WO2020144745A1 - 超音波観測装置、超音波観測システム、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム - Google Patents

超音波観測装置、超音波観測システム、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム Download PDF

Info

Publication number
WO2020144745A1
WO2020144745A1 PCT/JP2019/000246 JP2019000246W WO2020144745A1 WO 2020144745 A1 WO2020144745 A1 WO 2020144745A1 JP 2019000246 W JP2019000246 W JP 2019000246W WO 2020144745 A1 WO2020144745 A1 WO 2020144745A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
ultrasonic transducer
control unit
transmission
pulse
Prior art date
Application number
PCT/JP2019/000246
Other languages
English (en)
French (fr)
Inventor
渓 田口
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2020565054A priority Critical patent/JP7066014B2/ja
Priority to PCT/JP2019/000246 priority patent/WO2020144745A1/ja
Publication of WO2020144745A1 publication Critical patent/WO2020144745A1/ja
Priority to US17/351,585 priority patent/US20210307728A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B8/469Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means for selection of a region of interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52019Details of transmitters
    • G01S7/5202Details of transmitters for pulse systems
    • G01S7/52022Details of transmitters for pulse systems using a sequence of pulses, at least one pulse manipulating the transmissivity or reflexivity of the medium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52042Details of receivers using analysis of echo signal for target characterisation determining elastic properties of the propagation medium or of the reflective target

