WO2020144796A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2020144796A1
WO2020144796A1 PCT/JP2019/000463 JP2019000463W WO2020144796A1 WO 2020144796 A1 WO2020144796 A1 WO 2020144796A1 JP 2019000463 W JP2019000463 W JP 2019000463W WO 2020144796 A1 WO2020144796 A1 WO 2020144796A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
power
voltage
bidirectional
cross current
Prior art date
Application number
PCT/JP2019/000463
Other languages
English (en)
French (fr)
Inventor
貴昭 ▲高▼原
大斗 水谷
優介 檜垣
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/000463 priority Critical patent/WO2020144796A1/ja
Priority to JP2019518114A priority patent/JP6552774B1/ja
Publication of WO2020144796A1 publication Critical patent/WO2020144796A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • the present application relates to a power conversion device.
  • Patent Document 1 has a control unit and a plurality of power supply units, and each of the power supply units has an output unit that converts the power of an input power source and outputs the power, and the output power exceeds a first power value.
  • the power supply unit in the stopped state is issued a transition request and the output power falls below the second power value that is smaller than the first power value, the power supply unit that is currently supplying power is stopped.
  • a power supply system including a control unit that shifts to a state is disclosed. In this system, it is disclosed that the output current of each power supply unit is controlled to have the same value by the current balance function, and the power supply unit is switched by the control unit to form a redundant system.
  • Patent Document 2 discloses connecting a plurality of storage batteries via a bidirectional inverter connected in parallel to a bus bar. Since a current (cross current) occurs between storage batteries when a voltage difference occurs between storage batteries, a cross current prevention device is provided between the bidirectional inverter and the storage battery to allow current to flow only in the charging direction during charging and only in the discharging direction during discharging. It is disclosed to do.
  • a circuit having a power conversion function is composed of a switching circuit composed of multiple switching elements.
  • a plurality of power conversion circuits connected in parallel as described above is configured by a plurality of switching circuits, and at least one switching circuit has a function of bidirectionally converting power, and includes a switching circuit having a bidirectional function.
  • a reactive current called a cross current flows from another switching circuit to the switching circuit that has a bidirectional function, which causes deterioration of circuit efficiency due to increased loss.
  • Patent Document 2 a cross-current prevention device that separately passes a current only in the charging direction at the time of charging and a current only in the discharging direction at the time of discharging is provided corresponding to charging/discharging of the storage battery, but the system is not connected to the storage battery.
  • there was a limitation such as not being able to match the charging/discharging timing.
  • the present application discloses a technique for solving the above problems, and an object thereof is to provide a highly efficient power conversion device that suppresses a loss due to a cross current in a power conversion device without separately providing a cross current prevention device. I am trying.
  • the power conversion device disclosed in the present application includes a plurality of switching circuits that perform power conversion between an input terminal and an output terminal, and a control device that controls the plurality of switching circuits.
  • the respective output terminals are connected in parallel, and at least one switching circuit of the plurality of switching circuits is a switching circuit that performs bidirectional conversion between an input terminal and the output terminal, and the control device is Control is performed to switch between a bidirectional operation mode in which the power output direction of a switching circuit that performs bidirectional conversion is bidirectional, and a cross current suppression mode in which the direction from the input terminal to the output terminal is restricted.
  • the switching circuit that performs bidirectional conversion when power is supplied from two or more switching circuits to a load, the switching circuit that performs bidirectional conversion performs not only the bidirectional operation mode but also the cross current suppression mode. Therefore, the loss can be suppressed by stopping the bidirectional operation and setting the unidirectional operation, and it is possible to provide a highly efficient power conversion device without providing a cross current prevention device.
  • FIG. 6 is a diagram showing a switching pattern in a bidirectional operation mode of the power conversion device according to the first embodiment.
  • FIG. 3 is a circuit configuration diagram showing a power direction when a cross current does not occur in the power conversion device according to the first embodiment.
  • FIG. 4 is a circuit configuration diagram showing a power direction when a cross current occurs in the power conversion device according to the first embodiment.
  • FIG. 6 is a diagram showing a switching pattern in a cross current suppression mode of the power conversion device according to the first embodiment.
  • 5 is a flowchart showing an example of operation mode switching control in the power conversion device according to the first embodiment. It is a circuit block diagram of the power converter device which concerns on Embodiment 2.
  • FIG. 3 is a circuit configuration diagram showing a power direction when a cross current does not occur in the power conversion device according to the first embodiment.
  • FIG. 4 is a circuit configuration diagram showing a power direction when a cross current occurs in the power conversion device according to the first embodiment.
  • FIG. 6 is a
  • FIG. 7 is a diagram showing a switching pattern in a bidirectional operation mode of the power conversion device according to the second embodiment.
  • FIG. 6 is a circuit configuration diagram showing a power direction when a cross current does not occur in the power conversion device according to the second embodiment.
  • FIG. 7 is a circuit configuration diagram showing a power direction when a cross current occurs in the power conversion device according to the second embodiment.
  • FIG. 9 is a diagram showing an example of a switching pattern in a cross current suppression mode of the power conversion device according to the second embodiment.
  • FIG. 9 is a diagram showing an example of a switching pattern in a cross current suppression mode of the power conversion device according to the second embodiment.
  • FIG. 6 is a circuit diagram showing another example of the power conversion device according to the second embodiment. It is a hardware block diagram of the control apparatus of the power converter device which concerns on Embodiment 1 and 2.
  • FIG. 1 is a circuit diagram showing the basic configuration of the power conversion device according to the first embodiment.
  • the power conversion device performs power conversion between two power supplies 11 and 12 and a power supply 13 corresponding to a load.
  • each power source is a DC power source.
  • a voltage/current detector 41 is connected to the DC power supply 11, and a capacitor 21, to which an input terminal of the switching circuit 101 is connected, a switching circuit 101, and an output terminal of the switching circuit 101 are connected to the rear side of the voltage/current detector 41.
  • the connected capacitors 23 are connected in series.
  • the DC power supply 12 is connected to the voltage/current detector 42, and the input terminal of the switching circuit 102 is connected to the rear side of the voltage/current detector 42, the capacitor 22, the switching circuit 102, and the output terminal of the switching circuit 102.
  • the connected capacitors 24 are connected in series.
  • the capacitors 23 and 24 are connected in parallel with the voltage/current detector 43, and the voltage/current detector 43 is connected to the DC power supply 13.
  • the switching circuit 101 is a bidirectional converter having a switching element S11 and a switching element S12 connected in series, and a reactor 31 between a connection terminal of the switching element S11 and the switching element S12 and one end of the capacitor 23. From the DC power supply 13 to the DC power supply 13 and from the DC power supply 13 to the DC power supply 11 in the boosting operation. That is, in the figure, the reactor 31 is connected between the connection terminal of the two switching elements S11 and S12 and the positive terminal of the output terminal of the switching circuit 101. The reactor 31 may be connected between the positive terminal of the input terminal of the switching circuit 101 and the connection terminals of the two switching elements S11 and S12.
  • the switching circuit 102 is a unidirectional converter having a switching element S21 and a diode D21 connected in series, and a reactor 32 between a connection terminal of the switching element S21 and the diode D21 and one end of the capacitor 24.
  • the step-down operation is performed from the direction to the DC power supply 13.
  • the voltage value and current value detected by the voltage/current detectors 41 to 43 are input to the control device 80, and the respective switching circuits 101 and 102 are controlled by the control device 80 based on the detected voltage value and current value. ..
  • FIG. 2 is a diagram showing a switching pattern when the switching circuit 101 is operated in the bidirectional operation mode.
  • the switching element S11 and the switching element S12 are alternately switched by providing a dead time Td (soft switching).
  • Td soft switching
  • the transmission power is controlled at the ratio of the ON time Ton of the switching element S11 to the switching cycle Ts.
  • the switching element S12 is turned on during the off time of the switching element S12, the synchronous rectification operation becomes possible and the circuit efficiency can be improved.
  • Each switching element includes a MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor) that is a switch and a diode that is connected in antiparallel to the switch.
  • the ON state of the switching element means that the switch is in the ON state.
  • the switching element allows a current in one direction to flow by applying a voltage equal to or higher than the gate threshold voltage to the gate of the switch, and a current in the opposite direction regardless of whether a voltage equal to or higher than the gate threshold voltage is applied to the gate of the switch. Flow through. In the case where a current flows in the opposite direction, the diodes connected in anti-parallel become conductive unless a voltage higher than the gate threshold voltage is applied to the gate of the switch.
  • MOSFET Metal-Oxide-Semiconductor-Field-Effect-Transistor
  • FIG. 3 shows, in the power conversion device according to the first embodiment, an arrow indicating the power direction when no cross current occurs.
  • power is supplied from the DC power supply 11 to the DC power supply 13 by the switching circuit 101, and power is supplied from the DC power supply 12 to the DC power supply 13 by the switching circuit 102. That is, a state is shown in which electric power is supplied from two different DC power supplies 11 and 12 to one DC power supply 13.
  • FIG. 4 shows, in the power conversion device according to the first embodiment, an arrow indicating the power direction when a cross current is generated.
  • a cross current that flows in the direction and then is added to the electric power supplied from the DC power supply 11 and supplied to the DC power supply 13 via the switching circuit 101 is generated. Since the cross current becomes a current that reciprocates in the switching circuit 101, excessive loss may be generated in the switching circuit 101, which may lead to deterioration in efficiency of the power conversion device.
  • a cross current suppression mode is provided in which the switching element S12 is always off.
  • the switching element S11 is switched, the switching element S21 is always off, and the diode in the element is made conductive.
  • the switching circuit 101 is limited to a unidirectional operation in which power is transmitted only in the direction from the DC power supply 11 to the DC power supply 13, that is, from the input terminal to the output terminal. That is, the synchronous rectification operation is stopped and the occurrence of cross current is suppressed.
  • Synchronous rectification originally suppresses the loss during power conversion, but by introducing the cross current suppression mode, even if the loss generated due to the cross current exceeds the loss reduction amount due to the synchronous rectification operation, it is always bidirectional.
  • the circuit efficiency can be improved as compared with the case of operating in the operation mode.
  • the controller 80 switches between the cross current suppression mode and the bidirectional operation mode.
  • the control device 80 compares the detection results of the voltage/current detectors 41 to 43 with a predetermined threshold value to determine whether or not the condition of cross current generation is satisfied, and switches between the bidirectional operation mode and the cross current suppression mode.
