiment.
- FIG. 13 is a schematic cross-sectional view of the rotary machine 2 (2H) according to the embodiment.
- FIG. 14 is a schematic cross-sectional view of the rotary machine 2 (2I) according to the embodiment.
- FIG. 15 is a schematic cross-sectional view of the rotary machine 2 (2J) according to the embodiment.
- FIG. 11 is a diagram showing the arrangement of the first compressor blades and the first turbine rotor blades as seen in the radial direction of the rotary machine 2 (2E).
- FIG. 11 is a schematic cross-sectional view of the rotary machine 2 (2F) according to the embodiment.
- FIG. 16 is a schematic cross-sectional view of the rotary machine 2 (2K) according to the embodiment.
- FIG. 17 is a schematic cross-sectional view of the rotary machine 2 (2L) according to the embodiment.
- FIG. 18 is a schematic cross-sectional view of the rotary machine 2 (2L) according to the embodiment.
- FIG. 19 is a schematic sectional view of the rotary machine 2 (2M) according to the embodiment.
- circumferential direction of the rotary machine 2 (the circumferential direction of the rotary shaft 4 of the rotary machine 2) will be simply referred to as “circumferential direction”, and the radial direction of the rotary machine 2 (the radial direction of the rotary shaft 4 of the rotary machine 2) will be referred to as “circumferential direction”.
- the term “radial direction” will be simply referred to, and the axial direction of the rotary machine 2 (the axial direction of the rotary shaft 4 of the rotary machine 2) will be simply referred to as “axial direction”.
- the rotary machine 2 (2A to 2M) includes a first compressor section 6 and a first turbine section 8 that share a rotary shaft 4.
- the first compressor section 6 is provided with a plurality of compressor blades 10 (first compressor blades), which are arranged at intervals in the circumferential direction and configured to rotate together with the rotating shaft 4, and a plurality of compressor blades 10 are arranged.
- the compressor flow path 12 (first compressor flow path) is included.
- the first turbine unit 8 includes a plurality of turbine moving blades 14 (first turbine moving blades) that are provided at intervals in the circumferential direction and configured to rotate together with the rotating shaft 4, and a plurality of turbine moving blades 14.
- the turbine flow path 16 (1st turbine flow path) arrange
- the compressor flow passage 12 includes a compressor inlet flow passage portion 22 configured to guide gas from the inlet of the compressor flow passage 12 to the compressor blade 10, and a compressor that guides gas passing through the compressor blade 10 to the outlet of the compressor flow passage 12.
- the outlet flow path part 23 is included.
- the turbine flow passage 16 includes a turbine inlet flow passage portion 28 that guides gas from the inlet of the turbine flow passage 16 to the turbine rotor blade 14, and a turbine outlet flow passage that guides gas that has passed through the turbine rotor blade 14 to the outlet of the turbine flow passage 16. And part 30.
- the plurality of compressor blades 10 are arranged outside or inside the plurality of turbine moving blades 14 in the radial direction.
- the compressor passage 12 and the turbine passage 16 are partitioned by a cylindrical partition wall portion 18 extending along the circumferential direction so as to connect to the plurality of compressor blades 10 and the plurality of turbine moving blades 14. That is, the compressor flow passage 12 and the turbine flow passage 16 share the cylindrical partition wall portion 18 extending along the circumferential direction so as to connect to the plurality of compressor blades 10 and the plurality of turbine moving blades 14. There is.
- the plurality of compressor blades 10, the plurality of turbine rotor blades 14 and the partition wall portion 18 are configured to form at least a part of the rotor 20 together with the rotating shaft 4. ..
- the compressor blade 10 is arranged outside or inside the turbine moving blade 14 in the radial direction, and the compressor blade 10 and the turbine moving blade 14 have the partition wall portion 18 interposed therebetween. Connected. Therefore, as compared with the case where the compressor and the turbine are provided on one end side and the other end side of the rotary shaft 4, respectively, it is possible to realize the rotary machine 2 that is smaller in size and lighter in the axial direction.
- partition wall portion 18 that divides the compressor flow passage 12 and the turbine flow passage 16 is connected to the compressor blade 10 and the turbine moving blade 14, it is located inside the compressor blade 10 and the turbine moving blade 14 in the radial direction. There is no gap between the arranged wings and the partition wall portion 18. Therefore, a leak flow does not occur between the partition wall portion 18 and the blades of the compressor blade 10 and the turbine moving blade 14 that are arranged inside in the radial direction, so that a high-performance rotary machine can be realized.
- the rotary machine 2 (2A to 2L) shown in FIGS. 1 to 18 is configured as a turbocharger, and exhaust gas from an internal combustion engine (not shown) is supplied to the turbine passage 16.
- the turbine rotor blade 14 receives the flow of exhaust gas to recover the power
- the compressor blade 10 that rotates integrally with the turbine rotor blade 14 compresses the air and supplies the compressed air to the internal combustion engine.
- the type of internal combustion engine is not particularly limited, and may be, for example, a gas engine, a gas turbine or a diesel engine.
- a fuel cell may be used instead of the internal combustion engine. In this case, the exhaust gas of the fuel cell is supplied to the turbine flow path 16, and the air compressed using the compressor blade 10 is supplied to the fuel cell.
- the plurality of compressor blades 10 are disposed radially inside the plurality of turbine rotor blades 14 and the partition wall portion 18 is provided. Extends circumferentially so as to connect to the outer end 10a of the compressor blade 10 in the radial direction and the inner end 14a of the turbine blade 14 in the radial direction.
- the plurality of compressor blades 10 are disposed radially outward of the plurality of turbine rotor blades 14 to provide partitioning.
- the wall portion 18 extends in the circumferential direction so as to connect to the inner end 10b of the compressor blade 10 in the radial direction and the outer end 14b of the turbine rotor blade 14 in the radial direction.
- the first compressor section 6 on the inner peripheral side is a radial compressor and the first turbine section 8 on the outer peripheral side is an axial flow turbine.
- the compressor inlet flow path portion 22 is configured to allow air (gas) to flow into the compressor blade 10 from the side opposite to the bearing 5 along the axial direction.
- the compressor outlet channel section 23 is a compressor-side scroll channel section 24 provided outside the compressor blade 10 in the radial direction, and a diffuser channel section that guides the gas that has passed through the compressor blade 10 to the compressor-side scroll channel section 24. 26 and.
- the turbine inlet flow passage portion 28 is configured to allow exhaust gas (gas) of an internal combustion engine (not shown) to flow into the turbine rotor blade 14 from the side opposite to the bearing 5 along the axial direction. Is provided with a plurality of turbine stationary blades 32 on the upstream side of the turbine rotor blade 14 at intervals in the circumferential direction.
- the pressure surface 10 c of the compressor blade 10 faces the downstream side in the rotation direction of the rotary shaft 4, and the pressure surface 14 c of the turbine rotor blade 14 faces the upstream side in the rotation direction of the rotation shaft 4.
- the positive pressure surface 32c of the turbine vane 32 faces the downstream side in the rotation direction of the rotating shaft 4.
- the pressure surface 10 c of the compressor blade 10 and the pressure surface 14 c of the turbine rotor blade 14 are opposite to each other in the rotation direction of the rotating shaft 4. Further, when viewed in the radial direction, the compressor blade 10 and the turbine rotor blade 14 partially overlap.
- the high-temperature and high-pressure exhaust gas in the turbine inlet flow passage portion 28 is accelerated by the turbine vanes 32, and the turbine rotor blades 14 recover power from the exhaust gas.
- the power recovered by the turbine rotor blades 14 is consumed by the first compressor section 6 on the inner peripheral side.
- the pressure in the compressor inlet flow passage portion 22 is P1
- the pressure in the compressor side scroll flow passage portion 24 is P2
- the pressure in the turbine inlet flow passage portion 28 on the upstream side of the turbine vane 32 is P3
- the pressure between the radially inner end 32a of the turbine vane 32 and the radially inner end 14a of the turbine rotor blade 14 in the turbine inlet passage 28 is P4
- the pressure in the turbine outlet passage 30 is P5.
- the layout is such that the thermal strength reliability is improved. Further, since the first turbine section 8 can be cooled by the first compressor section 6, it is possible to improve strength reliability.
- the rotary machine 2 (2A) includes a guide cylinder 25, an outer casing 86, a scroll casing 34, a partition plate 88, and a bearing casing 90 as a casing that houses the rotor 20.
- the guide tube 25 forms the compressor inlet flow path portion 22 inside.
- the outer casing 86 is arranged outside the guide cylinder 25 in the radial direction, forms the turbine inlet flow passage portion 28 with the guide cylinder 25, and forms the turbine outlet flow passage portion 30 with the partition plate 88.
- the partition plate 88 is provided so as to partition the turbine outlet flow passage portion 30 and the compressor outlet flow passage portion 23, and forms the compressor outlet flow passage portion 23 with the scroll casing 34.
- the bearing casing 90 accommodates the bearing 5 that rotatably supports the rotating shaft 4.
- the configuration of the casing that houses the rotor 20 is not particularly limited, but by configuring the guide cylinder 25 and the outer casing 86 as separate components as described above, the guide cylinder 25 can be used for maintenance or machining of each blade. For easy access to the compressor blades 10, turbine blades 14, and turbine vanes 32. Further, by configuring the outer casing 86 and the partition plate 88 as separate parts, the outer casing 86 can be removed from the partition plate 88 for easy access to the turbine rotor blade 14 during maintenance or processing of each blade.
- the rotary shaft 2 is rotated at the end opposite to the first compressor portion 6 (see FIG. 1) of the rotary shaft 4 with the bearing 5 interposed therebetween.
- a motor 21 for assisting the rotation of the shaft 4 may be connected.
- the rotary machine 2 (2B) will be described with reference to FIGS. 3 and 4.
- the first compressor section 6 on the inner peripheral side is a radial compressor
- the first turbine section 8 on the outer peripheral side is a radial inflow axial flow turbine.
- the compressor inlet flow path portion 22 is configured to allow air to flow into the compressor blade 10 from the side opposite to the bearing 5 along the axial direction.
- the compressor outlet flow passage portion 23 includes a compressor side scroll flow passage portion 24 provided outside the compressor blade 10 in the radial direction and a diffuser flow passage portion that guides air passing through the compressor blade 10 to the compressor side scroll flow passage portion 24. 26 and.
- the turbine inlet flow passage portion 28 has a turbine side scroll flow passage portion 36 provided on the outer peripheral side of the rotor 20 and a direction in which the exhaust gas flowing through the turbine side scroll flow passage portion 36 is directed inward in the radial direction. From the bearing 5 side to the turbine moving blade 14 along the axial direction. As described above, the inflow direction of air to the compressor blade 10 is opposite to the inflow direction of exhaust gas in the turbine rotor blade 14.
- the pressure surface 10 c of the compressor blade 10 faces the downstream side in the rotation direction of the rotary shaft 4, and the pressure surface 14 c of the turbine rotor blade 14 faces the upstream side in the rotation direction of the rotation shaft 4.
- the pressure surface 10 c of the compressor blade 10 and the pressure surface 14 c of the turbine rotor blade 14 are opposite to each other in the rotation direction of the rotating shaft 4. Further, when viewed in the radial direction, the compressor blade 10 and the turbine rotor blade 14 partially overlap.
- the high-temperature and high-pressure exhaust gas that has passed from the turbine-side scroll passage portion 36 of the turbine inlet passage portion 28 through the bend passage portion 38 along the axial direction has the turbine rotor blade 14 on the outer peripheral side. Power is recovered from the fluid by the turbine rotor blades 14. The power recovered by the turbine rotor blades 14 is consumed by the first compressor section 6 on the inner peripheral side.
- the pressure in the compressor inlet flow passage portion 22 is P1
- the pressure in the compressor side scroll flow passage portion 24 is P2
- the pressure in the turbine inlet flow passage portion 28 on the upstream side of the turbine vane 32 is P2
- the pressure in the turbine inlet flow passage portion 28 on the upstream side of the turbine vane 32 is P3
- the pressure of the turbine outlet flow passage portion 30 is P5.
- the rotary machine 2 (2B) can be designed to operate in a state of satisfying P1 ⁇ P5 and P2 ⁇ P3 by adopting a radial inflow type axial turbine.
- the leak flow between the compressor inlet flow passage portion 22 and the turbine outlet flow passage portion 30 (the leak flow through the gap between the guide cylinder 25 forming the compressor inlet flow passage portion 22 and the partition wall portion 18) is generated.
- Leakage between the compressor outlet flow passage portion 23 and the turbine inlet flow passage portion 28 (an annular partition plate 88 for partitioning the compressor outlet flow passage portion 23 and the turbine inlet flow passage portion 28 and the partition wall portion 18) It is possible to suppress the leakage flow through the gap between Further, because of P2>P3 due to the pressure loss, it is possible to mitigate the surge flow of the compressor unit 6 as in the rotary machine 2 (2A). Therefore, the rotary machine 2 (2B) with high turbo efficiency can be realized.
- the scroll casing 34 forming the turbine side scroll passage portion 36 is provided with the cooling passage 40 through which the cooling medium flows.
- the rotary machine 2 includes a guide tube 25, an outer casing 86, a scroll casing 34, a partition plate 88, and a bearing casing 90 as a casing that houses the rotor 20.
- the guide tube 25 forms the compressor inlet flow path portion 22 inside.