Definitions

  • the present invention relates to an ultrasonic observation device, an ultrasonic observation system, an ultrasonic observation device operating method, and an ultrasonic observation device operating program.
  • an ultrasonic transducer is used to generate an ultrasonic image based on an ultrasonic signal obtained by transmitting and receiving ultrasonic waves to and from an object to be observed by an ultrasonic transducer.
  • a region of interest (ROI: Region of Interest) is set in the ultrasonic image, a push pulse is transmitted to the region of interest to generate a shear wave, and a track pulse for detecting the propagation state of the shear wave is detected. Is transmitted and received to measure the elastic characteristic in the region of interest with high accuracy (for example, refer to Patent Document 1). This measurement method is called shear wave elastography.
  • Patent Document 1 discloses a technique of calculating the movement amount of the ultrasonic transducer using the B-mode image and stopping the transmission of the push pulse when the calculated movement amount is larger than the threshold value.
  • this technique cannot calculate the movement amount of the ultrasonic transducer after transmitting the push pulse. Therefore, even if this technique is used, it is not possible to reduce the influence of the displacement of the ultrasonic transducer after the push pulse is transmitted.
  • the present invention has been made in view of the above, and an ultrasonic observation device, an ultrasonic observation system, an operating method of the ultrasonic observation device, in which the influence of the displacement of the ultrasonic transducer after the push pulse transmission is reduced. And an operation program of the ultrasonic observation apparatus.
  • an ultrasonic observation apparatus is a push pulse control unit that transmits a push pulse to an ultrasonic transducer according to an operation input by an operator. And, based on the amount of movement of the ultrasonic transducer within a predetermined period according to the operation input, the parameters of transmission of the track pulse are corrected, and the shear wave detection position set in the ultrasonic image by the operator. And a track pulse control unit that causes the ultrasonic transducer to transmit the track pulse.
  • the track pulse control unit stops the transmission of the track pulse when the movement amount of the ultrasonic transducer exceeds a first threshold value.
  • the ultrasonic observation apparatus sets the first threshold value according to the transducer characteristic of the ultrasonic transducer included in the ultrasonic endoscope connected to the ultrasonic observation apparatus.
  • a threshold setting unit for setting is provided.
  • the push pulse control unit stops transmission of the push pulse when the movement amount of the ultrasonic transducer exceeds a second threshold value.
  • the transmission parameter of the track pulse includes at least one of a transmission delay amount, a transmission aperture element position, and a transmission weighting amount.
  • the first threshold has three independent components.
  • the ultrasonic observation system is an ultrasonic observation device, and is located at the tip of an insertion portion to be inserted into a subject, transmits ultrasonic waves to the subject, and is reflected by the subject.
  • An ultrasonic endoscope having the ultrasonic transducer for receiving the generated ultrasonic wave.
  • the ultrasonic observation system is located at the tip of an insertion part inserted into the subject, and moves the ultrasonic transducer in at least one-dimensional direction in an arbitrary three-dimensional coordinate system.
  • a measuring unit for measuring the quantity is provided.
  • the ultrasonic endoscope includes an imaging unit that is located at a tip of an insertion unit that is inserted into the subject and that images the inside of the subject.
  • the ultrasonic observation apparatus includes a movement amount calculation unit that calculates the movement amount of the ultrasonic transducer by comparing the images captured by the imaging unit.
  • the push pulse control unit causes the ultrasonic transducer to transmit a push pulse according to an operation input by the operator
  • the track pulse control unit is Based on the movement amount of the ultrasonic transducer in a predetermined period according to the operation input, the parameters of the transmission of the track pulse is corrected, toward the shear wave detection position set by the operator in the ultrasonic image. , Causing the ultrasonic transducer to transmit the track pulse.
  • the operation program of the ultrasonic observation apparatus is such that the push pulse control unit causes the ultrasonic transducer to transmit a push pulse according to an operation input by the operator, and the track pulse control unit is Based on the movement amount of the ultrasonic transducer in a predetermined period according to the operation input, the parameters of the transmission of the track pulse is corrected, toward the shear wave detection position set by the operator in the ultrasonic image. , Causing the ultrasonic observation apparatus to execute processing for transmitting the track pulse to the ultrasonic transducer.
  • an ultrasonic observation device an ultrasonic observation system, an ultrasonic observation device operating method, and an ultrasonic observation device operating program, which reduce the influence of displacement of an ultrasonic transducer after push pulse transmission. Can be realized.
  • FIG. 1 is a block diagram showing the configuration of the entire ultrasonic observation system including the ultrasonic observation apparatus according to the embodiment.
  • FIG. 2 is a flowchart showing the processing of the ultrasonic observation apparatus shown in FIG.
  • FIG. 3 is a diagram for explaining the relative positional relationship between the ultrasonic transducer and the observation target.
  • FIG. 4 is a diagram for explaining the relative positional relationship between the ultrasonic transducer and the observation target at the time of transmitting the track pulse.
  • FIG. 5 is a diagram for explaining another method of correcting the track pulse.
  • FIG. 6 is a flowchart showing processing of the ultrasonic observation apparatus according to the first modification of the embodiment.
  • FIG. 7 is a block diagram showing the configuration of the entire ultrasonic observation system including the ultrasonic observation device according to the second modification of the embodiment.
  • Embodiments of an ultrasonic observation apparatus, an ultrasonic observation system, an ultrasonic observation apparatus operating method, and an ultrasonic observation apparatus operating program according to the present invention will be described below with reference to the drawings.
  • the present invention is not limited to these embodiments.
  • the present invention can be applied to an ultrasonic observation device capable of observation by shear wave elastography, an ultrasonic observation system, an operating method of the ultrasonic observation device, and an operation program of the ultrasonic observation device in general.
  • FIG. 1 is a block diagram showing the configuration of the entire ultrasonic observation system including the ultrasonic observation apparatus according to the embodiment.
  • an ultrasonic observation system 1 includes an ultrasonic endoscope 2 that transmits ultrasonic waves to an object to be observed and receives ultrasonic waves reflected by the object, and an ultrasonic endoscope 2.
  • the ultrasound observation device 3 that generates an ultrasound image based on the ultrasound signal acquired by the endoscope 2 and the display device 4 that displays the ultrasound image generated by the ultrasound observation device 3 are provided.
  • the ultrasonic endoscope 2 includes an imaging unit 21 that images the inside of the subject, an ultrasonic transducer 22 that transmits and receives ultrasonic waves, and an ultrasonic transducer 22 at the tip of an insertion portion that is inserted into the subject. And a measuring unit 23 that measures the movement amount of the.
  • the imaging unit 21 has an imaging optical system and an imaging element, and is inserted into the digestive tract (esophagus, stomach, duodenum, large intestine) or respiratory organ (trachea, bronchus) of a subject, and the digestive tract, respiratory organs and their surroundings It is possible to image an organ (pancreas, gallbladder, bile duct, biliary tract, lymph node, mediastinal organ, blood vessel, etc.).
  • the ultrasonic endoscope 2 has a light guide that guides the illumination light with which the subject is irradiated during imaging.
  • the light guide has a distal end reaching the distal end of the insertion portion of the ultrasonic endoscope 2 into the subject, and a proximal end connected to a light source device that generates illumination light.
  • the ultrasonic endoscope 2 may have a configuration that does not include an image capturing unit.
  • the ultrasonic transducer 22 converts the electrical pulse signal received from the ultrasonic observation device 3 into ultrasonic pulses (acoustic pulses) and irradiates the subject with the ultrasonic echo reflected by the subject. It is converted into an electrical echo signal (ultrasonic signal) expressed by a change and output.
  • the ultrasonic transducer 22 is, for example, a convex type, but may be a radial type or a linear type.
  • the ultrasonic endoscope 2 may be one that mechanically scans the ultrasonic vibrator 22, or a plurality of piezoelectric elements are provided as the ultrasonic vibrator 22 in an array form, and piezoelectric elements involved in transmission and reception are provided. May be electronically switched or electronically switched by delaying transmission/reception of each piezoelectric element.
  • the measuring unit 23 includes an acceleration sensor or an angular velocity sensor arranged near the ultrasonic transducer 22, and measures the amount of movement of the ultrasonic transducer 22 in at least one-dimensional direction in an arbitrary three-dimensional coordinate system. ..
  • the azimuth direction which is the scanning direction of the ultrasonic transducer 22 (the longitudinal direction of the insertion portion of the ultrasonic endoscope 2) and the convex ultrasonic transducer 22 bulge in an arch shape.
  • the thickness direction, the azimuth direction, and the elevation direction orthogonal to the thickness direction.
  • the measuring unit 23 measures the amount of movement of the ultrasonic transducer 22 in the azimuth direction, the thickness direction, and the elevation direction.
  • the ultrasonic observation apparatus 3 includes a transmission/reception unit 31, a signal processing unit 32, an image generation unit 33, a threshold value setting unit 34, a region of interest setting unit 35, a shear wave detection position setting unit 36, and a push pulse control unit. 37, a track pulse control unit 38, a display control unit 39, a control unit 40, and a storage unit 41.