  • the input power from the DC power supply 12 is calculated by using the voltage value and the current value detected by the voltage/current detection unit 42, and is compared with a predetermined input power threshold value in the DC power supply 12, and the bidirectional operation mode and the cross current suppression are performed. You can switch between modes. For example, when the power output to the DC power supply 13 as a load fluctuates and the input power P12in from the DC power supply 12 decreases and exceeds a predetermined input power threshold Pth, a cross current occurs in the switching circuit 101. It is determined that the condition is satisfied, and the bidirectional operation mode is switched to the cross current suppression mode.
  • condition of cross current generation is related to the magnitude of output power to the DC power supply 13 that is a load.
  • a low load is assumed, and it is premised that a condition for generating a cross current is satisfied when the input power P12in from the DC power supply 12 becomes smaller than the input power threshold Pth.
  • the condition of the cross current is reversed, and if the input power P12in is larger than the input power threshold Pth, the condition of the cross current is satisfied, which is the opposite of the above.
  • the operation mode may be switched.
  • the input power threshold Pth which is the threshold of the input power from the DC power supply 12
  • the input power threshold Pth can be set to a different value depending on the switching direction of the operation mode.
  • the power output to the DC power supply 13 that is a load fluctuates and the input power P12in from the DC power supply 12 decreases and exceeds a predetermined first input power threshold Pth1, to the switching circuit 101. It is determined that the condition that the cross current occurs is satisfied, and the bidirectional operation mode is switched to the cross current suppression mode.
  • the power output to the DC power supply 13 fluctuates and the input power P12in from the DC power supply 12 increases and exceeds the second input power threshold Pth2
  • a cross current to the switching circuit 101 occurs outside the conditions. Then, the cross current suppression mode is switched to the bidirectional operation mode.
  • FIG. 6 shows a flowchart of the above control example.
  • the switching circuit 101 operates under the control of the controller 80 in the bidirectional operation mode.
  • the voltage value and current value detected by the voltage/current detector 42 are input to the control device 80, and the input power P12in from the DC power supply 12 is calculated.
  • the switching circuit 101 is controlled and operated by being switched from the bidirectional operation mode to the cross current suppression mode by the control device 80.
  • the predetermined input power threshold Pth1 is not exceeded (NO in step ST3), the operation in the bidirectional operation mode is continued.
  • step ST4 the switching circuit 101 operating in the cross current suppression mode, when the input power P12in from the DC power supply 12 increases and exceeds the predetermined second input power threshold Pth2 in step ST3 (YES in step ST4). ), returning to step ST1, the switching circuit 101 is controlled and operated by being switched from the cross current suppression mode to the bidirectional operation mode by the control device 80.
  • the switching circuit 101 operating in the cross current suppression mode after step ST4 is the second when the input power P12in from the DC power supply 12 does not exceed the predetermined second input power threshold Pth2 (NO in step ST4).
  • the operation in the cross current suppression mode is continued until the input power threshold Pth2 is exceeded. If a plurality of input power thresholds Pth are not provided, it can be explained by replacing step ST3 with P12in ⁇ Pth and step ST5 with P12in>Pth in FIG.
  • the input power from the DC power supply 12 is calculated using the voltage value and current value detected by the voltage/current detection unit 42, and the DC power supply 13 is sent using the voltage value and current value detected by the voltage/current detection unit 43.
  • the cross current suppression mode is switched to the bidirectional operation mode.
  • the power ratio R(p12p13) increases and exceeds the second power ratio threshold Rth2
  • the condition is that the cross current to the switching circuit 101 is not generated, and the bidirectional operation mode is switched to the cross current suppression mode. ..
  • step ST3 in FIG. 6 with R(p12p13) ⁇ Rth1 and step ST5 with R(p12p13)>Rth2.
  • the input power from the DC power supply 11 is calculated using the voltage value and the current value detected by the voltage current detection unit 41, and the voltage value and the current value detected by the voltage current detection unit 43 are used to the DC power supply 13. May be calculated, and the ratio of the input power from the DC power supply 11 to the output power to the DC power supply 13 may be calculated.
  • the threshold value for shifting from the bidirectional operation mode to the cross current suppression mode and the threshold value for shifting from the cross current suppression mode to the bidirectional operation mode may be different values. You may switch modes. As described above, if the threshold value for shifting from the bidirectional operation mode to the cross current suppression mode and the threshold for shifting from the cross current suppression mode to the bidirectional operation mode are set to different values and the hysteresis characteristic is provided, chattering occurs when the mode is switched. Can be prevented. In the control example 1-1, Pth1 ⁇ Pth2 may be set. Alternatively, the opposite may be set such that Pth2 ⁇ Pth1.
  • the control example in which the input power from the DC power supplies 11 and 12 and the output power to the DC power supply 13 are calculated, the threshold value of the power is set, and the operation mode is switched is shown.
  • the DC power supplies 11 to 13 are devices such as converters that perform constant voltage control
  • the DC power supplies 11 to 13 operate by comparing the current value detected by the voltage/current detectors 41 to 43 with a preset current threshold without performing power calculation. You can switch modes. Further, the voltage value detected by the voltage/current detector 41 is compared with the voltage value detected by the voltage/current detector 43, and the voltage value detected by the voltage/current detector 41 is detected by the voltage/current detector 43. It may be switched to operate in the cross current suppression mode when the voltage value is higher than the specified voltage value and to operate in the bidirectional operation mode when the voltage value is lower than the specified voltage value.
  • This control method is particularly effective when the input/output voltage or input/output current can be set by the inverter, the cross current generation condition is clear, and the threshold value can be set.
  • control device 80 compares the detection results of the voltage/current detection units 41 to 43 with a predetermined threshold value to determine whether or not the condition of cross current generation is satisfied, and determines the bidirectional operation mode and the cross current suppression mode.
  • a predetermined threshold value to determine whether or not the condition of cross current generation is satisfied.
  • a loss map in which a loss value according to the input/output voltage or current is calculated for the switching circuit 101 is provided in the control device 80 in advance, and bidirectional control is performed based on the detection result of the voltage/current detection unit 41 or 43 to reduce the circuit loss.
  • the operation mode and the cross current suppression mode are determined and switched.
  • the circuit loss may be calculated using the voltage value and the current value detected by the control device 80, and the operation of switching between the bidirectional operation mode and the cross current suppression mode may be performed so that the circuit loss becomes smaller. In this case, it is particularly effective when the conditions for generating the cross current are complicated.
  • loss maps of the cross current suppression mode and the bidirectional operation mode corresponding to the voltages and currents of the DC power supplies 11 to 13 are stored in the control device 80 in advance, and the voltage values detected by the voltage/current detectors 41 to 43 are stored.
  • the current mode and the current value are used to determine which operation mode has a smaller circuit loss and switch the mode.
  • the control method using this loss map is particularly effective when the conditions for generating the cross current are complicated.
  • the switching circuits 101 and 102 have been described as an example of the configuration of the step-down chopper circuit that performs the step-down operation from the DC power supplies 11 and 12 to the DC power supply 13, but the invention is not limited thereto.
  • the step-up chopper that performs the step-up operation from the DC power supplies 11 and 12 to the DC power supply 13 may be configured, or the switching circuit 101 and the switching circuit 102 may be different circuits.
  • both of the switching circuits 101 and 102 may have a circuit configuration capable of bidirectional conversion. In this case, a cross current may occur in both switching circuits 101 and 102, and the control operation of the switching element in each circuit becomes more complicated than in the above case.
  • the power supplies 11 to 13 are the DC power supplies 11 to 13
  • any or all of the DC power supplies 11 to 13 may be configured as an AC power supply and an AC/DC converter.
  • the input/output voltage value and the current value of the power converter are detected, and the operation mode of the switching circuit capable of bidirectional power conversion is set to the bidirectional operation mode and the cross current. Since the control is performed so as to stop the ON operation of the switching element capable of conducting electric power in the generating direction and switch the mode to the cross current suppression mode in which the operation is unidirectional, a switching circuit is provided without a dedicated cross current suppression device or the like. It is possible to provide a highly efficient power conversion device by suppressing the loss due to the cross current in the above.
  • FIG. 7 is a circuit diagram showing the basic configuration of the power conversion device according to the second embodiment.
  • the power conversion device according to the second embodiment performs power conversion between the two DC power supplies 11 and 12 and the DC power supply 13 corresponding to the load, as in the power conversion device according to the first embodiment. It is a thing. The description of the same parts and operations as those in the first embodiment is omitted.
  • a voltage/current detection unit 41 is connected to the DC power supply 11, and a capacitor 21, which is connected to the input terminal of the switching circuit 201, is connected to the output terminal of the switching circuit 201 at the rear side of the voltage/current detection unit 41.
  • the capacitor 23 is connected in series.
  • the voltage/current detection unit 42 is connected to the DC power supply 12, and the capacitor 22, the switching circuit 202, and the output terminal of the switching circuit 202, which are connected to the input terminal of the switching circuit 202 on the rear side of the voltage/current detection unit 42.
  • the capacitor 24 connected to is connected in series.
  • the capacitors 23 and 24 are connected in parallel with the voltage/current detector 43, and the voltage/current detector 43 is connected to the DC power supply 13.
  • the switching circuit 201 includes a primary side switching circuit composed of four switching elements S11 to S14, a secondary side switching circuit composed of four switching elements S15 to S18, and one end of which is an AC terminal of the primary side switching circuit. , One end of which is connected to one end of the AC terminal of the secondary side switching circuit, one end of the primary winding is the other end of the reactor 31 and the other end is the primary side
  • the insulating transformer 51 is connected to the other end of the AC terminal of the switching circuit, one end of the secondary winding is connected to the other end of the reactor 33, and the other end is connected to the other end of the AC terminal of the secondary side switching circuit.
  • the switching circuit 202 includes a primary side switching circuit composed of four switching elements S21 to S24, a secondary side rectifying circuit composed of four diodes D22 to D25, and one end of the primary side switching circuit.
  • the reactor 32 connected to one end of the AC terminal, one end of the primary winding is connected to the other end of the reactor 32, the other end is connected to the other end of the AC terminal of the primary switching circuit, and both ends of the secondary winding are connected.
  • FIG. 8 is a diagram showing a switching pattern when the switching circuit 201 is operated in the bidirectional operation mode.
  • the switching element S11 and the switching element S12, the switching element S13 and the switching element S14, the switching element S15 and the switching element S16, and the switching element S17 and the switching element S18 are provided with a dead time Td and perform switching alternately.
  • the phase difference ⁇ of the secondary side switching circuit is used to control the transmission power.
  • FIG. 9 shows a circuit configuration diagram in which an arrow indicates the power direction when a cross current does not occur in the power conversion device according to the second embodiment.
  • the switching circuit 201 supplies power from the DC power supply 11 to the DC power supply 13
  • the switching circuit 202 supplies power from the DC power supply 12 to the DC power supply 13. That is, the power is supplied from two different DC power supplies to one DC power supply.