- the outer casing 86 is arranged outside the guide cylinder 25 in the radial direction, forms the turbine outlet flow passage portion 30 with the guide cylinder 25, and forms the turbine inlet flow passage portion 28 with the partition plate 88.
- the partition plate 88 is provided so as to partition the turbine inlet flow passage portion 28 and the compressor outlet flow passage portion 23, and forms the compressor outlet flow passage portion 23 with the scroll casing 34.
- the bearing casing 90 accommodates the bearing 5 that rotatably supports the rotating shaft 4.
- the configuration of the casing that houses the rotor 20 is not particularly limited, but by configuring the guide cylinder 25 and the outer casing 86 as separate components as described above, the guide cylinder 25 can be used for maintenance or machining of each blade. For easy access to the compressor blades 10 and turbine blades 14. Further, by configuring the outer casing 86 and the partition plate 88 as separate parts, the outer casing 86 can be removed from the partition plate 88 for easy access to the turbine rotor blade 14 during maintenance or processing of each blade.
- the first turbine section 8 on the inner peripheral side is a radial turbine.
- the first compressor section 6 on the outer peripheral side may be an axial flow compressor as shown in FIGS. 5 and 7, a radial compressor as shown in FIG. 9, or a mixed flow compressor.
- the degree of freedom in design of the first compressor section 6 on the outer peripheral side can be increased, and the shape of the compressor blade 10 can be changed according to the application. I can decide.
- the compressor inlet flow passage portion 22 is configured to allow gas to flow into the compressor blades 10 from the bearing 5 side along the axial direction, and the turbine inlet flow passage portion 28 is It is configured to allow gas to flow into the turbine rotor blade 14 along the radial direction.
- the compressor inlet flow passage portion 22 is configured to allow gas to flow into the compressor blade 10 from the side opposite to the bearing 5 along the axial direction,
- the inlet flow path portion 28 is configured to allow gas to flow into the turbine rotor blade 14 along the radial direction.
- the compressor outlet flow path portion 23 is provided with a plurality of diffuser blades 42 at intervals in the circumferential direction.
- the pressure surface 10c of the compressor blade 10 faces the downstream side in the rotation direction of the rotary shaft 4, and the turbine blade 14
- the positive pressure surface 14c faces the upstream side in the rotation direction of the rotating shaft 4.
- the pressure surface 10 c of the compressor blade 10 and the pressure surface 14 c of the turbine rotor blade 14 are opposite to each other in the rotation direction of the rotating shaft 4. Further, when viewed in the radial direction, the compressor blade 10 and the turbine rotor blade 14 partially overlap.
- the axial pressure compressor has a smaller operating pressure ratio per single stage than the radial turbine, the pressure P2 of the compressor outlet flow passage portion 23 and the pressure P3 of the turbine side scroll flow passage portion 36 satisfy P2 ⁇ P3. Absent. That is, the first turbine section 8 and the first compressor section 6 are not balanced, and the power to be recovered by the turbine rotor blades 14 is surplus. Therefore, the rotating shaft 4 is used for the generator and the driven machine rather than the turbocharger. Can be suitably used as a power generation device or a power drive device.
- the rotary machine 2 (2C to 2E) may be configured as a two-stage supercharger by connecting, for example, another supercharger to the rotary shaft 4, or a load absorber (driven machine) on the rotary shaft 4. You may connect.
- the rotary machine 2 (2C to 2E) is preferably used in a cycle in which the surplus power that is not consumed by another supercharger or the load absorber is used by the first compressor section 6 in another process. ..
- the first turbine section 8 on the inner peripheral side is a radial inflow type axial flow turbine
- the first compressor section 6 on the outer peripheral side is an axial flow compressor.
- the turbine inlet flow passage portion 28 has a turbine side scroll flow passage portion 36 provided on the outer peripheral side of the rotor 20 and a direction in which the exhaust gas flowing through the turbine side scroll flow passage portion 36 is directed inward in the radial direction. From the bearing 5 side to the turbine moving blade 14 along the axial direction.
- the compressor inlet flow path portion 22 is configured to allow air to flow into the compressor blade 10 from the side opposite to the bearing 5 along the axial direction. That is, the inflow direction of the air into the compressor blade 10 is opposite to the inflow direction of the exhaust gas in the turbine rotor blade 14.
- the high-temperature and high-pressure exhaust gas that has passed through the bend flow passage portion 38 from the turbine side scroll flow passage portion 36 of the turbine inlet flow passage portion 28 flows into the turbine moving blade 14, and the turbine moving blade 14 Power is recovered from the exhaust gas at.
- the power recovered by the turbine rotor blades 14 is consumed by the first compressor section 6 on the outer peripheral side.
- the rotary machine 2 (2G, 2H) will be described with reference to FIGS. 12 and 13.
- the first turbine section 8 on the inner peripheral side is an axial flow turbine
- the first compressor section 6 on the outer peripheral side is an axial flow compressor.
- the turbine inlet flow passage portion 28 is configured to allow gas to flow into the turbine rotor blade 14 from the side opposite to the bearing 5 along the axial direction.
- a plurality of turbine stationary blades 32 are provided on the upstream side of the turbine moving blade 14 at intervals in the circumferential direction.
- the compressor inlet channel section 22 is configured to allow gas to flow into the compressor blade 10 from the bearing 5 side along the axial direction.
- a plurality of diffuser vanes 42 are provided in the compressor outlet flow path portion 23 at intervals in the circumferential direction. As described above, the inflow direction of gas into the compressor blade 10 is opposite to the inflow direction of exhaust gas in the turbine rotor blade 14.
- the first turbine section 8 on the inner peripheral side is a radial inflow axial flow turbine
- the first compressor section 6 on the outer peripheral side is an axial flow compressor.
- the turbine inlet flow passage portion 28 has a turbine side scroll flow passage portion 36 provided on the outer peripheral side of the rotor 20 and a flow direction of the exhaust gas passing through the turbine side scroll flow passage portion 36 from a direction toward the inner side in the radial direction.
- a bend flow path portion 38 configured to change in a direction along the axial direction, and configured to allow gas to flow from the bearing 5 side into the turbine rotor blade 14 along the axial direction.
- the compressor inlet flow passage portion 22 is configured to allow gas to flow into the compressor blade 10 from the side opposite to the bearing 5 along the axial direction. As described above, the inflow direction of gas into the compressor blade 10 is opposite to the inflow direction of exhaust gas in the turbine rotor blade 14.
- the high-temperature and high-pressure exhaust gas that has passed through the turbine inlet flow passage portion 28 flows axially into the turbine rotor blade 14 on the inner peripheral side, and the turbine rotor blade Power is recovered from the fluid at 14.
- the power recovered by the turbine rotor blades 14 is consumed by the first compressor section 6 on the outer peripheral side.
- the axial flow turbine has a wide range of pressure ratios operable with the radial turbine (for example, a low pressure ratio of about 1.1).
- a high-performance design is possible even at a high pressure ratio of 5 or more), so that it is possible to support cycles outside the steady operation range of the radial turbine (for example, pressure ratio of 1.5 to 4).
- the tip height of the turbine blade is small and the influence of the tip clearance is large, so chip leak (the gap between the tip of the turbine blade and the flow path wall is The loss due to the leak flow) tends to increase.
- an axial flow turbine tends to have a larger chip leak loss than a radial turbine.
- the outer end 14b of the turbine rotor blade 14 of the first turbine section 8 is connected to the partition wall section 18. Since the chip leak of the turbine unit 8 can be reduced to about 0%, the performance can be greatly improved.
- the pressure P1 of the compressor inlet flow passage portion 22, the pressure P2 of the compressor outlet flow passage portion 23, the turbine at the turbine inlet flow passage portion 28 is used. It is possible to design the rotary machine 2 (2A) so that the pressure P3 on the upstream side of the vanes 32 and the pressure P5 of the turbine outlet flow passage portion 30 operate in a state of satisfying P1 ⁇ P5 and P2 ⁇ P3. Therefore, it is possible to effectively suppress the leak flow between the compressor passage 12 and the turbine passage 16.
- the rotary machine 2 (2I) will be described with reference to FIG.
- the rotary machine 2 (2A) including the first compressor section 6 and the first turbine section 8 described above is arranged at one end side of the rotary shaft 4, and the second end is provided at the other end side of the rotary shaft 4.
- a compressor unit 44 is arranged.
- the second compressor section 44 is a radial compressor.
- the outer diameter of the rotor on the side of the second compressor section 44 is made equal to the outer diameter of the rotor of the compressor of the conventional turbocharger, and the outer diameter of the rotor on the first turbine section 8 side (the first compressor section 6 side) is set to the conventional turbocharger.
- the flow rate of the compressor can be increased while maintaining the response when the number of rotations is set to be equal.
- the flow rate can be supplemented by the first compressor section 6.
- the peripheral speed can be increased by downsizing the second compressor unit 44, it becomes possible to operate at a high rotation speed corresponding to the peripheral speed at which the efficiency of the axial flow turbine reaches its peak, and the turbocharger can have high performance. Can be converted.
- the rotary machine 2 (2A) described above is arranged on one end side of the rotary shaft 4, but rotation in the rotary machine 2 (2I) is shown.
- one of the rotary machines 2 (2B to 2H) described above may be arranged on one end side of the shaft 4.
- the rotary machine 2 (2J) will be described with reference to FIG.
- the first turbine section 8 configured as a mixed flow turbine is provided on the outer periphery. Prepare for the side.
- the first turbine section 8 configured as a mixed flow turbine makes it possible to adjust the rotation speed and the pressure ratio.
- the rotary machine 2 (2J) has the first flow path 48 for supplying the air discharged from the first compressor section 6 to the internal combustion engine 46, and the air discharged from the second compressor section 44 to the internal combustion engine 46. And a flow rate adjusting unit 52.
- the second flow path 50 is configured to join with the first flow path 48, and the flow rate adjusting unit 52 is provided in at least one of the first flow path 48 and the second flow path 50.
- the flow rate of the second flow path 50 is adjustable.
- the flow rate adjusting unit 52 includes a flow rate control valve 54 provided in the first flow path 48.
- the rotary machine 2 (2J) is provided with an exhaust gas passage 51 for supplying the exhaust gas of the internal combustion engine 46 to the inlet of the first turbine unit 8.
- the first flow path 48 or the second flow path 50 is connected to a tank (not shown) for storing an excess amount of air discharged from the first flow path 48 or the second flow path. May be.
- the flow rate of the air supplied from the first compressor section 6 to the internal combustion engine 46 via the first flow path 48 and the second compressor section 44 via the second flow path 50 can function as a variable capacity turbocharger.
- the flow rate adjusting unit 52 it can function as a variable capacity turbocharger.
- the first compressor section 6 is driven.
- the second compressor unit 44 and the second compressor unit 44 it is possible to function as a variable capacity turbocharger.
- the rotary machine 2 (2K) will be described with reference to FIG.
- the rotary machine 2 (2B) including the above-described first compressor section 6 and the first turbine section 8 is arranged on one end side of the rotary shaft 4, and the second on the other end side of the rotary shaft 4.
- the compressor unit 44 and the second turbine unit 56 are arranged.
- the second compressor section 44 on the inner peripheral side is a radial compressor
- the second turbine section 56 on the outer peripheral side is a mixed flow turbine.
- the second compressor section 44 is provided with a plurality of compressor blades 58 (second compressor blades), which are arranged at intervals in the circumferential direction and configured to rotate together with the rotary shaft 4, and a plurality of compressor blades 58. And a compressor channel 60 (second compressor channel).
- the second turbine section 56 includes a plurality of turbine rotor blades 62 (second turbine rotor blades) that are provided at intervals in the circumferential direction and configured to rotate together with the rotating shaft 4, and a plurality of turbine rotor blades 62.
- positioned is included.
- the plurality of compressor blades 58 are arranged inside the plurality of turbine rotor blades 62 in the radial direction.
- the compressor passage 60 and the turbine passage 64 are partitioned by a cylindrical partition wall portion 66 extending in the circumferential direction so as to connect to the plurality of compressor blades 58 and the plurality of turbine rotor blades 62. That is, the compressor flow passage 60 and the turbine flow passage 64 share the cylindrical partition wall portion 66 extending along the circumferential direction so as to connect to the plurality of compressor blades 58 and the plurality of turbine moving blades 62.
- the plurality of compressor blades 58, the plurality of turbine rotor blades 62, and the partition wall portion 66 are configured to form at least a part of the rotor 20 together with the rotating shaft 4.
- the rotary machine 2 (2K) includes a third flow path 68 for guiding the air discharged from the second compressor section 44 to the first compressor section 6, and an exhaust gas discharged from the first turbine section 8 to the second turbine. And a fourth flow path 70 for guiding to the portion 56, and is configured as a two-stage supercharging device. That is, the exhaust gas from the internal combustion engine (not shown) sequentially flows through the first turbine section 8, the fourth flow path 70, and the second turbine section 56, and the turbine rotor blades 14 of the first turbine section 8 and the second turbine section 56 are exhausted. Power is recovered by the turbine rotor blades 62. Further, the gas compressed by flowing through the second compressor section 44, the third flow path 68 and the first compressor section 6 in sequence is supplied to the internal combustion engine.
- the high-pressure side first turbine section 8 is configured as a radial inflow axial flow turbine, and the low-pressure side second turbine section 56 is mixed flow. Since the turbine is configured as a turbine, only one housing is required as compared with the two-stage supercharging device that conventionally requires two housings, and the two-stage supercharging device can be made smaller and lighter.