  • the transmission/reception unit 31 transmits/receives an electric signal to/from the imaging unit 21, the ultrasonic transducer 22, and the measurement unit 23 of the ultrasonic endoscope 2.
  • the transmitting/receiving unit 31 is electrically connected to the image capturing unit 21, transmits image capturing information such as image capturing timing to the image capturing unit 21, and receives an image capturing signal generated by the image capturing unit 21.
  • the transmitter/receiver 31 is electrically connected to the ultrasonic transducer 22, transmits an electric pulse signal to the ultrasonic transducer 22, and receives an echo signal which is an electric reception signal from the ultrasonic transducer 22. To receive.
  • the transmission/reception unit 31 generates an electric pulse signal based on a preset waveform and transmission timing, and transmits the generated pulse signal to the ultrasonic transducer 22. Further, the transmission/reception unit 31 is electrically connected to the measurement unit 23, and acquires information regarding the movement amount of the ultrasonic transducer 22. Further, the transmission/reception unit 31 acquires information such as the identification ID of the ultrasonic endoscope 2 from the ultrasonic endoscope 2.
  • the transmitter/receiver 31 amplifies the echo signal.
  • the transmission/reception unit 31 performs STC (Sensitivity Time Control) correction in which an echo signal having a larger reception depth is amplified with a higher amplification factor. The depth corresponds to the distance of each pixel from the ultrasonic transducer 22 in the ultrasonic image.
  • the transmission/reception unit 31 performs a process such as filtering on the amplified echo signal and then performs A/D conversion to generate a time domain digital high frequency (RF: Radio Frequency) signal (hereinafter, also referred to as RF data). Generate and output.
  • RF Radio Frequency
  • the signal processing unit 32 generates digital B-mode reception data based on the RF data received from the transmission/reception unit 31. Specifically, the signal processing unit 32 performs known processes such as bandpass filter, envelope detection, and logarithmic conversion on the RF data to generate digital B-mode reception data. In logarithmic conversion, a common logarithm of an amount obtained by dividing RF data by a reference voltage is taken and expressed as a decibel value.
  • the signal processing unit 32 outputs the generated B-mode reception data to the image generation unit 33.
  • the signal processing unit 32 is realized by using a CPU (Central Processing Unit), various arithmetic circuits, and the like.
  • the image generation unit 33 generates ultrasonic image data based on the B-mode reception data received from the signal processing unit 32.
  • the ultrasonic image is a cross-sectional image obtained by capturing a cross section orthogonal to the longitudinal direction of the insertion portion of the ultrasonic endoscope 2.
  • the image generation unit 33 performs image processing using a known technique such as gain processing and contrast processing on the B-mode reception data, and according to the data step width determined according to the display range of the image on the display device 4.
  • the B-mode image data which is the ultrasonic image data, is generated by performing thinning-out of the data.
  • the B-mode image is a grayscale image in which the values of R (red), G (green), and B (blue), which are variables when the RGB color system is adopted as the color space, are matched.
  • RGB values are brightness values, parts with high brightness values are expressed in white, and parts with low brightness values are expressed in black.
  • the image generation unit 33 performs coordinate conversion on the received data for B mode from the signal processing unit 32 so as to rearrange the scanning range spatially correctly, and then performs interpolation processing between the received data for B mode. Thus, the gap between the B-mode reception data is filled and B-mode image data is generated.
  • the image generation unit 33 is realized by using a CPU, various arithmetic circuits, and the like.
  • the threshold value setting unit 34 sets a track pulse transmission threshold value, which is a first threshold value, according to the transducer characteristics of the ultrasonic transducer 22 included in the ultrasonic endoscope 2 connected to the ultrasonic observation apparatus 3. Specifically, the threshold setting unit 34 reads out the transducer characteristics of the ultrasonic transducer 22 associated with the identification ID of the ultrasonic endoscope 2 from the storage unit 41, and according to the read information, the track pulse Set the transmission threshold.
  • the oscillator characteristics are, for example, the directivity angle and the number of elements.
  • the threshold setting unit 34 is realized by using a CPU, various arithmetic circuits, and the like.
  • the region of interest setting unit 35 sets a region of interest (ROI) in the ultrasonic image according to the operation input of the operator.
  • the region of interest setting unit 35 is realized by using a CPU, various arithmetic circuits, and the like.
  • the sheer wave detection position setting unit 36 sets the sheer wave detection position in the region of interest according to the operation input by the operator.
  • the shear wave detection position is a position where the operator tries to acquire elasticity information by shear wave elastography.
  • the shear wave detection position setting unit 36 is realized by using a CPU, various arithmetic circuits, and the like.
  • the push pulse control unit 37 causes the ultrasonic transducer 22 to transmit a push pulse in response to an operation input by the operator.
  • the push pulse control unit 37 is realized by using a CPU, various arithmetic circuits, and the like.
  • the track pulse control unit 38 corrects the track pulse transmission parameter based on the moving amount of the ultrasonic transducer 22 within a predetermined period determined according to the operation input, and transmits the track pulse to the ultrasonic transducer 22. Send to the wave detection position.
  • the track pulse control unit 38 is realized by using a CPU, various arithmetic circuits, and the like.
  • the start time of the predetermined period may be the time when the ultrasonic observation system 1 transmits the push pulse by the operation input to start the measurement of the shear wave elastography, but the operator inputs the operation. It may be at the point of time.
  • the end point of the predetermined period is determined according to the delay time provided between the push pulse and the track pulse.
  • the delay time is determined according to the shear wave detection position.
  • the track pulse transmission parameter includes at least one of a transmission delay amount, a transmission aperture element position, and a transmission weighting amount.
  • the transmission delay amount is the length of the delay time of the track pulse with respect to the push pulse.
  • the transmission aperture element position is the position of the piezoelectric element used for transmitting the track pulse.
  • the transmission weighting amount represents the weighting of the transmission intensity of the ultrasonic pulse in each piezoelectric element when transmitting the track pulse.
  • the track pulse control unit 38 stops the transmission of the track pulse when the movement amount of the ultrasonic transducer 22 exceeds the track pulse transmission threshold.
  • the display control unit 39 outputs to the display device 4 the endoscopic image data based on the imaging signal generated by the imaging unit 21 and the ultrasonic image data corresponding to the electrical echo signal generated by the ultrasonic transducer 22. And display it. Further, the display control unit 39 superimposes various kinds of information on the endoscopic image data and the ultrasonic image data and outputs the superimposed information to the display device 4 for display.
  • the display control unit 39 is realized by using a CPU, various arithmetic circuits, and the like.
  • the control unit 40 controls the entire ultrasonic observation system 1.
  • the control unit 40 is realized by using a CPU, various arithmetic circuits, and the like.
  • the control unit 40 reads out the information stored and stored in the storage unit 41 from the storage unit 41 and executes various arithmetic processes related to the operation method of the ultrasonic observation device 3 to control the ultrasonic observation device 3 in an integrated manner. To do.
  • the control unit 40 includes the signal processing unit 32, the image generation unit 33, the threshold setting unit 34, the ROI setting unit 35, the shear wave detection position setting unit 36, the push pulse control unit 37, the track pulse control unit 38, and the display control unit. It is also possible to use a CPU or the like that is common with 39 or the like.
  • the storage unit 41 stores various programs for processing the ultrasonic observation system 1, data including various parameters required for the processing of the ultrasonic observation system 1, and the like.
  • the storage unit 41 stores, for example, an initial position (sound ray number) of an ultrasonic image writing position (ultrasonic wave transmission start position).
  • the storage unit 41 also stores various programs including an operating program for executing the operating method of the ultrasonic observation system 1.
  • the operating program can be stored in a computer-readable storage medium such as a hard disk, a flash memory, a CD-ROM, a DVD-ROM, or a flexible disk, and can be widely distributed.
  • the various programs described above can also be obtained by downloading via a communication network.
  • the communication network mentioned here is realized by, for example, an existing public line network, LAN (Local Area Network), WAN (Wide Area Network), or the like, and may be wired or wireless.
  • the storage unit 41 having the above configuration is realized by using a ROM (Read Only Memory) in which various programs and the like are pre-installed, and a RAM (Random Access Memory) that stores calculation parameters and data of each process. ..
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the display device 4 is connected to the ultrasonic observation device 3.
  • the display device 4 is configured by using a display panel made of liquid crystal or organic EL (Electro Luminescence).
  • the display device 4 displays, for example, an ultrasonic image output by the ultrasonic observation device 3 and various kinds of information related to the operation.
  • FIG. 2 is a flowchart showing the processing of the ultrasonic observation apparatus shown in FIG.
  • the transmission/reception unit 31 of the ultrasonic observation device 3 reads the identification ID from the ultrasonic endoscope 2.