  • FIG. 10 is a circuit configuration diagram in which the direction of electric power when a cross current is generated is indicated by an arrow in the power conversion device according to the second embodiment.
  • a cross current is generated, which is then added to the electric power supplied from the DC power supply 11 and then supplied to the DC power supply 13 via the switching circuit 201. Since the cross current becomes a current that reciprocates in the switching circuit 201, excessive loss may occur in the switching circuit 201, which may lead to deterioration in efficiency of the power conversion device.
  • FIGS. 11 and 12 a cross current suppression mode is provided in which two switching elements of the secondary side switching circuit are always turned off.
  • FIG. 11 shows a case where the switching element S15 and the switching element S16, which are the two elements of one leg of the leg of the pair of upper and lower arms, of the secondary side switching circuit are turned off
  • FIG. 12 is the secondary side switching circuit. This is the case where the switching elements S15 and S17, which are the two elements of the upper arms of, are turned off.
  • the switching circuit 201 In the cross current suppression mode, only two switching elements of the primary side switching circuit and the secondary side switching circuit are switched, and two switching elements of the secondary side switching circuit are always turned off. As a result, the switching circuit 201 is limited to unidirectional operation in which electric power is transmitted only from the DC power supply 11 to the DC power supply 13. That is, it is possible to suppress the occurrence of cross current in the switching circuit 201.
  • the switching element S15 and the switching element S16 of one leg of the secondary side switching circuit are turned off.
  • the switching elements S17 and S18 of the leg may be turned off.
  • FIG. 12 the case where the switching elements S15 and S17, which are elements between the upper arms of the secondary side switching circuit, are turned off has been described. However, the switching elements S15 and S17 are switched and the lower side is operated.
  • the switching elements S16 and S18, which are elements between the arms, may be turned off.
  • the switching between the cross current suppression mode and the bidirectional operation mode is performed by the controller 80.
  • the control device 80 switches the bidirectional operation mode and the cross current suppression mode by comparing the voltage value and the current value detected by the voltage/current detection units 41 to 43 with a predetermined threshold value. .. [Control example 2-1]
  • the input power from the DC power supply 12 is calculated by using the voltage value and the current value detected by the voltage/current detection unit 42, and is compared with a predetermined input power threshold value in the DC power supply 12, and the bidirectional operation mode and the cross current suppression are performed. You can switch between modes. For example, when the power output to the DC power supply 13 as a load fluctuates and the input power P12in from the DC power supply 12 decreases and exceeds a predetermined input power threshold Pth, a cross current occurs in the switching circuit 101.
  • condition of cross current generation is related to the magnitude of output power to the DC power supply 13 that is a load.
  • a low load is assumed, and it is premised that a condition for generating a cross current is satisfied when the input power P12in from the DC power supply 12 becomes smaller than the input power threshold Pth.
  • the condition of the cross current is reversed, and if the input power P12in is larger than the input power threshold Pth, the condition of the cross current is satisfied, which is the opposite of the above.
  • the operation mode may be switched.
  • the input power threshold Pth which is the threshold of the input power from the DC power supply 12
  • the input power threshold Pth can be set to a different value depending on the switching direction of the operation mode.
  • the power output to the DC power supply 13 serving as a load fluctuates and the input power P12in from the DC power supply 12 decreases and exceeds a predetermined first input power threshold Pth1, to the switching circuit 201. It is determined that the condition that the cross current occurs is satisfied, and the bidirectional operation mode is switched to the cross current suppression mode.
  • the power output to the DC power supply 13 fluctuates and the input power P12in from the DC power supply 12 increases and exceeds the second input power threshold Pth2, a condition in which a cross current flows to the switching circuit 201 is out of the condition. Then, the cross current suppression mode is switched to the bidirectional operation mode.
  • the processing flow of this control example is also the same as that of FIG. 6 of the first embodiment.
  • the input power from the DC power supply 12 is calculated using the voltage value and current value detected by the voltage/current detection unit 42, and the DC power supply 13 is sent using the voltage value and current value detected by the voltage/current detection unit 43.
  • the cross current suppression mode is switched to the bidirectional operation mode.
  • the power ratio R(p12p13) increases and exceeds the second power ratio threshold Rth2
  • the condition is that the cross current to the switching circuit 201 is not generated, and the bidirectional operation mode is switched to the cross current suppression mode. ..
  • the input power from the DC power supply 11 is calculated using the voltage value and the current value detected by the voltage current detection unit 41, and the voltage value and the current value detected by the voltage current detection unit 43 are used to the DC power supply 13. May be calculated, and the ratio of the input power from the DC power supply 11 to the output power to the DC power supply 13 may be calculated.
  • the threshold value for shifting from the bidirectional operation mode to the cross current suppression mode and the threshold value for shifting from the cross current suppression mode to the bidirectional operation mode may be different values. You may switch modes. As described above, if the threshold value for shifting from the bidirectional operation mode to the cross current suppression mode and the threshold value for shifting from the cross current suppression mode to the bidirectional operation mode are set to different values and the hysteresis characteristic is provided, chattering occurs when the mode is switched. Can be prevented. In the control example 2-1, Pth1 ⁇ Pth2 may be set. Alternatively, the opposite Pth2 ⁇ Pth1 may be set.
  • the control example in which the input power from the DC power supplies 11 and 12 and the output power to the DC power supply 13 are calculated, the threshold value of the power is set, and the operation mode is switched is shown.
  • the DC power supplies 11 to 13 are devices such as converters that perform constant voltage control
  • the DC power supplies 11 to 13 operate by comparing the current value detected by the voltage/current detectors 41 to 43 with a preset current threshold without performing power calculation. You can switch modes. Further, the voltage value detected by the voltage/current detector 41 is compared with the voltage value detected by the voltage/current detector 43, and the voltage value detected by the voltage/current detector 41 is detected by the voltage/current detector 43. It may be switched to operate in the cross current suppression mode when the voltage value is higher than the specified voltage value and to operate in the bidirectional operation mode when the voltage value is lower than the specified voltage value.
  • this control method is particularly effective when the input/output voltage or the input/output current can be set by the inverter, the cross current generation condition is clear, and the threshold value can be set.
  • control device 80 switches the operation mode by comparing the magnitude of the loss in each operation mode.
  • a loss map in which a loss value according to the input/output voltage or current is calculated for the switching circuit 201 is provided in the control device 80 in advance, and bidirectional control is performed based on the detection result of the voltage/current detection unit 41 or 43 to reduce the circuit loss.
  • the operation mode and the cross current suppression mode are determined and switched.
  • the circuit loss may be calculated using the voltage value and the current value detected by the control device 80, and the operation of switching between the bidirectional operation mode and the cross current suppression mode may be performed so that the circuit loss becomes smaller. In this case, it is particularly effective when the conditions for generating the cross current are complicated.
  • loss maps of the cross current suppression mode and the bidirectional operation mode corresponding to the voltages and currents of the DC power supplies 11 to 13 are stored in the control device 80 in advance, and the voltage values detected by the voltage/current detectors 41 to 43 are stored.
  • the current mode and the current value are used to determine which operation mode has a smaller circuit loss and switch the mode.
  • the control method using this loss map is particularly effective when the crossflow generation condition is complicated, as described in the first embodiment.
  • the phases of the switching elements S13 and S14 with respect to the switching elements S11 and S12 and the phases of the switching elements S17 and S18 with respect to the switching elements S15 and S16 are described as being delayed by 180 degrees. Even when used as a control variable, the same effect can be obtained by switching the operation mode.
  • connecting a capacitor in parallel with each switching element reduces switching loss. A soft switching operation that can be reduced can be realized.
  • the secondary side switching circuit is hard-switched in the cross current suppression mode, soft switching and cross current are generated in the bidirectional operation mode, and hard switching and cross current are suppressed in the cross current suppression mode. It is possible to effectively switch the bidirectional operation mode and the cross current suppression mode so as to minimize the circuit loss.
  • FIG. 13 shows a circuit configuration diagram of another power conversion device according to the second embodiment.
  • a switching circuit for adjusting the output to the power supply 13 is provided at the rear stage side where the switching circuit 201 and the switching circuit 202 are connected in parallel.
  • a configuration in which 203 is provided may be adopted.
  • the output power to the DC power supply 13 may be calculated using the voltage value and current value detected by the voltage/current detection unit 43, or may be calculated by the voltage/current detection unit 44. The power may be calculated using the voltage value and the current value. Further, as the voltage value and the current value on the DC power supply 13 side, the values detected by either the voltage/current detection unit 43 or the voltage/current detection unit 44 may be used.
  • the DC power supplies 11 to 13 may have a configuration in which any or all of the DC power supplies 11 to 13 are an AC power supply and an AC/DC converter.
  • the input/output voltage value and the current value of the power conversion device are detected to determine the operation mode of the switching circuit capable of bidirectional power conversion. Since the control is performed so as to switch between the bidirectional operation mode and the cross current suppression mode in which unidirectional operation is performed by stopping the on operation of the switching element capable of conducting power in the cross current generation direction, a dedicated cross current suppression device is provided. It is possible to provide a highly efficient power conversion device by suppressing the loss due to the cross current in the switching circuit without providing the above.
  • the switching elements S11 to S18, S21 to S24, and S31 of the first and second embodiments have been described by taking the MOSFET as an example of a switch that constitutes a semiconductor switching element.
  • a switch can be used.
  • the control device 80 is composed of a processor 1000 and a storage device 2000, as shown in FIG.
  • the storage device includes a volatile storage device such as a random access memory (RAM) and a non-volatile auxiliary storage device such as a flash memory. Further, an auxiliary storage device such as a hard disk may be provided instead of the flash memory.
  • the processor 1000 executes the program input from the storage device 2000. In this case, the program is input from the auxiliary storage device to the processor 1000 via a volatile storage device (EEPROM: Electrically Erasable Programmable Read Only Memory). Further, the processor 1000 may output data such as a calculation result to the volatile storage device of the storage device 2000, or may store the data in the auxiliary storage device via the volatile storage device.
  • the processor 1000 may be provided with various logic circuits such as ASIC (Application Specific Integrated Circuit), IC (Integrated Circuit), DSP (Digital Signal Processor), and various signal processing circuits as an arithmetic processing device.
  • ASIC Application Specific Integrated Circuit
  • IC Integrated
  • 11-13 power supply 21-26 capacitor, 31-34 reactor, 41-44 voltage/current detection section, 51, 52 insulation transformer, S11-S18, S21-S24, S31 switching element, D21-D25, D31 diode, 101, 102, 201-203 switching circuit, 80 control device, 1000 processor, 2000 storage device