- the rotary machine 2 (2K) has the two-stage supercharging device in which the rotary machine 2 (2B) described above is arranged on one end side of the rotary shaft 4.
- the rotary machine 2 (2B) one of the rotary machines 2 (2A, 2C to 2H) described above may be disposed on one end side of the rotary shaft 4 in 2K).
- the rotary machine 2 (2L) will be described with reference to FIGS. 17 and 18.
- the first compressor section 6 on the inner peripheral side is a radial compressor
- the first turbine section 8 on the outer peripheral side is a multi-stage axial flow turbine.
- the first turbine unit 8 includes a plurality of turbine paragraphs 72 each including a turbine rotor blade 14 and a turbine stator blade 32 provided upstream of the plurality of turbine rotor blades 14. That is, the turbine vanes 32 and the turbine rotor blades 14 are alternately arranged in the first turbine unit 8 in the axial direction.
- the rotary machine 2 (2L) can be applied to, for example, a small gas turbine.
- the air compressed by the compressor blades 10 in the compressor passage 12 is supplied to the combustor 74 and used for combustion of the fuel supplied from the burner 76, and the combustion gas is supplied to the turbine passage 16 to supply the turbine gas. Power is recovered by the moving blades 14.
- a driven machine 78 such as a generator or a pump may be provided on the rotary shaft 4 of the rotary machine 2 (2L).
- the rotary machine 2 (2M) will be described with reference to FIG.
- the first compressor section 6 on the inner peripheral side is an axial flow compressor that functions as a cooling fan
- the first turbine section 8 on the outer peripheral side is an axial flow turbine.
- the first compressor section 6 and the first turbine section 8 are arranged on one end side of the rotating shaft 4, and the motor 21 is connected to the other end side of the rotating shaft 4.
- the first compressor section 6 includes a first guide section 80 for guiding the fluid that has passed through the compressor blade 10 to a cooling target, and the first turbine section 8 uses the fluid used to cool the cooling target 82 to a turbine rotor blade.
- a second guide portion 84 for guiding to 14 is included.
- the object to be cooled 82 is not particularly limited, but may be, for example, a heat generating part inside a PC, a semiconductor, or the like.
- the fluid guided to the cooling target by the first guide unit 80 is guided to the first turbine unit 8 after cooling the cooling target.
- the exhaust heat of the cooling target can be used to recover the power by the turbine rotor blades 14 and assist the driving force of the motor 21. Therefore, it is possible to effectively utilize the waste heat that has been conventionally discarded, and reduce the power consumption of the motor 21 of the cooling fan.
- the compressor blade 10, the partition wall portion 18, and the turbine moving blade 14 are integrally configured as a blisk in order to increase the strength by using the hoop force. Good.
- the compressor blade 10 and the turbine rotor blade 14 may be integrally formed of the same material, or may be formed of different materials.
- the compressor blade 10 and the turbine rotor blade 14 are integrally formed of the same material, it is possible to use processing methods, shaving, welding, castings, etc. that match the application and shape, but from the viewpoint of product weight. From the above, the material of the compressor blade 10 and the material of the turbine rotor blade 14 may be divided and processed by the three-dimensional metal additive manufacturing method.
- the exhaust gas of the gasoline engine has a relatively high temperature, and therefore the compressor blade 10, the partition wall portion 18, and the turbine are used.
- the rotor blade 14 may be integrally configured using a general turbine material in consideration of heat resistance.
- the rotary machine 2 (2A to 2M) described above is used to recover exhaust heat at a relatively low temperature (for example, exhaust heat recovery of a fuel cell or a diesel engine, or exhaust heat temperature in a binary cycle or the like is relatively low.
- a relatively low temperature for example, exhaust heat recovery of a fuel cell or a diesel engine, or exhaust heat temperature in a binary cycle or the like
- the material of the compressor blade 10 and the material of the turbine rotor blade 14 are separated, it is easy to achieve strength.
- processing by the three-dimensional metal additive manufacturing method is performed. It can be used preferably.
- the compressor blade 10, the partition wall portion 18 and the turbine moving blade 14 may be made of a general compressor material.
- the present invention is not limited to the above-described embodiment, and includes a form in which the above-described embodiment is modified and a form in which these forms are appropriately combined.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Supercharger (AREA)
Abstract
第1コンプレッサ部及び第1タービン部を備える回転機械であって、第1コンプレッサ部は、回転軸の周方向に間隔をあけて設けられ、回転軸とともに回転するように構成された複数の第1コンプレッサ翼と、複数の第1コンプレッサ翼が配置された第1コンプレッサ流路と、を含み、第1タービン部は、周方向に間隔をあけて設けられ、回転軸とともに回転するように構成された複数の第1タービン動翼と、複数の第1タービン動翼が配置された第1タービン流路と、を含み、複数の第1コンプレッサ翼は、回転軸の径方向において複数の第1タービン動翼の外側又は内側に配置され、第1コンプレッサ流路と第1タービン流路は、複数の第1コンプレッサ翼と複数の第1タービン動翼とに接続する仕切壁部によって仕切られる。
Description
本開示は、回転機械に関する。
従来、回転機械の一種である過給機は、例えば特許文献1に記載されるように、回転軸の一端側に設けられたコンプレッサと、回転軸の他端側に設けられたタービンとを備えている。この従来の過給機では、排気ガスの流れを受けてタービンが回転し、タービンの回転力が回転軸を介してコンプレッサに伝達されてコンプレッサで空気が圧縮される。
しかしながら、上述したような従来の過給機では、回転軸の一端側にコンプレッサが設けられ、回転軸の他端側にタービンが設けられているため、軸方向の寸法が大きくなりやすい。
上述の事情に鑑みて、本発明の少なくとも一実施形態は、軸方向に小型化可能な回転機械を提供することを目的とする。
(1)本発明の少なくとも一実施形態に係る回転機械は、
回転軸を共有する第1コンプレッサ部及び第1タービン部を備える回転機械であって、
前記第1コンプレッサ部は、
前記回転機械の周方向に間隔をあけて設けられ、前記回転軸とともに回転するように構成された複数の第1コンプレッサ翼と、
前記複数の第1コンプレッサ翼が配置された第1コンプレッサ流路と、
を含み、
前記第1タービン部は、
前記周方向に間隔をあけて設けられ、前記回転軸とともに回転するように構成された複数の第1タービン動翼と、
前記複数の第1タービン動翼が配置された第1タービン流路と、
を含み、
前記複数の第1コンプレッサ翼は、前記回転機械の径方向において前記複数の第1タービン動翼の外側又は内側に配置され、
前記第1コンプレッサ流路と前記第1タービン流路は、前記複数の第1コンプレッサ翼と前記複数の第1タービン動翼とに接続する仕切壁部によって仕切られる。
回転軸を共有する第1コンプレッサ部及び第1タービン部を備える回転機械であって、
前記第1コンプレッサ部は、
前記回転機械の周方向に間隔をあけて設けられ、前記回転軸とともに回転するように構成された複数の第1コンプレッサ翼と、
前記複数の第1コンプレッサ翼が配置された第1コンプレッサ流路と、
を含み、
前記第1タービン部は、
前記周方向に間隔をあけて設けられ、前記回転軸とともに回転するように構成された複数の第1タービン動翼と、
前記複数の第1タービン動翼が配置された第1タービン流路と、
を含み、
前記複数の第1コンプレッサ翼は、前記回転機械の径方向において前記複数の第1タービン動翼の外側又は内側に配置され、
前記第1コンプレッサ流路と前記第1タービン流路は、前記複数の第1コンプレッサ翼と前記複数の第1タービン動翼とに接続する仕切壁部によって仕切られる。
上記(1)に記載の回転機械によれば、第1コンプレッサ翼が径方向において第1タービン動翼の外側又は内側に配置されており、第1コンプレッサ翼と第1タービン動翼とが仕切壁部を介して接続されている。このため、回転軸の一端側と他端側にコンプレッサとタービンをそれぞれ設ける場合と比較して、軸方向に小型化され軽量化された回転機械を実現することができる。