  • the threshold setting unit 34 reads out the transducer characteristics of the ultrasonic transducer 22 associated with the identification ID of the ultrasonic endoscope 2 from the storage unit 41, and sets the track pulse transmission threshold according to the read information. Set (step S1).
  • the transmitting/receiving unit 31 receives the ultrasonic signal from the ultrasonic transducer 22 (step S2).
  • the image generator 33 generates ultrasonic image data based on the ultrasonic signal, and the display controller 39 causes the display device 4 to display the ultrasonic image (step S3).
  • the operator sets a region of interest in the ultrasonic image displayed on the display device 4 (step S4).
  • the region-of-interest setting unit 35 sets the region of interest in the ultrasonic image according to the operation input of the operator.
  • FIG. 3 is a diagram for explaining the relative positional relationship between the ultrasonic transducer and the observation target. As shown in FIG. 3, a region of interest R is set in the observation target O.
  • the operator sets the shear wave detection position P in the region of interest R (step S5).
  • the shear wave detection position setting unit 36 sets the shear wave detection position P in the region of interest R in response to an instruction input by the operator.
  • control unit 40 determines whether or not the operator inputs an operation to start measurement of the shear wave elastography (step S6).
  • step S6 When the control unit 40 determines that the operation input for starting the measurement has been made (step S6: Yes), the push pulse control unit 37 transmits the push pulse PP (step S7).
  • the push pulse is transmitted at the same time when the measurement start operation is input, and this time is the start time of the predetermined period. Then, the length of the predetermined period is determined according to the shear wave detection position.
  • the storage unit 41 records the movement amount of the ultrasonic transducer 22 from the push pulse PP transmission based on the measurement result of the measurement unit 23 (step S8).
  • FIG. 4 is a diagram for explaining the relative positional relationship between the ultrasonic transducer and the observation target at the time of transmitting the track pulse. As shown in FIG. 4, it is assumed that the position of the ultrasonic transducer 22 at the time of transmitting the track pulse is displaced from the position at the time of transmitting the push pulse PP shown in FIG. 3 by the movement amount M.
  • the moving amount M is, for example, an absolute value of a moving amount of the ultrasonic transducer 22 in three dimensions, and corresponds to the length of the arrow shown in FIG.
  • the track pulse control unit 38 determines based on the movement amount M of the ultrasonic transducer 22. Then, the transmission parameter of the track pulse is set (step S10).
  • the track pulse TP1 may be transmitted toward the shear wave detection position as shown in FIG.
  • the ultrasonic transducer 22 moves by the moving amount M, as shown in FIG. 4, when the angle for transmitting the track pulse is changed and the track pulse TP2 is transmitted toward the shear wave detection position, the shear pulse TP2 is transmitted. Elasticity information at the wave detection position can be accurately measured. That is, the track pulse control unit 38 corrects the transmission parameter of the track pulse so that the track pulse TP2 is transmitted.
  • the transmission/reception unit 31 transmits/receives a track pulse with the set transmission parameter under the control of the track pulse control unit 38 (step S11).
  • the display control unit 39 causes the display device 4 to display the elasticity information of the shear wave detection position calculated by the control unit 40 based on the received measurement result, for example, as a numerical value (step S12).
  • step S6 when the control unit 40 determines that there is no operation input for starting measurement (step S6: No), the ultrasonic observation apparatus 3 returns to step S2 and repeats the processing.
  • step S9 When the control unit 40 determines in step S9 that the movement amount M of the ultrasonic transducer 22 exceeds the track pulse transmission threshold value (step S9: No), the track pulse control unit 38 stops the transmission of the track pulse. ..
  • the display control unit 39 causes the display device 4 to display a warning indicating that the movement amount M of the ultrasonic transducer 22 is too large to transmit the track pulse (step S13), and the ultrasonic observation device 3 performs the step.
  • the process returns to S2 and the process is repeated.
  • the ultrasonic transducer 22 in order to correct the transmission parameter of the track pulse based on the moving amount M of the ultrasonic transducer 22, the ultrasonic transducer 22 is moved after the push pulse PP is transmitted. The influence can be reduced. Furthermore, according to the embodiment, when the movement amount M of the ultrasonic transducer 22 is too large to perform accurate measurement, a warning can be displayed on the display device 4 and the measurement can be redone.
  • FIG. 5 is a diagram for explaining another method of correcting the track pulse.
  • the track pulse control unit 38 may correct the position of the piezoelectric element that transmits the track pulse and send the track pulse TP3 parallel to the track pulse TP1 toward the shear wave detection position.
  • Modification 1 The configuration of the ultrasonic observation apparatus according to the first modification may be the same as that of the ultrasonic observation apparatus 3 shown in FIG. In the first modification, the processing in each configuration described below is different from that of the embodiment.
  • the threshold value setting unit 34 sets a push pulse transmission threshold value that is a second threshold value according to the transducer characteristics of the ultrasonic transducer 22 included in the ultrasonic endoscope 2 connected to the ultrasonic observation apparatus 3.
  • the push pulse control unit 37 stops the transmission of the push pulse when the movement amount of the ultrasonic transducer 22 exceeds the push pulse transmission threshold value.
  • FIG. 6 is a flowchart showing processing of the ultrasonic observation apparatus according to the first modification of the embodiment.
  • step S6 when the control unit 40 determines that the operation input for starting the measurement has been made (step S6: Yes), the control unit 40 sets a predetermined value based on the measurement result of the measurement unit 23. It is determined whether or not the movement amount of the ultrasonic transducer 22 during the period is less than or equal to the push pulse transmission threshold value (step S21). It should be noted that the predetermined period in this case may be a very short period as long as the movement amount of the ultrasonic transducer 22 at the time when the operation input is performed can be determined.
  • step S21: Yes the control unit 40 determines that the movement amount of the ultrasonic transducer 22 is less than or equal to the push pulse transmission threshold value (step S21: Yes). the process proceeds to step S7.
  • step S21 determines in step S21 that the movement amount of the ultrasonic transducer 22 exceeds the push pulse transmission threshold value (step S21: No)
  • the push pulse control unit 37 stops the transmission of the push pulse. To do.
  • the display control unit 39 causes the display device 4 to display a warning indicating that the push pulse cannot be transmitted due to the large movement amount of the ultrasonic transducer 22 (step S22), and the ultrasonic observation device 3 performs the step S2. Return to and repeat the process.
  • the measurement can be redone.
  • FIG. 7 is a block diagram showing the configuration of the entire ultrasonic observation system including the ultrasonic observation device according to the second modification of the embodiment.
  • the ultrasonic observation device 3A of the ultrasonic observation system 1A includes a movement amount calculation unit 42A that calculates the movement amount of the ultrasonic transducer 22.
  • the movement amount calculating unit 42A compares the image (optical image) captured by the image capturing unit 21 in the determination of whether to transmit the track pulse in step S9 illustrated in FIG. 2 to move the ultrasonic transducer 22. Calculate the amount.
  • the movement amount calculation unit 42A extracts, from the optical image captured by the imaging unit 21, a point where the tint changes, as a characteristic point, and calculates the movement amount of the ultrasonic transducer 22 from the movement of the characteristic point between the optical images.
  • the movement amount calculation unit 42A may calculate the movement amount of the ultrasonic transducer 22 from the optical image by another known method. In this way, when the ultrasonic transducer 22 is calculated from the optical image, the ultrasonic endoscope 2 does not have to have the measuring unit 23.
  • the movement amount calculation unit 42A compares the images (optical images) captured by the imaging unit 21 in the determination of whether to transmit the push pulse in step S21 illustrated in FIG. May be calculated.
  • the movement amount calculation unit 42A compares the ultrasonic images generated based on the ultrasonic signal generated by the ultrasonic transducer 22 in the determination of whether to transmit the push pulse in step S21 illustrated in FIG. By doing so, the movement amount of the ultrasonic transducer 22 may be calculated. Since the ultrasonic image can be generated before the push pulse is transmitted, the ultrasonic image may be used to calculate the movement amount of the ultrasonic transducer 22.
  • the movement amount calculation unit 42A extracts a point where the brightness value changes in the ultrasonic image as a characteristic point, and calculates the movement amount of the ultrasonic transducer 22 from the movement of the characteristic point between the ultrasonic images. However, the movement amount calculation unit 42A may calculate the movement amount of the ultrasonic transducer 22 from the ultrasonic image by another known method.
  • the ultrasonic endoscope 2 may not have the measuring unit 23.
  • the movement amount M is described as an absolute value of the movement amount of the ultrasonic transducer 22 in a three-dimensional manner, but the present invention is not limited to this.
  • the movement amount may be defined as a vector amount having independent values in the azimuth direction, the thickness direction, and the elevation direction.
  • the first threshold value and the second threshold value may have independent values in the azimuth direction, the thickness direction, and the elevation direction.
  • the values of the first threshold value and the second threshold value may be larger than those in other directions.
  • the first threshold and the second threshold may have three independent components.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