Abstract

出力端子が互いに並列に接続された2以上のスイッチング回路(101、102)と、前記スイッチング回路を制御する制御装置(80)を備えた電力変換装置であって、前記スイッチング回路のうち少なくとも1つのスイッチング回路が入力端子と出力端子との間で双方向変換を行うスイッチング回路(101)であり、前記制御装置(80)は、前記双方向変換を行うスイッチング回路(101)の電力出力方向を双方向とする双方向動作モードと、単方向に制限する横流抑制モードとを切り替え制御を行う。

Description

電力変換装置
 本願は、電力変換装置に関する。
 電力変換機能を有する回路を並列に接続して搭載したもの及び異なる電源から各々電力変換したものを1つの負荷あるいは電源に供給する装置等、電力変換器を並列に接続して使用する装置が知られている。
 例えば、特許文献1には、制御ユニットと複数の電源ユニットを有し、この電源ユニットの各々は、入力電源を電力変換して出力する出力部と、出力電力が第1の電力値を超えた場合に、停止状態の電源ユニットを電力供給状態へ移行する移行要求を発し、出力電力が第1の電力値よりも小さい第2の電力値を下回った場合に、電力供給中の電源ユニットを停止状態に移行する制御部とを備えた電力供給システムが開示されている。このシステムにおいては、電流バランス機能により各電源ユニットの出力電流が同じ値になるように制御されるとともに、制御ユニットで電源ユニットを切り替えて冗長系を構成することが開示されている。
 また、特許文献2には、複数の蓄電池を、母線に並列に接続された双方向インバータを介して接続することが開示されている。蓄電池間に電圧差が生じると蓄電池間電流(横流)が生じるため、双方向インバータと蓄電池との間に横流防止装置を設け、充電時は充電方向のみ、放電時は放電方向のみの電流を通過させることが開示されている。
特開2018-85793号公報 特開2014-54072号公報(図10及び図11)
 電力変換機能を有する回路を複数のスイッチング素子から構成されるスイッチング回路で構成することは知られている。上述したような並列に接続された複数の電力変換回路を複数のスイッチング回路で構成し、少なくとも1つのスイッチング回路が双方向に電力変換を行う機能を有し、双方向機能を有するスイッチング回路を含む複数のスイッチング回路で負荷に電力を供給する場合、他のスイッチング回路から双方向機能を有するスイッチング回路に電流が流入する横流と呼ばれる無効電流が発生し、損失増加に伴う回路効率の悪化が生じる問題点があった。
 特許文献2においては、蓄電池の充放電に対応して、充電時は充電方向のみ、放電時は放電方向のみの電流を通過させる横流防止装置を別に設けているが、蓄電池に接続されていない系においては充放電のタイミングに合わせることができないなど、制限があった。
 本願は、上記の課題を解決するための技術を開示するものであり、横流防止装置を別に設けることなく電力変換装置において横流による損失を抑制し、高効率な電力変換装置を提供することを目的としている。
 本願に開示される電力変換装置は、入力端子と出力端子との間で電力変換を行う複数のスイッチング回路と、前記複数のスイッチング回路を制御する制御装置と、を備え、前記複数のスイッチング回路はそれぞれの前記出力端子が並列に接続され、前記複数のスイッチング回路のうち少なくとも1つのスイッチング回路は入力端子と前記出力端子との間で双方向変換を行うスイッチング回路であり、前記制御装置は、前記双方向変換を行うスイッチング回路の電力出力方向を双方向とする双方向動作モードと、前記入力端子から前記出力端子の方向に制限する横流抑制モードと、を切り替える制御を行うものである。
 本願に開示される電力変換装置によれば、2以上のスイッチング回路から負荷に電力供給を行う時に、双方向変換を行うスイッチング回路においては、双方向動作モードだけでなく横流抑制モードで動作を行うことができるので、双方向動作を停止し単方向とすることで損失を抑制でき、横流防止装置を設けることなく高効率な電力変換装置を提供することが可能となる。
実施の形態1に係る電力変換装置の回路構成図である。 実施の形態1に係る電力変換装置の双方向動作モードにおけるスイッチングパターンを示す図である。 実施の形態1に係る電力変換装置の横流非発生時の電力方向を示した回路構成図である。 実施の形態1に係る電力変換装置の横流発生時の電力方向を示した回路構成図である。 実施の形態1に係る電力変換装置の横流抑制モードにおけるスイッチングパターンを示す図である。 実施の形態1に係る電力変換装置において、動作モード切り替え制御の一例を示すフローチャートである。 実施の形態2に係る電力変換装置の回路構成図である。 実施の形態2に係る電力変換装置の双方向動作モードにおけるスイッチングパターンを示す図である。 実施の形態2に係る電力変換装置の横流非発生時の電力方向を示した回路構成図である。 実施の形態2に係る電力変換装置の横流発生時の電力方向を示した回路構成図である。 実施の形態2に係る電力変換装置の横流抑制モードにおけるスイッチングパターンの一例を示す図である。 実施の形態2に係る電力変換装置の横流抑制モードにおけるスイッチングパターンの一例を示す図である。 実施の形態2に係る電力変換装置の別の例を示した回路図である。 実施の形態1及び2に係る電力変換装置の制御装置のハードウエア構成図である。
 以下、本実施の形態について図を参照して説明する。なお、各図中、同一符号は、同一または相当部分を示すものとする。
実施の形態1. 
 実施の形態1に係る電力変換装置について図1から図6を用いて説明する。
 図1は実施の形態1に係る電力変換装置の基本構成を示す回路図である。図1において、電力変換装置は、2つの電源11、12と負荷に相当する電源13との間で電力変換を行うものである。ここでは各電源を直流電源としている。直流電源11には、電圧電流検出部41が接続され、電圧電流検出部41の後段側に、スイッチング回路101の入力端子が接続されたコンデンサ21、スイッチング回路101、スイッチング回路101の出力端子の接続されたコンデンサ23が直列に接続される。同様に、直流電源12には、電圧電流検出部42が接続され、電圧電流検出部42の後段側にスイッチング回路102の入力端子が接続されたコンデンサ22、スイッチング回路102、スイッチング回路102の出力端子の接続されたコンデンサ24が直列に接続される。コンデンサ23とコンデンサ24は電圧電流検出部43と並列に接続され、電圧電流検出部43は直流電源13に接続される。
 スイッチング回路101は直列接続されたスイッチング素子S11及びスイッチング素子S12と、スイッチング素子S11とスイッチング素子S12との接続端子とコンデンサ23の一端との間にリアクトル31を有する双方向コンバータであり、直流電源11から直流電源13の方向に降圧動作を行い、直流電源13から直流電源11の方向に昇圧動作を行う。
 すなわち、図においてリアクトル31は2つのスイッチング素子S11、S12の接続端子とスイッチング回路101の出力端子の正側端子との間に接続されている。リアクトル31はスイッチング回路101の入力端子の正側端子と2つのスイッチング素子S11、S12の接続端子との間に接続されていてもよい。
 一方、スイッチング回路102は直列接続されたスイッチング素子S21及びダイオードD21と、スイッチング素子S21とダイオードD21との接続端子とコンデンサ24の一端との間にリアクトル32を有する単方向コンバータであり、直流電源12から直流電源13の方向に降圧動作を行う。
 電圧電流検出部41~43で検出された電圧値、電流値は制御装置80に入力され、それぞれのスイッチング回路101、102は、検出された電圧値、電流値に基づき制御装置80により制御される。
 図2は、スイッチング回路101を双方向動作モードで動作させる時のスイッチングパターンを示す図である。スイッチング素子S11とスイッチング素子S12はデッドタイムTdを設けて交互にスイッチングを行う(ソフトスイッチング)。直流電源11から直流電源13の方向に電力伝送を行う状態において、スイッチング周期Tsに対するスイッチング素子S11のオン時間Tonの割合で伝送電力を制御する。一方、スイッチング素子S12をスイッチング素子S12のオフ時間にオンすることにより、同期整流動作が可能となり回路効率を向上させることが出来る。
 各スイッチング素子は、スイッチであるMOSFET(Metal-Oxide-Semiconductor-Field-Effect-Transistor)とスイッチに対して逆並列に接続されたダイオードとを備えている。スイッチング素子がオン状態とはスイッチがオン状態のことである。
 スイッチング素子は、スイッチのゲートにゲート閾値電圧以上の電圧を印加することで一方向の電流が通流し、スイッチのゲートにゲート閾値電圧以上の電圧が印加されているかに係らず逆方向の電流が通流する。逆方向に電流が通流する場合において、スイッチのゲートにゲート閾値電圧以上の電圧を印加しない場合は逆並列に接続されたダイオードが導通する。一方、スイッチのゲートにゲート閾値電圧以上の電圧を印加する場合において、ダイオードの順方向降下電圧よりもスイッチの降下電圧が低い場合はスイッチに電流が流れ(同期整流)、ダイオードの順方向降下電圧よりもスイッチの降下電圧が高い場合はダイオードに電流が流れる。