また、第1コンプレッサ流路と第1タービン流路とを仕切る仕切壁部が第1コンプレッサ翼と第1タービン動翼とに接続しているため、第1コンプレッサ翼と第1タービン動翼のうち径方向における内側に配置された翼と仕切壁部との間に隙間がない。このため、従来のターボチャージャと比較して、コンプレッサの翼の先端(径方向外側端)と流路壁との間のリーク流れ又はタービンの動翼の先端(径方向外側端)と流路壁との間のリーク流れを抑制して高性能な回転機械を実現することができる。
(2)幾つかの実施形態では、上記(1)に記載の回転機械において、
前記複数の第1コンプレッサ翼は、前記径方向において前記複数の第1タービン動翼の内側に配置され、
前記仕切壁部は、前記径方向における前記第1コンプレッサ翼の外側端と前記径方向における前記第1タービン動翼の内側端とに接続する。
前記複数の第1コンプレッサ翼は、前記径方向において前記複数の第1タービン動翼の内側に配置され、
前記仕切壁部は、前記径方向における前記第1コンプレッサ翼の外側端と前記径方向における前記第1タービン動翼の内側端とに接続する。
上記(2)に記載の回転機械は、ターボチャージャに好適に使用することができる。ターボチャージャでは、タービンは高温の排気ガスが供給されてコンプレッサよりも高温になりやすい。このため、上記(1)に記載の回転機械において、仮に第1タービン動翼を第1コンプレッサ翼の径方向内側に配置した場合には、第1コンプレッサ翼の重さを高温の第1タービン動翼によって支える必要が生じ、第1タービン動翼の設計をする上で強度上の制約が生じやすい。これに対し、上記(2)に記載のように第1コンプレッサ翼を第1タービン動翼の径方向内側に配置することによって、第1タービン動翼よりも低温の第1コンプレッサ翼によって第1タービン動翼を支持することができるため、第1タービン動翼の設計自由度を高めることができる。
また、第1コンプレッサ翼の径方向外側端と仕切壁部とが接続しているため第1コンプレッサ翼と仕切壁部との間に隙間がなく、従来のターボチャージャと比較して、コンプレッサの翼の先端と流路壁との間のリーク流れを抑制してターボ効率を向上することができる。
(3)幾つかの実施形態では、上記(2)に記載の回転機械において、
前記第1コンプレッサ部は、ラジアルコンプレッサである。
前記第1コンプレッサ部は、ラジアルコンプレッサである。
(4)幾つかの実施形態では、上記(3)に記載の回転機械において、
前記第1タービン部は、軸流タービンである。
前記第1タービン部は、軸流タービンである。
上記(4)に記載の回転機械によれば、回転機械の作動時におけるコンプレッサ出口流路部の圧力がタービン出口流路部の圧力よりも大きくなるように設計できる。これにより、コンプレッサ出口流路部からタービン出口流路部へのリーク流れが発生し、このリーク流れが仕切壁部の内周面の境界層の吸い込みに寄与する。したがって、通常のターボチャージャにおいて発生するコンプレッサ翼の先端側のサージ流れを緩和することができる。
(5)幾つかの実施形態では、上記(3)に記載の回転機械において、
前記第1タービン部は、半径流入式の軸流タービンである。
前記第1タービン部は、半径流入式の軸流タービンである。
上記(5)に記載の回転機械によれば、回転機械の作動時におけるコンプレッサ入口流路部の圧力がタービン出口流路部の圧力と同程度になるように設計できるため、コンプレッサ入口流路部からタービン出口流路部へのリーク流れを抑制できる。また、回転機械の作動時におけるコンプレッサ入口流路部の圧力がタービン出口流路部の圧力よりも若干高くなるように設計することにより、コンプレッサ出口流路部からタービン入口流路部へのリーク流れが発生し、このリーク流れが仕切壁部の内周面の境界層の吸い込みに寄与する。したがって、通常のターボチャージャにおいて発生するコンプレッサ翼の先端側のサージ流れを緩和することができる。
(6)幾つかの実施形態では、上記(3)に記載の回転機械において、
前記第1タービン部は、斜流タービンである。
前記第1タービン部は、斜流タービンである。
上記(6)に記載の回転機械によれば、斜流タービンとして構成された第1タービン部により、回転数及び圧力比を調整することが可能となる。
(7)幾つかの実施形態では、上記(1)に記載の回転機械において、
前記複数の第1コンプレッサ翼は、前記径方向において前記複数の第1タービン動翼の外側に配置され、
前記仕切壁部は、前記径方向における前記第1コンプレッサ翼の内側端と前記径方向における前記第1タービン動翼の外側端とに接続する。
前記複数の第1コンプレッサ翼は、前記径方向において前記複数の第1タービン動翼の外側に配置され、
前記仕切壁部は、前記径方向における前記第1コンプレッサ翼の内側端と前記径方向における前記第1タービン動翼の外側端とに接続する。
上記(7)に記載の回転機械によれば、第1タービン動翼の外側端と仕切壁部とが接続しているため第1タービン動翼と仕切壁部との間に隙間がない。このため、タービン動翼の先端と流路壁との間のリーク流れを抑制して高性能な回転機械を実現することができる。
(8)幾つかの実施形態では、上記(7)の何れかに記載の回転機械において、
前記第1タービン部は、ラジアルタービンであり、
前記第1コンプレッサ部は、軸流コンプレッサ、斜流コンプレッサ又はラジアルコンプレッサである。
前記第1タービン部は、ラジアルタービンであり、
前記第1コンプレッサ部は、軸流コンプレッサ、斜流コンプレッサ又はラジアルコンプレッサである。
上記(8)に記載のように内周側の第1タービン部がラジアルタービンである場合には、外周側の第1コンプレッサ部の設計自由度を高めることができ、用途に合わせて第1コンプレッサ翼の形状を決めることができる。
(9)幾つかの実施形態では、上記(7)に記載の回転機械において、
前記第1タービン部は、半径流入式の軸流タービンであり、
前記第1コンプレッサ部は、軸流コンプレッサである。
前記第1タービン部は、半径流入式の軸流タービンであり、
前記第1コンプレッサ部は、軸流コンプレッサである。
上記(9)に記載の回転機械によれば、回転機械の作動時におけるコンプレッサ入口流路部の圧力とタービン出口流路部の圧力が同程度となり、コンプレッサ出口流路部の圧力とタービン入口流路部の圧力が同程度となるように設計することが可能なため、コンプレッサ部とタービン部との間のリーク流れを効果的に抑制することができる。また、半径流入式の軸流タービンはラジアルタービンに対して運用可能な圧力比の範囲が広いため、ラジアルタービンの定常運用範囲外のサイクルにも対応することができる。
(10)幾つかの実施形態では、上記(7)に記載の回転機械において、
前記第1タービン部は、軸流タービンであり、
前記第1コンプレッサ部は、軸流コンプレッサである。
前記第1タービン部は、軸流タービンであり、
前記第1コンプレッサ部は、軸流コンプレッサである。
上記(10)に記載の回転機械によれば、回転機械の作動時におけるコンプレッサ入口流路部の圧力とタービン出口流路部の圧力が同程度となり、コンプレッサ出口流路部の圧力とタービン入口流路部の圧力が同程度となるように設計することが可能なため、コンプレッサ部とタービン部との間のリーク流れを効果的に抑制することができる。また、軸流タービンはラジアルタービンに対して運用可能な圧力比の範囲が広いため、ラジアルタービンの定常運用範囲外のサイクルにも対応することができる。
(11)幾つかの実施形態では、上記(1)乃至(10)の何れかに記載の回転機械において、
前記第1コンプレッサ部及び前記第1タービン部は前記回転軸の一端側に配置され、
前記回転機械は、前記回転軸の他端側に配置された第2コンプレッサ部を更に備える。
前記第1コンプレッサ部及び前記第1タービン部は前記回転軸の一端側に配置され、
前記回転機械は、前記回転軸の他端側に配置された第2コンプレッサ部を更に備える。
上記(11)に記載の回転機械によれば、ターボチャージャに適用した場合に、軸流タービンとラジアルコンプレッサとを軸方向に組み合わせた従来のターボチャージャでは困難なコンプレッサの大流量化が容易となり、ターボチャージャとしての性能を向上させることができる。
例えば、第2コンプレッサ部側のロータ外径を従来のターボチャージャのコンプレッサのロータ外径と同等とし、第1タービン部側(第1コンプレッサ部側)のロータ外径を従来のターボチャージャのタービンのロータ外径と同等とした場合、回転数を同等とすると、レスポンスを維持したままコンプレッサの流量を増加させることができる。
また、例えば、第2コンプレッサ部側のロータ外径を従来のターボチャージャのコンプレッサのロータ外径より小さくしても、第1コンプレッサ部によって流量を補うことができる。この場合、第2コンプレッサ部の小型化により高周速化ができるため、軸流タービンの効率がピークとなる周速に対応する高い回転数で運転することが可能となり、ターボチャージャを高性能化することができる。
また、スラスト力に大きな影響を与える第1コンプレッサ部の背圧と第2コンプレッサ部の背圧とが軸方向に相殺する構造となるため、軸系の信頼性を向上することができる。
(12)幾つかの実施形態では、上記(11)に記載の回転機械において、
前記第1コンプレッサ部から吐出された気体を内燃機関に供給するための第1流路と、
前記第2コンプレッサ部から吐出された気体を前記内燃機関に供給するための第2流路であって、前記第1流路と合流する第2流路と、
前記第1流路及び前記第2流路の少なくとも一方に設けられ、前記第1流路又は前記第2流路の流量を調整可能な流量調整部と、
を更に備える。
前記第1コンプレッサ部から吐出された気体を内燃機関に供給するための第1流路と、
前記第2コンプレッサ部から吐出された気体を前記内燃機関に供給するための第2流路であって、前記第1流路と合流する第2流路と、
前記第1流路及び前記第2流路の少なくとも一方に設けられ、前記第1流路又は前記第2流路の流量を調整可能な流量調整部と、
を更に備える。
上記(12)に記載の回転機械によれば、第1コンプレッサ部から第1流路を介して内燃機関に供給する気体の流量と第2コンプレッサ部から第2流路を介して内燃機関に供給する気体の流量の少なくとも一方を流量調整部によって調整することができるため、可変容量型のターボチャージャとして機能することができる。例えば、回転機械の起動時等の小流量時には、第1コンプレッサ部と第2コンプレッサ部のうち一方のみを駆動し、定常運転時等の大流量時は第1コンプレッサ部と第2コンプレッサ部の両方を使用することによって、可変容量型のターボチャージャとして機能することができる。
(13)幾つかの実施形態では、上記(11)に記載の回転機械において、
前記回転軸の他端側に配置された第2タービン部を更に備え、
前記第2コンプレッサ部は、
前記回転軸の周方向に間隔をあけて設けられ、前記回転軸とともに回転するように構成された複数の第2コンプレッサ翼と、
前記複数の第2コンプレッサ翼が配置された第2コンプレッサ流路と、
を含み、
前記第2タービン部は、
前記周方向に間隔をあけて設けられ、前記回転軸とともに回転するように構成された複数の第2タービン動翼と、
前記複数の第2タービン動翼が配置された第2タービン流路と、
を含み、
前記複数の第2コンプレッサ翼は、前記回転軸の径方向において前記複数の第2タービン動翼の外側又は内側に配置され、
前記第2コンプレッサ流路と前記第2タービン流路は、前記複数の第2コンプレッサ翼と前記複数の第2タービン動翼とを接続する仕切壁部によって仕切られる。
前記回転軸の他端側に配置された第2タービン部を更に備え、
前記第2コンプレッサ部は、
前記回転軸の周方向に間隔をあけて設けられ、前記回転軸とともに回転するように構成された複数の第2コンプレッサ翼と、
前記複数の第2コンプレッサ翼が配置された第2コンプレッサ流路と、
を含み、
前記第2タービン部は、
前記周方向に間隔をあけて設けられ、前記回転軸とともに回転するように構成された複数の第2タービン動翼と、
前記複数の第2タービン動翼が配置された第2タービン流路と、
を含み、
前記複数の第2コンプレッサ翼は、前記回転軸の径方向において前記複数の第2タービン動翼の外側又は内側に配置され、
前記第2コンプレッサ流路と前記第2タービン流路は、前記複数の第2コンプレッサ翼と前記複数の第2タービン動翼とを接続する仕切壁部によって仕切られる。
上記(13)に記載の回転機械によれば、軸方向に小型化された高性能な2段過給装置を実現することができる。
(14)幾つかの実施形態では、上記(13)に記載の回転機械において、
前記第2コンプレッサ部から吐出された気体を前記第1コンプレッサ部に導くための第3流路と、
前記第1タービン部から吐出された気体を前記第2タービン部に導くための第4流路と、
を更に備える。
前記第2コンプレッサ部から吐出された気体を前記第1コンプレッサ部に導くための第3流路と、
前記第1タービン部から吐出された気体を前記第2タービン部に導くための第4流路と、
を更に備える。
上記(14)に記載の回転機械によれば、軸方向に小型化された高性能な2段過給装置を実現することができる。例えば、2段過給装置として構成された回転機械のうち高圧側の第1タービン部を半径流入式の軸流タービンとして構成し、低圧側の第2タービン部を斜流タービンとして構成した場合、従来2つのハウジングが必要だった2段過給装置に対して、1つのハウジングで済み、2段過給装置の小型化及び軽量化が可能である。
(15)幾つかの実施形態では、上記(4)に記載の回転機械において、
前記第1タービン部は、前記第1タービン動翼と、前記第1タービン動翼の上流側に設けられたタービン静翼と、からなるタービン段落を複数含む。
前記第1タービン部は、前記第1タービン動翼と、前記第1タービン動翼の上流側に設けられたタービン静翼と、からなるタービン段落を複数含む。
上記(15)に記載の回転機械によれば、例えば小型のガスタービンに適用することができる。この場合、既存のタービン速度比U/COや流量特性を変更せずにガスタービンを軸方向に小型化し軽量化することができる。また、従来のガスタービンと比較して第1コンプレッサ翼と仕切壁部とが接続されていてコンプレッサ翼と仕切壁部との間に隙間がないため、コンプレッサ翼の先端と流路壁との間のリーク流れを抑制して高効率なガスタービンを実現することができる。
(16)幾つかの実施形態では、上記(2)に記載の回転機械において、
前記第1コンプレッサ部及び前記第1タービン部は前記回転軸の一端側に配置され、
前記回転機械は、前記回転軸の他端側に接続されたモータを更に備え、
前記第1コンプレッサ部は、前記第1コンプレッサ翼を通過した気体を冷却対象に導くための第1ガイド部を備え、
前記第1タービン部は、前記冷却対象の冷却に使用された前記気体を前記第1タービン動翼に導くための第2ガイド部を備える。
前記第1コンプレッサ部及び前記第1タービン部は前記回転軸の一端側に配置され、
前記回転機械は、前記回転軸の他端側に接続されたモータを更に備え、
前記第1コンプレッサ部は、前記第1コンプレッサ翼を通過した気体を冷却対象に導くための第1ガイド部を備え、
前記第1タービン部は、前記冷却対象の冷却に使用された前記気体を前記第1タービン動翼に導くための第2ガイド部を備える。
上記(16)に記載の回転機械によれば、第1ガイド部によって冷却対象に導かれた流体は、冷却対象を冷却した後に第1タービン部に導かれる。これにより、冷却対象の排熱を利用して第1タービン動翼で動力を回収し、モータの駆動力をアシストすることができる。したがって、従来捨てられていた排熱を有効活用して、モータの電力使用量を低減することができる。