超音波観測装置(3)は、操作者による操作入力に応じて、超音波振動子にプッシュパルスを送信させるプッシュパルス制御部(37)と、前記操作入力に応じた所定の期間内における前記超音波振動子の移動量に基づいて、トラックパルスの送信のパラメータを補正し、前記操作者が超音波画像内に設定したシアウェーブ検出位置に向けて、前記超音波振動子に前記トラックパルスを送信させるトラックパルス制御部(38)と、を備える。これにより、プッシュパルス送信後における超音波振動子の位置ずれによる影響を低減した超音波観測装置(3)を提供する。

Description

超音波観測装置、超音波観測システム、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム
 本発明は、超音波観測装置、超音波観測システム、超音波観測装置の作動方法、及び超音波観測装置の作動プログラムに関する。
 従来、医療分野において、超音波振動子が観測対象である被検体に対して超音波を送受信して得られた超音波信号に基づいて、超音波画像を生成する超音波観測装置が用いられている。
 超音波観測装置には、超音波画像内に関心領域(ROI:Region of Interest)を設定し、関心領域にプッシュパルスを送信して剪断波を発生させ、剪断波の伝搬状況を検出するトラックパルスを送受信し、関心領域内の弾性特性を高精度に計測するものがある(例えば、特許文献1参照)。この計測方法は、シアウェーブエラストグラフィと呼ばれる。
特開2015-107311号公報
 しかしながら、超音波内視鏡を用いたシアウェーブエラストグラフィでは、被検体内において超音波振動子の位置を固定することができないため、プッシュパルス送信後、トラックパルスを送信するまでの間に超音波振動子の位置がずれて正確な観察ができない場合がある。
 特許文献1には、Bモード画像を用いて超音波振動子の移動量を算出し、算出した移動量が閾値より大きい場合には、プッシュパルスの送信を停止する技術が開示されている。しかしながら、プッシュパルスの送信後はBモード画像を生成することができないため、この技術では、プッシュパルス送信後の超音波振動子の移動量を算出することができない。従って、この技術を用いても、プッシュパルス送信後における超音波振動子の位置ずれの影響を低減させることはできない。
 本発明は、上記に鑑みてなされたものであって、プッシュパルス送信後における超音波振動子の位置ずれによる影響を低減した超音波観測装置、超音波観測システム、超音波観測装置の作動方法、及び超音波観測装置の作動プログラムを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の一態様に係る超音波観測装置は、操作者による操作入力に応じて、超音波振動子にプッシュパルスを送信させるプッシュパルス制御部と、前記操作入力に応じた所定の期間内における前記超音波振動子の移動量に基づいて、トラックパルスの送信のパラメータを補正し、前記操作者が超音波画像内に設定したシアウェーブ検出位置に向けて、前記超音波振動子に前記トラックパルスを送信させるトラックパルス制御部と、を備える。
 また、本発明の一態様に係る超音波観測装置は、前記トラックパルス制御部は、前記超音波振動子の移動量が第1の閾値を超える場合、前記トラックパルスの送信を停止する。
 また、本発明の一態様に係る超音波観測装置は、当該超音波観測装置に接続された超音波内視鏡が有する前記超音波振動子の振動子特性に応じて、前記第1の閾値を設定する閾値設定部を備える。
 また、本発明の一態様に係る超音波観測装置は、前記プッシュパルス制御部は、前記超音波振動子の移動量が第2の閾値を超える場合、前記プッシュパルスの送信を停止する。
 また、本発明の一態様に係る超音波観測装置は、前記トラックパルスの送信パラメータは、送信遅延量、送信開口素子位置、又は送信重み付け量の少なくともいずれか1つを含む。
 また、本発明の一態様に係る超音波観測装置は、前記第1の閾値は、3つの独立な成分を有する。
 また、本発明の一態様に係る超音波観測システムは、超音波観測装置と、被検体に挿入される挿入部の先端に位置し、前記被検体へ超音波を送信し、前記被検体において反射された超音波を受信する前記超音波振動子を有する超音波内視鏡と、を備える。
 また、本発明の一態様に係る超音波観測システムは、前記被検体に挿入される挿入部の先端に位置し、任意の3次元座標系において、少なくとも1次元方向における前記超音波振動子の移動量を計測する計測部を備える。
 また、本発明の一態様に係る超音波観測システムは、前記超音波内視鏡は、前記被検体に挿入される挿入部の先端に位置し、前記被検体の体内を撮像する撮像部を備え、前記超音波観測装置は、前記撮像部が撮像した画像を比較することにより、前記超音波振動子の移動量を算出する移動量算出部を備える。
 また、本発明の一態様に係る超音波観測装置の作動方法は、プッシュパルス制御部が、操作者による操作入力に応じて、超音波振動子にプッシュパルスを送信させ、トラックパルス制御部が、前記操作入力に応じた所定の期間における前記超音波振動子の移動量に基づいて、トラックパルスの送信のパラメータを補正し、前記操作者が超音波画像内に設定したシアウェーブ検出位置に向けて、前記超音波振動子に前記トラックパルスを送信させる。
 また、本発明の一態様に係る超音波観測装置の作動プログラムは、プッシュパルス制御部が、操作者による操作入力に応じて、超音波振動子にプッシュパルスを送信させ、トラックパルス制御部が、前記操作入力に応じた所定の期間における前記超音波振動子の移動量に基づいて、トラックパルスの送信のパラメータを補正し、前記操作者が超音波画像内に設定したシアウェーブ検出位置に向けて、前記超音波振動子に前記トラックパルスを送信させる処理を超音波観測装置に実行させる。
 本発明によれば、プッシュパルス送信後における超音波振動子の位置ずれによる影響を低減した超音波観測装置、超音波観測システム、超音波観測装置の作動方法、及び超音波観測装置の作動プログラムを実現することができる。
図1は、実施の形態に係る超音波観測装置を含む超音波観測システム全体の構成を示すブロック図である。 図2は、図1に示す超音波観測装置の処理を示すフローチャートである。 図3は、超音波振動子と観測対象との相対的な位置関係を説明するための図である。 図4は、トラックパルス送信時の超音波振動子と観測対象との相対的な位置関係を説明するための図である。 図5は、トラックパルスの他の補正方法を説明するための図である。 図6は、実施の形態の変形例1に係る超音波観測装置の処理を示すフローチャートである。 図7は、実施の形態の変形例2に係る超音波観測装置を含む超音波観測システム全体の構成を示すブロック図である。
 以下に、図面を参照して本発明に係る超音波観測装置、超音波観測システム、超音波観測装置の作動方法、及び超音波観測装置の作動プログラムの実施の形態を説明する。なお、これらの実施の形態により本発明が限定されるものではない。シアウェーブエラストグラフィによる観測が可能な超音波観測装置、超音波観測システム、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム一般に適用することができる。
 また、図面の記載において、同一又は対応する要素には適宜同一の符号を付している。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
(実施の形態)
 図1は、実施の形態に係る超音波観測装置を含む超音波観測システム全体の構成を示すブロック図である。図1に示すように、超音波観測システム1は、観測対象である被検体へ超音波を送信し、該被検体で反射された超音波を受信する超音波内視鏡2と、超音波内視鏡2が取得した超音波信号に基づいて超音波画像を生成する超音波観測装置3と、超音波観測装置3が生成した超音波画像を表示する表示装置4と、を備える。
 超音波内視鏡2は、被検体に挿入される挿入部の先端には、被検体の体内を撮像する撮像部21と、超音波を送受信する超音波振動子22と、超音波振動子22の移動量を計測する計測部23と、が配置されている。
 撮像部21は、撮像光学系及び撮像素子を有し、被検体の消化管(食道、胃、十二指腸、大腸)、又は呼吸器(気管、気管支)へ挿入され、消化管、呼吸器やその周囲臓器(膵臓、胆嚢、胆管、胆道、リンパ節、縦隔臓器、血管等)を撮像することが可能である。また、超音波内視鏡2は、撮像時に被検体へ照射する照明光を導くライトガイドを有する。このライトガイドは、先端部が超音波内視鏡2の被検体への挿入部の先端まで達している一方、基端部が照明光を発生する光源装置に接続されている。なお、超音波内視鏡2は、撮像部を備えていない構成であってもよい。
 超音波振動子22は、超音波観測装置3から受信した電気的なパルス信号を超音波パルス(音響パルス)に変換して被検体へ照射するとともに、被検体で反射された超音波エコーを電圧変化で表現する電気的なエコー信号(超音波信号)に変換して出力する。超音波振動子22は、例えばコンベックス型であるが、ラジアル型又はリニア型であってもよい。また、超音波内視鏡2は、超音波振動子22をメカ的に走査させるものであってもよいし、超音波振動子22として複数の圧電素子をアレイ状に設け、送受信にかかわる圧電素子を電子的に切り替えたり、各圧電素子の送受信に遅延をかけたりすることで、電子的に走査させるものであってもよい。
 計測部23は、超音波振動子22の近傍に配置されている加速度センサ、又は角速度センサを含み、任意の3次元座標系において、少なくとも1次元方向における超音波振動子22の移動量を計測する。3次元座標系は、例えば、超音波振動子22の走査方向(超音波内視鏡2の挿入部の長手方向)であるアジマス方向、コンベックス型の超音波振動子22がアーチ状に膨らんでいる方向である厚み方向、アジマス方向及び厚み方向に直交するエレベーション方向である。計測部23は、アジマス方向、厚み方向、及びエレベーション方向における超音波振動子22の移動量をそれぞれ計測する。