 図3は、実施の形態1に係る電力変換装置において、横流が発生していない時の電力方向を矢印で示したものである。この状態では、直流電源11から直流電源13の方向にスイッチング回路101により電力が供給されるとともに、直流電源12から直流電源13の方向にスイッチング回路102により電力が供給される。即ち、異なる2つの直流電源11、12から1つの直流電源13に電力を供給する状態を示している。
 一方、図4は実施の形態1に係る電力変換装置において、横流が発生している時の電力方向を矢印で示したものである。コンデンサ21とコンデンサ23の電圧関係及び負荷変動などの過渡的な状態において直流電源12からスイッチング回路102を介して接続点Q1、Q2に入力された電力が、スイッチング回路101を介して直流電源11の方向に流入し、その後直流電源11から供給される電力と足し合わされてスイッチング回路101を介して直流電源13に供給される横流が発生する。横流はスイッチング回路101を往復する電流となるため、スイッチング回路101で過剰な損失を発生させ、電力変換装置の効率悪化を招く虞がある。
 そこで、図5に示す様に、スイッチング素子S12を常時オフ状態とする横流抑制モードを設ける。横流抑制モードでは、スイッチング素子S11のみがスイッチングし、スイッチング素子S21は常時オフ状態で、素子内のダイオードを導通状態とする。これにより、スイッチング回路101は直流電源11から直流電源13の方向、すなわち入力端子から出力端子の方向にのみ電力伝送を行う単方向動作に制限される。即ち、同期整流動作を停止し、横流の発生を抑制することになる。
 同期整流は本来、電力変換時の損失を抑制するものであるが、横流抑制モードを導入することによって、横流による発生損失が同期整流動作による損失低減量を上回る場合であっても、常時双方向動作モードで動作させるよりも回路効率を向上することが可能となる。
 なお、横流抑制モードと双方向動作モードとの切り替えは制御装置80で行われる。
 次に、制御装置80での横流抑制モードと双方向動作モードとの切り替え制御について説明する。
 制御装置80では、電圧電流検出部41~43の検出結果と予め定めた閾値とを比較して、横流発生の条件を満たすかを判定し、双方向動作モードと横流抑制モードとを切り替える。
[制御例1-1]
 電圧電流検出部42で検出された電圧値、電流値を用いて直流電源12からの入力電力を演算し、予め定められた直流電源12における入力電力閾値と比較し、双方向動作モードと横流抑制モードとを切り替えればよい。
 例えば、負荷となる直流電源13に出力する電力が変動し、直流電源12からの入力電力P12inが減少して予め定められた入力電力閾値Pthを超過した場合に、スイッチング回路101へ横流が発生する条件を満たすと判定し、双方向動作モードから横流抑制モードに切り替える。逆に、直流電源13に出力する電力が変動して直流電源12からの入力電力P12inが増加して入力電力閾値Pthを超過した場合に、スイッチング回路101へ横流が発生する条件外と判定し、横流抑制モードから双方向動作モードに切り替える。
 なお、横流発生条件は負荷である直流電源13への出力電力の大きさに関係する。本例では、低負荷を想定し、直流電源12からの入力電力P12inが入力電力閾値Pthより小さくなると横流の発生条件となることを前提としている。負荷の大きさ、すなわち直流電源13への出力電力の大ききによっては、横流発生条件は逆転し、入力電力P12inが入力電力閾値Pthより大きくなると横流の発生条件を満たすこととなり、上記と逆の動作モードの切り替えを行うこともある。
 また、直流電源12からの入力電力の閾値である入力電力閾値Pthを動作モードの切り替え方向によって異なる値に設定することもできる。この場合、負荷となる直流電源13に出力する電力が変動し、直流電源12からの入力電力P12inが減少して予め定められた第1の入力電力閾値Pth1を超過した場合に、スイッチング回路101へ横流が発生する条件を満たすと判定し、双方向動作モードから横流抑制モードに切り替える。逆に、直流電源13に出力する電力が変動して直流電源12からの入力電力P12inが増加して第2の入力電力閾値Pth2を超過した場合に、スイッチング回路101への横流が発生する条件外と判定し、横流抑制モードから双方向動作モードに切り替える。
 図6に上記の制御例のフローチャートを示す。
 ステップST1において、スイッチング回路101は制御装置80により双方向動作モードで制御されて動作する。
 ステップST2において、電圧電流検出部42で検出された電圧値、電流値が制御装置80に入力され、直流電源12からの入力電力P12inが演算される。
 ステップST3において、直流電源12からの入力電力P12inが減少し予め定められた入力電力閾値第1のPth1を超過した場合に(ステップST3でYES)、横流発生条件を満たすと判定され、ステップST4に進む。ステップST4において、スイッチング回路101は制御装置80により双方向動作モードから横流抑制モードに切り替えられて制御され、動作する。
 ステップST3において、予め定められた入力電力閾値第1のPth1を超過していない場合には(ステップST3でNO)、双方向動作モードでの動作が継続する。
 ステップST4以降横流抑制モードで動作するスイッチング回路101は、ステップST3において、直流電源12からの入力電力P12inが増加し予め定められた第2の入力電力閾値Pth2を超過した場合に(ステップST4でYES)、ステップST1に戻り、スイッチング回路101は制御装置80により横流抑制モードから双方向動作モードに切り替えられて制御され、動作する。
 ステップST4以降横流抑制モードで動作するスイッチング回路101は、直流電源12からの入力電力P12inが予め定められた第2の入力電力閾値Pth2を超過していない場合(ステップST4でNO)は第2の入力電力閾値Pth2を超過するまで横流抑制モードでの動作を継続する。
 入力電力閾値Pthを複数設けない場合は、図6において、ステップST3をP12in<Pthに、ステップST5をP12in>Pthに置き換えることで説明できる。
[制御例1-2]
 電圧電流検出部42で検出された電圧値、電流値を用いて直流電源12からの入力電力を演算するとともに、電圧電流検出部43で検出された電圧値、電流値を用いて直流電源13への出力電力を演算し、直流電源13への出力電力に対する直流電源12からの入力電力の比率を算出し、予め定めた比率閾値と比較して双方向動作モードと横流抑制モードとを判定し切り替えてもよい。
 例えば、負荷となる直流電源13への出力電力P13outと、直流電源12からの入力電力P12inとの電力比率R(p12p13)=P12in/P13outが減少し、第1の電力比率閾値Rth1を超過した場合に、スイッチング回路101へ横流が発生する条件を満たすと判定し、横流抑制モードから双方向動作モードに切り替える。逆に、電力比率R(p12p13)が増加し、第2の電力比率閾値Rth2を超過した場合にスイッチング回路101への横流が発生する条件外と判定し、双方向動作モードから横流抑制モードに切り替える。
 処理フローは図6のステップST3をR(p12p13)<Rth1に、ステップST5をR(p12p13)>Rth2に置き換えることで説明できる。
[制御例1-3]
 電圧電流検出部41で検出された電圧値、電流値を用い、直流電源11からの入力電力を演算するとともに、電圧電流検出部43で検出された電圧値、電流値を用い、直流電源13への出力電力を演算し、直流電源13への出力電力に対する直流電源11からの入力電力の比率を演算しても構わない。
 なお、上述のとおり動作モードを切り替える時に双方向動作モードから横流抑制モードに移行する閾値と、横流抑制モードから双方向動作モードに移行する閾値を異なる値としてもよいし、同じ閾値を用い、動作モードの切り替えを行ってもよい。
 上記のように、双方向動作モードから横流抑制モードに移行する閾値と、横流抑制モードから双方向動作モードに移行する閾値を異なる値として、ヒステリシス特性を設けるようにすると、モード移行の際にチャタリングを防止することができる。制御例1-1において、Pth1<Pth2と設定すればよい。また、逆のPth2<Pth1と設定してもよい。
 上記の例では、直流電源11、12からの入力電力、直流電源13への出力電力を演算し、電力の閾値を設定して動作モードの切り替えを行う制御例を示した。直流電源11~13がコンバータ等の電圧一定制御を行う機器の場合、電力演算を行わずに電圧電流検出部41~43で検出された電流値と予め設定した電流閾値とを比較することで動作モードを切り替えることができる。
 さらに、電圧電流検出部41で検出された電圧値と電圧電流検出部43で検出された電圧値とを比較し、電圧電流検出部41で検出された電圧値が、電圧電流検出部43で検出された電圧値よりも高い場合において横流抑制モードで動作し、低い場合には双方向動作モードで動作するよう切り替えてもよい。
 本制御方法は、インバータによる入出力電圧もしくは入出力電流を設定でき、横流発生条件が明確で、閾値を設定可能な場合に特に有効となる。
 上述では、制御装置80では、電圧電流検出部41~43の検出結果と予め定めた閾値とを比較して、横流発生の条件を満たすかを判定し、双方向動作モードと横流抑制モードとを切り替えたが、以下では、各動作モードでの損失の大小を比較することで動作モードを切り替える例について説明する。