(17)幾つかの実施形態では、上記(1)乃至(16)の何れかに記載の回転機械において、
前記第1コンプレッサ翼と前記第1タービン動翼とは、同一材料で一体的に構成される。
前記第1コンプレッサ翼と前記第1タービン動翼とは、同一材料で一体的に構成される。
上記(1)乃至(16)の何れかに記載の回転機械を例えばガソリンエンジン用のターボチャージャとして使用する場合には、ガソリンエンジンの排気ガスが高温であるため、上記(17)に記載のように、第1コンプレッサ翼とタービン動翼は、耐熱性を考慮して、一般的なタービン材料を用いて同一材料で一体的に構成されてもよい。また、必要な耐熱性を満たす場合には、コンプレッサ翼及びタービン動翼は一般的なコンプレッサ材料を用いて同一材料で一体的に構成されていてもよい。
(18)幾つかの実施形態では、上記(1)乃至(16)の何れかに記載の回転機械において、
前記第1コンプレッサ翼と前記第1タービン動翼とは、互いに異なる材料で構成される。
前記第1コンプレッサ翼と前記第1タービン動翼とは、互いに異なる材料で構成される。
上記(1)乃至(16)の何れかに記載の回転機械を比較的低い温度の排熱の回収に使用する場合(例えば燃料電池やディーゼルエンジンの排熱回収や、バイナリーサイクル等における排熱温度が比較的低いタービンの排熱回収に使用する場合)には、上記(18)に記載のようにコンプレッサ翼の材料とタービン動翼の材料とを分けても強度的に成立し易い。この場合、三次元金属積層造形法による加工を好適に使用することができる。
本発明の少なくとも一つの実施形態によれば、軸方向に小型化可能な回転機械が提供される。
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
図1は、一実施形態に係る回転機械2(2A)の概略断面図である。図2Aは、回転機械2(2A)の径方向視における第1コンプレッサ翼、第1タービン動翼及び静翼の配置を示す図である。図2Bは、回転機械2(2A)の回転軸4に接続するモータ21を示す図である。図3は、一実施形態に係る回転機械2(2B)の概略断面図である。図4は、回転機械2(2B)の径方向視における第1コンプレッサ翼及び第1タービン動翼の配置を示す図である。図5は、一実施形態に係る回転機械2(2C)の概略断面図である。図6は、回転機械2(2C)の径方向視における第1コンプレッサ翼及び第1タービン動翼の配置を示す図である。図7は、一実施形態に係る回転機械2(2D)の概略断面図である。図8は、回転機械2(2D)の径方向視における第1コンプレッサ翼及び第1タービン動翼の配置を示す図である。図9は、一実施形態に係る回転機械2(2E)の概略断面図である。
図10は、回転機械2(2E)の径方向視における第1コンプレッサ翼及び第1タービン動翼の配置を示す図である。図11は、一実施形態に係る回転機械2(2F)の概略断面図である。図12は、一実施形態に係る回転機械2(2G)の概略断面図である。図13は、一実施形態に係る回転機械2(2H)の概略断面図である。図14は、一実施形態に係る回転機械2(2I)の概略断面図である。図15は、一実施形態に係る回転機械2(2J)の概略断面図である。図16は、一実施形態に係る回転機械2(2K)の概略断面図である。図17は、一実施形態に係る回転機械2(2L)の概略断面図である。図18は、一実施形態に係る回転機械2(2L)の概略断面図である。図19は、一実施形態に係る回転機械2(2M)の概略断面図である。
以下では、回転機械2の周方向(回転機械2の回転軸4の周方向)を単に「周方向」と記載し、回転機械2の径方向(回転機械2の回転軸4の径方向)を単に「径方向」と記載し、回転機械2の軸方向(回転機械2の回転軸4の軸線方向)を単に「軸方向」と記載することとする。
幾つかの実施形態では、例えば図1~図19に示すように、回転機械2(2A~2M)は、回転軸4を共有する第1コンプレッサ部6及び第1タービン部8を備える。第1コンプレッサ部6は、周方向に間隔をあけて設けられ、回転軸4とともに回転するように構成された複数のコンプレッサ翼10(第1コンプレッサ翼)と、複数のコンプレッサ翼10が配置されたコンプレッサ流路12(第1コンプレッサ流路)とを含む。第1タービン部8は、周方向に間隔をあけて設けられ、回転軸4とともに回転するように構成された複数のタービン動翼14(第1タービン動翼)と、複数のタービン動翼14が配置されたタービン流路16(第1タービン流路)とを含む。
コンプレッサ流路12は、コンプレッサ流路12の入口からコンプレッサ翼10に気体を導くように構成されたコンプレッサ入口流路部22と、コンプレッサ翼10を通過した気体をコンプレッサ流路12の出口に導くコンプレッサ出口流路部23とを含む。タービン流路16は、タービン流路16の入口からタービン動翼14に気体を導くタービン入口流路部28と、タービン動翼14を通過した気体をタービン流路16の出口に導くタービン出口流路部30とを含む。
複数のコンプレッサ翼10は、径方向において複数のタービン動翼14の外側又は内側に配置される。コンプレッサ流路12とタービン流路16は、複数のコンプレッサ翼10と複数のタービン動翼14とに接続するように周方向に沿って延在する筒状の仕切壁部18によって仕切られている。すなわち、コンプレッサ流路12とタービン流路16は、複数のコンプレッサ翼10と複数のタービン動翼14とに接続するように周方向に沿って延在する筒状の仕切壁部18を共有している。このように、回転機械2(2A~2M)では、複数のコンプレッサ翼10、複数のタービン動翼14及び仕切壁部18が回転軸4とともにロータ20の少なくとも一部を構成するように構成される。
上記回転機械2(2A~2M)によれば、コンプレッサ翼10が径方向においてタービン動翼14の外側又は内側に配置されており、コンプレッサ翼10とタービン動翼14とが仕切壁部18を介して接続されている。このため、回転軸4の一端側と他端側にコンプレッサとタービンをそれぞれ設ける場合と比較して、軸方向に小型化され軽量化された回転機械2を実現することができる。
また、コンプレッサ流路12とタービン流路16とを仕切る仕切壁部18がコンプレッサ翼10とタービン動翼14とに接続しているため、コンプレッサ翼10とタービン動翼14のうち径方向における内側に配置された翼と仕切壁部18との間に隙間がない。このため、コンプレッサ翼10とタービン動翼14のうち径方向における内側に配置された翼と仕切壁部18との間にリーク流れが生じないため、高性能な回転機械を実現することができる。
幾つかの実施形態では、例えば図1~図18に示す回転機械2(2A~2L)は、ターボチャージャとして構成され、タービン流路16に不図示の内燃機関からの排気ガスが供給される。これにより、タービン動翼14が排気ガスの流れを受けて動力を回収し、タービン動翼14と一体的に回転するコンプレッサ翼10が空気を圧縮して内燃機関に供給する。なお、内燃機関の種類は特に限定されず、例えばガスエンジン、ガスタービン又はディーゼルエンジンであってもよい。また、内燃機関に代えて燃料電池を使用してもよい。この場合、燃料電池の排ガスはタービン流路16に供給され、コンプレッサ翼10を用いて圧縮した空気が燃料電池に供給される。
幾つかの実施形態では、例えば図1、図3及び図14~図19に示すように、複数のコンプレッサ翼10は、径方向において複数のタービン動翼14の内側に配置され、仕切壁部18は、径方向におけるコンプレッサ翼10の外側端10aと径方向におけるタービン動翼14の内側端14aとに接続するように周方向に沿って延在する。
回転機械2(2A~2L)をターボチャージャに適用する場合には、第1タービン部8は高温の排気ガスが供給されて第1コンプレッサ部6よりも高温になりやすい。このため、タービン動翼14をコンプレッサ翼10の内側に配置した場合には、コンプレッサ翼10の重さを高温のタービン動翼14によって支える必要が生じ、タービン動翼14の設計をする上で強度上の制約が生じやすい。これに対し、上記のようにコンプレッサ翼10をタービン動翼14の径方向内側に配置することによって、タービン動翼14よりも低温のコンプレッサ翼10によってタービン動翼14を支持することができるため、タービン動翼14の設計自由度を高めることができる。また、コンプレッサ翼10の外側端10aと仕切壁部18とが接続しているためコンプレッサ翼10と仕切壁部18との間に隙間がなく、従来のターボチャージャと比較して、コンプレッサ翼10の外側端10aと流路壁(仕切壁部18)との間のリーク流れが生じないため、ターボ効率を向上することができる。
幾つかの実施形態では、例えば図5、図7、図9、図11~図13に示すように、複数のコンプレッサ翼10は、径方向において複数のタービン動翼14の外側に配置され、仕切壁部18は、径方向におけるコンプレッサ翼10の内側端10bと径方向におけるタービン動翼14の外側端14bとに接続するように周方向に沿って延在する。
このように、回転機械2(2C~2H)によれば、タービン動翼14の外側端14bと仕切壁部18とが接続しているためタービン動翼14と仕切壁部18との間に隙間がなく、タービン動翼14の外側端14bと流路壁(仕切壁部18)との間のリーク流れが生じないため、高性能な回転機械を実現することができる。したがって、回転機械2(2C~2H)をターボチャージャに適用した場合には、従来のターボチャージャと比較して、タービン動翼14の外側端14bと流路壁(仕切壁部18)との間のリーク流れが生じないため、ターボ効率を向上することができる。
次に、回転機械2(2A~2M)の各々の詳細構成について、回転機械2(2A)から順に説明する。
図1及び図2Aに示すように、回転機械2(2A)では、内周側の第1コンプレッサ部6はラジアルコンプレッサであり、外周側の第1タービン部8は軸流タービンである。コンプレッサ入口流路部22は、軸方向に沿って軸受5と反対側からコンプレッサ翼10に空気(気体)を流入させるように構成される。コンプレッサ出口流路部23は、径方向においてコンプレッサ翼10の外側に設けられたコンプレッサ側スクロール流路部24と、コンプレッサ翼10を通過した気体をコンプレッサ側スクロール流路部24に導くディフューザ流路部26と、を含む。タービン入口流路部28は、不図示の内燃機関の排気ガス(気体)を軸方向に沿って軸受5と反対側からタービン動翼14に流入させるように構成され、タービン入口流路部28には、タービン動翼14の上流側に周方向に間隔をあけて複数のタービン静翼32が設けられている。
図1及び図2Aに示すように、回転機械2(2A)では、内周側の第1コンプレッサ部6はラジアルコンプレッサであり、外周側の第1タービン部8は軸流タービンである。コンプレッサ入口流路部22は、軸方向に沿って軸受5と反対側からコンプレッサ翼10に空気(気体)を流入させるように構成される。コンプレッサ出口流路部23は、径方向においてコンプレッサ翼10の外側に設けられたコンプレッサ側スクロール流路部24と、コンプレッサ翼10を通過した気体をコンプレッサ側スクロール流路部24に導くディフューザ流路部26と、を含む。タービン入口流路部28は、不図示の内燃機関の排気ガス(気体)を軸方向に沿って軸受5と反対側からタービン動翼14に流入させるように構成され、タービン入口流路部28には、タービン動翼14の上流側に周方向に間隔をあけて複数のタービン静翼32が設けられている。
図2Aに示すように、コンプレッサ翼10の正圧面10cは回転軸4の回転方向における下流側を向いており、タービン動翼14の正圧面14cは回転軸4の回転方向における上流側を向いており、タービン静翼32の正圧面32cは回転軸4の回転方向において下流側を向いている。このように、コンプレッサ翼10の正圧面10cとタービン動翼14の正圧面14cとは、回転軸4の回転方向において互いに逆方向を向いている。また、径方向視において、コンプレッサ翼10とタービン動翼14とは部分的にオーバーラップしている。
上記回転機械2(2A)では、タービン入口流路部28における高温高圧の排気ガスがタービン静翼32によって加速され、タービン動翼14にてその排気ガスから動力が回収される。タービン動翼14で回収した動力は内周側の第1コンプレッサ部6で消費される。
図1に示す回転機械2(2A)において、コンプレッサ入口流路部22の圧力をP1、コンプレッサ側スクロール流路部24の圧力をP2、タービン入口流路部28におけるタービン静翼32の上流側の圧力をP3、タービン入口流路部28におけるタービン静翼32の径方向内側端32aとタービン動翼14の径方向内側端14aとの間の圧力をP4、タービン出口流路部30の圧力をP5とする。ここで、P1≒P4(≒P5)を満たす状態で作動するように回転機械2(2A)を設計することが可能なため、性能に大きく影響する圧力P1と圧力P4との差圧に起因するコンプレッサ入口流路部22とタービン入口流路部28との間のリーク流れ(コンプレッサ入口流路部22を形成する筒状の案内筒25と仕切壁部18との隙間を介したリーク流れ)を抑制することができ、ターボ効率の高い回転機械2(2A)を実現することができる。なお、「P4≒P5」の「≒」とは、例えば、タービン動翼14についての反動度(P4-P5)/(P3-P5)が-10%~30%となる程度にP4とP5が等しい状態を示してもよい。
また、コンプレッサ側スクロール流路部24を構成するスクロールケーシング34とタービン出口流路部30における比較的冷めた熱源とが接するため、熱的な強度信頼性を向上させるレイアウトになっている。また、第1タービン部8は第1コンプレッサ部6による冷却が得られるため、強度的な信頼性を向上させることができる。
また、P2>P5(≒P1)を満たすことにより、コンプレッサ出口流路部23からタービン出口流路部30へのリーク流れ(コンプレッサ出口流路部23とタービン出口流路部30とを仕切る環状の仕切板88と仕切壁部18との隙間を介したリーク流れ)が発生し、このリーク流れが仕切壁部18の内周面の境界層の吸い込みに寄与する。これにより、通常のターボチャージャにおいて発生するコンプレッサ部の翼先端側のサージ流れを緩和することができる。
なお、図1に示す例示的な形態では、回転機械2(2A)は、ロータ20を収容するケーシングとして、案内筒25、外側ケーシング86、スクロールケーシング34、仕切板88及び軸受ケーシング90を含む。案内筒25は、コンプレッサ入口流路部22を内側に形成する。外側ケーシング86は、径方向における案内筒25の外側に配置され、案内筒25との間にタービン入口流路部28を形成するとともに、仕切板88との間にタービン出口流路部30を形成する。仕切板88は、タービン出口流路部30とコンプレッサ出口流路部23とを仕切るように設けられ、スクロールケーシング34との間にコンプレッサ出口流路部23を形成する。軸受ケーシング90は、回転軸4を回転可能に支持する軸受5を収容する。
ロータ20を収容するケーシングの構成は特に限定されないが、上述のように案内筒25と外側ケーシング86とを別部品として構成することにより、メンテナンス時や各翼の加工時に案内筒25を外側ケーシング86から取り外してコンプレッサ翼10、タービン動翼14及びタービン静翼32へ容易にアクセスすることができる。また、外側ケーシング86と仕切板88とを別部品として構成することにより、メンテナンス時や各翼の加工時に外側ケーシング86を仕切板88から取り外してタービン動翼14へ容易にアクセスすることができる。