 超音波観測装置3は、送受信部31と、信号処理部32と、画像生成部33と、閾値設定部34と、関心領域設定部35と、シアウェーブ検出位置設定部36と、プッシュパルス制御部37と、トラックパルス制御部38と、表示制御部39と、制御部40と、記憶部41と、を備える。
 送受信部31は、超音波内視鏡2の撮像部21、超音波振動子22、及び計測部23との間で電気信号の送受信を行う。送受信部31は、撮像部21と電気的に接続され、撮像タイミング等の撮像情報を撮像部21に送信するとともに、撮像部21が生成した撮像信号を受信する。また、送受信部31は、超音波振動子22と電気的に接続され、電気的なパルス信号を超音波振動子22へ送信するとともに、超音波振動子22から電気的な受信信号であるエコー信号を受信する。具体的には、送受信部31は、予め設定された波形及び送信タイミングに基づいて電気的なパルス信号を生成し、この生成したパルス信号を超音波振動子22へ送信する。また、送受信部31は、計測部23と電気的に接続され、超音波振動子22の移動量に関する情報を取得する。さらに、送受信部31は、超音波内視鏡2から超音波内視鏡2の識別ID等の情報を取得する。
 送受信部31は、エコー信号を増幅する。送受信部31は、受信深度が大きいエコー信号ほど高い増幅率で増幅するSTC(Sensitivity Time Control)補正を行う。なお、深度とは、超音波画像における各画素の超音波振動子22からの距離に相当する。送受信部31は、増幅後のエコー信号に対してフィルタリング等の処理を施した後、A/D変換することによって時間ドメインのデジタル高周波(RF:Radio Frequency)信号(以下、RFデータともいう)を生成して出力する。
 信号処理部32は、送受信部31から受信したRFデータをもとにデジタルのBモード用受信データを生成する。具体的には、信号処理部32は、RFデータに対してバンドパスフィルタ、包絡線検波、対数変換等公知の処理を施し、デジタルのBモード用受信データを生成する。対数変換では、RFデータを基準電圧で除した量の常用対数をとってデシベル値で表現する。信号処理部32は、生成したBモード用受信データを、画像生成部33へ出力する。信号処理部32は、CPU(Central Processing Unit)や各種演算回路等を用いて実現される。
 画像生成部33は、信号処理部32から受信したBモード用受信データに基づいて超音波画像のデータを生成する。超音波画像は、超音波内視鏡2の挿入部の長手方向に直交する断面を撮像した断面画像である。画像生成部33は、Bモード用受信データに対してゲイン処理、コントラスト処理等の公知の技術を用いた画像処理を行うとともに、表示装置4における画像の表示レンジに応じて定まるデータステップ幅に応じたデータの間引き等を行うことによって超音波画像のデータであるBモード画像データを生成する。Bモード画像は、色空間としてRGB表色系を採用した場合の変数であるR(赤)、G(緑)、B(青)の値を一致させたグレースケール画像である。超音波画像において、RGBの値が輝度値であり、輝度値が大きい部分は白く、輝度値が小さい部分は黒く表現される。
 画像生成部33は、信号処理部32からのBモード用受信データに対して走査範囲を空間的に正しく表現できるよう並べ直す座標変換を施した後、Bモード用受信データ間の補間処理を施すことによってBモード用受信データ間の空隙を埋め、Bモード画像データを生成する。画像生成部33は、CPUや各種演算回路等を用いて実現される。
 閾値設定部34は、超音波観測装置3に接続された超音波内視鏡2が有する超音波振動子22の振動子特性に応じて、第1の閾値であるトラックパルス送信閾値を設定する。具体的には、閾値設定部34は、超音波内視鏡2の識別IDに紐付けられた超音波振動子22の振動子特性を記憶部41から読み出し、読み出した情報に応じて、トラックパルス送信閾値を設定する。振動子特性とは、例えば指向角や素子数等である。閾値設定部34は、CPUや各種演算回路等を用いて実現される。
 関心領域設定部35は、操作者の操作入力に応じて、超音波画像内に関心領域(ROI)を設定する。関心領域設定部35は、CPUや各種演算回路等を用いて実現される。
 シアウェーブ検出位置設定部36は、操作者の操作入力に応じて、関心領域内にシアウェーブ検出位置を設定する。シアウェーブ検出位置は、シアウェーブエラストグラフィにより操作者が弾性情報を取得しようとする位置である。シアウェーブ検出位置設定部36は、CPUや各種演算回路等を用いて実現される。
 プッシュパルス制御部37は、操作者による操作入力に応じて、超音波振動子22にプッシュパルスを送信させる。プッシュパルス制御部37は、CPUや各種演算回路等を用いて実現される。
 トラックパルス制御部38は、操作入力に応じて定まる所定の期間内における超音波振動子22の移動量に基づいて、トラックパルスの送信のパラメータを補正し、超音波振動子22にトラックパルスをシアウェーブ検出位置に向けて送信させる。トラックパルス制御部38は、CPUや各種演算回路等を用いて実現される。
 所定の期間の開始時点は、操作者がシアウェーブエラストグラフィの計測を開始する操作入力行うことにより超音波観測システム1がプッシュパルスを送信した時点であってよいが、操作者が操作入力を行った時点であってもよい。所定の期間の終了時点は、プッシュパルスとトラックパルスとの間に設けられる遅延時間に応じて定められる。遅延時間は、シアウェーブ検出位置に応じて定められる。
 トラックパルスの送信パラメータは、送信遅延量、送信開口素子位置、又は送信重み付け量の少なくともいずれか1つを含む。送信遅延量は、トラックパルスのプッシュパルスに対する遅延時間の長さである。送信開口素子位置は、トラックパルスの送信に用いる圧電素子の位置である。送信重み付け量は、トラックパルスを送信する際の各圧電素子における超音波パルスの送信強度の重み付けを表す。
 また、トラックパルス制御部38は、超音波振動子22の移動量がトラックパルス送信閾値を超える場合、トラックパルスの送信を停止する。
 表示制御部39は、撮像部21が生成した撮像信号に基づく内視鏡画像のデータ、超音波振動子22が生成した電気的なエコー信号に対応する超音波画像のデータを表示装置4に出力して表示させる。さらに、表示制御部39は、内視鏡画像のデータ及び超音波画像のデータに種々の情報を重畳して表示装置4に出力して表示させる。表示制御部39は、CPUや各種演算回路等を用いて実現される。
 制御部40は、超音波観測システム1全体を制御する。制御部40は、CPUや各種演算回路等を用いて実現される。制御部40は、記憶部41が記憶、格納する情報を記憶部41から読み出し、超音波観測装置3の作動方法に関連した各種演算処理を実行することによって超音波観測装置3を統括して制御する。なお、制御部40を信号処理部32、画像生成部33、閾値設定部34、関心領域設定部35、シアウェーブ検出位置設定部36、プッシュパルス制御部37、トラックパルス制御部38、表示制御部39等と共通のCPU等を用いて構成することも可能である。
 記憶部41は、超音波観測システム1を処理させるための各種プログラム、及び超音波観測システム1の処理に必要な各種パラメータ等を含むデータ等を記憶する。記憶部41は、例えば、超音波画像の書出し位置(超音波の送信開始位置)の初期位置(音線番号)を記憶している。
 また、記憶部41は、超音波観測システム1の作動方法を実行するための作動プログラムを含む各種プログラムを記憶する。作動プログラムは、ハードディスク、フラッシュメモリ、CD-ROM、DVD-ROM、フレキシブルディスク等のコンピュータ読み取り可能な記憶媒体に記憶して広く流通させることも可能である。なお、上述した各種プログラムは、通信ネットワークを介してダウンロードすることによって取得することも可能である。ここでいう通信ネットワークは、例えば既存の公衆回線網、LAN(Local Area Network)、WAN(Wide Area Network)等によって実現されるものであり、有線、無線を問わない。
 以上の構成を有する記憶部41は、各種プログラム等が予めインストールされたROM(Read Only Memory)、及び各処理の演算パラメータやデータ等を記憶するRAM(Random Access Memory)等を用いて実現される。
 表示装置4は、超音波観測装置3に接続されている。表示装置4は、液晶又は有機EL(Electro Luminescence)等からなる表示パネルを用いて構成される。表示装置4は、例えば、超音波観測装置3が出力する超音波画像や、操作にかかる各種情報を表示する。
 次に、超音波観測システム1の処理について詳細に説明する。図2は、図1に示す超音波観測装置の処理を示すフローチャートである。まず、超音波観測システム1の電源がオンにされると、超音波観測装置3の送受信部31は、超音波内視鏡2から識別IDを読み出す。そして、閾値設定部34は、超音波内視鏡2の識別IDに紐付けられた超音波振動子22の振動子特性を記憶部41から読み出し、読み出した情報に応じて、トラックパルス送信閾値を設定する(ステップS1)。
 そして、送受信部31は、超音波振動子22から超音波信号を受信する(ステップS2)。
 すると、画像生成部33が超音波信号に基づいて、超音波画像のデータを生成し、表示制御部39が超音波画像を表示装置4に表示させる(ステップS3)。
 続いて、操作者は、表示装置4に表示されている超音波画像内に関心領域を設定する(ステップS4)。具体的には、操作者の操作入力に応じて、関心領域設定部35は、超音波画像内に関心領域を設定する。図3は、超音波振動子と観測対象との相対的な位置関係を説明するための図である。図3に示すように、観察対象Oに関心領域Rが設定される。