 スイッチング回路101について入出力電圧もしくは電流に応じた損失値を算出した損失マップを予め制御装置80に備えておき、電圧電流検出部41もしくは43の検出結果に基づいて回路損失が小さくなるよう双方向動作モードと横流抑制モードとを判定し切り替えを行う。回路損失は制御装置80で検出された電圧値、電流値を用いて演算し、回路損失が小さくなるよう双方向動作モードと横流抑制モードとを切り替える動作を行ってもよい。この場合、横流発生条件が複雑である場合に特に有効となる。
 例えば、予め直流電源11~13の電圧と電流に応じた横流抑制モードと双方向動作モードの損失マップをそれぞれ制御装置80に保存しておき、電圧電流検出部41~43で検出された電圧値及び電流値からいずれの動作モードの回路損失が小さいかを判定して切り替えるようにする。
 この損失マップを用いる制御方法は、横流発生条件が複雑である場合に特に有効となる。
 なお、図1においてスイッチング回路101、102は直流電源11、12から直流電源13の方向に降圧動作を行う降圧チョッパ回路の構成とした例で説明したが、これに限るものではない。直流電源11、12から直流電源13の方向に昇圧動作を行う昇圧チョッパの構成としてもよいし、スイッチング回路101とスイッチング回路102で異なる回路としてもよい。
 また、スイッチング回路101、102のいずれも双方向変換可能な回路構成としてもよい。この場合、横流が両方のスイッチング回路101、102で発生する可能性があり、各回路のスイッチング素子の制御動作は上述の場合よりも複雑になる。
 また、電源11~13を直流電源11~13とする例について説明したが、直流電源11~13のいずれか、もしくは全てを交流電源及びAC/DCコンバータとする構成でもよい。
 以上のように、本実施の形態によれば、電力変換装置の入出力電圧値、電流値を検出して、双方向電力変換の可能なスイッチング回路の動作モードを、双方向動作モードと横流の発生方向に電力を導通可能なスイッチング素子のオン動作を止めて単方向動作とする横流抑制モードとを切り替えるように制御を行うようにしたので、専用の横流抑制装置等を設けることなく、スイッチング回路での横流による損失を抑制し、高効率な電力変換装置を提供することが可能となる。
実施の形態2.
 図7は実施の形態2に係る電力変換装置の基本構成を示す回路図である。図7において、実施の形態2に係る電力変換装置は、実施の形態1に係る電力変換装置と同様に2つの直流電源11、12と負荷に相当する直流電源13との間で電力変換を行うものである。なお、実施の形態1と同様の部分、同様の動作については説明を省略している。
 直流電源11には、電圧電流検出部41が接続され、電圧電流検出部41の後段側にスイッチング回路201の入力端子に接続されたコンデンサ21、スイッチング回路201、スイッチング回路201の出力端子に接続された、コンデンサ23が直列に接続される。同様に、直流電源12には、電圧電流検出部42が接続され、電圧電流検出部42の後段側にスイッチング回路202の入力端子に接続されたコンデンサ22、スイッチング回路202、スイッチング回路202の出力端子に接続されたコンデンサ24が直列に接続される。コンデンサ23とコンデンサ24は電圧電流検出部43と並列に接続され、電圧電流検出部43は直流電源13に接続される。
 スイッチング回路201は4つのスイッチング素子S11~S14で構成された1次側スイッチング回路と、4つのスイッチング素子S15~S18で構成された2次側スイッチング回路と、一端が1次側スイッチング回路の交流端子の一端に接続されたリアクトル31と、一端が2次側スイッチング回路の交流端子の一端に接続されたリアクトル33と、1次側巻線の一端がリアクトル31の他端に他端が1次側スイッチング回路の交流端子の他端に接続され、2次巻線の一端がリアクトル33の他端に他端が2次側スイッチング回路の交流端子の他端に接続された絶縁トランス51とで構成される。
 一方、スイッチング回路202は、4つのスイッチング素子S21~S24で構成された1次側スイッチング回路と、4つのダイオードD22~D25で構成された2次側整流回路と、一端が1次側スイッチング回路の交流端子の一端に接続されたリアクトル32と、1次側巻線の一端がリアクトル32の他端に他端が1次側スイッチング回路の交流端子の他端に接続され、2次巻線の両端が2次側整流回路に接続された絶縁トランス52とで構成される。
 図8はスイッチング回路201を双方向動作モードで動作させる時のスイッチングパターンを示す図である。スイッチング素子S11とスイッチング素子S12、スイッチング素子S13とスイッチング素子S14、スイッチング素子S15とスイッチング素子S16、スイッチング素子S17とスイッチング素子S18はそれぞれデッドタイムTdを設けて交互にスイッチングを行う。直流電源11から直流電源13の方向に電力伝送を行う状態において、スイッチング周期Tsに対する1次側スイッチング回路のオン時間Ton1の割合、2次側スイッチング回路のオン時間Ton2の割合、1次側スイッチング回路と2次側スイッチング回路の位相差Φを用いて伝送電力を制御する。
 図9に、実施の形態2に係る電力変換装置において横流が発生していない時の電力方向を矢印で示した回路構成図を示す。この状態では、直流電源11から直流電源13の方向にスイッチング回路201が電力を供給するとともに、直流電源12から直流電源13の方向にスイッチング回路202が電力を供給する。即ち、異なる2つの直流電源から1つの直流電源に電力を供給する状態である。
 一方、図10は実施の形態2に係る電力変換装置において横流が発生している時の電力方向を矢印で示した回路構成図である。コンデンサ21とコンデンサ23の電圧関係及び、負荷変動などの過渡的な状態において直流電源12からスイッチング回路202を介して接続点Q3、Q4に入力された電力が、スイッチング回路201を介して直流電源11の方向に流入し、その後直流電源11から供給される電力と足し合わされてスイッチング回路201を介して直流電源13に供給される横流が発生する。横流はスイッチング回路201を往復する電流となるため、スイッチング回路201で過剰な損失を発生させ、電力変換装置の効率悪化を招く虞がある。
 そこで、図11及び図12に示す様に、2次側スイッチング回路のうち2つのスイッチング素子を常時オフ状態とする横流抑制モードを設ける。図11は2次側スイッチング回路の、上下アームの組からなるレグのうち一方のレグの2つの素子であるスイッチング素子S15とスイッチング素子S16をオフした場合であり、図12は2次側スイッチング回路の上側アーム同士の2つの素子であるスイッチング素子S15とスイッチング素子S17をオフした場合である。
 横流抑制モードでは、1次側スイッチング回路と2次側スイッチング回路のうち2つのスイッチング素子のみがスイッチングし、2次側スイッチング回路のうち2つのスイッチング素子を常時オフ状態とする。これにより、スイッチング回路201は直流電源11から直流電源13の方向にのみ電力伝送を行う単方向動作に制限される。すなわち、スイッチング回路201での横流の発生を抑制することが可能となる。
 横流抑制モードを導入することによって、横流による損失の発生を防ぐことが可能となり、常時双方向動作モードで動作させるよりも回路効率を向上することが可能となる。
 図11において、2次側スイッチング回路の一方のレグのスイッチング素子S15とスイッチング素子S16をオフした場合について説明したが、スイッチング素子S15とスイッチング素子S16はスイッチング動作させ、2次側スイッチング回路の他方のレグのスイッチング素子S17とスイッチング素子S18とをオフ状態としても良い。
 また、図12において、2次側スイッチング回路の上側アーム同士の素子であるスイッチング素子S15とスイッチング素子S17をオフした場合を説明したが、スイッチング素子S15とスイッチング素子S17とをスイッチング動作させ、下側アーム同士の素子であるスイッチング素子S16とスイッチング素子S18をオフ状態としてもよい。
 横流抑制モードと双方向動作モードとの切り替えは制御装置80で行われる。
 実施の形態1と同様、制御装置80では、電圧電流検出部41~43で検出された電圧値、電流値と予め定めた閾値とを比較して、双方向動作モードと横流抑制モードとを切り替える。
[制御例2-1]
 電圧電流検出部42で検出された電圧値、電流値を用いて直流電源12からの入力電力を演算し、予め定められた直流電源12における入力電力閾値と比較し、双方向動作モードと横流抑制モードとを切り替えればよい。
 例えば、負荷となる直流電源13に出力する電力が変動し、直流電源12からの入力電力P12inが減少して予め定められた入力電力閾値Pthを超過した場合に、スイッチング回路101へ横流が発生する条件を満たすと判定し、双方向動作モードから横流抑制モードに切り替える。逆に、直流電源13に出力する電力が変動して直流電源12からの入力電力P12inが増加して入力電力閾値Pthを超過した場合に、スイッチング回路201へ横流が発生する条件外と判定し、横流抑制モードから双方向動作モードに切り替える。
 なお、横流発生条件は負荷である直流電源13への出力電力の大きさに関係する。本例では、実施の形態1と同様に低負荷を想定し、直流電源12からの入力電力P12inが入力電力閾値Pthより小さくなると横流の発生条件となることを前提としている。負荷の大きさ、すなわち直流電源13への出力電力の大ききによっては、横流発生条件は逆転し、入力電力P12inが入力電力閾値Pthより大きくなると横流の発生条件を満たすこととなり、上記と逆の動作モードの切り替えを行うこともある。