また、一実施形態では、例えば図2Bに示すように、回転機械2(2A)の軸受5を挟んで回転軸4における第1コンプレッサ部6(図1参照)と反対側の端部に、回転軸4の回転をアシストするためのモータ21が接続されていてもよい。これにより、電動アシスト式のターボチャージャを簡素な構成により低コストで実現することができる。
次に、図3及び図4を用いて回転機械2(2B)について説明する。
図3及び図4に示すように、回転機械2(2B)では、内周側の第1コンプレッサ部6はラジアルコンプレッサであり、外周側の第1タービン部8は半径流入式の軸流タービンである。コンプレッサ入口流路部22は、軸方向に沿って軸受5と反対側からコンプレッサ翼10に空気を流入させるように構成される。コンプレッサ出口流路部23は、径方向においてコンプレッサ翼10の外側に設けられたコンプレッサ側スクロール流路部24と、コンプレッサ翼10を通過した空気をコンプレッサ側スクロール流路部24に導くディフューザ流路部26と、を含む。タービン入口流路部28は、ロータ20の外周側に設けられたタービン側スクロール流路部36と、タービン側スクロール流路部36を通過した排気ガスの流れ方向を、径方向における内側に向かう方向から軸方向に沿う方向に変更するように構成されたベンド流路部38と、を含み、軸方向に沿って軸受5側からタービン動翼14に排気ガスを流入させるように構成される。このように、コンプレッサ翼10への空気の流入方向と、タービン動翼14における排気ガスの流入方向とは反対方向である。
図3及び図4に示すように、回転機械2(2B)では、内周側の第1コンプレッサ部6はラジアルコンプレッサであり、外周側の第1タービン部8は半径流入式の軸流タービンである。コンプレッサ入口流路部22は、軸方向に沿って軸受5と反対側からコンプレッサ翼10に空気を流入させるように構成される。コンプレッサ出口流路部23は、径方向においてコンプレッサ翼10の外側に設けられたコンプレッサ側スクロール流路部24と、コンプレッサ翼10を通過した空気をコンプレッサ側スクロール流路部24に導くディフューザ流路部26と、を含む。タービン入口流路部28は、ロータ20の外周側に設けられたタービン側スクロール流路部36と、タービン側スクロール流路部36を通過した排気ガスの流れ方向を、径方向における内側に向かう方向から軸方向に沿う方向に変更するように構成されたベンド流路部38と、を含み、軸方向に沿って軸受5側からタービン動翼14に排気ガスを流入させるように構成される。このように、コンプレッサ翼10への空気の流入方向と、タービン動翼14における排気ガスの流入方向とは反対方向である。
図4に示すように、コンプレッサ翼10の正圧面10cは回転軸4の回転方向における下流側を向いており、タービン動翼14の正圧面14cは回転軸4の回転方向における上流側を向いている。このように、コンプレッサ翼10の正圧面10cとタービン動翼14の正圧面14cとは、回転軸4の回転方向において互いに逆方向を向いている。また、径方向視において、コンプレッサ翼10とタービン動翼14とは部分的にオーバーラップしている。
上記回転機械2(2B)では、タービン入口流路部28のタービン側スクロール流路部36からベンド流路部38を通った高温高圧の排気ガスが軸方向に沿って外周側のタービン動翼14に流入し、タービン動翼14にてその流体から動力が回収される。タービン動翼14で回収した動力は内周側の第1コンプレッサ部6で消費される。
図3に示す回転機械2(2B)において、コンプレッサ入口流路部22の圧力をP1、コンプレッサ側スクロール流路部24の圧力をP2、タービン入口流路部28におけるタービン静翼32の上流側の圧力をP3、タービン出口流路部30の圧力をP5とする。ここで、単段のターボチャージャにおいては、半径流入式の軸流タービンを採用することにより、P1≒P5及びP2≒P3を満たす状態で作動するように回転機械2(2B)を設計することができるため、コンプレッサ入口流路部22とタービン出口流路部30との間のリーク流れ(コンプレッサ入口流路部22を構成する案内筒25と仕切壁部18との隙間を介したリーク流れ)を抑制するとともに、コンプレッサ出口流路部23とタービン入口流路部28との間のリーク流れ(コンプレッサ出口流路部23とタービン入口流路部28とを仕切る環状の仕切板88と仕切壁部18との隙間を介したリーク流れ)を抑制することができる。また、圧力損失によりややP2>P3となるため、回転機械2(2A)と同様に、コンプレッサ部6のサージ流れを緩和することができる。したがって、ターボ効率の高い回転機械2(2B)を実現することができる。
また、上記回転機械2(2B)では、タービン側スクロール流路部36を形成するスクロールケーシング34に冷却媒体が流れる冷却流路40が設けられている。これにより、タービン入口流路部28からスクロールケーシング34に伝達される排気ガスの高熱の影響を緩和することができる。
なお、図3に示す例示的な形態では、回転機械2(2B)は、ロータ20を収容するケーシングとして、案内筒25、外側ケーシング86、スクロールケーシング34、仕切板88及び軸受ケーシング90を含む。案内筒25は、コンプレッサ入口流路部22を内側に形成する。外側ケーシング86は、径方向における案内筒25の外側に配置され、案内筒25との間にタービン出口流路部30を形成するとともに、仕切板88との間にタービン入口流路部28を形成する。仕切板88は、タービン入口流路部28とコンプレッサ出口流路部23とを仕切るように設けられ、スクロールケーシング34との間にコンプレッサ出口流路部23を形成する。軸受ケーシング90は、回転軸4を回転可能に支持する軸受5を収容する。
ロータ20を収容するケーシングの構成は特に限定されないが、上述のように案内筒25と外側ケーシング86とを別部品として構成することにより、メンテナンス時や各翼の加工時に案内筒25を外側ケーシング86から取り外してコンプレッサ翼10及びタービン動翼14へ容易にアクセスすることができる。また、外側ケーシング86と仕切板88とを別部品として構成することにより、メンテナンス時や各翼の加工時に外側ケーシング86を仕切板88から取り外してタービン動翼14へ容易にアクセスすることができる。
次に、図5~図10を用いて回転機械2(2C~2E)について説明する。
図5、図7及び図9に示すように、回転機械2(2C~2E)では、内周側の第1タービン部8はラジアルタービンある。この場合、外周側の第1コンプレッサ部6は、図5及び図7に示すように軸流コンプレッサであってもよいし、図9に示すようにラジアルコンプレッサであってもよいし、斜流コンプレッサであってもよい。このように、内周側の第1タービン部8がラジアルタービンである場合には、外周側の第1コンプレッサ部6の設計自由度を高めることができ、用途に合わせてコンプレッサ翼10の形状を決めることができる。
図5、図7及び図9に示すように、回転機械2(2C~2E)では、内周側の第1タービン部8はラジアルタービンある。この場合、外周側の第1コンプレッサ部6は、図5及び図7に示すように軸流コンプレッサであってもよいし、図9に示すようにラジアルコンプレッサであってもよいし、斜流コンプレッサであってもよい。このように、内周側の第1タービン部8がラジアルタービンである場合には、外周側の第1コンプレッサ部6の設計自由度を高めることができ、用途に合わせてコンプレッサ翼10の形状を決めることができる。
図5に示す回転機械2(2C)では、コンプレッサ入口流路部22は、軸方向に沿って軸受5側からコンプレッサ翼10に気体を流入させるように構成され、タービン入口流路部28は、径方向に沿ってタービン動翼14に気体を流入させるように構成される。図7及び図9に示す回転機械2(2D,2E)では、コンプレッサ入口流路部22は、軸方向に沿って軸受5と反対側からコンプレッサ翼10に気体を流入させるように構成され、タービン入口流路部28は、径方向に沿ってタービン動翼14に気体を流入させるように構成される。また、図5及び図7に示す回転機械2(2C、2D)では、コンプレッサ出口流路部23には、周方向に間隔をあけて複数のディフューザ翼42が設けられる。
図6、図8及び図10に示すように、回転機械2(2C~2E)では、コンプレッサ翼10の正圧面10cは回転軸4の回転方向における下流側を向いており、タービン動翼14の正圧面14cは回転軸4の回転方向における上流側を向いている。このように、コンプレッサ翼10の正圧面10cとタービン動翼14の正圧面14cとは、回転軸4の回転方向において互いに逆方向を向いている。また、径方向視において、コンプレッサ翼10とタービン動翼14とは部分的にオーバーラップしている。
なお、軸流コンプレッサはラジアルタービンに比べて単段当りの使用圧力比が小さいため、コンプレッサ出口流路部23の圧力P2とタービン側スクロール流路部36の圧力P3とは、P2≒P3を満たさない。つまり、第1タービン部8と第1コンプレッサ部6とがバランスせず、タービン動翼14にて回収する動力が余るため、ターボチャージャとして構成するよりも、発電機や被駆動機に回転軸4を連結することで発電装置や動力駆動装置として好適に利用することができる。
回転機械2(2C~2E)は、回転軸4に例えば他の過給機を連結して2段過給装置として構成してもよいし、回転軸4に負荷吸収体(被駆動機)を連結してもよい。この場合、回転機械2(2C~2E)は、他の過給機又は負荷吸収体で消費されずに余った動力を第1コンプレッサ部6により別のプロセスで使用するサイクルにおいて好適に使用される。
次に、図11を用いて回転機械2(2F)について説明する。
回転機械2(2F)では、内周側の第1タービン部8は半径流入式の軸流タービンあり、外周側の第1コンプレッサ部6は、軸流コンプレッサである。タービン入口流路部28は、ロータ20の外周側に設けられたタービン側スクロール流路部36と、タービン側スクロール流路部36を通過した排気ガスの流れ方向を、径方向における内側に向かう方向から軸方向に沿う方向に変更するように構成されたベンド流路部38と、を含み、軸方向に沿って軸受5側からタービン動翼14に排気ガスを流入させるように構成される。コンプレッサ入口流路部22は、軸方向に沿って軸受5と反対側からコンプレッサ翼10に空気を流入させるように構成される。すなわち、コンプレッサ翼10への空気の流入方向と、タービン動翼14における排気ガスの流入方向とは反対方向である。
回転機械2(2F)では、内周側の第1タービン部8は半径流入式の軸流タービンあり、外周側の第1コンプレッサ部6は、軸流コンプレッサである。タービン入口流路部28は、ロータ20の外周側に設けられたタービン側スクロール流路部36と、タービン側スクロール流路部36を通過した排気ガスの流れ方向を、径方向における内側に向かう方向から軸方向に沿う方向に変更するように構成されたベンド流路部38と、を含み、軸方向に沿って軸受5側からタービン動翼14に排気ガスを流入させるように構成される。コンプレッサ入口流路部22は、軸方向に沿って軸受5と反対側からコンプレッサ翼10に空気を流入させるように構成される。すなわち、コンプレッサ翼10への空気の流入方向と、タービン動翼14における排気ガスの流入方向とは反対方向である。
上記回転機械2(2F)では、タービン入口流路部28のタービン側スクロール流路部36からベンド流路部38を通った高温高圧の排気ガスがタービン動翼14に流入し、タービン動翼14にてその排気ガスから動力が回収される。タービン動翼14で回収した動力は外周側の第1コンプレッサ部6で消費される。
次に、図12及び図13を用いて回転機械2(2G,2H)について説明する。
図12に示すように、回転機械2(2G)では、内周側の第1タービン部8は軸流タービンあり、外周側の第1コンプレッサ部6は軸流コンプレッサである。
図12に示すように、回転機械2(2G)では、内周側の第1タービン部8は軸流タービンあり、外周側の第1コンプレッサ部6は軸流コンプレッサである。
回転機械2(2G)では、タービン入口流路部28は、軸方向に沿って軸受5と反対側からタービン動翼14に気体を流入させるように構成される。タービン入口流路部28には、タービン動翼14の上流側に周方向に間隔をあけて複数のタービン静翼32が設けられている。コンプレッサ入口流路部22は、軸方向に沿って軸受5側からコンプレッサ翼10に気体を流入させるように構成される。コンプレッサ出口流路部23には、周方向に間隔をあけて複数のディフューザ翼42が設けられる。このように、コンプレッサ翼10への気体の流入方向と、タービン動翼14における排気ガスの流入方向とは反対方向である。
図13に示すように、回転機械2(2H)では、内周側の第1タービン部8は半径流入式の軸流タービンであり、外周側の第1コンプレッサ部6は軸流コンプレッサである。タービン入口流路部28は、ロータ20の外周側に設けられたタービン側スクロール流路部36と、タービン側スクロール流路部36を通過した排ガスの流れ方向を、径方向における内側に向かう方向から軸方向に沿う方向に変更するように構成されたベンド流路部38と、を含み、軸方向に沿って軸受5側からタービン動翼14に気体を流入させるように構成される。コンプレッサ入口流路部22は、軸方向に沿って軸受5と反対側からコンプレッサ翼10に気体を流入させるように構成される。このように、コンプレッサ翼10への気体の流入方向と、タービン動翼14における排気ガスの流入方向とは反対方向である。
このように、上記回転機械2(2G,2H)では、タービン入口流路部28を通った高温高圧の排気ガスが内周側のタービン動翼14に軸方向に沿って流入し、タービン動翼14にてその流体から動力が回収される。タービン動翼14で回収した動力は外周側の第1コンプレッサ部6で消費される。
図11~図13に示した回転機械2(2G~2H)によれば、軸流タービンはラジアルタービンに対して運用可能な圧力比の範囲が広い(例えば圧力比1.1程度の低圧力比でも圧力比5以上の高圧力比でも高性能な設計ができる)ため、ラジアルタービンの定常運用範囲(例えば圧力比1.5~4)外のサイクルにも対応することができる。
また、従来の典型的なターボチャージャに用いられる小型のタービンでは、タービン動翼の翼高さが小さく、チップクリアランスの影響が大きくなるためチップリーク(タービン動翼の先端と流路壁との隙間のリーク流れ)による損失が大きくなりやすい。特に、軸流タービンはラジアルタービンに比べてチップリーク損失が大きくなりやすい。この点、図11~図13に示した回転機械2(2G~2H)によれば、第1タービン部8のタービン動翼14の外側端14bは仕切壁部18に接続しており、第1タービン部8のチップリークを略0%まで低減することができるため、大幅な性能向上が可能である。
また、図11~図13に示した回転機械2(2G~2H)によれば、コンプレッサ入口流路部22の圧力P1、コンプレッサ出口流路部23の圧力P2、タービン入口流路部28におけるタービン静翼32の上流側の圧力P3、及びタービン出口流路部30の圧力P5について、P1≒P5、及びP2≒P3を満たす状態で作動するように回転機械2(2A)を設計することが可能なため、コンプレッサ流路12とタービン流路16との間のリーク流れを効果的に抑制することが可能である。
次に、図14を用いて回転機械2(2I)について説明する。
回転機械2(2I)では、回転軸4の一端側に上述した第1コンプレッサ部6及び第1タービン部8を含む回転機械2(2A)が配置され、回転軸4の他端側に第2コンプレッサ部44が配置されている。図示する形態では、第2コンプレッサ部44はラジアルコンプレッサである。