 さらに、操作者は、関心領域R内にシアウェーブ検出位置Pを設定する(ステップS5)。具体的には、操作者の指示入力に応じて、シアウェーブ検出位置設定部36は、関心領域R内にシアウェーブ検出位置Pを設定する。
 その後、制御部40は、操作者によりシアウェーブエラストグラフィの計測開始の操作入力があったか否かを判定する(ステップS6)。
 制御部40が、計測開始の操作入力があったと判定した場合(ステップS6:Yes)、プッシュパルス制御部37は、プッシュパルスPPを送信する(ステップS7)。なお、ここでは、計測開始の操作入力があったと同時にプッシュパルスが送信されるものとし、この時点が所定の期間の開始時点である。そして、所定の期間の長さは、シアウェーブ検出位置に応じて定められる。
 すると、記憶部41は、制御部40による制御のもと、計測部23の計測結果に基づいて、プッシュパルスPP送信からの超音波振動子22の移動量を記録する(ステップS8)。
 そして、プッシュパルスPP送信から所定の期間が経過すると、制御部40は、記憶部41に記録された超音波振動子22の移動量を読み出し、所定の期間における超音波振動子22の移動量がトラックパルス送信閾値以下であるか否かを判定する(ステップS9)。図4は、トラックパルス送信時の超音波振動子と観測対象との相対的な位置関係を説明するための図である。図4に示すように、トラックパルス送信時の超音波振動子22の位置は、移動量Mだけ図3に示すプッシュパルスPP送信時の位置からずれているとする。移動量Mは、例えば超音波振動子22が3次元的に移動した量の絶対値であり、図4に示す矢印の長さに相当する。
 制御部40が、超音波振動子22の移動量がトラックパルス送信閾値以下であると判定した場合(ステップS9:Yes)、トラックパルス制御部38は、超音波振動子22の移動量Mに基づいて、トラックパルスの送信パラメータを設定する(ステップS10)。超音波振動子22が移動していない場合、図3に示すように、シアウェーブ検出位置に向けてトラックパルスTP1を送信すればよい。しかしながら、超音波振動子22が移動量Mだけ移動している場合、図4に示すように、トラックパルスを送信する角度を変更し、シアウェーブ検出位置に向けてトラックパルスTP2を送信すると、シアウェーブ検出位置の弾性情報を正確に計測することができる。すなわち、トラックパルス制御部38は、トラックパルスTP2が送信されるように、トラックパルスの送信パラメータを補正する。
 すると、送受信部31は、トラックパルス制御部38の制御のもと、設定した送信パラメータでトラックパルスを送受信する(ステップS11)。
 その後、表示制御部39は、受信した計測結果に基づいて制御部40が算出したシアウェーブ検出位置の弾性情報を例えば数値で表示装置4に表示させる(ステップS12)。
 ステップS6において、制御部40が、計測開始の操作入力がなかったと判定した場合(ステップS6:No)、超音波観測装置3は、ステップS2に戻り処理を繰り返す。
 ステップS9において、制御部40が、超音波振動子22の移動量Mがトラックパルス送信閾値を超えたと判定した場合(ステップS9:No)、トラックパルス制御部38は、トラックパルスの送信を停止する。
 そして、表示制御部39は、超音波振動子22の移動量Mが大きくトラックパルスを送信できなかったことを表す警告を表示装置4に表示させ(ステップS13)、超音波観測装置3は、ステップS2に戻り処理を繰り返す。
 以上説明したように、実施の形態によれば、超音波振動子22の移動量Mに基づいて、トラックパルスの送信パラメータを補正するため、プッシュパルスPP送信後における超音波振動子22の移動による影響を低減することができる。さらに、実施の形態によれば、超音波振動子22の移動量Mが大きすぎて正確な計測が行えない場合には、表示装置4に警告を表示し、計測をやり直すことができる。
 なお、上述した実施の形態では、トラックパルスを送信する角度を変更する例を説明したが、これに限られない。図5は、トラックパルスの他の補正方法を説明するための図である。図5に示すように、トラックパルス制御部38は、トラックパルスを送信する圧電素子の位置を補正し、トラックパルスTP1と平行なトラックパルスTP3をシアウェーブ検出位置に向けて送信してもよい。
(変形例1)
 変形例1に係る超音波観測装置の構成は、図1に示す超音波観測装置3と同一であってよいので、説明を省略する。変形例1において、以下で説明する各構成における処理が実施の形態と異なる。
 閾値設定部34は、超音波観測装置3に接続された超音波内視鏡2が有する超音波振動子22の振動子特性に応じて、第2の閾値であるプッシュパルス送信閾値を設定する。
 プッシュパルス制御部37は、超音波振動子22の移動量がプッシュパルス送信閾値を超える場合、プッシュパルスの送信を停止する。
 図6は、実施の形態の変形例1に係る超音波観測装置の処理を示すフローチャートである。図6に示すように、ステップS6において、制御部40が、計測開始の操作入力があったと判定した場合(ステップS6:Yes)、制御部40は、計測部23の計測結果に基づいて、所定の期間における超音波振動子22の移動量がプッシュパルス送信閾値以下であるか否かを判定する(ステップS21)。なお、この場合の所定の期間は、操作入力が行われた時点の超音波振動子22の移動量を判定可能な長さであればよく、ごく短い期間であってよい。
 制御部40が、超音波振動子22の移動量がプッシュパルス送信閾値以下であると判定した場合(ステップS21:Yes)、ステップS7に進む。
 一方、ステップS21において、制御部40が、超音波振動子22の移動量がプッシュパルス送信閾値を超えたと判定した場合(ステップS21:No)、プッシュパルス制御部37は、プッシュパルスの送信を停止する。
 そして、表示制御部39は、超音波振動子22の移動量が大きくプッシュパルスを送信できなかったことを表す警告を表示装置4に表示させ(ステップS22)、超音波観測装置3は、ステップS2に戻り処理を繰り返す。
 以上説明したように、変形例1によれば、プッシュパルスを送信する時点において、超音波振動子22の移動量が大きすぎて正確な計測が行えない場合には、表示装置4に警告を表示し、計測をやり直すことができる。
(変形例2)
 図7は、実施の形態の変形例2に係る超音波観測装置を含む超音波観測システム全体の構成を示すブロック図である。図7に示すように、超音波観測システム1Aの超音波観測装置3Aは、超音波振動子22の移動量を算出する移動量算出部42Aを備える。
 移動量算出部42Aは、図2に示すステップS9におけるトラックパルスを送信するか否かの判定において、撮像部21が撮像した画像(光学画像)を比較することにより、超音波振動子22の移動量を算出する。移動量算出部42Aは、撮像部21が撮像した光学画像において、色味が変わる点を特徴点として抽出し、光学画像間の特徴点の動きから超音波振動子22の移動量を算出する。ただし、移動量算出部42Aは、他の公知の方法によって、光学画像から超音波振動子22の移動量を算出してもよい。このように、光学画像から超音波振動子22を算出する場合、超音波内視鏡2は、計測部23を有していなくてもよい。
 また、移動量算出部42Aは、図6に示すステップS21におけるプッシュパルスを送信するか否かの判定において、撮像部21が撮像した画像(光学画像)を比較することにより、超音波振動子22の移動量を算出してもよい。
 また、移動量算出部42Aは、図6に示すステップS21におけるプッシュパルスを送信するか否かの判定において、超音波振動子22が生成した超音波信号に基づいて生成される超音波画像を比較することにより、超音波振動子22の移動量を算出してもよい。プッシュパルスを送信する前であれば、超音波画像を生成することができるため、超音波振動子22の移動量の算出に超音波画像を用いてもよい。移動量算出部42Aは、超音波画像において、輝度値が変わる点を特徴点として抽出し、超音波画像間の特徴点の動きから超音波振動子22の移動量を算出する。ただし、移動量算出部42Aは、他の公知の方法によって、超音波画像から超音波振動子22の移動量を算出してもよい。
 以上説明した変形例2のように、超音波振動子22の移動量を求める際に、計測部を用いない場合、超音波内視鏡2は、計測部23を有していなくてもよい。
 なお、上述した実施の形態では、移動量Mは、超音波振動子22が3次元的に移動した量の絶対値として説明したが、これに限られない。移動量は、アジマス方向、厚み方向、及びエレベーション方向にそれぞれ独立した値を有するベクトル量として定義してもよい。この場合、第1の閾値及び第2の閾値は、アジマス方向、厚み方向、及びエレベーション方向にそれぞれ独立した値を有していてもよい。例えば、コンベックス型の超音波振動子22において、超音波を送信する角度により補正が可能なアジマス方向においては、第1の閾値及び第2の閾値の値が他の方向より大きくてもよい。このように、第1の閾値及び第2の閾値は、3つの独立な成分を有していてもよい。
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、以上のように表し、かつ記述した特定の詳細及び代表的な実施の形態に限定されるものではない。従って、添付のクレーム及びその均等物によって定義される総括的な発明の概念の精神又は範囲から逸脱することなく、様々な変更が可能である。
 1、1A 超音波観測システム
 2 超音波内視鏡
 3、3A 超音波観測装置
 4 表示装置
 21 撮像部
 22 超音波振動子
 23 計測部
 31 送受信部
 32 信号処理部
 33 画像生成部
 34 閾値設定部
 35 関心領域設定部
 36 シアウェーブ検出位置設定部
 37 プッシュパルス制御部
 38 トラックパルス制御部
 39 表示制御部
 40 制御部
 41 記憶部
 42A 移動量算出部