 また、直流電源12からの入力電力の閾値である入力電力閾値Pthを動作モードの切り替え方向によって異なる値に設定することもできる。この場合、負荷となる直流電源13に出力する電力が変動し、直流電源12からの入力電力P12inが減少して予め定められた第1の入力電力閾値Pth1を超過した場合に、スイッチング回路201へ横流が発生する条件を満たすと判定し、双方向動作モードから横流抑制モードに切り替える。逆に、直流電源13に出力する電力が変動して直流電源12からの入力電力P12inが増加して第2の入力電力閾値Pth2を超過した場合に、スイッチング回路201への横流が発生する条件外と判定し、横流抑制モードから双方向動作モードに切り替える。
 この制御例の処理の流れも実施の形態1の図6と同様である。
[制御例2-2]
 電圧電流検出部42で検出された電圧値、電流値を用いて直流電源12からの入力電力を演算するとともに、電圧電流検出部43で検出された電圧値、電流値を用いて直流電源13への出力電力を演算し、直流電源13への出力電力に対する直流電源12からの入力電力の比率を算出し、予め定めた比率閾値と比較して双方向動作モードと横流抑制モードとを判定し切り替えてもよい。
 例えば、負荷となる直流電源13への出力電力P13outと、直流電源12からの入力電力P12inとの電力比率R(p12p13)=P12in/P13outが減少し、第1の電力比率閾値Rth1を超過した場合に、スイッチング回路201へ横流が発生する条件を満たすと判定し、横流抑制モードから双方向動作モードに切り替える。逆に、電力比率R(p12p13)が増加し、第2の電力比率閾値Rth2を超過した場合にスイッチング回路201への横流が発生する条件外と判定し、双方向動作モードから横流抑制モードに切り替える。
[制御例2-3]
 電圧電流検出部41で検出された電圧値、電流値を用い、直流電源11からの入力電力を演算するとともに、電圧電流検出部43で検出された電圧値、電流値を用い、直流電源13への出力電力を演算し、直流電源13への出力電力に対する直流電源11からの入力電力の比率を演算しても構わない。
 なお、上述のとおり動作モードを切り替える時に双方向動作モードから横流抑制モードに移行する閾値と、横流抑制モードから双方向動作モードに移行する閾値を異なる値としてもよいし、同じ閾値を用い、動作モードの切り替えを行ってもよい。
 上記のように、双方向動作モードから横流抑制モードに移行する閾値と、横流抑制モードから双方向動作モードに移行する閾値を異なる値として、ヒステリシス特性を設けるようにすると、モード移行の際にチャタリングを防止することができる。制御例2-1において、Pth1<Pth2と設定すればよい。また、逆のPth2<Pth1と設定してもよい。
 上記の例では、直流電源11、12からの入力電力、直流電源13への出力電力を演算し、電力の閾値を設定して動作モードの切り替えを行う制御例を示した。直流電源11~13がコンバータ等の電圧一定制御を行う機器の場合、電力演算を行わずに電圧電流検出部41~43で検出された電流値と予め設定した電流閾値とを比較することで動作モードを切り替えることができる。
 さらに、電圧電流検出部41で検出された電圧値と電圧電流検出部43で検出された電圧値とを比較し、電圧電流検出部41で検出された電圧値が、電圧電流検出部43で検出された電圧値よりも高い場合において横流抑制モードで動作し、低い場合には双方向動作モードで動作するよう切り替えてもよい。
 本制御方法は、実施の形態1で説明したと同様、インバータによる入出力電圧もしくは入出力電流を設定でき、横流発生条件が明確で、閾値を設定可能な場合に特に有効となる。
 次に、制御装置80において、各動作モードでの損失の大小を比較することにより動作モードを切り替える例について説明する。
 スイッチング回路201について入出力電圧もしくは電流に応じた損失値を算出した損失マップを予め制御装置80に備えておき、電圧電流検出部41もしくは43の検出結果に基づいて回路損失が小さくなるよう双方向動作モードと横流抑制モードとを判定し切り替えを行う。回路損失は制御装置80で検出された電圧値、電流値を用いて演算し、回路損失が小さくなるよう双方向動作モードと横流抑制モードとを切り替える動作を行ってもよい。この場合、横流発生条件が複雑である場合に特に有効となる。
 例えば、予め直流電源11~13の電圧と電流に応じた横流抑制モードと双方向動作モードの損失マップをそれぞれ制御装置80に保存しておき、電圧電流検出部41~43で検出された電圧値及び電流値からいずれの動作モードの回路損失が小さいかを判定して切り替えるようにする。
 この損失マップを用いる制御方法は、実施の形態1で説明したと同様、横流発生条件が複雑である場合に特に有効となる。
 本実施の形態では、スイッチング素子S11、S12に対するスイッチング素子S13、S14の位相と、スイッチング素子S15、S16に対するスイッチング素子S17、S18の位相を180度遅れた状態で説明したが、それぞれの位相差を制御変数として用いる場合でも、動作モードの切り替えを行うことで同様の効果を得ることが出来る。
 スイッチング素子S11、S12に対するスイッチング素子S13、S14の位相と、スイッチング素子S15、S16に対するスイッチング素子S17、S18の位相を制御する場合、それぞれのスイッチング素子と並列にコンデンサを接続することで、スイッチング損失を低減可能なソフトスイッチング動作が実現できる。この場合、横流抑制モードでは2次側スイッチング回路がハードスイッチングとなるため、双方向動作モードによりソフトスイッチングかつ横流が発生する場合と、横流抑制モードによりハードスイッチングかつ横流抑制する場合とを勘案し、回路損失が最小となるよう双方向動作モードと横流抑制モードとを効果的に切り替えることが可能となる。
 さらに、図13に本実施の形態2に係る別の電力変換装置の回路構成図を示すが、スイッチング回路201とスイッチング回路202を並列接続した後段側に、電源13への出力を調整するスイッチング回路203を設けた構成としてもよい。動作モード切り替えの判定において、直流電源13への出力電力として、電圧電流検出部43で検出された電圧値、電流値を用いて電力を算出してもよいし、電圧電流検出部44で検出された電圧値、電流値を用いて電力を算出してもよい。また、直流電源13側の電圧値、電流値として、電圧電流検出部43または電圧電流検出部44のいずれで検出された値を用いてもよい。
 また、直流電源11~13は実施の形態1で述べたように、直流電源11~13のいずれか、もしくは全てを交流電源及びAC/DCコンバータとする構成でもよい。
 以上のように、本実施の形態2によれば、実施の形態1と同様、電力変換装置の入出力電圧値、電流値を検出して、双方向電力変換の可能なスイッチング回路の動作モードを、双方向動作モードと横流の発生方向に電力を導通可能なスイッチング素子のオン動作を止めて単方向動作とする横流抑制モードとを切り替えるように制御を行うようにしたので、専用の横流抑制装置等を設けることなく、スイッチング回路での横流による損失を抑制し、高効率な電力変換装置を提供することが可能となる。
 なお、本実施の形態1及び2のスイッチング素子S11~S18、S21~S24、S31は、半導体スイッチング素子を構成するスイッチとしてMOSFETの例で説明したが、IGBT(Insulated-Gate Bipolar Transistor)等他のスイッチを用いることができる。
 なお、本実施の形態1及び2の制御装置80はハードウエアの一例を図14に示すように、プロセッサ1000と記憶装置2000から構成される。記憶装置は図示していないが、ランダムアクセスメモリ(RAM:Random Access Memory)等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを具備する。また、フラッシュメモリの代わりにハードディスクの補助記憶装置を具備してもよい。プロセッサ1000は、記憶装置2000から入力されたプログラムを実行する。この場合、補助記憶装置から揮発性記憶装置(EEPROM:Electrically Erasable Programmable Read Only Memory)介してプロセッサ1000にプログラムが入力される。また、プロセッサ1000は、演算結果等のデータを記憶装置2000の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。プロセッサ1000は、演算処理装置として、ASIC(Application Specific Integrated Circuit)、IC(Integrated Circuit)、DSP(Digital Signal Processor)等各種の論理回路、及び各種の信号処理回路等が備えられてもよい。
 本開示は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
 11~13 電源、21~26 コンデンサ、31~34 リアクトル、41~44 電圧電流検出部、51、52 絶縁トランス、S11~S18、S21~S24、S31 スイッチング素子、D21~D25、D31 ダイオード、101、102、201~203 スイッチング回路、80 制御装置、1000 プロセッサ、2000 記憶装置