回転機械2(2I)では、回転軸4の一端側に上述した第1コンプレッサ部6及び第1タービン部8を含む回転機械2(2A)が配置され、回転軸4の他端側に第2コンプレッサ部44が配置されている。図示する形態では、第2コンプレッサ部44はラジアルコンプレッサである。
回転機械2(2I)によれば、軸流タービンとラジアルコンプレッサとを軸方向に組み合わせた従来のターボチャージャでは困難なコンプレッサの大流量化が容易となり、ターボチャージャとしての性能を向上させることができる。
例えば、第2コンプレッサ部44側のロータ外径を従来のターボチャージャのコンプレッサのロータ外径と同等とし、第1タービン部8側(第1コンプレッサ部6側)のロータ外径を従来のターボチャージャのタービンのロータ外径と同等とした場合、回転数を同等とすると、レスポンスを維持したままコンプレッサの流量を増加させることができる。
また、例えば、第2コンプレッサ部44側のロータ外径を従来のターボチャージャのコンプレッサのロータ外径より小さくしても、第1コンプレッサ部6によって流量を補うことができる。この場合、第2コンプレッサ部44の小型化により高周速化ができるため、軸流タービンの効率がピークとなる周速に対応する高い回転数で運転することが可能となり、ターボチャージャを高性能化することができる。
また、スラスト力に大きな影響を与える第1コンプレッサ部6の背圧と第2コンプレッサ部44の背圧とが軸方向に相殺する構造となるため、軸系の信頼性を向上することができる。
なお、図14に示す例示的な回転機械2(2I)では、回転軸4の一端側に上述した回転機械2(2A)が配置された形態を示したが、回転機械2(2I)における回転軸4の一端側には、回転機械2(2A)に代えて、上述した回転機械2(2B~2H)の何れかを配置してもよい。
次に、図15を用いて回転機械2(2J)について説明する。
回転機械2(2J)では、上述した回転機械2(2I)における軸流タービンとして構成された外周側の第1タービン部8に代えて、斜流タービンとして構成された第1タービン部8を外周側に備える。この場合、斜流タービンとして構成された第1タービン部8により、回転数及び圧力比を調整することが可能となる。
回転機械2(2J)では、上述した回転機械2(2I)における軸流タービンとして構成された外周側の第1タービン部8に代えて、斜流タービンとして構成された第1タービン部8を外周側に備える。この場合、斜流タービンとして構成された第1タービン部8により、回転数及び圧力比を調整することが可能となる。
また、回転機械2(2J)は、第1コンプレッサ部6から吐出された空気を内燃機関46に供給するための第1流路48と、第2コンプレッサ部44から吐出された空気を内燃機関46に供給するための第2流路50と、流量調整部52とを備える。第2流路50は、第1流路48と合流するように構成され、流量調整部52は、第1流路48及び第2流路50の少なくとも一方に設けられ、第1流路48又は第2流路50の流量を調整可能に構成される。図示する例示的形態では、流量調整部52は、第1流路48に設けられた流量制御弁54を含む。また、回転機械2(2J)には、内燃機関46の排気ガスを第1タービン部8の入口に供給するための排気ガス流路51が設けられている。一実施形態では、第1流路48又は第2流路50には、第1流路48又は第2流路から吐出された空気の余剰分を貯蔵するための不図示のタンクが接続されていてもよい。
このように、回転機械2(2J)は、第1コンプレッサ部6から第1流路48を介して内燃機関46に供給する空気の流量と第2コンプレッサ部44から第2流路50を介して内燃機関46に供給する空気の流量の少なくとも一方を流量調整部52によって調整することができるため、可変容量型のターボチャージャとして機能することができる。例えば、回転機械2(2J)の起動時等の小流量時には、第1コンプレッサ部6と第2コンプレッサ部44のうち一方のみを駆動し、定常運転時等の大流量時は第1コンプレッサ部6と第2コンプレッサ部44の両方を使用することによって、可変容量型のターボチャージャとして機能することができる。
次に、図16を用いて回転機械2(2K)について説明する。
回転機械2(2K)では、回転軸4の一端側に上述した第1コンプレッサ部6及び第1タービン部8を含む回転機械2(2B)が配置され、回転軸4の他端側に第2コンプレッサ部44及び第2タービン部56が配置されている。図示する形態では、内周側の第2コンプレッサ部44はラジアルコンプレッサであり、外周側の第2タービン部56は斜流タービンである。
回転機械2(2K)では、回転軸4の一端側に上述した第1コンプレッサ部6及び第1タービン部8を含む回転機械2(2B)が配置され、回転軸4の他端側に第2コンプレッサ部44及び第2タービン部56が配置されている。図示する形態では、内周側の第2コンプレッサ部44はラジアルコンプレッサであり、外周側の第2タービン部56は斜流タービンである。
第2コンプレッサ部44は、周方向に間隔をあけて設けられ、回転軸4とともに回転するように構成された複数のコンプレッサ翼58(第2コンプレッサ翼)と、複数のコンプレッサ翼58が配置されたコンプレッサ流路60(第2コンプレッサ流路)と、を含む。第2タービン部56は、周方向に間隔をあけて設けられ、回転軸4とともに回転するように構成された複数のタービン動翼62(第2タービン動翼)と、複数のタービン動翼62が配置されたタービン流路64(第2タービン流路)と、を含む。
複数のコンプレッサ翼58は、径方向において複数のタービン動翼62の内側に配置される。コンプレッサ流路60とタービン流路64は、複数のコンプレッサ翼58と複数のタービン動翼62とに接続するように周方向に沿って延在する筒状の仕切壁部66によって仕切られている。すなわち、コンプレッサ流路60とタービン流路64は、複数のコンプレッサ翼58と複数のタービン動翼62とに接続するように周方向に沿って延在する筒状の仕切壁部66を共有する。このように、回転機械2(2K)では、複数のコンプレッサ翼58、複数のタービン動翼62及び仕切壁部66が回転軸4とともにロータ20の少なくとも一部を構成するように構成される。
回転機械2(2K)は、第2コンプレッサ部44から吐出された空気を第1コンプレッサ部6に導くための第3流路68と、第1タービン部8から吐出された排気ガスを第2タービン部56に導くための第4流路70とを備えており、2段過給装置として構成されている。すなわち、不図示の内燃機関からの排気ガスが第1タービン部8、第4流路70及び第2タービン部56を順に流れ、第1タービン部8のタービン動翼14及び第2タービン部56のタービン動翼62にて動力を回収される。また、第2コンプレッサ部44、第3流路68及び第1コンプレッサ部6を順に流れて圧縮された気体が内燃機関に供給される。
上記回転機械2(2K)では、斜流タービンとして構成された第2タービン部56によって回転数及び圧力比を調整することが可能である。
また、2段過給装置として構成された回転機械2(2K)のうち高圧側の第1タービン部8を半径流入式の軸流タービンとして構成し、低圧側の第2タービン部56を斜流タービンとして構成しているため、従来2つのハウジングが必要だった2段過給装置に対して、1つのハウジングで済み、2段過給装置の小型化及び軽量化が可能である。
なお、図16に示す例示的な回転機械2(2K)では、回転軸4の一端側に上述した回転機械2(2B)が配置された2段過給装置を示したが、回転機械2(2K)における回転軸4の一端側には、回転機械2(2B)に代えて、上述した回転機械2(2A,2C~2H)の何れかを配置してもよい。
次に、図17及び図18を用いて回転機械2(2L)について説明する。
回転機械2(2L)では、内周側の第1コンプレッサ部6はラジアルコンプレッサであり、外周側の第1タービン部8は複数段の軸流タービンである。
回転機械2(2L)では、内周側の第1コンプレッサ部6はラジアルコンプレッサであり、外周側の第1タービン部8は複数段の軸流タービンである。
図17に示すように、第1タービン部8は、タービン動翼14と、複数のタービン動翼14の上流側に設けられたタービン静翼32と、からなるタービン段落72を複数備える。すなわち、第1タービン部8には、タービン静翼32とタービン動翼14とが軸方向に交互に配置されている。
回転機械2(2L)は、例えば小型のガスタービンに適用することができる。この場合、コンプレッサ流路12おいてコンプレッサ翼10で圧縮された空気は燃焼器74に供給されてバーナ76から供給される燃料の燃焼に使用され、燃焼ガスがタービン流路16に供給されてタービン動翼14にて動力が回収される。
この場合、既存のタービン速度比U/COや流量特性を変更せずにガスタービンを軸方向に小型化し軽量化することができる。また、従来のガスタービンと比較してコンプレッサ翼10と仕切壁部18とが接続されていてコンプレッサ翼10と仕切壁部18との間に隙間がないため、コンプレッサ翼の先端側のリーク損失をなくすことができる。
また、図18に示すように、回転機械2(2L)の回転軸4には、発電機又はポンプ等の被駆動機78が設けられてもよい。
次に、図19を用いて回転機械2(2M)について説明する。
回転機械2(2M)では、内周側の第1コンプレッサ部6は冷却ファンとして機能する軸流コンプレッサであり、外周側の第1タービン部8は軸流タービンである。第1コンプレッサ部6及び第1タービン部8は回転軸4の一端側に配置され、回転軸4の他端側にはモータ21が接続される。
回転機械2(2M)では、内周側の第1コンプレッサ部6は冷却ファンとして機能する軸流コンプレッサであり、外周側の第1タービン部8は軸流タービンである。第1コンプレッサ部6及び第1タービン部8は回転軸4の一端側に配置され、回転軸4の他端側にはモータ21が接続される。
第1コンプレッサ部6は、コンプレッサ翼10を通過した流体を冷却対象に導くための第1ガイド部80を含み、第1タービン部8は、冷却対象82の冷却に使用された流体をタービン動翼14に導くための第2ガイド部84を含む。冷却対象82は特に限定されないが、例えばPCの内部の発熱部であってもよいし、半導体等であってもよい。
回転機械2(2M)によれば、第1ガイド部80によって冷却対象に導かれた流体は、冷却対象を冷却した後に第1タービン部8に導かれる。これにより、冷却対象の排熱を利用してタービン動翼14で動力を回収し、モータ21の駆動力をアシストすることができる。したがって、従来捨てられていた排熱を有効活用して、冷却ファンのモータ21の電力使用量を低減することができる。
なお、上述した回転機械2(2A~2M)では、コンプレッサ翼10、仕切壁部18及びタービン動翼14は、フープ力を利用して強度を上げるために、一体的にブリスクとして構成されていてもよい。この場合、コンプレッサ翼10とタービン動翼14とは、同一材料で一体的に構成されていてもよいし、互いに異なる材料で構成されていてもよい。コンプレッサ翼10とタービン動翼14とを同一材料で一体的に構成する場合には、用途及び形状に見合った加工法、削りだし、溶接及び鋳物等の使用が可能であるが、製品重量の観点からは、コンプレッサ翼10の材料とタービン動翼14の材料を分けて、三次元金属積層造形法による加工を行ってもよい。
また、上述した回転機械2(2A~2M)を例えばガソリンエンジン用のターボチャージャとして使用する場合には、ガソリンエンジンの排気ガスが比較的高温であるため、コンプレッサ翼10、仕切壁部18及びタービン動翼14は、耐熱性を考慮して、一般的なタービン材料を用いて一体的に構成されていてもよい。
また、上述した回転機械2(2A~2M)を比較的低い温度の排熱の回収に使用する場合(例えば燃料電池やディーゼルエンジンの排熱回収や、バイナリーサイクル等における排熱温度が比較的低いタービンの排熱回収に使用する場合)には、コンプレッサ翼10の材料とタービン動翼14の材料とを分けても強度的に成立し易く、この場合は、三次元金属積層造形法による加工を好適に使用することができる。また、必要な耐熱性を満たす場合には、コンプレッサ翼10、仕切壁部18及びタービン動翼14は一般的なコンプレッサ材料を用いて構成されていてもよい。
このように、回転機械2を排熱回収に使用する場合には、排熱温度によって第1コンプレッサ部6の材料及び第1タービン部8の材料を適切に選択することにより、コスト及び安全性の最適化を行うことができる。
本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
2 回転機械
4 回転軸
5 軸受
6 第1コンプレッサ部
8 第1タービン部
10 コンプレッサ翼(第1コンプレッサ翼)
10a 外側端
10b 内側端
10c 正圧面
12 コンプレッサ流路(第1コンプレッサ流路)
14 タービン動翼(第1タービン動翼)
14a 内側端
14b 外側端
14c 正圧面
16 タービン流路(第1タービン流路)
18,19,66 仕切壁部
20 ロータ
21 モータ
22 コンプレッサ入口流路部
23 コンプレッサ出口流路部
24 コンプレッサ側スクロール流路部
25 案内筒
26 ディフューザ流路部
28 タービン入口流路部
30 タービン出口流路部
32 タービン静翼
32a 内側端
32c 正圧面
34 コンプレッサハウジング
36 タービン側スクロール流路部
37 スクロールケーシング
38 ベンド流路部
40 冷却流路
42 ディフューザ翼
44 第2コンプレッサ部
46 内燃機関
48 第1流路
50 第2流路
51 排気ガス流路
52 流量調整部
54 流量制御弁
56 第2タービン部
58 コンプレッサ翼(第2コンプレッサ翼)
60 コンプレッサ流路(第2コンプレッサ流路)
62 タービン動翼(第2タービン動翼)
64 タービン流路(第2タービン流路)
68 第3流路
70 第4流路
72 タービン段落
74 燃焼器
76 バーナ
78 被駆動機
80 第1ガイド部
82 冷却対象
84 第2ガイド部
86 外側ケーシング
88 仕切板
90 軸受ケーシング
4 回転軸
5 軸受
6 第1コンプレッサ部
8 第1タービン部
10 コンプレッサ翼(第1コンプレッサ翼)
10a 外側端
10b 内側端
10c 正圧面
12 コンプレッサ流路(第1コンプレッサ流路)
14 タービン動翼(第1タービン動翼)
14a 内側端
14b 外側端
14c 正圧面
16 タービン流路(第1タービン流路)
18,19,66 仕切壁部
20 ロータ
21 モータ
22 コンプレッサ入口流路部
23 コンプレッサ出口流路部
24 コンプレッサ側スクロール流路部
25 案内筒
26 ディフューザ流路部
28 タービン入口流路部
30 タービン出口流路部
32 タービン静翼
32a 内側端
32c 正圧面
34 コンプレッサハウジング
36 タービン側スクロール流路部
37 スクロールケーシング
38 ベンド流路部
40 冷却流路
42 ディフューザ翼
44 第2コンプレッサ部
46 内燃機関
48 第1流路
50 第2流路
51 排気ガス流路
52 流量調整部
54 流量制御弁
56 第2タービン部
58 コンプレッサ翼(第2コンプレッサ翼)
60 コンプレッサ流路(第2コンプレッサ流路)
62 タービン動翼(第2タービン動翼)
64 タービン流路(第2タービン流路)