Claims (11)

  1.  操作者による操作入力に応じて、超音波振動子にプッシュパルスを送信させるプッシュパルス制御部と、
     前記操作入力に応じた所定の期間内における前記超音波振動子の移動量に基づいて、トラックパルスの送信のパラメータを補正し、前記操作者が超音波画像内に設定したシアウェーブ検出位置に向けて、前記超音波振動子に前記トラックパルスを送信させるトラックパルス制御部と、
     を備える超音波観測装置。
  2.  前記トラックパルス制御部は、前記超音波振動子の移動量が第1の閾値を超える場合、前記トラックパルスの送信を停止する請求項1に記載の超音波観測装置。
  3.  当該超音波観測装置に接続された超音波内視鏡が有する前記超音波振動子の振動子特性に応じて、前記第1の閾値を設定する閾値設定部を備える請求項2に記載の超音波観測装置。
  4.  前記プッシュパルス制御部は、前記超音波振動子の移動量が第2の閾値を超える場合、前記プッシュパルスの送信を停止する請求項1~3のいずれか1つに記載の超音波観測装置。
  5.  前記トラックパルスの送信パラメータは、送信遅延量、送信開口素子位置、又は送信重み付け量の少なくともいずれか1つを含む請求項1~4のいずれか1つに記載の超音波観測装置。
  6.  前記第1の閾値は、3つの独立な成分を有する請求項2に記載の超音波観測装置。
  7.  請求項1~6のいずれか1つに記載の超音波観測装置と、
     被検体に挿入される挿入部の先端に位置し、前記被検体へ超音波を送信し、前記被検体において反射された超音波を受信する前記超音波振動子を有する超音波内視鏡と、
     を備える超音波観測システム。
  8.  前記被検体に挿入される挿入部の先端に位置し、任意の3次元座標系において、少なくとも1次元方向における前記超音波振動子の移動量を計測する計測部を備える請求項7に記載の超音波観測システム。
  9.  前記超音波内視鏡は、前記被検体に挿入される挿入部の先端に位置し、前記被検体の体内を撮像する撮像部を備え、
     前記超音波観測装置は、前記撮像部が撮像した画像を比較することにより、前記超音波振動子の移動量を算出する移動量算出部を備える請求項7又は8に記載の超音波観測システム。
  10.  プッシュパルス制御部が、操作者による操作入力に応じて、超音波振動子にプッシュパルスを送信させ、
     トラックパルス制御部が、前記操作入力に応じた所定の期間における前記超音波振動子の移動量に基づいて、トラックパルスの送信のパラメータを補正し、前記操作者が超音波画像内に設定したシアウェーブ検出位置に向けて、前記超音波振動子に前記トラックパルスを送信させる超音波観測装置の作動方法。
  11.  プッシュパルス制御部が、操作者による操作入力に応じて、超音波振動子にプッシュパルスを送信させ、
     トラックパルス制御部が、前記操作入力に応じた所定の期間における前記超音波振動子の移動量に基づいて、トラックパルスの送信のパラメータを補正し、前記操作者が超音波画像内に設定したシアウェーブ検出位置に向けて、前記超音波振動子に前記トラックパルスを送信させる処理を超音波観測装置に実行させる超音波観測装置の作動プログラム。
PCT/JP2019/000246 2019-01-08 2019-01-08 超音波観測装置、超音波観測システム、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム WO2020144745A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020565054A JP7066014B2 (ja) 2019-01-08 2019-01-08 超音波観測装置、超音波観測システム、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム
PCT/JP2019/000246 WO2020144745A1 (ja) 2019-01-08 2019-01-08 超音波観測装置、超音波観測システム、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム
US17/351,585 US20210307728A1 (en) 2019-01-08 2021-06-18 Ultrasound imaging device, ultrasound imaging system, operation method for ultrasound imaging device, and computer readable recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/000246 WO2020144745A1 (ja) 2019-01-08 2019-01-08 超音波観測装置、超音波観測システム、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/351,585 Continuation US20210307728A1 (en) 2019-01-08 2021-06-18 Ultrasound imaging device, ultrasound imaging system, operation method for ultrasound imaging device, and computer readable recording medium

Publications (1)

Publication Number Publication Date
WO2020144745A1 true WO2020144745A1 (ja) 2020-07-16

Family

ID=71521576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000246 WO2020144745A1 (ja) 2019-01-08 2019-01-08 超音波観測装置、超音波観測システム、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム

Country Status (3)

Country Link
US (1) US20210307728A1 (ja)
JP (1) JP7066014B2 (ja)
WO (1) WO2020144745A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029651A1 (ja) * 2013-08-26 2015-03-05 日立アロカメディカル株式会社 超音波診断装置および弾性評価方法
JP2017079977A (ja) * 2015-10-27 2017-05-18 コニカミノルタ株式会社 超音波診断装置、および、超音波信号処理方法
WO2018163793A1 (ja) * 2017-03-06 2018-09-13 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009007868B3 (de) * 2009-02-06 2010-05-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sensorsystem und Verfahren zur bildgebenden Erfassung eines Objektes
US8727995B2 (en) * 2010-09-09 2014-05-20 Siemens Medical Solutions Usa, Inc. Reduction of motion artifacts in ultrasound imaging with a flexible ultrasound transducer
US10143442B2 (en) * 2013-10-24 2018-12-04 Ge Medical Systems Global Technology, Llc Ultrasonic diagnosis apparatus
JP6333608B2 (ja) * 2014-04-16 2018-05-30 キヤノンメディカルシステムズ株式会社 超音波診断装置及び制御プログラム
US10664977B2 (en) * 2018-02-28 2020-05-26 General Electric Company Apparatus and method for image-based control of imaging system parameters

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029651A1 (ja) * 2013-08-26 2015-03-05 日立アロカメディカル株式会社 超音波診断装置および弾性評価方法
JP2017079977A (ja) * 2015-10-27 2017-05-18 コニカミノルタ株式会社 超音波診断装置、および、超音波信号処理方法
WO2018163793A1 (ja) * 2017-03-06 2018-09-13 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム

Also Published As

Publication number Publication date
US20210307728A1 (en) 2021-10-07
JPWO2020144745A1 (ja) 2021-09-27
JP7066014B2 (ja) 2022-05-12

Similar Documents

Publication Publication Date Title
JP5404141B2 (ja) 超音波装置及びその制御方法
EP2623034A1 (en) Ultrasound image generating device, ultrasound image generating method, and program
WO2015029499A1 (ja) 超音波診断装置および超音波画像生成方法
WO2016113990A1 (ja) 超音波観測システム
US20180333139A1 (en) Ultrasound observation device, method of operating ultrasound observation device, and program computer-readable recording medium
JP2009078124A (ja) 超音波診断装置、並びに、画像処理方法及びプログラム
US20190357888A1 (en) Ultrasound observation apparatus and operation method of ultrasound observation apparatus
US8398548B2 (en) Ultrasound diagnostic apparatus and ultrasound diagnostic method
EP3354203A1 (en) Ultrasonic observation device
WO2020144745A1 (ja) 超音波観測装置、超音波観測システム、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム
US20190357878A1 (en) Ultrasound observation device and operation method of ultrasound observation device
JPWO2020079761A1 (ja) 超音波観測システム、超音波観測システムの作動方法、及び超音波観測システムの作動プログラム
JPWO2020157870A1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP2009297346A (ja) 超音波観測装置、超音波内視鏡装置、画像処理方法及び画像処理プログラム
JPWO2017098931A1 (ja) 超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラム
JP6530660B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
US10219781B2 (en) Ultrasound observation apparatus, method for operating ultrasound observation apparatus, and computer-readable recording medium
US20210361263A1 (en) Ultrasound imaging system, operation method of ultrasound imaging system, and computer-readable recording medium
JP6379059B2 (ja) 超音波観測装置、超音波観測装置の作動方法、超音波観測装置の作動プログラムおよび超音波診断システム
JP7155394B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP2017217359A (ja) 超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム
JP5932189B1 (ja) 超音波観測装置
JP4726407B2 (ja) 超音波診断装置
WO2021111640A1 (ja) 超音波観測装置、超音波観測システム、及び超音波観測方法
JP2020039821A (ja) 超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909594

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020565054

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909594

Country of ref document: EP

Kind code of ref document: A1