Claims (9)

  1.  入力端子と出力端子との間で電力変換を行う複数のスイッチング回路と、
     前記複数のスイッチング回路を制御する制御装置と、を備え、
     前記複数のスイッチング回路はそれぞれの前記出力端子が並列に接続され、
     前記複数のスイッチング回路のうち少なくとも1つのスイッチング回路は前記入力端子と前記出力端子との間で双方向変換を行うスイッチング回路であり、
     前記制御装置は、前記双方向変換を行うスイッチング回路の電力出力方向を双方向とする双方向動作モードと、前記入力端子から前記出力端子の方向に制限する横流抑制モードと、を切り替える制御を行う電力変換装置。
  2.  前記双方向変換を行うスイッチング回路において、
     前記双方向動作モードでスイッチング動作を行うスイッチング素子は、スイッチと、前記スイッチに対して逆並列に接続されたダイオードとを有しており、
     前記横流抑制モードでは、前記スイッチング素子の前記スイッチをオフ状態とし、前記ダイオードを導通させる請求項1に記載の電力変換装置。
  3.  前記双方向変換を行うスイッチング回路は、
     直列に接続された2つのスイッチング素子と、
     前記入力端子の正側端子または出力端子の正側端子のいずれかと前記直列に接続された2つのスイッチング素子の接続端子との間にリアクトルを有するチョッパ回路とを備え、
     前記2つのスイッチング素子は、それぞれ前記スイッチと、前記スイッチに対して逆並列に接続された前記ダイオードとを有しており、
     前記横流抑制モードでは、前記スイッチング素子の前記スイッチをオフ状態とし、前記ダイオードを導通させる請求項2に記載の電力変換装置。
  4.  前記双方向変換を行うスイッチング回路は、
     複数の前記スイッチング素子を有する2次側のフルブリッジ回路の交流端子が絶縁トランスの2次側巻き線に接続され、前記フルブリッジ回路の直列端子が前記出力端子である絶縁型コンバータであり、
     前記横流抑制モードでは、前記フルブリッジ回路を構成する前記スイッチング素子のうち2つのスイッチング素子の前記スイッチをオフ状態とする請求項2に記載の電力変換装置。
  5.  前記横流抑制モードでオフ状態とする前記スイッチは、前記フルブリッジ回路を構成する2つのレグのうち、一方の前記レグの2つの前記スイッチング素子にそれぞれ具備する前記スイッチである請求項4に記載の電力変換装置。
  6.   前記横流抑制モードでオフ状態とする前記スイッチは、前記フルブリッジ回路のうち、上アーム同士または下アーム同士の2つの前記スイッチング素子にそれぞれ具備する前記スイッチである請求項4に記載の電力変換装置。
  7.  前記複数のスイッチング回路のそれぞれの前記入力端子に接続された第1の電圧電流検出部と、
     前記複数のスイッチング回路の並列に接続された前記出力端子に接続された第2の電圧電流検出部と、を備え、
    前記制御装置は、前記第1の電圧電流検出部及び前記第2の電圧電流検出部で検出された値と予め定められた閾値とを比較して、前記双方向動作モードと前記横流抑制モードとを切り替える請求項1に記載の電力変換装置。
  8.  前記複数のスイッチング回路のそれぞれの前記入力端子に接続された第1の電圧電流検出部と、
     前記複数のスイッチング回路の並列に接続された前記出力端子に接続された第2の電圧電流検出部と、を備え、
     前記双方向変換を行うスイッチング回路は、前記双方向動作モードでソフトスイッチング動作を、前記横流抑制モードでハードスイッチング動作を行い、
    前記制御装置は、前記第1の電圧電流検出部及び前記第2の電圧電流検出部で検出された値に基づき、
    前記横流抑制モードで動作させた場合に発生する損失と、前記双方向動作モードで動作させた場合に発生する損失とを比較し、発生損失が少ない動作モードを選択するよう制御を行う請求項2に記載の電力変換装置。
  9.  前記双方向変換を行うスイッチング回路は、
     複数の前記スイッチング素子を有する1次側のフルブリッジ回路の交流端子が絶縁トランスの1次側巻線に接続され、
     複数の前記スイッチング素子を有する2次側のフルブリッジ回路の交流端子が前記絶縁トランスの2次側巻線に接続され、前記2次側のフルブリッジ回路の直列端子が前記出力端子である絶縁型コンバータであり、
     前記制御装置は、前記双方向動作モードにおいて、前記1次側及び2次側のフルブリッジ回路ともに位相シフト制御で電力変換を行う請求項8に記載の電力変換装置。
PCT/JP2019/000463 2019-01-10 2019-01-10 電力変換装置 WO2020144796A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/000463 WO2020144796A1 (ja) 2019-01-10 2019-01-10 電力変換装置
JP2019518114A JP6552774B1 (ja) 2019-01-10 2019-01-10 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/000463 WO2020144796A1 (ja) 2019-01-10 2019-01-10 電力変換装置

Publications (1)

Publication Number Publication Date
WO2020144796A1 true WO2020144796A1 (ja) 2020-07-16

Family

ID=67473407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000463 WO2020144796A1 (ja) 2019-01-10 2019-01-10 電力変換装置

Country Status (2)

Country Link
JP (1) JP6552774B1 (ja)
WO (1) WO2020144796A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113162420A (zh) * 2021-03-30 2021-07-23 国网河北省电力有限公司雄安新区供电公司 一种谐振型dc-dc变换器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7200901B2 (ja) 2019-10-03 2023-01-10 株式会社豊田自動織機 電源装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015162951A (ja) * 2014-02-27 2015-09-07 株式会社 日立産業制御ソリューションズ 双方向コンバータ
JP2017212805A (ja) * 2016-05-25 2017-11-30 株式会社オートネットワーク技術研究所 車両用電圧変換装置
WO2018139200A1 (ja) * 2017-01-24 2018-08-02 株式会社村田製作所 電力変換装置及びパワーコンディショナ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10158286B2 (en) * 2015-02-02 2018-12-18 Mitsubishi Electric Corporation DC/DC converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015162951A (ja) * 2014-02-27 2015-09-07 株式会社 日立産業制御ソリューションズ 双方向コンバータ
JP2017212805A (ja) * 2016-05-25 2017-11-30 株式会社オートネットワーク技術研究所 車両用電圧変換装置
WO2018139200A1 (ja) * 2017-01-24 2018-08-02 株式会社村田製作所 電力変換装置及びパワーコンディショナ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113162420A (zh) * 2021-03-30 2021-07-23 国网河北省电力有限公司雄安新区供电公司 一种谐振型dc-dc变换器
CN113162420B (zh) * 2021-03-30 2022-10-21 国网河北省电力有限公司雄安新区供电公司 一种谐振型dc-dc变换器

Also Published As

Publication number Publication date
JP6552774B1 (ja) 2019-07-31
JPWO2020144796A1 (ja) 2021-02-18

Similar Documents

Publication Publication Date Title
JP6951222B2 (ja) 電力変換装置及び電力変換システム
US8564982B2 (en) Interleaved power factor compensation circuit controller
US8174849B2 (en) Electric power converter with soft switching for two way power conversion
US10263429B2 (en) Bidirectional DC-DC converter, power conditioner, and distributed power system
JP6001587B2 (ja) 電力変換装置
US11121634B2 (en) Bidirectional DC-to-DC converter with inrush current suppression
US20180041108A1 (en) Power converter
JP6771156B2 (ja) 電力変換装置
JP6288773B2 (ja) 電力変換装置
JP5987850B2 (ja) 電力変換装置
JP6185860B2 (ja) 双方向コンバータ
WO2020105135A1 (ja) 電源装置
WO2020144796A1 (ja) 電力変換装置
JP6930214B2 (ja) 電源装置
JP6009003B2 (ja) Dc/dcコンバータ
US20160118904A1 (en) Power conversion apparatus
JP5971685B2 (ja) 電力変換装置
JP6790853B2 (ja) 電力変換装置の制御方法
US20050269882A1 (en) Uninterruptible power supply
JP6902719B2 (ja) コンバータシステム
WO2018061077A1 (ja) 電力変換装置
JP2010051116A (ja) スイッチング電源装置、電源システム、および電子装置
JP6398873B2 (ja) 動特性試験装置及び動特性試験方法
WO2016189930A1 (ja) 動特性試験装置及び動特性試験方法
WO2022176589A1 (ja) Ac-dcコンバータ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019518114

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908712

Country of ref document: EP

Kind code of ref document: A1