68 第3流路
70 第4流路
72 タービン段落
74 燃焼器
76 バーナ
78 被駆動機
80 第1ガイド部
82 冷却対象
84 第2ガイド部
86 外側ケーシング
88 仕切板
90 軸受ケーシング
Claims (18)
- 回転軸を共有する第1コンプレッサ部及び第1タービン部を備える回転機械であって、
前記第1コンプレッサ部は、
前記回転機械の周方向に間隔をあけて設けられ、前記回転軸とともに回転するように構成された複数の第1コンプレッサ翼と、
前記複数の第1コンプレッサ翼が配置された第1コンプレッサ流路と、
を含み、
前記第1タービン部は、
前記周方向に間隔をあけて設けられ、前記回転軸とともに回転するように構成された複数の第1タービン動翼と、
前記複数の第1タービン動翼が配置された第1タービン流路と、
を含み、
前記複数の第1コンプレッサ翼は、前記回転機械の径方向において前記複数の第1タービン動翼の外側又は内側に配置され、
前記第1コンプレッサ流路と前記第1タービン流路は、前記複数の第1コンプレッサ翼と前記複数の第1タービン動翼とに接続する仕切壁部によって仕切られた、回転機械。 - 前記複数の第1コンプレッサ翼は、前記径方向において前記複数の第1タービン動翼の内側に配置され、
前記仕切壁部は、前記径方向における前記第1コンプレッサ翼の外側端と前記径方向における前記第1タービン動翼の内側端とに接続する、請求項1に記載の回転機械。 - 前記第1コンプレッサ部は、ラジアルコンプレッサである、請求項2に記載の回転機械。
- 前記第1タービン部は、軸流タービンである、請求項3に記載の回転機械。
- 前記第1タービン部は、半径流入式の軸流タービンである、請求項3に記載の回転機械。
- 前記第1タービン部は、斜流タービンである、請求項3に記載の回転機械。
- 前記複数の第1コンプレッサ翼は、前記径方向において前記複数の第1タービン動翼の外側に配置され、
前記仕切壁部は、前記径方向における前記第1コンプレッサ翼の内側端と前記径方向における前記第1タービン動翼の外側端とに接続する、請求項1に記載の回転機械。 - 前記第1タービン部は、ラジアルタービンであり、
前記第1コンプレッサ部は、軸流コンプレッサ、斜流コンプレッサ又はラジアルコンプレッサである、請求項7に記載の回転機械。 - 前記第1タービン部は、半径流入式の軸流タービンであり、
前記第1コンプレッサ部は、軸流コンプレッサである、請求項7に記載の回転機械。 - 前記第1タービン部は、軸流タービンであり、
前記第1コンプレッサ部は、軸流コンプレッサである、請求項7に記載の回転機械。 - 前記第1コンプレッサ部及び前記第1タービン部は前記回転軸の一端側に配置され、
前記回転機械は、前記回転軸の他端側に配置された第2コンプレッサ部を更に備える、請求項1乃至10の何れか1項に記載の回転機械。 - 前記第1コンプレッサ部から吐出された気体を内燃機関に供給するための第1流路と、
前記第2コンプレッサ部から吐出された気体を前記内燃機関に供給するための第2流路であって、前記第1流路と合流する第2流路と、
前記第1流路及び前記第2流路の少なくとも一方に設けられ、前記第1流路又は前記第2流路の流量を調整可能な流量調整部と、
を更に備える、請求項11に記載の回転機械。 - 前記回転軸の他端側に配置された第2タービン部を更に備え、
前記第2コンプレッサ部は、
前記周方向に間隔をあけて設けられ、前記回転軸とともに回転するように構成された複数の第2コンプレッサ翼と、
前記複数の第2コンプレッサ翼が配置された第2コンプレッサ流路と、
を含み、
前記第2タービン部は、
前記周方向に間隔をあけて設けられ、前記回転軸とともに回転するように構成された複数の第2タービン動翼と、
前記複数の第2タービン動翼が配置された第2タービン流路と、
を含み、
前記複数の第2コンプレッサ翼は、前記径方向において前記複数の第2タービン動翼の外側又は内側に配置され、
前記第2コンプレッサ流路と前記第2タービン流路は、前記複数の第2コンプレッサ翼と前記複数の第2タービン動翼とに接続する仕切壁部によって仕切られた、請求項11に記載の回転機械。 - 前記第2コンプレッサ部から吐出された気体を前記第1コンプレッサ部に導くための第3流路と、
前記第1タービン部から吐出された気体を前記第2タービン部に導くための第4流路と、
を更に備える、請求項13に記載の回転機械。 - 前記第1タービン部は、前記第1タービン動翼と、前記第1タービン動翼の上流側に設けられたタービン静翼と、からなるタービン段落を複数含む、請求項4に記載の回転機械。
- 前記第1コンプレッサ部及び前記第1タービン部は前記回転軸の一端側に配置され、
前記回転機械は、前記回転軸の他端側に接続されたモータを更に備え、
前記第1コンプレッサ部は、前記第1コンプレッサ翼を通過した気体を冷却対象に導くための第1ガイド部を備え、
前記第1タービン部は、前記冷却対象の冷却に使用された前記気体を前記第1タービン動翼に導くための第2ガイド部を備える、請求項2に記載の回転機械。 - 前記第1コンプレッサ翼と前記第1タービン動翼とは、同一材料で一体的に構成された、請求項1乃至16の何れか1項に記載の回転機械。
- 前記第1コンプレッサ翼と前記第1タービン動翼とは、互いに異なる材料で構成された、請求項1乃至16の何れか1項に記載の回転機械。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020565551A JP7183303B2 (ja) | 2019-01-11 | 2019-01-11 | ターボチャージャ |
PCT/JP2019/000705 WO2020144854A1 (ja) | 2019-01-11 | 2019-01-11 | 回転機械 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/000705 WO2020144854A1 (ja) | 2019-01-11 | 2019-01-11 | 回転機械 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020144854A1 true WO2020144854A1 (ja) | 2020-07-16 |
Family
ID=71521120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/000705 WO2020144854A1 (ja) | 2019-01-11 | 2019-01-11 | 回転機械 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7183303B2 (ja) |
WO (1) | WO2020144854A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113048076A (zh) * | 2021-03-16 | 2021-06-29 | 西安交通大学 | 一种空气压缩和膨胀一体装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6140428A (ja) * | 1984-08-01 | 1986-02-26 | Kawasaki Heavy Ind Ltd | ガスタ−ビン |
FR2597547A1 (fr) * | 1985-05-29 | 1987-10-23 | Chanay Paul | Suralimenteur d'air pour moteurs a combustion |
JPH0861061A (ja) * | 1994-08-22 | 1996-03-05 | Shin Caterpillar Mitsubishi Ltd | 機関冷却装置 |
WO1996013656A1 (en) * | 1994-11-01 | 1996-05-09 | Todor Georgiev Givetchev | Gas turbine engine |
JPH1182061A (ja) * | 1997-09-08 | 1999-03-26 | Yoshinobu Murayama | ガスタービン |
JP2007247645A (ja) * | 2006-03-13 | 2007-09-27 | General Electric Co <Ge> | 高圧力比後方ファン組立体及びガスタービンエンジン |
WO2012081061A1 (ja) * | 2010-12-17 | 2012-06-21 | トヨタ自動車株式会社 | 内燃機関の排気加熱装置およびその制御方法 |
US8356469B1 (en) * | 2007-04-05 | 2013-01-22 | The United States Of America As Represented By The Secretary Of The Air Force | Gas turbine engine with dual compression rotor |
-
2019
- 2019-01-11 WO PCT/JP2019/000705 patent/WO2020144854A1/ja active Application Filing
- 2019-01-11 JP JP2020565551A patent/JP7183303B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6140428A (ja) * | 1984-08-01 | 1986-02-26 | Kawasaki Heavy Ind Ltd | ガスタ−ビン |
FR2597547A1 (fr) * | 1985-05-29 | 1987-10-23 | Chanay Paul | Suralimenteur d'air pour moteurs a combustion |
JPH0861061A (ja) * | 1994-08-22 | 1996-03-05 | Shin Caterpillar Mitsubishi Ltd | 機関冷却装置 |
WO1996013656A1 (en) * | 1994-11-01 | 1996-05-09 | Todor Georgiev Givetchev | Gas turbine engine |
JPH1182061A (ja) * | 1997-09-08 | 1999-03-26 | Yoshinobu Murayama | ガスタービン |
JP2007247645A (ja) * | 2006-03-13 | 2007-09-27 | General Electric Co <Ge> | 高圧力比後方ファン組立体及びガスタービンエンジン |
US8356469B1 (en) * | 2007-04-05 | 2013-01-22 | The United States Of America As Represented By The Secretary Of The Air Force | Gas turbine engine with dual compression rotor |
WO2012081061A1 (ja) * | 2010-12-17 | 2012-06-21 | トヨタ自動車株式会社 | 内燃機関の排気加熱装置およびその制御方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113048076A (zh) * | 2021-03-16 | 2021-06-29 | 西安交通大学 | 一种空气压缩和膨胀一体装置 |
Also Published As
Publication number | Publication date |
---|---|
JP7183303B2 (ja) | 2022-12-05 |
JPWO2020144854A1 (ja) | 2021-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8793996B2 (en) | Internal combustion engine with exhaust gas recirculation | |
US7114339B2 (en) | Cavity on-board injection for leakage flows | |
EP2762682B1 (en) | Axial turbine with meridionally divided turbine housing | |
US9624934B2 (en) | Air cooling system for a turbocharger driven generator | |
US20080295516A1 (en) | Turbocharger | |
EP2762683B1 (en) | Axial turbine with sector-divided turbine housing | |
CN104884761B (zh) | 可变喷嘴单元及可变容量型增压器 | |
JP2009047163A (ja) | 効率範囲が広い出力タービンを備えた内燃機関装置 | |
CN102348868A (zh) | 具有涡轮机喷嘴筒的涡轮增压器 | |
JP2008082323A (ja) | 二軸ガスタービン | |
CN102562267A (zh) | 具有集成执行器的涡轮增压器 | |
JP2016176468A (ja) | タービン排気ガス質量流を増加させるため過剰空気流を生成する圧縮機及びターボエキスパンダを有する発電システム | |
CN111133174B (zh) | 用于涡轮机的涡轮的扩散器空间 | |
JP5539131B2 (ja) | 2軸式ガスタービンの内周抽気構造 | |
EP1191202B1 (en) | Low pressure gaseous fuel system | |
WO2020144854A1 (ja) | 回転機械 | |
CN102996249B (zh) | 燃气轮机 | |
JP6844619B2 (ja) | 過給機 | |
WO2012127909A1 (ja) | 1軸2段過給機 | |
JP6638594B2 (ja) | 過給機 | |
WO2021039531A1 (ja) | 圧縮機、ガスタービン | |
JP6122346B2 (ja) | タービンエンジン圧縮機の温度を制御する方法およびタービンエンジンの圧縮機 | |
GB2498400A (en) | Turbocharger and generator/motor arrangement | |
CN108292874A (zh) | 电动机支承机构、压缩机及增压器 | |
JP2009215897A (ja) | ガスタービンエンジン |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19908613 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020565551 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19908613 Country of ref document: EP Kind code of ref document: A1 |